
Full Band Monte Carlo Simulation  

of Nanowires and Nanowire Field Effect Transistors  

by 

Raghuraj Hathwar 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved July 2016 by the 

Graduate Supervisory Committee:  

 

Stephen Goodnick, Chair 

Marco Saraniti 

Dragica Vasileska 

David Ferry 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

August 2016  



  i 

ABSTRACT  

   

 In this work, transport in nanowire materials and nanowire field effect transistors 

is studied using a full band Monte Carlo simulator within the tight binding basis. Chapter 

1 is dedicated to the importance of nanowires and nanoscale devices in present day 

electronics and the necessity to use a computationally efficient tool to simulate transport 

in these devices. Chapter 2 discusses the calculation of the full band structure of 

nanowires based on an atomistic tight binding approach, particularly noting the use of the 

exact same tight binding parameters for bulk band structures as well as the nanowire band 

structures. Chapter 3 contains the scattering rate formula for deformation potential, polar 

optical phonon, ionized impurity and impact ionization scattering in nanowires using 

Fermi’s golden rule and the tight binding basis to describe the wave functions. A method 

to calculate the dielectric screening in 1D systems within the tight binding basis is also 

described. Importantly, the scattering rates of nanowires tends to the bulk scattering rates 

at high energies, enabling the use of the same parameter set that were fitted to bulk 

experimental data to be used in the simulation of nanowire transport. A robust and 

efficient method to model interband tunneling is discussed in chapter 4 and its 

importance in nanowire transport is highlighted. In chapter 5, energy relaxation of excited 

electrons is studied for free standing nanowires and cladded nanowires. Finally, in 

chapter 6, a full band Monte Carlo particle based solver is created which treats 

confinement in a full quantum way and the current voltage characteristics as well as the 

subthreshold swing and percentage of ballistic transport is analyzed for an In0.7Ga0.3As 

junctionless nanowire field effect transistor. 
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1. INTRODUCTION 

 

1.1. Emergence of Nanoscale Devices 

 

The significant progress in integrated circuits (IC) technology over the past five 

decades has become the driving power of the semiconductor technology industry. A key 

factor of the progress in IC technology is the scaling down of the dimensions of each 

transistor, the basic element of integrated circuits, thereby increasing the total number of 

transistors in one IC chip. This increases the functionality of the chip while keeping its 

cost roughly constant. The device scaling has been successfully predicted by Moore’s law 

(Moore1965) – the number of transistors on one IC chip has quadrupled every three years 

and the feature size of each transistor has shrunk to half of its original value at the same 

time. To date, microprocessors with 1.4 billion transistors have been realized, and the 

corresponding metal oxide semiconductor field effect transistor (MOSFET) gate lengths 

in modern chips has already entered the nanometer regime. The aggressive scaling of the 

device size has to be continued to maintain the successive improvements in circuit 

technology. Unfortunately, as the MOSFET gate length enters the nanometer regime, 

short channel effects (SCEs), such as drain induced barrier lowering (DIBL), gate 

induced drain leakage (GIDL), etc., have become increasingly significant, which limits 

the scaling capability of planar bulk or silicon on insulator (SOI) MOSFETs (Frank2001). 

For these reasons, novel device structures and materials including silicon nanowire 



  2 

transistors (Cui2002), FinFETs (Choi2001), carbon nanotube FETs (Alvi2005), etc., are 

being explored by the industry as well as various academic departments.  

 Another problem that becomes prevalent as the channel length reduces is the 

control of the gate over the channel. Effective gate control is required for a nanoscale 

MOSFETs to achieve good device performance. For this reason, silicon nanowires, which 

allow multi-gate or gate all around transistors, are being explored. Wires with rectangular 

cross-sections are used to fabricate different types of tri gate/gate all around FETs. The 

nanowire transistor is one candidate which has the potential to overcome the problems 

caused by short channel effects in MOSFETs and has gained significant attention from 

both device and circuit developers. In addition to the effective suppression of short 

channel effects due to the improved gate control, the multi-gate nanowire FETs show 

good current values and increased mobilities under particular strain conditions and 

nanowire orientations. As a result, the nanowire transistor has obtained broad attention 

from both the semiconductor industry (Kotlyar2012) and academia (Colinge2009). 

 

 

1.2. Simulation Methods for Nanoscale Structures 

 

 The study of charge transport in semiconductors is of fundamental importance 

both from the point of view of the basic physics and for its applications to electrical 

devices (Brews1980). As the need for electrical appliances grew the need for smaller and 

faster devices grew as well. This led to the reduction in the size of the devices. In recent 



  3 

years nanowires have become important as both a novel material and as a channel for 

transistors. It is therefore very important to understand the material properties of 

nanowires and create models that can simulate transport in nanowires. Recent 

experimental work suggests that the growth of freestanding small diameter [110] Si NWs 

(<10nm) is thermodynamically favorable. Simulations also predict that the phonon 

limited hole mobility in these dimensionally reduced structures significantly exceed that 

of electrons. It is therefore important to have a simulation tool capable of accurate results 

on nanowire simulations. 

There are several methods to solve transport in nanoscale devices. Methods using 

the traditional drift diffusion model is still popular due to the simplicity in its 

implementation. The drift diffusion method being a fundamentally classical method, 

requires external models to be added in order to simulate nanoscale devices. Models such 

as the self-consistent coupled Schrödinger Poisson model, effective potential model and 

the Bohm quantum potential model are regularly used to simulate nanoscale devices 

(Fiori2007).  The band structure gets modified due to the confinement in nanoscale 

devices. This has to be incorporated into the drift diffusion model with modified effective 

masses. The mobility of the materials will also have to be changed due to the change in 

scattering rates of the confined systems. Unfortunately, the accuracy of such simulations 

are not good and often require extensive calibration to experimental data to be useful in 

analysis. Parameters are usually very difficult to obtain since the parameters change 

drastically based on the extent of confinement in these nanoscale devices.  

A more rigorous approach used is the NEGF method (Datta1997). This is a fully 

quantum approach that is the most accurate theoretically, unfortunately, to simulate 
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realistic devices, including dissipative scattering is computationally prohibitive, and 

attempts at approximations of the method have unphysical results. There are several 

publications on nanowire FETs using the effective mass Schrödinger-Poisson solver 

coupled with NEGF method (Martinez2007, Dastjerdy2010, Wang2004). Though these 

simulations are able to capture phase breaking, tunneling and other quantum effects 

accurately, they have many drawbacks when simulating real device geometries. To add 

scattering into the Green’s function approach requires a non-local self-energy scattering 

matrix. This matrix is very dense and therefore to simplify calculations scattering is 

assumed to be local, similar to a semi-classical Monte Carlo approach. Also dissipative 

scattering is usually ignored to further simplify the matrix, often approximating transport 

to being purely ballistic or close to ballistic (Martinez2007, Dastjerdy2010). Also to solve 

the Schrödinger equation, bulk effective masses are used which can be very different 

from the effective masses in nanowires (Horiguchi1996). At high energies, the band 

structure of nanowires is highly non-parabolic and very dense (Buin2008), considering a 

full band structure is essential to capture the transport in the high field regimes. Last but 

not least, the computational cost of 3D NEGF methods is very large and regularly 

requires simulations to be run on hundreds or thousands of processors. 

In this thesis, the Monte Carlo method is employed to study transport in 

nanowires. Monte Carlo techniques are statistical numerical methods, which are applied 

to the simulation of random processes. In truth, the Monte Carlo method as a statistical 

numerical method was born well before its application to transport problems and has 

been applied to a number of scientific fields (Boyle1997). In the case of the charge 

transport, however, the solution of the Boltzmann transport equation is a direct simulation 
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of the dynamics of the carriers in the material. This means that while the simulation is 

being run, and while the solution is being approached, any physical information can be 

easily extracted. Therefore, even though the result of Monte Carlo simulations require a 

correct physical interpretation, the method is a very useful tool to achieve accurate 

solutions. It permits the simulation of particular physical situations unattainable in 

experiments, or even investigation of nonexistent materials in order to emphasize special 

features of the phenomenon under study. This use of the Monte Carlo technique makes it 

similar to an experimental technique and can be compared with analytically formulated 

theory. Although the Boltzmann transport equation does not incorporate quantum 

transport behavior, by modifying the Boltzmann transport equation to a purely 1D 

transport equation, with the confinement and charge distribution along the confined 

directions calculated in a fully quantum way, transport in long nanowires can be 

accurately simulated. In this work, the full band structure of nanowires are calculated 

using the sp3d5s* tight binding method including spin-orbit interaction (Boykin2004). The 

deformation potential scattering rates are calculated based on work done by Buin (2008) 

and extended to polar optical phonon, ionized impurity, impact ionization and surface 

roughness scattering rates are calculated within the tight binding basis. Using the same 

parameters that are used for bulk material simulations, the scattering rates of nanowires 

are also calculated. By coupling the particle based Monte Carlo to the tight binding band 

structure and scattering rate calculation in a self-consistent manner, dissipative transport 

in nanowire FETs is successfully simulated. By using a full band Monte Carlo 

simulation, transport at high energies, where scattering dominates and dissipative 

transport is important, can be accurately modeled. Compared to NEGF simulations where 
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hundreds or thousands of processors are required to run a simulation, all the simulations 

in this work are run on a single processor greatly reducing the computational cost in 

comparison. Therefore, due to the relatively low computational cost and the effective 

incorporation of dissipative scattering this work provides a very useful tool to simulate 

transport in nanowire structures. 

In chapter 2, the calculation of the full band structure of nanowire devices is 

discussed with regard to the empirical tight binding method. The tight binding method, 

also used to calculate the band structure of the bulk method is used to obtain the band 

structure of the nanowire without any extra parameters.  

In chapter 3, the scattering rates of nanowires and bulk materials are calculated 

within the tight binding basis. At high energies, the scattering rate of the nanowire 

material is shown to agree to the scattering rate of the bulk material for the same 

scattering rate parameters, an important property which allows the simulation of 

nanowire devices without any additional parameters.  

In chapter 4, the low field and high field analysis of nanowires is performed. In 

the low-field regime, the Boltzmann transport equation is solved using Rode’s method 

(Rode1972). The high field transport is analyzed using a uniform field Monte Carlo 

simulation. The scattering rate parameters for Si and GaAs are obtained by fitting the 

mobility and velocity field curves with experimentally obtained data. The same 

parameters are then used to simulate high field transport in nanowires. A new model to 

describe the interband tunneling process is also introduced. The importance of the model 

in simulating high field transport in nanowires is also discussed. 
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In chapter 5, the energy relaxation of excited electrons is studied in free standing 

nanowires as well as cladded nanowires, the multi-exciton generation process is also 

studied in cladded nanowires. In chapter 6, a full band particle based Monte Carlo 

simulator is used to study the current voltage properties of an In0.7Ga0.3As junctionless 

nanowire field effect transistor (JNFET). Important modifications are made to the 

traditional Monte Carlo process to incorporate confinement effect in a fully quantum way 

in nanowires.  
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2. BAND STRUCTURE OF BULK AND NANOWIRE MATERIALS 

 

 The method used to calculate the band structure of nanowires is usually the same 

as the methods used to calculate the band structure of bulk materials. Since the focus of 

this work is on nanowires, the advantages and disadvantages of the methods used will be 

discussed with regard to the calculation of nanowire band structures. The calculation of 

the band structure of nanowire materials is essential to understanding the transport 

through these materials. There are various methods available to calculate the band 

structure of nanowires such as the plane-wave basis non local empirical pseudopotential 

method (EPM) (Chelikowsky1984), the empirical tight binding method (ETB) 

(Vogl1983) and the density functional theory (DFT) within the local density 

approximation (LDA) (Williamson2006). Though all the methods listed above solve the 

time-independent Schrödinger equation to obtain the band structure across the full 

Brillouin zone (BZ) they employ different approximations to the nature of the wave 

function. This translates to certain advantages and disadvantages to each method. The 

empirical pseudopotential method approximates the wave function as a summation of 

plane waves. Due to the extended nature of these waves, a cladding layer of several 

nanometers is usually required around the nanowire to accurately obtain the band 

structure of the nanowire. This makes the calculation computationally expensive although 

due to the nature of the method it requires relatively few parameters. The empirical tight 

binding method on the other hand assumes the wave function is a linear combination of 

atomic orbitals on each atom. In most cases a linear combination of the s, p, d and s* 

orbitals are used to describe the wave function. Due to the highly localized nature of 
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these atomic orbitals, the surface can be considered to be passivated with hydrogen and 

therefore a fewer number of atoms are required in the calculation of the band structure. 

This makes the calculation relatively computationally inexpensive. Unfortunately, the 

energy interaction between the orbitals in the Hamiltonian are approximated to fitting 

parameters, which leads to a large number of fitting parameters due to the large number 

of different orbitals on each atom. Fitting band structures to experimental data using the 

empirical tight binding methods usually involve computationally expensive genetic 

algorithms (Klimeck2000). The density functional theory approach on the other hand 

uses a local density approximation to relax the nanowire structure to its closest energy 

minimum and is very computationally expensive compared to the EPM and the ETB 

methods. In this work, we use the empirical tight binding method to calculate the band 

structure of both bulk and nanowire materials using the same set of parameters fitted to 

experimental data available for bulk materials.  

 

2.1. The Empirical Tight Binding Method 

 

As mentioned before, the band structure of a system can be obtained by solving the 

time independent Schrödinger equation of the system given by equation (2.1) 

 H E    (2.1) 

where H is the Hamiltonian for the system, E  are its eigenvalues and   are its 

eigenvectors or wave functions. Since the system represents a crystal structure, the wave 

functions of the system must be Bloch waves. Therefore 

 ( ) ( )ikrr R e r     (2.2) 
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where k  is the wave vector. The tight binding approximation is to assume the Bloch 

function is a sum of atomic orbitals centered on the individual atoms. Based on this 

approximation, the solution  r  of the time independent Schrödinger equation given by 

equation (2.1) is written as 

      .R

,

1
, ni

m m m

n m

c e n
N

       
k

k r k r a   (2.3) 

where the summation over n  indicates the summation over all unit cells in the crystal, m  

is the number of atoms in a unit cell, ma  is primitive lattice vector for atom ,m   is the 

band index, k  is the wave vector, N  is the number of unit cells in the crystal, m  is the 

location of orbital m  within the unit cell, m are the atomic orbitals and c  are the 

orthonormal expansion coefficients obtained from an eigenvalue solver when solving 

equation (2.1). 

