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ABSTRACT 

This dissertation research investigates the social implications of computing artifacts 

that make use of sensor driven self-quantification to implicitly or explicitly direct user 

behaviors. These technologies are referred to here as self-sensoring prescriptive 

applications (SSPA’s). This genre of technological application has a strong presence in 

healthcare as a means to monitor health, modify behavior, improve health outcomes, and 

reduce medical costs. However, the commercial sector is quickly adopting SSPA’s as a 

means to monitor and/or modify consumer behaviors as well (Swan, 2013). These wearable 

devices typically monitor factors such as movement, heartrate, and respiration; ostensibly 

to guide the users to better or more informed choices about their physical fitness (Lee & 

Drake, 2013; Swan, 2012b). However, applications that claim to use biosensor data to assist 

in mood maintenance and control are entering the market (Bolluyt, 2015), and applications 

to aid in decision making about consumer products are on the horizon as well (Swan, 

2012b). Interestingly, there is little existing research that investigates the direct impact 

biosensor data have on decision making, nor on the risks, benefits, or regulation of such 

technologies. The research presented here is inspired by a number of separate but related 

gaps in existing literature about the social implications of SSPA’s. First, how SSPA’s 

impact individual and group decision making and attitude formation within non-medical-

care domains (e.g. will a message about what product to buy be more persuasive if it claims 

to have based the recommendation on your biometric information?). Second, how the 

design and designers of SSPA’s shape social behaviors and third, how these factors are or 

are not being considered in future design and public policy decisions.  
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GENERAL INTRODUCTION 

Self-quantification, or recording information about one’s daily inputs, states, and 

activities, is used in the healthcare industry to encourage patients to take greater control of 

managing their health symptoms (Barnett, et al., 2008; Collinge, Yarnold, & Soltysik, 

2013), to promote patient self-efficacy (Gleeson-Kreig, 2006; Ngamvitroj & Kang, 2007), 

to improve diagnostics, and to cut healthcare costs (Marzegalli, et al, 2008; Leong, Sirio, 

& Rotundi, 2005). In the past, self-quantification was conducted by the patient manually 

monitoring and recording his or her own physiological signals or behavioral activities (e.g. 

recording heart rate, testing blood glucose levels at regular intervals, assessing subjective 

energy level, pain level, affect, etc.) and then transferring these data to the medical provider 

through note taking, data entry into a computer systems, phoning into an answering service, 

or reporting to an intermediary care taker (McAdams, et al. (from Bonfiglio and Rossi), 

2011 pp180-185). Compared to regular doctor’s office visits and/or waiting until symptoms 

become bothersome, this method of quantification has shown some evidence that it is 

indeed useful in early diagnosis, improving health outcomes, and reducing costs (Clarke & 

Foster, 2012; Korotitsch & Nelson-Gray, 1999). Many recent methods of self-

quantification have incorporated sensor technology (ambient and wearable) to 

automatically monitor patient behaviors and biological factors in a way that data is captured 

in real time with little to no action by the patient (McAdams, et al., 2011; Nangalia, 

Prytherch, & Smith, 2010; Pantelopoulos & Bourbakis, 2010; Patel, Park, Bonato, Chan & 

Rodgers, 2012; Song, Wang, Yang, & Li, 2014). Within the healthcare industry, the input 

of self-sensor data is viewed as a critical component of diagnosis and treatment, especially 

in situations where some symptoms require frequent and accurate measurement (such as 
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blood glucose levels) to properly manage (Clark & Foster, 2012). These data are generally 

being used in two separate but related aspects of health care; diagnostics and prescriptives. 

In diagnostic applications, medical personnel may use sensor data to identify risk factors 

or changes in typical behaviors. For example, the ZIO patch heart monitor records the 

wearer’s electrocardiograph information and can detect irregular heart rhythms which can 

aid in early diagnosis of heart disease and aid in stroke prevention (Barrett, et al., 2014).  

In prescriptive applications, medical personnel may use sensor data to generate 

directives for a patient to follow, such as to change/take medications, change body position, 

increase the intensity of a work out, stop a particular behavior, etc. These applications are 

intended to better manage and/or prevent the onset of symptoms. For example, Bachlin, et 

al. (2014) designed a wearable device for persons with Parkinson’s disease who experience 

freezing of gait (FOG). FOG is a sudden, but momentary “inability” to move and can often 

lead to a fall. While pharmacological treatments for FOG symptoms have shown limited 

promise, behavioral treatments using external cues (such as walking to an audible beat) 

have seen more success. However, behavioral treatments require conscious vigilance, 

which may be difficult for older patients in the later stages of Parkinson’s disease. The 

wearable designed by Bachlin, et al. detects precursors of FOG symptoms and provides the 

wearer with an audible sound before the FOG occurs, alerting the wearer that he or she 

should act to avoid FOG.   

Prescriptive application with tangibly positive outcomes, like preventing falls, may 

seem manifestly unobjectionable, however, the ubiquity and robustness anticipated for the 

future of wearable devices that use SSD means developers will be able to link biological 

data to behavior in ways where the prescriptives are far less objectively positive. While the 
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medical industry’s use of self-sensor data and application development and the goals they 

work toward are arguably guided by government regulations and established codes of 

conduct (Riddick, 2003), the ethical and regulatory standards guiding the use of self-sensor 

data in consumer applications are considerably less coherent or transparent. A report from 

Gartner (2016) projects revenue for SSD devices will reach 28.7 billion in 2016 with the 

majority of this revenue stemming from consumer wearables for health and fitness, whihch 

are projected to sell nearly 200 million units worldwide in 2016 (Woods, & Van der 

Meulen, 2016).  The design and deployment of these consumer products pose unique 

ethical and regulatory challenges that are not well addressed in literature, especially when 

contextualized as part of a broader sociotechnical system in which scientific knowledge 

about the body and understandings of normality are not causal, but co-constructed (Pinch 

& Bijker, 1984; Foucault, 1977; Illich, 1976; Rosenberg, 2002). 

Project Summary 

 This dissertation research investigates the social implications of computing artifacts 

that make use of sensor driven self-quantification to implicitly or explicitly direct user 

behaviors. These technologies are referred to here as self-sensoring prescriptive 

applications (SSPA’s). This genre of technological application has a strong presence in 

healthcare as a means to monitor health, modify behavior, improve health outcomes, and 

reduce medical costs (Boulos, Brewer, Karimkhani, Buller, & Dellavalle, 2014; Lewis, 

Eysenbach, Jimison , Kukafka, & Stavri, 2005; Swan, 2012a). However, the commercial 

sector is quickly adopting SSPA’s as a means to monitor and/or modify consumer 

behaviors as well (Swan, 2013). This growing industry consists of primarily wearable 

sensors that monitor characteristics such as movement, heartrate, and respiration; 
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ostensibly to guide the users to better or more informed choices about their physical fitness 

(Lee & Drake, 2013; Swan, 2012b). However, applications that claim to use biosensor data 

to assist in mood maintenance and control are entering the market (Bolluyt, 2015), and 

applications to aid in decision making about consumer products are on the horizon as well 

(Swan, 2012b). Interestingly, there is little existing research that investigates the direct 

impact biosensor data have on decision making, nor on the risks, benefits, or regulation of 

such technologies. The research presented here is inspired by a number of separate but 

related gaps in existing literature about the social implications of SSPA’s. First, how 

SSPA’s impact individual and group decision making and attitude formation within non-

medical-care domains (e.g. will a message about what product to buy be more persuasive 

if it claims to have based the recommendation on your biometric information?). Second, 

how the design and designers of SSPA’s shape social behaviors and third, how these factors 

are or are not being considered in future design and public policy decisions. 

Primary Objectives 

 Using an interdisciplinary approach, this research seeks to achieve three primary 

objectives drawn from the existing body of knowledge on the use of SSPA’s in the 

healthcare industry and their adaptation and adoption by the commercial sector.  

 

Objective 1 (Science, Technology, and Society): 

To investigate the social implications of the commercial use of self-sensor 

prescriptive application technologies (SSPA’s) from a Science, Technology, and 

Society perspective.  
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Objective 2 (Experimental Psychology):  

To conduct an experiment using human subjects that measures perceptions and 

impacts on persuasion of SSPA use in a non-healthcare scenario.  

Broader Purpose 

  The broader purpose of this dissertation is threefold: to expand and refine 

basic and applied research in the field of psychology, to contribute to future policy related 

to governance of emerging technology, and, most broadly, to conduct an interdisciplinary 

research project that engages different epistemological approaches to knowledge creation 

and that impacts multiple knowledge domains. The three stated objectives above will 

facilitate this broader purpose by identifying the risks and benefits as they pertain to the 

current sociotechnological system in which the technology is embedded, using an 

experimental approach to investigate persuasive impact of the technology, and developing 

a value-oriented approach to future regulations related to minimizing risks while 

maximizing benefits. In a strictly disciplinary approach these questions would more likely 

be asked and investigated individually by scholars from different domains; however, 

because each objective relies heavily on the research outcomes of the others, I believe an 

interdisciplinary approach can more adequately speak to the broad question of how this 

emerging technology may impact society. Given the recent drive to develop technologies 

to change health behaviors (Boulos, et al., 2014; Lewis, Eysenbach, Jimison , Kukafka, & 

Stavri, 2005) and the implications this type of social control might have in political and 

commercial applications, understanding the impact of emerging SSPA’s is both timely and 

critical.  
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PART 1 - INTRODUCTION 

Competition to be the most influential forces in the lives of individuals for voting, 

consumer choice, group and personal interactions, etc. is omnipresent. The future Internet 

of Things (IoT), and all the Big Data it subsumes, is lauded as the ultimate tool for 

consumer analytics, predictives, and influence (Swan, 2012b).  The data provided by 

wearable biosensors, and the algorithms that drive them, is considered a critical component 

in designing this truly personalized IoT environment, but an in-depth analysis of how this 

category of technology could impact society has not been conducted.  Attempts to use 

social, political, and economic persuasion tactics to steer publics to certain courses of 

action is arguably common place, however, the emerging IoT, and the massive amount of 

data it will provide access to, creates an unprecedented technosphere of influence that is 

not yet fully understood. Nonetheless, IoT architects are in a full-throttle race to design 

new ways to monitor, collect, and share user data through different sensor technologies 

(Peterson, 2015; Wasick, 2013; Worthman, 2014) and the increasing popularity of self-

quantification technologies (such as wearable activity trackers) suggests consumers are 

willing to provide the data (Lupton, 2014; Lee, Egelman, Lee, & Wagner, 2015). While 

those interested in the mediators of consumer choice transactions may have previously 

been restricted to IoT data about geolocation, banking, and other visible demographics, 

now biological, real-time information tracking about the internal behaviors of the 

consumer, such as heart rate, metabolic information, genetic markers, and neurological 

feedback, are also being developed as a means to understand and influence consumer 

behaviors (Swan, 2012b; Swan, 2013). However, while commercial self-sensoring 

technologies and applications are predicted to be a cornerstone of IoT development and 
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success (Swan, 2012a), the ethical standards, goals, and behavioral impacts effecting this 

consumer industry are much less transparent. The following section attempts to examine 

the implications of this lack of transparency and highlight potential social impacts of the 

commercial use of self-sensors to create prescriptive applications for non-medical 

consumers. These factors are explored by first defining the domain of SSPA and current 

directions in research and development. Next I examine regulatory and ethical standards 

for SSPA development and deployment. I then highlight deficiencies in these standards by 

discussing research in the field of psychology, philosophy, and sociology that suggests a 

number of, as yet, undiscussed risk potentials of SSPA’s.   

Self-Sensor Prescriptive Applications (SSPA’s) 

Self-sensor data (SSD) can be used as a means or as an ends in a technological 

system. Table 1 lists major types of sensors that are currently used in self-sensoring devices 

and the type of information that these sensors can collect. In some wearables, such as 

prosthetic limbs, cochlear implants, and speech to text devices, SSD is used as a means of 

communication between the body and the devices in order to control the action of the 

device. In this category of wearable, the meaning of a particular quantitative measure of 

SSD is defined by the design engineer(s) by programming the device to behave in some 

predictable way when these quantities are present, but these quantities may not necessarily 

be biologically meaningful or relevant to the user. So, for example, a myoelectrically 

controlled prosthetic arm is controlled by SSD collected from electrical activity in the 

residual muscle of the amputated limb. The person wearing the prosthetic limb controls 

these SSD through intentional engagement of the residual muscle. However, the person 

need not be explicitly aware of specific quantified measurements of the SSD for the   
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Table 1    

Sensor types used in wearable self-sensor devices. 

Sensor Type Mode Description Applications  

Accelerometer
a 

electro-

mechanical  

rate of change of the velocity of an 

object 

orientation, 

vibrations, 

location, motion, 

displacement 

    

Acousticb electro-

mechanical  

compression and expansion of solids, 

liquids, or gases 

sound, substrate 

density, 

composition 

    

Chemicalc voltammetric energy change as result of interaction 

between analyte and receptor 

composition, 

movement, speed 

of processes, 

flow, force, 

interaction, 

temperature, 

detection 

potentiometric change in electrical potential 

optical change in absorbance, refractive, 

reflection, luminescence, temperature,  

piezoelectric frequency change of quartz oscillator 

plate 

magnetic change of paramagnetic properties of a 

gas 

electrical change of electrical properties  

Flowd thermometric heat change movement of 

liquid 

potentiometric change in electrical potential  
    

Forced electro-

mechanical  

change in electrical resistance of 

chemical polymer upon application of 

force 

force, torque, 

strain, shock, 

pressure 

 piezoelectric  frequency change of quartz oscillator 

plate 

 physical changes in shape of elastic material 

    

Humiditye psychometrics changes in 

electrical capacitance or resistance  

moisture, leaks, 

humidity 

thermometric change in resistance of electrical 

current 

 

gravimetric mass of an air sample compared to an 

equal volume of dry air 

 

    

Temperaturef electro-

mechanical  

voltage of current between dissimilar 

metals that changes with temp. 

temperature 

  thermometric change in resistance of electrical 

current 
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prosthetic arm to have value. On the other hand, for some wearables, the quantified 

measurements of SSD are the ends themselves and value is derived from the user’s desire 

to know what these measurements are. This desire is driven by beliefs about the body and 

these beliefs are shaped primarily by social, psychological, and political factors. For 

example, if a wearable is designed to monitor myoelectric activity of a body part so that 

the wearer can use the data to identify strengths and weakness of the muscle tissue, the 

value of this device is driven by what the user believes these data do or do not tell him 

about his body and how important it is to know this information.  

