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ABSTRACT 

 

This research mainly focuses on improving the utilization of photovoltaic (PV) re-

sources in distribution systems by reducing their variability and uncertainty through the 

integration of distributed energy storage (DES) devices, like batteries, and smart PV in-

verters. The adopted theoretical tools include statistical analysis and convex optimization.  

Operational issues have been widely reported in distribution systems as the penetration of 

PV resources has increased. Decision-making processes for determining the optimal allo-

cation and scheduling of DES, and the optimal placement of smart PV inverters are con-

sidered. The alternating current (AC) power flow constraints are used in these optimization 

models. The first two optimization problems are formulated as quadratically-constrained 

quadratic programming (QCQP) problems while the third problem is formulated as a 

mixed-integer QCQP (MIQCQP) problem. In order to obtain a globally optimum solution 

to these non-convex optimization problems, convex relaxation techniques are introduced. 

Considering that the costs of the DES are still very high, a procedure for DES sizing based 

on OpenDSS is proposed in this research to avoid over-sizing.  

Some existing convex relaxations, e.g. the second order cone programming (SOCP) 

relaxation and semidefinite programming (SDP) relaxation, which have been well studied 

for the optimal power flow (OPF) problem work unsatisfactorily for the DES and smart 

inverter optimization problems. Several convex constraints that can approximate the rank-

1 constraint X = xxT are introduced to construct a tighter SDP relaxation which is referred 

to as the enhanced SDP (ESDP) relaxation using a non-iterative computing framework. 

Obtaining the convex hull of the AC power flow equations is beneficial for mitigating the 

non-convexity of the decision-making processes in power systems, since the AC power 
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flow constraints exist in many of these problems. The quasi-convex hull of the quadratic 

equalities in the AC power bus injection model (BIM) and the exact convex hull of the 

quadratic equality in the AC power branch flow model (BFM) are proposed respectively 

in this thesis. Based on the convex hull of BFM, a novel convex relaxation of the DES 

optimizations is proposed. The proposed approaches are tested on a real world feeder in 

Arizona and several benchmark IEEE radial feeders.  

  



iii 

 

ACKNOWLEDGMENTS 

 

First of all, I would like to express my grateful thanks to Dr. Vijay Vittal, my advi-

sor, who gave me the chance of pursuing my Ph.D. degree at Arizona State University. Dr. 

Vittal provided valuable guidance and continuous support to me, which significantly re-

duced my fear of failure in the Ph.D. research.  I do appreciate the time working with Dr. 

Vittal and I believe this experience is just like a beacon in my life, leading me to the way 

of scientific research and preparing me well for my future career. 

Secondly, I am grateful to Dr. Raja Ayyanar, Dr. Hans Mittelmann and Dr. Gerald 

Heydt for serving as members of my committee. They spent a lot of time talking with me 

and dispelling my confusion. Without their suggestions, I could not continue to improve 

my research work. Additionally, I would also like to convey my gratitude to all the mem-

bers of the Flagstaff PV project team who selflessly offered their help and suggestions to 

my research. 

Last but not least, I want to thank my parents and my friends. Love and support 

coming from them is the real power to help me focus on the research.   



iv 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ................................................................................................................. vii  

LIST OF FIGURES .............................................................................................................. viii 

NOMENCLATURE ................................................................................................................. x  

CHAPTER 

      1 INTRODUCTION .................................................................................................1 

1.1 Potential Issues in Distribution Systems with High Penetration PV .............1 

1.2 Capability of the DES and Smart PV Inverters in Mitigating the PV Issues 4 

1.2.1 Distributed Energy Storage .................................................................4 

1.2.2 Smart PV inverters ..............................................................................6 

1.3 State of Art of Convex Optimization Techniques in Power Systems ...........6 

1.3.1 A Conventional Convexification: Linearization .................................7 

1.3.2 State of the Art of Nonlinear Convex Relaxation ...............................8 

1.4 Thesis Organization .....................................................................................10 

      2 SIZING OF DES FOR TWO OPERATIONAL REQUIREMENTS .................13 

2.1 Sizing DES for Eliminating System Constraint Violations .........................13 

2.2 Sizing DES for Reducing Short-duration Uncertainty of PV ......................15 

2.3 Operational Strategy of DES .......................................................................17 

2.4 Results of the DES Sizing ...........................................................................18 

      3 MODELING AND NON-CONVEXITY OF THE OPTIMIZATION 

PROBLEMS……………………………………………………………………………..22 

3.1 Optimal Allocation and Dispatch of DES ...................................................22 

3.2 Optimal Placement of the Smart Inverter ....................................................26 

3.3 Analysis of the Non-convexity ....................................................................27 

      4 NON-ITERATIVE ENHANCED SDP RELAXATIONS ..................................29 

4.1 Second Order Cone Programming Relaxation ............................................29 

 



v 

 

CHAPTER                                                                                                                      Page 

4.1.1 Discussion on Sufficient Condition for Exactness of the SOCP 

Relaxation .........................................................................................30 

4.1.2 The Necessary and Sufficient Condition for Exactness....................31 

4.1.3 An Illustrative Example of DESOS ..................................................34 

4.1.4 Observation and Discussion..............................................................37 

4.2 Basic Semidefinite Programming Relaxation .............................................38 

4.3 Non-iterative Enhanced SDP Relaxations ...................................................41 

4.3.1 Rank-2 Linear Inequalities................................................................41 

4.3.2 Valid Linear Equalities .....................................................................42 

4.3.3 Semidefinite Inequality_1 .................................................................43 

4.3.4 Semidefinite Inequality_2 .................................................................44 

4.4 Geometric Interpretation .............................................................................45 

4.5 Non-iterative Enhanced SDP relaxations ....................................................50 

4.6 Comparison of Tightness .............................................................................51 

      5 CONVEX HULL OF THE AC POWER FLOW ................................................52 

5.1 AC Power Flow in Meshed Networks .........................................................52 

5.1.1 Revisit the BIM in Rectangular Coordinates ....................................52 

5.1.2 Convex Hull of the Non-convex Quadratic Inequalities in BIM ......53 

5.1.3 An Illustrative Example ....................................................................55 

5.2 AC Power Flow in Radial Networks ...........................................................56 

5.2.1 Revisit the Branch Flow Model ........................................................56 

5.2.2 Geometric Understanding of the Convex Hull of BFM ...................57 

5.2.3 Mathematical Formulation of the Convex Hull of DistFlow ............61 

      6 CASE STUDY ....................................................................................................63 

6.1 Efficiency from a Perspective of Power System Engineering ....................63 

6.2 DESOS: Tightness of the ESDP Relaxations for Continuous Cases ..........67 

6.2.1 Test System and Case Design ...........................................................67 

6.2.2 Remarks ............................................................................................70 

6.2.3 Observations and Discussions ..........................................................73 

6.3 SIOP: Tightness of the ESDP Relaxations for Discrete Cases ...................74 



vi 

 

CHAPTER                                                                                                                      Page 

6.3.1 Solution Method ...............................................................................74 

6.3.2 Results and Analysis .........................................................................75 

      7 CONCLUSIONS AND FUTURE WORK .........................................................77 

7.1 General Summary ........................................................................................77 

7.2 Contributions and Findings .........................................................................78 

7.3 Suggested Future Work ...............................................................................80 

REFERENCES…………………………………………………………………………..82 

APPENDIX 

      A PROOF OF PROPOSITION 4.1 ..............................................................................89 

      B PROOF OF PROPOSITION 4.2 ..............................................................................94 

      C PROOF OF PROPOSITION 4.3 ..............................................................................96 

      D PROOF OF THEOREM 5.1 ....................................................................................98 

      E PROOF OF THEOREM 5.2 ...................................................................................101 

      F LIST OF PUBLICATIONS ....................................................................................104 



vii 

 

LIST OF TABLES 

Table                                                                                                                               Page 

3.1 The Reformulated DESOA Models ............................................................................ 25 

3.2 The Reformulated DESOS Models ............................................................................. 25 

4.1 The Parameters of the 2-bus System. .......................................................................... 35 

4.2 The Correspondence between Constraints in (BSDP) and (DESOA). ....................... 40 

4.3 The Correspondence between Constraints in (BSDP) and (DESOS). ........................ 40 

4.4 The Correspondence between Constraints in (BSDP) and (SIOP). ............................ 40 

4.5 The Enhanced SDP Relaxations of (DESOA), (DESOS) and (SIOP) ........................ 51 

5.1 The CH Relaxations for the DESOSs ......................................................................... 62 

6.1 Optimal Allocation of DES Units when Objective Function (3.1) is Chosen. ........... 64 

6.2 Maximum Errors of the SOCP Relaxation for DESOAs in p.u. ................................. 65 

6.3 Operational Costs in p.u. ............................................................................................. 66 

6.4 PV System and DES Unit Locations and Capabilities................................................ 69 

6.5 Results of DESOS ....................................................................................................... 71 

6.6 Results of SIOP in p.u. ................................................................................................ 76 



viii 

 

 LIST OF FIGURES 

Figure                                                                                                                             Page 

1.1 Actual Measured PV Production of A Selected Day (from 6:00 to 19:00) .................. 2 

1.2 Decomposition of Actual Measured PV Production of A Selected Day (from 6:00 to 

19:00) .................................................................................................................................. 2 

1.3 A 1-hour Example of PV Output Fluctuation ............................................................... 3 

1.4 The Corresponding Voltage Profile of the 1-hour Example Where the Voltage Base is 

12.47 kV. ............................................................................................................................. 3 

1.5 Framework of Proposed Approaches in this Report. .................................................. 11 

2.1 The Real-world Test Feeder in Southwest U.S. .......................................................... 18 

2.2 Result of DES Sizing for the First Operational Objective .......................................... 20 

2.3 CDF Curves of the Uncertain Power and Energy ....................................................... 20 

2.4 Active Power Output of PV Plant 2 on Jan. 11th . ...................................................... 21 

4.1 Flow Charts for Verifying the Exactness of the SOCP Relaxation ............................ 31 

4.2 An Example of the Sufficient and Necessary Condition. ........................................... 32 

4.3  Topology of the Simple System. ................................................................................ 34 

4.4  The Projection of the Feasible Set of (4.5) onto the (pg, p
DES)-space. ....................... 36 

4.5  The Projection of the Feasible Set of (4.5) onto the (ℓ, pDES)-space. ......................... 37 

4.6  The Projection of the Feasible Set of (4.5) onto the (v2, p
DES)-space. ....................... 37 

4.7  Feasible Set of System (4.25). ................................................................................... 46 

4.8  Feasible Set of System (4.26) in the (X11, X22, X12)-space. ........................................ 46 

4.9  Geometric Interpretation of RLT. .............................................................................. 47 

4.10  Geometric Interpretation of VLE. ............................................................................ 49 



ix 

 

Figure                                                                                                                              Page 

4.11  Geometric Interpretation of SI_2. ............................................................................ 50 

4.12 Hypothesis about the Tightness of the Convex Relaxations for the (DESOA), (DESOS) 

and (SIOP) Problems in Radial Networks. ....................................................................... 51 

5.1 Feasible Set of System (5.13) is the Space below the Surface and within the Box 

Constraints. ....................................................................................................................... 56 

5.2 Feasible Set of System (5.21). .................................................................................... 58 

5.3 Feasible Set of System (5.24). .................................................................................... 59 

5.4 Feasible Set of System (5.26). .................................................................................... 60 

6.1 Voltage Profiles of the Bus with the Worst Violation on the Worst Case Day. ......... 65 

6.2 Cost Curves Used in the Case Study........................................................................... 66 

6.3 Topologies of the IEEE Test Systems. ....................................................................... 69 

A.1  Illustration of transformation of SOC constraint. ..................................................... 92 

 

  



x 

 

NOMENCLATURE 

 

Aij,t n × n-dimensional matrix (n is the size of the vector xt defined in Sec-

tion 4.2) and the only non-zero entries of Aij,t are the two diagonal en-

tries corresponding to Pij,t and Qij,t 

Ai 4×4-dimensional coefficient matrix of the ith quadratic equality of the 

branch flow model 

a A lower triangular matrix with nonnegative diagonal entries 

AC Alternating current 

AMI Automated Meter Infrastructure 

ANN Artificial neural network 

Arg{∙} Argument function 

BFM Branch flow model 

BIM Branch injection model 

B&B Branch and bound 

B (n+1)-dimensional vector 

C 4×4-dimensional coefficient matrix of the quadratic equality in BFM 

ct Cost of grid energy at time t 

CC Cost curve 

CDF  Cumulative distribution function 

CH Convex hull 

CONV(·) Convex hull of a set 

d A scalar value 



xi 

 

d The opposite direction to the descent direction of an objective function 

D A variable denoting the Dth day of a year 

DES Distributed energy storage 

DESOA Distributed energy storage optimal allocation 

DESOS Distributed energy storage optimal scheduling 

e A constant given by the operators in (2.6) 

ei Real part of the voltage at bus i respectively 

er Real part of the voltage at the reference bus respectively 

ESDP Enhanced semidefinite programming 

ESS Energy storage system 

EME The statistical sample set of maximum error PV energy 

ME
DE  The maximum error PV energy of day D 

DES
iE  Energy capacity of DES at bus i 

Ei
spl Energy surplus of the DES at bus i at the beginning of a day 

FACTS Flexible alternating current transmission systems 

f(∙) CDF of some statistical sample set 

Fi The ith objective function 

fi Imaginary part of the voltage at bus i respectively 

fr Imaginary part of the voltage at the reference bus respectively 

I2 2 × 2 identity matrix 



xii 

 

ki Loss coefficient with respect to square of voltage magnitude. In distri-

bution systems, this quantity is usually the coefficient of core losses in 

transformers. 