 In diamond and zinc-blende materials the unit cell consists of 2 atoms. Assuming 

each atom contains the s-orbital which consists of 1 orbital, the p-orbital which consists 

of 3 orbitals  , ,x y zp p p , the d-orbital which consists of 5 orbitals 

 2 2 2, , , ,xz yz xy z x y
d d d d d


   and the s*-orbital, an excited s-type orbital (was introduced to 

describe the conduction bands reasonable well (Vogl1983)), which consists of 1 orbital, 

each atom now contains 10 different atomic orbitals. By including the spin-orbit 

interaction, each orbital can either be spin-up or spin-down increasing the number of 

orbitals to 20 per atom. With 2 atoms per unit cell in most bulk materials, this makes the 

Hamiltonian size in equation (2.1) equal to 40 for bulk materials. This is still much lower 
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than empirical pseudopotential methods where the matrix size can be as high as 300 

depending on the number of reciprocal lattice vectors chosen (Rieger1993). 

Assuming the tight binding wave functions can be written as described in equation 

(2.3), inserting equation (2.3) in to equation (2.1) we obtain 

 B S Bk k k k kH    (2.4) 

where 
* 3( ) ( )k k kH r H r d r    , 

* 3( ) ( )k k kS r r d r    and kB  are the coefficients of the 

atomic orbitals. Equation (1.4) is a generalized eigenvalue problem and can be solved 

using mathematical libraries such as ARPACK (Lehoucq1997), SLEPc (Hernandez2005), 

etc. Since the wave functions described in equation (2.3) are not orthogonal, the overlap 

integral kS cannot be approximated to an identity matrix. This greatly increases the 

computational burden of solving equation (2.4). To simplify this, a transformation called 

the Lowdin transformation is applied to equation (2.4) to reduce it from a generalized 

eigenvalue problem to a simple eigenvalue problem. The following steps are applied 

(Papaconstantopoulos1986) 

 Hb Sb   (2.5) 

 

1 1 1 1

2 2 2 2S HS S b S b
     

    
       (2.6) 

 1 1 1H b b   (2.7) 

where 
1 1

2 2
1H S HS

 

  and 
1

2
1b S b  . Therefore by modifying the wave function and 

Hamiltonian the generalized eigenvalue problem is reduced to a simple eigenvalue 

problem with the same eigenvalues. Of course this now creates a new problem, even 
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though the eigenvalues are the same, the eigenvectors or wave functions are different. 

The tight binding wave function shown in equation (2.3) is now a linear combination of 

Lowdin orbitals and not atomic orbitals as is usually erroneously mentioned in literature. 

Lowdin orbitals are more localized on an atom than atomic orbitals (like Gaussian or 

Slater type orbitals) but also have non-zero values on the neighboring atoms so as to 

satisfy the orthogonality condition (Lu2005). A common approximation is to assume that 

the Lowdin orbitals are similar to atomic orbitals and use either a Slater type orbital or 

Gaussian type orbital to represent the atomic orbital. These orbitals are in general not 

orthogonal to each other. The validity of this approximation is yet to be rigorously 

verified. The lack of a proper description of the wave functions makes it difficult to 

calculate the scattering rates as will be shown in chapter 3. 

The band structures calculated using the ETB method for bulk Si, GaAs and InAs 

are shown in Figure 2.1 using the sp3d5s* empirical tight binding method including spin-

orbit interaction. The tight binding parameters used are listed in Table 2.1 (Boykin2004).  

 

Table 2.1: Parameter list for the sp3d5s* empirical tight binding method including spin-

orbit interaction for GaAs, Si and InAs. 

Parameter GaAs Si InAs 

a  5.6532 5.43 6.0583 

saE  -8.063758 -2.15168 -5.9801 

paE  3.126841 4.22925 3.5813 

scE  -1.603222 -2.15168 0.3333 

pcE  4.745896 4.22925 6.4939 

*s a
E  21.930865 19.11650 17.8411 

*s c
E  23.630466 19.11650 17.8411 

daE  13.140998 13.78950 12.1954 
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dcE  14.807586 13.78950 12.1954 

ss  -1.798514 -1.95933 -1.4789 

s s  
 -4.112848 -4.24135 -3.8514 

a cs s 
 -1.688128 -1.52230 -2.1320 

a cs s   -1.258382 -1.52230 -1.2219 

a cs p   3.116745 3.02562 2.3159 

c as p   2.776805 3.02562 2.8006 

a cs p 
 1.635158 3.15565 2.6467 

c as p 
 3.381868 3.15565 1.9012 

a cs d   -0.39647 -2.28485 -2.5828 

c as d   -2.151852 -2.28485 -2.4499 

a cs d 
 -0.145161 -0.80993 -0.8497 

c as d 
 -0.810997 -0.80993 -0.8371 

pp  4.034685 4.10364 4.1188 
pp  1.275446 -1.51801 -1.3687 

a cp d   -1.478036 -1.35554 -2.1222 

c ap d   -0.064809 -1.35554 -2.0584 

a cp d   1.830852 2.38479 1.5462 

c ap d   2.829426 2.38479 1.7106 

dd  -1.216390 -1.68136 -1.2009 

dd  2.042009 2.58880 2.1820 

dd  -1.829113 -1.81400 -1.7788 

a  0.194174 0.01989 0.1763 

c  0.036594 0.01989 0.1248 

 

The off-diagonal elements of the tight binding Hamiltonian is calculated using the two-

center integral approximation given by Slater (1954) listed in Table 2.2 where , ,l m n  are 

the cosine of the angles along the , ,x y z  axes between the two atoms respectively. 

 

 

Table 2.2: Two center integral formulae for the ETB method 

,s sE    ss   

,s xE    l sp   
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,x xE       2 21l pp l pp     

,x yE      lm pp lm pp    

,x zE      ln pp ln pp    

,s xyE    3lm sd   

2 2,s x y
E


    2 23 2 l m sd   

2 2,3s z r
E


     2 2 21 2n l m sd  

 
  

,x xyE       2 23 1 2l m pd m l pd     

,x yzE      3 2lmn pd lmn pd    

,x zxE       2 23 1 2l n pd n l pd     

2 2,x x y
E


       2 2 2 23 2 1l l m pd l l m pd       

2 2,y x y
E


       2 2 2 23 2 1m l m pd m l m pd       

2 2,z x y
E


       2 2 2 23 2n l m pd n l m pd      

2 2,3x z r
E


       2 2 2 21 2 3l n l m pd ln pd    

 
  

2 2,3y z r
E


       2 2 2 21 2 3m n l m pd mn pd    

 
  

2 2,3z z r
E


        2 2 2 2 21 2 3n n l m pd n l m pd    

 
  

,xy xyE          2 2 2 2 2 2 2 2 23 4l m dd l m l m dd n l m dd         

,xy yzE          2 2 23 1 4 1lm n dd ln m dd ln m dd        

,xy yzE          2 2 23 1 4 1l mn dd mn l dd mn l dd        

2 2,xy x y
E


          2 2 2 2 2 23 2 2 1 2lm l m dd lm m l dd lm l m dd         

2 2,yz x y
E


        

   

2 2 2 2

2 2

3 2 1 2

1 1 2

mn l m dd mn l m dd

mn l m dd

 



    
 

   
 

  

2 2,zx x y
E


        

   

2 2 2 2

2 2

3 2 1 2

1 1 2

nl l m dd nl l m dd

nl l m dd

 



    
 

   
 

  

2 2,3xy z r
E


       

  

2 2 2 2

2

3 1 2 2 3

3 2 1

lm n l m dd lmn dd

lm n dd

 



   
 

 
  

2 2,3yz z r
E


     

     

2 2 2

2 2 2 2 2

3 1 2

3 3 2

mn n l m dd

mn l m n dd mn l m dd



 

  
 

    
  



  15 

2 2,3zx z r
E


     

     

2 2 2

2 2 2 2 2

3 1 2

3 3 2

ln n l m dd

ln l m n dd ln l m dd



 

  
 

    
  

2 2 2 2,x y x y
E

 
         

   

2 2
2 2 2 2 2 2

2
2 2 2

3 4

1 2

l m dd l m l m dd

n l m dd

 



     
  

   
  

  

2 2 2 2,3x y z r
E

 
       

      

2 2 2 2 2

2 2 2 2 2 2

1 2 1 2

3 3 4 1

l m n l m dd

n m l dd n l m dd



 

   
 

    
  

2 2 2 23 ,3z r z r
E

 
            

2 2
2 2 2 2 2 2 2 21 2 3 3 4n l m dd n l m dd l m dd        

 
 

 

The primitive unit cell as well as its next nearest neighbors that are used for GaAs are 

shown in Figure 2.2. The solid circles represent the atoms in the primitive unit cell while 

the hollow circles are the nearest neighbors connected to the primitive unit cell atoms by 

dotted lines. Red circles represent the Ga while the blue circles represent As. Each atom 

contains one neighbor that exists within the same primitive cell and 3 other neighbors that 

are in 3 different primitive cells obtained by translational shifts according to the basis 

vectors as shown in the figure. 

 

a)                                                                  b) 
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c) 

Figure 2.1: Bulk band structures of a) GaAs, b) Si and c) InAs along important 

symmetry directions in the 1st Brillouin Zone using the empirical tight binding method. 
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Figure 2.2: Primitive cell structure of GaAs. Red circles indicate Gallium atoms while 

blue circles indicate Arsenide atoms. Solid lines represent bonds. Solid circles are atoms 

in the primitive unit cell, while hollow circles are nearest neighbor atoms obtained by 

translational shifts according to the basis vectors a1, a2 and a3. 

 

The parameters listed in Table 2.1 are obtained by fitting important points in the band 

structure such as band gaps and effective masses to the available experimental data of the 

bulk materials (Vurgaftman2001). 

 

2.2. Band Structure of Nanowires 

  

For the case of nanowires, equation (2.3) can be written as 

      
,

1
, likna

m m l

n m

k c k e na
N

       r r   (2.8) 
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where the summation over n  indicates the summation is over all supercells in the 

nanowire, la  is the NW lattice constant,   is the band index, k  is the wave vector along 

the NW axis, N  is the number of supercells, m  is the orbital type and location, m  is the 

location of orbital m  within the supercell, m  are the atomic orbitals and c  are the 

expansion coefficients obtained from an eigenvalue solver. The key difference between 

equations (2.3) and (2.8) is that in the case of nanowires, the momentum exists only along 

the nanowire axis. The main difference in the calculation of the band structure of 

nanowires is the creation of the supercell as opposed to the use of the primitive cell in 

bulk band structure calculations. Due to the confinement along two directions, the 

supercell can be very large and contains many primitive cells of the bulk material. This 

makes the matrix in equation (1) very large and the solution of the eigenvalue problem 

computationally expensive for large nanowire widths/diameters. 

 

2.2.1.  Supercell Creation 

 

 The supercell of a nanowire is the smallest cell of atoms that when replicated 

along the axis of the nanowire produces the entire nanowire. The supercell of a nanowire 

depends on the cross-sectional profile of the nanowire as well as its orientation. Once the 

orientation of the nanowire is defined, the primitive basis vectors of the material are used 

to calculate its periodicity along its axis. If the orientation of the nanowire is different 

from the [100] the primitive basis vectors are first rotated to the defined nanowire 

orientation. The position of any atom can then be obtained by the following equation 
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 1 1 2 2 3 3T n a n a n a     (2.9) 

where 1 2 3, ,n n n  are natural numbers and 1 2 3, ,a a a  are the rotated primitive basis vectors 

for the given material. The atoms in the nanowire are populated according to equation 

(2.9), where the neighbor of each atom is obtained by adding or subtracting a primitive 

vector. The dimensions along the confined directions are restricted according to the 

cross-section of the nanowire. Once the nanowire is sufficiently populated, the 

periodicity along the nanowire axis can be calculated. This also automatically gives the 

supercell of the nanowire. An example of a supercell structure for different cases is 

shown in Figures 2.3 and 2.4.  

 
Figure 2.3: The supercell structure for a Wurtzite GaN-InN superlattice (Zhou2013). 
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Figure 2.4: The supercell structure for a Zinc Blende 3 nm x 3 nm Si NW along [111]. 

 

2.2.2.  Surface Passivation 

 

 In supercells which contain quantization, there are directions along which there is 

no periodicity. Therefore there exists atom within the supercell which don’t have all their 

bonds satisfied. This creates dangling bonds which must be addressed, otherwise the band 

gap becomes filled with surface states and the band structure is modified. A common 

method to address this is to introduce artificial periodicity in to the system or by using a 

buffer layer around the nanowire. In most cases, the buffer layer must be very thick to 

completely remove the effect of the surface layer on the band structure. This greatly 

increases the computational cost as now the Hamiltonian of the entire system including 

the buffer layer has to be inverted as opposed to just the nanowire. A more commonly 

used method is the 3sp  hybridization method (Lee2004). This method to some degree, 

mimics the physical passivation of the dangling bonds with other atoms such as hydrogen 
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or oxygen. The energies of the bonding and antibonding states of SiH4 for example are 18 

eV and 5 eV below the valence band edge of bulk Si, respectively (Cardona1983). The 

3sp  hybridization method is the approximation of the bonding and antibonding states 

between vacuum and a dangling bond at an energy determined by 3 .sp
  As an example of 

how particular bonds at the surface can be passivated, take for example a simple 3sp  

system.  

 

0 0 0

0 0 0

0 0 0

0 0 0

s

p

p

p

D









 
 
 
 
  
 

  (2.10) 

  

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

V

 
 

  
  
 

  

  (2.11) 

Here D  represents the on-site energy for the system and V  is the combination of 

, ,x ys p p  and zp  orbitals that represent the different possible bonds in a Zinc Blende 

system. The on-site energies are first converted to the 3sp  basis by 

   new TD V D V      (2.12) 

Then depending on which bond is dangling the on-site energy is decreased (the diagonal 

elements are increased by 3sp
 ) and then the system is rotated back to the original 

, ,x ys p p and zp orbital basis and added to the TB Hamiltonian as shown below 

  _ modT newD V D V          (2.12) 
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The effect of the dangling bond energy ( 3sp
 ) on the band gap of a 5 nm x 5 nm GaAs 

NW is shown in Figure 2.5. As the 3sp hybridization parameter is increased, the surface 

states are removed from the mid gap and the band gap of the material converges to a 

fixed value. 

 

Figure 2.5: Variation of the band gap obtained using the 3sp hybridization method with 

the  3sp  hybridization energy parameter. 

 

2.2.3.  Band Structures of Si and InAs Nanowires 

 

Once the Tight Binding Hamiltonian is set up, the energy band structure of the 

nanowire can be calculated for every k-point along the BZ ( / a to / a ) where a  is 
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the periodicity of the nanowire along the transport direction. The band structures are 

shown in Figure 2.6.  

