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ABSTRACT 

There are many applications for polymer matrix composite materials in a variety of 

different industries, but designing and modeling with these materials remains a challenge 

due to the intricate architecture and damage modes.  Multiscale modeling techniques of 

composite structures subjected to complex loadings are needed in order to address the 

scale-dependent behavior and failure.  The rate dependency and nonlinearity of polymer 

matrix composite materials further complicates the modeling.  Additionally, variability in 

the material constituents plays an important role in the material behavior and damage. The 

systematic consideration of uncertainties is as important as having the appropriate 

structural model, especially during model validation where the total error between physical 

observation and model prediction must be characterized.  It is necessary to quantify the 

effects of uncertainties at every length scale in order to fully understand their impact on 

the structural response. Material variability may include variations in fiber volume fraction, 

fiber dimensions, fiber waviness, pure resin pockets, and void distributions. Therefore, a 

stochastic modeling framework with scale dependent constitutive laws and an appropriate 

failure theory is required to simulate the behavior and failure of polymer matrix composite 

structures subjected to complex loadings.  Additionally, the variations in environmental 

conditions for aerospace applications and the effect of these conditions on the polymer 

matrix composite material need to be considered.  The research presented in this 

dissertation provides the framework for stochastic multiscale modeling of composites and 

the characterization data needed to determine the effect of different environmental 

conditions on the material properties.  The developed models extend sectional 

micromechanics techniques by incorporating 3D progressive damage theories and 
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multiscale failure criteria.  The mechanical testing of composites under various 

environmental conditions demonstrates the degrading effect these conditions have on the 

elastic and failure properties of the material. The methodologies presented in this research 

represent substantial progress toward understanding the failure and effect of variability for 

complex polymer matrix composites. 
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1. INTRODUCTION 

 

1.1.   Motivation  

Polymer matrix composite (PMC) materials are increasingly being used in airframe 

and engine applications.  However, damage initiation and failure mechanisms in 

composites are still not fully understood and are an ongoing area of research.  A multiscale 

modeling framework with scale-dependent constitutive laws and an appropriate failure 

theory is required to capture the behavior and failure of composite structures.  For the 

failure of engine containment systems, such as a fan blade separating from the rotor during 

operation, the system’s ability to prevent impact failure and decrease the severity of an 

impact event on the surrounding components is essential.  The rate dependency and 

nonlinearity of PMC materials further increases the complexity of the models required to 

simulate an impact event.  Additionally, variability in the material constituents plays an 

important role in the material’s behavior and damage. The systematic consideration of 

uncertainties is as important as having an appropriate structural model, especially during 

model validation where the total error between physical observation and model prediction 

must be characterized.  It is necessary, therefore, to quantify the effects of uncertainties at 

every length scale, in order to fully understand their impact on the structural response.  

Material variability can include variations in fiber volume fraction (Vf), fiber dimensions, 

fiber waviness, pure resin pockets, and void distributions. With this in mind, a stochastic 

modeling framework with scale-dependent constitutive laws and an appropriate failure 

theory is required to simulate the behavior and failure of PMC structures.  The multiscale 

model must have the ability to account for variability, strain rate effects, through-thickness 
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shear stresses, and environmental conditions, so that it can reliably determine the material’s 

applicability for aerospace structures and components.  

 

1.2.   Composite Micromechanics 

Various micromechanical models have been developed to simulate the behavior and 

effective properties of PMCs.  Using a mechanics of materials approach (Hill, 1964; 

Shaffer, 1964), the composite model is discretized into two rectangular phases where the 

phases are either in parallel (Voigt, 1889) with equal uniform strain assumptions, or the 

phases are in series (Reuss, 1929) with equal uniform stress assumptions.  However, the 

mechanics of materials approach is inaccurate when calculating the effective transverse 

and shear properties.  The concentric cylinder assemblage model that Hashin and Rosen 

(1964) developed applies a similar separation into two cylindrical phases for the fiber and 

matrix.  The self-consistent method is able to predict the effective moduli of a composite 

by assuming a single particle in an effective medium, which reduces to the solution of a 

single inclusion in an infinite effective medium (Eshelby, 1957).  The Mori-Tanaka model 

(Mori & Tanaka, 1973) assumes the average strain computed for the matrix correlates to 

the average strain of a fiber or particle.  By discretizing the composite unit cell into three 

subcells, Sun and Chen (1991) were able to develop a 2D elastic-plastic model that was 

later extended to three dimensions by Robertson and Mall (1993).  Whitney (1993) 

proposed a more precise elastic micromechanics model where the unit cell was divided into 

an arbitrary number of rectangular, horizontal slices.  Mital et al. (1995) used a slicing 

approach to compute the effective elastic constants and microstresses (fiber and matrix 

stresses) in ceramic matrix composites, and a mechanics of materials approach was used 
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to compute the effective elastic constants and microstresses in each slice of a unit cell.  

Laminate theory was then applied to obtain the effective elastic constants not only for the 

unit cell, but also for the effective stresses in each slice.  The slicing approach was extended 

to include material nonlinearity and strain rate dependency in a deformation analysis of 

PMCs, and then used to investigate the response of thin laminated plates subjected to in-

plane loading (Goldberg, 2000, 2001; Goldberg, Roberts, & Gilat, 2004, 2005).  This slice 

micromechanical model was further modified to incorporate out-of-plane, transverse shear 

effects to simulate the transient and impact responses of composite shells (Zhu, 2006; Zhu, 

Chattopadhyay, & Goldberg, 2006b; Zhu, Kim, Chattopadhyay, & Goldberg, 2005).  The 

slice model was next extended to a 3D sectional micromechanics model (Zhu, 2006; Zhu, 

Chattopadhyay, & Goldberg, 2006a, 2008).  The sectional micromechanics model applied 

a decoupling concept to the fiber/matrix unit cell that captured the full 3D stress and strain 

components in a computationally efficient manner and preserved the transverse isotropy of 

the material.  The method of cells (MOC) theory developed by Aboudi (1981, 1989, 2013) 

discretizes a unidirectional fiber-reinforced composite unit cell into four rectangular 

subvolumes, called subcells, where one subcell represents the fiber and the remaining three 

subcells indicate the matrix.   The displacement conditions in the MOC theory are assumed 

to be linear and continuous between the subcells.  Paley and Aboudi (1992) expanded the 

MOC approach into a generalized method of cells (GMC) for unidirectional composites, 

which improved the discretization technique by better capturing the physical shape of the 

fiber in the unit cell.  Pindera and Bednarcyk (2000; 1999) reformulated the GMC using 

simplified uniform stress and strain assumptions, resulting in improved computational 

efficiency of the theory.  A major limitation of the aforementioned micromechanical 
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models is that only the homogenized local stress and strain fields can be computed because 

the exact shear coupling between constituents is not accurately captured.  In determining 

the effective material properties, the effect of shear coupling is minimal; however, shear 

coupling becomes important when investigating fiber/matrix interface concentrations and 

local damage and failure of the constituents.  For this reason, Aboudi et al. (2001, 2002, 

2003) developed the high fidelity generalized method of cells (HFGMC) method, which 

advances the previous GMC method by integrating a second-order displacement field that 

is capable of accounting for shear coupling between subcells. 

 

1.2.1. Viscoplastic Theories for Polymer Matrix Composites 

A key component for micromechanics based models of PMCs is capturing the 

essential nonlinear, rate-dependent behavior using viscoplastic theories.  Sun and Chen 

(1989) developed a single parameter plasticity model consisting of a quadratic yield 

function, associated flow rule, and plastic potential to capture the nonlinear behavior of 

composites.  Another study, by Tsai and Sun (2002), determined the optimal specimen 

geometry needed to characterize the state variables for a single parameter plasticity model 

with strain rate effects.  Thiruppukuzhi and Sun (2001) developed a two-parameter and 

three-parameter overstress viscoplastic theory with a rate-dependent failure criterion.  The 

strain rate-dependent behavior of composites has also been modeled using a quadratic 

stress function in an overstress viscoplastic theory (Gates & Sun, 1991), a constant rate 

power and 3D viscoplastic law (Weeks & Sun, 1998), and an overstress viscoplastic model 

that included multiaxial effects (Eisenberg & Yen, 1981).  Many viscoplastic theories were 

adapted from classical plasticity and viscoplasticity theories of metals where hydrostatic 



5 

stresses have minimal effect.  However, the effect of hydrostatic stresses for polymers has 

been shown to be significant (Spitzig & Richmond, 1979; Ward & Sweeney, 2012), and 

several studies have analyzed the nonlinear behavior of polymers by incorporating 

hydrostatic terms in viscoplastic theories (Chang & Pan, 1997; Hsu, Vogler, & Kyriakides, 

1999; F. Z. Li & Pan, 1990).  Goldberg et al. (2003) integrated hydrostatic terms in a 

viscoplastic theory to account for the high strain rate deformation of polymers.  They later 

extended the model by applying an associative flow rule to the viscoplastic theory in order 

to resolve inaccuracies in the predictions for multiaxial stress states of the polymer 

(Goldberg et al., 2005). 

 

1.2.2. Interface/Interphase Considerations 

Although recent research has shown that the interphase plays a critical role in the 

performance of PMCs, accurate modeling of the interphase is challenging due to the small 

scale of this region.  Reifsnider (1994) conducted a parametric study using the tensile 

strength of the interphase as a variable within micromechanical models to investigate the 

effect on the strength and life of unidirectional composites.  Asp et al. (1996) assumed 

symmetrical and periodic conditions in a finite element analysis (FEA) to model a quarter 

of the fiber in polymer matrix and considered the effects of interphase thickness on the 

response through a parametric study of various assumed elastic interphase moduli. Souza 

et al. (2008) developed a multiscale FEA model by incorporating viscoelasticity in the 

micromechanics and a cohesive zone law for the interphase to determine the effect of 

damage under impact loading.  FEA has also been used to model representative volume 

elements (RVEs) with multiple fibers where the interphase was represented by bilinear 
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cohesive laws (Wang, Zhang, Wang, Zhou, & Sun, 2011; B. Zhang, Yang, Sun, & Tang, 

2010).  Similar types of interfacial laws have been applied to subcell boundary conditions 

in the MOC (Aboudi, 1987; Aboudi, 1988) and GMC (Aboudi, 1993; Goldberg and 

Arnold, 2000; Bednarcyk and Arnold, 2002) theories. Although these studies have applied 

interfacial laws to account for the fiber/matrix interaction, these microscale interfacial laws 

are based on large-scale coupon testing or deductions and assumptions from parametric 

studies.  Due to the current limitations in experimental techniques, it is difficult to measure 

and observe the behavior and failure of the interphase at the atomic/molecular scale, but 

various test methods have been established using single fiber specimens to measure the 

fiber/polymer interphase strength (Zhandarov & Mäder, 2005).  One such method, called 

the Broutman test, was originally designed to measure the interphase transverse tensile 

strength for glass fiber-reinforced PMCs (Broutman, 1969), but it has also been extended 

to carbon fiber-reinforced PMCs (Ageorges, Friedrich, & Ye, 1999). However, this method 

calculates the transverse tensile strength using the difference in Poisson ratios between the 

fiber and polymer matrix under a compressive loading condition, and the transverse 

modulus cannot be measured from this test.  While these experimental studies are capable 

of estimating interphase properties, the techniques are based on an indirect calculation of 

the properties and thus cannot capture the full range of material properties required to 

incorporate the interphase within a multiscale analysis. 

In order to overcome the nanoscale experimental limitations, a significant amount of 

modeling research has been reported to study the molecular scale properties of composites; 

this includes ab-initio quantum chemistry, density functional theory, and molecular 

dynamics (MD) methods.  For these molecular modeling methods, carbon fiber is often 
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approximated as graphene or carbon nanotube (CNT) in order to reduce the number of 

atoms needed to fully represent the fiber.  In a study by Hadden et al. (2015), MD-generated 

properties of graphene nanoplatelets in epoxy were integrated within a multiscale model 

using GMC micromechanics.  Jiang et al. (2013; 2007) modeled the macroscopic behavior 

of CNT-reinforced nanocomposites using a form of rule of mixtures.  In their work, the 

interphase between the polymer matrix and a CNT is modeled as a wavy surface, and a 

cohesive stress law is formulated based on the Lennard-Jones potential.  Zhang et al. (2010) 

estimated the mechanical properties of a carbon fiber/polymer interphase by representing 

the fiber as multiple layers of graphene and constructing a cohesive law using the van der 

Waals interactions between the constituents. A vast majority of these molecular interphase 

models are formulated using only the Lennard-Jones potential, which does not account for 

mechanical entanglements or covalent bond breakage within the constituents.  

Additionally, graphene and CNTs possess crystalline structures, whereas carbon fiber is 

semi-crystalline with chains of carbon atoms randomly folded and/or interlocked together 

(Edwards, Menendez, & Marsh, 2013; Guigon & Oberlin, 1986; Johnson, 1987).  Due to 

the complexity of the carbon fiber, CNT and graphene molecular models cannot be directly 

applied to simulate the carbon fiber or the fiber interphase. 

 

1.2.3. Damage Mechanics and Failure 

The determination of damage and failure is a significant part in modeling the 

composite response and poses many challenges due to the complexity and plethora of scale-

dependent failure and damage modes in such materials.  As with many aspects of 

composites modeling, the failure theories are adaptations of theories developed for 
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isotropic materials.  Hill (1948) modified failure criteria to create a theory for anisotropic 

metals, and Azzi and Tsai (1965) adjusted the theory for composites.  Tsai (1968) also 

introduced quadratic failure theories to capture the interactions between different stress 

components.  For composites, the strengths in tension and compression directions can 

differ significantly, and this trait of the material was considered by Tsai and Wu (1971).  

The Hashin-Rotem theory (Hashin & Rotem, 1973; Rotem & Hashin, 1976) separated 

composite failure into individual fiber and matrix failure modes using a quadratic 

expression.  Hashin (1980) later modified the theory to add the difference between tension 

and compression strengths. A large step towards assessing and modifying these failure 

theories for composites was the initiation of the World Wide Failure Exercise (WWFE).  

The WWFE began in 1996 and consisted of a comprehensive experiment and constituent 

property database for PMCs (Hinton & Soden, 1998; Soden, Hinton, & Kaddour, 1998b, 

2002).  The database was comprised of a broad range of parameters, including different 

constituent properties, laminate sequences, and loading conditions.  The participants were 

provided the same material data, and the results from their PMC failure theory predictions 

were compared with the experimental data.  At the end of the WWFE, in 2004, assessments 

had been made for 19 different failure prediction approaches, and the leading theories were 

recommended for design purposes (Soden, Hinton, and Kaddour, 1998a; Hinton, Kaddour, 

and Soden, 2002; Hinton, Kaddour, and Soden, 2004; Kaddour, Hinton, and Soden, 2004; 

Soden, Kaddour, and Hinton, 2004).  The benefits resulting from the WWFE effort were 

the improvement of many failure theories and the provision of organized publications in 

which design engineers could access and compare.  Despite the success of the WWFE, the 

exercise was focused on in-plane, biaxial loadings and did not consider the 3D triaxial state 
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of the material.  In response to this deficiency, a second World Wide Failure Exercise 

(WWFE-II) was initiated in 2007, and the test cases included the failure of neat polymer 

resin under triaxial loading as well as the triaxial behavior of unidirectional and multi-

directional laminates (Hinton & Kaddour, 2012).  The study ended in 2012 with 12 groups 

participating using different methods, and the models were benchmarked (Kaddour & 

Hinton, 2012a, 2012b, 2013). 

The WWFE-II achieved similar accuracy and advances to that shown in the results of 

the WWFE-I and recognized that the effect due to small-scale needed to be studied; 

therefore, a third World Wide Failure Exercise (WWFE-III) began. The WWFE-III is 

currently ongoing, aiming to integrate continuum damage mechanics with the developed 

and modified failure theories to account for the progression of matrix cracking and 

delamination (Kaddour, Hinton, Smith, & Li, 2013).  Continuum damage mechanics was 

created as a method for capturing the nonlinear behavior of composites with one of the first 

damage theories developed by Kachanov (1958, 2013).  The basic concept of continuum 

damage mechanics is introducing damage variables and evolution theories to represent the 

physical damage initiation and propagation.  This is achieved by using the damage 

parameters to degrade the components of the stiffness tensor by progressively increasing 

the variables using damage evolution functions that can be formulated with various 

methods (Allen, Harris, and Groves, 1987a; Allen, Harris, and Groves, 1987b; Paas, 

Schreurs, and Brekelmans, 1993; Talreja, 1994; Matzenmiller, Lubliner, and Taylor, 1995; 

Bednarcyk, Aboudi, and Arnold, 2010).  Several participants from the first two exercises 

started developing damage theories for composites before the start of the WWFE-III 

(McCartney, 1992, 1998; Talreja, 1985, 1994), and a few even employed damage theories 
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with complex failure criteria (Pinho, Davila, Camanho, Iannucci, & Robinson, 2005; Puck 

& Schürmann, 1998, 2002).  The studies that have been published to date, using the 

WWFE-III parameters, feature a broad range of techniques including multiscale, energy-

based, and cohesive zone models, to name only a few (Carrere, Laurin, and Maire, 2012; 

Soutis, 2012; Daghia and Ladeveze, 2013; Chamis et al., 2013; Kashtalyan and Soutis, 

2013; McCartney, 2013a; McCartney, 2013b; Pinho, Vyas, and Robinson, 2013; Singh and 

Talreja, 2013).  

 

1.3. Multiscale Composite Modeling 

The accurate multiscale modeling of composites can reduce the time and expense 

required for extensive experimentation.  A key factor in modeling composite behavior for 

aerospace applications, and specifically fan containment systems, is accurately modeling 

impact loadings and the transient response in the components due to impact.  Multiscale 

models allow the scaling of information between different length scales using 

homogenization and localization techniques.  Several techniques strictly use FEA as the 

modeling approach, where a small-length scale is simulated and information is transferred 

to an FEA integration point of a large-scale model (Feyel, 1999; Feyel & Chaboche, 2000).  

However, running simulations using this technique can be computationally expensive.  

Micromechanical methods such as asymptotic field expansion separate the fields of the 

large-scale model into small-scale ones (Fish, Shek, Pandheeradi, & Shephard, 1997; Fish, 

Yu, & Shek, 1999; Suquet, 1987).  The bridging of these scales is performed using the 

homogenization functions obtainable from a variety of techniques (Fish et al., 1997; Fish 

& Yu, 2001; Oskay & Fish, 2007).  The Voronoi cell method (Ghosh, 2011; Ghosh, Lee, 
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& Moorthy, 1995; Ghosh & Liu, 1995; Ghosh & Moorthy, 1995; Ghosh & Mukhopadhyay, 

1991) analyzes the microscale by explicitly accounting for the composite microstructure 

using tessellations of polygons containing a single fiber or particle within an FEA 

formulation.  Ghosh et al. (2001) used the approach to develop a multiscale analysis that 

uses random microstructures to analyze composite failure.  The GMC micromechanics 

technique has been implemented with FEA where each integration point is represented 

using a single GMC simulation (Wilt, 1995).  The Micromechanics Analysis Code with 

Generalized Method of Cells (MAC/GMC) (Bednarcyk & Arnold, 2002b, 2007) uses the 

GMC and HFGMC micromechanics techniques, as well as classical laminate theory 

(Herakovich, 1998; Jones, 1975), to conduct multiscale analyses of composites.  Liu et al. 

(2011a; 2011b; 2011c) developed a Multiscale Generalized Method of Cells (MSGMC) 

framework, which performed through-thickness homogenization, introducing 

normal/shear coupling, to study the material behavior and failure of composites with 

complex architectures. Chamis (2004) presented a stochastic multiscale framework that 

used fast probability integration to incorporate uncertainty in the material properties.   

 

1.4. Triaxial Braid Composite Models 

Modeling triaxial braided PMCs is a difficult task, due to the material’s nonlinearity 

and architectural variability.  Naik et al. (1995; 1994) used a volume averaging, 

homogenization technique with iso-strain assumptions within the triaxial repeating unit cell 

(RUC) to calculate the material properties.  Quek et al. (2003) implemented concentric 

cylinder micromechanics within the RUC and modeled the tow undulations as waveforms.  