The two uses of SSD are not mutually exclusive; a device can use SSD as both a 

means and an ends whether by intentional design or by the design’s affordances (e.g. a 

person could access the SSD data of a myoelectrically controlled prosthetic to diagnose 

problems with the residual muscle tissue even if the device was not meant to be used in 

this way). However, the primary focus of this research concerns devices in which SSD is 

marketed to consumers as an ends unto itself because of the unique and challenging ethical 

questions the design and distribution these devices raise have not been well addressed in 

literature. This is not to suggest that devices that use SSD as a means do not pose equally 

challenging questions related to moral and regulatory concerns, but a much larger body of 

research in this field already exists. These are primarily contextualized within the field of 

disability rights and assistive technologies in relation to issues of fairness, equality, and 

constructions of normality (Baker, 2014; Allhoff, Lin, & Steinberg, 2011; Erkulwater,  

Sources:  aSparkfun, 2016; bMediaLab Robotics, 2008; cHulanicki, Glab, & Ingman, 1991; 
dMakkonen, & Laakso, 2005; eUpp & LaNasa,  2014; fAgarwal, 2016. 
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2006; Kass, 2003; Vaughn Switzer, 2003; Conrad, 1992) but a critical analysis of social 

impacts of devices using SSD as an ends has not been done. 

 

When a device markets SSD as an ends the success rests in the ability to convince 

the user that these ends have inherent value – in other words there must be some reason the 

user would want to know what these values are. The underlying theme in all such attempts 

to construct a value for these devices (whether accurate or not) is that SSD inform the user 

to act or not act. So a device that monitors heart rate will have little value to a runner unless 

the runner has a desire to understand the meaning of the heart rate; and to understand the 

meaning of the heart rate means comparing it to some baseline for normality. The runner 

can interpret the heart rate as being within a normal range in which case no action is needed, 

or outside a normal range, in which case action may be needed. Value for this device rests 

on how important this understanding is to the runner and, through this understanding, an 

action is always implied (i.e. do something different or keep doing what you are doing). In 

this dissertation, this is referred to as the “prescriptive” quality of the device. This 

prescriptive quality may be expressed explicitly through a user interface that provides 

quantified SSD feedback and informs the user what specific actions they should take to 

change or maintain these measurements or it may be more implicit by only indicating 

where SSD feedback is situated to some relative measurement (e.g. higher than your peers, 

lower than your personal norm, etc.). The user interface that conveys the SSD to the users 

employing explicit or implicit prescription is called the “application.” Taken together, 

devices that use SSD as ends are referred to here as self-sensoring prescriptive applications 

(SSPA’s).    
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Consumer SSPA’s (and medical SSPA’s) figure prominently in the ongoing 

expansion of the IoT. The perceived intelligence and value of IoT systems will be judged 

by how data is aggregated to create (a) “cyberinferences,” in which completely new 

information about an individual (or object, group, etc.) is created, and (b) 

“cyberprescriptives,” in which instructions and/or actions are generated for the users or 

other IoT objects. Cyberinferences and cyberprescriptives will be key in creating intuitive, 

adaptive systems, and will undoubtedly impact how individuals perceive themselves, make 

decisions, and interact with their world. The addition of SSD to certain IoT systems will 

be crucial in generating highly accurate and intimate profiles of individual users and in 

generating cyberprescriptives that are highly relevant to the user and the context at hand. 

Producing such an IoT system that could reliably guide user behavior and attitudes through 

cyberprescriptives (such as purchasing choices, health behaviors, social interactions, 

movements, etc.) is arguably the Holy Grail for social, political, and economic stakeholders 

competing for control of user behavior. It is therefore not surprising that the development 

of SSPA technologies has been met with little opposition. Currently, the healthcare 

industry is at the forefront in researching and developing this type of behavioral co-piloting 

technology and research and development (R&D) has so far been relatively transparent in 

terms of ethical standards, outcome goals, and behavioral impacts (Lewis, Eysenbach, 

Jimison , Kukafka, & Stavri, 2005). In contrast, R&D policies and regulations for consumer 

SSPA’s are nebulous and far less transparent. 

 Ethics, Regulation, and Policy. Getting a grasp on regulatory and ethical standards 

concerning SSPA design is challenging, not only because it is an emerging field, but 

because it is an interdisciplinary one as well. There are many actors and stakeholders 
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involved in the design cycle of SSPA’s and many points in this cycle at which ethical 

standards are either unclear, unarticulated, or conflicting. Figure 1 illustrates key aspects 

of the SSPA design cycle and key factors that require designers to make value-based 

judgments. Here, “value-based” refers to judgements that can be influenced by personal 

beliefs and goals. For example, the decision to use a pressure sensor that operates by 

measuring changes in the volume of a gas substrate rather than one that uses a liquid  

substrate is based on the designer’s beliefs about efficiency, costs, availability of materials 

etc. in combination with their goals for the “user” which may be the manufacturer, some 

regulatory body, peers, or an end-user.  

Though it is difficult to definitively delineate where one field ends and another 

begins, the sensor mechanics and infrastructure are primarily the domain of engineering 

(e.g. mechanical, electrical, chemical, etc.). In contrast, the algorithms (from which 

cyberinferences and cyberprescriptives are forged) that make SSPA’s “meaningful” are 

shaped by several domains. The algorithm (or set of algorithms) essentially performs as a 

decision engine from which prescriptives are derived. The task of coding a set of 

commands based on input from the sensor data (e.g. when heart rate reaches >90 bpm a 

message should appear on the screen) into syntactic and semantic symbols that can be 

understood by both the technology and the user is a computer engineering task (e.g. 

software engineers). But before that can happen, biological interpretation of the sensory 

data input must be derived from a body of knowledge primarily under the domain of natural 

sciences. These interpretations are rarely definitive and decisions must be made about 

which to use. These decisions may be made, for example, by an engineer, a scientist, or an  
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entrepreneur with access to the internet. Decisions associated with algorithm design of 

SSPA is at the heart of identifying and understanding the social implications of SSPA and 

are discussed further in Algorithmic responsibility, p 32. 

The user interface for SSPA’s is another design aspect that falls under multiple 

domains. The codification of the interface software behavior is primarily within the domain 

of software engineering, but the aesthetic, messaging, and instrumental goals actualized 

through the work of the engineer are based on the social, cultural, and economic needs of 

the actors responsible for producing and ultimately marketing the SSPA. Finally, user 
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behaviors themselves must also be considered as a key aspect of the SSPA design cycle; 

this factor also falls under multiple domains of ethical and regulatory design 

considerations. Designers within the engineering domain play a critical role in determining 

the degree to which users can modify or interfere with the user interface. In order to do 

this, designers must imagine the various ways in which a user could use a technology in a 

different manner from which the designer intended and must then decide whether to allow 

this alternate use or to prevent it by altering the design. (Whether this practice ought to be 

a required responsibility of the design engineer and the extent to which this type of analysis 

should be pursued is part of ongoing debate about computer engineering ethics and ethics 

in technology more broadly (see Herkert, 2001; and van de Poel, 2001)). Users themselves 

make choices about how and when the interface is used, but whether these choices fully 

informed or not depends on how transparent the technology’s purpose, operating 

instructions, and risks are. In other words, just as a pharmacy may control user behavior by 

supplying childproof caps on certain prescription bottles, the patient for whom a 

prescription is issued is expected to adhere to instructions on how to take the medication, 

but only when these instructions are clear and meaningful. In its most basic form, 

engineering related standards apply to the mechanics of SSPA’s, science and healthcare 

related standards apply to the construction of a knowledgebase from which rules about 

sensor data can be interpreted, private industry standards are used to pick and choose which 

rules to use, and users decide how the rules will apply to them.  

Just as the various components and processes involved in SSPA design fall under 

multiple domains of informal ethical principles (e.g codes of ethics, industry standards, 

etc), government oversight does as well. There are several government agencies that 
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regulate individual aspects of these technologies. For example, if a wearable device makes 

use of radio wave frequencies, the design would need to adhere to relevant standards set 

by the Federal Communications Commission (FCC) for that specific factor. Similarly, if 

the device makes use of chemical reagents, the design would need to adhere to relevant 

standards set by the Environmental Protection Agency (EPA) for that specific factor. 

However, many aspects of consumer SSPA design are unregulated; most critically, 

algorithm design (and the cyberinferences and directives they afford) is not specifically 

subject to any regulatory oversight so long as the product is not classified as a medium to 

high risk “medical device” by the US Food and Drug Administration (FDA; US Food and 

Drug Administration, 2015).  This particular issue of algorithm design practices is 

discussed further in Algorithmic responsibility, p 32. 

  Numerous industry leaders on the medical care side of SSPA development are 

calling for clarification and oversight from the (FDA) to ensure that applications designed 

to shape medical related behaviors adhere to some set of quality standards (Strickland, 

2012; Boulos et al., 2014). However, the FDA has been slow to respond and has so far only 

provided narrow guidelines related to specific apps that impact the performance of medical 

devices that are already regulated (i.e. an app that “transforms” a smartphone into an 

ultrasound device would need FDA approval before coming to market; US Food and Drug 

Administration, 2011). Even if the FDA was to take greater control of these types of 

SSPA’s, it appears that commercial SSPA’s using the same sensor technologies can simply 

follow a different set rules if marketed as “wellness” or entertainment application.  

The FDA released an unofficial, nonbinding set of guidelines for “low-risk general 

wellness” (LR-GW) products. The very brief document, released for public comment in 
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January, 2016 was aimed at providing “clarity to industry and FDA staff on the Center for 

Devices and Radiological Health’s (CDRH’s) compliance policy for low risk products that 

promote a healthy lifestyle (general wellness products)” (Food and Drug Administration, 

2015). The document presents guidelines for defining LR-GW products and clarifies that 

such products will not be subject to FDA compliance and regulatory requirements.  

The characterization of “low risk” is primarily focused on how the physical 

components of the device interact with the human body. Most of the best-selling wearable 

devices available today, such as the Fitbit and Apple watch, would be considered “low-

risk” under the guidelines so long as they are non-invasive (do not breach skin or mucous 

membrane of the body), are not known to cause harm if the controls malfunction (eg. laser 

and radiation damage), and do not damage the skin through biocompatibility issues. 

Classifying a device as a “general wellness” product is much more subjective and is 

primarily linked to what the manufacturer claims the device can do rather than what it 

actually does. The guidelines describe “general wellness” products as those with intended 

use claims solely related to: 

1. sustaining or offering general improvement to conditions and functions 

associated with a general state of health that do not make any reference to 

diseases or conditions, OR 

2. promoting, tracking, and/or encouraging choice(s), which, as part of a 

healthy lifestyle, may help to reduce the risk of certain chronic diseases or 

conditions; and may help living well with certain chronic diseases or 

conditions. (Food and Drug Administration, 2016) 

The guidelines do not address the affordances of the product, only the “intended 

use” claims. This could be problematic for a number of reasons. First, while a device might 
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be marketed as a “general wellness” product according to the guidelines above (and 

therefore not subject to FDA evaluation), the capabilities of the device may still afford a 

user access to in-depth symptomatic information unrelated to the intended use claims, and 

which would normally be used by a physician to diagnose disease or chronic illness. For 

example, wearable device manufacturer Empatica produces two products that collect 

similar information but are marketed differently (Empatica, 2016). The E4 Wristband is 

marketed as a consumer product to provide the wearer with continuous real-time 

monitoring of blood volume pulse (BVP), electrodermal activity, skin temperature, and 

motion based activity. It is offered as a data collection device and the manufacturer makes 

no claims related to diseases or medical conditions. This would (unofficially) be considered 

a LRGW product. At the same time, the company also offers the Embrace Watch which 

collects identical information, but is being marketed as an epilepsy monitor and is currently 

undergoing clinical trials as a tool to prevent Sudden Unexpected Death in Epilepsy 

(SUDEP). Marketed in this manner, the Embrace Watch would not be considered a 

“general wellness” product because the intended use claims are directly related to diagnosis 

of a medical condition. The affordances of the two devices provide the user with the same 

information from which they can make decisions about their health behaviors, but the 

manufacturer’s claims about the intended use for the data currently dictate whether the 

device will need to go through any sort of rigorous testing about the accuracy of the data 

collection or the impact the information has on the user’s actual behaviors and health.  

Another potential shortcoming of the FDA’s unofficial guideline is related to a 

psychological phenomenon referred to as the gatekeeper effect. This phenomenon occurs 

when an authority (the gatekeeper) exercises some form of implicit or explicit information 
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filtering before releasing information to a group. Research suggests that information that 

is not excluded by the authority may be perceived as more persuasive even though it is not 

specifically endorsed (Schweitzer & Saks, 2009). In a legal setting, Schweitzer & Saks 

found that study participants were less critical of and more persuaded by scientific evidence 

when it was presented within a trial setting (whether explicitly or implicitly included by 

the trial judge), compared with the same evidence presented outside of a courtroom context 

or explicitly excluded by the trial judge. These findings suggest that the judge, or the 

judicial process more broadly, imbue the scientific evidence with a higher degree of 

credibility merely by allowing (or not disallowing) access to the information – regardless 

of the intellectual merit of the information itself. Thinking of the FDA as the gatekeeper, 

by publishing guidelines through which a manufacturer can avoid review of their product 

by making only certain kinds of claims about intended use, products that monitor health 

related information are is some sense “approved” by a process of omission. When thinking 

about determinations of product safety, not having FDA approval is quite different than 

not needing FDA approval. The former is more ambiguous and could imply either a product 

has yet to seek approval or has been rejected, however the latter implies a degree of risk so 

low that it could be misinterpreted by laypersons as essentially having FDA approval 

insofar as the perceiver believes the product is within the purview of the FDA. The draft 

guidelines associate the FDA with product safety for these LR-GW products in a way that 

didn’t previously exist. Because the affordances of the SSPA are not considered in the draft 

guidelines, through careful wording of intended use claims, a manufacturer could claim a 

product, which might otherwise be required to endure clinical testing, is “so safe it doesn’t 

even require FDA approval.”  
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The FDA’s suggested guidelines for LR-GW wearables also do not address the 

issue of compatibility and data sharing with other FDA approved self-sensor technologies. 

The “low-risk” requirement, on the surface, seems to limit a SSPA to a physical design that 

does not breach the skin and will always be limited to a limited set of sensor types. 

However, it does not make reference to LR-GW devices that can collect data from other 

independent FDA approved devices that can transmit data from within the body. This could 

vastly expand the scope of real-time data available to wearable devices. For example, 

several ingestible devices that can monitor and transmit physiological, biochemical, and 

genetic data already have FDA approval (Tolentino, 2013). As it stands now, so long as a 

SSPA only makes intended use claims related to “general wellness” it could access and 

provide these types of data to the user and remain outside the FDA’s purview.  This could 

expand the scope of data available for “general wellness” assessment to the entire 

physiological make-up of the human body. 

Finally, the draft guidelines also specify that “disease-related general wellness 

claims should only contain references where it is well understood [emphasis added] that 

healthy lifestyle choices may reduce risk or impact of chronic disease or medical 

condition,” but leaves unsaid from whom this type of consensus must come from and what 

standards establish it. When it comes to disease-related risk and treatment, the notion that 

things are ever “well understood,” seems overly idealistic and, at the very least, temporary.  