  

a)                                                                b) 

 

                                  c)                                                                      d) 

Figure 2.6: Band structure of a) 3 nm x 3 nm Si nanowire along [100], b) 3 nm x 3 nm Si 

nanowire along [111], c) 3 nm x 3 nm InAs nanowire along [100] and d) 3 nm x 3 nm 

InAs nanowire along [111] using the empirical tight binding method. 
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In most eigenvalue solvers, a reference energy is required and the closest say 100 

bands with respect to the reference energy value is calculated. As the energy bands and 

eigenvectors for different k points are calculated, the energy reference has to be 

accordingly shifted, otherwise it is possible some valence band states will be obtained if 

the reference energy is too low. A simple method to ensure that you are always 

calculating the conduction or valence bands exclusively is to make the reference energy 

follow the equation 

  

   

   

max min

min max

1 1
0.2

2

1 1
0.2

2

ref

E i E i
for conductionbands

E i
E i E i

for valencebands

  



 

   


  (2.13) 

 

for successive k points. This way the reference energy is always in the middle of the span 

of energy bands you would require. The downside is that for the first k point the 

reference energy needs to be input separately. This requires a rough idea of the 

magnitude of the bandgap of the nanowire. The variation of the band gap with nanowire 

width is shown for Si, GaAs and InAs in Figure 2.7. 
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Figure 2.7: Variation of band gaps of Si, GaAs and InAs nanowires with nanowire 

widths 

2.2.4. Eigenvalue Solver 

 

The super cell structure of nanowires is fairly big even for small dimension 

nanowires. The super cell of a 3 nm x 3 nm Silicon nanowire along the [111] direction 

(shown in Fig. 2.4) contains 448 Silicon atoms. Using the sp3d5s* nearest neighbor ETB 

method including spin means that each atom will have 20 orbitals. Therefore the matrix 

size for this system will be 8960 x 8960. Inverting such a huge matrix for every k point in 

the Brillouin Zone (BZ) is prohibitively expensive. In this work the banded eigenvalue 

solver from ARPACK and the sparse eigenvalue solver from SLEPc are used to solve the 
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matrices. Only a few eigenvalues (~100) and their corresponding eigenvectors are 

calculated. To improve the efficiency of the banded eigenvalue solver, the bandwidth of 

the Tight Binding Hamiltonian is reduced using a reverse Cuthill Mckee algorithm 

(Crane1976). An example is shown in Fig 2.8. 

 

 
Figure 2.8: The reduction in the bandwidth of a matrix using a reverse Cuthill Mckee 

algorithm. 

 

 

2.2.5. Density of States 

 

     The density of states of nanowire and bulk materials is given by the following 

equations 

 1 ( ) ( ') '
2 '

D

e k
DOS E E E dE

A E





 


  (2.14) 
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 3 3
( ) ( ') '

8 '
D

e k
DOS E E E dE

E





 


  (2.15) 

 

 

where A  is the cross-sectional area of the nanowire. The comparison between the DOS 

of a 3 nm x 3 nm In0.7Ga0.3As NW along [100] and bulk In0.7Ga0.3As and the DOS of a 3 

nm x 3 nm Si NW along [100] and bulk Si is shown in Figures 2.9.  

 

a)                                                                 b) 

 

                                  c)                                                                      d)  
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Figure 2.9: Comparison of density of states between bulk and nanowire materials using 

the same tight binding parameters. a) conduction bands of 2 nm x 2 nm and 3 nm x 3 nm 

GaAs nanowires along [100], b) valence bands of 2 nm x 2 nm and 3 nm x 3 nm GaAs 

nanowires along [100], c) conduction bands of 2 nm x 2 nm and 3 nm x 3 nm Si 

nanowires along [100] and d) valence bands of 2 nm x 2 nm and 3 nm x 3 nm Si 

nanowires along [100]. 

 

    At high energy it is observed that the density of states of the nanowire oscillate around 

the density of states of the bulk material. This can be understood by the fact that at high 

energies, the carriers are less confined and should have confinement free (bulk-like) 

behavior.  
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3. SCATTERING RATES OF BULK AND NANOWIRE MATERIALS 

 

3.1. Tight Binding Scattering Rates of Bulk Materials 

 

 

The scattering rates of the bulk material within the tight binding scheme are 

calculated using Fermi’s golden rule  

    
2

, , ' , ' ,

2
, 'W V E E   


   k k k kk k   (3.1) 

where k  and 'k  are the initial and final wave vectors at band indices μ and ν 

respectively. , 'Vk k  is the matrix element for the particular scattering mechanism, ,E k  and 

, 'E k  are the initial and final energy states respectively and ω is the phonon frequency if 

present in the scattering mechanism. The Dirac delta function in equation (3.1) represents 

the energy conservation property of the scattering process. The scattering rate from k  to 

'k  for a particular phonon vector q  for the case of deformation potential scattering can 

be written as (Fischetti1988) 

 
     

      

2

, ,

2 1 1
, ', ' , ,

2 2

'

e phW N H N

E E

   

 


 

 

  

  

qq q
k k q k k

k k q

 (3.2) 

where k   and 'k   are the initial and final wave vectors at band indices    and    

respectively, N
q

 is the equilibrium phonon occupation number,  ' k  and   k  are 

the final and initial wave functions respectively. The matrix element in equation (3.2) is 

given by 
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 

   

1/2
1/2

* .

'

1 1
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2 22

i

aV E N e d
V

  
 

   
     

   


q r

kk q

r

k k r
q

  (3.3) 

   

where aE   is the deformation potential constant whose value is acE q   for acoustic 

phonons and opE for optical phonons,   is the crystal density and V  is the crystal 

volume. The integration in equation (3.3) can be calculated using equation (2.3) to give 

         ''. .* . *

, , ' , ', , '

, ' , '

1
' ' n ni R i Ri

m m m m n n

m m n n

e d C C e e I
N

     
 

k kq r

r

k k r k k q  (3.4) 

where  

             * .

, ', , ' ' ' '' i

m m n n m m m m m mI n e n d             
q r

r

q r a r a r  (3.5) 

Solving equation (3.5) is difficult given that the exact spatial variation of the atomic 

orbitals are unknown other than the fact that they are highly localized around the atom. 

At this point several approximations will be made to simplify equation (3.5). The first 

approximation is that neighboring unit cells within the tight binding scheme have very 

little overlap, mathematically this translates to 'n n . The summation involving n  and 

'n  can then be approximated to 

 
   ' ''. .

, '

1 1
'n n i ni R i R

n n n

e e e
N N


 

    
k k q ak k

k k q   (3.6) 

where nR n a  and the discrete points 
i ne q a

 is taken from the continuous function 
.ie q r

. 

The Kronecker delta function in equation (3.6) guarantees the momentum conservation of 

the scattering process. Another important approximation to equation (3.5) is to assume 

that the overlap integral between: (i) orbitals on different atoms and (ii) different types of 
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orbitals on the same atom is zero. This is a valid approximation if the span of the orbital 

m  is much less than 2 / q  which is true for small q (Buin2008). Using the above 

approximation, the overlap integral becomes 

       .* .

,
mii

m n m m m mI e d e
            

qq r

r

q r r r   (3.7) 

The matrix element can now be written as, 
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k k k k q

  (3.8) 

   

The scattering rate from k to 'k is then given by 

           
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, , '
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      kk

q q

k k k k q k k q   (3.9) 

Inserting equation (3.8) in to equation (3.9) we get 
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  (3.10) 

where  

       .*

, , ,, ' ' mi

m m

m

S C C e


   
q

k k k k   (3.11) 

The scattering rate to a volume of k-space around 'k  is obtained by summing over a 

region of k-space around 'k to obtain, 
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   (3.12) 

where  

  
'

'
k

DOS d
E





s

k s   (3.13) 

where s  is the constant energy surface within 'k  given by the energy conserving delta 

function in equation (3.9). Assuming dispersionless optical phonons and a linear 

dispersion and the equipartition approximation for acoustic phonons we get 
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and  
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where ' q k k .  Using a similar derivation for polar optical phonon scattering, the 

scattering rate from k  to 'k  is 

      
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, , ,,
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  
q

k k k k k   (3.16) 

The scattering rates obtained using the tight binding basis is similar to those obtained 

using the empirical pseudopotential method (EPM) except for the overlap integral 

(Saraniti2008). Recent studies have shed light on the nature of the tight binding atomic 

orbitals described in equation (2.8) (Lu2005). In addition to the orbitals being highly 

localized around an atom, a property regularly taken advantage of, the atomic orbitals are 
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also localized on the neighboring atoms and have the opposite value on the neighboring 

atoms. This seems to arise due to the necessity of the atomic orbitals to be orthonormal. 

This can be taken into account in the overlap integral in equation (3.4). Assuming nearest 

neighbor localizations in the calculation of the overlap integral, equation (3.4) can be 

written as 

    , , ,, ' , ' mi

m

m

S P e


   


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q
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where   
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where neighm   is summed over all nearest neighbors of m  and would depend on the 

crystal structure, F  is the fraction of the net atomic orbital, that is centered at atom ,m  

present on its neighboring atom neighm  and veca is the vector that translates the primitive 

cell containing atom m  to the primitive cell containing atom .neighm  The orbitals are still 

assumed to be highly localized to the atom and its neighbor as shown in Figure (3.1).  
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                                   a)                                                                   b) 

Figure 3.1: a) Non-orthogonal and b) orthogonal s- and p- like quasi-atomic minimal 

basis orbitals in Si for different bond lengths in the (110) plane (Lu2005). 

 

In the case of bulk Si or GaAs, out of the four neighboring atoms, one 

neighboring atom will always exist in the same primitive cell as the atom m  causing veca  

to be zero. The other three neighboring atoms each have veca  as one of the three primitive 

basis vectors of the Diamond and Zinc Blende crystal structure respectively. As can be 

seen in Figure (3.2), even a small value for the fraction F has a significant increase in the 

polar optical phonon scattering and non-polar optical phonon scattering rates at low 

energies in GaAs.  
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Figure 3.2: Bulk GaAs non-polar and polar optical phonon scattering rates for a 

neighboring factor of F = 0.0 and F = -0.06. 

 

3.2. Tight Binding Scattering Rates of Nanowires 

 

The scattering rates for nanowires are also calculated using Fermi’s golden rule. 

    
2

, , ' , ' ,

2
, ' k k k kW k k V E E   


    ,  (3.19) 

where k and k’ are the initial and final wave vectors along the nanowire axis at band 

indices μ and ν respectively. Vk,k’ is the matrix element for the particular scattering 

mechanism, Eμ,k and Eν,k’ are the initial and final energy states respectively and ω is the 

phonon wavenumber if present in the scattering mechanism. The wave function within 

the tight binding scheme for nanowires is given by equation (2.8).  
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3.2.1.  Deformation Potential Scattering Rate 

 

Similar to equation (3.2), the deformation potential scattering rate from xk  to 
'

xk  is 

given by 
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  (3.20) 

where the nanowire axis is assumed to be along the x-axis and that the phonons are 

described by bulk phonon dispersion relations. The matrix element in equation (3.20) is 
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Following the same steps used in the bulk rate calculation the integral in equation (3.21) 

is given by 
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where  
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Using the same approximation used in the bulk case, equation (3.24) can be written as 
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The Kronecker delta function in equation (3.24) conserves momentum only along the 

direction of the nanowire axis. The matrix element for deformation potential scattering is 

therefore 
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The scattering rate from xk  to 
'

xk  is then given by, 
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At this point the derivation of the scattering rates for nanowires starts to deviate from that 

of the bulk case due to the Kronecker delta function in equation (3.25). The momentum is 

only conserved along the direction of the nanowire axis. Therefore the summation over q  

in equation (3.26) along the confined directions needs to be calculated. The scattering 

rate from xk  to 
'

xk  is given by 
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Converting the summation over q  to an integration over q  and assuming dispersionless 

optical phonons and a linear dispersion and the equipartition approximation for acoustic 

phonons we get 
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for acoustic phonons and 
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for optical phonons. Converting the integral over xq  to a summation to get rid of the 

Kronecker delta function and integrating over the energy conserving delta function to 

obtain the density of states we get 
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and 
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where  
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and 
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where tq  is the magnitude of the phonon wave vector q  along the confinement plane,   

is the angle between yq and zq , and 
'

x x xq k k  .  Equation (3.32) can be further 

simplified to 
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where    
2 2

, ', ,z ',zdiff m y m y m ma        , 0J   is the Bessel function of the first kind 

and cq  is the cut-off wave vector for phonons along the confinement plane (Buin2008). 

Integrating equation (3.34) over tq  we get, 

            , ',x' * ' * '

, , , , ' , '

, '

, 2 x m x miq

x x m x m x m x m x diff

m m

I k k C k C k C k C k e F a
 

     
      (3.35) 
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If the atomic orbitals are also localized on the neighboring atoms as described previously 

then equation (3.35) becomes, 
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where  '

, , ,m x xP k k   is given by equation (3.18).  The comparison between the scattering 

rates of bulk and nanowire materials for the same material using the same parameters is 

shown in Figures 3.3, 3.4, 3.5 and 3.6.  
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                                         a)                                                              b) 

Figure 3.3: Comparison between the electron scattering rate of bulk Si, 2 nm x 2 nm and 

3 nm x 3 nm Si along [100] for a) acoustic phonons and b) non-polar optical phonons. 

 

a)                                                                  b) 

Figure 3.4: Comparison between the hole scattering rate of bulk Si, 2 nm x 2 nm and 3 

nm x 3 nm Si along [100] for a) acoustic phonons and b) non-polar optical phonons. 
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a)                                                                b) 

Figure 3.5: Comparison between the electron scattering rate of bulk GaAs, 2 nm x 2 nm 

and 3 nm x 3 nm GaAs along [100] for a) acoustic phonons and b) non-polar optical 

phonons. 

 

 

a)                                                                  b) 

Figure 3.6: Comparison between the hole scattering rate of bulk GaAs, 2 nm x 2 nm and 

3 nm x 3 nm GaAs along [100] for a) acoustic phonons and b) non-polar optical phonons. 
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3.2.2. Polar Optical Phonon Scattering Rate 

 

 Similar derivation for polar optical phonon scattering gives the rate from xk  to 
'

xk  as 
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where  
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  (3.39) 

The latter integral in equation (3.39) is pre-calculated for different values of xq   and diffa  

at the beginning of the simulation. This greatly improves the computational time. Figure 

3.7 show the comparison between bulk scattering rates and nanowire scattering rates 

calculated using the above formulae.  
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a)                                                                    b) 

Figure 3.7: Comparison between the polar optical scattering rate of bulk GaAs, 2 nm x 2 

nm and 3 nm x 3 nm GaAs along [100] for a) electrons and b) holes. 