Song et al. (2007) modeled a single RUC in compression using finite element-based 
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micromechanics.  Cheng and Binienda (2008) used a through-thickness braiding approach 

of the RUC by employing various stacking sequences to model the different subcells of the 

RUC.  Littell et al. (2008a; 2008b) also used this type of braiding approach for the RUC, 

but incorporated an idealized tow shift rule to account for the overlapping of the axial tows 

through the thickness.  Ivanov et al. (2009) incorporated a failure criterion within an FEA 

model to account for stiffness degradation and crack location.  Li et al. (2009) developed a 

six subcell discretization approach of the RUC where each layer in the subcell was an 

integration point within a shell element layup.  Goldberg et al. (2012) modified the through-

thickness braiding approach by incorporating micromechanics and classical laminate 

theory to produce a homogenized shell element.  Liu et al. (2011a; 2011b) developed a 

multiscale modeling approach using the GMC and a two-step homogenization process that 

introduced normal/shear coupling.  Xiao et al. (2011) used a layered shell approach with a 

detailed subcell discretization method to account for different Vf values for each subcell.  

Cater et al. (2013) created an absorbed matrix model, which was similar to the braiding 

through the thickness approach but accounted for intertow resin material, and was able to 

capture out-of-plane flexural properties.  The absorbed matrix model also applied the 

different Vf measurements to each subcell as well as the idealized tow shift rule.        

 

1.5. Environmental Characterization  

In the case of composite materials, the effect of environmental conditions is regarded 

as a limiting factor in mechanical performance (Adams & Singh, 1996; Bishop, 1985; Choi, 

Ahn, Nam, & Chun, 2001; Collings, Harvey, & Dalziel, 1993; Patel & Case, 2002).  

Therefore, an important and necessary step in the Federal Aviation Administration (FAA) 
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certification of aircraft designs is to determine the material integrity of engine components 

in relation to their mechanical performance under such extreme conditions.  Woven and 

braided composites have been proven to have beneficial traits, such as delamination 

prevention, and are currently being used in aircraft structures. However, studies on braided 

composites are limited, when compared to the extensive durability studies currently 

available for unidirectional carbon/epoxy composites. For example, Bishop (1985) 

observed that elevated temperature conditions reduced the compressive failure strength of 

unidirectional carbon/epoxy composites.  In addition to temperature, moisture studies using 

humidity-controlled chambers and circulating water baths have been conducted on 

unidirectional carbon/epoxy composites to determine their absorption behavior of (Choi et 

al., 2001; Suh, Ku, Nam, Kim, & Yoon, 2001).  Joshi (1983) compared water bath and 

humidity-controlled experiments and concluded that water baths accelerated the moisture 

absorption in unidirectional composites.  This study further illustrated how moisture 

absorption and elevated temperatures reduce the interlaminar shear strength by as much as 

25% and the tensile strength by as much as 36%.  The effect of moisture absorption on 

unidirectional carbon/epoxy composites has also been studied for tension and compression 

responses (Collings et al., 1993) and for the shear response (Adams & Singh, 1996).  Patel 

and Case (2002) presented tension results for woven composites that were conditioned 

using hygrothermal cycling and moisture absorption, while Zhang et al. (2013) analyzed 

the reduction in tensile and compressive properties of triaxial braided composites due to 

microcracking induced by thermal cycling.  Schambron et al. (2008) conditioned braided 

composite specimens in saline, moisture, and elevated temperature environments for bone 

plate structures and assessed the impact the conditioning had on the flexural properties.  
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Kohlman et al. (2011) performed hygrothermal cycling on triaxial braided composites to 

gauge the effect of environmental conditioning on tensile, compressive, and impact 

resistive properties.  However, hygrothermal cycling cannot determine which specific stage 

(i.e., storage, ascent, cruise, or descent) is the most detrimental to the integrity of the 

composite material.  Additional investigations, thus, are necessary to determine the effects 

of each individual environmental condition on the triaxial braid material, which is 

important for physics-based models and failure prediction. 

 

1.5.1. Measurement Techniques for Triaxial Braided Composites 

A variety of characterization techniques have been used to study the mechanical 

properties and damage in triaxial braided composites (Masters, Foye, Pastore, & Gowayed, 

1993; Masters & Ifju, 1996; Portanova, 1995; Potluri, Manan, Francke, & Day, 2006; 

Roberts et al., 2009).  Strain measurement systems, such as Moiré interferometry and 

digital image correlation (DIC), have been used extensively to characterize the full field 

strain of composite materials (Littell, Binienda, Roberts, & Goldberg, 2009; Masters & 

Ifju, 1996; Naik et al., 1994; Yekani Fard, Liu, & Chattopadhyay, 2011).    Rao et al. (2002) 

used fiber Bragg grating (FBG) sensors on braided carbon/epoxy composites to measure 

the strain and temperature on the material.   Quek et al. (2004) and Smith and Swanson 

(1994) tested triaxial braided composites using digital speckle photography to understand 

the failure modes of the material under biaxial loading.  Correlations have been made 

between the strain field and damage assessment of composites using a combination of DIC 

and nondestructive scanning methods (Ivanov et al., 2009; Littell et al., 2009; Lomov et 

al., 2008).   Flash thermography has been routinely used in recent studies to measure 
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specimen thickness, defects, and thermal diffusivity in large panels with no edge or 

boundary condition effects (Maldague, 2002; Shepard, Hou, Ahmed, & Lhota, 2006; J. G. 

Sun et al., 1997; Yekani Fard, Sadat, Raji, & Chattopadhyay, 2014).  The main focus of 

these studies was to characterize mechanical properties and damage in complex 

composites.   

 

1.6.  Objectives of the Research 

The overall purpose of the research presented in this dissertation is to experimentally 

characterize composite behavior and failure, and to develop a multiscale modeling 

framework in order to understand the effect of material variability and environmental 

conditions on the simulated response.  The following are the main objectives of this work: 

1. Characterize the local and spatial variability in unidirectional PMCs using 

statistical techniques to quantify microstructural parameters. 

2. Develop stochastic micromechanics techniques capable of incorporating material 

variability, progressive damage, and failure theories at multiple length scales to 

improve the accuracy of material property and failure predictions.   

3. Integrate progressive damage and multiscale failure theories within high fidelity 

micromechanics techniques to account for complex coupling between the 

composite constituents, including the fiber/polymer matrix interphase. 

4. Perform experiments on triaxial braided PMCs to characterize the effect of various 

environmental conditions on the mechanical properties, damage, and failure of the 

material.   
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5. Develop a multiscale modeling framework capable of accounting for 

environmental conditions, 3D material architectures, and the scaling of the response 

to the structural level. 

 

1.7. Outline of the Dissertation 

The dissertation is structured as follows: 

Chapter 2 presents the extension of a micromechanics theory, through the integration 

of stochastic methodologies, to create a modeling framework that is used to study the effect 

of material variability on the composite’s behavior and failure.  Material variability is 

applied through the stochastic methodologies in the modeling framework by quantifying 

the local and spatial variability through a statistical, microstructural characterization of 

unidirectional composites.  The model incorporates several theories, including viscoplastic, 

progressive damage, and multiscale failure laws.  Additionally, a parametric study is 

performed using ballistic impact simulations of a PMC laminate to study the effect of 

material variability at the structural scale.   

Chapter 3 integrates the progressive damage and multiscale failure theories from 

Chapter 2 with a high fidelity micromechanics technique that is capable of capturing 

complex coupling between the composite constituents.  The high fidelity micromechanics 

also includes the fiber/polymer interphase, to observe the impact that the interphase has on 

the behavior and failure of the composite. Various interphase types and properties are 

applied to make a comparison of the simulated composite responses.   

Chapter 4 characterizes the effect of environmental conditions on triaxial braided 

PMCs by conducting various tension, compression, and shear experiments.  A major focus 
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of this study is determining the differences in local strain features caused by environmental 

conditions.  The results from analyses of the tested specimens are provided to determine 

the influence of mechanical and environmental loading on the damage and failure modes.   

Chapter 5 details the development of a multiscale modeling framework capable of 

simulating complex composite architectures and accounting for environmental conditions.  

Effective material properties, generated by high fidelity micromechanics with thermal and 

moisture expansion terms, are introduced into a mesoscale model which represents an RUC 

of triaxial braided composite material.  The mesoscale is repeated to create a macroscale 

model where the material properties are defined with 3D material vectors to include out-

of-plane components present in the physical material.     

Chapter 6 summarizes the research reported in this dissertation and emphasizes its 

important contributions and findings.  Potential areas and recommendations for future 

research work are also discussed at the end of the chapter. 
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2. MULTISCALE MODELING AND STOCHASTIC MICROMECHANICS FOR 

RATE-DEPENDENT COMPOSITE MATERIALS 

 

2.1.   Introduction 

Damage initiation, damage evolution, and failure mechanisms in composites are 

complex and still an ongoing area of research.  Multiphysics models with constitutive laws, 

progressive damage mechanics, and failure theories are required to capture the behavior 

and failure of composite structures subjected to complex loadings.  The rate dependency 

and nonlinearity of PMCs further increase the complexity of the models required to 

simulate material behavior.  Furthermore, certain material properties and geometric 

variabilities are inherent in composite materials due to the manufacturing and curing 

processes.  It is necessary to quantify the effects of variability at every length scale in order 

to fully understand the impact on the structural response.  Material variability may include 

variation in Vf, fiber dimensions, fiber waviness, and void distributions.  Stochastic 

techniques are necessary to account for the aforementioned variability within a multiscale 

modeling framework.  In this chapter, multiscale failure criteria, work potential damage 

mechanics, and material variability are incorporated within a stochastic sectional 

micromechanical model.  The sectional micromechanics theory (Zhu, 2006; Zhu et al., 

2006a, 2008) is utilized as it includes the rate dependency of the material and is 

computationally efficient due to the decoupling of the system of equations.  The 

micromechanics model is capable of simulating 3D responses of the material including the 

through-thickness transverse shear and normal deformations.  A modified Bodner-Partom 

viscoplastic theory (Goldberg et al., 2005) is used for the polymer constituents, and a 3D 
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progressive damage theory is derived to update the elastic material properties of the 

polymer constituent.  Microstructural characterization is performed to understand the 

spatial variability in the composite material and develop statistical distributions for 

stochastic integration.  The variabilities are integrated within the sectional micromechanics 

model using stochastic methodologies.  Additionally, a multiple random variable analysis 

is performed using this stochastic micromechanics framework by using the Vf 

characterization statistics and assuming small perturbations for the other random variable 

statistics. 

 

2.1.1. Sectional Micromechanics Theory  

The stochastic micromechanical model in this chapter is based on a 3D sectional 

micromechanical theory, which is a subcell based approach and accounts for 3D behavior 

of the material including in-plane deformation, transverse shear deformation, and through-

thickness normal deformation.  The sectional micromechanics is computationally efficient 

and preserves the transversely isotropic behavior of the composite unit cell.  The theory 

and fundamental equations developed by Zhu et al. (2006; 2006a, 2008) are presented in 

this chapter for better understanding of the sectional micromechanics. 

 

2.1.1.1.  Architecture and Discretization of the Unit Cell 

The discretization process in the sectional micromechanics, illustrated in Figure 2.1, 

defines the RUC of the composite as a single carbon fiber in a polymer matrix.  The model 

assumes the composite material has square fiber packing and a perfect interfacial bond 

between the fiber and matrix.  Due to the symmetry, a quarter of the unit cell is analyzed 
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and, through the sectioning process, the large system of equations of the unit cell is 

decoupled into three smaller systems of equations.  A system of equations is defined for 

each group of subcells (Groups A and B) and for the unit cell.  A general solution 

methodology would require a system of equations comprising the constitutive equations 

and conditions for all eight subcells.  However, the sectioning solution methodology allows 

each smaller system of equations to be solved independently to obtain the unit cell 

response, resulting in a significant reduction in computational cost. 

 

 
Figure 2.1. Unit Cell Discretization Process for Sectional Micromechanics (Adapted 

from (Zhu, 2006)) 

 

 

The dimensions of each subcell are depicted in Figure 2.1 and are used to calculate 

the Vf values for the subcell groups and the unit cell.  The four lengths (d1, d2, d3, and d4) 

are specifically defined to preserve the transversely isotropic, material symmetry of the 

composite with the through-thickness length defined by a value of one.  The lengths are 

determined using the following geometric assumptions:  

 

1 2

2

2
fd d R   (2.1) 
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1 2 3 fd d d R    (2.2) 

 
4 0.5 fd R   (2.3) 

 
    

2

1 2 1 34 8 fd d d d V    (2.4) 

where Vf is the fiber volume fraction of the unit cell and Rf is the dimensionless radius of 

the carbon fiber calculated using Equation (2.5), which normalizes the lengths of the unit 

cell.  Equation (2.4) represents the fiber volume fraction of the unit cell in terms of the 

dimensions of the rectangular subcells.    
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The calculated rectangular subcell lengths are used to formulate Equation (2.6), which 

describe the variables applied to simplify the boundary and continuity conditions. 
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The boundary and continuity conditions imposed by the micromechanics theory to solve 

the systems of equations for the unit cell and groups of subcells are described in the 

following subsections.  

 

2.1.1.2.  Stress and Strain Conditions for Group A 

The continuity conditions are necessary to determine the effective stress and strain 

increments for Group A, and are expressed in Equations (2.7)-(2.12).  The subscripts of the 

stress and strain increments in these expressions range from 1 to 6 and represent the Voigt 

notation of the parameters, and the superscripts in the parentheses (2, 3, 4, or A) represent 

either the subcell number or the group of subcells.  
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(2.12) 

 

 

2.1.1.3.  Stress and Strain Conditions for Group B 

Similar conditions are used to determine the effective stress and strain increments for 

Group B, and are expressed in Equations (2.13)-(2.18).  In these expressions, the 

superscripts in the parentheses (5, 6, 7, or B) indicate either the subcell number or the group 

of subcells.    
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(2.15) 
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(2.18) 

 

 

 

2.1.1.4.  Conditions and Equations for the Unit Cell 

The incremental forms of stress and strain continuity conditions between the groups 

of subcells, described in Equations (2.19)-(2.24), are used to compute the unit cell response 

where the superscript u in parentheses denotes the strain or stress increment components 

of the unit cell.   
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2.1.2.   Work Potential Damage Law Overview 

The progressive damage theory is based on a work potential model (Schapery, 1989, 

1990; Schapery & Sicking, 1995), which is a thermodynamically consistent law that 

accounts for microscale damage by discretizing the total strain energy density, U, into 
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components correlating to elastic strain energy density, We, and dissipated strain energy 

density, Wd, as shown in Equation (2.25).   

 
e dU W W   (2.25) 

During loading, the structural changes and damage occurring within the material affect the 

elastic properties.  The We and Wd variables are functions of internal state variables, Si, 

where the subscript i indicates that multiple internal state variables can be accounted for 

within the progressive damage law.  These internal state variables represent separate types 

of structural changes and damage in the material.  Equation (2.26) demonstrates that the 

differentiation of Wd with respect to the general internal state variable, Si, yields the 

thermodynamic force, fi, required to produce the structural changes or damage associated 

with that internal state variable.   

 
 d

i

i

W
f

S





  (2.26) 

Schapery (1989, 1990) showed that, through the definition and balance of thermodynamic 

forces, the total strain energy density is stationary with respect to the changes in the internal 

state variables that are associated with damage and structural changes as expressed in 

Equation (2.27).  Rice (1971) showed that, according to the second law of thermodynamics, 

the energy expended for structural change or damage is irreversible with respect to time as 

depicted by Equation (2.28). 

 
0

i

U

S





 (2.27) 

 0i if S   (2.28) 

The work potential theory was further extended in a progressive damage theory 

developed by Pineda et al. (2009; 2012), where it was integrated with a GMC approach.  
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Considering only matrix microdamage, the strain energy density associated with damage 

can be represented using a single internal state variable, S.  Therefore, following the 

differentiation scheme demonstrated in Equation (2.27) and differentiating Equation (2.25) 

with respect to S yields 

 
1eW

S


 


 (2.29) 

The elastic strain energy density for a composite plate, using plane stress conditions, is 

expressed as 

 
 2 2 2

11 11 22 22 12 12 12 11 22

1

2
eW E E G Q         (2.30) 

where the Q12 variable is a component from a reduced stiffness matrix and is not dependent 

on structural changes.  By substituting Equation (2.30) into Equation (2.29) and assuming 

that E22 and G12 are the only properties dependent on S, a differential equation is formulated 

(Equation (2.31)) for the evolution of damage.  

  2 2

22 22 12 12 1
2 2

E G

S S

  
  

 
 (2.31) 

The solution of Equation (2.31) is used to calculate the value of S, which is applied to the 

damage expression in Equation (2.32) to determine the degraded material property value. 

  0 dP P p S  (2.32) 

The variable, P, can represent any material property, including transverse or in-plane shear 

moduli, and P0 indicates the initial, undamaged value for the material property; and pd is 

an experimentally derived damage expression describing the degradation behavior as a 

function of S for the specific material property.  Sicking (1992) provided an experimental 

procedure for determining the damage expressions of the material properties, and 
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introduced a reduced damage parameter, Sr, (Equation (2.33)) to replace the original 

damage variable, S, since the work showed that this substitution simplified the damage 

expressions.   

 1/3

rS S  (2.33) 

The substitution of the reduced damage parameter (Equation (2.33)) into Equation (2.31) 

yields the following expanded form 

 2 2
222 22 12 12 3

2 2
r

r r

E G
S

S S

  
  

 
 (2.34) 

 

 

2.2. Variability Analysis 

2.2.1. Local Microstructural Characterization 

Characterization studies were conducted to understand the material microstructure and 

to obtain the statistical distributions for the stochastic methodologies.  Image quantification 

was performed on unidirectional, carbon fiber reinforced PMC material using optical 

microscopy (Zeiss LSM 700) to obtain the variability in the fiber volume fraction.  Figure 

2.2(a) shows a high magnification micrograph illustrating the microstructure for a PMC 

laminate as well as the random location of the fibers within the polymer matrix.  Multiple 

micrographs were extracted from a local area of the composite to obtain a sufficient dataset.  

A binary filter was applied to the micrographs in order to numerically distinguish the fiber 

and the polymer matrix phases and accurately compute the Vf statistics.  The Bayesian 

information criterion (BIC), presented in Equation (2.35), was used to determine the 

optimal distribution type for each dataset (Schwarz, 1978).  The BIC performs model 
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selection by implementing the likelihood function but also contains a penalty term to avoid 

over-fitting.  

  ˆ2 ln lnkBIC L y k c    (2.35) 

In Equation (2.35), L is the likelihood function, where 𝜃𝑘 represents the parameter values 

that maximize the likelihood function and y represents the observed data points.  The 

variables k and c denote the number of free parameters and the number of data points 

contained in y, respectively.  Continuous distributions, such as the normal, extreme value, 

t location-scale, Weibull, and logistic distributions, were fitted to the data and the BIC was 

applied to determine the best fit distribution.  For the local area Vf analysis, a normal 

distribution was found to be the best fit, and the probability density function is shown in 

Figure 2.2(b).  The average and standard deviation parameters for the normal distribution 

are 63.9% and 2.21%, respectively.  It must be noted that deterministic composite models 

use the average Vf to determine a periodic structure of the composite using a unit cell of a 

single fiber in a polymer matrix.   

 

  

(a) (b) 

Figure 2.2. PMC (a) Micrograph and (b) Probability Density Function for Fiber 

Volume Fraction  
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2.2.2. Spatial Variability in Composite Microstructure 

The distribution function plot in Figure 2.2(b) is a representation of the Vf statistics 

obtained using high magnification micrographs randomly extracted from a local area, and 

an analysis of a larger area is needed in order to characterize the Vf statistics and spatial 

variability for the entire composite laminate.  Figure 2.3 shows a mosaic of the 

microstructure through-thickness for an eight layer unidirectional PMC.  The mosaic is 

produced using the Zeiss image analysis software, which stitches several micrographs 

together creating a single, seamless image.  The figure illustrates the spatial variability that 

occurs in the material where a region of the microstructure, for this particular specimen, 

contains areas of pure polymer matrix pockets and the rest of the microstructure contains 

tightly packed carbon fibers.  Fiber volume fraction distributions were calculated from the 

microstructure for different sizes of boxed areas extracted from the mosaic.  Different sized 

areas were used and randomly placed, and 50,000 measurements were made for each boxed 

area size.  Figure 2.4 shows a series of distribution curves extracted using different sizes 

of boxed areas.  Several distribution types were plotted for each boxed area size.  For each 

legend in Figure 2.4, “empirical” represents the data calculated from the boxed areas, and 

the first distribution listed in the legend corresponds to the best fit distribution for that 

dataset.  Similar to the local area analysis, continuous distributions were fitted, and the BIC 

was used to determine the best fit distribution and to rank the remaining distributions.  The 

series of distribution plots shows that the Vf distributions are unimodal in smaller boxed 

areas, and the distribution becomes bimodal as the size of the boxed areas increases.  This 

trend in the distribution plots demonstrates the effect of the polymer matrix pockets, shown 

in the micrograph in Figure 2.3, and also the importance of using appropriate metrics for 
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microstructural characterization.  For the region of polymer matrix pockets, when the 

boxed area size is small, the probability of the polymer matrix pockets being within the 

boxed areas is low.  However, when the boxed area size increases, there is a higher 

probability that the polymer matrix pockets will be included in the boxed areas.  The 

inclusion of the polymer matrix pockets causes the formation of a bimodal distribution.  