K A threshold value for triggering the DES controller 

LMP Locational marginal price 

LMPt Locational marginal price of the substation bus at t 

LP Linear program 

M Number of branches 

M 4×4-dimensional constructed positive definite matrix 

m A lower triangular matrix with nonnegative diagonal entries 

MIQCQP Mixed-integer quadratically constrained quadratic programming 

ME Maximum error 

max{∙} Calculation of the maximum value of a array 

N Number of buses 

Ni Set of downstream buses which are directly connected to bus i 

NT High voltage bus set of transformers 

Ns DES bus set 

NG Generator set 

NR Reactive power regulator set (including the generators which have re-

active capabilities) 

OOV Optimal objective value 

OPF Optimal power flow 



xiii 

 

p A constant given by the operators in (2.5) 

Pij,t Active power flow in p.u. in branch ij at hour t 

Pt A vector that contains all Pij,t 

,

CH

i tp  Charging rate of DES in p.u. at bus i at time t  

pt
CH A vector that contains all ,

CH

i tp  

,

DCH

i tp  Discharging rate of DES in p.u. at bus i at time t  

pt
DCH A vector that contains all ,

DCH

i tp  

DES
iP  Power rating of DES in p.u. at bus i 

DESP  Total Power rating of DES in p.u. for the feeder 

DESp  Output of the DES units in the proof of Proposition 4.1 and the illustra-

tive example in Subsection 4.1.3 

,

DESloss

i tp  Power losses of DES in p.u. at bus i at hour t  

pt
DESloss A vector that contains all ,

DESloss

i tp  

G

i
P  Active power generation in p.u. at bus i. 

 1 ,

Grid

i t
p


 Active grid power in p.u. at hour t 

,

L

i tp  Active load in p.u. at bus i at hour t 

PME The statistical sample set of maximum error PV power 

ME
DP  The maximum error PV power of day D 

,
,

PV lmt
D tP  The PV generation at tth hour of the Dth day at the penetration level that 

makes system constraint violation first occur 



xiv 

 

,
,

PV desired
D tP  The PV generation at tth hour of the Dth day at the desired penetration 

level 

,

mc

PV lmt
t

P  The PV generation at tmc of the penetration level that makes system 

constraint violation first occur 

,

mc

PV desired
t

P  The PV generation at tmc of the desired penetration level 

,
PV

D tP  The measured PV power at the tth minute of the Dth day 

,
F

D tP  The forecast PV power at the tth minute of the Dth day 

PV Photovoltaic 

Qij,t reactive power flow in p.u. in branch ij at hour t 

Qt A vector that contains all Qij,t 

,

DCH

i tq  Reactive discharging rate of DES in p.u. at bus i at time t  

,

CH

i tq  Reactive charging rate of DES in p.u. at bus i at time t  

DESq  Reactive output of the DES units in the proof of Proposition 4.1 and the 

illustrative example in Subsection 4.1.3 

 1 ,

Grid

i t
q


 Reactive grid power in p.u. at hour t 

qi
Invt Reactive power output of the smart inverter in p.u. at bus i 

qInvt A vector that contains all qi
Invt 

,

L

i tq  Reactive  load in p.u. at bus i at hour t 

QCQP Quadratically constrained quadratic programming 

rij Resistance in p.u. of branch ij 

RLT Reformulation-linearization technique 



xv 

 

RDG Renewable distributed generation 

R2LI Rank-2 linear inequalities 

Si
Invt A real value denoting the rating of the smart inverter in p.u. at bus i 

SInvt A vector that contains all Si
Invt 

SLE1 The first set of linear equality constraints 

SLE2 The second set of linear equality constraints 

SLI The set of linear inequality constraints 

SQE The set of quadratic equality constraints 

SQI The set of quadratic inequality constraints 

S  The assumed optimal solution of the convexified problem that is not lo-

cated on the SOC boundary 

ijS  A real value denoting the MVA limit in p.u. of branch ij 
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Chapter 1 INTRODUCTION 

1.1 Potential Issues in Distribution Systems with High Penetration PV 

Photovoltaic (PV) resources connected to distribution systems and referred to as 

renewable distributed generation (RDG) have experienced a rapid growth in the past dec-

ades. PV resources provide an alternative to fossil fuel generation. However, operational 

issues have been widely reported in distribution systems as the penetration of PV resources 

has increased. The operational issues observed include over loading in conductors and volt-

age limit violation. Therefore, new techniques are required to mitigate the operational is-

sues arising due to the high penetration of PV. 

A typical daily PV generation curve measured at a real world feeder location in 

Arizona is shown in Figure 1.1 at a time resolution of one minute. The forecasted PV gen-

eration curve for this day is depicted by the dashed line as shown in Figure 1.1. By sub-

tracting the forecasted PV generation value from the measured value, the uncertain PV 

generation (error in PV power) curve can be obtained as the solid line shown in Figure 1.1. 

It can be observed from Figures 1.3 and 1.4 that, when the penetration of PV is high, 

at the time resolution of 1 minute the main operational problem observed is fast voltage 

fluctuations caused by short-duration (lasting 1 second to 1 minute) variation of PV output. 

Note that the example given in Figure 1.3 and 1.4 is different from that in Figure 1.1 and 

1.2. And, the operational problem caused by the forecast component of PV generation is 

system constraint violations at the time resolution of 15 minute – 1 hour.  
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Figure 1.1 Actual Measured PV Production of A Selected Day (from 6:00 to 19:00) [1] 

 

 

 
Figure 1.2 Decomposition of Actual Measured PV Production of A Selected Day (from 

6:00 to 19:00) [1] 
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Figure 1.3 A 1-hour Example of PV Output Fluctuation [1] 

 

 

Figure 1.4 The Corresponding Voltage Profile of the 1-hour Example Where the Voltage 

Base is 12.47 kV. 

This research studies the detrimental impacts caused by high penetration PV at 

mainly two time resolutions – one hour at which optimization techniques can be applied 
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and one minute at which the effects of short-term PV output uncertainty with high ramp 

rates can be properly observed. The feasibility of utilizing distributed energy storage (DES) 

and smart PV inverters to mitigate the adverse effects caused by PV is estimated. Novel 

techniques are developed for implementing the DES and smart PV inverters in distribution 

systems with integration of high penetration PV at both of planning and operation stages. 

1.2 Capability of the DES and Smart PV Inverters in Mitigating the PV Issues 

1.2.1 Distributed Energy Storage 

It is a consensus among energy specialists that energy storage (ES) systems will 

play a significant role in modern and future power systems with integrated renewable 

sources [1] – [7]. For the distribution system integrated with distributed generation, battery 

or ultra-capacitor ES units which are referred to as distributed ES (DES) in [2] are im-

portant. In this research, the DES is used to alleviate detrimental impacts of high penetra-

tion photovoltaic (PV) resources on distribution systems. The analysis is carried out at 

mainly two time resolutions - one hour at which optimization techniques can be applied 

and one minute at which the effects of short-term PV output uncertainty with high ramp 

rates can be properly observed. To achieve this objective, methods for sizing, allocation 

and operation of DES based on different time horizons are proposed. 

Most power system components like capacitors [8] and [9], distribution transform-

ers [10] and FACTS devices [11], [12], can be sized based on economic criteria, namely 

minimizing the cost of losses and investments over a period of time (e.g. 1-10 years). How-

ever, unit costs of DES are still very high compared with the savings [3]. As a result, this 

objective is not suitable to be directly applied to the sizing of DES. Under the condition 
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that the cost of DES is high, it is advisable to design the DES based on accommodating the 

PV power and energy that cause system constraint (voltage limits, feeder line ampacity 

limits and reverse power flow limit) violations [4]. High-energy storage systems are usu-

ally required for this application. In this report, the spilled PV power and energy are deter-

mined by a proposed approach based on OpenDSS [13], [14] where the entire feeder (in-

cluding the single-phase system) is modeled. Once the total power rating and energy ca-

pacity of the DES are determined, optimization techniques are used to obtain the optimal 

locations. As a result, at the time resolution of 1 hour, the planning stage of DES is divided 

into two steps: i) determine the total size of the battery or supercapacitor and the converter 

which are required to avoid spilling power and energy output of the given PV sources 

(Section 2.1); ii) then choose the optimal sites to locate the DES units along the feeder with 

system limits as constraints that each optimal solution should satisfy and minimizing op-

erational costs or power losses as objective (Section 3.1). 

At the time resolution of 1 minute the main operational problem is fast voltage 

fluctuations caused by short-duration (lasting 1 sec to 1 min) variation of PV output [3]. 

To reduce the short-duration output uncertainty, megawatt-scale photovoltaic installations 

may require high-power, low-energy storage systems [3]. To avoid unacceptably high in-

vestment, a probabilistic method is proposed to size DES for this application (see Section 

2.2). As a result, the operational strategy for DES should contain two sub-strategies, one is 

based on the time resolution of 1 hour while the other is based on the time resolution of 1 

minute (see Section 2.3).  
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1.2.2 Smart PV inverters 

As stated above, integration of high penetration PV may cause various operational 

issues in power systems. Among these problems, voltage regulation issues have been 

widely reported [15] - [18]. The smart inverter is a promising resource of volt/VAr control 

for integration of high penetration of PV [16]. In 2009, a photovoltaic and storage integra-

tion research program conducted by EPRI has identified common measures by which smart 

inverters may be integrated into utility systems [19]. The smart inverter volt/VAr control 

strategies for high penetration of PV on distribution systems were studied in [16] - [18]. 

The smart inverters are usually more expensive than the conventional ones due to the extra 

capability to provide reactive power support and the communication functions. The utili-

zation of smart inverters in power systems raises an interesting issue: how to obtain the 

minimum investment of smart inverters to meet the volt/VAr control requirement.  

This dissertation designs an optimization model for smart inverter placement min-

imizing the total investment of inverters. The designed optimization model is a MIQCQP 

problem taking into account the AC power flow constraints. MIQCQP problems are hard 

to solve since they contain two kinds of non-convexities: integer variables and non-convex 

quadratic constraints (i.e. AC power flow equations) [20]. 

1.3 State of Art of Convex Optimization Techniques in Power Systems 

To obtain the best performance of the distribution system from the given assets, 

various decision-making processes are involved. The optimal allocation and optimal sched-

uling of DES, and the optimal placement of smart PV inverters in distribution systems are 

problems of highly non-convex. This property will result in a locally optimal solution that 
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may be far away from the global optimal when conventional nonlinear programming algo-

rithms are used. Such non-convex problems are also difficult to solve due to the NP-hard-

ness [21], [22]. Some research efforts have used heuristic algorithms, like genetic algorithm 

[3], [23] and [24] bee colony algorithm [25] and firefly algorithm [26], to deal with the 

NP-hard problem. The heuristic algorithms are good methods to remedy the local solution 

problem. However, as stated in literature, the drawbacks of such approaches are obvious: 

1) rely heavily on a good initial population; 2) choice of some parameters depend on expe-

rience; 3) converge prematurely to a local minimum and 4) heavy computational burden.  

Compared with approaches of solving the power system optimization problem in 

its original non-convex form, solving these problems through convex relaxation provides 

several advantages. First, as aforementioned, the solutions obtained by nonlinear algo-

rithms are just locally optimal solutions without guarantee of the quality of the solutions. 

Second, with convex relaxation, NP-hardness is largely avoided. These features make the 

convexified algorithms adaptable to larger systems or faster control in the future. 

1.3.1 A Conventional Convexification: Linearization 

A simple but effective convexification of the AC power flow is called DC power 

flow which has been since the 1970s [27]. The DC power flow is a linear approximation 

of the AC power flow. The accuracy of the DC power flow relies heavily on a low r/x-ratio 

of the circuit branches. However, the r/x-ratio of feeders in distribution systems is high. 

The DC power flow is hence unsuitable for the DES and smart inverter optimizations stud-

ied in this research. Another popular linearization technique is the first-order Taylor series 

expansion. The accuracy of the first-order Taylor series expansion relies on a requirement 
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that the operating point should be close to the original operating point, which is hard to 

satisfy in power systems. Consequently, nonlinear convex relaxations are needed. 

1.3.2 State of the Art of Nonlinear Convex Relaxation 

As alternatives to the DC power flow, some nonlinear convex relaxations have been 

applied to various optimization problems in power systems, e.g. optimal power flow (OPF) 

[28]-[30] transmission system expansion planning [31], transmission optimal switching 

[32], distribution system reconfiguration [33], security-constrained unit commitment [34] 

and reactive power planning [35]. What these problems have in common is that the AC 

power flow equalities are considered as constraints. All the non-convexity or at least a 

significant portion of the non-convexity of these problems comes from the power flow 

constraints. These convex relaxations are semidefinite programming (SDP) [28], second 

order cone programming (SOCP) [31], quadratic convex (QC) [32] and moment-based re-

laxations [36]. 

There are mainly two types of mathematical models that can be used to describe 

the AC power flow. They are the branch flow models (BFM) and the bus injection models 

(BIM) [21]. The BFMs are preferred for radial networks since they are exact for radial 

networks and contain fewer non-convex equalities [37]. However, the BFMs are not exact 

for meshed networks. In radial networks, the SOCP relaxation is tighter than the basic form 

of the SDP relaxation when BFMs are used [38]. However, the SOCP relaxation may be 

inefficient when some objective functions other than the objective function of minimizing 

generation cost are adopted. For the DES optimal scheduling cases where the SOCP relax-

ation is not exact, this research proposes the enhanced SDP relaxations in the non-iterative 
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computing framework. In meshed networks where the power flow is described by BIMs, 

the SDP relaxation dominates the SOCP relaxation regarding the tightness [21].  In fact, 

the QC relaxation is equivalent to the SOCP relaxation for power flow in BIMs if the range 

of angle differences is not subjectively tightened [39]. Overall, the SDP relaxation is still 

preferred for convexifying the power flow equations described by the BIM (generally in 

meshed networks), even though it performs unsatisfactorily for a number of OPF cases [40] 

and [41]. 

Several references have tried to strengthen the convex relaxations of OPFs in iter-

ative computing structures. For example, [42] applied a penalty method to the SDP relax-

ation to enforce the rank of its solution to become nearly 1 based on a premise that the rank 

of the solution for the basic SDP (BSDP) relaxation is low. Iteratively generated linear cuts 

are added to tighten the SOCP relaxation for OPFs in [43]. Interesting results have been 

reported with these iterative methods. However, some issues still exist with the iterative 

methods. For instance, an iterative procedure usually solves a problem repeatedly, which 

results in high computational burden. Moreover, the convergence of most of these iterative 

methods is not well studied. In reference [40], non-iterative linear cuts are proposed based 

on the SOCP formulation of OPF to provide a tight root node for solving the relaxed OPF 

problem in BARON [54], where the relaxed OPF problem is still non-convex. 