 

3.2.3. Ionized Impurity Scattering Rate 

  

The ionized impurity scattering rate is calculated for each ionized impurity atom 

and then multiplied over the number of ionized impurities present in a unit cell of the 

nanowire. The scattering rate due to a single ionized impurity i  is given by Fermi’s 

golden rule (Ferry2009) 
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where ir  is the position of the 
thi  impurity atom within the unit/super cell. Expanding the 

tight binding wave functions and assuming only interactions between similar orbitals on 

the same atom is non-negligible we get 
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where  ,t xq qq . Converting the integration over xq  to a summation to deal with the 

Kronecker delta function and using similar identities that were used for polar optical 

phonon scattering we get 
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where 
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where    
2 2

, r , ,z r ,zi idiff m y y ma         is the radial distance between orbital m  and 

impurity ir  , xL  is the length of the crystal along the nanowire axis and
'

x x xq k k  . The 

scattering rate due to a density of impurity atoms is obtained by averaging over every 

atom in the unit cell. The total scattering rate due to a density of impurity atoms IN  is 

given by 
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where V  is the volume of the crystal. The scattering rate from xk   to 
'

xk   is obtained by 

summing equation (3.45) over all final states and converting that summation to an 

integration to deal with the Dirac delta function to get 
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  (3.46) 

where the ratio / xV L   is denoted by the nanowire cross-sectional area csA . Figure (3.6) 

show the plot of ionized impurity scattering for a 2 nm x 2 nm and 3 nm x 3 nm Si 

nanowire along the [100] direction. 

 

a)                                                                   b) 

Figure 3.8: Ionized impurity scattering rate and deformation potential scattering rate of 

a) 2 nm x 2 nm Si nanowire along [100] and b) 3 nm x 3 nm Si nanowire along [100]. 

3.2.4. Dielectric Screening in Nanowires 

 

The induced charge due to a time dependent perturbation of an external potential 

is given by (Ferry2009) 
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where  ,t xr r , where ir  is a vector along the confinement plane and x  is along the 

nanowire axis, n  and 'n  are initial and final band indices,  '

ext

nn xV q  is the Fourier 

transform of the external potential and  ' ,nn xL q   is the Lindhard dielectric function 

given by 
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where   is a small convergence parameter. The induced potential due this charge is 

given by Coulomb’s law as 
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Using the Fourier transform of the potential gives us 

  
 

   ' 'ind

3 2

', '

',
' '

2 '

i

ind

s

e
V e d d

 

 

 
  

q r r

r q

r
r r q

q
  (3.50) 

Using equation (3.47) the potential may be written as 
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The spatial dependence of the wave functions are shown to stress that the 

integration is done over '.r  Expanding the tight binding wave functions and using the 

same approximations that were used for the derivations of the scattering rates the induced 

potential can be written as 
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Converting the integration over 
'

xq  to a summation to get rid of the Kronecker delta 

function and force 
'

x xq q  we get the final expression of the induced potential as, 
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where  ' '' ,t xq qq . We now look at the matrix element of the induced potential over 

initial and final basis states xk   and 
'

xk   in bands m  and 'm , respectively.  
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Inserting equation (3.54) into equation (3.53), the induced potential can be written as 
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Once again, expanding the tight binding wave functions and using the localized orbital 

approximations we get 
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The summation over final states collapses the Kronecker delta function to 

give
'

x x xk k q  . The net induced potential can now be written as 
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The integral is similar to the one used in polar optical phonon scattering, using the same 

integral identities, the induced potential is given by 

  
 

     
2

'

n,n' ' '2
, , '

2
, ,

2 x

mm ext

ind x x x nn x nn x

k n nx s

e
V q F k q L q V q

L




 
    (3.58) 

where  
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where    
2 2

, ', ,z ',zdiff y ya           . The dielectric function can be defined as 
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where  ' ' ,nn mm xq   defines the four-dimensional dielectric matrix and 

     ' ' 'mm mm mm

tot x ind x ext xV q V q V q  . Using equation (3.58), and converting the summation of 

final states to an integration this gives 
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Summing over n  and 'n  gives the final 1D dielectric matrix as 
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3.2.5. Surface Roughness Scattering in Nanowires 

 

        Using Fermi’s Golden Rule, the scattering rate for surface roughness can be written 

as (Kotylar2012) 
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and 
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where   is the correlation length,   is the rms fluctuation of the surface i , 
i

cr  is the 

distance along the direction c  from the surface  and it  is the maximum distance of an 

atom from the surface along the direction c . The overlap integral in equation (3.65) 

consists of three parts. The first part is the Prange-Nee term. To calculate this we add an 

atomic layer to the surface i  as shown in Figure 3.9 and the derivative is approximated as 
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where , ,0kE  is the eigenvalue of the band   at k  before the atomic layer is added and 

,kE  is the eigenvalue after the atomic layer is added. cr  is the thickness of the atomic 

layer. The last two terms represent the electrostatics. The 2nd term is simple to evaluate 

and requires the Poisson solution at each atomic position. Since the Poisson grid is a 

regular grid, interpolating the potential to the atomic positions is trivial. On the other 

hand, the 3rd term requires the derivatives of the expansion coefficients along the 

direction normal to the surface. Approximating the derivative using finite difference, we 

need to interpolate the expansion coefficients along the direction normal to the surface. 

This is not trivial as the atom positions represent scattered data as shown in Figure 3.10. 
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Therefore the local polynomial interpolation method is used to do this, which is 

implemented from an external library.  

 

Figure 3.9: Plot of the additional atom layer added to a 2.5 nm x 2.5 nm Si nanowire to 

calculate the Prange-Nee term in equation (3.65). 

 

Figure 3.10: Plot of the atom structure against a Poisson grid in two dimensions to show 

the requirement of a local interpolation method to calculate the derivative of the atom 

tight binding coefficients along the Poisson grid points. 
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3.2.6. Impact Ionization Scattering 

The impact ionization rate is calculated using the Fermi’s golden rule assuming the 

dielectric constant is a scalar value and the frequency dependence of this quantity will be 

ignored. The rate of impact ionization from 1,nk  to 2, 'nk  is (Ferry1991) 
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where 1,nk  is the initial electron in band n , 2, 'nk  is the final state of the initial electron 

after the scattering process, 4,mk  is the bound electron (hole) in the valence band before 

the scattering process and 4,m'k  is the final state of the bound electron in the conduction 

band. Therefore in equation (3.67) the summation is over the valence bands for the bound 

electron and the conduction band for the final state of the bound electron. The matrix 

element in equation (3.67) is given by (Kamakura1994) 
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and the ½ factor in equation (3.68) is due to the fact that the same processes are counted 

twice in the summation. Assuming a bM M  we can write (3.67) as  
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where 
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Simplifying equation (3.72) we use the Fourier transform of 
2
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e
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and considering only the terms involving r1 in equation (3.72) we get 
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Expanding the TB wave functions as was done previously and using the small q 

approximation. 
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where  ,x tqq q . Including the terms involving r2 as well, the matrix element in 

equation (3.75) becomes 

    2 4,m 4 2 1 3,m' 3 2 2, ,M I k I k d    r r r   (3.76) 
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Summing over xq  we get 
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Converting the summation over tq  into an integration we get 
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where  

 

         

 

.* *

, ' 1 2 3 4 n, 1 ', 2 m, 4 m', 3
, ' ,

0

2 2

, , , x

t

iq

n n n
m m

t diff

t t

x tq

F k k k k C k C k C k C k e

J q a
q dq

q q

  

   
 











  (3.80) 

where    
2 2

, , ,z ,zdiff y ya             

The scattering rate from 1,nk  to 2, 'nk  is therefore 
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Inserting equation (3.79) into equation (3.81) we get 
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Summing over 4k  can be done trivially giving 
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where  4 3 1 2k k k k   . To perform the sum over 3k  the summation has to be converted 

to an integral and the delta function in energy has to be used. This gives 
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where 
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where ik  are the values of 3k  that satisfy the energy conservation relation given by 
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Finally, calculating the scattering rate to a region of k-space around 2k  we get 
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as the impact ionization scattering rate. Calculating equation (3.87) is extremely 

computationally expensive. At high energies, the overlap integral is reported to be 

isotropic in nature, therefore it can be approximated to a constant (Kamakura1994). This 

greatly reduces the computation time. Figure 3.11 shows the impact ionization rate for a 2 

nm x2 nm Si nanowire. The slope at high energies is very close to the slope obtained 

from the bulk calculations which is fitted by the relation    
4.6

112 10 gW E E E   .  
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Figure 3.11: Plot of impact ionization rate and deformation potential scattering rate for a 

2 nm x 2 nm Si nanowire along [100] and Bulk Si along [100]. The analytical formula is 

fitted to    
4.6

112 10 gW E E E    . 

 

3.3. Speed Optimizations for Scattering Rate Calculations 

 In all the scattering rates described above the overlap integral can be broadly 

defined as 
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where    
2 2

, , ,z ,zdiff y ya           . The summation is over all the coefficients of 

the tight binding wave function. This is a large number and is equal to the size of the 

matrix used to calculate the eigenvalues of the nanowire.  Calculating the overlap integral 

is therefore very time consuming. To simplify equation (3.88), we note that summation 

over  and   are only coupled to each other for different ,x , ,y  and diffa . For an 

unstrained crystal structure, the number of unique combinations of those quantities is of 

the order of the number of atoms in the super cell. This is shown in Figure 3.12. Equation 

(3.88) can then be written as 

      , ,.

, ' 1 2 , ' 1 2, , , x x xiq

n n n n diff

i

F k k A k k i e G a  
   (3.89) 

where the summation is over the number of different combinations. If the size of the 

matrix is N, then assuming an sp3d5s* TB method including the spin-orbit interaction, the 

number of atoms is M = N/20. If the number of combinations is of the order of M, then to 

calculate An,n’(k1 ,k2 ,i) from equation (3.89) , requires a first summation over N to store 

the product combinations of different orbitals on the same atom together and then M x 

Ncombos to store the different combinations. This reduces the coputation time from N2 to N 

+ M x Ncombos + Ncombos. This greatly reduces the computational time in calculating the 

overlap integral when Ncombos ~ M = N/20.  
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Figure 3.12: Comparison between the loop size of the overlap integral before the 

optimization equation (3.88) and after the optimization equation (3.89) as a function of a 

Si nanowire width size. 
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4. LOW FIELD AND HIGH FIELD TRANSPORT IN NANOWIRES 

 

With the band structure and scattering rates calculated, a uniform field Monte 

Carlo simulation can be run to obtain the mobility, velocity-field curves, energy loss as 

well as other transient behavior (velocity overshoot).  At low fields, though, it is simpler 

to solve the Boltzmann transport equation using the Rode’s method (Rode1975). Rode’s 

is useful to extract material parameters such as low-field mobility. It directly and exactly 

solves the Boltzmann transport equation for very low electric fields.  

 

4.1. Rode’s Method for 1D and 3D systems 

The Boltzmann transport equation (BTE) with Fermi-Dirac statistics for the case 

of steady-state conditions and no spatial gradients can be written as 
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  (4.1) 

where FF u  is the electric field vector applied to the system along direction u , 

 , , 'S  k k  is the scattering rate from state k at band index   to state 'k  at band index 

  and  f k is the probability distribution function of state k  at band index  . Solution 

of equation (4.1) with a variety of approximations is essentially the basis of various 

transport methods such as the drift-diffusion method, the Monte-Carlo method 

(Jacoboni1983), the Rode’s method etc. Rode’s method is a low-field approximation that 
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in the limit of 0F    exactly solves the steady state BTE for a particular system. It is 

therefore very useful to use the Rode’s method to extract low-field material properties 

such as mobility. In the 3D case equation, equation (4.1) is solved assuming a linear shift 

in the distribution function that is proportional to the applied electric field 

      0f f eFg k k k   (4.2) 

where  g k  is an unknown function representing the change in distribution function 

along the direction of the applied field,  0f k  is the equilibrium Fermi-Dirac distribution 

function and F is the applied electric field. Substituting equation (4.2) into equation (4.1) 

and ignoring higher order terms we get, 
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and the mobility is given by 
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For the case of one-dimensional transport one can directly solve for  f k  in equation 

(4.4) to give 
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Once the distribution function is obtained, the mobility can be calculated using equation 

(4.6) 
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where the summation is over all the bands. The equilibrium distribution function is a 

Fermi-Dirac distribution function with the Fermi level calculated from the charge 

neutrality equation applied to the nanowire bands for a given acceptor or donor doping 

concentration.  

 

Figure 4.1: Variation of the phonon limited electron and hole mobility of Si nanowire 

along [100] with nanowire width. The dotted lines indicate the bulk mobility calculated 

using the Rode’s method. 
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Figure 4.2: Variation of the phonon limited electron and hole mobility of GaAs nanowire 

along [100] with nanowire width. The dotted lines indicate the bulk mobility calculated 

using the Rode’s method. 
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Figure 4.3: Variation of the electron and hole mobility of Si nanowire along [100] with 

the doping concentration with and without screening. 
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Figure 4.4: Variation of the electron and hole mobility of GaAs nanowire along [100] 

with the doping concentration with and without screening.  

 

 Figures 4.1 and 4.2 show the variation of the phonon limited mobility with 

nanowire width for Si and GaAs electrons and holes. At larger nanowire widths the 

mobility tends to the bulk mobility calculated using the Rode’s method and indicated 

with dotted lines. The same scattering parameters were used to calculate the nanowire 

mobility and bulk material mobility. Figures 4.3 and 4.4 show the variation of the phonon 

limited mobility with the doping concentration with and without the dielectric screening 

calculated in chapter 3. As the dielectric matrix is very complicated to calculate, to 

simplify the calculations, the long wavelength is assumed ( 0q   ) and the dielectric 

constant is calculated using the following formula    
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4.2. Uniform Field Monte Carlo Simulations 

The low field analysis is useful to extract physical quantities like the mobility as 

was shown in the previous section. Unfortunately, to analyze the material under high 

field conditions a different approach needs to be taken. Solving equation (4.5) for fields 

not tending to zero is very difficult. The gridding of the k-space has to be very fine and 

the iterations of the equations regularly diverge. In order to obtain distribution functions 

for high field conditions, the Monte Carlo method is used.  