The distribution at the lower Vf value represents the region containing the polymer matrix 

pockets. 

 

 

Figure 2.3. Microstructure of an 8 Ply Unidirectional Composite Laminate 
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(a) 25 µm by 25 µm (b) 55 µm by 55 µm 

  

(c) 150 µm by 150 µm (d) 300 µm by 300 µm 

Figure 2.4. Fiber Volume Fraction Distribution Plots for Various Sized Areas 

Extracted from the Microstructure 

 

 

 

In order to account for the entire statistical distribution of the microstructural 

characterization data within the computational analysis, the polymer matrix pocket region 

in the large micrograph (Figure 2.3) was separated, and distribution plots were fitted for 

each separated region.  Additionally, convergence studies were conducted to determine the 

appropriate number of boxed areas and boxed area sizes to accurately characterize the 

separated regions of the microstructure.  The number of boxed areas was varied from 25 to 
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50,000, and Vf values were calculated from a region away from the polymer matrix pocket 

region.  The generalized extreme value distribution was determined to be the best fit for 

the collected data, and Figure 2.5(a) shows that the shape parameter of this statistical 

function converged at 20,000 boxed areas.  This converged boxed area number was used 

in further analyses to define the converged dimensions for the boxed areas.  Figure 2.5(b) 

shows that the best fit distribution function changes as the size of the boxed area changes 

and converges at an area of 300 µm by 300 µm.  Using the parameters determined from 

the convergent studies, accurate distributions can be compiled for both the polymer matrix 

pocket region and the region away from the polymer matrix pockets (general composite 

region).  Figure 2.6 displays the fitted distributions plots for these separated regions and 

the statistical parameter values for the best fit distributions are given in Table 2.1.  The 

coefficient of variation (COV) is a normalized measure used to calculate the dispersion of 

a probability distribution.  The distribution for the polymer matrix pocket region (Figure 

2.6a) is shown to have a larger COV than the distribution for the general composite region 

(Figure 2.6b) due to the large uncertainty present in this region.   
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(a) (b) 

Figure 2.5. Convergence Study for a) Number of Boxed Areas and b) Size of the Boxed 

Areas 
 

 

 

Table 2.1.  Statistical Parameters for Microstructural Spatial Variability 

 Shape Scale Location 

Polymer Matrix Pocket Region 0.0029 0.0156 0.6453 

General Composite Region -0.3640 00063 0.7022 
 

 

 

 

 

 
 

(a) (b) 

Figure 2.6. Microstructural Characterization for a) Polymer Matrix Pocket Region and b) 

Region Away from the Polymer Matrix Pockets (General Composite Region) 
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2.3.   Stochastic Micromechanical Model 

2.3.1.  Stochastic Techniques and Implementation 

Stochastic methodologies are powerful techniques that can be integrated within 

modeling frameworks to incorporate material property scatter and microstructural 

variability.  The following two stochastic methodologies have been investigated and 

compared in this work: the general Monte Carlo simulation (MCS) and the Latin hypercube 

sampling (LHS) based Monte Carlo technique.  The LHS technique in this work discretizes 

the cumulative distribution function given for a random variable, and it randomly assigns 

a point within each discretized interval.  By performing LHS, the distribution function can 

be defined with fewer samples compared to the MCS approach, which uses completely 

random sampling.  The number of samples required for a stochastic methodology 

significantly affects the computational efficiency of the framework, as it is equivalent to 

the number of simulations performed using the sectional micromechanics model.   

Using the local Vf analysis and statistics as an example, the stochastic methodology 

assigns the Vf as a random variable and uses it as an input into the sectional 

micromechanics.  The best fit distribution for this particular Vf analysis correlated to a 

normal probability density function, f(x), described by Equation (2.36), and the cumulative 

distribution function, F(x), was calculated using the function in Equation (2.37). 

  
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For Equations (2.36) and (2.37), x is a manifested value of Vf, and the mean and standard 

deviation of the Vf are shown as µ and σ, respectively.  These cumulative distributions are 

continuous functions operating on a range of values from 0 to 1.  This range is discretized 

using LHS through a set number of simulations, N.  Examples of the general MCS and 

LHS methods (using N = 20 simulations) are shown in Figure 2.7, where one simulation 

represents a single value of Vf.  For the MCS technique, the random sampling of the 

cumulative distribution function for the Vf is sparse on the right portion of the plot, while 

the LHS represents the entire distribution well and randomness is still captured within the 

discretized intervals.  The points computed within these intervals represent cumulative 

distribution function values, and Equation (2.37) can be inverted to calculate Vf values.  

For multiple random parameters in the LHS method, a single representation of the Vf is 

randomly paired with the other parameter and arranged into parameter sets.  This pairing 

of parameter sets is demonstrated in Figure 2.8, where the index column of the table 

signifies the data for the random variables, and “X” indicates the value used for each 

parameter for that particular set.  Additionally, an advanced pairing rule is used in this work 

to force the pairing process to only allow one value from each row in the table for a single 

parameter set, which enables better representation of the entire distribution for each random 

parameter.  The sampled set of material parameters is used as inputs for the sectional 

micromechanics model.  A different sampled set of material parameters is used for each 

simulation of the model until N-number of stress-strain curves are obtained (Figure 2.9). 
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(a) (b) 

Figure 2.7. Cumulative Distribution Functions of Vf with (a) General MCS 

and (b) LHS Based Monte Carlo 

 

 

 

Figure 2.8. Latin Hypercube Selection Process 
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Figure 2.9. Flowchart of the Stochastic Multiscale Framework 

 

 

2.3.2.   3D Progressive Damage Theory 

The work potential damage theory, detailed at the beginning of this chapter (Chapter 

2.1.2), is integrated within the stochastic sectional micromechanical theory.  A 3D form of 

the progressive damage theory is applied to the polymer subcells.  Microdamage of the 

polymer is assumed to affect only the elastic modulus of the polymer constituent, and the 

generalized damage equation is shown in Equation (2.38).  A third order polynomial is 

used to describe the damage function in this work, and the coefficients in Table 2.2 are 

defined based on a similar function shown in Pineda et al. (2009). 

   2

0 1 2

n

d r r r n rp S p p S p S p S     (2.38) 
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Since the current progressive damage theory is a 3D derivation, the elastic strain energy 

density is defined by   

 
 2 2 2 2 2 2
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Assuming isotropic behavior in the polymer, Equation (2.39) can be reduced to  
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 (2.40) 

By substituting Equation (2.40) into Equation (2.29), the differential equation describing 

the damage evolution is expressed as 
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 and the substitution of the reduced damage parameter (Equation (2.33)) into Equation 

(2.41) for yields 
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Table 2.2.  Damage Function Variables 

Coefficient  

p0 1 

p1 -0.02 

p2 2.36E-4 

p3 -1.34E-6 

 

 

2.3.3. Constitutive Laws 

The incremental constitutive equations for the fiber subcells are represented by a 

transversely isotropic, linear elastic model (Equation (2.43)) with the compliance tensor, 
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Sf, represented in Equation (2.44), where the variables dεf and dσf represent the strain and 

stress increments of the fiber subcells, respectively.  The elastic material properties for the 

fiber constituent used in this model are presented in Table 2.3. 

 , 1 6f f f
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(2.44) 

 

Table 2.3.  IM7 Carbon Fiber Material Properties 

Property:  

E11 (GPa) 276 

E22 (GPa) 13.8 

G12 (GPa) 20 

G23 (GPa) 5.52 

ν12 0.25 

ν23 0.25 

ρ (kg/m3) 1800 

 

The constitutive law for the polymer subcells incorporates a viscoplastic state variable 

model developed by Goldberg et al. (2005) and the theory is presented here.  This 
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constitutive model is based on the Bodner-Partom viscoplastic state variable model, which 

was originally developed to analyze the viscoplastic deformation of metals above one-half 

of the melting temperature (Bodner, 2002).  Previous studies have demonstrated that the 

hydrostatic stress of the polymer material is an important factor in describing the material 

behavior (Ward & Sweeney, 2012).  Therefore, Goldberg et al. (2005) modified the 

viscoplastic constitutive model by integrating hydrostatic stress effects to capture the 

nonlinear behavior of PMC materials using a micromechanical model with a range of 

applied strain rates.  This modified viscoplastic constitutive law is applied to the modeling 

framework in this chapter, and the viscoplastic derivation uses the inelastic potential 

function defined in Equation (2.45), which is based on the Drucker-Prager yield criterion 

(Khan & Huang, 1995).   

 2 kkf J    (2.45) 

In Equation (2.45), J2 is the second invariant of the deviatoric stress tensor, α is an internal 

state variable that controls the level of hydrostatic stress effects, and σkk is the first invariant 

of the stress tensor.  The components of the inelastic strain rate tensor,
I

ij , in Equation 

(2.46) are dependent on the scalar rate of the plastic multiplier,  , and on the partial 

derivative of the inelastic potential function from Equation (2.45) with respect to the stress 

tensor components. 

 
I

ij

ij

f
 







 (2.46) 

The solution for the partial derivative in Equation (2.46) yields 
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where 𝜎𝑖𝑗
𝑑𝑒𝑣 contains the deviatoric stress components and δij is the Kronecker delta.  

Utilizing the principal of the equivalence for the inelastic work rate shows that   is defined 

by 

 3 I

e   (2.48) 

Therefore,
I

ij can be determined by following a similar derivation to the Bodner-Partom 

model (Bodner, 2002), and the final form can be expressed as  
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 (2.49) 

where n controls the rate dependence of the material, Z is a variable related to the resistance 

of molecular flow, and D0 is the maximum inelastic strain rate.  Additionally, the effective 

stress, σe, is defined as 

 
23 3 3e kkf J     (2.50) 

The evolution rate for the internal state variables, Z and α, are expressed in Equations (2.51) 

and (2.52), respectively, where the effective deviatoric inelastic strain rate, 𝑒̇𝑒
𝐼 , is defined 

using Equations (2.53) and (2.54).  Z1 and α1 represent the maximum values for their 

respective parameters, whereas Z0 and α0 represent the initial values. 
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The effective inelastic strain rate,
I

e , is equivalent to the effective deviatoric inelastic strain 

rate, 
I

ee , due to the assumption of plastic incompressibility (Fleck & Hutchinson, 2001).  

This viscoplastic model was incorporated within the incremental constitutive equations for 

the polymer subcells (Equation (2.55)). 

 
, 1 6m m m I

i ij j id S d d i j      (2.55) 

In Equation (2.55), the variables dεm and dσm represent the strain and stress increments of 

the polymer matrix subcells, respectively, and Sm contains the components of the 

compliance tensor for the polymer matrix subcells.  dεI is the inelastic strain increment of 

the polymer matrix subcells obtained using Equation (2.49).  The compliance tensor for 

the polymer subcells is updated using the calculated damage parameter, pd, from the 3D 

progressive damage theory, and the Voigt notation of this tensor is described in Equation 

(2.56).  The elastic and inelastic material properties for the polymer matrix constituent are 

presented in Table 2.4.  It is important to note that previous studies have shown that the 

polymer’s elastic modulus is rate-dependent (Gilat, Goldberg, & Roberts, 2002; Zhu, 

2006); therefore, three values are given for the modulus.  The individual subcell strain rate 

is calculated, and interpolation is used to designate an appropriate modulus for each 

subcell.   
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Table 2.4.  Material Properties for 977-2 Epoxy 

Property:   

E (GPa) 

   3.52 (𝜀 ̇ =9E-5 s-1) 

  3.52 (𝜀 ̇ =1.90 s-1) 

 6.33 (𝜀 ̇ =500 s-1) 

ν 0.4 

D0 1.00E6 

n 0.852 

Z0 (MPa) 259.496 

Z1 (MPa) 1131.371 

q 150.498 

α0 0.129 

α1 0.152 

ρ (kg/m3) 1310 

 

 

2.3.4. Multiscale Failure Criteria 

The failure of individual polymer subcells was accounted for by incorporating a 

microscale maximum strain failure criterion.  The maximum strain criterion is expressed 

in Equations (2.57)-(2.62), where the superscript s indicates the subcell being analyzed for 

failure and the local subcell strain is determined within the sectional micromechanics.  

Additionally, the superscript u indicates the ultimate strain parameter, and the subscripts t 

and c denote whether the loading is tension or compression, respectively.  
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  
4 4

s u   (2.60) 

  
5 5

s u   (2.61) 

  
6 6

s u   (2.62) 

If the local strain in the subcell exceeds the ultimate strain, then failure is indicated and the 

stress component for that specific direction is set to zero.  The failure properties for the 

polymer matrix used in this modeling framework are stated in Table 2.5.  It is important to 

note that Gilat et al. (2002) has shown that the tensile failure properties for 977-2 epoxy 

are rate-dependent.  Additionally, the compressive and shear failure properties applied to 

this criterion are assigned values based on similar experiments and polymer materials from 

Goldberg et al. (2003).  

 

Table 2.5.  Failure Strains for 977-2 Epoxy 

𝜀 ̇ (s-1) 𝜀𝑡
𝑢 𝜀𝑐

𝑢 𝛾𝑢 

6.5E-5 0.045 0.07 0.125 

1.30 0.032 0.07 0.125 

360 0.019 0.07 0.125 

 

 

The macroscale failure criteria are based on a modified Hashin failure theory (Zhu et 

al., 2008) that incorporates the shear stress effect in the compressive fiber failure mode, 

which was not considered in the original Hashin failure theory (Hashin, 1980).  Equations 

(2.63) and (2.64) describe the failure criteria for the fiber mode in tension and compression, 
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respectively.  Equations (2.65) and (2.66) describe the failure criteria for the polymer mode 

in tension and compression, respectively.   
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The four failure modes are formulated as functions of the failure strengths of the composite 

material.  The parameters A 

 
and A 

 
represent the tensile and compressive failure 

strengths in the fiber direction, respectively.  The parameters T


 
and T



 
represent the 

tensile and compressive failure strengths perpendicular to the fiber direction, respectively.  
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The parameters T  
and A  

represent the transverse and axial shear strengths, respectively.  

Similar to the subcell failure criterion, several failure parameters for the composite are 

strain rate-dependent.  The failure strength values in Table 2.6 are obtained from the 

experimental data given by Goldberg et al. (2003).    

 

Table 2.6.  Failure Strengths for IM7/977-2 Composite Material 

𝜀 ̇ (s-1) 𝜎𝐴
+ (MPa) 𝜎𝐴

− (MPa) 𝜎𝑇
+ (MPa) 𝜎𝑇

− (MPa) 𝜏𝑇 (MPa) 𝜏𝐴 (MPa) 

4.75E-5 2300 900 75 150 66.46 86 

1.9 2300 900 85 170 66.46 112 

500 2300 900 100 200 66.46 132 

 

 

2.4.  Impact Model Development 

A multiscale model consisting of the sectional micromechanics and Hashin failure 

theory was integrated in a user defined material subroutine within the LS-DYNA nonlinear 

FEA software to simulate the impact behavior of a PMC laminate under various loading 

conditions.  A parametric study was performed to determine the variability in laminate 

impact simulations.  The Vf and initial velocity were the designated parameters for the 

study. The laminated circular plate was 200 mm in diameter and comprised of four 

IM7/977-2 unidirectional laminae with a [04] stacking sequence and lamina thickness of 

0.5 mm.  A fixed boundary condition was applied to the nodes on the circumference of the 

composite laminate. The steel projectile measured 40 mm in diameter and 80 mm in length, 

and was modeled as an elastic material. The plate and projectile were meshed using brick 

elements with a single integration point per element for improved computational 

efficiency.  Mesh refinement was implemented in the central region of the composite plate 
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near the impact location due to the presence of large stress and strain gradients caused by 

the high strain rate impact event.  The meshed composite plate and projectile geometries 

are presented in Figure 2.10.  The number of elements used in the model was 6496 elements 

for the composite laminate and 320 elements for the steel projectile.  The dynamic 

simulations were executed with explicit time integration using adaptive time steps. An 

eroding contact card was defined in LS-DYNA and coupled with the failure model to 

accurately account for the elements that were no longer able to carry load. The element 

erosion was determined by the previously described Hashin failure criteria. When an 

element failed it was deleted and the contact surfaces were automatically updated. 

 

Figure 2.10.  Meshed Geometries for Impact Simulation 

 

 

2.5.  Results and Discussion 

2.5.1. Comparison of Stochastic Methodologies 

A comparison of the general MCS and the LHS based Monte Carlo methodologies 

was conducted to investigate the accuracy and efficiency of each method.  The statistical 
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distribution parameters for the Vf were calculated using the normal distribution from the 

local area analysis, where the mean and standard deviation parameter values were 63.90% 

and 2.21%, respectively.  Figure 2.11 shows the stochastic transverse tensile response for 

both the LHS and MCS techniques using a small number of simulations (N = 20).  These 

results demonstrate that, even with a small number of simulations, the LHS methodology 

can capture a larger variation in response compared to the MCS results.  However, an 

appropriate number of simulations is needed to accurately compare the stochastic 

methodologies.  In order to achieve convergence, the transverse failure strength and failure 

strain were considered, and the resulting COV values are shown in Figure 2.12.  Both 

general MCS and LHS based Monte Carlo are displayed in these plots.  A key distinction 

in Figure 2.12 is that the converged value for the transverse strength COV is approximately 

0.28%, while the COV for the transverse strain is 1.95%.  Therefore, the transverse failure 

strain exhibits a larger dispersion of the variability compared to the transverse failure 

strength due to the assumed random variables.  Analysis shows that while both methods 

converged at approximately the same COV value, the LHS converged in a fewer number 

of simulations.  The COV value was assumed to have already converged by a simulation 

count of 1,000, with convergence being defined as the point in which the difference in 

COV values was consistently within 3%.  Specifically, the LHS technique required 100 

simulations for convergence.  The calculated advantage of using the LHS method over the 

MCS is demonstrated by a comparison of the set of results which that LHS converges with 

80% fewer simulations when analyzing the COV trend of the failure stress plot and 95% 

fewer simulations when using the COV trend of the failure strain plot.   
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(a) (b) 

Figure 2.11. In-Plane Transverse Response using (a) LHS and (b) General MCS 
 

 

 

 

  
(a) (b) 

Figure 2.12. Comparison of COV with Varying Number of Simulations for MCS and 

LHS Showing (a) Transverse Failure Strain and (b) Transverse Failure Strength 

 

 

2.5.2.   Stochastic Results using Microstructure Variability 

The effect of the microscale, macroscale, and work potential damage theories on the 

model were studied, and deterministic results are shown in Figure 2.13.  The figure shows 

the deterministic, transverse tensile response loaded using a strain rate of 1.05 s-1.  For the 

figure legends and tabulated results, “Macro” refers to the model with only the modified 
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Hashin criteria applied; “Damage/Macro” refers to the model with the microscale damage 

theory as well as the modified Hashin criteria; and “Damage/Micro/Macro” indicates the 

full combination of the microscale damage and multiscale failure criteria.  The modeling 

curves were compared with the experimental data obtained by Gilat et al. (2002).  The 

figure shows that, by introducing the microscale failure theory and damage theory, the 

current Damage/Micro/Macro model is able to capture the experimental transverse tensile 

behavior more accurately compared to the original model, which only considers the 

macroscale failure using the modified Hashin criteria.   