The topology of distribution systems is usually radial. Hence, a BFM is used to 

describe the AC power flow in radial networks in the DES and smart inverter optimization 

models since the BFMs are exact for radial networks and contain fewer non-convex con-

straints [37]. The DistFlow model and the modified power flow model proposed in [44] 

and [45] respectively are representatives of BFMs. They are equivalent since there is a 
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bijection between them. The DistFlow model proposed in [44] is used in this research. As 

an alternative, this research looks for computationally effective convex constraints that are 

valid for tightening the basic SDP relaxation of the DES and smart inverter optimization 

problems in a non-iterative framework. Moreover, the convex hull or quasi-convex hull of 

these non-convex constraints in AC power flow constraints are studied in this thesis. 

1.4 Thesis Organization 

Work in this thesis mainly aims at proposing tighter convex relaxations for the DES 

and smart PV inverter optimizations. A brief introduction with a concise literature review 

has been presented in Chapter 1. A framework of the approaches studied in this report is 

shown in Figure 1.5. 

The remainder of this report is organized as follows.  

In Chapter 2, methods of DES sizing are proposed to meet the operational require-

ments at two time resolutions respectively, which provides the basis for the optimal allo-

cation and scheduling of DES studied in later chapters.  

In Chapter 3, optimization models for the optimal allocation and operation of DES, 

and the optimal placement of smart PV inverters in radial distribution systems are estab-

lished respectively.  

Chapter 4 examines limitations of existing convex relaxation techniques, e.g. the 

SOCP relaxation, to reveal some inherent properties of the convex relaxations for the AC 

branch power flow. Then, some convex constraints proposed in the analytical optimization 

literature are introduced to construct a tighter convex relaxation known as the enhanced 

SDP relaxation in a non-iterative framework. 
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Figure 1.5 Framework of Proposed Approaches in this Report. 

 

Next in Chapter 5, the quasi-convex hull of the quadratic equalities in the AC power 

bus injection model (BIM) and the exact convex hull of the quadratic equality in the AC 

power branch flow model (BFM) are proposed respectively. Based on the convex hull of 

BFM, a novel convex relaxation, called CH relaxation, of the DES optimizations is pro-

posed 
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Chapter 6 presents the numerical comparisons among the CH, ESDP, SOCP, and 

the BSDP relaxations on a real-world feeder and several benchmark IEEE radial test feed-

ers. 

Finally, the conclusions and contributions of this research are summarized in Chap-

ter 7. In addition, directions for the future work are also provided. The proofs of the theo-

rems and propositions are given in the appendix section. 
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Chapter 2 SIZING OF DES FOR TWO OPERATIONAL REQUIREMENTS 

2.1 Sizing DES for Eliminating System Constraint Violations 

When the PV penetration is high, system constraint violations may occur due to the 

instantaneous imbalance of power and energy. Hence, it is important to size the DES ac-

cording to the power and energy imbalance. However, the definition of unbalance power 

and energy in some previous references, e.g. [5], is not suitable for this application sce-

nario. To determine the exact amount of power and energy that causes system constraint 

violations, the network structure and system constraints of a distribution system should be 

taken into account.  

The authors of [4] used an OPF to determine the maximum amount of wind power 

and energy that can be absorbed by the distribution system without violating any system 

constraint. The ES systems were then designed to accommodate the spilled wind power 

and energy. However, an actual feeder usually contains a number of single-phase nodes 

and branches. If the single-phase system is fully modeled, the resulting time-coupled OPF 

may be intractable. If the single-phase system is simply neglected, the designed size of the 

DES is most likely to be inaccurate, since the system constraint violations occur in the 

single-phase system more frequently [37]. To achieve a balance, this report divides the 

planning stage into two steps as introduced in Chapter 1. In the first step, the PV power 

and energy imbalance that causes system violations is calculated by OpenDSS, where the 

entire feeder is modeled, to determine the total size of DES required. Second, the optimal 

sites are chosen to allocate the DES units determined in the previous step using the convex 

optimization techniques introduced in Chapter 3 with system limits as constraints and three 

objective functions. Note that, the number of storage units is not restricted to 1. There may 
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be multiple units at multiple locations respectively. The number of units required depends 

on the result of the optimization. However, the summation of the ratings of all the units 

should equal to the total rating determined. Moreover, the method proposed in [4] has a 

limitation that the potential locations of ES units are restricted to the wind power sites. This 

limitation may shrink the physically feasible set of the allocation problem. 

In OpenDSS, the proposed approach for determining the spilled PV power and en-

ergy uses the measured historical yearly load shapes along the feeder and the measured PV 

outputs of all the PV systems on the feeder. The size of DES determined by the proposed 

procedure is believed to be more accurate than that determined by OPF in which the single-

phase system is simply dropped. The detailed procedure of the proposed method is as fol-

lows: 

1) Run hourly time series power flow simulations with the actual operating condi-

tions in OpenDSS and check whether there exists system constraints violations over a time 

period; 

2) From the various cases at which constraint violations occur, denote tmc as the 

instant in time at which the worst system constraint violation occurs in terms of the chosen 

constraint. Define the PV generation at this instant as ,

mc

PV lmt

tP ; 

3) Define the PV generation at a desired penetration level at tmc to be ,

mc

PV desired

tP ; 

4) The total power rating of the DES is then given by (2.1), 

, ,

mc mc

ES PV desired PV lmt
t t

P P P   (2.1) 

5) The energy capacity is given by (2.2),          
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, ,
, ,

0
max ,ES PV desired PV lmt

D t D t
D

E P P T D t dt
 

  
 

 
(2.2) 

where D and t (t=0, …, 23) represent days of the considered historical data and hours in a 

day respectively; T(D, t), which is a binary function of D and t, denotes the period at which 

there exists system constraint violations. When there exists a system constraint violation, 

T equals to 1, otherwise, T equals to 0. Note that PES and EES do not necessarily occur on 

the same day. PES and EES will be used as inputs to the optimal allocation problem intro-

duced in Section 3.1 (see constraints (3.16) and (3.17)). 

2.2 Sizing DES for Reducing Short-duration Uncertainty of PV  

Simulation results obtained from OpenDSS show that severe drops in PV output 

cause fast voltage sags. The historical minute by minute and second by second data (an 

example is given in Figure 1.1) shows that, in the worst case, the PV output dropped from 

the rated value to almost zero within one second due to cloud effects [3], implying that if 

one wants to completely smooth the power injection from a PV system into the distribution 

system, a large DES system is needed. However, this is not necessary since the feeder itself 

has sufficient capability to handle small variations in power injections from a PV system 

[46]. For instance, when the PV penetration is low, the PV output uncertainty will not be a 

problem. As a result, it is essential to determine the proper size of the DES that can reduce 

the short-duration uncertainty of PV output to an acceptable level (an example is shown in 

Section 2.4). A probabilistic method is suitable for sizing the DES to meet this requirement 

while taking care of the short-duration uncertainty. Furthermore, the short-duration uncer-

tainty of PV generation should be determined by removing the periodic effect of the annual 

position of the sun [47]. 
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The detailed procedure for DES sizing based on the proposed probabilistic and sta-

tistical method is given as: 

1) Use (2.3) and (2.4) to obtain the maximum error (ME) in power and energy 

outputs of each day in the considered operating year and form a maximum error power set 

 ME ME

DP P and a maximum error energy set  ME ME

DE E  respectively,                                                                   

 , ,maxME PV F

D D t D t
t

P P P   (2.3) 

  1439

, ,
0

maxME PV F

D D t D t
t

E P P dt   (2.4) 

2) Use  ME

DP and  ME

DE  as the statistical sample sets to obtain the cumulative 

distribution functions (CDF) of the daily maximum error in power  ME

Pf P and energy 

 ME

Ef E  respectively; 

3) Equations (2.5) and (2.6) can be used to calculate the power rating and en-

ergy capacity of DES respectively,    

  %
ME

ES ME
P

P

P Arg f P p 

 
(2.5) 

  %
ME

ES ME
E

E

E Arg f E e 

 
(2.6) 

where ,

PV

D tP  and ,

F

D tP  represent the measured and forecast PV power at the tth minute of the 

Dth day respectively; Arg is an argument function; p and e are constants given by the oper-

ators. It means that the DES determined by (2.5) can manage the errors in power and energy 

of at least p% and e% of the cases occurring in the operation year respectively.  

With the designed DES of which the power rating is determined by equation (2.5) 

and a properly designed DES controller (see Section 2.3), the output curves of the PV plant 
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in p% of the cases can be completely smoothed. In the rest (1-p)% of the cases, the fast 

variations of PV power cannot be eliminated, however the magnitude of the short-duration 

PV power swings can be reduced to a small amount. Therefore, it does not necessarily 

mean that there will be system violations for these cases. Similar conclusion can be made 

to the energy rating determined by equation (2.6). Generally, the minimum operation cycle 

of ES is a day. Hence, it is proper to use 1 day as the minimum period to determine the size 

of DES. 

2.3 Operational Strategy of DES 

The first sub-strategy is aimed at mitigating the problem caused by the uncertain 

component of PV power within a timescale of seconds to minutes. A mathematical repre-

sentation of the charging and discharging rate of the DES is given as 

 , , , , ,

ES F PV F PV

D t D t D t D t D tP P P P P K                                         (2.7) 

where K is a chosen value to prevent the DES from frequently charging and discharging. 

By implementing this sub-strategy, the power injected into the distribution system from 

the PV and DES is nearly equal to the forecast power which has already been considered 

in the day-ahead scheduling. 

For better control performance, some potential advanced control strategies can be 

incorporated, like open-loop based optimal control [48], feed-back-based optimal control 

[49], model predictive control [50], fuzzy control [51] and artificial neural network (ANN) 

control [51]. 

The second operational sub-strategy for the DES is the optimal scheduling. The 

convexified optimization models can also be applied to the operation problem. The optimal 
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allocation model can be used as the dispatch model with constraints (3.16) and (3.17) omit-

ted. Pi
ES and Ei

ES (i ∊ N) are outputs of the allocation problem and parameters of the dis-

patch problem. The parameter T in the dispatch problem is usually 24 hours. 

2.4 Results of the DES Sizing 

The DES sizing methods are tested on an actual feeder located in Arizona. The 

three-phase trunk for this system is shown in Figure 2.1. In this system, there are two com-

mercial PV plants, about 200 residential PV systems, and over 3000 nodes (including the 

single-phase system). The rated power of PV plants 1 and 2 are 600 kW and 400 kW re-

spectively. The total capacity of the residential PV systems is about 500 kW. The yearly 

peak load is 8.05 MW while the lowest load throughout the year is 1.83 MW. The test bed 

feeder is fully modeled in OpenDSS. 

Power Grid

PV Plant Capacitor Bank

21 3

4567

8 9

1

2

 

Figure 2.1 The Real-world Test Feeder in Southwest U.S. 
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To support this study, a data acquisition platform was developed to obtain the re-

quired field data (as shown in Figure 1.1 and Figure 2.4). This platform consists of Auto-

mated Meter Infrastructure (AMI), weather stations and some advanced metering systems, 

e.g. Schweitzer Engineering Laboratories SEL-734, 735 systems. 

As the basic level of the data acquisition platform, AMI meters collect 15-min in-

terval load and PV generation data for all customer sites. SEL-734 metering systems collect 

additional power quality information every 1 second for a selected number of PV installa-

tions. The weather and irradiance data are sampled and stored by the weather station pro-

totype at 1-second intervals. Electrical parameters relating to the distribution feeder are 

collected via six utility pole-mounted power quality meters (SEL-735). 

At the present PV penetration level, no system constraint violation is observed in 

the real-world feeder. Therefore, the rated power of the PV plants is doubled to create a 

case with high penetration of PV resources. In this case, the unbalance power at tmc is 1000 

kW. On the worst case day, the unbalance energy is 5500 kWh. Hence, the values of the 

power and energy unbalance can be used to determine the size of DES for the first opera-

tional objective.  

Applying the method proposed in Section 2.2, CDF curves as shown in Figure 2.3 

are obtained. In (2.5) and (2.6), if both p and e are set to be 80, then DES systems with 

power ratings of 475 kW and 300 kW and energy ratings of 275 kWh (35 minutes of stor-

age) and 200 kWh (40 minutes of storage) are chosen for PV plants 1 and 2 respectively. 

These results are reasonable according to a statement made in [3]: larger megawatt-scale 

PV installations will need energy storage, which would generally be in the size range of 
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500 kW to 1 MW or  larger with 15 minutes to 1 hour of storage, due to the occurrence of 

large power output variation. 

 

 

Figure 2.2 Result of DES Sizing for the First Operational Objective 

 

 
 

Figure 2.3 CDF Curves of the Uncertain Power and Energy 
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In fact, this is not the only information provided by the CDF curves. Take PV plant 

2 for example, if e = 90 in (2.6), a battery with capacity of 300 kWh is needed. Compared 

with the case of e = 80, the effectiveness is only increased by about 12%. However, the 

capacity of the battery needs to be increased by 50%. This kind of information can help the 

planner make suitable tradeoffs.  

With the chosen DES (275 kW, 200 kWh) and a properly designed DES controller 

at PV plant 2, the uncertainty of active power output on Jan. 11th, 2013 is significantly 

reduced (as shown in Figure 2.4). 

 
(a) PV Output Curve Without DES 

 
(b) PV Output Curve with DES 

Figure 2.4 Active Power Output of PV Plant 2 on Jan. 11th [1].  
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Chapter 3 MODELING AND NON-CONVEXITY OF THE OPTIMIZATION 

PROBLEMS 

Three decision-making problems are considered in this research. They are the DES 

optimal allocation (DESOA), the DES optimal scheduling (DESOS), and the smart inverter 

optimal placement (SIOP). Since the sizing of DES has been completed independently, the 

resulting DESOA problem is a continuous problem (further explanation is given in Section 

2.1). Obviously, the DESOS is a continuous problem while the SIOP is studied as an ex-

ample of a mixed-integer problem. Therefore, the first two problems are continuous 

QCQPs while the third one is an MIQCQP.  