The Monte Carlo method is a stochastic method used to solve the Boltzmann 

transport equation. The Boltzmann transport equation can be modified according to 

(Ferry1991) to obtain 
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where   

  OΓ ' ',d W  p p p   (4.9) 

and s  is a variable along the trajectory of phase space and each coordinate can be 

parameterized as a function of this variable as 

    , ,s s t s   r x p k p
* *

           (4.10) 
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Equation (4.8) is the Chamber-Rees path integral (Rees1972) and is the form of the 

Boltzmann transport equation which can be iteratively solved. In order to make the above 

equation solvable a useful mathematical trick introduced by Rees (1968) is used in which 

we make the complicated energy dependent function 0  into an energy independent term, 

thereby making the term inside the integral in equation (4.8) trivially solvable. This is 

done by introducing a scattering term called self-scattering ( ss ). Self-scattering does not 

change the momentum or the energy of the particle and therefore does not change the 

physics of the particle. What this term does however is to convert the energy dependent 

function 0  into an energy independent term by defining 

    0ss T   p p   (4.11) 

Therefore, equation (4.8) becomes 
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where  

        * , ' , ' ' 'ssW W   p p p p p p p   (4.13) 

The first term of equation (4.12) is a transient term while the second term is the term 

which can be iteratively solved. If we look at the second term closely, the first integral 

over 'dp  represents the scattering of the distribution function f  out of state p  to 

state ' e sp E . The second integral represents the integration along the trajectory s and 

the exponential is just the probability that no scattering takes place during the time it 

moves a distance s. Thus if we look at how the electrons move physically it consists of a 
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scattering event determined by the first integral, and then there is a free-flight motion (no 

scattering) for a time interval ts. Rees showed that the time steps ts correlate to 1/ΓT. 

 The scattering rates are calculated according to the formulae described in chapter 

3. The parameters used in the calculation of the scattering rates are fitted by comparing 

the velocity field curves obtained from the uniform field Monte Carlo simulations with 

experimental data and comparing the mobilities obtained from the Rode’s method to the 

experimentally obtained mobility values. Figures 4.5 and 4.6 shows the fit between the 

velocity field curves for bulk Si and bulk GaAs for electrons and holes respectively.  

 

Figure 4.5: Comparison of drift velocity versus electric field for electrons and holes, 

between Monte Carlo simulations of bulk Si and experimental data using the Tight 

Binding method. The experimental data is taken from Canali (1975). 
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Figure 4.6: Comparison of drift velocity versus electric field for electrons and holes, 

between Monte Carlo simulations of Bulk GaAs and experimental data using the Tight 

Binding method. The experimental data for electrons is taken from Pozela (1979) and 

from Dalal (1971) for holes.  

 

Once the parameters for the scattering rates are fit for the bulk material, the same 

parameters are then used for the nanowire materials. This way there is no extra parameter 

required to simulate transport with nanowire structures.  

The Monte Carlo method allows us to see the position of the carriers after a 

simulation for a 3 nmx3 nm GaAs NW. This gives a physical insight into the electron 

position not possible in other simulations. Figure 4.7 shows the change in carrier 

population as the electric field changes and Figure 4.8 and 4.9 shows the transient 
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electron velocity and electron energy at different electric fields. As the electric field 

increases the carriers populate higher bands and are more widespread in the BZ. 

 

a) 
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b) 

 

c) 
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Figure 4.7: Carrier population at steady state in a 3 nm x 3 nm GaAs nanowire along 

[100] for a) 1.0 kV/cm, b) 10 kV/cm and c) 100 kV/cm. Each red dot represents an 

electron. The grey lines represent the band structure. 

 

Figure 4.8: Transient plot of electron velocity for a 3 nm x 3 nm GaAs nanowire along 

[100] for different electric fields. 
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Figure 4.9: Transient plot of total electron energy for a 3 nm x 3 nm GaAs nanowire 

along [100] for different electric fields. 

 

4.3. Multiband Transport in Nanowires 

The full band Monte Carlo method (FBMC) is used to simulate high field 

transport in a variety of materials. The traditional method requires the calculation and 

storage of the band structure of the material on the full Brillouin zone (BZ). The 

acceleration of carriers in the presence of an electric field is accomplished using the free-

flight drift routine detailed in Jacoboni (1983), which involves moving all the carriers 

according to the Bloch acceleration theorem for a time t  and then scattering the carriers 

according to their rates previously calculated at the end of the so-called free flight.  

    The free-flight drift routine is a single band model in which the carrier are assumed to 

remain in the same band during drift. This model does not work well at band crossings or 
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when the energy separation between the bands are small. At band crossings, it is difficult 

to maintain the carrier’s band identity because the bands are sorted in energy after being 

calculated in an eigenvalue solver, there is no unique band identifier. Therefore when a 

carrier reaches a band crossing, for example, it is unclear which band it follows 

(Fischetti1991). An electric field can induce inter band transitions (Nilsson2001) when 

the energy separation between the bands are small, and the electric field sufficiently 

large. This effect becomes prominent in materials such as nanowires where the energy 

spacing between the bands is small and the bands intercross and anti-cross frequently 

across the Brillouin Zone (BZ). The utility of the multi-band drift model is to replace the 

traditional free-flight drift routine in single band Monte Carlo models. After a carrier 

undergoes a drift for a particular duration of time, there is a finite possibility of it 

undergoing a transfer to the other bands. Various approaches have been proposed to 

incorporate carrier transitions between different bands such as the overlap test 

(Bellotti2000), and the velocity continuity method (Brennan2000). Both these methods 

have drawbacks that the transition rate does not depend on the electric field and is 

sensitive to the mesh size (Bertazzi2009). Krieger and Iafrate (KI) have developed a set 

of equations which give the transition probability of a carrier under an electric field as a 

function of time (Krieger1987) when solved. These equations are a series of complex 

partial differential equations, which were previously solved using the 4th order (RK4) 

Runge-Kutta method (Bertazzi2009). Since this method is computationally expensive of, 

the KI equations were previously only solved on a small part of the BZ in bulk materials, 

where band crossings were expected to result in interband tunneling at high electric 

fields. In nanowires, the band crossings and interband tunneling can occur throughout the 
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BZ due to the dense nature and mixing of the bands. Therefore, a fast and full BZ wide 

solution of the KI equations is necessary to properly account for interband tunneling in 

nanowires, as well as providing a more computationally efficient algorithm for treating 

bulk materials as well. 

 We present for the first time numerical calculations of the multi-band transport 

and interband tunneling in nanowires. A new method of solving the KI equations is also 

presented which greatly improves the accuracy and speed of the simulation. 

 

4.3.1. Krieger and Iafrate (KI) Equations 

The Krieger and Iafrate (KI) equations provides the solution of the time-

dependent Schrödinger equation for Bloch waves under an electric field described by 

(Krieger1987) 
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where  

  
0

' '
t

c F t dt  A   (4.15) 

and  v r  is the crystal periodic potential, c  is the speed of light and  F t  is the time 

varying electric field. Substituting  

      ', ,n n

n

t C t t r r   (4.16) 

In to equation (4.14), where  ' ,n t r  is the solution to the eigenvalue problem 
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where  n t  are the eigenvalue solutions, we get the KI equations 
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where ( )F t  is the time dependent electric field, e  is the electronic charge,  n t  is the 

eigenvalue of the nth band with wave vector ( )k t , and  nC t are time dependent 

coefficients and the X matrices given by  

 * 3

, ' , ( ) ', ( )( ( )) ( ) ( )n n n k t k n k tX k t i u x u x d x


     (4.19) 

where Ω  is the volume of the primitive cell, and , ( )n k tu is the Bloch function for band n  

for wave vector ( )k t . The wave vector ( )k t  is determined from the Bloch acceleration 

theorem 
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k t

eF t
t


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  (4.20) 

where e  is the charge of the carrier.  

 

4.3.2. Solution of the KI Equations 

Previous methods to solve the Krieger and Iafrate equations have used the Runge-

Kutta method of the 4th order (RK4) to solve equation (4.18). This method required 

solving the coupled complex partial differential equations for every possible initial 

condition ( n  possible conditions if there are n  bands), which is numerically expensive as 
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the time step required to solve the KI equations using the RK4 method can be very small 

(~10-18 s to ~10-19 s). This time step becomes more problematic at higher electric fields as 

the time steps need to be readjusted increasingly smaller according to the electric field). 

Solutions to the KI equations are assumed to be correct if
2

( ) 1n

n

C t  . The probability 

coefficients rapidly diverge if the time step is too large, so one has to continuously check 

the sum and recalculate it if it is too large. 

A more elegant solution can be obtained by using the Magnus expansion 

(Magnus1954). Writing equation (4.18) in matrix notation we get 
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t





  (4.21) 

where ( )C t  is an 1n matrix and ( )A t  is an n n matrix where n  is the number of bands 

and each element is given by 
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Due to the nature of the problem, k-space and time are synonymous and related to each 

other by equation (4.20), it is easier to operate over k-space rather than time, and 

therefore converting from dt  to dk , equation (4.21) can be written as 
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where  
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Applying the Magnus expansion to equation (4.23) we get 
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where  
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The first two terms of the infinite series expansion are given by (Blanes2009) 
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where ik  is the value of the wave vector when 0t   and fk  is the wave vector at 1t t , 

and 1 2 1 2 2 1( ), ( ) ( ) ( ) ( ) ( )A k A k A k A k A k A k   is the commutator operator. A recursive 

procedure to generate the 2nd and higher terms in the Magnus expansion is given by 
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where jB  are the Bernoulli numbers. The main advantage of the Magnus solution is that 

very often, the truncated series still has important qualitative properties of the exact 

solution (Iserles1999). For example, regardless of the truncation of the Magnus series, 

2
(k)n

n

C  is always equal to 1 due to the unitary nature of the solution. In fact this is a 

property shared by all exponential perturbation methods such as the Fer method 

(Fer1958) and the Wilcox method (Wilcox1967). This is not true in the case of RK4 

methods or other perturbation methods like the Dyson series method.  

    Solving equation (4.25) requires the calculation of the exponential of a matrix. The 

calculation of the matrix exponential is usually numerically expensive for large matrices 

and scales as the cube of the matrix size, but in this case, the size of the matrix is the 

number of bands, which even in the case of nanowires, is at most 100. Also, once the 

matrix is computed, the final probabilities can be calculated by a simple matrix 

multiplication with the initial conditions, thus this approach is numerically advantageous 

over the RK method, in which the KI equations are simply recalculated for every possible 

initial condition.  

   To calculate the X matrices defined in equation (4.19) requires the calculation of the 

derivative of the Bloch function, , ( )n k tu . Two methods have been used to calculate the 

derivative, Rayleigh-Schrödinger perturbation theory (Schrödinger1926) and the finite 

difference method. Rayleigh-Schrödinger perturbation theory (RSPT) states that 
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where ( )H k  is the tight binding Hamiltonian for the time independent Schrödinger 

equation 

 ( ) k k kH k      (4.32) 

where k  is the wave vector containing the Bloch functions , ( )n k tu . Inserting equation 

(4.31) into equation (4.19) and using the orthogonality of the Bloch functions we get 
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  (4.33)       

For the case of degenerate bands at a certain ( )k t , degenerate perturbation theory has to 

be used. The result of the X matrices obtained from using Rayleigh-Schrödinger 

perturbation theory is independent of the k-space gridding.  

    Using the finite difference method, the derivative of the Bloch function can be written 

as 
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which can be simplified to  
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where  
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is the overlap integral between two neighboring states, with ( ) ( ) / 2k t k t dk    and dk  

is a small separation in k-space. If 'n n , the X matrix must be purely real to ensure 
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that
2

( ) 1n

n

C t  . This is enforced by setting the imaginary part to be 0 in equation 

(4.35) when 'n n , this result is similar to result obtained using Rayleigh-Schrödinger 

perturbation theory, where the X matrix value is 0 when 'n n . The phase of the wave 

functions must be treated carefully as detailed in (Lindefeldt2004) to obtain smoothly 

varying X matrices in the complex plane across the BZ. To compare the two methods, the 

X matrices were calculated on a fine k-space grid for a 3 nm3 nm InAs nanowire along 

[100]. Figure 4.10 shows the value of the magnitude of X using both methods.  

 

Figure 4.10: The magnitude of the X matrix between band 1 and band 7, and band1 and 

band 4 in a 3 nm x 3 nm InAs nanowire along [100]. The symbols represent values 

obtained using Rayleigh-Schrödinger perturbation theory (RSPT) and the line represents 

values obtained using the finite difference method. 
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As can be seen in Figure 4.10, the finite difference method is just as accurate as the 

perturbation method for a fine k-space grid. The 1D BZ was equally divided into 2400 

grid points on which the band structure was calculated. In all the simulations in this work, 

the finite difference method was used to calculate the X matrices.  

 

4.3.3. Numerical Solution of the KI Equations in Nanowires 

The band structure of the nanowire is calculated in the present work on a discrete 

k-space grid using the empirical tight binding method with the sp3d5s* orbitals including 

spin (Luisier2006). Since the k-space is divided into discrete k-cells, the solution of the 

probability coefficients from equation (4.25) at the ( 1)thi   cell is given by 

 
~

1( ) exp( ) ( )i iC k C k     (4.37) 

where ~  is the truncated Magnus series expression from equation (4.26). As can be 

seen from equations (4.27) to (4.29) the higher order terms of the Magnus series are 

numerically expensive to compute and involve several nested integrals. To solve 

numerically, the X matrices are calculated at discrete k-points and then linearly 

interpolated between them. The energy in between the k-points is interpolated using a 

quadratic scheme. The individual terms of the Magnus series can be calculated using a 

Gaussian quadrature of the nested integrals in equations (4.27) and (4.28). The value of 

~  up to the 4th order in k  is given by (Iserles1999) 
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where 1i ik k h    and 
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  (4.40) 

where  1 2,A A  represents the commutator operator. The value of the coefficients at the 

next grid point is then calculated using equation (4.37). The exponential of the matrix is 

calculated using the method described in (Moler2003). The 4th order Magnus (MG4) 

integrator described in equation (4.39) has been previously used to solve linear 

differential equations with a very high accuracy (Wen-cheng2006, Aparicio2005). Figure 

2 shows the difference between using just 1 , and using both 1  and 2  in equation 

(4.38) in solving the KI equations. Even though the difference is small, in this work both 

1  and 2 are used to solve the KI equations. It should be noted once again, that even 

though we use just 2 terms of the Magnus series, we obtain a 4th order accurate solution 

in k .  
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a) 

 

b)  

Figure 4.11: (a) The conduction band of a 3 nm3 nm Si nanowire along [100]. The 

inset shows a magnified section of the band structure highlighting a crossing. (b) The 
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difference between using the 1st term and both the 1st and 2nd terms in the Magnus 

expansion on the probability coefficients for the region of the band structure shown in the 

inset of Figure 4.11 (a). The electron is initialized in the 1st band shown in red under an 

electric field of 10 kV/cm. The square symbols represent values obtained using just the 

1st term and the delta symbols represent values obtained using both the 1st and 2nd term of 

the Magnus expansion. 