   

 
Figure 2.13. Micromechanical Low Strain Rate (1.05 s-1) 

Results for Multiple Deterministic Models Compared with 

Experimental Data (Gilat et al., 2002) 
 

 

The stochastic response was investigated using the spatial Vf variability by performing 

simulations using the distribution statistics from Table 2.1.  The results were obtained by 
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discretizing the distribution functions using 100 simulations, since the convergence study 

in Chapter 4.3.1 showed that this number of simulations is sufficient when using the LHS 

methodology.  Figure 2.14(a) shows the effect of the variability in the polymer matrix 

pocket region on the transverse stress-strain behavior.  The general composite region of the 

laminate’s microstructure was also simulated, and the results are shown in Figure 2.14(b).  

A comparison between the stochastic, transverse tensile simulation results using the 

distribution functions for the local area analysis, polymer matrix pocket region, and general 

composite region is presented Table 2.7.  The error analysis results in this table are obtained 

through comparison with the available experimental data referred to previously.  The 

material parameters shown in the table are the simulated failure strain, failure strength, and 

modulus as these three parameters represent the behavior and failure of the material.  Since 

the experimental data consists of a single curve, the minimum error value is the best error 

measure for stochastic results, as it represents the probability of one of the stochastic curves 

being the same as the experimental curve; whereas the average error value better represents 

the trend of the data.  There is less variation in the general composite response because the 

COV of the characterized distributions for the general composite region is less than that of 

the polymer matrix pocket region.  The percent differences also show that the stochastic 

simulation of the general composite region has a lower COV than the results from the 

polymer matrix pocket region.  The minimum percentage differences in the table shows 

that failure strain of the general composite region correlates best with the experimental 

failure strain and the modulus of the polymer matrix pocket region has a better correlation 

with the experimental modulus.  Additionally, as observed in Figure 2.14, the simulation 
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results from the general composite region yield higher transverse stiffness moduli due to 

the larger amount of polymer matrix in the polymer matrix pocket region.   

 

 
(a) 

 
(b) 

Figure 2.14. Stochastic Transverse Tensile Responses using 

Statistical Data from (a) the Polymer Matrix Pocket Region 

and (b) the General Composite Region 
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Table 2.7.  Transverse Tensile Experimental Comparison of Variability 

 

Local 

Polymer 

Pocket 

Region 

General 

Region 
Deterministic  

Min. Difference - Failure Strain [%] 10.32 10.30 5.58 18.40 

Avg. Difference - Failure Strain [%] 21.55 21.43 9.64 18.40 

COV - Failure Strain [%] 4.68 4.66 1.56 n/a 

Min. Difference - Failure Strength [%] 15.44 15.39 15.46 15.63 

Avg. Difference - Failure Strength [%] 15.59 15.61 15.59 15.63 

COV - Failure Strength [%] 0.09 0.08 0.08 n/a 

Min. Difference - Modulus [%] 0.05 0.06 1.06 5.07 

Avg. Difference - Modulus [%] 9.70 9.73 5.17 5.07 

COV - Modulus [%] 4.71 4.74 1.55 n/a 

 

 

 

Figure 2.15 and Figure 2.16 show the modeled response due to in-plane and out-of-

plane shear loading, respectively, for a strain rate of 1.05 s-1, and the results are compared 

to deterministic MAC/GMC simulations (Bednarcyk & Arnold, 2002b; Zhu, 2006).  The 

spatial Vf variability distributions are utilized in the simulations depicted in both figures 

and the MAC/GMC simulations use a unit cell discretization of 18 by 18 subcells.  The 

polymer matrix pocket region is shown to have better correlation with the MAC/GMC 

results for both the in-plane shear and out-of-plane shear responses.  Through the 

incorporation of stochastic methodologies, the figures show that the variability in Vf has a 

larger effect on the in-plane shear response.  It is also important to note that there is a larger 

variation in the response under shear loading compared to the transverse tensile loading. 
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(a) 

 
(b) 

Figure 2.15. Stochastic In-Plane Shear Responses using 

Statistical Data from (a) the Polymer Matrix Pocket Region 

and (b) the General Composite Region 
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(a) 

 
(b) 

Figure 2.16. Stochastic Out-of-Plane Shear Responses using 

Statistical Data from (a) the Polymer Matrix Pocket Region 

and (b) the General Composite Region 
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2.5.3.  Stochastic Results for Multiple Random Variables 

The results from the previous section aptly demonstrate the effect of Vf variability on 

the material response.  Therefore, the investigation is extended to study the effects of 

variability on the composite response using combinations of other material properties.  The 

statistical distribution for the local area characterization of the Vf was used, and normal 

distributions were assigned for several polymer matrix material properties (Z, n, and Em) 

as shown in Table 2.8.  These assumed standard deviation values for the random polymer 

variables were used to determine the capability of the stochastic framework to properly 

incorporate multiple random variables, and additional experimentation is recommended to 

obtain these parameters.  Figure 2.17 illustrates the stochastic in-plane shear response from 

applying the Vf and Z parameters as random variables, and these results show that the 

variation in response becomes larger as the number of random variables increases.  Error 

analysis was performed for multiple random variable analyses, and the results are presented 

in Table 2.9 and Table 2.10 as average and minimum percent difference values using the 

experimental data as a reference.  Table 2.9 presents a comparison of the stochastic 

sectional model using only the Hashin failure criteria from the original sectional 

micromechanics model (Zhu, 2006; Zhu, Chattopadhyay, & Goldberg, 2006a, 2008).  

There is a minimal decrease in the average error values of the statistical parameters as 

multiple random variables are introduced, but a large decrease in the minimum error is 

observed for failure strain and modulus as multiple random variables are added.  The 

entries in Table 2.10 compare stochastic results from different combinations of the damage 

and failure theories using all four random parameters.  A small increase in minimum error 
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is observed for failure strain and failure strength, but there is a significant decrease in the 

minimum error for the modulus.   

     

 

Table 2.8.  Multiple Random Variable Statistics 

  Vf (%) Z (Pa) n Em (Pa) 

Standard Deviation 2.21 1.08E7 0.0325 0.99E8 

Average 63.90 2.59E8 0.8515 3.52E9 

 

 

 

 

  
(a) (b) 

Figure 2.17.  Stochastic In-Plane Shear Response using LHS for (a) the Z Variable 

Distribution and (b) the Vf and Z Distribution 
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Table 2.9.  Experimental Comparison of Multiple Random Variables 

  Random Variables: Deterministic: 

  
Vf 

Vf & 

Z 

Vf, Z, 

& n 

Vf, Z, n, 

& Em 
 

Min. Difference - Failure Strain [%] 11.14 10.81 2.89 2.89 18.15 

Avg. Difference - Failure Strain [%] 17.30 17.31 17.06 17.06 18.15 

COV - Failure Strain [%] 1.99 2.00 2.74 3.01 0 

Min. Difference - Failure Strength [%] 12.36 12.27 12.22 12.25 13.18 

Avg. Difference - Failure Strength [%] 12.97 12.96 12.96 12.95 13.18 

COV - Failure Strength [%] 0.26 0.28 0.28 0.27 0 

Min. Difference - Modulus [%] 25.41 24.71 19.79 19.81 29.46 

Avg. Difference - Modulus [%] 28.90 28.83 28.58 28.55 29.46 

COV - Modulus [%] 1.78 1.89 2.40 2.62 0 

 

 

 

 

 

 

Table 2.10.  Experimental Comparison of Failure and Damage Theories 

 Macro Damage/Macro Damage/Micro/Macro 

Min. Difference - Failure Strain [%] 2.89 18.58 7.29 

Avg. Difference - Failure Strain [%] 17.06 33.73 20.13 

Min. Difference - Failure Strength [%] 12.25 15.60 15.53 

Avg. Difference - Failure Strength [%] 12.95 15.67 15.65 

Min. Difference - Modulus [%] 19.81 0.54 ~0 

Avg. Difference - Modulus [%] 28.55 12.11 8.06 

 

 

 

2.5.4. Impact Simulation Results  

Parametric studies were conducted to analyze the failure behavior and residual 

velocity of the composite plate by varying the Vf of the laminate.  For each Vf value, 

simulations were performed using the same boundary conditions, and were processed using 
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appropriate time durations that allowed the projectile to penetrate through the composite 

plate. Stress, strain, and displacement field variables were output for all simulations, as 

well as the velocity of the projectile at every time step. The tabulated velocity data was 

plotted and used to compute the residual velocity of the projectile.  The velocity of the 

projectile played a noticeable role in the damage behavior of the impacted composite plate. 

During an impact event, a portion of the kinetic energy of the projectile was transferred to 

the composite plate.  The simulated damage progression under impact is presented in 

Figure 2.18 for a projectile traveling at 250 m/s. The geometry was sectioned along a 

vertical plane to provide a better view of the impact behavior near the projectile/plate 

interface.  As the projectile contacted the plate, the elements on the top surface failed under 

out-of-plane shear, crushing (compression), and fragmentation.  Analysis of the projectile 

velocity before and after the impact event provides an estimate of the energy absorption of 

the composite plate under impact.  

 

 

  

(a) Projectile Impact (b) Shear/Crushing/Fragmentation Failure 

of Laminae 
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(c) Projectile Punching Through 

Laminate 

(d) Projectile Progressing Through 

Laminate 

Figure 2.18.  Progression of Projectile Through a Composite Laminate with an 

Initial Velocity of 250 m/s 

 

 

 

Figure 2.19 shows the ballistic limits of composite laminates as a function of Vf where 

the ballistic limit increases as the Vf increases.  The ballistic limit is defined as the velocity 

required for a projectile to fully penetrate a material specimen and is shown in Equation 

(2.67) (Jenq, Jing, & Chung, 1994).  The parameter vp represents the velocity of the 

projectile immediately before impact and vr is the residual velocity of the projectile after 

impact. 

 2 2

BL p rv v v   (2.67) 

Since the density of the fibers is greater than that of the matrix, a larger Vf increases the 

overall density and stiffness of the composite. Therefore, a greater amount of energy was 

absorbed by the composite laminates that had higher Vf values. In addition, since the fiber 

can sustain higher stresses before failure, the composite remained intact for a longer period 

of time during the impact event; thereby providing more time for the plate to absorb energy 

from the high speed projectile.  A larger number of laminae would absorb more energy, 

which would cause a greater increase in the ballistic limit.   
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Figure 2.19.  Ballistic Limit of Composite Laminate Model 

with Varying Fiber Volume Fractions 

 

 

 

2.6.   Chapter Summary 

The sectional micromechanics theory is extended to include material variability 

through stochastic methodologies, a 3D progressive damage law based on a work potential 

theory, and a multiscale failure theory.  Microstructural characterization of the composite 

was performed to understand the spatial variability.  The integration of the microstructural, 

statistical data in the sectional micromechanics is achieved using stochastic methodologies, 

such as general MCS and LHS Monte Carlo simulations.  The 3D progressive damage law 

is used to degrade the elastic properties of the constituents, and the multiscale failure theory 

is capable of accounting for both subcell and unit cell level failure.  For the multiscale 

impact simulations, the sectional micromechanics with the Hashin failure criteria was 
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integrated within LS-DYNA.  Specifically, the following results and conclusions can be 

observed: 

1. The microstructural characterization results illustrated the spatial variability of the 

composite material through the bimodal distribution observed for the laminate 

mosaic, and different distribution functions were determined for the separated 

microstructure regions.   

2. Deterministic results showed that the integration of a multiscale failure criteria and 

work potential damage theory improved the mechanical behavior and failure 

response of the composite model.   

3. The comparison of the convergence study performed for the stochastic 

methodologies concluded that the LHS required only 100 simulations, which was 

approximately 80% fewer simulations than the convergence results using MCS. 

4. The quantification of the stochastic results showed that the overall percent 

difference values of the composite material represented the transverse tensile 

experimental data better than the deterministic model.  The general composite 

region results showed better correlation with the failure strain of the experiments 

and the polymer matrix pocket region simulation had a better correlation with the 

experimental transverse modulus.   

5. The developed model is able to simulate the 3D stress-strain states including in-

plane shear response and out-of-plane shear response; and the results correlated 

well with results obtained from the MAC/GMC simulations. 
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6. The stochastic results from the multiple random variable analysis exhibited the 

importance of considering the uncertainty in each material parameter since a larger 

variation in response was observed for an increasing number of random variables. 

7. The multiscale impact simulations demonstrated the effect that Vf variability had 

on the ballistic limit for PMC laminates. 
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3. HIGH FIDELITY MICROMECHANICS INCLUDING PROGRESSIVE 

MATRIX DAMAGE AND THE FIBER/MATRIX INTERPHASE 

 

3.1.   Introduction 

A major barrier limiting the applications of composites is a lack of confidence in the 

assessment of safety and reliability of these structures under service conditions.  There is a 

need for accurate predictive tools that take into account constituent interactions, material 

and architectural variability, and damage at relevant length scales in order to capture the 

complex damage mechanisms and failure modes.  While a significant amount of research 

has been reported in Chapter 1 which accounts for these length scales and scale bridging, 

many of these methods assume perfect bonding conditions for the fiber/polymer matrix 

interphase; whereas the physical structure and interactions at the interphase are not perfect 

and can be the precursor for damage.  The complex interactions between the composite 

constituents make it difficult to determine damage and predict the failure of these materials.  

The interphase between composite constituents plays a critical role in the behavior of 

PMCs and accurate modeling of the interphase is challenging due to the small scale of this 

region.  The focus of this chapter is to apply the progressive damage and multiscale failure 

theories, detailed in Chapter 2.3, with high fidelity micromechanics to study the effect 

different fiber/matrix interphase types have on the simulated composite response.  High 

fidelity micromechanics methods consist of higher order displacement fields which allow 

complex relations between the constituents.  A comparison is made by applying interphase 

properties extracted from several sources (Asp et al., 1996; Wang et al., 2011; B. Zhang et 

al., 2010).  This chapter also presents the details for an interphase model which explicitly 
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simulates the molecular structure of the region and this model was developed in 

collaboration with Mr. Bonsung Koo (Johnston, Koo, Subramanian, & Chattopadhyay, 

2015). 

 

3.1.1.  High Fidelity Generalized Method of Cells Overview 

The triply periodic formulation of the HFGMC micromechanical theory is utilized in 

the current modeling framework and the fundamental equations and description of the 

HFGMC theory are provided in this chapter for clarity.  For the detailed derivation of the 

HFGMC theory, the reader is directed to Aboudi et al. (2012; 2002).  The HFGMC theory 

extends the MOC (Aboudi 1981; Aboudi 1989; Aboudi 2013) and GMC (Paley & Aboudi, 

1992) approaches by incorporating a higher order displacement field to enable complex 

relations, including shear coupling, between subcells.  The composite is considered to have 

a microstructure consisting of a single fiber in matrix and this is considered the microscale 

RUC for the material.  The RUC is assumed to be periodically distributed in a space defined 

by the global coordinate system (x1, x2, x3) as illustrated by the leftmost image in Figure 

3.1.  The RUC geometry is defined within the unit cell coordinate system (y1, y2, y3) with 

dimensions D, H, and L.  A discretization method is used to divide the unit cell into Nα × 

Nβ × Nγ subcells.  A local subcell coordinate system (𝑦̅1
(𝛼)

, 𝑦̅2
(𝛽)

, 𝑦̅3
(𝛾)

) is defined at the center 

of each subcell with dimensions dα, hβ, and lγ.  The subcells are labeled with the (αβγ) 

indices and each subcell may contain a distinct set of material properties.  The indexing 

scheme for the subcells follows the local coordinate system such that α = 1,…, Nα along 

the y1 axis, β = 1,…, Nβ along the y2 axis, and γ = 1,…, Nγ along the y3 axis.  It is also 

important to note that in this theory the (αβγ) indices do not indicate summation. 
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Figure 3.1.  Discretization of a Fiber Reinforced PMC Microstructure 

 

 

3.1.1.1.  Governing Equations 

The 3D equilibrium equations for a subcell (αβγ) are defined by  

 ( ) ( ) ( )

1 2 3( ) ( ) ( )

1 2 3

0, 1,2,3i i i i
y y y

  

  
  

  
   

  
 (3.1) 

 where σ(αβγ) represents the stress components for the subcell (αβγ).  Using a volume 

averaging derivation method, the averaged form of Equation (3.1), in terms of surface 

average tractions, ti, is presented as 

 
     (1) ( ) (1) ( ) (2) ( ) (2) ( ) (3) ( ) (3) ( )1 1 1

0i i i i i it t t t t t
d h l

     

  

            (3.2) 

where the left superscript numeral of the tractions represents the normal direction of the 

surfaces being averaged over.  Since two surfaces are present for each direction, a 

superscript with a positive or negative symbol is used to represent the specific surface at 

the positive or negative position along that direction.  The expressions for the surface 

average tractions are given in Equations (3.3)-(3.5) where the integration is performed 

using half the subcell dimensions since the local subcell coordinate system is defined at the 
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center of the subcells.  Additionally, the stress components are presented as functions of 

displacement variables which will be detailed in later sections of this chapter.   
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3.1.1.2.  Higher Order Displacement Field 

The basis for the HFGMC theory is the second order expansion of the displacements, 

𝑢𝑖
(𝛼𝛽𝛾) 

, defined in Equation (3.6) for a subcell (αβγ). 

 

 (3.6) 

The 𝜀𝑖̅𝑗 tensor contains the average global strain components applied to the RUC and 

𝑊𝑖(000)
(𝛼𝛽𝛾)

 are the volume averaged displacements.  The remaining 𝑊𝑖(𝑙𝑚𝑛)
(𝛼𝛽𝛾)

 are higher order 

terms where l, m, and n may equal 0, 1, or 2. 
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3.1.1.3.  Boundary and Interfacial Conditions  

The volume averaged displacements 𝑊𝑖(000)
(𝛼𝛽𝛾)

 and higher order terms 𝑊𝑖(𝑙𝑚𝑛)
(𝛼𝛽𝛾)

 are solved 

through the application of appropriate constitutive laws, governing equations, subcell 

interfacial conditions, and periodic RUC boundary conditions.  The exact forms of the 

periodic boundary conditions for the displacement field of the RUC are represented by 

 
   1 10i iu y u y D    (3.7) 

 
   2 20i iu y u y H    (3.8) 

 
   3 30i iu y u y L    (3.9) 

and the exact forms of the periodic stress boundary conditions are given by 

 
   1 1 1 10i iy y D     (3.10) 

 
   2 2 2 20i iy y H     (3.11) 

 
   3 3 3 30i iy y L     (3.12) 

In the HFGMC theory, the averaged forms of the displacement periodic boundary 

conditions, from Equations (3.7)-(3.9), are expressed by the following  
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Similarly, the averaged forms of the stress periodic boundary conditions, from Equations 

(3.10)-(3.12), are as follows.   

 ( )(1) (1 ) (1) N

i it t     (3.16) 

 ( )(2) ( 1 ) (2) N

i it t       (3.17) 

 ( )(3) ( 1) (3) N

i it t     (3.18) 

Assuming perfect continuity for the subcell interface, the continuous displacement 

expressions, comparable to the periodic boundary relationships, can be established as 

described in Equations (3.19)-(3.21).  
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Additionally, the continuity of tractions between adjoining subcells can be defined by 

expressions, similar to the periodic boundary conditions, presented in Equations (3.22)-

(3.24).  It is important to note that these stress and displacement continuity conditions at 

the subcell interfaces are only valid if the (α+1), (β+1), and (γ+1) index values in the right 

hand side of the equations are less than or equal to Nα, Nβ, and Nγ, respectively. 
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 (1) ( ) (1) ( 1 )

i it t      (3.22) 

 (2) ( ) (2) ( 1 )

i it t      (3.23) 

 (3) ( ) (3) ( 1)

i it t     (3.24) 

Simplified expressions are obtained by defining the governing equations, periodic 

boundary conditions, and subcell interfacial conditions in terms of the volume averaged 

displacements 𝑊𝑖(000)
(𝛼𝛽𝛾)

 and higher order terms 𝑊𝑖(𝑙𝑚𝑛)
(𝛼𝛽𝛾)

.  The simplified equations are 

compiled into a system of equations and matrix operations are applied to obtain a solution 

and the detailed solution procedure is provided in Aboudi et al. (2012, 2002).  The solved 

values for the volume averaged displacement and higher order terms are used and the 

average stress in the composite RUC is calculated using  
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where 𝜎(𝛼𝛽𝛾) is the volume averaged stress of the subcell determined through Equation 

(3.26). 
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3.2. Implementation of HFGMC with the Fiber/Matrix Interphase  

3.2.1.   Microscale with Interphase 

Since the composite unit cell is defined by a continuous carbon fiber, the 

computational costs of the microscale simulations are reduced by setting the unit cell 

thickness in the y1 direction to be one subcell thick.  The interphase subcells are created by 
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replacing the polymer subcells that are immediately adjacent to the fiber subcells as 

illustrated in Figure 3.2.  A unit cell discretized into 256 subcells is shown as an example, 

and a convergence study in the results section of this chapter is used to determine the 

appropriate number of subcells needed to represent the unit cell.  The properties of the 

interphase are incorporated into the HFGMC micromechanics approach to obtain the unit 

cell response of the composite.     