3.1 Optimal Allocation and Dispatch of DES 

The topology of distribution systems is usually radial. Hence, the branch flow 

model (BFM) where the phase angles of the voltages and currents are ignored is used to 

describe the AC power flow in radial networks in the optimization model since the BFMs 

are exact for radial networks [37]. The BFMs proposed in [44] and [45] are equivalent 

since there is a bijection between them. Bijection means there is a one-to-one correspond-

ence between the solution sets of the two BFMs. Using the branch flow model proposed in 

[44], the DESOA is described by (3.1)-(3.17) while the DESOS is represented by (3.1)-

(3.15), 

(DESOA/DESOS)           min   1

T N Grid

t tt i
F c p   (3.1) 

min   2 , , ,

T M N NT S DESloss

i i t i i t i tt i i i
F r k v p       (3.2) 
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min    3 , ,

T N NSset DESloss

i t i i tt i i
F v v p      (3.3) 

s.t.  
   , , , , , , ,1 ,

:

DCH CH Grid PV L

i t i t i t i t ik t ji t ij ji ti t
k i k

p p p p p P P r




        (3.4) 

   , , , , , ,1 ,
:

DCH CH Grid L

i t i t i t ik t ji t ij ji ti t
k i k

q q q q Q Q x




       (3.5) 

   2 2

, , , , ,2i t j t ij ij t ij ij t ij ij ij tv v r P x Q r x      (3.6) 

2 2

, , , ,i t ij t ij t ij tv P Q   (3.7) 

 , ,1
0

tspl CH DCH DES

i c i t i t d it
E p p t E 




      (3.8) 

, 0DES CH

i i tP p    (3.9) 

,0 DCH DES

i t ip P   (3.10) 

   , , ,1 1 1DESloss DCH CH

i t d i t c i tp p p      (3.11) 

2 2 2

, ,ij t ij t ijP Q S   (3.12) 

,0 ij t ij   (3.13) 

,i i t iv v v   (3.14) 

0.6 ,Grid Grid

t tR p q R    (3.15) 

1

N
ES ES

i

i

P P



  (3.16) 

1

N
ES ES
i

i

E E



  (3.17) 

where i ∊ N, ij ∊ E and t ∊ T in (3.4)-(3.7) and (3.12)-(315) while i ∊ N and t ∊ T in (3.8)-

(3.11), and t' = 1, ..., 24. Quantity PES in (3.16) and EES in (3.17) are calculated by (2.1) 
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and (2.2) respectively. Quantities Pi
ES and Ei

ES (i ∊ N) are variables in the DESOA and they 

are parameters in DESOS. Quantity ɛ is an arbitrarily small positive value. The MVA limits 

of the DES units can be expressed in exactly the same form as (3.12). Hence, (3.12) repre-

sents MVA limits of both the feeders and the DES units. 

Constraints (3.4)-(3.7) denote the branch flow constraints; (3.4)-(3.6) are linear 

while (3.7) is quadratic; (3.8)-(3.10) represent the state and rate of charging/discharging 

constraints of the DES respectively [52]; (3.11) captures the active power losses in the DES 

units; and (3.12)-(3.15) denote the system constraints. Note that, in the above model, one 

of (3.12) and (3.13) is redundant due to the relation described in (3.7). However, the equal-

ity in (3.7) may not hold in an optimal solution of a convex relaxation. Thus, both (3.12) 

and (3.13) are retained. (3.16) and (3.17) guarantee that the summation of the ratings of all 

the units should equal to the total ratings determined in Chapter 2. 

Objective function (3.1) represents minimizing purchase cost of grid energy which 

is analogous to the objective function of minimizing generation cost in OPF problems. 

Objective functions (3.2) and (3.3) minimize network losses and voltage magnitude devi-

ation respectively. These objective functions are frequently used in reactive power optimi-

zation problems [53] and play important roles in distribution system operations. In the var-

iable space, (3.1) and (3.2) are monotonic over the feasible set while (3.3) is not. Based on 

the operational requirement, only one of the functions in (3.1)-(3.3) will be chosen as the 

objective function of the required optimization model for the DESOA or the DESOS. 

Both (3.1) and (3.2) are linear, and (3.3) which contains the absolute value sign is 

not. Therefore, before applying the convex relaxations to the DESOS or DESOA problem, 
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(3.3) needs to be pre-processed to facilitate the convexification. Introducing auxiliary var-

iables ui,t (i ∊ Ns , t ∊ T) which are positive, (3.3) can be reformulated as  

min   3 , ,

ST N N DESloss

i t i tt i i
F u p     (3.18) 

, , ,

set

i t i t i i tu v v u    .    (i ∊ N, t ∊ T) (3.19) 

Three reformulated DESOA and DESOS models for which the details are given in Table 

3.1 and 3.2 respectively are obtained. 

Table 3.1 The Reformulated DESOA Models 

Notation DESOA 1 DESOA 2 DESOA 3 

Objective 

function 
(3.1) (3.2) (3.18) 

Constraints (3.4) - (3.17) (3.4) - (3.17) (3.4) - (3.17) and (3.19) 

 

Table 3.2 The Reformulated DESOS Models 

Notation DESOS 1 DESOS 2 DESOS 3 

Objective 

function 
(3.1) (3.2) (3.18) 

Constraints (3.4) - (3.15) (3.4) - (3.15) (3.4) - (3.15) and (3.19) 

  

For the above DESOS models, note the following: 

i) In any optimal solution of (DESOA 2/DESOS 2), ,

DCH

i tp  and ,

CH

i tp  cannot be 

non-zero simultaneously. Suppose that z is an optimal solution of (DESOA 2/DESOS 2) 

where both ,

DCH

i tp  and ,

CH

i tp   are non-zero and , ,

DCH CH

i t i tp p K  > 0 ( , ,

DCH CH

i t i tp p K  < 0).  

There always exists another solution ẑ  where ,
ˆ DCH

i tp K and ,
ˆ 0CH

i tp  (
,

ˆ 0DCH

i t
p  and

,
ˆ CH

i t
p K ). It is easy to show that ẑ satisfies (3.4), (3.8)-(3.10) and , ,

ˆ DESloss DESloss

i t i tp p  which 
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means 2 2f̂ f . Hence is the optimal solution rather than z .  

ii) In any optimal solution of (DESOA 1/DESOS 1), ,

DCH

i tp  and ,

CH

i tp also cannot 

be non-zero simultaneously. From i), it can be observed that the term ,

SN DESloss

i ti
p  in the 

objective function forces at most one of ,

DCH

i tp  and ,

CH

i tp to be non-zero in a specific time 

interval. In fact, ,

SN DESloss

i ti
p  is concealed in the objective function (3.1) since higher DES 

losses increase the grid energy consumption. With the second term in (3.18), this conclu-

sion is also valid for (DESOA 3/DESOS 3) no matter how small ɛ is. 

iii) Objective function (3.18) is equivalent to (3.3) from an engineering point of 

view if ɛ is small enough. Therefore, one can choose an arbitrarily small value for ɛ so that 

(3.18) is equivalent to (3.3) in engineering applications. 

3.2 Optimal Placement of the Smart Inverter 

To determine the minimum total investment of inverters to meet the requirement of 

volt/VAr regulation, an optimization model is proposed as shown in  (3.20)-(3.30) where 

the AC power flow constraints are considered and the objective function as well as some 

constraints contain binary variables. This problem is also studied in radial distribution sys-

tems. Hence, the BFM proposed in [44] is used to describe the AC power flow,  

(SIOP)                    min  4 1Invt PV

s i i c ii
F c S c S      (3.20) 

s.t.   
   1

:

Grid PV L

i i ik ji ij jii
k i k

p p p P P r l




      (3.21) 

   1
:

Grid L Invt

i i ik ji ij jii
k i k

q q q Q Q x l




      (3.22) 

ẑ
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   2 22i j ij ij ij ij ij ij ijv v r P x Q r x      (3.23) 

2 2

i ij ij ijv P Q   (3.24) 

       
2 2 2 2

(1 )Invt PV Invt PV

i i i i iq p S S     (3.25) 

Invt Invt Invt

i i iS q S    (3.26) 

PV Invt

i i i iS S M    (3.27) 

2 2 2

, ,ij t ij t ijP Q S   (3.28) 

,0 ij t ij   (3.29) 

,i i t iv v v   (3.30) 

0.6 ,Grid Grid

t tR p q R    (3.31) 

where the objective function represents minimizing the total investment of inverters in the 

system (including smart inverters and regular inverters); (3.21)-(3.24) denote the branch 

flow constraints where (3.21)-(3.23) are linear and (3.24) is quadratic; (3.25) and (3.26) 

represent the reactive capability constraints for the smart inverters which are quadratic in-

equalities and it is designed based on the research result of [18]; (3.27) is the yes/no con-

straints for installing a smart PV inverter; (3.28)-(3.31) denote the system constraints. 

(3.26) is dominated by (3.25) when αi = 1 and conversely dominates (3.25) when αi = 0. 

The SIOP is an MIQCQP problem. 

3.3 Analysis of the Non-convexity 

In the DESOA/DESOS, the non-convexity comes from the quadratic equality (3.7). 

The non-convexity of the SIOP stems from the quadratic equality (3.24) and inequality 

(3.25), and the integer variable αi. In this report, the non-convexity caused by the integer 
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variables is handled by the branch and bound (B&B) algorithm where the integer variables 

are treated as certain values in each node problem. The node problems of a B&B algorithm 

are continuous, which means the non-convexity caused by the integer variables is avoided. 

This research mainly aims at eliminating the non-convexity introduced by the non-convex 

quadratic constraints, especially the AC power flow constraint (3.7)/(3.24).   
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Chapter 4 NON-ITERATIVE ENHANCED SDP RELAXATIONS 

Limitations of the existing convex relaxation techniques, e.g. the SOCP relaxation 

are studied in this chapter. Then, some convex constraints proposed in the analytical opti-

mization literature are introduced to construct a tighter convex relaxation named as the 

enhanced SDP (ESDP) relaxation in a non-iterative framework. 

4.1 Second Order Cone Programming Relaxation 

To convexify constraint (3.7)/(3.24) which is an equality constraint, a crucial step 

is to relax it into an inequality constraint (4.1). However, (4.1) is still non-convex. By re-

arranging (4.1), one can obtain a second order cone constraint (SOCC) as shown in (4.2). 

The idea of relaxing the quadratic equality constraints in a branch flow model to inequality 

constraints to yield an SOCC was first proposed in [55], 

     
2 2

, , , , , , ,i t i j t i j t i j t
v P Q   (4.1) 

 

, ,

, ,

, ,

, ,2

2 2

2 2
0 0 1 1

ij t ij t

ij t ij t

i t i t

ij t ij t

P P

Q Q

v v

 
 
 

  
 
 
 

. (4.2) 

In a similar way, (3.12)/(3.28) can be rearranged as  

,

, 2

ij t

ij

ij t

P
S

Q
                                                      (4.3) 

which is also an SOCC. 
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It is difficult to reformulate (3.25) which is a non-convex quadratic equality as an 

SOCC. Consequently, the SOCP relaxation is not applicable to the SIOP. This section only 

addresses the application of the SOCP relaxation to the DESOA/DESOS problems. 

4.1.1 Discussion on Sufficient Condition for Exactness of the SOCP Relaxation 

Proposition 4.1 (sufficient condition): The SOCP relaxation for DESOA_1/ 

DESOA_2 is exact if there is sufficient controllable injection at each bus. 

Under the condition stated in the above proposition, one can prove by contradiction 

that optimal solutions of the SOCP relaxation for DESOA_1/DESOA_2 are located on the 

boundary of SOCC using the procedure shown in Figure 4.1. In other words, the SOCP 

relaxation for optimization problems of DESOA_1/DESOA_2 is exact. The equalities hi(ɛ) 

= 0 (i = 1, …, n) and inequalities gi(ɛ) ≥ 0  0 (i = 1, …, m) reflect a property that x' is closer 

to the boundary of SOCC than x* in the feasible set of solutions for the SOCP problem. 

f(x') < f(x*) means that x* is not the optimal solution of the SOCP. For a given solution x*, 

one can always find a better solution x' which is closer to the boundary of the SOCC until 

x* locates on the boundary of SOCC, if the conditions shown in Figure 4.1 hold. A com-

plete proof of Proposition 4.1 is given in Appendix A. In parallel, a similar conclusion to 

Proposition 4.1 has been obtained in [56] by using the injection region method. 

Obviously, the optimal allocation problem of DES satisfies the condition in propo-

sition 4.1 since it is assumed that there is DES, which is a controllable injection, at each 

bus. In the optimal dispatch problem, the locations of DES are obtained by solving the 

allocation problem. It means that there may not be controllable injection at some of the 

buses, namely, the condition does not hold. The simulation results (see Section 6.1) show 
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that the SOCP relaxation for some cases of DESOS_1/ DESOS_2 is also exact, even though 

the condition in proposition 4.1 is not satisfied. 

 

Figure 4.1 Flow Charts for Verifying the Exactness of the SOCP Relaxation 

4.1.2 The Necessary and Sufficient Condition for Exactness  

Like proposition 4.1, in [21], [22], [56] and the references therein, the authors pro-

vided their own sufficient conditions for exactness of the SOCP relaxation in terms of their 

chosen objective functions. These sufficient conditions are based on network assumptions 

which are basically not practical for most of the actual power systems. In fact, it is still 

very hard to analytically verify the exactness of the SOCP relaxation under actual network 

conditions. To deepen the understanding of the SOCP relaxation, the necessary and suffi-

cient condition for the exactness of SOCP relaxation is discussed in this subsection. 

Definition 4.1: among the linear constraints that form the boundary of the feasible 
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set of the SOCP problem under study, those that intersect the second order cone constraints 

are defined as the second order cone constraint neighboring linear constraint (SOCCNLC, 

as shown in Figure 4.2). 