 

Aparicio (2005) has shown that the operation counts for a single time/k-vector step for a 

MG4 method scales as 
2 36 5n n  while the RK4 method scales as

210n , where n  is the 

matrix size. In our particular case, we need the probability coefficients for each 

permutation of initial conditions, so the RK4 method has to be resolved for every 

possible initial condition while the MG4 method needs to perform an 

additional n   1n n n   matrix multiplications (an additional 
2n operations n  times) to 

obtain the final probability coefficients. The total operation counts then becomes 

2 36 6n n for the Magnus 4th order and 
310n  for the RK4 method for a single time/k-

vector step. Therefore, for the same step size, the solutions of the KI equations using the 

Magnus 4th order method provides a slightly better form of solution, although they both 

scale as  3n . A limiting factor in the case of the Magnus 4th order method is the 

computation of the matrix exponential (
35n ). Nevertheless, the key difference between 

the RK4 method and the MG4 method lies with the choice of the time/k-vector step size. 

The MG4 method being inherently exponential in nature, more accurately captures the 

exact solution and therefore a coarser step size can be used. On the other hand, the RK4 
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method is a polynomial approximation and requires a much smaller step size, typically 

two orders of magnitude less.  

 

a) 

 

 

b)  
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Figure 4.12: (a) The difference between using different step sizes for the Magnus 4th 

order and the Runge-Kutta 4th order (RK4) method. The region of the band structure 

simulated is shown in Figure 4.11 (a) inset. The band 1 is highlighted in red. (b) The 

sensitivity of the RK4 method to coarse step sizes is shown. h  is the step size on which 

the band structure is calculated. 

 

    Figure 4.12 (a) shows the variation of the probability coefficient for band 1 after 

passing through a band crossing. The MG4 method is highly accurate for the standard 

step size over which the band structure is calculated. Reducing the step size by a factor of 

3 does not change the result in any significant way. However, the RK4 method requires a 

much finer step to obtain an accurate solution. Therefore, for a reasonably accurate 

solution, the RK4 method would be 100 times slower when evaluating the above band 

crossing. Also the RK4 method is very unstable if the step size is below a certain size. As 

seen in Fig. 4.12 (b), dividing the original step size by a factor of 1, 2 and 3 can 

significantly change the result and cause it to runaway exponentially if the step size is too 

large. This effect is problematic since there is no way of knowing the correct step size 

beforehand. Therefore, one has to adopt a step size and then recalculate the problem with 

a smaller step size till is reasonably close to 1.0. This approach is numerically expensive, 

and adopting the MG4 method over the RK4 method improves the computational time 

significantly (at least by 100 times in the above case). 
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4.3.4. Implementation of the KI Equation Solution within the Monte Carlo 

Method 

As mentioned in the Introduction, the free-flight drift model of the standard 

Monte Carlo algorithm needs to be modified to account for interband transitions. A 

charge carrier undergoes drift for a particular duration of time in the presence of a given 

electric field, and during this free flight period, there is a finite possibility of it 

undergoing a transferring to other bands. Therefore, one would ideally like to solve the 

KI equations for every carrier during its free-flight, at its current position in k-space, and 

calculate the probability of undergoing a transition to other bands. However, this is 

impractical as there are typically anywhere between 107 – 1011 carrier drifts in a 

traditional Monte Carlo routine, and a significant increase in the computational time for 

each carrier free flight greatly affects the overall simulation run time. A less 

computationally expensive approach taken here is to create a lookup table, storing the 

transition probabilities for every possible initial condition and for a finite number of 

points in k-space. During runtime, depending on the carrier’s initial band and the position 

in k-space, the corresponding transition probability table is pulled up and a random 

number is used to decide the final band of the carrier after at the end of the free flight. 

The memory required to store the transition probability tables is negligible compared to 

the already existing cost of storing the scattering tables within the full band Cellular 

Monte Carlo (CMC) scheme (Saraniti2000).  The algorithm described above, and the 

results presented in the next section, apply to the case of simulation in a uniform electric 

field (so-called k-space simulation).  However, the look-up table approach can be 
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generalized to different fields as well, with the size of the look-up table still much less 

than the scattering tables used in the CMC algorithm. 

To implement the above idea, a step size k for the k-space grid is required. The 

grid on which the band structure is calculated is usually too coarse. To identify the 

correct k , a minimum electric field minF  is used. Below minF , the effect of multi-band 

drift is assumed to be unimportant, and k can then be calculated as 

 
min drifteF t

k    (4.41) 

The 1D BZ is then divided equally into N  k-points separated by k where N  is given 

by, 

 
2

N
a k





  (4.42) 

where a  is the periodicity of the supercell along the nanowire axis. The KI equations are 

solved for the duration of the drift and the transition probabilities for every k-point and 

initial band index, are then stored for a particular electric field F  and drift time, driftt . 

The electric fields used in the uniform field simulation are then chosen to be integer 

multiples of minF . This is important so as to correctly capture the transition probabilities. 

If min/F F p , where p  is not an integer, then after a drift time driftt , the final k-value of 

the carrier will be 

 f ik k p k     (4.43) 

where ik  is the initial k-value. Since the transition probabilities are only stored for 

every k , there will be an error in the stored transition probabilities during the actual 

carrier drift. There still exists an error after a carrier undergoes a scattering event, as its 
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momentum will in general not lie on the k-points of the pre-calculated transition tables. 

To minimize this error, minF  must be chosen as small as computationally possible. In this 

work, minF  was chosen to be 2x105 V/m, which gives a k  of 1.22105 m-1 for a drift 

time of 410-16 s. This gives a total of N = 94,843 k-points in the finer k-space grid for 

[100] Si. The exponential in equation (4.37) is the transition probability from ik to 1ik  . 

Depending on the electric field and drift time, the final transition probability matrix is 

calculated by successively multiplying the matrices for the required number of k-cells 

obtained using equation (4.43)  

 2 1( ) ..... ( )f f i i i iC k T T T TC k    (4.44) 

Once the final transition matrix from ik  to fk is calculated, the probability coefficients for 

every possible initial condition is calculated and stored.  

    In the present work, the Si and InAs nanowire band structures are calculated using the 

semi-empirical sp3d5s* Tight Binding (TB) model including spin. Deformation potential 

scattering rates are calculated from the TB coefficients using the method outlined in 

Chapter 3. Impact ionization is not included in this work. The carriers (electrons and 

holes) are initialized according to a one-dimensional Maxwell distribution at room 

temperature. The traditional full band Monte Carlo approach is then performed with the 

inclusion of the modified free-flight drift routine to account for the inter band transitions 

after the free flight.   
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4.3.5. Effect of Interband Tunneling on Transport in Nanowires 

The usefulness of the KI equations is the ability to simulate a field dependent 

probability of interband transitions. In Figure 4.13 (a), a section of 3 nm3 nm InAs 

nanowire band structure along [100] is magnified to demonstrate interband tunneling. 

The electron is initially in band 1, shown in red in the inset of Figure 4.13 (a) and 

undergoes drift for different constant electric fields. The initial k-point is 
93.3 10   m-1 

and the final k-point is 
94.4 10   m-1. The probability of the electron being in various 

bands is presented as 
2

C  and is shown in Figures 4.13 (b), 4.13 (c) and 4.13 (d) for 

electric fields of 10kV/cm, 100 kV/cm and 1 MV/cm, respectively.  

 

a) 
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                                   b)                                                                c) 

 

(d)   

Figure 4.13: (a) Band structure of a 3 nm3 nm InAs nanowire band structure along 

[100]. The inset shows a magnified part of the band structure showing bands close to one 

other. The 1st band is represented by square symbols, the 2nd band by left triangles and the 

3rd band by right triangles. (b) Plot of transition probabilities as a function of  k t  under 

an applied electric field of (b) 10kV/cm, (c) 100 kV/cm and (d) 1 MV/cm for the first 

three bands at the location shown in the inset of Figure 4.12 (a). 
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At 10kV/cm, the probability of remaining in band 1 is close to unity since the electric 

field is not high enough to induce interband transitions as can be seen in Figure 4.13 (b) 

for the energy separation between bands of Figure 4.13 (a). As can be seen in Figure 4.13 

(c) and Figure 4.13 (d), at higher electric fields of 100kV/cm and 1MV/cm, the electron 

tunnels to the 2nd and 3rd band with increasingly higher probability with field, with the 

highest probability being to the 3rd band even though the energy separation between the 

1st and 3rd band is higher than that between the 1st and 2nd bands. This somewhat non-

intuitive result is due to the fact that the X matrices are higher between the 1st and 3rd 

band as compared to the 1st and 2nd band due to the overlap of the wave functions related 

to symmetry.  

A similar case is shown for a 3 nm3 nm Si nanowire along [100] in Figure 4.14 

(a), where we have the case of an actual band crossing/anti-crossing. The initial k-point is 

89.0 10   m-1 and the final k-point is 
91.9 10   m-1. The band crossing/anti-crossing 

occurs at 
91.0 10   m-1.  Due to the very low energy separation near the band crossing, 

interband tunneling occurs even at electric fields as low as 1.0 kV/cm, as shown in Figure 

4.14 (b). As the carrier drifts across the band crossing, the probability that the electron 

remains in the 1st band reduces drastically. The probability of transition is independent of 

the electric field in this case since the energy bands are very close to one other. In 

equation (4.24) when the energy difference between bands goes to 0, the KI equations 

become independent of the electric field as is evident in Figure 4.14 (b) and 4.14 (c).  

Therefore inter band tunneling is very important and requires an accurate solution of the 

KI equations across the full BZ.  
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(a) 
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b) 

 

c)  
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Figure 4.14: (a) Band structure of a 3 nm3 nm Si nanowire along the [100] direction.  

The inset shows a magnified part of the band structure showing a band crossing. The first 

four bands are colored and marked. (b) Plot of transition probabilities as a function of 

 k t  under an applied electric field of  (b) 1.0 kV/cm and (c) 100 kV/cm for the first four 

bands at the band crossing shown in the inset of (a).  

 

In Figures 4.15 and 4.16, the effect of the multi-band drift model on the average kinetic 

energy of the carriers from a uniform field Cellular Monte Carlo simulation are shown.  

 

a) 
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        (b) 

       

                            (c)                                                                           (d)   

Figure 4.15: (a) Conduction band structure of 3 nm3 nm InAs nanowire along [100]. 

(b) Conduction band structure of 3 nm3 nm InAs nanowire along [111]. (c) Plot of 

average electron kinetic energies in 3 nm3 nm InAs nanowires along [100] and [111] 

with and without multi-band drift. (d) Plot of average hole kinetic energies in 3 nm3 nm 

InAs nanowires along [100] and [111] with and without multi-band drift. 
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The effect of the multi-band drift is very apparent in the case of the electrons in 3 nm3 

nm InAs nanowires. In Figure 4.15 (a) and Figure 4.15 (b), the conduction band of 3 

nm3 nm InAs nanowires along the [100] and [111] directions are shown. In the [100] 

direction bands, there are several anti-crossings near 2.2 eV (K.E. ~ 1.2eV) which causes 

the energy to saturate in the absence of interband tunneling. The same situation is present 

in the [111] direction bands as there is a small band gap present between the first two 

conduction bands, and the rest of the conduction bands. This gap would only be crossable 

with inelastic scattering processes such as polar and non-polar optical phonon scattering 

in a traditional Monte Carlo. This effect becomes apparent with consideration of the 

average energy of the electrons, which saturate at 0.6eV above the conduction band 

minima as seen in Figure 4.15 (c). When the multi-band drift model is employed, the 

electrons achieve much higher energies due to interband tunneling. The average kinetic 

energy of the holes is plotted in Figure 4.15 (d). The average kinetic energies of the holes 

when multi-band drift model is used are higher than the case when it is not used, although 

the change in energy is not as high as it is in the case of electrons. 
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a) 

 

b) 
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c) 

 

d)  

Figure 4.16: (a) Conduction band structure of 3 nm3 nm Si nanowire along the [111] 

direction. (b) Valence band structure of 3 nm3 nm Si nanowire along the [111] 

direction. (c) Plot of average electron kinetic energies in 3 nm3 nm Si nanowires along 

the [100] and [111] directions with and without multi-band drift. (d) Plot of average hole 
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kinetic energies in 3 nm3 nm Si nanowires along the [100] and [111] directions with 

and without multi-band drift. 

 

In Figures 4.16 (a) and 4.16 (b) the conduction and valence band of 3 nm3 nm Si 

nanowire along the [111] direction is shown.  In the case of the 3 nm3 nm Si nanowire 

along the [111] direction, in the valence band shown in Figure 4.16 (b), there exists a 

number of band anti-crossings, therefore the carriers are unable to reach high energies 

with the traditional drift algorithm and the addition of the multi-band drift significantly 

increasesthe average energy. Similarly in Figure 4.16 (a), without the multi-band drift 

approach, the carriers’ energy saturates as carriers are unable to reach high enough 

energies with just inelastic scattering, as can be seen in Figures 4.16 (c) and 4.16 (d). In 

the case of 3 nm3 nm Si nanowires, the multi-band drift model makes more of a 

difference for [111] Si compared to [100] Si for both electrons and holes, due to the 

differences in bandstructure between the two in the direction of the electric field.  

         

                              (a)                                                                        (b) 
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                               (c)                                                                      (d)   

Figure 4.17: (a) Snapshot of electrons in the conduction band of 3 nm3 nm InAs along 

[111] at the end of the simulation without multi-band drift at 1MV/cm. Each red dot 

represents an electron. (b) Snapshot of electrons in the conduction band of 3 nm3 nm 

InAs along [111] at the end of the simulation with multi-band drift at 1MV/cm. (c) 

Snapshot of electrons in the conduction band of 3 nm3 nm Si along the [111] direction 

at the end of the simulation without multi-band drift at 4MV/cm. Each red dot represents 

an electron. (d) Snapshot of electrons in the conduction band of 3 nm3 nm Si along the  

[111] direction at the end of the simulation with multi-band drift at 4MV/cm. 

 

Figures 4.17 (a)-4.17 (d) demonstrate the difference in carrier populations with and 

without the inclusion of multi-band transport. In Figure 4.17 (a), a snapshot of 10000 

electrons is shown for a 3 nm3 nm InAs nanowire along the [111] direction at an 

electric field of 1MV/cm for the case of a conventional CMC simulation, where the 

electrons are unable to reach higher bands. When the multi-band drift algorithm is 

employed, carriers are able to access much high energies as is shown in Figure 4.17 (b). 
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A similar case for Si is shown in Figure 4.17 (c) and Figure 4.17 (d) at an electric field of 

4MV/cm. 