Users immersed in SSPA’s, Big Data, and the IoT will no doubt find it easier to quantify 

and categorize themselves according to norms and to seek “treatments” to reach those 

norms when they fall short. But it is critical to recognize that perceptions of what is and 

what is not normal continually changed over time and things we consider “well 
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understood” as contributing to a healthy lifestyle (and what we consider to be a “healthy 

lifestyle”) are intimately tied to culture and power rather than objective interpretation of 

raw data. Individuals and organizations that control medical knowledge are able to shape 

these perceptions; however, some of those considered to be “part of” the medical 

community, such as the pharmaceutical industry, are motivated to create or selectively 

make available knowledge that most benefits their economic interests, rather than the best 

interests of the patient (Poitras & Meredith, 2008; Moynihan & Henry, 2006; Goldacre, 

2013). Indeed, if we consider the pharmaceutical industry as an example of a private 

industry borrowing credibility from medical science to sell consumer goods, it stands as an 

example of how SSPA’s may also gain influence over consumers. No doubt 

pharmaceuticals are used for decidedly “medical” purpose, but how these purposes come 

to be considered “medical” is sometimes a chicken-or-egg question (Goldacre, 2013). This 

issue is discussed further in the context of medicalization and control in Social control, p 

35.  

The FDA is not the only government agency struggling with how to address 

SSPA’s. The Federal Trade Commission (FTC) has also been active in the discussion of 

health and fitness tracking, and so far, has been just as reluctant to offer official guidance 

for consumers or manufacturers. Although the FTC’s stated mission is to protect consumers 

against unfair or deceptive business practices, (US Federal Trade Commission, 2015), their 

focus in this field has been mainly on data security and not on the impact devices have on 

actual consumer health. In 2013 the FTC held a public workshop on the Internet of Things, 

which included a panel dedicated to “Connected Health and Fitness” (US Federal Trade 

Commission, 2013). The panel moderator began by stating the intended goal of the 
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discussion is to explore potential privacy and security risks associated with these devices 

(p 164). During the panel, no discussion took place related to protecting consumers from 

fraudulent claims made about health and fitness. In a prepared statement released March 

22, 2016, the FTC acknowledged that products and services that collect and store health 

information raise serious privacy and security concerns for consumers, especially when 

these activities take place outside traditional medical contexts not subject to the Health 

Insurance Portability and Accountability Act (HIPAA). However, again, the statement 

characterized consumer protection only in terms of preventing fraudulent access to 

personal data, with no allusions to protections against bogus health claims (US Federal 

Trade Commission, 2016).  

This is somewhat surprising given that the FTC has taken legal action numerous 

times against businesses making unsubstantiated health claims related to their product.  A 

recent case charged Focus Education with making false claims about the efficacy of their 

online “brain training” product without scientific evidence (US FTC V Focus Education 

LLC, 2014). Also in 2014, the FTC ordered that Genelink could no longer make claims to 

consumers that their products could treat or prevent particular genetic disease unless these 

claims were backed-up by “randomized controlled trials conducted on subjects who have 

that genetic variation” (US FTC v Genelink, 2014). The FTC has made similar demands 

regarding the requirement that health related claims be backed up by scientific evidence, 

ordering that one company producing dietary supplements for weight loss to backup their 

claims with “two randomized, double-blind, placebo-controlled human clinical studies” 

(US FTC v BEIERSDORF, INC, 2011) and demanding another, selling acne treatment, 

back their claims up with “competent and reliable scientific evidence” (FTC, 2011).  
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As described earlier, there are numerous stakeholder groups involved in the design 

and deployment of SSPA (see Figure 1) and, therefore, numerous stakeholders involved in 

the activities at each of these levels of ethical analysis. These stakeholders have varying 

degrees of influence, as well as a range of perceptions about their own moral 

responsibilities for negative (or even positive) social implications that can be traced back 

to the technologies. Somewhat ironically, those who are often criticized as being least 

likely to claim moral responsibility for social outcomes of emerging technologies are the 

best positioned, both professionally and practically, to do so. Professional engineers have 

unique expertise and access to the technological processes of SSPA design, and have 

demonstrated an ability to adhere to formal and informal codes of ethics that are 

specifically constructed to protect public health and welfare (American Society of Civil 

Engineers, 2016; American Society of Mechanical Engineers, 2016; Association for 

Computing Machinery, 2016; Institute of Electrical and Electronics Engineers, 2016; 

National Society of Professional Engineers, 2016). The critical role that technology plays 

in shaping human behaviors, as well as the moral responsibilities engineers have in shaping 

that relationship has received growing recognition in the last few decades (Georgia Tech, 

Center for Ethics and Technology, 2016). A recent IEEE publication (Baker, Gandy, & 

Zeagler, 2015) offers a “Proposed Collaborative Policy Design Framework” that serves as 

a respectable initial step in tackling policy in this domain from the engineering side; 

however, it falls short in terms of thinking critically about value and risk for the user. 

Baker, Gandy, & Zeagler, describe what they call a “design-thinking” approach 

which begins by defining a technological “object” comprised of the mechanical 

components, device behaviors, and sociocultural contexts in which it will be used. Once 



24 

the object is defined, a policy analysis would be conducted to identify potential barriers to 

development and distribution. Stakeholder input would then be sought to consider user 

needs, but it is critical to point out here that “users” in this model are defined as policy 

makers, regulators, industry representatives, and other standard setting bodies, not end 

users of the technologies themselves. The final step in this proposed framework is to draft 

actual policy or return to the initial phase to re-articulate the objectives and outputs of the 

objects to “creatively address the potentials of new technologies while avoiding pitfalls 

that could derail progression.”   

Baker, Gandy, & Zeagler’s framework emphasizes the need for collaboration 

between designers of these technologies and the regulatory bodies that govern them. The 

clearest “benefit” of this approach is that resulting technologies would be much less likely 

to infringe upon or violate existing regulatory standards. Indeed, they suggest that efficacy 

will be evident by the “reduced need for regulatory filings, and an expected increase in 

non-formal industry and multisector collaborative activities.” The clearest benefactors of 

this approach are the developers of the technologies, in the form of streamlining 

development and deployment. The framework lays out a process to avoid risk to developers 

that could stem from regulatory obstacles, but not risk to end-users from potential outcomes 

not already covered by regulatory standards. It focuses on regulatory avoidance and 

compliance, while a more robust framework should also incorporate a process to identify 

new types of risk to end-users that are not addressed by existing standards, so that design 

can be amended to avoid such risks even in the absence of regulatory obstacles. Also 

conspicuously absent from the framework is any mention of examining or measuring the 

value of a technology to the user either before or after deployment. Nor is their mention of 
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approaching users to identify their problems or needs and evaluating whether a 

technological approach to addressing the problem or need is even appropriate.  A more 

recent proposal from Lurie and Mark (2016) discusses these types of concerns and why 

engineers, particularly software engineers, should be responsible for thinking about these 

factors in design.   

The algorithms that drive SSPA’s are rendered to the end-user as “software,” so it 

is useful to examine research in the field of ethics and software engineering. In a recent 

publication in Science and Engineering Ethics, Lurie and Mark make the case that the 

nature of the relationship between the end-user and software engineer warrants a stronger 

and more formalized emphasis on ethics-driven software development be incorporated 

within the professional standards for this community. Lurie and Mark point out that end-

users are increasingly dependent on computer software packages as technologies become 

more and more ubiquitous, while at the same time there exists a wide knowledge gap for 

the user representing how and why these software packages behave the way they do. The 

researchers argue that the outcomes these engineers facilitate are not merely related to 

reliability, usability, security, etc., but to the architecture of human interactions with the 

world, with each other, and with themselves. These interactions can and do have significant 

ethical implication; choices related to algorithm design and the software it constitutes can 

impact social norms, freedoms, identity, personal safety, and more. With this in mind, Lurie 

and Mark lay out an ethics-driven framework for software development that they argue 

will “raise stakeholder awareness about the ethical considerations and implications relevant 

to [software development].” They describe five phases of software development and 

propose a unique set of yes/no questions for each phase that are ostensibly designed to 
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engage the software engineer and the stakeholder client in a conversation about ethical 

interventions. However, of the 32 questions they suggest only one that directs the software 

engineer to consider end-user impacts: 

Is there a procedure in place to define the course of action if, during the planning 

requirements phases, it is discovered that fulfilling the customer’s demand will lead 

to negative consequences and possibly contradictory and illegal outcomes? 

(Question 4 of “Requirements Phase”, p 432). 

One other question could be interpreted as being related to ethical implications: “Is 

a mechanism in place that distinguishes between a quality product versus a correct 

product?” (Question 2 of “Testing and Verification Phase,” p 432). However, the authors 

are not clear whether the perception of a “quality product” is meant for the stakeholder 

client or the end-user. As with the Baker, Gandy, & Zeagler framework discussed 

previously, this framework seems unlikely to promote a user-centered mindset focused on 

ethical implications, but instead seems more conducive to removing or avoiding boundaries 

to development and deployment. For example, “Has it been determined who makes 

decisions on behalf of the client?”; “Has it been determined who approves the budgetary 

flexibility for project management?” (p 431). While the goals Lurie and Mark lay out are 

laudable, and the argument software engineers should be more responsible in addressing 

ethical implications of their craft is well articulated, the framework and sets of questions 

they propose fall short in addressing substantive issues related to the ethical implications 

of software design.   

In a paper describing a set of rules for moral responsibility and computing artifacts 

(which includes software and hardware), Miller (2011) made a similar argument to Lurie 
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and Mark that "people who design, develop, or deploy a computing artifact are morally 

responsible for that artifact, and for the foreseeable effects of that artifact.” He also argues 

that this responsibility “includes being answerable for the behaviors of the artifact and for 

the artifact’s effects after deployment, to the degree to which these effects are reasonably 

foreseeable by that person.” In terms of developing professional standards for the design 

of SSPA, it might appear that Miller would argue that a process for considering ethical 

implications of the technology should fall within the purview of the software engineer; 

however, Miller adds that moral responsibility for computing artifacts also rests with “other 

people who design, develop, deploy or knowingly use the artifact as part of a sociotechnical 

system.” Effectively, “The Rules,” as Miller describes them, define a shared responsibility 

in considering the moral implications of computing artifacts, including end-users. 

However, as Lurie and Mark point out, the end-user may not have the knowledge required 

to consider and predict the behaviors of SSPA’s and the resulting moral implications. This 

puts users, at least, at a disadvantage in exercising their responsibility; this issues is 

discussed later in Engineering discipline, page 35.  

Some researchers have suggested that independent reviewing organizations should 

engage manufacturers of SSPA’s (and technology more broadly) to consider the ethical 

implications of these devices regarding consumer behaviors when the device falls outside 

the purview of government regulatory bodies (Boulos, Brewer, Karimkhani, Buller, & 

Dellavalle, 2014; Sclove, 2010). For example, SocialWellth (formerly Happtique) offers 

to vet health related applications and devices that are not otherwise evaluated by the FDA. 

They describe their methodology for vetting as: 
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“a multidisciplinary review shaped by behavioral science to assess functionality, 

consumer appeal, usability and design, privacy and security, content quality, 

clinical evidence, cost and other metrics to deliver value to our healthcare sponsors 

and end consumers.” (SocialWellth, 2016) 

The organization offers a two-year certification for products it evaluates, but the 

process is voluntary on the part of manufacturer and success of this approach in protecting 

consumers from risk will rely heavily on educating consumers about the value of the 

certification process. At the time this research was conducted, the SocialWellth website 

offered no information to end-users about what type of protections they would be offered 

by seeking out certified products, nor was there an online process to identify if a product 

is certified and what that means. The impact of these efforts is difficult to guage as well; 

the founder of the company, David Vinson, announced at a 2015 conference that the 

company had issued 120 certifications out of 600 applications (Vinson, 2015) since 

launching in 2013, but there are more than 165,000 health related apps currently on the 

market (McCarthy, 2015). A similar effort by the United Kingdom’s National Health 

Service (NHS) attempted to create and curate a Health Apps Library in 2013. However, 

after certifying less than 100 apps and failing to properly vet clinical evidence and app 

security, the library website was closed two years later (Misra, 2015).  

Attempts to guide the design of consumer SSPA’s in a way that protects consumers 

have been disconnected, schizophrenic, and unable to keep up with the frenetic pace of 

deployment. It is not only unclear who should be responsible for protecting against 

unwanted or unintended social impacts, but also who should be thinking about these 

impacts. The following sections looks at some of the broader social implications of SSPA’s 

that have not been considered in existing literature.       
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Social Implications   

Vision of the future. As described in the previous section, the development of 

regulations and standards for design and deployment of consumer SSPA’s is still in a state 

of flux. Given the relatively small market penetration of SSPA’s like the Fitbit and Apple’s 

smart watch (Patterson, 2016), coupled with as yet unrealized infiltration of IoT systems 

(Atzori, Iera, Morabito; 2010; Swan, 2012b), and modest inroads into harnessing Big Data 

(Matzner, 2014), perhaps the existing FDA draft guidelines and the FTC’s limited 

involvement may not seem terrible problematic. However, expectations for all of these 

technologies are that their use, relevance, and permeation and will grow exponentially in 

the coming decades, such that ubiquitous, robust data collection will be pervasive and 

powerful (Patterson, 2016; Gibbs, 2015; Hsieh, Komisar, Jazayeri & Yeh, 2016; Swan 

2012b). Although this is certainly not a guarantee, efforts to bring this future to a reality 

are clear, with government and industry actors working together to pave the way, so it is 

critical to consider how current policies and standards would hold up if such a scenario 

came to fruition. The remainder of this paper considers the psychological, and 

sociopolitical implications of ubiquitous LR-GW SSPA’s with expanded capacities that 

are not currently available, but are not prohibited by current standards (for example a LR-

GW device that can access sensor data from inside the body from a separate moderate to 

high-risk medical device such as an implant or consumable).     

Self-sensor persuasion bias. To understand the social implications of SSPA’s it is 

critical to understand how SSD impact persuasion from a psychological perspective, as this 

will no doubt be correlated with commercial industries’ efforts to develop the technology. 

To understand the persuasive value of SSD it is helpful to first consider the instrumental 
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nature of self-sensor data, i.e. how it is substantively different from other forms of self-

knowledge and why is it relevant to decision making? There are a number of sources of 

self-knowledge that have been well studied; such as social comparison, introspection, 

reflected appraisal, and self-perception. For example, Daryl Bem’s Self-Perception Theory 

(1972) postulates “Individuals come to “know” their own attitudes, emotions, and other 

internal states partially by inferring them from observations of their own overt behavior 

and/or the circumstances in which these behaviors occur.” From a behaviorist framework, 

self-knowledge is gained via observation (by the self or by others) and therefore highly 

enmeshed in external cues (Skinner, 1974; Bem, 1972). For example, a sensation of feeling 

low in energy and cognitively depleted can be interpreted as “run-down” or “tired,” and so 

will undoubtedly require the consideration of external factors such as the time of day (e.g. 

10 am vs 1 am), social norms (e.g.  what others doing the same activities are feeling), and 

observations about past behavior (is it unusual to feel this way at this time, within this 

context). The more external information that is available the more likely one can “know” 

what the feelings of low energy and cognitive depletion mean, but less information can 

make understanding these feelings more difficult (for example, not being able to articulate 

the physical feelings, or not being able to remember what activities have been going on 

recently or how one has felt in this situation in the past). The source of self-sensor data is 

neither introspection nor external observation, but rather an external representation of 

internal behavior. In the example referred to above, the interpretation of one’s feelings to 

mean “run-down” vs “tired” could, in the near future, also be shaped by self-sensor data 

about blood cell count, brain wave patterns, and metabolic data (for examples of existing 

technologies see Pantelopoulos & Bourbakis, 2010; Patel et al., 2012; and Mukhopadhyay, 
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2015). It is true that self-sensor data must be represented externally in order to be viewed, 

but it is not “merely” external at that point. This form of external observation of internal 

behavior does not easily plug into existing models of decision making, persuasion, attitude 

formation, etc. In addition, it is not known whether variations in the external representation 

(e.g. gamified, medicalized, highly branded, etc.) of self-sensor data will impact decision 

making.  