-d

-d

SOCCNLC 2

Normal of the 

SOCCNLC 2

▽l1 

▽l2 

-d

x0

x*

1 2

Normal of the 

SOCCNLC 1

SOCCNLC 1

 
 

Figure 4.2 An Example of the Sufficient and Necessary Condition. 

 

If the objective function is nonlinear, it should at least be convex and monotone in 

the feasible set so that the optimization problem can be converted to the standard SOCP 

where the objective function is linear. A linear objective function dTx specifies a vector 

field –d in the variable space. 

Proposition 4.2 (Necessary and sufficient condition): the SOCP relaxation is ex-

act, if and only if d satisfies  

    0 0, ,i i j j i ij
s l s j         x x x  and  ii

  d d d ,    (4.4) 

where s(x) = 0 represents the equation of SOCC and lj(x) is the expression of the jth active 

SOCCNLC for a given feasible solution xi. lj(x) is active for xi means lj(xi) = 0. Ω is the 

feasible set of the SOCP. γ0 is an arbitrary positive scalar. γj is an arbitrary positive scalar 
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(zero) when ∇lj(xi) = 0 (∇lj(xi) ≠ 0). ∇lj and ∇s(x) which are normal vectors of SOCCNLCs 

and SOCC respectively point out of the feasible set.  

The proof of Proposition 4.2 is given in Appendix B. Note that, for the SOCP re-

laxation of a power system optimization problem, there always exist SOCCNLCs in (4.4) 

due to the existence of linear equality constraints in BFM. Generally, there are multiple 

SOCCs in a SOCP relaxation for a power system optimization and each SOCC relates to 

only a small portion of the variables. For instance, (4.2) is an SOCC that is about only four 

of the variables. In the sub-space of the variables which are contained in an SOCC, the 

SOCC can be used independently in (4.4) to determine the feasible direction of the corre-

sponding portion of d. For example, let d1 be the portion of d that relates to sub-variable 

space in (4.2), then s(x) in (4.4) is (4.2) which can be used to determine the feasible direc-

tion of d1. For a given d that is required to make the SOCP relaxation exact, all of its 

portions should satisfy (4.4) determined by their corresponding SOCCs respectively.     

Proposition 4.2 reveals an inherent limitation of the SOCP relaxation. In other 

words, the objective function should: 1) be convex and monotone over the feasible set; 2) 

satisfy (4.4). For a given system, the selected objective function may not satisfy these con-

ditions, for instance the objective function (14) in [53] which minimizes the deviation of 

voltage profiles. In this case, the SOCP relaxation is invalid. Figure 4.2 provides an intui-

tive understanding of the sufficient and necessary condition. However, it is still inconven-

ient to use this condition to verify exactness of the SCOP relaxation since it is very hard to 

figure out the SOCCNLCs for a system whose bus number is higher than 3. 
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4.1.3 An Illustrative Example of DESOS 

This subsection studies the impact of objective functions on the efficiency of the 

SOCP relaxations for the DESOS problems through an illustrative example. A 2-bus, 1-

line, three-phase system as shown in Figure 4.3 is designed, where bus 1 is assumed to be 

an infinite bus. The variables and parameters of this simple system are defined in Table IV. 

For the sake of simplicity, the charging/discharging efficiency are considered to be 100% 

and the charging/discharging power are represented by one variable in this simple example. 

v1 P+jQ, ℓ 

r+jx

v2 DES
pDES

pg+jqg pL+jqL

 

Figure 4.3  Topology of the Simple System. 

The branch AC power flow model of this system is given as: 

 2 2

1 2

2 2

1

,

,

2 2

g g

DES

L L

p P q Q

p p P r q Q x

v v rP xQ r x

P Q v

 
     


    
  

.                                      (4.5) 

Eliminating the branch powers P and Q, the projections of the feasible set of (4.5) 

onto the (pg, p
DES), (ℓ, pDES) and (v2, p

DES) spaces are shown in Figure 4.4, Figure 4.5 and 

Figure 4.6 respectively. 

In the following figures, the feasible sets of the SOCP relaxation are described by 

the shaded regions. The black boundaries of these shaded regions are the feasible sets of 

the original DESOS problem. The curves are marked with the constraints they represent. 
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The optimal solutions of the SOCP relaxation and the original problem are denoted by a 

circle and a solid diamond respectively in the figures. In Figure 4.4, a case of negative 

LMPs is taken into account since negative LMPs may occur due to some reasons in actual 

power systems, for example congestion on transmission lines. 

 

Table 4.1 The Parameters of the 2-bus System. 

Type Symbol Bounds/Values 

Variable ℓ 0 to 0.22 p.u. 

Variable v2 0.9 to 1.1 p.u. 

Variable pg -12 MW to 20 MW 

Variable qg -9 MVAr to 15 MVAr 

Variable pDES -10 MW to 10 MW 

Parameter v1 1.042=1.0816 p.u. 

Parameter r+jx 10+j4 ohm 

Parameter pL+jqL 10+j6 MVA 

Parameter Nominal voltage 12.47 kV 

Parameter Power base 100 MVA 

 

 

In Figure 4.4, when the LMP is positive, the descent direction of objective function 

F1 is denoted by the black arrow. In this case, the optimal solutions of the SOCP relaxation 

and the original problem are identical, which means the SOCP relaxation is exact. When 

the LMP is negative, the SOCP relaxation of this case is not exact.  

In Figure 4.5, since the charging/discharging efficiency of the DES are assumed to 

be 100% and no transformers are taken into account, the only term in objective function F2 

is rℓ whose descent direction is denoted by the grey arrow. The SOCP relaxation of this 

case is exact.  
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In Figure 4.6, Objective function F3 is not monotonic over the feasible set, hence 

its descent directions are represented by the grey arrows. The optimal solution of the orig-

inal problem is denoted by the grey diamond while that of the SOCP relaxation is not 

unique and denoted by the grey cylinder. Therefore, the SOCP relaxation of this case is 

most likely not exact.  

 

 

Figure 4.4  The Projection of the Feasible Set of (4.5) onto the (pg, p
DES)-space. 
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Figure 4.5  The Projection of the Feasible Set of (4.5) onto the (ℓ, pDES)-space. 

 

Figure 4.6  The Projection of the Feasible Set of (4.5) onto the (v2, p
DES)-space. 

4.1.4 Observation and Discussion 

From this illustrative example, the following observations are made: 
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a) The SOCP relaxation offers a convex superset, a portion of whose boundaries is 

the feasible set of the original non-convex problem. An exact globally optimal solution of 

the original problem can be achieved if the objective function is monotonic over the feasi-

ble set and its descent direction points to this part of boundaries. For a given DESOS prob-

lem, there is a specific range of descent directions under which its SOCP relaxation is exact. 

A mathematical description of such a range of descent directions is given in Proposition 

4.2. 

b) For an objective function which does not satisfy Proposition 4.2, an unsatisfac-

tory solution may result, e.g. the negative LMP case in Figure 4.4. The bounds of some 

variables also affect the exactness of the SOCP relaxation, for more details please refer to 

[40]. In fact, the state of charging/discharging constraint (3.8) may also affect the exactness 

of the SOCP relaxation for the DESOS problems. 

c) The feasible set of the original non-convex problem is not necessarily a part of 

the boundaries of the convex superset offered by the basic SDP relaxation. As shown in 

[38], the SOCP relaxation of the branch AC power flow equalities (3.7)/(3.24)  (as shown 

in (4.2)) is tighter than the basic SDP relaxation (please see the next section). As a result, 

for some potential objective functions of the DESOS problems for which the SOCP relax-

ation does not work well, the basic SDP relaxation may also be ineffective. Alternative 

convex relaxations are required to achieve a better solution when these objective functions 

are adopted to meet some specific operational requirements. 

4.2 Basic Semidefinite Programming Relaxation 

The SDP relaxation is a promising convex relaxation that has been successfully 
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applied to some large-scale OPF problems [57]. Many well-known algorithms with uni-

form frameworks have been exploited [58]. It is adopted to convexify the DESOS cases 

for which the SOCP relaxation is not exact and the SIOP. Note that, in this report, a convex 

relaxation for a non-convex problem is defined to be exact if the optimal solution obtained 

by solving the convexified problem is a feasible solution of the original non-convex prob-

lem. This section introduces the basic SDP relaxation for the DESOS and SIOP algorithms 

in radial networks.  

For the DESOS cases, let xt := [Pt
T  Qt

T  vt
T  ℓt

T]T and yt := [pt
DCH T  pt

CH T  pt
DESloss 

T pt
Grid  qt

Grid ut
T]T (t ∊ T). And, for the SIOP case,  let xt := [Pt

T  Qt
T  vt

T  ℓt
T SInvt T qInvt T]T 

and yt := [pt
Grid  qt

Grid αT]T (t = 1). The auxiliary semidefinite variables Xt are defined in 

terms of xt. A general formulation which can be used to describe the BSDP relaxation for 

all DESOS and SIOP models is given as follow (t ∊ T): 

(BSDP)                              min   0 0, T T

t t t tF  x y c x d y  (4.6) 

s.t.   0ttr iQ X  (i ∊ SQE) (4.7) 

 t itr biQ X   (i ∊ SQI) (4.8) 

T

i t ibc x  (i ∊ SLE1) (4.9) 

T T

i t i t ib c x d y  (i ∊ SLE2) (4.10) 

T T

i t i t ib c x d y  (i ∊ SLI) (4.11) 

    22 2

,max 0, max , ii iii tx X x x   (4.12) 

1   0
T

t

t t

 
  

x
x X

 (4.13) 

where tr(∙) denotes the trace of a matrix, (4.12) are valid bounds on the diagonal entries of 
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Xt, and (6h) is the well-known Shor’s inequality [58]. SQE, SQI and SLI denote the sets of 

quadratic equalities, quadratic inequalities and linear inequalities respectively. SLE1 and 

SLE2 are the first and second sets of linear equalities respectively. The correspondence be-

tween the constraints in (BSDP) and those in (DESOA), (DESOS) and (SIOP) are given in 

Table 4.2, Table 4.3 and Table 4.4 respectively. 

Table 4.2 The Correspondence between Constraints in (BSDP) and (DESOA). 

In (BSDP) In (DESOA) 

(4.6) (3.1), (3.2) or (3.18) 

(4.7) (3.7) 

(4.8) (3.12) 

(4.9) 
(3.4) and (3.5) for the buses which are not the substa-

tion bus or the DES-connected buses, and (3.6) 

(4.10) 
(3.4) and (3.5) for the substation bus and the DES-

connected buses, (3.11), (3.16) and (3.17) 

(4.11) (3.8)-(3.10), (3.13)-(3.15) and (3.19) 

Table 4.3 The Correspondence between Constraints in (BSDP) and (DESOS). 

In (BSDP) In (DESOS) 

(4.6) (3.1), (3.2) or (3.18) 

(4.7) (3.7) 

(4.8) (3.12) 

(4.9) 
(3.4) and (3.5) for the buses which are not the substa-

tion bus or the DES-connected buses, and (3.6) 

(4.10) 
(3.4) and (3.5) for the substation bus and the DES-

connected buses, and (3.11) 

(4.11) (3.8)-(3.10), (3.13)-(3.15), and (3.19) 

Table 4.4 The Correspondence between Constraints in (BSDP) and (SIOP). 

In (BSDP) In (SIOP) 

(4.6)  (3.20) 

(4.7) (3.24) 

(4.8) (3.25) and (3.28) 

(4.9) 
(3.21) and (3.22) for the buses which are not the sub-

station bus or the DES-connected buses, and (3.23) 

(4.10) 
(3.21) and (3.22)  for the substation bus and the DES-

connected buses, (3.11), (3.16) and (3.17) 

(4.11) (3.26), (3.27) and (3.29)-(3.31) 
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4.3 Non-iterative Enhanced SDP Relaxations 

In this section, some convex constraints which can be used to approximate the rank-

1 constraint X = xxT are introduced to construct ESDP relaxations in the non-iterative 

framework for the DESOS problems. One primary objective of this research is to obtain, 

through numerical comparison, tighter but computationally effective non-iterative ESDP 

relaxations for the DESOS problems. 

4.3.1 Rank-2 Linear Inequalities 

Stemming from pairwise products of the linear inequalities in (4.11) where di
T = 0, 

the following relations are implicit in problems (DESOA), (DESOS) and (SIOP), 

  
  
  
  
  
  
  

0

0

0

0

0

0

0

i ji j

ii j j

ji i j

i i j j

T

ii j j

T

i i j j

T T

i i j j

x x x x

x x x x

x x x x

x x x x

x x b

x x b

b b

  


  
   


  
   


  


  

c x

c x

c x c x

.                                    (4.14) 

Rearranging (4.14) and replacing the quadratic terms xixj with Xij results in 

T T T

T TT

T T T

  


  


  

X xx xx xx

X x x xx x x

X x x xx xx

,                                       (4.15)               

 

0

0

0

T

i i i i

T

i i i i

T T T

i j i j j i i j

b b

b b

b b bb

   


   
   

Xc x x xx c

Xc x x xx c

c Xc c c x +

.                            (4.16) 

Constraints (4.15) and (4.16) are often referred to as valid rank-2 linear inequalities 

[60]. (4.15) are the well-known “reformulation-linearization technique” (RLT) [61] which 
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originate from pairwise products of the bound constraints. In fact, the RLT stems from 

replacing the quadratic terms in the McCormick inequalities [62] with X, where the McCor-

mick inequalities are pairwise products of the bound constraints on x. The RLT itself is a 

convex relaxation of a QCQP problem. The matrix X is not required to be positive sem-

idefinite in a pure RLT relaxation. Note that, (4.12) is redundant when the R2LIs are used, 

since (4.12) are the diagonal minors of (4.15). There exist bound constraints on x in 

(DESOA), (DESOS) and (SIOP) hence, the RLTs are valid for generating the non-iterative 

ESDP relaxation of (DESOA), (DESOS) and (SIOP). 

4.3.2 Valid Linear Equalities 

Pre-multiplying the linear equalities in (4.9) by x and replacing the quadratic terms 

with X results in  

i ibXc x      (1 ≤ i ≤ n).                                      (4.17) 

Replacing the quadratic terms in the pairwise products of the linear equalities in 

(4.9) with X, the following valid linear equalities (VLE) are obtained. 