 

4.4.  High Field Transport in Nanowires 

 Figures 4.18, 4.19, 4.20 and 4.21 show the average electron and hole drift velocity 

versus electric fields for different nanowire widths. As the nanowire widths increase the 

trend becomes closer to the curves obtained for the bulk materials. Except at high electric 

fields, the velocity of the nanowires does not show any velocity saturation which would 

be expected. 
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Figure 4.18: Electron drift velocity of Si nanowires along the [100] direction versus 

electric field for different nanowire widths. The drift velocity curve for bulk Si is also 

shown for comparison. 
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Figure 4.19: Hole drift velocity of Si nanowires along [100] versus electric field for 

different nanowire widths. Drift velocity curve for bulk Si is also shown for comparison.  

 

Figure 4.20: Electron drift velocity of GaAs nanowires along [100] versus electric field 

for different nanowire widths. Drift velocity curve for bulk GaAs is also shown for 

comparison.  
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Figure 4.21: Hole drift velocity of GaAs nanowires along [100] versus electric field for 

different nanowire widths. Drift velocity curve for bulk GaAs is also shown for 

comparison.  
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5. ENERGY RELAXATION IN NANOWIRES 

 

The analysis of energy relaxation rates are also possible using a uniform field 

Monte Carlo simulation. The scattering rates of the nanowire are calculated as shown in 

the previous chapters. A plot of the rate is shown in Figure 5.1. To simulate hot carrier 

relaxation during photoexcitation, the electrons are initialized with a mean energy 

corresponding to the excitation energy shown in Figure 5.2 and a Gaussian half-width of 

100 meV. After a few picoseconds, the initial distribution thermalizes and the decay is 

exponential as shown in Figure 5.2. As shown in Figure 5.3, the relaxation rate in the 

NWs is increasingly slower compared to the bulk as the NW width is reduced, due to the 

1D nature of the scattering rates. 

 

Figure 5.1: Scattering rates of a 2 nmx2 nm InAs NW compared with bulk. 

 



  108 

At high fields an electron “runaway” effect is also observed. At low fields the 

distribution is Maxwellian with a temperature of 315K, but at high fields the distribution 

becomes more uniform due to the runaway effect (Dimitrev2000) as shown in Figure 5.4. 

This is attributed to the nature of the 1D scattering rates which decreases in value with 

increase in energy within a band as seen in the inset of Figure 5.4. 

 

Figure 5.2: Carrier chart for a 3 nmx3 nm InAs NW with excited electrons at 2Eg for 

different times. 
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Figure 5.3: Energy relaxation of hot electrons in Bulk InAs, 2 nmx2 nm InAs NW [100] 

and 3 nmx3 nm InAs NW [100]. 

 

Figure 5.4: Distribution functions for different electric fields on a 3 nmx3 nm InAs NW 

[100]. 
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5.1. Energy Relaxation in Cladded Nanowires 

 In this section we investigate the effect of cladding on the energy relaxation and 

multi-excitation generation of nanowires. The core nanowire is a square In0.53Ga0.47As 

nanowire along [100] and the cladding material is InP which is lattice matched with 

In0.53Ga0.47As. A full band Monte-Carlo simulation is used to solve the Boltzmann 

transport equation and calculate the average energies of the carriers while they relax after 

undergoing an initial excitation in energy. The percentage of carriers undergoing an 

impact ionization event, thereby creating a new electron-hole pair, is also calculated. 

 The band structure of the cladded nanowire is calculated using the sp3d5s* 

empirical Tight Binding (TB) model including spin. To calculate the band structure, the 

supercell of the cladded nanowire must first be calculated. The cladded nanowires consist 

of an In0.53Ga0.47As core cladded with InP. At 53% In, In0.53Ga0.47As is lattice matched to 

InP. The supercell is created for a given thickness of the core nanowire and a given 

thickness of the cladded material. The resultant supercell of the cladded nanowire for a 

2.0 nm   2.0 nm In0.53Ga0.47As core and 1.5 nm of InP cladding is shown in Figure 5.5.  
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Figure 5.5: The supercell of a 2.0 nm   2.0 nm In0.53Ga0.47As nanowire along [100] 

cladded by 1.5 nm of InP. 

 

As can be seen in the Figure 5.5, besides needing the tight binding material 

parameters for In0.53Ga0.47As and InP, the material parameters for InAs are also needed as 

there are In-As bonds at the edge between the two materials. The cladded nanowire 

containing 50 supercells is shown in Figure 5.6. The cladded material is shown in blue 

and the core in red.  
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Figure 5.6: 50 supercells of a 2.0 nm   2.0 nm In0.53Ga0.47As nanowire along [100] 

cladded by 1.5 nm of InP. The InP atoms are shown in blue and the In0.53Ga0.47As atoms 

in red. 

 

The band structure of a 2.0 nm   2.0 nm In0.53Ga0.47As nanowire with 1.5 nm InP 

cladding is shown in Figure 5.7 and the band structure of a 2.0 nm   2.0 nm 

In0.53Ga0.47As nanowire with 0.5 nm is shown in Figure 5.8. The first 300 conduction 

bands are shown in both figures. As can be seen from the figures, increasing the cladding 

thickness greatly reduces the energy span of the conduction bands making them denser at 

high energies for higher cladding thicknesses.  



  113 

 

Figure 5.7: The first 300 conduction bands of a 2.0 nm   2.0 nm In0.53Ga0.47As nanowire 

along [100] with 1.5 nm InP cladding. 

 

The variation of the band gap of the cladded nanowire is shown for different cladding 

thicknesses in Figure 5.9. Increasing the thickness of the cladding layer reduces the band 

gap because of the reduced confinement of the nanowire. 

 
Figure 5.8: The first 300 conduction bands of a 2.0 nm   2.0 nm In0.53Ga0.47As nanowire 

along [100] with 0.5 nm InP cladding. 
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Figure 5.9: Band gap of In0.53Ga0.47As nanowires along [100] with InP cladding for 

different wire and cladding thicknesses. 

 

 The scattering rates are calculated according to the methods described in Chapter 

3 except the impact ionization rates. The impact ionization rates are calculated using a 

simple power law similar to the method used for bulk rates (Fischetti1991). The power 

law is given by 

  ( , ')II gW k k E E


    (5.1) 

where gE  is the band gap of the cladded nanowire, E  is the kinetic energy of the state k  

and   and   are fitting parameters with values 
131.7 10  eV-2s-1 and 2.0 respectively. 

 

 To simulate hot carrier relaxation, the electrons are initialized with a Gaussian 

distribution at a mean energy greater than the band gap of the material. The standard 

deviation of the Gaussian distribution is 20 meV. A full band uniform field Monte Carlo 

simulation is then run and the average carrier energies are calculated as a function of time 

as they relax. The average energy of the electrons for different nanowire cladding 



  115 

dimensions as they relax is shown in Figure 5.10 and Figure 5.11. The electrons are 

initialized at 1.2 gE  above the conduction band minima 

 

 
Figure 5.10: Average electron energies for 2 nm 2 nm In0.53Ga0.47As nanowire along 

[100] with different cladding thicknesses.  

 

 
Figure 5.11: Average electron energies for 3 nm 3 nm In0.53Ga0.47As nanowire along 

[100] with different cladding thicknesses.  

 

 The percentage of carriers undergoing impact ionization is also calculated as a 

function of the excitation energy. As can be seen in Figure 5.12, the excitation energy of 

the electrons has to be above 1.2 gE  to 1.4 gE  of the nanowire to have a significant 
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percentage of the electrons undergo impact ionization. This is due to the fact that unless 

the electrons are sufficiently excited, they will lose energy and relax to below one band 

gap above the conduction band minima before they have the chance to undergo an impact 

ionization event and generate an electron-hole pair.  

 
Figure 5.12: Percentage of carriers undergoing impact ionization (multiple electron 

generation) as a function of excitation energy for different nanowire claddings. 
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6. DEVICE SIMULATIONS 

 

6.1. Junctionless Nanowire Field Effect Transistors 

In the previous chapters, the low field and high field transport in nanowires were 

analyzed. The full band structure of nanowires and the scattering rates were calculated 

using the tight binding model and compared to the bulk rates at high energies and large 

nanowire widths. To simulate high field transport, it was also found out that the 

traditional free-flight drift routine of a Monte Carlo model had to be modified to account 

for multi-band transport and interband tunneling. In this chapter, the focus will be on the 

simulation of realistic nanowire devices. The tool chosen to do this is the three-

dimensional particle based Cellular Monte Carlo (CMC) code developed at Arizona State 

University (Saraniti2000). To simplify matters, at the moment, only the transport in 

junctionless nanowire FETs (JNFETs) is considered in this chapter.  

Junctionless nanowire FETs (JNFETs) have gained popularity since its 

demonstration by the Tyndall Institute (Colinge2010).The device is relatively simple to 

fabricate, with good scaling behavior, making it a promising next-generation technology 

for the end of the semiconductor roadmap. A JNFET consists of a single nanowire either 

p-doped or n-doped. It is usually gated all around and the source and drain are on either 

end of the nanowire as shown in Figure 6.1. 

 

In the present work we implement a full band particle based Monte Carlo 

simulation coupled with a Schrödinger solver to simulate quantum confinement effects 

and phonon limited dissipative transport in the JNFET. In order to treat the carriers as a 
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particle but still retain all the effects of quantum confinement, the traditional CMC has to 

be modified. The carrier is still assumed to be a particle along the direction of the 

nanowire axis but its charge is assumed to be smeared along the confined directions. At 

any point in the device, the band structure of the carrier is given by the solution of the 

Schrödinger equation. The Schrödinger equation is solved by using the semi-empirical 

sp3d5s* Tight Binding (TB) model including spin-orbit interaction. The charge carriers are 

treated as particles moving freely along the axis of the nanowire and confined along the 

transverse directions.  

 

Figure 6.1: An example device structure showing the division of the JNFET into slabs to 

simplify the computations. 

 

 The device is divided into several ‘slabs’ along the axis of the nanowire as shown 

in Figure 6.1. Each slab is treated as a separate material with its own 1D band structure 

and 1D scattering rates. The slab is then populated with atoms depending on the material, 

nanowire orientation and physical dimensions. By assuming the slab extends infinitely 

along the axis of the wire a unit cell for the nanowire is calculated as described in chapter 
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2. This unit cell is used in the sp3d5s* TB model to obtain the 1D band structure of the 

slab as shown in Figure 6.2.  

 

Figure 6.2: Band Structure for a 3 nmx3 nm In0.7Ga0.3As nanowire. 

 

From the TB coefficients the 1D scattering rates for every k to k’ are calculated as 

discussed in previous chapters and stored in lookup tables. Even though the carrier is 

assumed to be a point charge along the axis of the nanowire to account for confinement 

effects its charge distribution along the confinement directions should be smeared 

according to its wave function. The charge of a single carrier is distributed along the 

entire cross-section of the nanowire according to equation (6.1) and as shown in Figure 

6.3.  

 
2

m ,

1

(r ) ( , )
ln

c l m

l

q C k i


    (6.1) 

where rm is the cross-sectional position of the atom m in the unit cell. qc is the charge of 

carrier c. nl is the number of atomic orbitals on atom m. Cl,m(k,i) is the TB coefficient of 
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carrier c, at atom m and orbital l which is at wave vector k and band i. In Figure 6a, a 

carrier (red circle) is shown within a particular Poisson slice (1 cell width along the 

nanowire axis direction).  

 

Figure 6.3: Diagram showing the charge of the carrier distributed along the atoms within 

a Poisson well. 

 

The carrier’s charge now has to be distributed according to its wave function according to 

equation (6.1) along the atoms in the cross-section of the nanowire denoted by green 

circles in Figure 6b. This has to be done for all the carriers present in that Poisson slice 

during the charge assignment step of the particle based CMC. An example of the 

distributed charge for an electron in the 1st conduction band at the Gamma point in a 3 

nm x 3 nm GaAs nanowire along [100] is shown in Figure 6.4a. Due to the localized 

nature of the basis states in the tight binding scheme, each spike in the charge distribution 

shown in Figure 6.4a is the charge on a single atom. The potential obtained from the 

output of the Poisson solver is still smooth as shown in Figure 6.4b. 
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a) 

 

b) 

Figure 6.4: a) Probability charge density across the cross-section of a nanowire for a 3 

nmx3 nm In0.7Ga0.3As nanowire for an electron at the 1st conduction band at the Gamma 

point. b) Potential variation along the cross-section of the device based on the solution of 

the Poisson solver showing quantum confinement. 
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Once the charge on each atom due to all the carriers is calculated according to 

equation (6.1) it is then interpolated onto the grid points of the Poisson solver using the 

same charge schemes that is used in bulk particle based CMC’s (Saraniti2000). 

Therefore, depending on the number of carriers within 1 Poisson slice along the nanowire 

axis and depending on their wave function, the cross sectional charge density distribution 

is obtained. This has to be done for every Poisson slice in every ‘slab’ in the JNFET. 

Each slab could have a different set of TB coefficients, so depending on which slab the 

carrier is in, the corresponding band structure is used.  

 

Each node in the Poisson grid has an associated cross-sectional area. All atoms 

within that area are assigned to that node. The charge on a node is then calculated by 

summing over the charge of all atoms within that node. This way the charge of a carrier is 

distributed across all nodes in its cross-sectional area. The 3D Poisson equation is then 

solved. The potential obtained from the Poisson solver is interpolated back to the atom 

positions and fed back in to the TB model to recalculate the band structure. Ideally each 

Poisson slice in the device structure should be assigned to be a single slab. But this means 

that each Poisson slice of the device has to have its own band structure and own 

scattering rates table. This becomes very computationally expensive so usually many 

Poisson slices are grouped together to form a single slab. If a single slab contains many 

Poisson slices as shown in Figure 6.2, then the potential over all the Poisson slices are 

averaged and then interpolated to the atoms. This process of recalculating band structures 

and scattering rates is done self-consistently until steady state is achieved. The MC free-

flight and scatter routines are purely one dimensional while the Poisson solver, charge 
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distribution and potential distribution is three-dimensional. Since the TB solver and 

scattering rate calculation is computationally expensive, the band structure and scattering 

rates of each slab are only recalculated once every 0.5ps during the simulation as shown 

in the flowchart in Figure 6.5. 

 

Figure 6.5: Flowchart for the 1D Monte Carlo Method. 

 

 This process can be extended to include more slabs in the device to improve the 

accuracy of the method at an increased cost computationally.  Also if the potential does 

not vary much after 0.5 ps the band structure and scattering rates of the slab do not need 

to be recalculated as shown in the flowchart in Figure 6.5. This will reduce the 

computational cost. 