Another front on which SSPA’s pose a risk to users is in the types of attitudes and 

behaviors SSPA’s can be directed toward. Again, while the development of SSPA’s in the 

healthcare industry may be arguably guided by beneficence and restricted in scope to 

addressing attitudes and behaviors closely linked to biological and psychological well-

being, the development of consumer SSPA’s is less clearly defined. Consumer SSPA’s 

aimed at influencing decision making about things users have no strong feelings about 

(daily tasks, some social trends, low information situations, etc.) will likely be appealing 

to consumers and, at the same time, are more likely to be based on peripheral cues or 

heuristics, which require less cognitive resources (Chaiken, 1980). In this case, a consumer 

model for SSPA design could use SSD to nudge a user toward certain behaviors by 

targeting decision making that the user is already primed to use peripheral cues for (such 

as choosing between two unknown brands). This approach harnesses the persuasive value 

afforded by the attentional effects of self-sensor data (see PART 2, p 51) and, by targeting 

ambivalent or indifferent attitudes, maximizes the persuasive value of SSD qualities such 

as expertise, simplicity, etc. The degree to which SSD could unduly bias users is unknown 

and may, admittedly, even be inconsequential, but given the amount of research being 

invested in developing effective SSPA’s to influence user behaviors, its seems prudent to 
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understand if such a risk exists. This issue of the persuasive value of SSD in SSPA design 

is covered extensively in see PART 2, p 51. 

Algorithmic responsibility.  Knowing whether SSD may bias a user’s decision 

making processes is critical in understanding future risks to users who may rely on such 

information to make what they believe to be informed decisions. However, it is crucial to 

point out that the risks lie not within the bias to “trust” self-monitoring sensor data alone, 

nor within the raw data itself of course, but rather, within how sensor data is captured, 

processed, and presented to each user by other actors. In other words, while raw data 

collected through my own “sensors” (i.e. eyes, ears, nose, etc.) is made meaningful through 

my cognitive processing (and the life experiences that have shaped them), raw data from 

sensors embedded in self-monitoring devices are first processed and made meaningful by 

someone else –through the engineering of the devices and software used to render the data 

to me. For example, to produce a digital photograph, many actors are involved in creating 

protocols to process visual sensor data collected from a scene before it can finally be 

viewed. At each step, decisions are made about how to achieve the “best” end result, but 

the connotation and operationalization of the “best” end result may vary from actor to actor 

– i.e. truest color, lowest energy usage, most profitable, etc. Each goal can shape how 

sensor data is processed and rendered. For the end user, variations from one group of actors 

to another mean a picture taken on one camera could look subtly or even drastically 

different taken on another, even though the same raw data (the original scene) existed for 

each. As with the design of a camera, the raw data from self-sensor technologies can be 

captured and rendered to the users in many different ways. This highlights the need to 

understand the role of “algorithmic responsibility” in SSPA design. 
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Interestingly, many of the predicted benefits for the use of SSPA’s can also be 

envisioned as risks when contextualized differently. Consider using a SSPA as a basic 

fitness app meant to guide a user’s choices about diet and activity. Assuming the basis on 

which the prescriptives are derived is reliable, benefits could include increased physical 

fitness, lower risk of diet related illness, increased longevity, improved sense of well-being, 

less time off from work, and so on. However, if the SSPA is developed using less reliable 

information to derive prescriptives, and corporate or organizational goals take precedent 

over user goals (such as selling products or services, changing employee behavior, etc.) 

these benefits may be replaced by risks such as poor diet choices, overspending, increase 

insurance/healthcare costs, etc. (Sadowski, 2014, Swan 2012b). In this example, risks and 

benefits vary as a function of algorithm design.  

An algorithm (or set of algorithms) essentially performs as a decision engine from 

which prescriptives are derived. There are a number of stakeholders involved in defining 

the logic, parameters, and function of these decision engines; from the group or individual 

responsible for initiating the technology, to the final application developer responsible for 

rendering the prescriptives to the users in a way that is visually appealing. First, the 

stakeholders initiating the SSPA technology must define how the sensor data input will 

lead to each inference and/or prescriptive. This means choosing scientific findings that 

inform what particular sensor readings (or thresholds)  mean to the diagnostic or symptom 

management plan involved and then defining what the outcomes should be when those 

readings are inputted to the SSPA via a sensor device. While the health care industry is, 

generally speaking, accountable to standards that encourage these algorithmic designs be 

based in scientific theory (Lewis, Eysenbach, Jimison , Kukafka, & Stavri, 2005, pp143-
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149), there is no similar accountability structure for consumer SSPA’s (i.e. LR-GW). This 

is not meant to imply that consumer SSPA’s can only generate positive outcomes if 

grounded in formalized sciences, but rather to point out that without an authority to oversee 

the validity of commercial SSPA claims made about what sensor data “mean,” there is little 

consumer protection against fraudulent or harmful claims.  

Looking at the development of wearable technologies designed to detect 

concussions provides an example of how this process can become subjective. Diagnosing 

a concussion is multistep, complex process that requires a medical caregiver to use their 

best judgments based on existing knowledge, past experiences, and the totality of the 

circumstances. Though there are certain best practices that have been put forth by the 

medical community for diagnosing concussion (Greenberg, M.K. et al. 1997; Randolph, et 

al., 2009; Scorza, Raleigh, &. O’Connor, 2012), the process has not been distilled into a 

finite and objective set of rules (Scorza, Raleigh, & O’Connor, 2012). More specifically, it 

is not clear what type and magnitude of force causes a concussion (Hernandez, et al., 2015). 

Nonetheless there are multiple wearables available (or coming to market shortly) that are 

being marketed as concussion detectors, such as the Joltsensor© and the Hiji band©. The 

SSPA for the Hiji band© uses collision force measurements from the wearable and 

observational data inputted by the users or observer (such as a coach or parent) to “catch 

any sports related head impacts and allow the injury to be identified and assessed,” 

(Hijiband.com, 2015). The SSPA for the Joltsensor works in the same manner and claims 

it will “notify the user of a possible concussion,” and will help athletes “train smarter and 

safer” and “make smarter more timely decisions” (Joltsensor.com, 2015). In order to do 

what these apps claim to do, a decision engine comprised of finite and objective parameters 
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has to be created (e.g. acceleration speeds between A and B at time of collision result in 

this action if age is ≤X but ≥Y, and weight is more than Z, or more than X items from list 

A =Y).  (Hernandez, et al., 2015). The qualifications of these stakeholders and the quality 

of the information they make use of may vary wildly from one SSPA to another; not only 

because there is no regulatory process to guide these decisions, but also because there is 

disagreement even within the medical community about what exactly these parameters 

should be. 

Social control. Even if a method to determine whether the algorithm design of a 

SSPA was “ethical” could be developed and research showed that SSD convey just the 

“right” amount of persuasive power, there are other social implications that may negatively 

impact the rights and freedom of users that have not been considered in current discourse 

surrounding SSPA design. The languages and credibilities of engineering and medicine 

that are used to sell SSPA’s are linked to overlapping phenomena related to social control. 

On one hand, the invocation of heuristics of wisdom and benevolence related to healthcare 

and medicine may lead to what is referred to as medicalization of wellness or the social 

construction of illness. On the other hand, the invocation of objectivity and predictability 

related to engineering may lead to automaticity of self-awareness. These two aspects are 

discussed next.     

Engineering discipline. SSPA’s have the potential to act as the ultimate tool in self-

surveillance of the body – from its location in time and space, to the location of electrons 

in its brain, and from the construction of muscles to the construction of identity. While 

some argue that this ability to monitor and observe every aspect of the body creates an 

opportunity for individuals to control their own health outcomes (Hofmann, 2016), 
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philosopher and social theorist Michael Foucault’s writing about “the political technology 

of the body” suggests that this ability to know and control the body can be used as a form 

of subjugation and discipline (Foucault, 1977). He argues:    

“subjection is not only obtained by the instruments of violence or ideology; it can 

also be direct, physical, pitting force against force, bearing on material elements, 

and yet without involving violence; it may be calculated, organized, technically 

thought out; it may be subtle, make use neither of weapons nor of terror and yet 

remain of a physical order. That is to say, there may be a “knowledge” of the body 

that is not exactly the science of its functioning, and a mastery of its forces that is 

more than the ability to conquer them: this knowledge and this mastery constitute 

what might be called the political technology of the body.” (p 26) 

 

The emerging IoT and Big Data economies offer unprecedented knowledge about 

bodies and objects moving in the world, and SSPA’s offer unprecedented access to the 

body qua body; from that knowledge emerges the ability to calculate, organize, and direct 

–to conquer. Foucault argues that the constitution and control of this political technology 

of the body is complex, diffuse, and “not localized in the relations between the state and 

its citizens,” (p27).  However, as Lurie and Mark (2016) argue, increased dependence on 

these technologies is correlated with an increased gap in understanding how technologies 

work; this puts users at a disadvantage in terms of constituting and controlling this political 

technology of the body. The knowledge gap is related to issues of complexity, as well as 

issue of access. Numerous strategies exist to ensure citizens do not have access to the 

algorithmic rules that calculate, organize, and direct the body. Pasquale (2015) argues there 

are three main approaches to protecting an organization’s privacy; real secrecy locks up 

algorithm by preventing users from accessing the code, while legal secrecy uses 
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government sanctioned rules to protect manufacturers and developers from having to share 

proprietary information. The third approach, obfuscation, floods the user with too much 

information or distracts them from thinking critically about the nature of the claims being 

made. Langdon Winner (1983) argues that technologies “provide structure for human 

activity,” and this is intimately true for technologies that construct our understanding of 

the body and mind. SSPA’s aimed at externalizing internal mechanism of behavior provide 

a pathway for decisions once based on personal reflection to be based on standardized and 

automatic processes. The standardization may be constructed with deep reflection about 

human values and social norms in a good faith effort to improve the human condition –or 

not.  If SSPA’s can be thought of as forms of life as Winner argues, users are prohibited or 

at least significantly impeded from knowing the sociotechnical identity and value systems 

from which these forms of life are born. Instead, the status quo for characterizing SSPA’s 

misrepresents these technologies as objective, value-neutral technologies that facilitate 

some notion of the good life. 

Foucault also describes the notion of docility, which is ultimately tied to subjection 

of the body, and institutional interests in techniques to exploit the body as an object and 

target of power. Foucault argues that this exploitation of the body has taken place 

throughout recorded history, but unique changes to approaching docility emerged around 

the 18th Century (p. 134).  What is chilling in his descriptions of these changes is how the 

affordances of SSPA’s are so well suited to the same purposes in terms of “scale of control” 

and “modality.” 

1. …there was the scale of the control: it was a question not of treating the 

body, en masse, ‘wholesale’, as if it were an indissociable unity, but of 
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working it ‘retail’, individually; of exercising upon it a subtle coercion, of 

obtaining holds upon it at the level of the mechanism itself - movements, 

gestures, attitudes, rapidity: an infinitesimal power over the active body. (p. 

136) 

2. …there is the modality: it implies an uninterrupted, constant coercion, 

supervising the processes of the activity rather than its result and it is 

exercised according to a codification that partitions as closely as possible 

time, space, movement. (p. 137) 

Foucault referred to these methods of “meticulous control of the operations of the 

body” as “disciplines” and noted their use and legacy in not only penal institutions, but in 

schools, hospitals, and the military, as well as in non-governmental and commercial 

organizations such as factories and workshops (p 137). These techniques of discipline are 

omnipresent and habitualized in our cultural institutions today, and so may go unnoticed. 

One can see this scale of individuality and the modality of constant surveillance in times 

of disease outbreaks and terrorist threat when citizens fully expect the state to seek docility 

and therefore the application of ambient sensors, SSD, and other monitoring technologies 

are intentionally transparent. When this same approach to docility is used to limit economic 

choices such as determining which health insurance options are presented to a person based 

on SSD, it is likely to be much less transparent. (A report from the technology market 

research firm Gartner, Inc. (2016) estimates that by 2018 more than 2 million employees 

will be required to wear health and fitness tracking devices as a condition of employment.) 

A challenge with not only SSPA’s, but much of the monitoring technologies employed 

today is that citizens often enter into these technological platforms with an expectation of 

personalized benefit, so rather than docility, it can be “experienced” as empowerment. The 

difference between the two may or may not be merely perceptual, but again, to the extent 
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that SSPA’s are not currently scrutinized as a political technology of the body, they offer 

an exceptional opportunity for exploitation by those in positions of power with the privilege 

of knowledge. Table 2 shows examples of slogan and taglines from popular wearables that 

position the role of SSPA’s as an objective tool that empowers the user to control physical 

and mental well-being through quantification of the body.   

Foucault also argues that in addition to exerting power over life through 

subjection and docility, a second form of power began to emerge in the late 17th century 

through the rapid introduction of interventions and regulations to manage populations 

through quantification and control of biological processes (such as control of birth rates, 

life expectancy, living conditions, and level of health) (Foucault & Hurley, 1978). 

Foucault referred to the ability to control these forces as “bio-power;” and argues that as 

western nation states develop so does the breadth and depth of control over human 

biological functions and its use as a tool for the maximization of productivity. While 

discipline is used to direct human behavior at the individual level, “bio-power” is used to 

direct a population of people (i.e. the residents of a city, state, or nation for example) to 

behave in a desired fashion. SSPA’s present new methods for quantification and control 

Foucault could never have imagined; with biological and behavioral data constantly 

being collected then transmitted across networks, returning precise prescriptives for the 

user or users.  

  

Medicalization and social control. Medicalization is a term used typically in the 

social sciences to critically describe the process of expansion of medical authority “beyond 

a legitimate boundary,” (Rose, 2007a) “into the domains of everyday existence,” (Metzl & 
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Hertzig, 2007) and “over our bodies through the reduction of social phenomena to 

individual biological pathologies,” (Fainzang, 2013). Medicalization occurs through an 

exploitation of knowledge and power. The social control afforded by medicalizations 

“comes from having the authority to define certain behaviors, persons, and things,” 

(Conrad, 1979) and subjection of the body (Foucault, 1977). This encompasses the ability  

Slogan and taglines from wearables that connect well-being with self-quantification. 

Name Style Purpose Quote 

Moova Bracelet Fitness 

Coaching 

“You can't improve what you can't measure” 

Samsung Gear-

S2b 

Watch Fitness 

Coaching 

“Taking charge of your health is easy with 

Gear S2. Track your daily activity levels, 

heart rate and water vs. caffeine intake.”  

Emotiv Musec Headset Neuromonitor “Monitor cognitive load and discover 

emotional responses that are preventing you 

from achieving peak mental performance.” 