 

  
(a) (b) 

Figure 3.2.  Discretization of a Microscale Unit Cell (a) without an Interphase and (b) 

with an Interphase into Polymer (Yellow), Fiber (Grey), and Interphase (Red) 

Subcells 

 

 

3.2.2.   Constitutive Laws 

The remaining expressions needed to solve the system of equations for the HFGMC 

theory are the constitutive laws for the subcells.  The material systems for the fiber and 

polymer matrix constituents are defined as transversely isotropic linear elastic and isotropic 

viscoplastic materials, respectively.  A single digit index is computed from the three digit, 
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Greek character index of the original HFGMC theory in order to develop the code using 

vectors for the geometric and material parameters.  The single digit index converts the three 

digit code using 

    1 1subind N N N          (3.27) 

where subind replaces the three digit index code, (αβγ), and a 2D slice showing an arbitrary 

unit cell cross-section is presented in Figure 3.3 to compare the two index codes. 

 

 
 

(a) (b) 

Figure 3.3.  Indexing of the Subcells using (a) a Three 

Digit Code and (b) a Single Digit Code 

 

 

The constitutive equations for the fiber and polymer subcells are shown in Equation (3.28) 

and Equation (3.29), respectively. 
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The total strains of the subcells are given by 
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The inelastic strains, εI(subind), are determined using the modified Bodner-Partom 

viscoplastic theory and inelastic properties outlined in Chapter 2.3.3.  The 3D properties 

for the fiber and polymer are also presented in the previous chapter (Table 2.3 and Table 

2.4).  For computational efficiency, a column vector containing the constituent phase for 

each subcell is defined where each constituent material type is represented by a unique 

number.  Hence, the material properties and stiffness matrices of the constituent materials 

only need to be defined once and the phase vector will be used to determine which stiffness 

matrix is applied to each subcell.  The polymer subcells use a stiffness matrix as described, 

using Voigt notation, in Equation (3.31) where pd is the damage parameter for the elastic 

modulus which is determined by the previously detailed 3D damage theory in Chapter 

2.3.2.  Each polymer subcell has an individual pd parameter which is used to degrade the 

stiffness matrix only for the corresponding matrix subcell.  
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 (3.31) 

In order to compare with different interphase properties from literature, the constitutive 

law for the interphase subcells is assumed to be linear elastic with either isotropic or 

transversely isotropic material orientations.  The multiscale failure theory from Chapter 

2.3.4 is used for the unit cell response in order to capture micro- and macroscale failure 

modes.  A maximum stress criterion is utilized for the microscale failure of the interphase 

subcells and the failure strengths of the interphase are presented later in Table 3.1.  A 

maximum strain criterion is employed for the polymer subcells due to the highly nonlinear 
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response caused by the viscoplastic nature of the polymer.  The macroscale failure criteria 

of the unit cell are based on a modified Hashin failure theory. 

 

3.2.3.   Interphase Types and Properties 

This subsection presents the development of an interphase model, in collaboration 

with Mr. Bonsung Koo, which explicitly simulates the molecular structure of the 

interphase; and further details of the nanoscale model and results are presented by Johnston 

et al. (2015).  The molecular interphase model replicates the semi-crystalline structure of 

the carbon fiber surface by intentionally creating voids in several protruded graphene 

layers.  The carbon fiber surface model is constructed by stacking a number of pristine 

graphene layers and the graphene layers with the void.  The combination of the carbon 

fiber surface and polymer matrix constituents for the molecular interphase model are 

depicted in Figure 3.4.  The numerical curing of the resin and hardener allows the polymer 

network to form through the void of the graphene layer, capturing entanglement between 

the carbon fiber surface and the polymer matrix.  Due to this entanglement of polymer 

chains, a large amount of energy is required to break these bonds compared to the non-

bonded interactions between the constituents.  The initial dimensions of the interphase 

model are 100×65×50 Å3, and the model consists of 15,000 atoms in the polymer matrix 

and 15,840 atoms in the carbon fiber surface.  The virtual testing using the interphase model 

are conducted to obtain the molecular generated properties of the interphase, which are 

then used in the constitutive laws of the interphase subcells defined by the high fidelity 

micromechanics theory.   
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Figure 3.4.  Structure of the Developed Molecular 

Interphase Model 

 

 

Additionally, various interphase properties from literature are applied to investigate 

the transverse tensile response obtained by the micromechanical simulations.  Table 3.1 

displays the transverse properties for each interphase type including the molecular 

interphase model.  The interphase properties utilized by Wang et al. (2011) were obtained 

using dynamic modulus imaging methods.  Zhang et al. (2010) calculated the interphase 

properties using a cohesive law derived from the Lennard-Jones potential and they applied 

factors to capture microscopic defects.  A parametric study was performed by Asp et al. 

(1996) to study the sensitivity of assumed interphase properties on larger length scales.   
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Table 3.1.  Interphase Material Properties 

 Transverse Modulus 

(GPa) 

Transverse Tensile Strength 

(MPa) 

Wang et al. (2011) 12.7 50 

Zhang et al. (2010) 3.37 53 

Asp et al. (1996) 34  50* 

Johnston et al. (2015) 8.28 1024 

* Value assumed; not available in reference 

 

 

3.3.   Results and Discussion 

3.3.1. Convergence Study 

An initial convergence study was performed to determine an appropriate time step and 

a sufficient number of subcells required for the micromechanics simulations.  The 

developed molecular interphase model was applied for this convergence study.  The 

transverse tensile modeling results are obtained by applying a strain rate of 1.05 s-1 to the 

PMC microscale unit cell.  The unit cell stress-strain response for various time steps are 

plotted for the results with only viscoplasticity (Figure 3.5a) and the results with the added 

damage and failure theories (Figure 3.5b).  This study demonstrated that by adding 

complexities to the model, such as the damage and failure theories, the convergence 

required a smaller time step.  Overall, convergence is achieved with a time step of 5E-6 

seconds.  It is important to note that, for the time step convergence, a unit cell geometry 

with 64 subcells is used to ensure that the converged time step will be applicable for unit 

cells with more subcells.  The convergence study for the number of microscale subcells is 

presented in Figure 3.6 and shows that the unit cell stress-strain response converges with a 
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simulation containing 256 subcells.  The converged parameters are used in the subsequent 

simulations to compare the different interphase models and properties.    

 

  

(a) (b) 

Figure 3.5.  Convergence Study of the Time Step for Simulation Results (a) with 

Viscoplasticity and (b) with the Added Damage and Failure Theories 

 

 
Figure 3.6.  Convergence Study of the Number of Subcells using the Modeling 

Framework with the Damage and Failure Theories 
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3.3.2. Comparison of Different Interphase Models 

Transverse tensile stress-strain plots of unit cell simulations with different interphase 

types are depicted in Figure 3.7.  The top plot in the figure portrays the responses from the 

modeling framework applying only the elastic and viscoplastic laws; whereas, the bottom 

plot shows the simulation results obtained by adding the damage and multiscale failure 

criteria.  For comparison, these results are plotted with responses obtained from a unit cell 

geometry without interphase subcells (illustrated in Figure 3.2a); and these responses are 

indicated as “None” in the plot legends. The stress-strain response for the simulations with 

interphase properties from literature (Table 3.1) shows smaller failure strains compared to 

the simulation without interphase subcells. In contrast, the simulations with the molecular 

interphase model result in a 5% lower transverse tensile strength and increased nonlinearity 

causing 25% larger failure strains.  The difference between the top and bottom plots is 

minimal in the elastic region but, after the yield point, an increase in nonlinearity is shown 

for the stress-strain responses with the added damage and failure theories.  This 

phenomenon is highlighted by the large, dotted red line in the figure where the arrows of 

the line emphasize the fact that the stress, for a strain value of 0.7%, is lower for the results 

with the added damage and failure theories.  However, additional analysis of the results is 

needed to determine the local causes of damage and failure.  
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Figure 3.7.  Simulated Transverse (22) Tension Stress-Strain Plots Comparing 

Different Interphase Properties in the Model with Elasticity and Viscoplasticity 

(Top), and Adding Damage and Failure Theories (Bottom) 

 

Plotting the stress and strain distributions from the subcells provides the local 

information needed to study the effect of the different interphase properties on 

viscoplasticity and damage.  To plot the transverse strain as a function of normalized unit 

cell width, subcell strain values are extracted as shown by the arrow bisecting the unit cell 

in the y2 direction in Figure 3.2.  Figure 3.8 contains a series of subcell strain-width plots 

for progressively increasing unit cell strains.  The plots on the left of the figure are obtained 
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from results only applying the elastic and viscoplastic laws and the plots on the right 

demonstrate the results with the added microdamage and multiscale failure criteria.  For 

the strain-width distributions extracted from the elastic region (Figure 3.8a and b), the 

response shows small strain gradients forming at the interphase for each type of interphase 

which exhibits the difference in stiffness between the composite constituents and indicates 

that the type of interphase has minimal effect on the strain distribution in the elastic regime.  

For unit cell strains past the elastic regime, the strain concentrations at the ends of the unit 

cell grow substantially for the simulations with the molecular interphase model.  

Furthermore, the trends between the left and right strain-width plots are identical except at 

the interphase where the results with the damage and failure theories yield larger strain 

gradients.  These outcomes indicate that the material properties at the interphase become 

more compliant due to local damage and failure. 

 

  
(a)  0.15% Unit Cell Strain (b)  0.15% Unit Cell Strain 



82 

  
(c)  0.25% Unit Cell Strain (d)  0.25% Unit Cell Strain 

  
(e)  0.50% Unit Cell Strain (f)  0.50% Unit Cell Strain 

Figure 3.8.  Strain-Width Distributions for Simulated Behavior with Viscoplasticity 

(a,c, and e) and Behavior with Viscoplasticity Plus Damage and Failure (b,d, and f) 

 

 

Figure 3.9 presents the subcell stress-width distributions for different unit cell strains.  

For the elastic regime, the stress-width plots show minimal variation for different 

interphase types, which is similar in trend to the strain-width plots.  However, stress 
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concentrations exist at the ends of the unit cell and, contrary to the strain-width data, the 

stress-width results from the elastic regime illustrate a large stress gradient for the 

simulations with the molecular interphase model.  For a unit cell strain of 0.74%, the 

subcell stress-width data for the simulations with the literature interphase types indicates 

local failure of the interphase subcells. In contrast, local failure occurs in the polymer 

subcells for the unit cell simulations with the molecular interphase model.  Additionally, 

the simulations with the molecular interphase model show that the stress gradient at the 

interphase grows with increasing unit cell strain due to the properties and material 

symmetry applied to these models.  Moreover, for large unit cells strains, the results with 

the molecular interphase model deviate in the middle of the plots which implies that the 

molecular interphase affects the behavior in the fiber subcells as well.  It is important to 

note that the large variations in transverse elastic moduli of different interphase types does 

not affect the mode of local failure, whereas the interphase strength and structure does 

affect the mode of local failure. 

Similar conclusions about failure were made by Maligno et al. (2010) where a FEA 

model of a composite RVE was simulated and parametric studies were performed using 

interphase strength as a variable.  For interphase strengths less than 60 MPa, Maligno’s 

results showed that local failure initiated in the interphase elements and, for higher values 

of interphase strengths, local failure occurred in the polymer elements. These results were 

obtained using varying interphase transverse elastic moduli and the moduli variations did 

not have an effect on the mode of local failure which agrees with the results from the 

current simulations.  
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(a)  0.15% Unit Cell Strain (b)  0.15% Unit Cell Strain 

  
(c)  0.74% Unit Cell Strain (d)  0.74% Unit Cell Strain 

Figure 3.9.  Stress-Width Distributions for Simulated Behavior with Viscoplasticity (a 

and c) and Behavior with Viscoplasticity Plus Damage and Failure (b and d) 

 

 

3.4.   Chapter Summary 

A modeling framework was used to integrate progressive damage, multiscale failure, 

and interphase properties within an HFGMC micromechanics theory.  Micromechanics 
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simulations were performed to investigate the effect of the interphase on the behavior 

obtained by the model.  The molecular interphase model detailed in this chapter is 

composed of multiple graphene layers with voids and a thermoset polymer matrix to 

represent the physical molecular structure of the interphase.  The graphene layers with 

voids layers were created by removing carbon atoms which caused voids in the layers.  For 

comparison, the interphase properties extracted from the literature were incorporated 

within the current modeling framework.  The usage of this modeling framework yielded 

the following results and observations: 

1. The transverse tensile results showed that the unit cell response, with the 

developed molecular interphase model, predicted a composite tensile strength that 

was approximately 5% lower than the other interphase types and also predicted a 

maximum difference of 25% in failure strain.   

2. A convergence study was performed by varying the time step and the number of 

subcells for a unit cell simulation, and the results demonstrate that a time step of 

5E-6 seconds and a unit cell with 256 subcells are required for convergence. 

3. The strain-width distributions demonstrate, for unit cell strains past the elastic 

regime, large strain concentrations at the ends of the unit cell for the simulations 

with the molecular interphase model, and the results with the damage and failure 

theories yield larger strain gradients and damage at the interphase. 

4. The stress-width plots show large strain gradients forming at the interphase and 

ultimately leading to local interphase failure, for the literature interphase types, 

and polymer failure for the molecular interphase model. 

5. Additionally, for large unit cell strains, the stress-width results for the molecular 
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interphase deviate in the middle of the plots suggesting that the molecular 

interphase model significantly impacts the behavior in the fiber subcells as well. 
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4. EFFECT OF ENVIRONMENTAL CONDITIONS ON THE MECHANICAL 

PROPERTIES AND DAMAGE OF TRIAXIAL BRAIDED COMPOSITES 

 

4.1.   Introduction 

In regards to aerospace applications, there is interest in using braided composite 

architectures because of their advantageous characteristics such as delamination 

prevention.  However, as mentioned in Chapter 1, limited studies on braided composites 

hinder the application of these materials.  Additionally, aerospace structures experience 

extreme environmental conditions, and reliability analyses need to consider these effects.  

This chapter discusses the effects of environmental conditioning on the tensile, 

compressive, and in-plane shear properties of triaxial braided PMCs, which were tested 

under room, hot (100°C), and hot/wet conditions (60°C/90% relative humidity). A 

humidity and temperature controlled chamber was used for the hot/wet conditioned 

specimens.  A volume fraction study was performed to obtain a statistical range for the 

volume fraction parameters from multiple manufactured panels.  A DIC system was used 

with a mechanical test frame to obtain the full field strain on the surface of the specimens 

and to examine strain at the edges of the specimens.  A flash thermography technique was 

used to examine structural degradation on the surface and sub-surface at the center and 

edges of each specimen, and scanning electron microscopy was performed to study the 

effects of environmental conditions on the damage mechanisms.   
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4.2.  Experimental Methods 

4.2.1.   Material Specifications 

In this chapter, a six-layer laminate of triaxial braided composite material is used, 

having a total thickness of 3.175 mm (0.125 in.).  The material consists of CYCOM PR-

520 epoxy resin (Cytec Industries, Inc.) and high strength, standard modulus TORAY 

T700S carbon fibers (Toray Carbon Fibers America, Inc.).  The constituent properties, as 

reported by the manufacturers, are presented in Table 4.1.  North Coast Composites 

manufactured the composite panels using a resin transfer molding (RTM) technique and 

specimens were machined from these panels.   A 0°/ +60°/ -60° triaxial braid architecture 

was used and the top view of the RUC is defined by the outlined box and dimensions in 

Figure 4.1.  An RUC is defined as the smallest repeating volume of geometry that can 

represent the composite material.  The blue vertical arrow in the figure indicates the 

direction of the axial fiber tows (24,000 fibers per tow) and the other white arrows indicate 

the bias braid tows (12,000 fibers per tow) oriented in the ±60° directions.   

 

 

Table 4.1.  Constituent Material Properties 

Resin/Fiber 
Tensile Strength, 

MPa (ksi) 

Young’s Modulus, 

GPa (msi) 

Density, g/cm3 

(lb/in.3) 

T700S fibers 4,900 (711) 230 (33.4) 1.80 (0.065) 

PR-520 resin 82 (11.9) 4.0 (0.58) 1.256 (0.045) 
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Figure 4.1.  Architecture of the Triaxial 

Braid Composite with the RUC in the 

Outlined Box 

 

The volume fractions of the constituents in the triaxial composite material were 

measured following the American Society for Testing and Materials (ASTM) D3171 

(2006) standard, and the experiments were performed using the resin burn-off technique 

detailed in Procedure G of the standard.  Samples were extracted from multiple locations 

in several of the manufactured composite panels in order to obtain a statistical range of 

volume fraction values and to compare the difference in volume fraction data between the 

panels.  The dimensions of the volume fraction samples were 2.5 cm by 2.5 cm (1 in. by 1 

in.) with a thickness of 3.175 mm (0.125 in.) and were dried in a thermal chamber at a 

standard temperature of 90°C.  The mass of each sample, before experimentation, was 

approximately 5 grams, which complies with the minimum recommended mass of 1 gram 

defined in the standard.  As shown in Figure 4.2(a), samples were placed in a metal crucible 

before testing in order to contain all the remnant material for weight measurements and to 

prevent particle and oil contamination on the samples.  The resin burn-off procedure was 

performed by placing the samples in an Isotemp 550 (Fisher Scientific) muffle furnace at 

550°C.   After 6 hours in the muffle furnace, the weight of the remnant carbon fiber (Figure 

4.2b) from each sample was measured.   
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A total of sixteen samples were tested for the volume fraction experiment and the data 

for each sample is included in Table 4.2.  The table includes measurements of the specimen 

mass which was made before the experiment; the mass of the carbon fiber was weighed 

after the resin was burned off.  The mass of the resin was calculated by subtracting the 

carbon fiber mass from the initial specimen mass measurements.  The fiber volume fraction 

(Vf) and matrix volume fraction (Vm) were calculated using Equation (4.1) and Equation 

(4.2), respectively.  The void volume fraction (Vv) was calculated from the fiber and matrix 

volume fraction as described by Equation (4.3).  The average volume fractions of all 

sixteen specimens are presented at the bottom of Table 4.2. 

 

 (4.1) 

 

 (4.2) 

 
 (4.3) 

  

In Equations (4.1) and (4.2), Mi represents the mass of the specimen before the experiment 

and Mf is the mass of the fibers after the resin was burned off.  The composite density (ρc) 

of each sample was computed by using the volume measured from the average length, 

width, and height values of each sample as well as the sample’s mass (Table 4.2).  The 

manufacturer values for the carbon fiber density (ρf) and the resin matrix density (ρm) are 

provided in Table 4.1.  
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(a) Before Resin Burn-Off Test (b)  After Resin Burn-Off Test 

Figure 4.2.  Images of a Triaxial Composite Volume Fraction 

Sample (a) Before and (b) After a Resin Burn-Off Test  

 

 

Table 4.2.  Volume Fraction Data 

Sample Panel 

Sample 

Mass (g.) 

Sample 

Density 

(g/cm3) 

Fiber 

Mass 

(g.) 

Resin 

Mass 

(g.) 