  0T T T

i j i j j i i jb b b b  c Xc c c x +   (1 ≤ i ≤ j ≤ n)                            (4.18) 

T

i j i jb bc Xc    (1 ≤ i ≤ j ≤ n).                                       (4.19) 

Linear equalities (4.17)-(4.19) have been used to tighten the SDP relaxation for 

small-scale general quadratically constrained quadratic programming (QCQP) problems 

which contain linear equality constraints [63] and [64]. Constraint (4.18) is equivalent to 

(4.19) and tighter than (4.17) since (4.18) and (4.19) are equivalent to (4.17) when i = j. 

When i = j, constraint (4.18) becomes ci
TXci - 2bici

Tx + bi
2 = 0. Due to the Shor’s inequality 

in (4.13), 0 = ci
TXci - 2bici

Tx + bi
2 ≥ ci

TxxTci - 2bici
Tx + bi

2 = (ci
Tx - bi)

2, which means ci
Tx 
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- bi = 0. Thus, (4.9) is redundant if (4.18) is adopted in the ESDP relaxation of (DESOA), 

(DESOS) and (SIOP). 

Proposition 4.3. The ESDP relaxation including (4.18) for (DESOA), (DESOS) 

and (SIOP) is equivalent to the original problems respectively if matrix C which consists 

of the coefficient vector ci (i ∊ SLE) of the linear equalities is a full-rank matrix. 

The proof of Proposition 4.3 is given in Appendix C. Note that, usually, the matri-

ces Cs for the DESOA, DESOS and SIOP problems is not full-rank since |SLE | < n. Gen-

erally, the higher the rank of C, the tighter the resulting ESDP relaxation is. In general, 

(4.18) is preferred for obtaining tight convex relaxations for (DESOA), (DESOS) and 

(SIOP). 

4.3.3 Semidefinite Inequality_1 

Constraint (3.12)/(3.28) is a convex quadratic which can be rewritten in the follow-

ing general form 

T 2

t ij,t t ijx A x S   (ij ∊ M, t ∊ T)                                   (4.20)  

where Aij,t is an n × n matrix (n is the size of the vector xt defined in Section 4.2) and the 

only non-zero entries of Aij,t are the two diagonal entries corresponding to Pij,t and Qij,t. 

Based on the Schur complement condition for positive definiteness [65], (4.20) can be fur-

ther reformulated as  

,

2

,

2

, ,

  0

ij t

ij t

ij t ij t ij

P

Q

P Q S

 
 
 
  

I
, (ij ∊ M, t ∊ T)                     (4.21) 

where I2 is a 2 × 2 identity matrix. 
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4.3.4 Semidefinite Inequality_2 

The constraints in (3.13)/(3.29) and (3.14)/(3.30) can be reformulated as  

,

,

,

,

0

0

0

0

ii t

i i t

ijij t

ij ij t

v v

v v

 
  


 
  

   (i ∊ N, ij ∊ M).                                  (4.22) 

Multiplying (4.21) by the first term of (4.22) for instance, the following semidefinite ine-

quality is obtained 

, , , ,

, , , ,

2 2

, , , , , , ,

0

 0  0

i ii t ij t i t ij t

i ii t ij t i t ij t
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, (i ∊ N, ij ∊ M, t ∊ T).     (4.23)                   

Replacing the quadratic terms in (4.23) with the corresponding entries of Xt yields 
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v v X P v
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, (i ∊ N, ij ∊ M, t ∊ T).  (4.24) 

For a general description of the semidefinite inequalities in (4.24), please refer to 

[66]. In fact, inequalities (4.23) are implicitly contained in (DESOA), (DESOS) and (SIOP) 

since a given (Pij,t, Qij,t, vij,t) that satisfies (3.13)/(3.29) and (3.14)/(3.30) will also satisfy 

(4.23). As a result, (4.24) in conjunction with (3.14)/(3.30) and (4.21) which is equivalent 

to (3.12)/(3.28) offers strong approximations to the relations that X(Pij,tvij,t) = Pij,tvij,t and 

X(Qij,tvij,t) = Qij,tvij,t. 
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The left hand side of (4.24) includes 3×3-dimensional matrices which make con-

straints (4.24) easy to handle computationally. Note that each term in (4.22) can be multi-

plied by (4.21) to generate a semidefinite inequality which is similar to (4.24). Therefore, 

the complete form of (4.24) can impact every entry of Xt, by which one can expect a tight 

SDP relaxation with (4.24) imposed.   

4.4 Geometric Interpretation 

To provide a geometric interpretation of the convex constraints introduced above, 

the following 2-dimensional system, whose feasible set is given in Figure 4.7, is studied in 

this subsection. Note that the feasible set of the SDP relaxation for a system whose dimen-

sion is higher than 2 is hard to visualize, 

2 2

2 2

3 2 0.5

1

1.5

0 1

1 1

x xy y

x y

x y

x

y

  


 
 

  

   

.                                                  (4.25) 

The BSDP relaxation of system (4.25) is 

11 12 22

11 22

11 22

11 12

12 22

3 2 0.5

1

1.5

0 , 1

0 1, 1 1

0

X X X

x y

X X

X X

x y

X X

X X

  
  


 


 
     

  

  
  

X

,                                        (4.26) 

whose feasible region is described in Figure 4.8. The feasible set of (4.26) is the region on 

the plane X11+3X12+2X22=0.5 that is enclosed by the surface X11X22 = X21
2 and the plane 
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X11+X22=1.5. 

 
 

Figure 4.7  Feasible Set of System (4.25). 

 

 

Figure 4.8  Feasible Set of System (4.26) in the (X11, X22, X12)-space. 
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Following the steps introduced in Subsection 4.3.1, the following RLT constraints 

for this system are obtained  

 

 

 

11

22

12

max 2 1,0

max 2 1, 2 1 1

max 1, 0

x X x

y y X

x y x X

  


    
     

.                               (4.27) 

The first constraint in (4.27) demonstrates that, for a non-negative variable, the RLT 

constraint on the diagonal entry of X corresponding to this variable dominates that in 

(4.12). The efficiency of the bound constraint X12 ≤ 0 which is one of the RLT constraints 

in (4.27) is illustrated in Figure 4.9. The projection of the feasible set of (4.26) onto the 

(X11, X22)-plane is the meshed region to the left of line X11+X22=1.5. The dashed line is the 

projection of the intersection of X11+3X12+2X22=0.5 and X12 = 0 onto the (X11, X22)-plane. 

The triangular area to the left of the dashed line is cut off when X12 ≤ 0 is added. 

 
Figure 4.9  Geometric Interpretation of RLT. 
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Based on the linear equality x – y = 1, the following VLE ((4.17)) is obtained for 

this system 

11 12

12 22

1
1

1

X X x

X X y

     
          

,                                          (4.28) 

which is equivalent to (combining x – y = 1) 

11 12 222 1X X X   .                                                (4.29) 

The feasible set of the SDP relaxation of (4.25) with (4.29) imposed is given in 

Figure 4.10, which becomes as tight as a line segment. The line segment 2.5X11+3.5X22=2 

is the projection of the intersection of X11+3X12+2X22=0.5 and (4.29) onto the (X11, X22)-

plane within the feasible set. This line segment is exactly the resulting feasible set after 

imposing (4.29) on system (4.26). This example numerically demonstrates that the VLE is 

effective if there exists a considerable number of linear equality constraints in the original 

problem. Another important reason why the BFM is preferred to formulate the AC power 

flow is that most constraints in the BFM are linear equalities.  

Based on the convex quadratic constraint in (4.25) and (4.21), the semidefinite in-

equality in (4.30) is obtained. Since the link between X and [x, y] is very weak in the BSDP 

relaxation (4.26), it is hard to obtain the geometric figure for semidefinite inequality_1. 

However, the efficiency of the SI_1 has been verified by numerical studies in power sys-

tems given in Section V,  

1 0

0 1 0

1.5

x

y

x y

 
 
 
  

.                                               (4.30) 
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Figure 4.10  Geometric Interpretation of VLE. 

 

 

Multiplying (4.30) by the lower bound constraint on x and replacing the quadratic 

terms with the corresponding entries in X yields the following semidefinite inequality 

11

12

11 12

0

0 0

1.5

x X

x X

X X x

 
 
 
  

,                                        (4.31) 

which implies that  

2 2 2

11 12 1.5 1.5X X x   .                                      (4.32) 

Adding (4.32) to the BSDP relaxation (4.26), the resulting feasible set is plotted in 
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Fig. 4.11. A portion of the feasible set of (4.26) is cut off by (4.32). The SI_2 constraint in 

(4.31) will cut off a bigger portion of the feasible set since (4.32) is looser than (4.31). 

 

Figure 4.11  Geometric Interpretation of SI_2. 

 

4.5 Non-iterative Enhanced SDP relaxations  

The non-iterative enhanced SDP relaxations are constructed by imposing one or 

some of the above convex constraints to the basic SDP relaxation in (BSDP). The designed 

ESDP relaxations are listed in Table 4.5. Even in an iterative framework, the computations 

can also benefit from the non-iterative constraints since they are valid for the sub-problem 

at each iteration. This merit motivates researchers to develop techniques to lift valid cuts 

obtained at a node of the branch and bound tree to the entire tree [67] and [68]. 
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Table 4.5 The Enhanced SDP Relaxations of (DESOA), (DESOS) and (SIOP) 

ESDP# Constraints 

1 (4.6)-(4.13) and (4.15) 

2 (4.6)-(4.13) and (4.18) 

3 (4.6)-(4.13) and (4.21) 

4 (4.6)-(4.13), (4.21) and (4.24) 

5 (4.6)-(4.13), (4.18) and (4.21) 

6 (4.6)-(4.13), (4.15) and (4.18) 

 

4.6 Comparison of Tightness 

Combining the results obtained in this report and those reported in literature, a hy-

pothesis on the tightness of the SOCP, BSDP as well as the ESDP relaxations for the 

DESOA, DESOS and SIOP problems in radial networks is illustrated in Figure 4.7. Let 

Ω(·) denotes a feasible set. The set Ω(DESOA/DESOS/SIOP) is denoted by the black thick 

curve. The set Ω(SOCP) is the shaded region while Ω(BSDP) and Ω(ESDP) are the regions 

enclosed by the dotted-dashed curve and the dotted curve respectively. 

F 
F

BSDP
s

ESDP
s

SOCP
s

ESDP
s

SOCP
s BSDP

s

 

Figure 4.12 Hypothesis about the Tightness of the Convex Relaxations for the (DESOA), 

(DESOS) and (SIOP) Problems in Radial Networks. 
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Chapter 5 CONVEX HULL OF THE AC POWER FLOW 

Both BIMs and BFMs contain non-convex constraints whose convex relaxations 

have been widely studied in literature. The convex hull or quasi-convex hull of these non-

convex constraints are studied in this chapter. Convex hull is defined as the tightest convex 

set that contains a non-convex set, which makes the convex hull or quasi-convex hull at-

tractive compared with other kinds of convex relaxations. Following the previous analysis, 

BIM and BFM are used to formulate the AC power flow in meshed and radial networks 

respectively.  

5.1 AC Power Flow in Meshed Networks 

5.1.1 Revisit the BIM in Rectangular Coordinates  

A typical formulation of the AC power flow model in rectangular coordinates is 

given as  

1. Power flow equations: 

 

 

0

0

G L

ij i j ij i j ij i j ij i j i i

j

R L

ij i j ij i j ij i j ij i j i i

j

G e e B e f B f e G f f P p

B e e G e f G f e B f f Q q

     



      





  (i ∊ N)            (5.1) 

2. Constraints of the reference bus: 

er = 1.05 p.u. and fr = 0                                             (5.2) 

3. System constraints: 

G G G

i i i
P P P        (i ∊ NG)                                          (5.3) 

R R R

i ii
Q Q Q        (i ∊ NR)                                           (5.4) 
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2 2 2 2

i i
V e f V    (i ∊ N)                                           (5.5) 

2 2 2

ij ij ij

ij ij i j ij i j ij i j ij i j

ij ij i j ij i j ij i j ij i j

P Q S

P G ee B e f B f e G f f

Q B ee G e f G f e B f f

 


   
     

   (ij ∊ E)                        (5.6) 

The 2nd and 3rd equalities in (5.6) are non-convex quadratic equalities which are in 

the same form as (5.1). The above AC power flow model is also called the bus injection 

model (BIM) in some references [21]. To facilitate the analysis, a compact formulation of 

the power flow equations (5.1) and the 2nd and 3rd equalities in (5.6) is developed in this 

subsection. Let x = [eT fT] T and y = [PGT QRT PT QT] T, the compact formulation is 

T T 0k k k

i i i
b  x A x c y     (i ∊ N, k = 1, …, 4)          (5.7) 

where Ai
k is the corresponding admittance matrix. 

5.1.2 Convex Hull of the Non-convex Quadratic Inequalities in BIM 

First, consider the following decomposition scheme for (5.7)  

 T T Tk k k k k

i i i i i
b   x A M x c y x M x                           (5.8) 

where Mi
k is a constructed positive definite matrix such that (Ai

k + Mi
k) is positive semidefi-

nite. The step from (5.7) to (5.8) is analogous to the D.C. decomposition of a non-convex 

quadratic objective function introduced in [69]. Then, by introducing an auxiliary scalar 

variable zi
k, (5.8) is equivalent to  

 T T

T

0

0

k k k k k

i i i i i

k k

i i

b z

z

    


 

x A M x c y

x M x
 ,                             (5.9) 

which can be further decomposed into 
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T T

T

T

0

0

0

0

k k k k k

i i i i i
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i i i i i

k k

i i
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i i
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x A M x c y

x A M x c y

x M x

x M x

.                           (5.10) 

Obviously the 1st and 3rd terms in (5.10) are convex constraints while the 2nd and 4th 

terms are not. Since both of (Ai
k + Mi

k) and Mi
k are positive semidefinite, it is possible to 

reformulate the non-convex quadratic inequalities, i.e. the 2nd and 4th terms in (5.10), as 

T T T

T T

k k k k k

i i i i i

k k k

i i i

z b

z

  




x a a x c y

x m m x
                                (5.11) 

where ai
k and mi

k are lower triangular matrices with nonnegative diagonal entries such that 

Ai
k + Mi

k = ai
kTai

k and Mi
k  = mi

kTmi
k [70]. Using a new vector u to represent ai

kTx or mi
kTx, 

and a new scalar v to represent the right hand side of (5.11), then (5.11) can be represented 

by 

T vu u .                                                         (5.12)                             

Now the convex hull of inequality (5.12) is explored. Suppose that u is an n-dimen-

sional vector and define w as [uT v]T; let f(u) ≔ uTu; t
w (t = 1, …, 2n) denote 2n points in 

the w-space, where 

Element 1
tw  2

tw  … t
nw  1

t
nw   

Value 1u or 1u  2u or 2u  … nu or nu   tf u  

. 