Emotiv Insightc Headset Neuromonitor “Our brains are at the very center of our 

health and performance. Self assessment and 

cognitive training is a crucial part of our 

wellbeing.  The Emotiv Insight offers a cost 

effective and highly powerful solution for self 

assessment.” 

Athosd Clothing Fitness 

Coaching 

“Smart performance apparel that monitors 

your biosignals and distills them into 

meaningful insights.” 

Clothing +e Clothing Fitness 

Coaching 

“When Accurate Data and Every Moment 

Matters” (overlaid on an image of infant 

sleeping). 

Fitbitf Bracelet Fitnes 

Coaching 

“Fitbit tracks every part of your day- 

including activity,exercise, food, weight and s

leep- to help you find your fit, stay motivated, 

and see how small steps make a big impact.” 

TableError! Bookmark not 

defined. 2 
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Sources: aMoov. 2016; bSamsung, 2016; cEmotiv, 2016; dLiveAthos, 2016; eClothingplus, 

2016; fFitbit, 2016. 

 

to define who can work, who can go to school, who can move around, who can reproduce, 

who can be held responsible for actions, and who can be considered ‘good’. One of the 

earliest and most prominent scholars to formalize the notion of medicalization was Ivan 

Illich, in his book Medical Nemesis (1976), in which he attributed the problem of 

medicalization primarily to physicians. More recent discourse in the field however, argues 

that private pharmaceutical companies are responsible for the continued expansion of 

medical authority (Clark, 2014; Goldacre, 2013; Moynihan & Henry, 2006; Poitras & 

Meredith, 2008) through their efforts to manufacture illness for existing drugs. This same 

mechanism of medicalization could be used to expand the consumer SSPA industry by 

applying biomedical models to “general wellness,” and by establishing medical narratives 

for normativity that don’t explicitly claim to diagnose illness, but rather seek to quantify 

wellness medically. The economic gains would come not through prescriptions for drugs 

or medical tests, but through the consumption of lifestyle products aimed to modulate 

degrees of wellness. For example, the healthy user whose SSPA monitors heart rate, skin 

conductivity, blood volume, etc. may be advised that his readings are in the second 

percentile for his age and weight and that following a particular set of actions (determined 

by the manufacture) will help elevate him to status quo. That might be great; perhaps the 

SSPA will advise the user to think about exercising more and eating healthier. But, the 

healthy user has given the SSPA manufacturer the opportunity to evaluate, categorize, and 

advise his level of healthiness which, even if it is well and good, may have just became 

subpar based on standards and knowledge that are not transparent. In this case, 
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medicalization is used to make something real or relevant by identifying it as a biological 

phenomenon (Clark, 2014), but this may or may not benefit the recipient of this newly 

constructed reality. Medicalizations and the technological solutions they offer are 

appealing to consumers because they offer simple and objective explanations and responses 

focused on the individual (take this pill, apply this paste) for complex, subjective 

phenomenon.  SSPA’s offer the ultimate impersonation of personal control.          

A classic example of medicalization is the construction of “chronic halitosis” (CH). 

Bad breath existed as a symptom of underlying disease, poor dental hygiene, or love of 

smelly food for centuries before the invention of CH. Perhaps more often than not it was 

simply considered a common, perhaps annoying state that the malodorous owner never 

even recognized. Mouthwash existed for decade before CH too; however, lackluster sales 

of Lambert Pharmaceutical’s “Listerine” mouthwash, prompted the company’s marketing 

team to embark on an emotional advertising campaign to create the perception of a serious 

medical problem for which they had the cure. By adding the inherently chilling adjective 

“chronic” to the Latin word “halitosis” (which loosely translates to “breath disease”), the 

advertising team created a story of a terrible condition that few people knew they had and 

others were too embarrassed to tell them; a silent killer of social standing. The increase in 

sales of Listerine from approximately $100,000 in 1920 and 1921 to more than $4 million 

in 1927 is often attributed to this medicalization of bad breath (Marchand, 1985; Munsey, 

2006). This medicalization did not result from physicians overstepping their bounds, or 

from patient advocacy groups calling for treatment, but rather from private industry 

motivated by economic interest rather than genuine healthcare concerns, acting with the 

language and credibilities of the medical field. 
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An intersection of medicalization and SSPA design that is particularly problematic 

is within the domain of mental health. While the most highly visible examples of SSPA’s 

are in the fitness industry, developers are making inroads to mental health and acuity. There 

are already a number of LR-GW SSPA’s that claim to monitor and trace biometric data 

associated with mood. For example, using primarily electroencephalography (EEG) 

readings the Emotiv Insight headset claims to “6 different emotional and sub-conscious 

dimensions in real time – Excitement (Arousal), Interest (Valence), Stress (Frustration), 

Engagement/Boredom, Attention (Focus) and Meditation (Relaxation),” (Emotiv, Inc. 

2016). However, the quantitative boundaries of mental states and mental wellness are far 

from well-defined (Beaulieu, 2002; Ulman, Cakar, & Yildiz, 2014; Uttal, 2012). Even the 

subjective boundaries of mental health (i.e. observable behavioral symptoms) are moving 

targets from one iteration of the Diagnostic and Statistical Manual for Mental Disorders1 

to another. There are strong economic interests for pharmaceutical companies to expand 

the boundaries of mental “illness” through medicalization of social problems, and this is a 

critical issue in 21st century bioethics discourse (Poitras & Meredith, 2008; Moynihan & 

Henry, 2006; Goldacre, 2013) that is beyond the scope of this paper. However, huge 

economics gains could also exist for “lifestyle” related retailers who are able to use the 

language of SSPA’s to implicitly medicalize and quantify mental “wellness” and, in turn, 

prescribe treatments that control or exploit users by guiding their purchases and activities 

                                                 
1 The Diagnostic and Statistical Manual for Mental Disorders is currently published by the American 

Psychiatric Association which lists all classifications of mental disorders. The first official publication in 

1921 contained 22 diagnoses. From one iteration to the next, diagnoses of mental illness may be added, 

expanded, narrowed, and/or dropped. The most current publication contains more than 250 diagnoses 

(American Psychiatric Association, 2016)  
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Not every social scientist believes that medicalization is negative, and some see 

ubiquitous monitoring of physiological data as a way to democratize healthcare. Hofmann 

(2016) writes that this type of pervasive medicalization, “making ordinary life experiences 

subject to medical attention to measuring every aspect of life, and thereby making it subject 

to ‘experience,’ attention and control … makes persons themselves control their own 

lives.” However, this is a technocentric view of pervasive ubiquitous self-sensoring data – 

one that ascribe a value-neutral quality that does not currently exist. It ignores the situated 

and embedded nature of how understandings of these data are constructed. It assumes a 

level of individual understanding, critical thinking, and attention on behalf of the user that 

is not practical. This is not to suggest that users do not have the intellectual capacity to 

understand the terabytes of raw sensor data that they could be faced with on a daily basis, 

but that all of this information will be useless to the user if they don’t have the time to 

process it to make meaningful observations. As soon as a technological solution intervenes 

to assist with this processing (as SSPA’s would do), the designers of that technology 

automatically, even if inadvertently, infuse their own cultural, political, and economic 

interests into that interpretation. Hoffman acknowledges that the epistemic challenge in a 

new frontier of ubiquitous SSD is in this process of validation and selection of relevant 

data to make sense of it for a particular user. But at least right now, this is most definitely 

not in the control of the users. These limits are not only validated and selected by those 

who develop SSPA’s, but the subjective definitions and characteristics of “normal” may 

be constructed through the self-serving story telling of small-time entrepreneurs selling 

their wears on KickStarter and Peerbacker to multi-layered conglomerates with big 

marketing budgets.    
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Free will and prosocial behavior. Even if every SSPA was designed with 

benevolence and transparency, omnipresent and robust monitoring of the physiological self 

may still have numerous unintended consequences. One of these is the activation of certain 

beliefs related to free will and determinism which have been shown to have numerous 

negative impacts on individual behavior. Definitions of free will vary, but generally tend 

to refer to an individual’s belief in their ability to make deliberate choices and to believe 

that they are responsible for those choices (Nahmias, Morris, Nadelhoffer, & Turner, 2005; 

Monroe and Malle, 2010). The following section highlights experimental research as 

evidence of the possible social impacts of altering individual beliefs through priming and 

draws attention to how SSPA’s may contribute to altering these beliefs.   

Research by Mueller and Dweck (1998) was meant to examine the impact of praise 

on learning and motivation, but their findings also implied that deterministic beliefs could 

lead to negative behavioral outcomes. The researchers conducted a series of 6 studies in 

which children completed learning tasks with various degrees of difficulty; designed in 

such a way to ensure success during the first tasks and failure during a later task. They 

found that providing praise to the children on the first task that attributed their success to 

either natural intellect or to hard work, the childrens’ effort and attitude toward a 

subsequent, more difficult task changed in a predictable manner. When faced with the 

difficult task, children who had been given praise that attributed their earlier success to 

their natural intellect showed numerous negative effects, including reduced effort, poorer 

performance, reduced motivation and confidence, and decreased enjoyment. Mueller and 

Dweck did not attempt to interpret their findings in terms of determinism or free will 

beliefs, but an argument can be made that the innate qualities associated with “intelligence” 



46 

mean that praise for intelligence primes a deterministic world view (at least in so far as it 

is relevant to the task at hand which was related to learning).  

Vohs and Schooler (2008) conducted a more direct examination of the effects of 

priming deterministic2 beliefs on behavioral outcomes. While Mueller and Dweck’s study 

demonstrated that attributing outcomes to innate qualities rather than learned behaviors 

(such as hard work) had a negative impact on personal effort and motivation, Vohs and 

Schooler examined whether priming “anti-free-will” beliefs could lead to overt negative 

moral behaviors. Participants were asked to read a series of statements that either supported 

a belief in free will, refuted such a belief, or were neutral in nature. Participants then 

completed a set of problems in reading, math, logic, and reasoning and were told they 

would receive $1 per correct answer. In some conditions of the experiment participants 

were presented with an opportunity to cheat by grading their own answers. Results showed 

that participants who read the deterministic statements and were given an opportunity to 

cheat took home more money than all other participants.  

In addition to Vohs and Schooler’s 2008 study numerous others have explored how 

beliefs in free will and determinism impact attitude and behavior. Baumeister, Masicampo, 

& Dewall (2009) found that when participants read a series of statements promoting 

disbelief in free will they were less likely to provide help in a hypothetical scenario than 

participants who read neutral statements. They also found that priming disbelief in free will 

increased aggression against an innocent target. In another study, MacKenzie, Vohs, and 

                                                 
2 Vohs and Schooler (2008) did not specifically define the relationship between “free will” and 

“determinism,” but the two terms are treated similarly to antonyms in the paper, such that a prime 

characterized as “anti-free-will” was also characterized as “deterministic.” Some philosophers argue that 

this is not necessarily the case (Campbell, 1996; Nahmias, Morris, Nadelhoffer, & Turner, 2005). 
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Baumeister (2014) found a relation between belief in free will and gratitude. Disbelief in 

free will tended to reduce feelings of gratitude for hypothetical favors, past events, and a 

real favor. This is likely explained by the foundational role free will is thought to play in 

determining moral responsibility (Nahmias, Morris, Nadelhoffer, & Turner, 2005). 

While research has demonstrated that belief in free will can influence behavior and 

perception, to understand how this is related to SSPA’s it is important to understand what 

environmental cues may reduce or enhance this belief. The research described so far has 

typically employed written prompts, but other researchers have demonstrated that less 

explicit cues play a role as well. For example, Feldman, Baumeister, and Wong (2014) 

found that belief in free will is related in a number of ways to an individual’s perceived 

ability to make choices. In their study they found that participants who had been asked to 

recall past choices and the decisions made from those choices during a specific time period 

had stronger beliefs in free will relative to participants asked only to recall specific actions 

they had taken during a similar time period. In the same study they found that asking 

participants to make simple choices (in this case, choosing between different pen types) 

also increased belief in free will relative to participants who were asked instead to perform 

a series of simple actions.  

Consumer SSPA’s monitor and process a user’s sensor data and implicitly or 

explicitly direct their actions based on this data. This research suggests that how these 

directives are presented to the users could impact that user’s belief in free will. Directives 

presented as a choice between two or more actions would be less likely to reduce the user’s 

belief in free will than directives presented as a single command. For example, a SSPA that 
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informs a user his potassium is low could suggest the user take one of three actions (e.g. 

eat a banana, drink a glass of fat free milk, take a supplement) rather than one. 

Even more relevant to the discussion of free will and SSPA is research conducted 

by Ent and Baumeister (2014) regarding physical states of the body and belief in free will. 

The perception of conscious control over one’s bodily actions could be considered a form 

of “evidence” to strengthen belief in free will (Wegner and Wheatly, 1999), but what 

happens when control of the body’s actions seems difficult or impossible? Ent and 

Baumeister first compared the strengths of belief in free will between individuals with 

medical conditions that cause physical symptoms beyond conscious control (epilepsy and 

panic disorders) and individuals who did not have these medical conditions. They found 

that participants who had epilepsy and participants who had a panic disorder had weaker 

beliefs in free will than participants who had neither condition. In a follow up study they 

found that more temporary states of the body can also affect belief in free will. Participants 

were first asked about their beliefs in free will and were subsequently asked about the 

intensity of some of their physical needs at that moment, including urination, sexual desire, 

fatigue, thirst, and hunger. They found that participants who had reported more intense 

needs for urination, sexual desire, or fatigue had expressed weaker beliefs in free will. For 

hunger, they found that this was also the case for individuals who were not currently 

dieting3. Ent and Baumeister interpret their broader findings as evidence that physical states 

can influence belief in free will. Further extrapolation suggests that the less control a person 

has over those physical states, the weaker belief in free will (see Footnote 4). 

                                                 
3 For individuals who were dieting, more intense hunger was correlated with stronger belief in free will. 

The researchers suggested this is because these participants were more likely to be actively engaging in 

control over hunger which is an expression of free will (Ent & Baumeister, 2014). 
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 Ent and Baumeister do not specify whether they believe physical states impact 

belief in free will because the physical sensations create an unconscious awareness of those 

states (i.e. the stronger the sensation the weaker the belief) or whether reminding a person 

about their physical state of the past may have a similar effect even in the absence of 

sensations. In their second study, Ent and Baumeister asked participants about physical 

states that are typically associated with sensations that the participants could have been 

experiencing at the time (e.g. hunger pains, fullness of bladder). However, in their first 

study it is not known whether participants who identified as having a current or past 

diagnosis of epilepsy or a panic disorders had been experiencing physical sensations at the 

time they completed the online study or if, instead, the effect was a result of those 

participants having been reminded about these physical states by being ask to identify as 

having that particular diagnosis in order to participate. Because of the disruptive nature of 

seizure disorders and panic disorders, intuitively it seems reasonable to believe that most 

participants would not have been experiencing major symptoms at the time they completed 

the study. What this suggests is that reminding participants about physical states that are 

beyond a person’s control may also weaken belief in free will. This is particularly relevant 

to the discussion of the social impacts of SSPA’s, because they are specifically designed 

to unmask the hidden nature of our internal states. Being reminded (whether through 

physical sensations or environmental cues) that our free will must sometimes be trumped 

by our physical needs is an integral part of the human experience and, since most people 

maintain a belief in free will (Nahmias, Morris, Nadelhoffer, & Turner, 2005; Monroe and 

Malle, 2010), the weakening effects are likely transitory as these reminders come and go. 