Vf 

(%) 

Vm 

(%) 

Vv 

(%) 

1 1 5.7779 1.5350 3.5141 2.2638 51.86 47.88 0.253 

2 1 5.8030 1.5306 3.4825 2.3205 51.03 48.73 0.240 

3 2 5.4845 1.5231 3.2998 2.1847 50.91 48.30 0.786 

4 2 5.5120 1.5485 3.4855 2.0265 54.40 45.33 0.275 

5 3 5.4099 1.5489 3.4764 1.9335 55.30 44.08 0.629 

6 3 5.4410 1.5309 3.2734 2.1676 51.17 48.56 0.274 

7 4 4.5587 1.5295 2.8035 1.7553 52.25 46.89 0.860 

8 4 4.7190 1.5380 2.9299 1.7891 53.05 46.42 0.525 

9 5 5.4725 1.5355 3.4930 1.9795 54.45 44.22 1.329 

10 5 5.5380 1.5357 3.3831 2.1549 52.12 47.58 0.303 

11 6 6.1110 1.5283 3.6544 2.4566 50.77 48.92 0.311 

12 6 5.9866 1.5233 3.7110 2.2756 52.46 46.10 1.436 

13 7 5.8670 1.5352 3.6620 2.2050 53.23 45.94 0.829 

14 7 5.9247 1.5399 3.6598 2.2649 52.85 46.87 0.284 

15 8 5.8913 1.5416 3.6520 2.2393 53.09 46.65 0.256 

16 8 5.8642 1.5252 3.6353 2.2289 52.53 46.16 1.316 

     Mean: 52.59 46.79 0.619 
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4.2.2. Specimen Geometries 

Specimens were designed to obtain the tensile, compressive, and shear properties for 

the triaxial braided composite material.  The ASTM standards (D3410, 2003; D3039, 2003; 

D7078, 2004) were used to guide the design of the compression, tension, and shear 

specimens.  The averaged dimensions for the specimen geometries are displayed in Figure 

4.3.  Tension and compression tests were performed for both axial (parallel to the 0° axial 

tows) and transverse (perpendicular to the 0° axial tows) directions. However, results from 

previous studies (Kohlman et al., 2012; Littell et al., 2009; Roberts et al., 2009) have shown 

that the ASTM D3039 geometry yields premature damage and lower strength in transverse 

tension specimens due to the large size of the RUC and specimen edge effects.  Notched 

(Kohlman et al., 2012) and bowtie (Bowman, Roberts, Braley, Xie, & Booker, 2003) 

specimens have been tested in past studies in order to improve the transverse tensile results.  

Although higher strengths were noted for the notched geometry, the specimen contained a 

non-uniform gage region which resulted in a sharp stress concentration.   In the current 

work, a version of the bowtie geometry presented by Bowman et al. (2003) was used to 

examine the transverse tension response and edge effects.   
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  (a) (b) (c)          (d) 

Figure 4.3.  Average Dimensions of the Geometries for (a) Transverse 

Bowtie, (b) Compression, (c) Tension, and (d) V-Notched Rail Shear 

Specimens 

 

 

4.2.3.  Mechanical Testing Equipment 

The specimens were tested using an Instron 5985 mechanical test frame in 

displacement control at a constant rate of 0.635 mm/min (0.025 in/min).  A two-camera 

DIC system (GOM ARAMIS 2M) was time synchronized with the test frame to study the 

strain field of the specimen through non-contact measurements.  The DIC software uses 

pattern recognition algorithms to calculate deformation and strain at each stage by 

correlating the data with a reference stage (GOM, 2006).  An airbrush was used to paint a 

white background on the surface of each specimen and a black speckle pattern was applied 

to this background in order for the DIC system to compute the strain field on the specimen 

surface.  Before testing, calibration of the DIC was performed using a set of calibration 
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panels, which were specified based on the current camera setup and field of view needed 

for the specimen. A selected area of the processed strain field (Figure 4.4), with 

approximately 250 data points, was used to calculate the average global strain.  For each 

specimen geometry, the global strain measure was selected at an area away from the edges 

of the specimen to reduce the effect of strain concentrations on this measure. 

 

 

Figure 4.4.  Selected Area of 

an Axial Tensile Strain Field  

 

 

In order to facilitate the specimen testing, several fixtures were used on the mechanical 

frame.  For tension and bowtie specimens, testing was performed using hydraulic grips 

equipped on the test frame.  The v-notched rail shear fixture (Wyoming Test Fixtures, Inc.), 

shown in Figure 4.5, was installed for the testing of the in-plane shear specimens.  It uses 

a set of bolts and surfalloy coated grips to apply gripping pressure to the surface of the 

specimen.  The design of an ASTM D3410 fixture (shown in Figure 4.6) was modified in 
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order to accommodate the DIC strain measurement system for compression testing.  

Adapters were modified to connect the compression fixture to the test frame and to reduce 

the width and overall length of the fixture setup; thereby ensuring that the fixture fit 

properly inside the environmental chamber.  Compression specimens were gripped by 

lateral pressure applied through the tapered slots, and end loading was provided by wedges 

placed underneath the grips inside the fixture.  The grip halves were threaded, and bolts 

(shown in Figure 4.6b) were used for alignment and to apply initial pressure on the surface 

of the specimen to prevent slipping during the test. 

 

 

 

 
Figure 4.5.  ASTM D7078 V-Notched Rail Shear Test Fixture 
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(b)  Threaded grip halves 

 
(a)  Installed fixture (c) Separated grip halves 

Figure 4.6.  Modified ASTM D3410 Compression Fixture 

 

 

A nondestructive, pulsed flash thermography technique was performed to determine 

intrinsic flaws and damage on the surface and sub-surface of the specimens. The flash 

thermography technique was performed using an EchoTherm system (Thermal Wave 

Imaging, Inc.) with an InSb infrared focal plane array camera operating at 60 Hz.  The 

surface of the specimen was exposed to heat through a short pulse of light from a set of 

flash lamps.  The infrared camera was used to capture the temperature field of the specimen 

during and after the flash pulse for a predetermined period of time.  A Hitachi S-4700 

scanning electron microscope, set at a low voltage (1-2 kV), was used to examine the 

modes of failure at different stress levels.  This low voltage setting was applied to prevent 

damage on the surface of the specimen. 
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4.3.  Environmental Conditioning  

The following environmental conditions were applied to the triaxial braided 

specimens:  i) room condition (baseline comparison), ii) hot condition (100°C), and iii) 

hot/wet condition (60°C/ 90% relative humidity).  A removable thermal chamber on the 

mechanical frame was used for simultaneous heating and testing for the hot condition.  

Specimens were placed in the removable thermal chamber for 15 minutes before being 

gripped and tested.  For the hot/wet condition, specimens were placed in an environmental 

chamber with the aforementioned temperature and humidity parameters.  The weight of the 

specimens was measured periodically throughout the environmental conditioning process 

to assess the amount of moisture absorption. The data shows that after 12 weeks the weight 

gain due to moisture absorption converged to 0.45% (Figure 4.7).  Periodic weighing 

procedures and convergence metrics, outlined in the ASTM D5229 (2004a), were followed 

for this conditioning process.  After conditioning, hot/wet specimens were removed from 

the environmental chamber and mechanically tested at 100°C.     

 

 
Figure 4.7.  Weight Gain of the Triaxial PMC 

Due to Moisture Absorption 
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4.4.   Results and Discussion 

4.4.1.   Tensile Response 

A minimum of five specimens were tested for each type of test.  The stress-strain plots 

for each of the transverse and axial tension specimens are presented in Figure 4.8 and 

Figure 4.9, respectively.  The axial tensile response is almost linear for all the specimens, 

but nonlinear behavior was observed in the transverse direction.  The braid angle and lack 

of tow continuity between the top and bottom grip surfaces in the transverse tension 

specimen are potential causes for the nonlinear behavior as well as the lower elastic 

modulus and transverse strength.  The edge effects located at the bias braid termination 

points in the transverse tension specimens cause premature damage such as subsurface 

axial tow splitting.  For the transverse tensile response, the environmental conditions 

caused reductions in the Proportional Elastic Limit (PEL) indicating that macroscopic 

damage occurred at lower strains.  The reductions in PEL strains as well as the mean and 

standard deviation for the elastic and failure properties of the tensile tests are shown in 

Table 4.3.  A possible reason for the lower PEL strains and increased nonlinearity in the 

transverse results is earlier axial tow splitting and this phenomenon is quantified later in 

this chapter.  The mechanical properties for the room condition correlate well with 

properties and trends presented in previous studies (Kohlman et al., 2012; Littell et al., 

2009; Roberts et al., 2009).  Unlike the transverse tension direction, the axial tension results 

show that the environmental conditions affect the failure strength and Poisson’s ratio with 

minimal effect on the elastic modulus.  No significant difference was observed between 

the hot and hot/wet conditions.   
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Figure 4.8.  Stress-Strain Plots for Each Transverse Tensile Specimen (PEL Strains are 

Indicated by Red Triangles) 
 

 

 

 

 

Figure 4.9.  Stress-Strain Plots for Each Axial Tensile Specimen 
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Table 4.3.  Tension Mechanical Properties 

  Axial Tension Transverse Tension 

Condition Material Parameter Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Room 

Condition 

Failure Stress [MPa] 908.67 60.99 579.35 52.78 

Failure Strain [%] 2.01 0.04 1.80 0.24 

Modulus [GPa] 44.87 4.25 42.10 4.90 

Poisson's Ratio 0.32 0.04 0.34 0.03 

PEL Strain [%] 1.98 0.07 0.96 0.04 

Hot 

Failure Stress [MPa] 766.45 51.95 448.95 30.97 

Failure Strain [%] 1.75 0.18 1.93 0.27 

Modulus [GPa] 43.08 3.32 36.30 2.24 

Poisson's Ratio 0.37 0.03 0.37 0.02 

PEL Strain [%] 1.74 0.17 0.76 0.04 

Hot/Wet 

Failure Stress [MPa] 732.58 42.83 420.98 39.22 

Failure Strain [%] 1.75 0.14 1.54 0.30 

Modulus [GPa] 42.53 3.78 37.19 1.85 

Poisson's Ratio 0.36 0.04 0.40 0.05 

PEL Strain [%] 1.70 0.07 0.76 0.03 

 

 

 

 

Figure 4.10 displays the principal strain fields of transverse tension specimens at room 

and hot conditions, where the arrows indicate the principal strain directions.  The strain 

field on the transverse specimens is nonuniform with a distinct local strain pattern evident 

along the edges of the specimen for room as well as environmentally conditioned tests.  

The periodic strain pattern consists of a set of two high, closely spaced strain areas followed 

by a large semi-circular area of low strain.  Other researchers have noted similar patterns 

using the out-of-plane deformation field (Roberts et al., 2009; C. Zhang & Binienda, 2014) 

and the uniaxial strain field (Kohlman et al., 2012; Littell et al., 2009; Roberts et al., 2009) 

for room condition.  Zhang and Binienda (2014) concluded that the pattern is caused by 

tension-torsion coupling due to the termination of bias braid tows at the edges of the 

specimen.  The principal strain directions in the zoomed-in area of the transverse tensile 
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strain field in Figure 4.10 show this edge effect.  It is important to state that similar strain 

patterns are evident for each environmental condition. However, the strain level at the 

initial macroscopic damage as well as the intensity and size of the edge effects can differ 

between room and environmental conditions as discussed later.  The surface and through-

thickness images of the failed specimens depicted in Figure 4.11 show shear failure along 

the bias braid tows of transverse tensile specimens.  Additionally, from observing the tests 

and analyzing the failure of the specimens, it is clear that the resistance to shear along the 

bias tow reduces with environmental conditioning, yielding less destructive failure events.  
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(a) (b) 

Figure 4.10.  Contours Showing the Principal Strain Field of Transverse 

Tensile Specimens Just Before Failure for (a) the Room Condition and 

(b) the Hot Condition 
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(a) Room Condition (b) Hot Condition (c) Hot/Wet Condition 

Figure 4.11.  Photos Showing the Failure of Transverse Tensile Specimens Under 

Different Environmental Conditions 

 

 

The principal strain fields of axial tension specimens at room and hot/wet conditions 

are displayed in Figure 4.12.  The strain field on the axial specimen is nonuniform with 

local high strain areas occurring in relatively equal frequency at the edges and center of the 

specimen.  The principal strain directions show that the global strain was mostly parallel 

to the direction of loading, even in the local high strain areas, and the edges of the axial 

specimens had almost no effect on the principal strain directions.  Surface images, 

presented in Figure 4.13, show fiber breakage in the axial tows of axial tension specimens 
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which causes several bias tows to pull out from the specimen.  Comparison of the tests at 

room and environmental conditions shows that failure occurs at lower stresses and strains 

for the axial tensile tests under environmental conditions, but each condition has common 

failure mechanisms.  

 

 

  
(a) (b) 

Figure 4.12.  Contours Showing the Principal Strain Field of Axial 

Tensile Specimens Just Before Failure for (a) the Room Condition 

and (b) the Hot/Wet Condition 
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(a) (b) 

Figure 4.13.  Photos Showing the Failure of Axial Tensile 

Specimens for (a) the Room Condition and (b) the Hot/Wet 

Condition 
 

 

 

In order to quantify the effect of environmental conditions on the strain patterns and 

edge effects, a through-width strain distribution analysis was conducted.  The principal 

strain distribution was investigated at multiple cross sections by plotting the strain as a 

function of specimen width.  The through-width strain data for each environmental 

condition was extracted at a stage corresponding to the PEL strain in order to study 

macroscopic damage initiation.  The strain distribution at the PEL point is used to compare 

and investigate the possible causes of nonlinearity at different environmental conditions in 

addition to the strain pattern and edge effects.  The principal strain results are presented as 

a function of width (Figure 4.14) for transverse tension specimens at each environmental 
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condition where the black curves represent the strain data extracted from sections of the 

strain field.  The data was discretized with blue circular points representing the principal 

strain at the edges of the specimen where large strain gradients are prominent and red 

triangular points representing the strain at the center of the specimen where the values are 

approximately constant.  The data provided from this analysis was used to compute α 

(indicating strain concentration) and β (indicating size of the edge effect) parameters which 

are defined by Equations (4.4) and (4.5), respectively.  It must be noted that parameter β 

describes a ratio that directly represents the physical size of the edge effects, whereas 

parameter α complements β by defining the intensity of the edge strain.  Therefore, changes 

in the size of edge effects due to environmental conditions are better represented by the 

values of β.  An additional parameter, η, is defined to effectively account for the size of the 

edge effects as well as for the intensity. The parameter η, described in Equation (4.6), 

integrates the edge and center strain in the strain-width plots (Figure 4.14). 

  (4.4) 

  (4.5) 

  (4.6) 

 

In Equations (4.4) and (4.5), 𝜀𝑒𝑑𝑔𝑒 and 𝜀𝑐𝑒𝑛𝑡𝑒𝑟 represent the average values of principal 

strain at the edges and the center of the specimen, respectively, and Wedge and Wcenter are 
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the average calculated widths of the edge strain and center strain, respectively.  The dleft 

and dright variables defined in Equation (4.6), and illustrated in Figure 4.14(a), are 

determined by the calculated strain gradient and represent transition points in the strain-

width plots; the dspecimen variable represents the width of the specimen.  The strain 

distribution parameters, α, β, and η, for the axial and transverse tensile specimens are 

provided in Table 4.4.  The parameter ratios, as well as the strain-width plots in Figure 

4.15, show that the edge effects for the axial tension specimens are small and unaffected 

by the environmental conditions.  On the contrary, the strain-width plots in Figure 4.14 and 

the parameter ratios convey that the edge effects are critical and large for the transverse 

tension specimens at environmental conditions.  The η ratios have similar trends to the β 

ratios but are slightly larger in value for the transverse tensile response.  The possible 

causes for the larger size of edge effects in the transverse tensile specimens due to 

environmental conditions are increases in tow splitting damage. 

 

 
(a) Room Condition 
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(b) Hot Condition 

 

 
(a) Hot/Wet Condition 

Figure 4.14.  Strain-Width Plots for Transverse Tensile Specimens 
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Table 4.4.  Average Tension Strain Distribution Results 

Specimen Type Parameter Room Hot Hot/Wet 

Axial Tension 

α 1.00 0.95 1.06 

β 0.05 0.07 0.09 

η 0.02 0.03 0.05 

Transverse 

Tension 

α 1.30 1.22 1.28 

β 0.24 0.41 0.77 

η 0.27 0.42 0.80 

 

 

 

 

 

 

  
(a) Room Condition (b) Hot/Wet Condition 

Figure 4.15.  Strain-Width Plots for Axial Tensile Specimens 

 

 

The bowtie specimens were originally designed to mitigate the edge effects present in 

the transverse tension specimens (Bowman et al., 2003).  The design of the notch for the 

bowtie specimen follows the angle of the braid to decrease the probability of a bias braid 

tow terminating at the edge.  The principal strain field in Figure 4.16(a) demonstrates that 

the edge effects along the specimen are minimal but concentrations still occur in the gage 
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area near the notch tip due to the specimen geometry.  The through-thickness and surface 

images illustrate failure associated with fiber breakage in the bias braid tows.  The elastic 

and failure properties presented in Table 4.5 and the stress-strain plots of the bowtie 

specimens in Figure 4.17 show that the bowtie moduli are larger than the axial and 

transverse moduli of the straight sided specimens due to the complex tow architecture.  The 

braid angle and lack of tow continuity between the top and bottom grip surfaces in the 

transverse tension specimen reduce the elastic modulus.  In contrast to the transverse 

tension straight sided specimen, bowtie specimens have tow continuity which allows the 

specimen to distribute the applied stress more effectively through the bias braid tows and 

provides larger strength values. The approximate schematic in Figure 4.18 illustrates the 

tow continuity between grip surfaces for the bowtie specimens as well as the bias braid 

termination that occurs in the transverse tensile straight-sided specimens.  The architecture 

of the material is presented in Figure 4.19; this cross section shows that the transverse 

direction contains more bias braid tows compared to the number of axial tows in the axial 

direction.  The tow continuity and larger number of bias tows produce the larger moduli 

measurements for the bowtie tests.  The results in this chapter and previous studies 

(Bowman et al., 2003; Kohlman et al., 2012) show that another potential cause of the 

irregular moduli values is the multiaxial stress state at the notch of the specimen.   
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(a) (b) 

Figure 4.16.  (a)  Principal Strain Field and Directions and (b) Surface and Through-

Thickness Failure Modes of a Hot Conditioned Bowtie Specimen 
 

 

 

Table 4.5.  Bowtie Mechanical Properties 

Condition Material Parameter Mean 
Standard 

Deviation 

Room 

Condition 

Failure Stress [MPa] 825.75 53.32 

Modulus [GPa] 64.32 5.37 

Hot 
Failure Stress [MPa] 790.54 67.32 

Modulus [GPa] 59.85 4.83 

Hot/Wet 
Failure Stress [MPa] 799.34 87.99 

Modulus [GPa] 58.26 7.75 
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Figure 4.17.  Stress-Strain Plots for Each Transverse Bowtie Tensile Specimen 
 

 

 

 
Figure 4.18.  Bias Braid Tows 

in Bowtie and Transverse 

Tension Specimens 
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Figure 4.19.  Optical Micrograph of a Transverse Cross-Section of 

the Material (Single Lamina) 
 

 

 

4.4.2.   Compressive Response 

Transverse and axial stress-strain plots for each tested compression specimen are 

presented in Figure 4.20 and Figure 4.21, respectively.  Unlike the axial tensile response, 

the axial compression stress-strain response shows nonlinear behavior.  The principal strain 

field and images of failure modes presented in Figure 4.22 show that the nonlinearity of 

the axial compression specimen was not caused by edge effects.  The nonlinearity of the 

axial compression specimens is attributed to the fiber microbuckling and shear failure 

modes which were not present in the axial tension specimens.  The principal strain contours 

show the existence of concentrations in the transverse compression specimen; although, 

these concentrations were not specifically located along the edge as in the transverse 

tension results. Furthermore, the through-width strain distribution results in Table 4.6 and 

strain-width plots in Figure 4.23 demonstrate that, similar to the axial tensile results, the 

size of the edge effects in the compression specimens are small with minimal changes due 

to the environmental conditions.  The PEL strains for the axial and transverse compression 

response, presented in Table 4.7, show that the environmental conditions cause damage at 

lower strains.  The axial and transverse compressive strength, failure strain, modulus, and 
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Poisson’s ratio are also summarized in Table 4.7.  With the exception of the modulus, 

significant degradation of the mechanical properties was prevalent due to the 

environmental conditions. 