Actually, t
w (t = 1, …, 2n) are the vertices of the feasible set in the w-space, if there 

is valid “box” bound on u. With the above definitions, the following theorem is proposed. 
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Theorem 5.1  

     T5.12 holds and ,CONV d     u u u u w B w u u u ,   

where B is an (n+1)-dimensional vector, BTw = d represents a hyperplane that crosses all 

the w points, and CONV(·) denotes the convex hull of a set.  

BTw = d can be obtained by using anyone of the bases of t
w  (t = 1, …, 2n). Theorem 

5.1 is true for the cases where there are valid “box” bounds for u., i.e.  u u u . However, 

there are no valid “box” bounds for x defined in Subsection III-B. Hence, virtual “box” 

bounds for x are required. Fortunately, it is not difficult to obtain such “box” bounds for x 

based on the operating experience of a specific power system. Since the convex hull of the 

BIM is based on virtual “box” bounds for x, it is called the quasi-convex hull of the BIM in 

this thesis. 

5.1.3 An Illustrative Example 

To provide an intuitive understanding of Theorem 5.1, the convex hull of the fol-

lowing non-convex quadratic inequality is plotted in a 3-dimensional space, as shown in 

Figure 5.1. 

 
x

x y z
y

 
 

 
  (-4 ≤ x ≤ 8, -5 ≤ y ≤ 3),                       (5.13) 

where 

1

2

3

4

4 5 41

4 3 25

8 5 89

8 3 73

    
   
   
   
   

  

w

w

w

w

, 

4

2

1

 
  
 
  

B  and d = -47. The convex hull of system (5.13) is the 

space enclosed by 4x – 2y – z ≥ -47, -4 ≤ x ≤ 8, and -5 ≤ y ≤ 3. 
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Figure 5.1 Feasible Set of System (5.13) is the Space below the Surface and within the 

Box Constraints. 

 

5.2 AC Power Flow in Radial Networks 

5.2.1 Revisit the Branch Flow Model 

In this research, the adopted BFM is the DistFlow model proposed in [44] which is 

given as  

 i ik ji ij ji

k

p P P r                                             (5.14)   

 i ik ji ij ji

k

q Q Q x                                             (5.15) 

   2 22
i k ik ik ik ik ik ik ik

v v r P x Q r x                               (5.16) 

2 2

i ik ik ik
v P Q                                               (5.17) 
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where k ∊ Ni, i ∊ N, j is the upstream bus of i. Since the network structure is radial, for each 

bus i, there is only one upstream bus. The feasible set of (5.14)-(5.17) is also subjected to  

0
ik ik

                                                    (5.18) 

i ik i
v v v                                                    (5.19) 

2 2 2

ik ik ik
P Q S                                                    (5.20) 

where both 
ik
and 

ik
S are related to the thermal limit of a feeder line. Note that an analogous 

AC power flow model was proposed in [45]. In the scope of this thesis, they are equivalent. 

Therefore, they are called branch flow model (BFM) in this thesis. 

 

5.2.2 Geometric Understanding of the Convex Hull of BFM 

In the modified DistFlow model, the only non-convex constraints are those in 

(5.17). Each equality in (5.17) is a quadratic function of three independent variables and 

the 4th variable can be regarded as dependent variable. It is not possible to plot the feasible 

set of (5.17), Ω0, in the (Pik Qik ℓik vi)-space which is a 4-dimensional space. To provide a 

geometric understanding of the convex hull of constraint (5.17) in the DistFlow model, its 

feasible set is projected to all the 3-dimensional sub-spaces. For example, the projection of 

Ω0 onto the (Pik Qik ℓik)-space is denoted as ΩPQℓ. Note that all the quantities in this subsec-

tion are in p.u. 

Projection In the (Pik Qik ℓik)-space 

Considering vi as a parameter, equality (5.17) can be rewritten as 

   2 2

1
,

ik ik ik ik ik i
g P Q P Q v   ,                            (5.21) 
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which is subjected to constraints (5.18)-(5.20). The feasible set of (5.21), ΩPQℓ, is sketched 

in Figure 5.2. By observation, CONV(ΩPQℓ) can be formulated as  

2 2 2

iik ik i ik i ik
P Q v v S v   .                                (5.22) 

Consequently, 
ik

, the upper bound of ℓik, needs to be updated as 

2

iik ik
S v                                                (5.23) 

In fact, constraint (5.23) is an inherent property of the original problem, which is not con-

sidered in many SOCP relaxations in literature. 

 

 

Figure 5.2 Feasible Set of System (5.21). 

 

Projection in the (Pik Qik vi)-space 

Consdiering ℓik as a parameter, equality (5.17) can be rewritten as 
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   2 2

2
,

i ik ik ik ik ik
v g P Q P Q   ,                              (5.24) 

which is subjected to constraints (5.18)-(5.20). The feasible set of (5.24), ΩPQv, is sketched 

in Figure 5.3. By observation, CONV(ΩPQv) can be formulated as  

2 2

ik ik ik i
P Q v                                                       (5.25) 

 

 

Figure 5.3 Feasible Set of System (5.24). 

 

Projection in the (Pik ℓik vi)-space and the (Qik ℓik vi)-space 

In the variable space, the positions of Pik and Qik are completely symmetrical. As a 

result, the formulation of ΩℓvP can be directly applied to obtain ΩℓvQ by replacing Pik with 

Qik. Considering Qik as a parameter, equality (5.17) can be rewritten as 

  2

3
,

ik ik i i ik ik
P g v v Q    ,                                (5.26) 
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which is subjected to constraints (5.18)-(5.20). The feasible set of (5.26), ΩℓvP, is sketched 

in Figure 5.4. ΩℓvP is the space that is enclosed by the bounding planes described by (5.18) 

and (5.19), and the two surfaces in Figure 5.4. By observation, CONV(ΩℓvP) can be formu-

lated as  

 

2

2 2

ik

i ik

i ik

i ii ik ik i ik i

P
v

v

v v S v S v v


 


   

                             (5.27) 

Consequently, CONV(ΩℓvQ) can be expressed as  

 

2

2 2

ik

i ik

i ik

i ii ik ik i ik i

Q
v

v

v v S v S v v


 


   

 .                              (5.28) 

 

Figure 5.4 Feasible Set of System (5.26). 
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5.2.3 Mathematical Formulation of the Convex Hull of DistFlow 

Let xik = [Pik Qik ℓik vi]
T (ik ∊ M) and define Ω0 = {xik | (5.17) –(5.20) hold.}. Fol-

lowing the analysis given in the above subsection, we have the Proposition 1. 

Theorem 5.2. The convex hull of Ω0 can be formulated as 

 

 

2

0 1

2

2 2

(2)

iik ik

ik

ik i k

ik

i ik

i ii ik ik i ik i

ik

S v

P

Q v
CONV

v

v v S v S v v

 
 
 
  

     
 

   
 

 

i

x

x

.                            (5.29) 

The proof of Theorem 5.2 is given in Appendix E. It is easy to figure out that 

   
   
   

   

1

1

1

1

PQPQ

PQvPQv

vPvP

vQvQ

CONV

CONV

CONV

CONV

  

  


  

   

, 

where (Ω1)PQℓ means the projection of Ω1 onto the (Pik Qik vi)-space. Without the 1st and 3rd 

constraints, Ω1 is exactly the SOCP relaxation of Ω0. With the 1st constraint, the 3rd con-

straint is a valid inequality which intersects the original feasible set, Ω0, on the exact 

“edges”. Hence, including these constraints results the convex hull of Ω0. This is the pri-

mary contribution and novelty compared with the valid inequalities proposed in literature. 

Based on the convex hull formulation (5.29) of the non-convex constraints in the 

DistFlow model, a novel convex relaxation of the DESOSs is proposed in this thesis which 

is named CH relaxation. The details are given in Table 5.1. 
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Table 5.1 The CH Relaxations for the DESOSs 

Notation CH 1 CH 2 CH 3 

Objective 

function 
(3.1) (3.2) (3.18) 

Constraints 
(3.4) - (3.6), (3.8) - 

(3.17), and (5.29) 

(3.4) - (3.6), (3.8) - 

(3.17), and (5.29) 

(3.4) - (3.6), (3.8) - 

(3.17), (3.19), and (5.29) 
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Chapter 6 CASE STUDY 

This chapter consists of three sections. The case study in section 6.1 is a continua-

tion of that in Section 2.4 and shows the efficiency of the proposed methods from a per-

spective of power system engineering. The effectiveness of the non-iterative enhanced SDP 

relaxations in improving the tightness of convex relaxation for the DESOS (a continuous 

case) and SIOP (a mixed-integer case) is demonstrated in the sections 6.2 and 6.3 respec-

tively. 

6.1 Efficiency from a Perspective of Power System Engineering 

This section focuses on applying the proposed approaches to the real-world feeder 

in Arizona as shown in Figure 2.1. Since the DES optimization problems are time-coupled, 

modeling the full feeder will result in intractable optimization problems. Thus, only the 

three-phase trunk of this system is considered in the optimization computation which is 

implemented in YALMIP [71] by calling the solver SDPT3 [72]. YALMIP is a MATLAB 

toolbox for optimization while SDPT3 is a solver that can handle SOCP problems. The 

charging efficiency ηc and the discharging efficiency ηd are set to be 90% and 95% respec-

tively. Following Section 2.4, the results of optimal allocation are tabulated in Table 6.1 

(the 2nd and 3rd columns). 

As a comparison, the optimal allocation of DES obtained by solving the non-con-

vex model using KNITRO [73] solver in AMPL [74] is given in the 4th and 5th columns of 

Table 6.1. Note that an initial solution is usually needed when solving a non-convex prob-

lem. The initial solution shown in the 6th and 7th columns of Table 6.1 was used when 

solving the non-convex model in AMPL. 
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Table 6.1 Optimal Allocation of DES Units when Objective Function (3.1) is Chosen. 

Bus # 

Convex optimization 
Non-convex 

optimization 

Initial solution of 

the Non-convex 

optimization 

Power 

rating 

(kW) 

Energy 

rating 

(kWh) 

Power 

rating 

(kW) 

Energy 

rating 

(kWh) 

Power 

rating 

(kW) 

Energy 

rating 

(kWh) 

1 0.00186 0.09751 0.0008 87.5701 111.11 611.11 

2 0.03439 0.18645 0.0016 87.5735 111.11 611.11 

3 0.04792 0.28553 0.0024 87.5768 111.11 611.11 

4 318.160 1257.59 376.53 1669 111.11 611.11 

5 121.408 765.451 103.52 522.365 111.11 611.11 

6 133.057 823.638 104.42 526.171 111.11 611.11 

7 84.9874 519.655 68.453 386.972 111.11 611.11 

8 0.21194 1.12923 0.0018 87.5742 111.11 611.11 

9 342.092 1632.05 347.05 1545.2 111.11 611.11 

 

The two operational strategies introduced in Section 2.3 are implemented in 

OpenDSS with the DES systems designed from the previous steps. It can be observed from 

Figure 6.1 that, with the chosen DES systems and the proposed operational strategy, the 

voltage profile of the bus with the worst voltage violation on the worst case day is main-

tained within the limit and the short-duration voltage fluctuations are significantly reduced. 

These voltage profiles shown in Figure 6.1 are at a time resolution of 1 minute. Note that 

the bus with the worst voltage violation is not necessarily the terminal bus of one of the PV 

plants. Fast voltage fluctuations at the buses that are close to the PV plants are more severe 

than what is observed in this figure. Hence, the application of reducing the short-duration 

PV output uncertainty makes more sense to the buses which are nearby the PV plants. This 

plot is obtained by simulations in OpenDSS. 
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Figure 6.1 Voltage Profiles of the Bus with the Worst Violation on the Worst Case Day. 

 

To verify the exactness of the SOCP relaxation when the aforementioned objective 

functions are used, an index is proposed to quantify the error between the right-hand side 

and left-hand side of (4.1). This index is given as 

     
2 2

max , , , , , ,
max i t i j t i j t i j t

e v P Q                                          (6.1) 

Since the SOCP is not exact for the DESOA when the objective function (3.3) is 

selected. The maximum errors of two cases of the allocation problem with both objective 

functions are tabulated in Table 6.2. The small errors indicate that the SOCP relaxation is 

exact for optimal allocation of the DES with the chosen objective functions. 

 

Table 6.2 Maximum Errors of the SOCP Relaxation for DESOAs in p.u. 

 Objective Function (3.1) Objective Function (3.2) 

Max. Error 0.00031617 0.00017096 

 

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1

6
7

1
3
3

1
9
9

2
6
5

3
3
1

3
9
7

4
6
3

5
2
9

5
9
5

6
6
1

7
2
7

7
9
3

8
5
9

9
2
5

9
9
1

1
0
5
7

1
1
2
3

1
1
8
9

1
2
5
5

1
3
2
1

1
3
8
7

V
o
lt

a
g
e 

(p
.u

.)