But ubiquitous SSPA’s offer an unprecedented opportunity to remind users of the countless 
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physiological states of the body that change without willful intent. In this light, SSPA’s 

may serve to continually depress belief in free will, even those that are genuinely meant to 

improve general wellness.  
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PART 2 - INTRODUCTION 

One of the primary objectives of this dissertation research was to conduct an 

experimental investigation into the impact of self-sensoring prescriptive applications 

(SSPA’s) on decision making and attitude formation within a non-medical care framework. 

Although most of the research dedicated to changing behavior through the use of SSPA 

has occurred within a healthcare context, commercial use of biosensors is growing rapidly 

(Research and Markets, 2014; TechNavio, 2014) and little is known about how this form 

of information will act to guide consumer choices. It is also difficult to make inferences 

about the persuasive impacts of SSPA’s in the consumer industry by simply looking to 

research from healthcare applications of SSPA, because, relative to the vast quantity of 

research energies invested in developing self-sensor driven health care technology and 

infrastructure behaviors (Pantelopoulos & Bourbakis, 2010; Research and Markets, 2014; 

Song, et al., 2014; TechNavio, 2014), very little research has been dedicated to evaluating 

and understanding the effectiveness of such technologies in terms of improved medical 

outcomes and decreased costs.  

SSPA’s developed for healthcare settings in which the devices would be used to 

treat or diagnose diseases or medical conditions must be approved by the Food and Drug 

Administration (FDA) to assure safety, efficacy, and security. This process can be costly 

and time consuming for manufacturers, with little guarantee of future market share. 

Recently the FDA released a non-binding set of guidelines for “low-risk general wellness” 

(LR-GW) devices that would not be subject to FDA oversight (Food & Drug 

Administration, 2016; also, see Ethics, Regulation, and Policy, p 11). Consumer SSPA’s 

marketed to help users with general advice about fitness, relaxation, sleep, etc. may be 
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considered LR-GW devices and therefore would not need to wade through clinical trials to 

prove efficacy. This path of least resistance incentivizes developers of sensor technologies 

and SSPA to focus more on these LR-GW devices. This means more devices entering the 

consumer market with no regulatory motivations for manufacturers to dedicate resources 

to understanding how strongly self-sensor data (SSD) impacts attitudes and behaviors. This 

is particularly important because it is not known whether self-sensor data may bias a user 

to believe certain claims or advice regardless of the intellectual or scientific merits of the 

“general advice” produced by this category of SSPA devices. Several theories related to 

decision making and attitude formation suggest physiological self-sensor data could be 

particularly alluring in terms of persuasiveness.  What follows is a brief overview of four 

areas of research related to persuasion and what they suggest about the potential impact of 

SSPA’s on attitude formation and behavior.  

Message tailoring. The study of “message tailoring” offers some interesting 

insight into what we might expect from self-sensor data in terms of persuasion and behavior 

change. Tailoring a message means that the content, context, or method of delivery is 

partially determined by specific information about the particular individual for whom the 

message is intended. This is typically done to enhance the value or persuasiveness of a 

message and it is found to be more effective than group-targeted messaging or mass 

messaging (Hawkins, Kreuter, Resnicow, Fishbein, & Dijkstra, 2008; Noar, Benac, & 

Harris, 2007). While there is no universally accepted theory to explain the persuasiveness 

of message tailoring, a number of researchers suggest that it is likely related to increased 

attention and depth of processing (e.g. Hawkins, et al., 2008; Ho & Chau, 2013; Rimer & 

Kreuter, 2006; Ruiter, Kessels, Jansma, & Brug, 2006).  
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In a direct examination of attention and tailored messaging, Ruiter, Kessels, 

Jansma, & Brug (2006) asked participants to read an interventional message about nutrition 

while simultaneously participating in an auditory attention task. EEG measurements 

indicated that participants presented with a tailored message (which included personally-

relevant information collected from a previous meeting) dedicated less attentional 

resources4 to the auditory task than participants presented with an untailored message. The 

researchers argue that the decrease in attention to the auditory tasks was most likely the 

result of increased attention to the tailored message. Participants in the tailored message 

condition also evaluated the interventional message as being more personally relevant and 

were more likely to indicate they intended to change their future diet.   

There is a strong narrative within the literature surrounding tailored messaging that 

tailored information increases attention by activating personal relevance, which increases 

motivation to process the message, leading to attitude change (Hawkins, et al., 2008; Ho 

& Chau, 2013; Rimer & Kreuter, 2006; Ruiter, et al., 2006). In this narrative tailored 

information leads to what Petty and Cacioppo (1986) define as a “central processing” or 

careful thought about a persuasive message. Arguably, self-sensor data is the ultimate form 

of message tailoring data, so a logical inference might be that it will similarly serve as a 

central cue, activating the same central route to persuasion. In theory, this should allay 

concerns that SSPA designers could use self-sensor data inappropriately (e.g. to support a 

persuasive message that is actually unrelated to the data) because, as a central cue, it should 

elicit thoughtful, critical thinking about the message that would then undermine the dubious 

                                                 
4 Using EEG technology, the researchers measured changes in N100 and P300 event-related potential (which are 

thought to measure auditory attention) to infer attention reallocation to a secondary task.  
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persuasive attempt. However, while the notion that tailoring increases motivation to 

process a message deeply may be valid, Petty and Cacioppo also argue that in order for a 

person to do so he or she must also have the ability to process and understand the 

information being presented.  

This ability is moderated by numerous factors including distraction, 

comprehension, background knowledge, obfuscation, etc. (e.g. Osterhouse & Brock, 1970; 

Eagly, 1974; Eagly & Warren, 1976). If ability is low, the individual may be unable or 

unwilling to think deeply about the argument and may defer to available “peripheral cues” 

instead; cues that are not necessarily related directly to the message (e.g. characteristic of 

the messenger, etc.). These peripheral cues activate heuristics or mental shortcuts rather 

than an active thinking process (also referred to as the heuristic approach by Chaiken, 1980) 

and the attitude changes they create are often temporary and less helpful in predicting future 

behavior than attitude changes arrived at via the central route (Cialdini, Levy, Herma, 

Kozlowski, & Petty, 1976; Petty, Barden, & Wheeler, 2002).  Research into the efficacy of 

message tailoring has so far typically made use of individualized data and accompanying 

arguments that are purposefully easy to understand (e.g. simply restating information that 

the individual supplied earlier) and directly relevant to the persuasive message (e.g. 

referencing the individual’s daily caloric intake with his nutrition goals). This makes it 

difficult to know how novel self-sensor data such as respiration rates, brain wave function, 

blood cell count, etc. will (or will not) promote a central route to persuasion, especially 

when the highly tailored information is not clearly linked to the persuasive message (e.g. 

will personal brain wave data be useful in convincing someone to start taking an antacid?). 

Arguably, without the ability to understand the biological implications of the self-sensor 
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data it may merely serve as a peripheral cue that represents something about the message 

or messenger, (e.g. complexity, expertise, “scienciness”), but one in which the user is 

particularly motivated to notice because it is highly tailored. Looking to literature related 

to scientific rhetoric and credibility, there are a number of reasons to suggest that self-

sensor data that is perceived to be highly tailored, but is nonetheless difficult for the user 

to process, may afford it an undue degree of persuasiveness. 

Scientific rhetoric and credibility.  The language used to describe the way SSPA’s 

collect and produce information, such as “quantify,” “measure,” “track,” etc. and, perhaps 

most importantly, the word “sensor” itself, all impart a certain essence of reality. This 

language allies itself with the language used by many cultures to explain how humans 

collect “factual” data about the self, others, and the environment; that is, we rely on our 

own “sensors” such as the eyes, nose, ears, etc. to “know” things.  While we also rely on 

context, the environment, and others to interpret the meaning of these sensory observations, 

so long as we believe our sensors to be in good working order, we perceive their data to be 

a “reality.”  

In addition to the language used to characterize SSD, framing SSD to users as a 

“scientific” measure of an internal state may also boost its credibility, whether warranted 

or not. Dumit (1999) found a number of examples from court cases in which it appeared 

that laypersons tend to put more faith in information they believe to be obtained from a 

“scientific mechanism” than information from a more subjective source. Further, Keil, 

Lockhart, & Schlegel (2010) found that biological explanations of behavior are perceived 

to be more complex and scientific than psychological explanations. Dumit argues that this 

bias in thinking is because insight derived from mechanism of hard science are perceived 
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to be “culturally objective” (Dumit, 1999). If SSD are afforded this characteristic of 

objectivity, this raises the question of whether this would bias a user to incorrectly believe 

that prescriptives derived from SSD are also culturally objective. 

Beliefs about the perceived messenger conveying the data can also influence 

persuasiveness. Aristotle argued that an essential factor in any persuasive attempt is the 

trustworthiness of the speaker (Aristotle & Kennedy, 1991, pp 27-35). Not trustworthiness 

strictly in the sense that one might trust a computer to consistently calculate correct 

solutions to a math problem, but in the sense of the speaker’s perceived character traits 

such as wisdom, virtue, and good will (p 112). Aristotle claimed that a speaker perceived 

to possess all three of these qualities would be “necessarily persuasive” (p113).  

In the case of SSPA’s, a user’s perceptions about who the “speaker” is ought to be 

complex because there are indeed many actors involved in the construction of the message, 

with many different social and economic goals in mind. This is explored further in Ethics, 

Regulation, and Policy, p 11; also see Figure 1) in terms of the complexity of regulatory 

policies; in terms of perceptions about the “speaker” the issue is equally nebulous. Some 

of these players include the engineers who design the sensors, those who design the 

algorithms, the researchers who construct the “evidence” knowledgebase from which the 

algorithms are defined, those who fund product development, the benefactors of the 

behavioral outcomes for the which the SSPA would be responsible for, and so on. The 

user’s awareness of these actors and his beliefs about what their roles and motivations are 

will shape the user’s perceptions about the “speaker.” However, without a requisite for 

transparency in SSPA design, the complexity of how and by whom a message is 

constructed may be lost. In the field of marketing consumer products, efforts to control and 
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manipulate beliefs about the speaker is a multimillion dollar industry and users often do 

not have access to all the relevant information. By promoting the languages and 

credibilities of engineering and medicine, marketing and design efforts in the field of 

consumer SSPA’s attempt to construct a perception of a speaker who possesses wisdom, 

virtue, and good when the reality may be entirely different.   

Bounded rationality and satisficing. Social Scientist, Herbert Simon (1956) 

argued that humans have numerous limitations in decision making behaviors and, 

individuals have a tendency to “satisfice” by seeking a merely reasonable solution rather 

than to optimize by considering other options that might be more complex, but more valid. 

Further, many researchers have found a general preference for reductive explanations 

(Hopkins, Weisberg, & Taylor, 2016; Craver, 2007; Garfinkel, 1981; Trout, 2007) and 

argue that individuals tend to seek mental shortcuts to decision making (Tversky & 

Kahneman, 1974) especially in times of uncertainty or high cognitive load.  

Commercial SSPA’s are likely to appeal to consumers who seek to reduce the 

cognitive load related to careful, critical decision making. In theory, adding self-sensor 

data as a new factor in decision making could represent a new layer of complexity 

especially if that data requires special skills to understand. However, if self-sensor data is 

presented to a user as a simplification of a number of other complex factors, it may be 

interpreted as a short-cut to decision making. For example, say a person needs to monitor 

their level of alertness and anxiety in order to perform their job. To make judgements about 

their mental state they must make subjective observations about how their body feels and 

weigh this with memories about how they have slept, what they have eaten, etc. within the 

last 24 hours or so. Consider a SSPA designed to monitor brainwave sensor data (e.g. 
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EEG), galvanic skin conductance, sleep data etc. that the user can also use to make 

judgements about their mental state. These raw sensor data may convey nuanced 

information about mental state, but understanding the implications and limitations of these 

data and weighing the differences could be time consuming and stressful and would not 

reduce the cognitive load of the original task. However, if the raw data is accompanied by 

an approximation or summary, such as a simplified numeric rating, an avatar’s facial 

expression, or a simple thumbs up or down for alertness and anxiety, this short-cut may be 

intuitively more satisfying and persuasive than the raw data alone because it conveys a 

sense of “understanding;” not only of the data, but of the self.  

Even in the absence of a deeper understanding of how self-sensor data is relevant 

to an interventional message, it may still be perceived as adding volume to a body of 

“evidence.” In terms of attitude formation and decision making, researchers find that 

volume of the arguments can lead to persuasion even when the arguments do not add 

additional substance (Calder et al., 1974). This poses a risk to users if the designers of a 

SSPA are able to use self-sensor data to create an air of credibility for a prescriptive that 

prompts a user to act in a way that is counter to their best interests (for example, claiming 

that an individual’s sensor data indicate he/she needs an energy drink before continuing a 

workout when, in fact, the energy drink is simply empty calories, and the prescriptive is 

merely meant to increase sales). 

False physiological feedback and persuasion. There are some older studies 

investigating the role of physiological feedback on attitude change which have 

demonstrated a persuasive impact. For example, Giesen and Hendrick (1974) had 

participants watch a film about the use of pesticides while hooked up to a machine 
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described as an arousal meter and found that subjects led to believed they were 

experiencing high arousal during the film were more persuaded than participants led to 

believe they experienced low arousal during the film. In a follow-up experiment using the 

same methodology and film content, the researchers found that changing the meter label 

from “arousal” meter to “belief” meter had similar persuasive impacts (Hendrick & Geisen, 

1976). Participants led to believe they were experiencing “high belief” while watching the 

film were more persuaded than the participants led to believe they were experiencing “low 

belief” while watching the film. Interestingly, in this experiment some participants were 

told the belief meter was very accurate and others were told the meter was not very 

accurate, but this did not impact their findings; in other words, participants who were aware 

they were using a meter that wasn’t very accurate were still more persuaded by “high 

belief” feedback. Valins (1966) found similar effects by providing false heart rate 

information to male participants while they looked at photographs of nude women. When 

participants were led to believe their heart rate increased while looking at particular photos 

of women, the subjects later judged those photos to be more attractive. Valins found that 

even when participants were made aware of the deceptions and then rated the photos, they 

still rate those photos as more attractive. 

This early research indicates that physiological feedback does have an impact on 

persuasion, though it is unclear whether these findings are indicative of the persuasive 

impact of commercial SSPA given the undoubtedly substantial differences in the level of 

technological experience these early subjects would have compared to today’s technology 

consumers.  

Present Study 
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This study tests the hypothesis that participants led to believe a software application 

is using their self-sensor data to assess the degree to which they like an image will be more 

likely to agree with that assessment than participants led to believe the application is using 

only a personalized algorithm. This study also examines whether variations in the way self-

sensor data was visually presented to the participant impacts persuasiveness and whether 

the participant’s preexisting attitude toward the image impacts the persuasiveness of the 

SSD. The experiment uses an actual consumer SSPA, the MindWave Mobile headset by 

Neuro Sky, to collect neurological SSD.  