  124 

 

6.2. Transport across Different Slabs 

As the different slabs defined in the previous section have their own band structure 

and scattering rates, they must be treated as different materials itself. Therefore, as a 

carrier drifts from one slab to another slab it is treated as if it is moving across a hetero 

interface.  

                      

Figure 6.6: Transfer of a carrier moving from 1 slab to another slab. The energy and 

momentum is conserved during the transition. 

 

If the energy of the carrier is lies within the band gap of the slab it is moving into, then 

the carrier is reflected back classically. If the carrier has sufficient energy to overcome 

the band offsets, the energy and momentum of the carrier is conserved by placing it 

appropriately in the band structure of the new slab. A perfect conservation of momentum 

and energy is not always possible as that state may not exist in the new slab, the 

algorithm minimizes the energy and momentum loss in those cases. When the new state 

is chosen in the new slab, it is important that the k-space state chosen does not have a 

velocity opposite to the initial velocity so as to prevent the carrier from being reflected 

back to the first slab.  
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6.3. Surface Injection at Contacts 

In semi-ballistic devices, the injection statistics play an important role in device 

behavior. Traditionally, the contact injection is performed by maintaining charge 

neutrality at all the cells in the contact region. After a free-flight drift, the excesses 

charges in a contact are removed and if there is a deficit of charge, carriers are injected 

into the contact cell according to the Maxwell distribution function. The removal and 

addition of charge constitutes a current and the net current out of a contact is calculated 

by the rate of net charge removed from all the contact cells as described in equation (6.2) 

 
1

ncells
i

C

i

q
I

t


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
   (6.2) 

where CI  is the current out of the contact, ncells  is the number of cells within the 

contact, iq  is the net charge removed/added from cell i and t  is the free-flight drift 

time. This method of contact injection works well when the device is large and sufficient 

scattering takes place in the region outside the contact. But in devices where ballistic 

transport is a possibility the charge neutrality method of injection is known to produce 

spurious results as the distribution function injected is not correct (Gonzalez1996). This 

can be a problem in a JNFET where a fraction of the current could be ballistic. 

To accurately model contact injection, the carriers are assumed to be injected from 

ideal thermal reservoirs (Gonzalez1999). The contact is treated as a surface which injects 

at a constant rate depending on the temperature and doping of the material it is in contact 

with. Any carrier that crosses this surface in the other direction is ejected. Since this is a 

full band calculation the k-space is discretized. The density in k-space of the incoming 
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electron states with wave vector k  impinging per unit time upon the surface between the 

contact and semiconductor is 

  ( ) ( )N k DOS k v k A   (6.3) 

where  DOS k  is the density of states at wave vector k ,  v k  is the velocity of the state 

and A  is the cross-sectional area of the contact surface.  The units of  N k  in equation 

(6.3) is 1/ s . This means that every 1/ (k)N  seconds a state with wave vector k  is 

introduced into the semiconductor. Since this number is usually very small, a time 

interval equal to the free-flight time is used. Density in a certain time interval t  in a 

certain range of k  is, 

    ,
c

e
N k t N k k t

q

 
      

 
  (6.4) 

where e  is an electron charge and cq  is the charge of the carrier. Once a state is 

introduced, the probability of that state being occupied is given by 

 ( ( ))r f E k   (6.5) 

The free-flight time interval is divided into ( , )N k t   units. At each time unit, a state is 

generated and if a carrier is generated, it is drifted for the remaining time interval as 

shown in Figure 6.7. 
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Figure 6.7: Schematic showing the carrier injection algorithm. 

 The injection rate does not depend on the applied voltage or the electric field 

immediately outside the contact. This can remove spurious results such as a < 60 mV/dec 

subthreshold swing in a JNFET as shown in Figure 6.8. Also due to the surface contact 

injection method, the artificial resistance drop at the contacts is significantly reduced as 

deduced from the increase in overall current in Figure 6.8. 

 

Figure 6.8: Comparison of subthreshold swing (SS) of a JNFET using the traditional 

charge neutrality injection method and the surface injection method. 
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6.4. Simulation of In0.7Ga0.3As JNFET 

The device structure simulated consists of an n-type 3 nm x 3 nm In0.7Ga0.3As 

nanowire doped to 1018 cm-3.  The gate is wrapped around the nanowire with a dielectric 

thickness of 2 nm. The source and drain contacts are on either end of the nanowire. The 

length of the device is 100 nm but varies based on the simulation. The gate length is 40 

nm as shown in Figure 6.7 and is also varied. The device was divided into 3 ‘slabs’, one 

from the source to the gate, one under the gate and the other from the gate to the drain. 

The band structure and scattering rates of the slabs were recalculated every 0.5 ps till the 

simulation converged. 

 

Figure 6.9: General JNFET device structure simulated. 

 

The ID-VG and ID-VD curves are shown in Figure 6.10. The device structure is varied to 

observe the effect of device length on the subthreshold swing. The ratio of the gate length 

to the device length is kept a constant for all simulations. The injection statistics starts to 
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play a role at low device lengths as the devices start to become semi-ballistic at low gate 

lengths. The variation on subthreshold swing with different gate lengths is shown in 

Figure 6.11 for a 3 nm x 3 nm In0.7Ga0.3As JNFET. The subthreshold swing seems to 

saturate at a value of 62 mV/dec, slightly higher than the ideal value most likely due to 

the discretization of the k-space in a full band Monte Carlo simulation which causes a 

corresponding energy error. 

 

 

 

 

Figure 6.10: ID-VD and ID-VG curves for different VG and VD values respectively for the 

device structure shown in Figure 6.7. 
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a) 

 

b) 

Figure 6.11: a) Plot of ID vs VG for different gate length JNFETs, b) Variation of 

subthreshold swing of the nanowire JNFET against its device and gate length. 
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6.5. Ballistic Percentages 

Due to the particle based nature of the CMC, the number of particles that encounter a 

scattering event can be easily calculated. 

 

Figure 6.12: Schematic plot of a JNFET showing the paths a carrier can take from the 

point of injection to ejection. Only the path traveling from one contact to another is 

considered in the study of ballisticity. 

 

While keeping track of the carriers undergoing a scattering event, only the carriers that 

are injected at the source and reach the drain, or vice versa should be included in the 

calculation. Due to the nature of surface injection, a large injection and ejection of 

carriers is constantly occuring at the contacts and those carriers that do not make it across 

the device should be discarded as shown in Figure 6.12. 
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a) 

 

b) 

Figure 6.13: a) Plot of total carriers passing through the drain that underwent different 

number of scattering events, b) Ballistic percentage as a function of gate length. 
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The number of carriers exiting the contact can be very noisy due to the low 

currents obtained from these devices. If one were to simply find the mean of the number 

of carriers exiting the contacts at every time step, the result would be too noisy. To 

reduce the noise, instead of calculating the number of carrier exiting every time step, the 

total number of carriers exiting the contact since the start of the simulation is stored at 

every time step. This is shown in Figure 6.13a for a device length of 200 nm. A counter 

can be stored on each carrier keeping track of the number of times it undergoes a 

scattering event. Once the data shown in Figure 6.13a is obtained, the slope of each line 

can be calculated to a very low degree of error. The ratio of the slopes gives the ballistic 

percentage as shown in equation (6.6) 

 100i
i

total

S
B

S
    (6.6) 

where iB  is the ballistic percentage of a carrier undergoing i  scattering events, iS  is the 

slope of the number of carriers that underwent i  scattering events versus time and totalS  is 

the slope of the total number of carriers passing through the drain versus time. The plot of 

ballistic percentages versus different device lengths is shown in Figure 6.13b. As can be 

seen, the percentage of carriers that go through the device without scattering drops 

quickly as the device length increases. 
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7. SUMMARY AND CONCLUSIONS 

 

 In this work, the transport in nanowires and nanowire devices is analyzed using 

the full band Monte Carlo model and the empirical tight binding model. Modifications to 

the existing Monte Carlo method were undertaken to simulate nanoscale materials and 

devices. Chapter 1 was dedicated to the emergence of nanoscale devices in current 

integrated circuit technology and the methods employed to study transport in such 

nanoscale devices. The Monte Carlo method was shown to be optimal to simulate such 

devices as it is relatively computationally inexpensive compared to the NEGF methods 

while still being physically accurate due to the possibility of incorporating transport in a 

fully quantum  way , making it more desirable than the computationally inexpensive but 

physically inaccurate drift diffusion models.  

 Chapter 2 discusses the empirical tight binding method used to calculate the bulk 

and nanowire full band structures. Due to its atomistic nature, the same parameters used 

to simulate the bulk material band structure can be used to simulate the nanowire material 

band structure. Therefore no additional parameters are introduced in order to calculate the 

nanowire band structure. Important physical properties such as the band gap are shown to 

agree to bulk values as the nanowire widths increase. At high energies it is shown that the 

density of states of the nanowire rapidly oscillates around the density of states value of 

the bulk material for the same set of tight binding parameters.  

 Chapter 3 discusses the calculation of the scattering rates in 1D systems using the 

Fermi’s golden rule. New scattering rates are derived for the deformation potential 

scattering rate, polar optical phonon scattering rate, ionized impurity scattering rate, 

surface roughness scattering rate and the impact ionization scattering rate. A new formula 
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to calculate the dielectric screening in 1D systems is also derived within the tight binding 

basis. Importantly it is shown that the scattering rates of the nanowire material oscillate 

around the same scattering rates of the bulk material at high energies for the same 

scattering rate parameters. This is consistent with the density of states of the nanowire 

approaching the value of the bulk material at high energies. A useful optimization of the 

calculation of the overlap integral in the scattering rates is also discussed. The 

improvement in the computation speed of the overlap integral allows for relatively large 

nanowire scattering rates to be calculated. 

 Chapter 4 focuses on the low field and high field transport in nanowire materials. 

The Boltzmann transport equation is analyzed for low fields using the Rode’s method 

derived for 1D systems. Using the Rode’s method, the mobility of the nanowires are 

extracted. The mobility values are shown to approach the bulk value for large nanowire 

widths in Si and GaAs nanowires along the [100] direction. The variation of the mobility 

with doping concentration is also discussed and the effect of screening is demonstrated. 

The latter part of the chapter discusses the uniform field Monte Carlo method as a means 

to analyze transport in the high field regime in nanowires. The scattering rate parameters 

of bulk Si and bulk GaAs are fitted to experimentally obtained velocity field curves and 

mobility values. The same parameters are then used to simulate transport in nanowire 

materials.   

We also presented a new solution of the KI equations for multi-band transport 

using the Magnus expansion method. The usefulness of the Magnus expansion to solve 

the problem of multi-band drift is demonstrated by using it to solve the KI equation 

across the full BZ in semiconductor nanowire systems. The ability of the Magnus 
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solution to retain qualitative properties of the original solution greatly simplifies the 

problem. Depending on the problem at hand, the Magnus series can also be accordingly 

truncated to the required degree of accuracy, reducing the computation time without 

introducing exponentially increasing errors as is the case with the Runge-Kutta 4th order 

method. The importance of field induced interband tunneling is shown by performing 

uniform field full band Monte Carlo simulations of Si and InAs nanowires by modifying 

the traditional free-flight drift routine. Depending on the nature of the band structure, the 

multi-band drift model may or may not be necessary. Interband tunneling also becomes 

very important at high electric fields where impact ionization may be dominant. In such 

cases, it is important to include this model in the traditional Monte Carlo routines to 

accurately account for the correct number of impact events at high electric fields.  

The velocity field curves of Si and GaAs for different nanowire widths along the 

[100] direction are obtained and compared with the bulk velocity field curves for 

electrons and holes.  As the nanowire width increases the velocity field curves seem to 

approach the bulk velocity field curves except at very high fields where the velocity of 

the nanowire systems start to decrease.   

In Chapter 5 the energy relaxation of excited carriers in free-standing and cladded 

nanowires are discussed. Using a full band Monte Carlo simulation the electron energy 

relaxation times of InAs nanowires along the [100] direction are shown to be greater than 

the energy relaxation time of bulk InAs. At moderately high electric fields, a runaway 

effect is also observed in the nanowires and is attributed to the 1D nature of the scattering 

rates. A full band Monte Carlo simulation is also used to evaluate the carrier relaxation in 

cladded nanowires. The energy relaxation as a function of time is studied for different 
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cladding and core thicknesses. By using a simple impact ionization model, the multi-

excitation generation of carriers is also studied as a function of excitation energy. It is 

found out that the excitation energy must be sufficiently above the band gap to allow for 

the carriers to undergo impact ionization even after dissipating energy through various 

scattering mechanisms. 

In Chapter 6 a full band particle based Monte Carlo simulator is constructed for 

nanowire devices.  This chapter presents a numerical technique for Monte Carlo 

simulations of nanowire devices by fully including quantum mechanical confinement 

effects and dissipative phonon scattering within a full-band framework. The modeling of 

the carrier as a particle along the free direction and as a smeared charge along the 

quantized directions allows for the effect of the confining potential on the band structure 

and scattering rates of the carrier. The inclusion of a new way to calculate the polar 

optical phonon scattering using the TB coefficients is also presented. The comparison 

between the confined scattering rates and the bulk scattering rates at high energies 

provides a useful way to calibrate the parameters for the confined material in a consistent 

way. The capabilities of the model have been demonstrated by simulating an In0.7Ga0.3As 

JNFET. New materials and different device structures can be easily simulated using this 

technique making this a very useful simulation model for quantum devices. 

 

7.1. Future Work 

There are several place in this work where further improvements can be made. 

One of them is the use of confined phonons instead of the bulk phonon dispersion 
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relation. There have been recent work done on the effect of confinement on Si 

nanowires and it has been shown that for small nanowire widths (2 nm x 2 nm and 3 

nm x 3 nm) the effect of confined phonons is important (Buin2008). The scattering 

rates described in Chapter 3 can be easily modified to allow for confined phonons and 

instead of integrating over the phonons along the confined direction, there will be a 

summation over the confined phonon modes. 

 Also the scattering rates can be improved by using a self-consistent Green’s 

function approach to account for the energy broadening due to collisions. This will 

smoothen out the peaks in the scattering rates that are there due to the 1D density of 

states that are calculated using Fermi’s golden rule. This will help the device 

simulation runs too, as there won’t be spikes in the scattering rate forcing the 

reduction of the free-flight time. 

 Finally, comprehensive simulations using the modified particle based CMC 

described in chapter 6 needs to be run to understand the effect of various structures 

and scattering mechanisms on the characteristics of JNFETs. 
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