 

Figure 4.20.  Stress-Strain Plots for Each Transverse Compression Specimen 
 

 

Figure 4.21.  Stress-Strain Plots for Each Axial Compression Specimen 
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(a) Axial Compression Contour (c)  Transverse Compression Contour 

  
(b)  Axial Compression Failure (d)  Transverse Compression Failure 

Figure 4.22.  Principal Strain Contours and Failure Images of Hot/Wet Conditioned 

Axial and Transverse Compression Tests 
 

 
 

 

Table 4.6.  Average Compression Strain Distribution Results 

Specimen Type Parameter Room Hot Hot/Wet 

Axial 

Compression 

α 1.4 1.25 1.95 

β 0.11 0.15 0.10 

η 0.08 0.11 0.13 

Transverse 

Compression 

α 2.8 2.4 2.7 

β 0.10 0.14 0.17 

η 0.18 0.21 0.32 
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(a) Axial Compression – Room (b)  Axial Compression – Hot/Wet 

  
(c) Transverse Compression - Room (d) Transverse Compression – Hot/Wet 

Figure 4.23.  Strain-Width Plots for Axial and Transverse Compression Specimens 
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Table 4.7.  Compression Mechanical Properties 

  Axial Compression Transverse Compression 

Condition Material Parameter Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Room 

Condition 

Failure Stress [MPa] 441.50 39.52 370.67 42.24 

Failure Strain [%] 1.37 0.12 0.98 0.11 

Modulus [GPa] 38.04 3.18 39.59 2.15 

Poisson's Ratio 0.35 0.03 0.33 0.01 

PEL Strain [%] 0.86 0.10 0.87 0.08 

Hot 

Failure Stress [MPa] 286.14 62.94 290.49 40.51 

Failure Strain [%] 0.75 0.13 0.77 0.10 

Modulus [GPa] 39.06 2.67 39.00 3.73 

Poisson's Ratio 0.42 0.05 0.34 0.03 

PEL Strain [%] 0.59 0.25 0.70 0.06 

Hot/Wet 

Failure Stress [MPa] 267.04 29.13 258.39 29.63 

Failure Strain [%] 0.76 0.10 0.66 0.08 

Modulus [GPa] 37.75 3.73 37.51 1.46 

Poisson's Ratio 0.38 0.03 0.38 0.12 

PEL Strain [%] 0.63 0.07 0.62 0.10 

    

 

 

4.4.3.   V-Notched Rail Shear Response 

The nonlinear stress-strain plots for the shear specimens are shown in Figure 4.24 and 

the corresponding elastic and failure properties are presented in Table 4.8.  The presented 

shear properties for the room condition correlate well with the v-notched rail shear results 

obtained by Roberts et al. (2009).  The calculated PEL strains for the shear response were 

largely unaffected by the environmental conditioning of the specimens. The results show 

that the environmental conditions significantly affect the failure strength with only minor 

effects on the failure strain and shear modulus.  Due to the limited DIC viewing area of the 

shear specimen, the through-width strain distribution analysis was not performed for this 

response.    
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Figure 4.24.  Shear Stress-Strain Plots for Each V-Notched Rail Shear Specimen 

 

 

 

 

Table 4.8.  In-Plane Shear Mechanical Properties 

Condition Material Parameter Mean 
Standard 

Deviation 

Room 

Condition 

Failure Stress [MPa] 255.78 9.20 

Failure Strain [%] 1.70 0.17 

Modulus [GPa] 17.56 1.19 

PEL Strain [%] 1.18 0.21 

Hot 

Failure Stress [MPa] 186.84 14.18 

Failure Strain [%] 1.57 0.22 

Modulus [GPa] 16.22 1.74 

PEL Strain [%] 0.80 0.19 

Hot/Wet 

Failure Stress [MPa] 177.04 13.30 

Failure Strain [%] 1.47 0.19 

Modulus [GPa] 14.51 1.74 

PEL Strain [%] 1.01 0.18 
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4.4.4.  Damage and Failure Analysis 

In addition to the complete failure of a component or specimen, intermediate damage 

induced by mechanical loading and environmental conditions changes the composite 

structure and causes degradation of the material properties.  Several load/unload tests were 

performed to capture this modulus degradation in individual axial and transverse tensile 

specimens at the room condition.  The testing was conducted at the same displacement rate 

as the previously mentioned tests but consisted of three distinct phases: i) loading, ii) 

unloading, and iii) reloading.  In the first phase, the specimens were loaded to a stress 

corresponding to approximately 85% of the average failure strength for the axial and 

transverse tensile properties (Table 4.3).  The applied stress was removed during the 

unloading phase by reversing the direction of the displacement rate.  These phases are 

depicted in Figure 4.25 using axial and transverse tensile stress-strain plots; the calculated 

moduli are also shown.  The ratio of the reloading modulus to the loading modulus for each 

case indicates the occurrence of damage and structural changes in the material.  The moduli 

ratio for the axial tension specimens is smaller than the transverse tension ratio, 

demonstrating that more structural change and damage occurs due to the transverse tensile 

specimen geometry.  This degradation shows the importance of utilizing nondestructive 

evaluation and microscopy techniques for the characterization of damage. 
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(a) (b) 

Figure 4.25.  Load/Unload Stress-Strain Plots for (a) Axial Tension and (b) Transverse 

Tension Room Conditioned Specimens 

 

 

Failure analysis was performed using a pulsed flash thermography technique which 

uses two bulbs to apply heat to the surface of a specimen and an infrared camera to capture 

temperatures contours of the specimen.  In order to accurately analyze the failed and 

damaged specimens, two unconditioned, untested specimens (defined as healthy 

specimens) were placed under the infrared camera to obtain reference data points.  The 

EchoTherm software compiles images of the temperature contours of the specimens at 

specific time intervals during and after the flash from the bulbs.  As shown in Figure 4.26(a) 

and Figure 4.27(a), the temperature data is computed from specific areas called cursors 

using the EchoTherm software and multiple cursors were used in random locations at the 

center of the specimen to average and extract data from the healthy and failed/damaged 

specimens.  Information regarding flash thermography and the EchoTherm software can 

be found in the ASTM E2582 (2007) standard and the EchoTherm manual (Thermal Wave 
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Imaging, 2004).  Additionally, multiple pulsed flashes and data collection were conducted 

in order to get an appropriate number of data points for each damaged/failed specimen.  

For the failed specimens, the cursor windows were placed over areas immediately adjacent 

to the failure region in order to determine the impact of loading on the overall structure of 

the specimen.  The initial temperature value from each cursor window was subtracted from 

the subsequent values and logarithmic temperature-time plots were made to visualize the 

difference in thermography results between healthy and failed/damaged specimens (Figure 

4.26b and Figure 4.27b).  Following the ASTM E2582 standard, a line with a slope of -0.5 

is overlaid starting at the descent of these curves and any deviations from this slope 

represent defects/damage within the material.  For the current analysis, the area under the 

temperature-time curves was used. The ratio of healthy area to damaged area at the center 

of each specimen is defined as the central damage parameter.  The damage metric was also 

applied to determine the effects that environmental conditioning and loading have at the 

edges of the specimen (referred to as the edge/center damage parameter).  This edge/center 

damage value is the ratio of the edge area to the central area of the temperature-time plot 

where the edge area was extracted using cursor windows placed near the edge of the 

specimens.   
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(a) (b) 

Figure 4.26.  (a) Multiple Cursor Windows Overlaid on a Flash Thermography Contour 

and (b) a Logarithmic Plot of Temperature-Time Data for Healthy and Failed Axial 

Compression Specimens 

 

 

 

 

 

(a) (b) 

Figure 4.27.  (a) Multiple Cursor Windows Overlaid on a Flash Thermography Contour 

and (b) a Logarithmic Plot of Temperature-Time Data for Healthy and Damaged Axial 

Compression Specimens 
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Several specimens were loaded to intermediate stress levels to induce damage without 

failure.  These results were then used to better quantify damage progression.  The 

edge/damage ratio for the healthy state was approximately 1.24 and this initial 

concentration was caused by damage induced during fabrication of the specimens and also 

due to boundary effects during the flash thermography procedure.  The healthy state of a 

specimen has a value of 100% and any deviations from this value represent center damage 

in the specimen.  The deviations in the edge/center ratios (shown in Figure 4.28) for the 

damaged axial tension specimens demonstrate negligible effects due to the edges.  These 

edge/center ratios verify the through-width strain distribution results in Table 4.4 and 

indicate that premature damage due to tow splitting was not apparent.  For the failed 

specimens at room and environmental conditions, the edge/center ratios increased above 

1.4 likely due to stress waves caused by the sudden failure of the specimen.  The flash 

thermography analysis for the transverse tensile specimens (Figure 4.29) shows markedly 

different trends than that of the axial tension.  The transverse tensile results show larger 

edge/center ratios between the damaged and healthy states.  Specifically, the results show 

larger edge/center ratios for specimens loaded to PEL and after PEL which indicate the 

occurrence of progressive damage at the edge of the specimen potentially due to increased 

splitting of the subsurface axial tows.  The increased edge/center ratios correlate with the 

through-width strain distribution results in Table 4.4, evidence that strain concentrations 

occur at the edges of specimens loaded to the PEL point.  A comparison of the 

environmental conditions with the room condition demonstrates that, for similar stress 

levels, the environmental conditions had larger edge/center ratios.  The central damage 

percentages show that specimens at environmental conditions were more susceptible to 
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damage compared to the specimens at room condition.  Flash thermography analysis for 

axial and transverse compression specimens are displayed in Figure 4.30 and Figure 4.31, 

respectively, and the results illustrate trends comparable to the tension.  However, the 

central damage parameter for several of the failed compression specimens demonstrates 

that more damage was induced compared to the values of the transverse tension. 

 

 

 
Figure 4.28.  Thermography Analysis of the Axial Tensile Specimens 
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Figure 4.29.  Thermography Analysis of the Transverse Tensile Specimens 

 

 

 
Figure 4.30.  Thermography Analysis of the Axial Compression Specimens 
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Figure 4.31.  Thermography Analysis of the Transverse Compression 

Specimens 

 

 

Scanning electron microscopy was performed on damaged and failed transverse 

tensile specimens to study damage initiation and propagation in the material.  Figure 

4.32(a) shows a low magnification image of a damaged specimen at the room condition 

with tow splitting in several locations.  A higher magnification micrograph of one of these 

tow splitting sites (Figure 4.32b) better depicts the phenomena and shows the initiation of 

tow debonding.  Figure 4.33(a) and (b) show similar tow splitting for a damaged specimen 

at the hot condition but the tow debonding for this condition is more prominent and the 

damage is achieved with less applied stress.  For a failed specimen at the hot condition 

(Figure 4.33c) tow splitting, tow debonding, and fiber debonding are mechanisms that 
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contributed to failure.  The fiber structure, shown by a high magnification image of the 

interior of a tow splitting site (Figure 4.33d), indicates that this particular tow split initiated 

at the edges of the specimen due to a concentration that occurred during testing or due to a 

pre-existing defect.  The damage and failure mechanisms for a specimen at the hot/wet 

condition (Figure 4.34) are similar to the specimen at the hot condition.  The micrographs 

for each condition show that tow splitting and debonding are principal failure mechanisms 

for this material.   

 

  

(a)  Loaded to 425 MPa (35x) (b)  Loaded to 425 MPa (100x) 

  
(c)  Failed (30x) (d)  Failed (500x) 

Figure 4.32.  Scanning Electron Microscopy Images of Transverse Tensile Specimens 

Tested Under Room Condition 
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(a)  Loaded to 310 MPa (50x) (b)  Loaded to 310 MPa (350x) 

  
(c)  Failed (30x) (d)  Failed (200x) 

Figure 4.33.  Scanning Electron Microscopy Images of Transverse Tensile Specimens 

Tested Under Hot Condition 

 

  
(a)  Loaded to 260 MPa (30x) (b)  Failed (30x) 

Figure 4.34.  Scanning Electron Microscopy Images of Transverse Tensile Specimens 

Tested Under Hot/Wet Condition 
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4.5.  Chapter Summary 

This chapter examined the effects of hot (100°C) and hot/wet conditions (60°C/90% 

relative humidity) on the mechanical properties and failure of triaxial braided composites 

under tension, compression, and shear.  A humidity and temperature controlled chamber 

was used to condition the hot/wet conditioned specimens.  An in-situ thermal chamber 

heated the hot and hot/wet conditioned specimens to 100°C during the mechanical testing.  

The volume fraction tests were conducted on multiple triaxial braided composite panels to 

obtain a statistical range for the material.  Strain measurements were made, during 

mechanical loading, using a DIC system.  Damage and failure analyses were performed 

using a non-destructive, flash thermography system and a scanning electron microscope.  

The following conclusions and results are made from analysis of the experiments: 

1. A decrease in failure stress by approximately 20% was observed for tension, 

compression, and shear when comparing the environmental conditions to the room 

condition baseline.   

2. Additionally, a decrease in modulus was apparent for the transverse tension, 

bowtie, and shear specimens under environmental conditions.   

3. The through-width strain distribution results demonstrated that strain 

concentrations exist on the edges, and the size of these edge effects increases with 

environmental conditions.   

4. The through-width strain results were verified with the flash thermography 

analysis, which inspected the damage in the center and at the edges of each 

specimen.  
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5. The scanning electron microscopy showed similar damage propagation 

mechanisms for both hot and hot/wet conditions. Damage was shown to initiate in 

the form of tow splitting, and total failure was a combination of failure modes, 

including tow splitting, tow debonding, and fiber debonding.  

6. The overall conclusions from the experiments show that an increase in temperature 

is a driving factor for the degradation of the material parameters.    
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5. MULTISCALE MODELING OF TRIAXIAL BRAIDED COMPOSITES 

INCLUDING TEMPERATURE AND MOISTURE EFFECTS 

 

5.1.   Introduction 

Understanding the effect of triaxial braided composites under environmental 

conditions is important for the design of aerospace components.  However, experimental 

testing is time consuming and expensive.  Therefore, the ability to model and reliably 

analyze triaxial braided composites is a key step to understanding the applicability of the 

designed material.  The extreme environment subjected on aerospace components requires 

the consideration of these conditions in modeling techniques.  The modeling of the triaxial 

braided material under environmental conditions is also challenging due to the complex 

3D architecture.  A multiscale modeling framework for triaxial braided composite 

materials is developed in this chapter to capture the micro- and mesoscale structure of the 

material and scale the behavior to the macroscale.  For the microscale, the various defined 

microstructures are simulated using the high fidelity micromechanics method detailed in 

Chapter 3.  Temperature and moisture terms are added to the constitutive laws for the 

individual composite constituents.  The mesoscale model is constructed by defining 

different fiber volume fractions and 3D tow orientations to mesoscale subcells.  The final 

macroscale model is created in LS-DYNA (Hallquist, 2007) by repeating several 

mesoscale unit cells to replicate axial and transverse tension specimen geometry.  The 

experimental results from the room and hot/wet (60°C/ 90% Relative Humidity) conditions 

in Chapter 4 are used to validate the axial and transverse tension simulations.   
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5.2.  Multiscale Triaxial Model 

5.2.1.   High Fidelity Micromechanics 

The HFGMC theory overviewed and described in Chapter 3.1.1 is utilized in the 

multiscale model to generate the effective material properties for the mesoscale subcells.  

The different environmental conditions are addressed by incorporating coefficient of 

thermal, α(subind), and moisture, β(subind), expansion terms within the constitutive laws in 

Equation (3.28) and (3.29).  These constitutive laws with environmental effects are defined 

in Equation (5.1) for the fiber subcells and Equation (5.2) for the polymer subcells, where 

ΔT and ΔM represent the changes in temperature and moisture absorption of the material, 

respectively.  The room and hot/wet (60°C/ 90% Relative Humidity) conditions from 

Chapter 4 are used in the microscale simulations.   

 
 ( ) ( ) ( ) ( )subind subind subind subind

ij ijkl ijC T      (5.1) 

 
 ( ) ( ) ( ) ( ) ( ) ( )subind subind subind I subind subind subind

ij ijkl ij ijC T M           (5.2) 

The inelastic strains of the isotropic polymer subcells are calculated from the 

viscoplastic theory detailed in Chapter 2.  The fiber subcells are represented as transversely 

isotropic, linear elastic material.  The triaxial braid composite consists of PR-520 polymer 

resin and T700S carbon fibers, and the mechanical properties for the constituents are 

presented in Table 5.1 and Table 5.2.  The moisture absorption is assumed to be solely 

concentrated in the polymer matrix; thus, a coefficient of moisture expansion is not 

assigned to the fiber.  The elastic and viscoplastic properties for the PR-520 polymer resin 

are obtained from Goldberg et al. (2005).  Although only the elastic properties are extracted 

and scaled to the mesoscale, the viscoplastic law is useful for determining the elastic range 
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for each loading direction and unit cell.  It is important to note that the α symbol is used to 

denote considerably different types of polymer properties where α0 and α1 represent the 

initial and final values, respectively, of the internal hydrostatic state variable in the 

viscoplastic law, αm represents the coefficient of thermal expansion for the polymer matrix, 

and α1f and α2f denote the coefficient of thermal expansion for the fiber in the axial and 

transverse directions, respectively.  Three microscale unit cells (Figure 5.1) are created to 

represent the different Vf specifications of the mesoscale RUC and further details of these 

specifications are presented in the following subsection.   

 

Table 5.1.  T700S Carbon Fiber Material Properties 

Property:  

E11 (GPa) 230 

E22 (GPa) 15 

G12 (GPa) 24 

G23 (GPa) 5.03 

ν12 0.20 

ν23 0.20 

ρ (kg/m3) 1800 

α1f  (1/°C) -0.38E-6 

α2f (1/°C) 11.0E-6 
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Table 5.2.  Material Properties for PR-520 Epoxy 

Property:   

E (GPa) 

   3.54 (𝜀 ̇ =7E-5 s-1) 

  3.54 (𝜀 ̇ =1.76 s-1) 

 7.18 (𝜀 ̇ =420 s-1) 

ν 0.38 

D0 1.00E6 

n 0.93 

Z0 (MPa) 396.09 

Z1 (MPa) 753.82 

q 279.26 

α0 0.568 

α1 0.126 

ρ (kg/m3) 1256 

αm  (1/°C) 52.9E-6 

βm  (1/%H2O) 3.24E-3 

 

 

 
  

(a)  80% Vf (b)  73.3% Vf (c)  37.5% Vf 

Figure 5.1. Microscale Unit Cell Geometries with Different Vf Specifications 

 

5.2.2.   Mesoscale Unit Cell 

The mesoscale structure models the triaxial braided composite through an RUC that 

is discretized both in-plane and through-thickness of the material.  The subcell 

discretization scheme from the absorbed matrix model (AMM) developed by Cater et al. 

(2013) is utilized in the current mesoscale model.  The AMM performs in-plane 
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discretization of a single layer of triaxial material which creates the four sections illustrated 

in Figure 5.2.  Further discretization is performed through-thickness to create the final 

geometry of the mesoscale subcells, which are considered to be sequences of unidirectional 

laminae with different Vf specifications and tow orientations.  The current mesoscale model 

assigns five subcell definitions from this discretized geometry as shown in Figure 5.3.  The 

additional two subcells (Subcells 3 and 4) specify an undulation angle.  Figure 5.3 also 

introduces a subcell shift rule for model development where the RUC is stacked to form a 

two-RUC volume with the second RUC volume shifted in-plane by one mesoscale subcell.  

The purpose of this shift is to accurately represent the physical mesoscale tow structure of 

the material by ensuring that an axial tow is always present in a through-thickness slice of 

the model.   

 

 
  Figure 5.2.  In-Plane Discretization of the 

Mesoscale RUC  

 

 
Figure 5.3. Schematics Showing Mesoscale RUC 
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The specifications for the five mesoscale subcells are presented in Table 5.3.  The Vf 

values from the AMM are applied and the tow undulation angle was measured using 

microscopy.  Since the triaxial material has a large tow structure, the microscopy analysis 

was conducted using a Zeiss laser scanning microscope (LSM 700) and multiple 

micrographs were stitched together to form a mosaic as shown in Figure 5.4.  The 

mesoscale subcells in the current model are integrated as solid elements in the macroscale 

LS-DYNA simulation.  In contrast, the AMM performs through-thickness homogenization 

using classical laminate theory yielding four effective mesoscale subcells which are applied 

to shell elements in a finite element analysis.  The disadvantage of the shell element 

formulation is that tow undulation cannot be properly accounted for in the effective 

properties of the mesoscale subcells. 