Persuasion and neuroscience. Although some of the most popular consumer 

SSPA’s are wearables that track heartrate and movement (PwC Health Research Institute, 

2016), use of wireless electroencephalography (EEG) for real-time monitoring of electrical 

activity of the brain is a fast growing market and researchers and manufacturers are 

motivated to develop “intelligent wearable, wireless, lifestyle EEG solutions,” (Mihajlovic, 

Grundlehner, Vullers, & Penders, 2015). Two primary consumer related markets for 

wireless EEG’s are emerging. First are consumer neuroscience wearables which are 

primarily used by market research firms to study consumer behaviors related to attention, 

engagement, and choice. These include devices such as the B-Alert (Advanced Brain 

Monitoring, Inc., 2016), Mobita (BioPAC Systems, Inc. 2016), Emotiv EPOC (Emotiv, 

Inc., 2016), and the EEG Module from iMotions (2016). Second are direct-to-consumer 

wearables which are currently marketed primarily for sleep improvement, meditation, 

stress management, and brain training, and consumers can buy these directly from the 

manufacturer of from stores such as Amazon.com. These include devices such as 

MindWave Mobile (NeuroSky, 2016), Muse (Muse, 2015), Sleep Shepherd (Sleep 
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Shepherd, 2016) and the Emotiv Insight (Emotiv, Inc., 2016). These direct-to-consumer 

wearables make no claims related to diseases or medical conditions and the headsets are 

designed to be about as intrusive as a set of headphones so they would be described as 

“low-risk, general wellness” devices per the FDA’s recent draft guidelines (Food and Drug 

Administration, 2016; also see Ethics, Regulation, and Policy, p 11). Their intended use 

claims include non-specific, but impressive statements such as “provides in-depth 

information on your brain activity” (Emotiv, 2016), “take a snapshot of your brain in an 

active state (and)…uses this snapshot as a reference to understand your brain signals,” 

(Interaxon, Inc., 2016), and “interprets meaning of brain signals,” (NeuroSky, 2016.). 

Despite inroads into neuroscience and the interpretation of EEG signals, there is 

substantial debate among neuroscientists themselves regarding what brainwaves can and 

cannot tell us about human behavior (Beaulieu, 2002; Rose, 2013; Uttal, 2012), and 

consumers should be particularly skeptical about any behavioral claims or advice derived 

primarily from this new form of self-sensor data. However, there is a substantial body of 

evidence that suggest that arguments, especially those pertaining to explanations of human 

behavior, that use neuroscience information to support them can be unduly persuasive to 

laypersons.  

While investigating the specific impact of neuroimages on juror decision making, 

Schweitzer et al. (2011) found that mock jurors were more persuaded by a neurological 

explanation for a defendant’s mental state than clinical psychological explanations. 

Outside of a legal context, Rhodes, Rodriguez, & Shah (2014) looked at the impact of non-

probative neuroscience information on the perceived quality of a fake news article with 

flawed scientific reasoning. They found that participants who read a news article 
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accompanied by neuroscience jargon rated the quality of article and the study it described 

higher relative to participants who read the article without the neuroscience jargon 

included. In a second study they also found that including superfluous neuroscience 

information increased perceived understanding of the mechanism described in the article. 

In a series of four experiments, Fernandez-Duque, Evans, Christian, and Hodges, 

(2015) conducted a similar study, this time looking at superfluous neuroscience 

information paired with science articles that had either low quality or high quality scientific 

reasoning. The researchers had participants read a set of vignettes, each describing a unique 

psychological phenomenon. Each vignette including an explanation of the phenomenon 

using arguments of varying quality, as well as superfluous information that was either 

neuroscience, social science, or hard science in nature. Participants were asked to rate the 

quality of the arguments presented. The researchers found that superfluous neuroscience 

information increased the judged quality of the scientific argument relative to social 

science information (i.e. that alluded to culture explanations) and the hard sciences 

information (i.e. that alluded to metabolic and genetic pathways). They found this to be the 

case for sound arguments and flawed arguments. 

Numerous mechanisms have been proposed to explain why neuroscientific 

information may bias lay judgments. Weisberg et al., (2008) suggested it may act as a 

seductive detail that distracts laypersons from thinking critically about the other arguments 

presented. Fernandez-Duque, Evans, Christian, and Hodges, (2015) suggest that the allure 

of neuroscience may be the perception that allows “neat, tidy attribution to one causal 

source: the brain.” Rhodes, Rodriguez, & Shah (2014) similarly suggest that it is this 

reductionist quality of neuroscientific explanations for behavior that may appeal to 
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laypersons when trying to grasp complex phenomena such as human behavior. In any case, 

the notion that neuroscience based information may be unduly persuasive to layperson, 

coupled with the relative novelty of using EEG data in consumer wearables makes this 

form of SSD well suited to this study. By employing NeuroSky’s portable EEG monitor, 

the MindWave Mobile, in a context in which participant believe their neurological data is 

being used to interpret their attitudes, the persuasiveness of this form of SSPA can be 

assessed by examining whether participants’ attitudes can be shifted with false neural 

feedback. In this case, the “argument” being made is a statement about how the participant 

feels about a particular image (in the form of a suggested rating of likability), and the 

“evidence” of this argument is represented to the participant as either neural feedback from 

the MindWave Mobile, or a computer algorithm.    

Methods. 

Recruitment of Participants. The original sample size consisted of 120 Arizona 

State University student volunteers recruited primarily from the undergraduate psychology 

department. All participants were informed they must be 18 years of age or older to 

participate. Also, because the experiment relied on mild deception about exaggerated 

capabilities of EEG sensor technology, only students enrolled in undergraduate psychology 

courses were recruited for participation.  

Of those who agreed to participate, two did not complete the study and three failed 

the manipulation check. The manipulation check included two questions: (1) a multiple 

choice question about what type of technology was used with four possible answers (e.g. 

personalized algorithm, neuromonitor) and (2) a multiple choice question about how the 
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technology worked with four possible answers (e.g previous ratings, brain waves). 

Participants who got both questions wrong were excluded from the analysis.  

The final sample size included 115 participants with a Mean age of 22.66 years, 

83% were female, and all had at least some college level education.   

   Apparatus and materials. The primary equipment used for this experiment was 

comprised of two components. The first was the MindWave Mobile headset by Neuro Sky 

(see Figure 2) which is a consumer product (available for approximately $100 USD at the 

time of this experiment) that monitors and outputs the EEG power spectrums (alpha waves, 

beta waves, etc.), propriety measure for attention and meditation, and eye blinks. The data 

were processed via various free and paid software applications marketed to consumers as 

brain training and meditation exercises. 

The second component was the computer software used to present stimuli to 

participants. This program was developed using Visual Studio and C#. The program was 

designed to 1) present instructions 2) present a series of images in random order and record 

participant ratings of each image, 3) present a second series of images based on participant 

input from step two, and 4) record participant responses to those ratings.   

Figure 2 An image of the MindWave mobile headset by Neuro Sky (2016) that some participants 

wore during the study. 
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 Three sets of images were used in the study. The first set contained 20 images of 

water bottles that varied in size, shape, and color and had no visible logos or text. Because 

participants were rating how much they liked or disliked each image and because a 

spectrum of ratings would provide more meaningful results, the images were chosen to 

include both aesthetically appealing and common bottle types as well as less common and 

less appealing shapes. The second set contained 16 images of homes that were also chosen 

to provide variety in aesthetic appeal; from extravagant to humble, and from well to poorly 

maintained. The third set contained images of landscapes that once again were chosen to 

provide variety in aesthetic appeal, from warm and inviting to cold and unappealing. The 

bottle images were the only images that were part of the experimental stimuli (the other 

two sets were included as distractions). Bottles are common objects in US culture with a 

broad spectrum of uses and associations, so it was expected that participants would have a 

wide range of opinions about these images, but that they would not be deeply held and 

therefore would be susceptible to influence by the experimental manipulations. 

Additionally, because the control condition led participants to believe that they were testing 

a technology that was similar to those used by online retailers to make product 

recommendations, bottle images fit well into the experimental narrative. 

Design. This study employed a mixed factor design with two independent variables 

(IV) manipulating the user’s beliefs about how the technology functioned (Feedback) and 

manipulating how the user’s ratings toward a set of images at Time1 were changed for 

Time2 (Change). Feedback was a between subjects IV while the Change variable was 

within-subjects (repeated measures). The primary dependent variable was a measure of the 

users Agreement with how well the technology deduced their attitude toward each image.  
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 The Feedback dimension manipulated the manner in which the supporting 

information was rendered to the participant during the experimental phase of the study 

(Time2) in which participants were led to believe the software application they were using 

assessed the degree to which they liked an image. This IV included 4 conditions. In the 

Control condition participants saw a general statement that the likeability rating was based 

on their personalized algorithm (see Error! Reference source not found.3, A). In the 

Implicit condition participants saw a statement that the rating was based on their neural 

feedback data (see Figure 3 B). In the Abstract condition participants saw the same 

statement as well as a gauge-like iconograph (see Figure 3 Error! Reference source not 

found.C). In the Explicit condition participants saw the same statement as in the Implicit 

condition as well as a bar graph with numeric readings (see Error! Reference source not 

found. Error! Reference source not found.D). 

 



67 

To examine the impact of a participant’s preexisting attitudes on the persuasive 

impact of the neural feedback, some assessments presented by the software application at 

Time2 were actually based on the participants’ earlier responses about the degree to which 

they liked that image. The Change dimension manipulated the direction in which these 

Figure 3. Screenshots illustrating the four different Feedback conditions from Time2 

during which participants were led to believe the application assessed the degree to 

which they liked an image.  A. Control.  B. Implicit. C. Abstract. D. Explicit. 
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ratings of stimuli from Time1 were changed (See Procedure for detailed explanation) for 

Time2.  

Each stimulus presented at Time2 appeared with an assessment of the degree to 

which they liked an image (ostensibly based on their neural feedback or personalize 

algorithm per condition). For the primary dependent variable, participants were asked to 

provide a measure of Agreement for this assessment (See Procedure for detailed 

explanation).  

The final design can be represented as a 4 (Feedback: Explicit, Abstract, Implied, 

Control) x 4 (Change: Same, Higher, Lower, Random) mixed factor design with 

Agreement as the primary dependent variable. 

Procedure. Before beginning the experiment participants were given an informed 

consent letter outlining the nature of the study and their rights as a participant. Participants 

were told they would be participating in a study about decision making and technology and 

that they would be playing a short computer game, looking at some images of homes, 

landscapes, and consumer products, and answering some brief questions. Finally, 

participants were told that during some parts of the study they may be asked to wear a small 

headset that measures brainwaves. 

After reading the informed consent letter, participants assigned to one of the three 

neural feedback conditions participated in a brief warm-up exercise using the MindWave 

Mobile headset. MindWave users played a short computer game that comes as part of the 

Mindwave standard software in which they watched a live animated representation of their 

brain waves and attempted to “blow up” a wooden barrel on the screen by relaxing and 

focusing on the image. This warm-up exercise was meant to demonstrate that the 
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Mindwave Mobile device was a functional neuromonitor and to lead them to believe the 

neuromonitor would be used to generate product recommendations later in the study. 

Participants assigned to the personalized algorithm (Control) condition watched a brief 

animated Power Point explaining what a “personalized algorithm” was. The purpose of the 

Power Point viewing was to ensure that participants in the control condition had a basic 

understanding of what was meant by a “personalized algorithm” and that their own 

personalized algorithm would be used to generate product recommendations later in the 

study.  

After the warm-up exercise all participants were asked to complete a “training” 

phase in which they would rate how much they liked or disliked a series of images and that 

these ratings would be used to learn about their preferences to either create a personalized 

algorithm (Control condition) or interpret neural feedback (Implicit, Abstract, and Explicit 

conditions).  During this phase (Time1) participants rated a series of images. Each image 

appeared on the screen individually and, after 4 seconds, the participant was asked to rate 

the degree to which they liked the image using a Likert scale of one-six (with one being 

“very unpleasant” and six being “very pleasant”). The image series contained 16 images of 

water bottles (randomly chosen from a pool of 20), followed by a series of 16 images of 

homes and 16 images of landscapes. The images of homes and landscapes were included 

as distraction to create a time delay between the participant’s first viewing of the bottle 

images and their second which occurs at Time2.  

At the end of Time1, participants were presented with a second set of instructions 

letting them know that they would now be presented with another series of images and that 

either their customized algorithm (Control condition) or neural feedback (Implicit, 
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Abstract, and Explicit conditions) would be used to generate a likeability rating for each 

image. To enforce the illusion that neural feedback was being used to generate likeability 

ratings, participants were instructed to focus on each image for a few moments while 

ratings were generated and the rating did not appear until 4 seconds after the image.5 

During Time2 participants were presented with 16 bottle images, 12 of which were 

selected at random from those the participant had already seen and rated during Time1 and 

four that the participant had not seen previously. The 16 images presented during Time2 

were presented in random order. See Error! Reference source not found. for an 

illustration of how bottle images were selected from the pool of 20 at Time1 through Time2.  

 

                                                 
5 Note, in the Control condition a personalized algorithm would theoretically be able to make predictions 

about the image without the user ever seeing it and therefore there would be no need for the participant to 

look at the image for any length of time. However, since participants in all conditions were asked to 

evaluate how they felt about the image by thinking about whether they agreed with the rating or not, this 

instruction was kept constant for the control condition to avoid any confounds related to length of time each 

stimulus was viewed. 

Figure 4. Illustration of how bottle images were selected from the pool of 20 at Time1 through 

Time2. At Time1 16 images were selected from a pool of 20 images to appear in random order for 

participants to view and rate. At Time2 the participant viewed a second series of 16 images; 12 

selected at random from the 16 images rated at Time1 and the remaining four were those that had 

not been selected from the original pool of 20 for viewing at Time1. 
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After the image was shown for four seconds, a second image appeared alongside 

the bottle describing what the personalized algorithm or neuromonitor technology 

calculated the participants “rating” would be for that particular image. The appearance and 

description of the “rating” varied by condition (see Figures 3 A-D).  While participants in 

all conditions were led to believe the rating was derived by their sensor feedback (or the 

personalized algorithm in the control condition), the rating was actually derived from the 

participant’s responses during Time1. Four images were randomly selected to appear with 

the Same ratings from Time1, four were randomly selected to appear with a rating 2 points 

Higher, and four were randomly selected to appear with a rating 2 points Lower, (see 

Error! Reference source not found.3 for an examples). The remaining four images 

presented were comprised of those the participant had not seen previously and ratings for 

these images were generated at Random using the same scale as the other 12. As a measure 

of Agreement, after each image and its rating were presented, participants were asked to 

indicate whether they agreed or disagreed with the rating generated by their particular 

technology by selecting one of three responses: “Should be Higher”, “Agree”, or “Should 

be Lower”. 

After rating each of the 16 images at Time2, participants were asked a number of 

additional questions including a manipulation check asking what type of technology they 

tested and how their technology generated their ratings. Participants were also asked a 

series of questions about their personal experiences with wearable self-sensor technologies, 

their attitudes toward the technology they used during the study, and basic demographic 

information.  
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Bottle ID 

Eg. 