  

 

Table 5.3.  Subcell Angle Specifications 

 Subcell 1 Subcell 2 Subcell 3 Subcell 4 Subcell 5 

Vf (%) 73.3 73.3 37.5 37.5 80 

Braid Angle (deg.) +60 -60 -60 +60 0 

Undulation (deg.) 0 0 26.6 26.6 0 

 

 

 

Figure 5.4.  Mosaic of the Triaxial Architecture  
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5.2.3.   Macroscale Model 

The shifted RUC was projected in each direction to fit the width and thickness 

dimensions of the axial and transverse tension specimens used in the experiments.  For the 

axial tension specimen, the thickness is 3.24 mm, the width is 31.09 mm, and the length is 

280.5 mm as shown in Figure 5.5(a).  The specimen model presented in Figure 5.5(a) 

represents a coarse mesh of the geometry (5,775 elements) where each solid element is a 

mesoscale subcell.  Different mesh refinements of the axial tension specimen are also 

studied and the refined meshed geometry in Figure 5.5(b) is achieved by splitting the length 

and width of the elements in the coarse mesh.  Since the through-thickness dimensions of 

the elements in the original mesh are comparably smaller, the refinement is not performed 

through-thickness.  This refinement method is also performed on the 23,100 element mesh 

to obtain the finer mesh depicted in Figure 5.5(c) which is 92,400 elements.  Using the 

same element refinement scheme, three meshes for the transverse tension specimen are 

also created (Figure 5.6).  The inconsistency in the dimensions and the number of elements 

between the axial and transverse tension models is related to the irregular aspect ratio of 

the mesoscale RUC. 

 

 

 
(a)   5,775 Elements 
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(b) 23,100 Elements 

 
(c) 92,400 Elements 

Figure 5.5.  Axial Tensile Specimen Models with Varying Mesh Refinements 

 

 

 

 

(a)   5,670 Elements 

 

(b) 22,680 Elements 

 

(c) 90,720 Elements 

Figure 5.6. Transverse Tensile Specimen Models with Varying Mesh Refinements 
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The boundary conditions and loadings in the specimen models simulate the conditions 

that the physical specimens experienced during the mechanical testing.  The gripping 

length of the physical specimens is replicated by selecting all the nodes within a length of 

40.8 mm at each end for the axial specimen model (Figure 5.7a) and 40.1 mm at each end 

for the transverse specimen model (Figure 5.7b).  The accurate simulation of the gripping 

length also ensures that the gage length in the models is the same as that of the experiments.  

The nodes selected at one end are fixed with all the 3D displacement and rotations 

constrained.  The nodes selected at the other end of the specimen are given a translational 

displacement by using the *PRESCRIBED_MOTION_SET keyword in LS-DYNA.  The 

boundary conditions and translational displacements are the same for both the axial and 

transverse tension specimens with the exception that the x-translational displacement 

degree of freedom is selected for the axial model and the y-translational displacement is 

designated for the transverse model.  The simulated translational displacements correlate 

with the 0.025 inch/min displacement rate used for the experiments.  

 

 

(a) Axial Tension Conditions  
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(b)  Transverse Tension Conditions 

Figure 5.7. Boundary and Loading Conditions for the Specimen Models 

 

 Five separate orthotropic elastic material keywords are created to represent the 

different mesoscale subcells where the material axes are defined using the global 

coordinate system.  The material properties, for each orthotropic elastic keyword, are 

obtained from the results of the micromechanics simulations which are presented later in 

this chapter.  These material properties are different between the room and hot/wet 

conditions since temperature and moisture terms effect the microscale generated properties.  

The coordinate system for each material is defined by computing a set of vectors using the 

tow angle specifications from Table 5.3.  Figure 5.8 illustrates these material vectors for 

each subcell, in the global coordinate system, where A is the vector aligned with the tow in 

the subcell and D is a vector perpendicular to the tow.  The θ and ϕ symbols denote the 

braid and undulation angles, respectively.  The values for the material unit vector 

components are presented in Table 5.4 and the subscripts indicate the component direction 

with respect to the global coordinate system.  For the transverse model with the highest 

refined mesh, two different versions are made for comparison, one with undulation and one 

without undulation.  Subsequently, for the version without undulation, the A and D vectors 
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for Subcell 3 and Subcell 4 become the same vectors designated for Subcell 2 and Subcell 

1, respectively.  

 

 
Figure 5.8. Material Axes Defined for Each Mesoscale Subcell in the Global 

Coordinate System 

 

 

Table 5.4.  Material Unit Vector Components 

 Subcell 1 Subcell 2 Subcell 3 Subcell 4 Subcell 5 

Ax 0.500 0.500 0.447 0.447 1.000 

Ay 0.866 -0.866 -0.774 0.774 0 

Az 0 0 -0.448 0.448 0 

Dx -0.866 0.866 0.888 -0.457 0 

Dy 0.500 0.500 0.325 0.628 1.000 

Dz 0 0 0.325 -0.629 0 

 

 

5.3. Simulations Results and Discussion 

5.3.1.   Microscale Results 

The mesoscale subcells are assumed to be transversely isotropic, unidirectional layers 

with various material properties and orientations.  Thereby, micromechanics simulations 

are performed for each type of unidirectional layer to obtain the five necessary material 

properties:  E11, E22, G12, ν12, and ν23.  These properties are obtained for each microscale 
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unit cell geometry by conducting simulations using axial, transverse, and in-plane shear 

loadings.  Figure 5.9 shows the stress-strain responses for the axial (11) tension loading of 

the microscale unit cells with different fiber volume fractions and conditions.  The room 

condition results show large stiffness for the unit cells with Vf values of 80% and 73.3% 

and a significantly smaller stiffness for the unit cell simulation with 37.5% fiber volume 

fraction.  A comparison of the room and hot/wet condition shows that the hot/wet condition 

causes a decrease in stiffness for each unit cell.  The plots of the unit cell simulations with 

the transverse (22) tension loading in Figure 5.10 display similar trends as the axial tension 

results, except the transverse results have increased nonlinear behavior.  The elastic 

properties for each unit cell Vf specification, environmental condition, and mechanical 

loading are extracted from a strain range of 0.1% to 0.25% and a summary of these 

properties is presented in Table 5.5.    

 

 
Figure 5.9. Stress-Strain Response for Axial (11) Loading of Unit Cells with Different 

Vf Specifications 
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Figure 5.10. Stress-Strain Response for Transverse (22) Loading of Unit Cells with 

Different Vf Specifications 

 

 

Table 5.5. Summary of Microscale Generated Material Properties 

  Property 

 Vf E11 E22 G12 G23 ν12 ν23 

 (%) (GPa) (GPa) (GPa) (GPa)   

Room 

80 186.77 12.31 10.26 4.43 0.31 0.39 

73.3 172.15 12.09 8.93 4.32 0.33 0.40 

37.5 92.24 9.96 4.61 3.46 0.36 0.44 

Hot/Wet 

80 167.81 10.78 10.15 3.80 0.33 0.40 

73.3 154.2 10.58 8.83 3.73 0.36 0.42 

37.5 79.77 6.64 4.55 2.26 0.40 0.47 

 

 

A local strain-width and stress-width analysis of the subcells is performed by 

extracting data at the center of the unit cell simulations along the y2 direction to understand 

the effect of environmental conditions on the transverse tension response.    The stress-

width and strain-width results are plotted for unit cell strains of 0.15% and 0.55%, and are 



144 

presented in Figure 5.11.  The analysis indicates that large stress and strain gradients exist 

at the fiber/polymer matrix interface for the unit cells with large Vf values; smaller 

gradients are observed for the unit cells with small fiber volume fraction.  These trends are 

due to the varying sizes of the polymer subcells which surround the carbon fiber, where 

the unit cell geometries with larger polymer subcells have increased compliance at the 

interphase.  A comparison of the different conditions demonstrates that the hot/wet 

condition increases the compliance at the interface, as a result, less stress is transferred to 

the fiber subcells.   

 

 

  
(a)  0.15% Unit Cell Strain (b)  0.55% Unit Cell Strain 
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(c)  0.15% Unit Cell Strain (d)  0.55% Unit Cell Strain 

Figure 5.11. Strain-Width (a, b) and Stress-Width (c, d) Plots from Microscale, 

Transverse Tension Simulations with Different Vf and Environmental Conditions at 

Unit Cell Strains of 0.15% and 0.55% 

  

5.3.2.   Macroscale Simulation Results 

The macroscale stress-strain results for the room and hot/wet conditions of the axial 

tension models are presented in Figure 5.12 and Figure 5.13, respectively.  Each level of 

element refinement is shown in these figures and the axial tension data from the 

experiments in Chapter 4 are also plotted for comparison.  Good correlation is observed 

between the simulated and experimental responses up to the average PEL strain observed 

in the experiments, which was 1.98% for the room condition and 1.7% for the hot/wet 

condition.  The principal strain contours from the axial tension simulations are nonuniform 

but strain concentrations are not prevalent along the edges of the models (Figure 5.14).  As 

a result, small material features are not critical and the simulated stress-strain responses for 

each element refinement overlap, which signifies that convergence occurs with the coarse 



146 

meshed model (5,775 elements).  Table 5.6 compares the elastic modulus calculated from 

each refined axial tension model with the average modulus measured from experiments. 

 

 
Figure 5.12. Simulated and Experimental Stress-Strain Plots for the Axial Tension 

Loading under Room Condition 

 

 
Figure 5.13. Simulated and Experimental Stress-Strain Plots for the Axial Tension 

Loading under Hot/Wet Condition 
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(a)  Room condition (b)  Hot/wet condition 

Figure 5.14. Principal Strain Contours from the Axial Tension 

Simulations 

 

 

Table 5.6. Axial Tension Elastic Moduli 

 Room Hot/Wet 

Simulation – 5,775 elements 46.96 GPa 43.31 GPa 

Simulation – 23,100 elements 47.02 GPa 43.32 GPa 

Simulation – 92,400 elements 46.99 GPa 43.28 GPa 

Experiment 44.87 ± 1.90 GPa 42.53 ± 1.70 GPa 

 

 

The room and hot/wet transverse tension data from the refined models and 

experiments are also plotted in Figure 5.15(a) and Figure 5.16(a), respectively.  Unlike the 

axial tension model, the transverse tension simulations show that convergence is dependent 

on the mesh refinement of the models.  This dependency is due to the intricate material 
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features, including edge effects, which are resolved only with finer meshes.  The results 

from the finest mesh (90,720 elements) converge to the experimental data for both the room 

and hot/wet conditions.  The room and hot/wet conditions simulation results using this 

mesh size are presented in Figure 5.15(b) and Figure 5.16(b), respectively, for the models 

with and without undulation.  The elastic modulus is calculated for each refined transverse 

model and displayed in Table 5.7.  The results for the model without tow undulation exhibit 

a larger stiffness than the results with tow undulation.  This observation is not physically 

meaningful and can be attributed to the 2D nature of the material vectors defined for the 

model without undulating tows.  For the model without tow undulation, the material vectors 

are defined on the xy-plane and only consider the braid angle of the material.  Therefore, 

the material stiffness applied to the elements is also restricted to the xy-plane which leads 

to larger, unrealistic stiffness values.  For the model with both tow undulation and braid 

angles, the material vectors have a z-direction component; thereby, a portion of the tow’s 

axial stiffness is redistributed to the z-direction which increases the element stiffness in the 

z-direction and decreases the stiffness values in the x- and y-directions.  Hence, the 

architecture of the triaxial material is better preserved and a realistic transverse response is 

obtained.   
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(a) (b) 

Figure 5.15. Stress-Strain Results for the Transverse Tension Model at the Room 

Condition Comparing (a) the Simulated and Experimental Data and (b) the Plots of the 

Model with and without Undulation  

 

 

 

  
(a) (b) 

Figure 5.16. Stress-Strain Results for the Transverse Tension Model at the Hot/Wet 

Condition Comparing (a) the Simulated and Experimental Data and (b) the Plots of the 

Model with and without Undulation 
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Table 5.7. Transverse Tension Elastic Moduli 

 Room Hot/Wet 

Simulation – 5,670 elements 47.63 GPa 46.89 GPa 

Simulation – 22,680 elements 45.55 GPa 43.85 GPa 

Simulation – 90,720 elements 41.69 GPa 40.43 GPa 

Experiment 42.10 ± 2.19 GPa 37.19 ± 0.83 GPa 

 

 

 

In addition to the stress-strain responses, the effect of undulation is also observed in 

the local features in the principal strain field.  The principal strain contours for the room 

and hot/wet condition of the transverse tension models are depicted in Figure 5.17 and 

Figure 5.18, respectively.  The contour images are extracted from a simulation stage 

corresponding to the PEL strain for each condition, which is 0.96% for the room condition 

and 0.76% for the hot/wet condition.  Additionally, the results from the transverse tension 

model without tow undulation are also shown (Figure 5.17c and Figure 5.18c).  The 

principal strain contours from the simulations with tow undulation show similar intensities 

and patterns as those obtained from the DIC measurements of the experiments.  However, 

the results of the model without tow undulation show that the features cannot be clearly 

resolved at the PEL due to the lack of out-of-plane properties, and these features only 

appear at later stages of the simulation.    A direct measurement of the strain concentrations 

at the edges of the specimen demonstrates that the pattern is repeated every 17.8 mm 

according to the experimental data and 18.1 mm using the simulation results, which is 

further validation that the physical architecture of the material is adequately represented.  
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(a)  Experiment 
(b)  Simulation with 

Undulation  

(c)  Simulation 

Without undulation 

Figure 5.17. Comparison of Principal Strain Contours from Transverse Tension 

Experimental and Simulation Data at the Room Condition 

 
  

(a)  Experiment (b)  Simulation with Undulation 
(c)  Simulation without 

Undulation 

Figure 5.18. Comparison of Principal Strain Contours from Transverse Tension 

Experimental and Simulation Data at the Hot/Wet Condition 
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5.4. Chapter Summary 

The multiscale framework provided in this chapter consists of high fidelity 

micromechanics as well as a mesoscale and macroscale which are modeled and simulated 

using the LS-DYNA software package.  The high fidelity generalized method of cells is 

applied to obtain microscale unit cell results and this micromechanical theory is detailed in 

Chapter 3.  Temperature and moisture terms are used in the subcell constitutive laws so the 

higher order displacement field of the micromechanical theory accurately captures the 

effects of the mismatch in thermal and moisture expansion.  The viscoplastic theory, 

described in Chapters 2 and 3, is utilized in the microscale polymer subcells in order to 

determine the appropriate elastic range for each type of microscale geometry and loading.  

Three microscale geometries are constructed based on the different Vf specifications of the 

mesoscale subcells, and each geometry is simulated using the room and hot/wet conditions.  

The mesoscale model discretizes the RUC of the triaxial material into five subcells in order 

to incorporate the axial tows, braid angles, and tow undulation.  The tow orientations are 

defined using 3D material vectors in the material keywords of the LS-DYNA software.  

The coarse mesh of the macroscale model incorporates the mesoscale subcells as finite 

elements and repeats the mesoscale structure to create a six ply, macroscale specimen 

model.  The following results and conclusions are observed for the micro- and macroscale 

simulations: 

1. The microscale simulations demonstrate that the unit cell geometries with larger 

Vf values yield stiffer responses for the axial tension, transverse tension, and in-

plane shear loadings; and the mismatch in thermal and moisture properties, due to 

hot/wet condition, causes a reduction in each response.   
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2. The local strain-width and stress-width analysis of the microscale, transverse 

tension simulations demonstrate that the larger Vf geometries increase the stress 

and strain gradients across the fiber/polymer interface of the unit cells. 

3. A comparison of the local strain-width and stress-width analyses show that the 

hot/wet condition increases the compliance at the interface which cause less stress 

to be distributed to the fiber subcells.   

4. The results for the macroscale simulations of the axial tension and transverse 

tension specimens confirm that the models correlate well with the behavior 

observed in the experiments discussed in Chapter 4.   

5. The principal strain contours from the macroscale simulations match the 

intensities and patterns of the contours obtained from experiments and 

demonstrate that the incorporation of tow undulation in the transverse tension 

models is essential for fully resolving these strain features. 
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6. CONTRIBUTIONS AND FUTURE WORK 

 

6.1.   Contributions 

The primary objective of the research presented in this dissertation was to investigate 

the effect of material variability and environmental conditions on PMC behavior and 

failure.  This objective was achieved by performing testing, characterization studies, and 

modeling of different composites.  Four major contributions were achieved by this work: 

i) A stochastic micromechanics framework was developed, with progressive damage and 

multiscale failure theories, to investigate the effect of variability on the modeled composite 

response, ii) A high fidelity micromechanics technique was adapted by incorporating 

progressive damage and multiscale failure criteria to study the influence of shear coupling 

and various interphase properties, iii) Experiments were performed on triaxial braided 

PMCs to characterize the effect of various environmental conditions on the mechanical 

properties, damage, and failure of the material, and iv) A multiscale modeling framework 

was created to account for environmental conditions as well as 3D material architecture, 

and to validate the response of macroscale specimen models.  The characterization data 

and modeling frameworks developed through this research illustrate the severity of 

material variability and environmental conditions on composites.  This research represents 

substantial progress towards the development of a stochastic multiscale framework for 

modeling complex PMC architectures. 
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6.2.   Future Work 

While the research shown in this dissertation improves the fidelity of PMC modeling 

and contributes to the further understanding of composite behavior and failure, 

developments and additional testing can be done to improve the effectiveness of the 

modeling framework and to continue advancing the understanding of the composite 

material.  The following future work topics are essential for advancing this research: 

1. The research presented in Chapter 2 provides a stochastic multiscale modeling 

framework capable of accounting for material variability.  The characterization of 

local and spatial Vf variability of the composite microstructure is applied to an 

ordered composite unit cell to generate stochastic stress-strain plots.  The 

characterization data could be used to generate stochastic representative volume 

elements (SRVE) consisting of multiple fibers at the microscale instead of using 

an ordered unit cell.  The microscale SRVE, combined with a high fidelity 

micromechanics theory for shear coupling purposes, would improve the 

representation of the physical material structure and the prediction for progressive 

damage and failure.  The fibers proximity to each other could be varied causing 

the formation of high stress concentrations which would lead to local damage and 

failure variability in the composite model.  A foreseeable challenge in combining 

HFGMC with an SRVE would be a significant increase in the number of subcells 

in the model which would increase the computational cost.  One way to overcome 

this difficulty would be the mapping of the subcells to a parametrical coordinate 

system.  This mapping would allow a subcell to be any type of quadrilateral and 

could be used to optimize the number of subcells in the model.   By better capturing 
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the stochastic, local failure, the modeling framework could be extended to simulate 

fatigue and fracture loadings.   

2. In addition to incorporating microstructure and material property variability, the 

stochastic micromechanics framework could be extended to include epistemic 

variability.  Epistemic variability, also called the model or physics variability, is 

the uncertainty related to the model’s formulation and laws.  Several aspects of the 

current stochastic modeling framework could be modified to integrate epistemic 

variability including the viscoplastic law, progressive damage theory, and 

multiscale failure criteria.  Using the macroscale failure theory, for example, the 

stochastic framework currently only applies the modified Hashin failure criteria.  

The Tsai-Wu, Tsai-Hill, Puck, and any number of failure theories could be applied 

to the stochastic framework by using the LHS technique to generate a random 

number which would be unique to each failure theory.  Therefore, the stochastic 

macroscale failure of the model would have a larger variance and would better 

capture the material response.   

3. For the triaxial braid composite characterization in Chapter 4, the effect of room 

and high temperature were studied as well as humidity.  While these conditions 

were based on realistic environments induced on the aircraft composite 

components, the knowledge of composite behavior and failure could be expanded 

by performing the testing at other interval high temperatures as well as cold 

temperatures.  Additionally, performing other tests such as fatigue or impact would 

expand the data and knowledge base of the triaxial braided composite which would 

increase the applicability of the material. 
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4. The multiscale modeling of the triaxial braid composite in this work is 

deterministic using average values for the constituent properties and orientation 

angles of the micromechanics simulations.  This model could be enhanced by 

adding geometry and orientation variability to the mesoscale.  The tow undulation 

and braid angle could be characterized to provide a statistical distribution of 

material properties for the micromechanics simulations.  While some level of 

through thickness variability is achieved via the subcell shift technique of the 

mesoscale RUC, additional through-thickness variability could be introduced by 

randomly shifting the mesoscale subcells.  In addition, the physical triaxial 

architecture could be directly reproduced using 3D microstructural reconstruction 

techniques.  The data generated from this reconstruction would provide accurate 

measurements for improved subcell dimensions and geometry, and it could also 

be used to explicitly model the fiber tows via FEA models.  
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