Response 

@ Time1 

Change 

Direction 

Rating 

Presented        

@ Time2 

Eg.  Raw 

Agreement 

Score* 

Converted 

Agreement 

Value** Avg. 

bottle6.jpg 4 Same 4 2 2 

 

 
(Same)     

1.75 
bottle0.jpg 4 Same 4 3 1  

bottle10.jpg 6 Same 6 2 2 
 

bottle9.jpg 3 Same 3 2 2  

        

bottle2.jpg 3 Higher 5 2 2 

 

(Lower)  

1.5 

bottle4.jpg 4 Higher 6 1 1 

bottle3.jpg 3 Higher 5 3 1 

bottle19.jpg 4 Higher 6 2 2 

        

bottle14.jpg 5 Lower 3 1 1  

(Higher)  

1.5 

bottle8.jpg 4 Lower 2 2 2 

 bottle11.jpg 5 Lower 3 2 2 

bottle5.jpg 4 Lower 2 3 1 

        

bottle12.jpg NA Random 5 3 1 

 

(Random)  

1.25 

bottle18.jpg NA Random 1 2 2 

bottle16.jpg NA Random 3 3 1 

bottle1.jpg NA Random 6 3 1 

Note. *1= "Should be Higher", 2="Agree", 3="Should be Lower"; **1=Disagree, 2=Agree 
 

Quantitative Analysis. As mentioned in the design section, this study used a 4 

(Feedback: Explicit, Abstract, Implied, Control) x 4 (Change: Same, Higher, Lower, 

Random) mixed factor design with Agreement as the primary dependent variable. The first 

test conducted was a mixed Analysis of Variance (ANOVA) to determine whether any 

changes in the dependent variable, Agreement, were the result of the between-subjects 

variable Feedback, the within-subjects variable Change, and/or an interaction between the 

two. Prior to doing this analysis, note that although participant responses were recorded on 

a scale of 1-3, responses of 1 and 3 both indicated disagreement (either because the 

Table 3 

Example of participant data and average agreement values.   
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participant felt the score presented by the program should have been higher (1) or should 

have been lower (3)). To simplify the analysis the direction of disagreement was 

disregarded and scores were converted to either 1 for disagree or 2 for agree. These new 

scores were then averaged across each of the four iterations of each of the four Change 

directions (i.e. 4xSame, 4xHigher, 4xLower, and 4xRandom), creating 4 average 

Agreement scores per participant for Change (rather than 16). Table 1 shows an example 

of participant data to illustrate how responses from Time1 were changed at each level of 

the Change variable to produce rating for Time2 and how Agreement responses were 

converted to an average score.  

Using the average Agreement scores, no main effect of Feedback was found, 

F(3,111)=.254, p=.858, and no interaction of Change and Feedback was found, F(9,111)= 

.842, p=.577. However a main effect of Change was found, F(3,111)=50.715, p≤.001, 

𝜂p
2=.314. Table 4 shows a series of paired samples t-test for all levels of the Change 

variable. Subjects tended to agree more with the recommendations made by the program 

(regardless of whether they wore the neuromonitor or not) when the original score was kept 

the Same (M=1.758, SE=.023), pushed Higher (M=1.733, SE = .022, or pushed Lower 

(M=1.688, SE=.025) relative to recommendations made when the image was presented for 

the first time with a Random score (M=1.412, SE=.025, all ps<.001). In other words, the 

presence or absence of the neuromonitor feedback did not have an impact on whether the 

participant tended to agree with the rating recommendations presented by the program in 

Time2; however, participants tended to agree with the recommendation more often when 

the image was one they had seen before (regardless of whether the recommendation was 

the same, higher, or lower than their previous actual rating) relative to the random ratings 



74 

presented for images they had not seen before. This finding is discussed further in the 

Descriptive Analysis section. 

 

Paired samples t-tests for all levels of the Change variable. 

Change 

Mean 

Agreement SD t df 

Sig.  

(2-tailed) 

 Same  1.76 0.24 0.98 114 0.329 

Higher 1.73 0.23    
       

 Same 1.76 0.24 1.09 114 0.103 

Lower 1.69 0.27    
       

 Lower 1.69 0.27 -1.57 114 0.117 

Higher 1.73 0.23    
       

 Random  1.42 0.26 -7.85 114 <.001 

Lower 1.69 0.27    
       

 Random  1.42 0.26 -10.11 114 <.001 

Higher 1.73 0.23    
       

 Random  1.42 0.26 -10.61 114 <.001 

Same 1.76 0.24    
       

 Random  1.42 0.26 -9.92 114 <.001 

Different 1.71 0.19    
       

 Random  1.42 0.26 -11.10 114 <.001 

Non-Random 1.73 0.16       

Note. Also includes comparison of Random condition to combined mean 

score of Higher and Lower (labelled as “Different”) and comparison of 

Random condition to combined means of Same, Higher, and Lower 

(labelled as Non-Random). 

Although the analyses thus far indicate no impact of the Feedback manipulation, it 

is possible that the manipulation could have had an impact on a subset(s) of participants. 

To rule out this possibility additional tests were conducted using Agreement as the primary 

dependent variable. First, a mixed ANOVA was conducted using Feedback and Gender as 

independent variables to test for an interaction. No interaction was found F(3,107)=.107, 

p=.956, but it is important to note that there were very few males in the sample. Second, it 

Table 4 
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was suspected that individuals who seek out wearables on their own might also be more 

willing to follow recommendations thought to be derived from the data a wearable 

monitors. Participants had been asked to indicate if they currently owned or planned to own 

biometric wearables, so a mixed ANOVA was conducted using this variable and Feedback 

as the independent variable, but again no interaction was found F(3,110)=.669, p=.573.  

Descriptive Analysis. Participants tended to agree with the ratings they were led to 

believe had been derived from either their personalized algorithm or their neural feedback 

(64.9%). This number increases when looking at rating that were not randomly generated, 

in which case participant agreed 72.8% of the time (see Table 3 for frequency of Agreement 

responses for all conditions). As noted in the Quantitative Analysis section, participants 

tended to disagree more often with ratings that had been generated at random. One 

explanation for this could be related to greater variability in randomly generated ratings 

away from participants’ actual attitudes about the image. Bottle images appearing in Time2 

that had been seen previously were always paired with a rating that was within zero to two 

points of the participant’s original attitude rating (measured during Time1). However, 

images appearing in Time2 that had not been seen previously were paired with a random 

rating, with unknown variance from the participant’s actual attitude. For example, suppose 

a participant’s “actual” attitude rating toward an image is a “one.” If the participant sees 

this image at Time1 they will rate it a “one” and the image can reappear in Time2 with any 

rating between one and three. However, if they do not see this image at Time1 it would then 

appear in Time2 with a random rating of any number between one and six, which could be 

up to five points higher than the participant’s actual attitude. Ratings in the Random 

condition were not bound to be within two points of the participants “actual” attitudes and 
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therefore the likelihood that the ratings would be disagreeable were higher for this 

condition.   

When participants who wore the Mindwave Mobile headset were asked if interested 

in using a similar product to help with consumer purchases, 38.3% said yes, 53.1% said 

maybe, and only 8.6% said no. There are numerous potential explanations for this. First, 

participants may have merely been being polite. Second, recalling that participants tended 

to agree with most of the ratings presented during Time2, this positive reaction may have 

been a reflection of a positive experience with the technology.    

 

Frequency of Agreement responses for Time2. 

 

Discussion. Despite numerous theoretical findings described earlier that suggested 

the use of neuroscientific self-sensor data might be more persuasive in altering a user’s 

attitudes than would be a personalized algorithm similar to those often employed to make 

product recommendations by online retailers such as Amazon.com, this did not prove to be 

Table 5 
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the case in this study. Because of limitations with the number of participants that could be 

recruited for the study, a control condition in which participants would be led to believe 

that their ratings in Time2 were merely generated at random could not be included in the 

study design. Therefore, it can only be said that leading participants to believe their 

brainwave data were used to interpret their likes and dislikes was no more or less persuasive 

in shifting their attitudes than leading them to believe this was done by a personalized 

algorithm. However, it cannot be said with certainty that, based on this study, either of 

these methods is any more or less persuasive than if a participant were led to believe his or 

her recommendations had been made by a monkey trained to draw cards randomly from a 

deck. This is not to discount or specifically question the persuasive qualities of technology 

qua technology, but merely to point out that it would be problematic to make any strong 

claims that brainwave data is at least “as persuasive” as personalized algorithm data 

without first understanding the degree to which either is persuasive at all in this particular 

context.  

Another factor that may have contributed to the null findings is the possibility that 

participants had a tolerance of at least two points on the one-to-six Likert scale that was 

used to indicate the likeability of each image. In other words, if ratings presented by the 

program that were within two points of the participant’s original rating were generally 

perceived as the same score, agreement with scores that were changed up or down did not 

necessarily indicate successful persuasion. Future research should allow for a wider range 

in the magnitude of change for scores at Time1 to Time2. Including more extreme changes 

would help identify whether there is a threshold at which users may be persuaded by the 

neuromonitor data, but not the algorithm or vice versa. This information could not be 
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determined by looking at the random condition because the participant’s original attitudes 

were not known.  

If there was a threshold effect to explain why participants tended to agree with 

ratings that were within two points of their original score regardless of condition, this does 

not explain why the neuromonitoring condition was not more persuasive than the 

personalized algorithm condition for scores that were randomly generated at Time2. As 

described in the introduction and study overview, research seemed to suggest that the mere 

presence of SSD, and specifically the presence of neuromonitoring data, would be more 

persuasive than non-neuroscience information; however, the data in the present study did 

not support this hypothesis. It is possible that the context in which neuroscientific 

information was used in this study was not perceived to be as relevant as in the previously 

cited research or it is possible that participants in this study, compared to those in previous 

neurobias studies did not experience enough uncertainty in their decisions to consider 

additional information that was available. In other words, it is possible that participants in 

this study simply didn’t perceive that the neuroscientific information was relevant enough 

to their decisions for it to be an influencing factor and/or there was not enough uncertainty 

to seek additional information cues to make their assessment. This would explain why the 

neuromonitoring conditions and personalized algorithm conditions did not differ in 

persuasiveness. Future research should examine whether neuromonitoring data might have 

a persuasive impact on decision making if the topics, images, or vignettes engage 

participants in higher stakes decision making or decision making with a higher level of 

uncertainty.  
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Given the limitations of this study, as well as the breadth of research related to the 

effectiveness of tailored messaging, evidence of the persuasive influence of false biological 

feedback, and other research described in the previous sections, it is premature to suggest 

that neuromonitoring data, (or SSD more broadly) are not persuasive or even unduly 

persuasive. In addition to addressing the methodological issues described, to understand 

the persuasive impact of SSPA’s continued research is needed to investigate different 

sources of SSD (e.g. galvanic skin response, heart rate, etc.), different domains of decision 

making (e.g. fitness, wellness, consumer choices, lifestyle decisions, etc.), the directness 

of the causal link between the SSD and the message, the degree of uncertainty or emotional 

investment in the decision process and so on.  

CONCLUSION 

The possibility that SSPA’s might be unduly persuasive should not be the only risk 

factor investigated experimentally. Other social implications, such as the degree to which 

SSPA’s may depress belief in free will and promote negative behaviors, should be 

examined in the future. Furthermore, some of the social implications discussed here are 

relevant regardless of the persuasive impact of SSD. SSPA’s represent a new opportunity 

for governing people. Whether this will manifest in the future as primarily self-governance 

as some have argued (Rose, 2007a; Rose, 2007b; Topol, 2011) or as merely a transfer of 

individual (and collective) sovereignty to industry and state will rest on how these 

technologies are designed and how persuasive they are. This research has argued that 

consumer SSPA’s pose a unique threat to user autonomy because of qualities that tap into 

numerous psychological phenomena of persuasion and because of little formal or informal 

regulatory oversight. The discourse surrounding SSPA standards for avoiding risk through 
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design and regulation that has taken place has focused on data security, privacy, accuracy, 

and to some degree, physical harm, while the concerns raised in this research, related to 

subjection, docility, medicalization, persuasion bias, and erosion of beliefs in free will, 

have not been widely considered. For SSPA’s (and too many other forms of technological 

innovations) the approach to considering these broader social implications is often “shoot 

first, ask questions later,” i.e. bring these products to market, see what sticks around, and 

see what the outcomes are. It’s unclear how responsibility for accounting for these social 

implications should be assigned, whose moral authority can be trusted to do it, and what 

values should play a role. Although engineers are centrally located in reflecting on and 

responding to ethical implication of SSPA design and deployment, it is critical that 

government regulatory bodies such as the FDA and the FTC place a higher emphasis on 

SSPA risk, one that goes far beyond privacy and data security. 

The economic success of consumer SSPA’s relies on convincing users that their 

physiological states should not only be monitored, but also controlled. However, numerous 

factors described in the research presented here suggest that, rather than empowering users 

to access and unleash the body from some (imaginary) state of ignorance that ostensibly 

puts wellness at risk, SSPA’s invite external actors into the users most intimate activities 

and allow those actors to define that individual in unprecedented detail. By controlling this 

knowledge and the standards through which these definitions are constructed, external 

actors have the ability to remove the very control from the user that they claim to be 

offering. This is not to suggest that all SSPA’s as they exist today necessarily transfer 

control from the user to an external actor. These technologies can also be used to monitor 

and control the user’s physiological states using only that body’s previous state as the frame 
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of reference for any implicit or explicit prescriptive (such as increasing strength or stamina 

over past performance). In this case, it is possible that a user could in some sense be 

empowered to control bodily processes solely on his or her own terms. However, the ability 

to evaluate and compare oneself to others and against established norms is imperative to a 

deeply seated drive to understand and control the “self” and its place in the world. SSPA’s 

that promise this affordance will no doubt be appealing to a broad consumer base and, as 

described earlier, current approaches to design and marketing of these technologies tap into 

this drive using language and rhetoric that implies understanding the self can be achieved 

through subjection of the body. What is critical to acknowledge, however, is that if users 

are prevented from knowing the values and interests that underlie how these 

understandings and modes of control are constructed, there is a greater risk that SSPA’s 

may become not a tool of self-governance, but rather, a tool of social control. One in which 

understanding the “self” becomes a process of corporate and state reflection to control 

consumer and population behavior, while ironically lulling users into a sense that they are 

participating in a process of deep personal reflection.  

As a final note, it will be tiresome to some and critical to others that I to point out 

that the research and arguments presented here, though critical, do not, in fact, constitute a 

luddite call to ban SSPA’s. Rather, it constitutes a call to acknowledge the deeper social 

implications of these technologies and to further examine how deficiencies in current 

ethical analysis and regulatory considerations ought to be addressed in order to avoid 

unwanted consequences; before, or at least at the same time as, a future of ubiquitous 

surveillance of bodies and actions is being feverishly constructed. And to underscore that 

the promises of user empowerment and personalized wellness stemming from advocates 
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of self-quantification rest not merely in the expansions of the variety and details of SSD 

data made available to users, but in the design and deployment of the SSPA’s that use these 

data to influence user behavior and define the body.  
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