Time (min)
Without DES With DES Limit



66 

 

To verify the effectiveness of the SOCP relaxation, the solutions obtained by solv-

ing the problem as convex and nonconvex optimization are compared. In this subsection, 

five operating cases are studied with objective function (3.1) and five cost curves chosen 

(shown in Figure 6.2). The cost curves used in cases 1 and 2 are assumed while those in 

cases 3-5 are actual ones for the feeder considered. The results given in Table 6.3 clearly 

demonstrate that the solution of the DES optimization as a convex problem is more effec-

tive than solving it as a non-convex problem. In Table 6.3, the convex problem is solved 

by SDPT3 through YALMIP while the non-convex problem is solved by KNITRO solver 

through AMPL. Table 6.3 in conjunction with Figure 6.1 demonstrates that the convex 

method is able to obtain lower costs/losses solutions without voltage violations. 

 

Figure 6.2 Cost Curves Used in the Case Study. 

Table 6.3 Operational Costs in p.u. 

# of the cost curve 1 2 3 4 5 

Convex 1314.8 1517.7 1797.8 1840.6 3908.6 

Non-convex 1393.4 1602.8 1903.2 1963.5 4120.0 
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6.2 DESOS: Tightness of the ESDP Relaxations for Continuous Cases  

6.2.1 Test System and Case Design 

With objective function (3.1) or (3.2) selected, the SOCP relaxation for DESOA is 

exact. For the DESOS, the SOCP relaxation is only occasionally exact no matter which 

objective function is selected. Hence, the effectiveness of the ESDP relaxations is verified 

for the DESOS where the SOCP relaxation works unsatisfactorily. The convex relaxations 

of the DESOS algorithm are tested on the 9-bus real-world feeder (Figure 2.1) and the 

IEEE 13, 37, 123-bus feeders [75] assuming that there is high penetration of PV resources 

respectively. The three-phase topologies of the three networks are shown in Figure 6.3. 

The capacities of both PV and DES systems for all the test systems are listed in Table 6.4. 

The convex problems are solved by the solver MOSEK [76] through the MATLAB toolbox 

YALMIP. A computer with a 64-bit Intel i5-3230M dual core CPU at 2.60 GHz and 4 GB 

of RAM was used to run the test cases.  
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(a) IEEE 13-bus Feeder. 
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(b) IEEE 37-bus Feeder. 
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(c) IEEE 123-bus Feeder. 

Figure 6.3 Topologies of the IEEE Test Systems. 

 

Table 6.4 PV System and DES Unit Locations and Capabilities 

Test system PV location (bus #) and capacity penetration 

9-bus 4 (0.85 MW), 9 (0.65 MW) 30.5% 

13-bus 633 (0.5 MW), 680 (0.2 MW), 684 (0.5 MW) 36.7% 

37-bus 
703 (0.3 MW), 706 (0.3 MW), 708 (0.3 MW), 

711 (0.3 MW) 
48.8% 

123-bus 
8, 15, 25, 44, 54,  67, 81, 89, 105, 110 (all PV 

systems have the same size of 0.2 MW) 
57.3% 

Test system DES location (bus #) and capacity 

9-bus 4 (0.4 MW, 2 MWh), 9 (0.3 MW, 1.5 MWh) 

13-bus 684 (0.6 MW, 2.4 MWh), 692 (0.8 MW, 3.2 MWh) 

37-bus 
720 (0.3 MW, 1.2 MWh), 730 (0.3 MW, 1.2 MWh), 737 (0.3 

MW, 1.2 MWh) 

123-bus 
13 (0.3 MW, 1.2 MWh), 23 (0.3 MW, 1.2 MWh), 76 (0.3 

MW, 1.2 MWh), 108 (0.3 MW, 1.2 MWh) 
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Multi-period demand and PV generation profiles are available only for the real-

world feeder. Hence, in the real-world feeder cases, 24-hour data is used. The DES dynamic 

constraint (3.8) is omitted and only a snapshot power flow is considered in each of the 

IEEE feeder cases. When objective function (3.1) is chosen, an actual 24-hour LMP curve 

(CC4 in Figure 6.2) from the website of the ISO New England is used. The coefficient c in 

objective function (3.1) is set to be -30 $/MWh for the IEEE cases. For all cases, the charg-

ing efficiency ηc and the discharging efficiency ηd are set to be 90% and 95% respectively. 

The optimal objective values (OOV) of the solutions are compared to quantify the 

tightness of the convex relaxations as people did in the literature. As reported widely in 

literature, the SOCP relaxation outperforms the SDP relaxation in terms of computational 

efficiency. There is no surprise, that the CPU times of the SOCP relaxation for the DESOS 

problems, are less than those of the SDP relaxations. This report aims at finding computa-

tionally inexpensive convex constraints that can tighten the basic SDP relaxation. There-

fore, the CPU time of the ESDP is displayed in per unit with the runtime of the BSDP as 

the base. In this way, it is more convenient to observe how much the runtime of the BSDP 

relaxation increases with a convex constraint added (see Table 6.5). 

For the cases where the convex relaxations are exact, two nonlinear solvers, IPOPT 

and KNITRO are used to obtain feasible solutions. In Table 6.5, KNITRO_1 and 

KNITRO_2 represent the scenarios where the multi-start option is off and on respectively. 

In the scenario of KNITRO_2, the number of starting points is set to be 10. 

6.2.2 Remarks 

Some remarks regarding the results shown in Table 6.5 are provided as follows: 
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a) In the IEEE feeder cases which are single-period cases, when objective function 

(3.1) with positive LMPs is selected, the SOCP relaxation is exact. In the cases with nega-

tive LMPs, the SOCP relaxation is not exact.   

 

 

Table 6.5 Results of DESOS 

System Relaxation 

Objective Function 

(3.1) 

Objective Function 

(3.2) 

Objective Function 

(3.3) 

OOV ($) 

CPU 

time 

(s) 

OOV 

(p.u.) 

CPU 

time (s) 

OOV 

(p.u.) 

CPU 

time (s) 

9-bus 

real-

world 

feeder 

SOCP 1231.20 0.84 0.5832* 0.44 13.5148 0.50 

BSDP 1230.50 3.28 0.2822 2.68 13.4025 4.04 

ESDP1 1236.00 11.25 0.5769 5.82 13.4025 14.63 

ESDP2 1236.10 3.58 0.3350 2.86 14.2875 5.56 

ESDP3 1231.40 3.68 0.3369 3.21 13.4267 4.12 

ESDP4 1244.60 6.05 0.4235 4.25 13.4394 7.45 

ESDP5 1236.80 4.66 0.3350 3.46 14.4720 6.24 

ESDP6 1240.90 12.33 0.5792 6.62 14.2876 15.89 

CH 1239.4 0.69 0.5832* 0.57 15.8133 0.64 

IPOPT 1263.5 1.551 − − 16.7597 2.424 

KNITRO_1 1263.5 22.359 − − 16.7583 114.203 

KNITRO_2 Out of memory − − Out of memory 

IEEE       

13-bus 

feeder 

SOCP -28.887 0.28 0.1276* 0.39 0.3933 0.36 

BSDP -29.331 1.31 0.0485 1.40 0.3752 1.43 

ESDP1 -28.188 3.58 0.1201 3.75 0.4040 3.87 

ESDP2 -27.708 1.73 0.0558 1.53 0.4347 1.69 

ESDP3 -27.786 1.36 0.0534 1.40 0.4248 1.52 

ESDP4 -26.372 2.12 0.0597 2.13 0.4418 2.08 

ESDP5 -27.708 1.89 0.0565 1.74 0.4347 1.88 

ESDP6 -27.381 3.26 0.1256 3.39 0.4349 3.90 

CH -23.973 0.41 0.1276* 0.46 0.4363* 0.33 

IPOPT -22.449 0.103 − − − − 

KNITRO_1 -23.707 1.188 − − − − 

KNITRO_2 -23.815 72.984 − − − − 

IEEE       

37-bus 

feeder 

SOCP -71.727 0.45 0.0469* 0.47 0.6206 0.30 

BSDP -72.213 6.81 0.0098 6.23 0.6039 1.000 

ESDP1 -72.192 24.02 0.0455 17.91 0.6206 3.087 

ESDP2 -69.303 12.69 0.0153 7.38 0.6165 1.930 
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ESDP3 -70.421 7.60 0.0118 6.27 0.6239 1.039 

ESDP4 -66.697 8.74 0.0143 8.10 0.6559 1.479 

ESDP5 -69.303 13.02 0.0159 7.63 0.6248 2.046 

ESDP6 -68.670 19.22 0.0469 13.06 0.6394 3.612 

CH -64.071* 0.36 0.0469* 0.41 1.0785 0.45 

IPOPT − − − − 1.1307 0.132 

KNITRO_1 − − − − 1.1307 0.703 

KNITRO_2 − − − − 1.1307 6020.06 

IEEE     

123-bus 

feeder 

SOCP -43.851 0.58 0.0306* 0.52 2.9345 0.56 

BSDP -44.910 110.49 0.0106 103.93 2.7832 118.69 

ESDP1 -43.857 273.90 0.0296 315.32 2.9313 375.89 

ESDP2 -43.596 149.27 0.0145 129.91 3.0272 165.34 

ESDP3 -42.594 145.74 0.0127 118.06 3.1559 151.21 

ESDP4 -41.988 186.84 0.0140 175.95 3.2576 230.26 

ESDP5 -42.375 152.81 0.0152 141.76 3.1567 179.46 

ESDP6 -43.509 305.62 0.0305 328.31 3.1348 390.02 

CH -39.582 0.39 0.0306* 0.43 3.6629 0.45 

IPOPT − − − − − − 

KNITRO_1 Out of memory − − Out of memory 

KNITRO_2 Out of memory − − Out of memory 

The results marked with “*” are the exact globally optimal solutions to the corresponding 

cases. 

 

b) Several 24-hour LMP curves (all positive, as shown in Figure 6.2) have been 

tested on the 9-bus feeder. The SOCP relaxation for the cases with some LMP curves is 

exact, while for the other cases it is not. Generally, with objective function (3.1), the SOCP 

relaxation is only occasionally exact even when all values on the LMP curves are positive.  

c) When objective function (3.2) is chosen, the SOCP relaxation is in general exact. 

Because, minimizing rℓ usually leads to a situation that constraint (4.1) is binding, which 

means (3.7) is satisfied. However, it does not necessarily mean the SOCP relaxation is 

exact for all the DESOS cases where objective function (3.2) is adopted.  

d) The SOCP relaxation is generally not exact when objective function (3.3) is se-

lected, since it is strictly non-monotonic in the feasible set.    
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e) Dropping constraint (3.8), the DESOS with objective function (3.1) and the 4th 

LMP curve in Figure 6.2 is decomposed into 24 OPF problems. The SCOP relaxation for 

these 24 OPFs is exact. However, it is not for the 24-hour DESOS problem. 

6.2.3 Observations and Discussions 

From the results shown in Table 6.5, one can observe that: 

1) The exactness of the SOCP relaxation for the DESOS problems is sensitive to 

the descent direction of the chosen objective function. Moreover, it is also sensitive to some 

set-tings, for instance some bound values (see Sections III and IV in [38]).  

2) Adding a linear constraint (e.g. the state of charging/discharging constraint (3.8)) 

to an OPF problem may change the exactness of the SOCP relaxation for this problem. The 

effect of adding a linear constraint on exactness of the SOCP relaxation is similar to that 

of changing some bounds as shown in [38]. Please refer to Remark e) in Subsection 6.2.2. 

3) The statements in observations 1) and 2) actually reveal several aspects that may 

determine whether a DESOS problem satisfies the conditions in Proposition 4.2, i.e. the 

conditions for exactness of the SOCP relaxation, or not. It implies, on the other hand, the 

exactness of the SOCP relaxation for the DESOSs is determined by various factors. 

4) The ESDP relaxations, especially ESDP4 and ESDP5, are attractive alternatives 

for the DESOS cases where the SOCP relaxation is not exact, since one can usually find 

an ESDP relaxation that can provide a much tighter solution than SOCP relaxation do in 

these cases. The convex constraints introduced in Section 4.3 do not considerably increase 

the computational burden of the BSDP relaxation except for the RLT. It has been reported 

in [57] that the solution time for solving the basic SDP relaxation in an OPF problem for 
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the IEEE 300-bus system has been reduced to 5.7s by exploiting the sparsity. This makes 

the ESDP relaxations valuable in application. 

5) The CH relaxation dominates other convex relaxations except for the 9-bus cases. 

With the CH relaxation whose computational efficiency is close to that of the SOCP relax-

ation, the possibility of exactness is increased. 

6) KNITRO obtains similar locally optimal solutions as the IPOPT does to most of 

the cases. However, its computational efficiency is much lower than IPOPT in some cases. 

When the multi-start option is enabled, the effectiveness of optimal solutions to some cases 

are increased while to the others are not. Nevertheless, the CPU times increase rapidly as 

the number of starting point in KNITRO increases. In some cases, the CPU times of 

KNITRO with multi-start option enabled are unacceptably high. 

6.3 SIOP: Tightness of the ESDP Relaxations for Discrete Cases  

The SOCP relaxation is not valid for the SIOP cases. Consequently, the comparison 

between the ESDP and BSDP relaxation for the SIOP is offered in this section. 

6.3.1 Solution Method 

A branch and bound algorithm is used to solve the convex relaxations of the SIOP 

so that the node-problems in the branch and bound tree are convex. When a B&B algorithm 

is used to solve an integer programming problem, some settings may affect the computa-

tional performance drastically [77]. These settings include node selecting strategy (i.e. 

depth-first search plus backtracking and breadth-first search) and strategy for branching 

variable selection (i.e. choosing the next integer variable on which to branching) [78]. Us-

ers can choose these strategies based on the problem they need to solve. However, there is 
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no universal rule for making the choices. Some may select the branching variable with the 

lowest or highest objective value [77] while others may choose the smallest or largest frac-

tion value [79]. 

Solvers that can reliably solve a mixed-integer semidefinite programming problem 

are not currently available. In this subsection, a standard B&B algorithm provided by a 

built-in solver of MATLAB, BNB, is used. With BNB, one can choose the node selecting 

strategy efficiently. For further information about BNB, please refer to the help text of 

MATLAB and [80]. At each node, the SDP solver, MOSEK, is called to obtain the bounds 

for the corresponding sub-problem. The above solution procedure is implemented in 

YALMIP.   

6.3.2 Results and Analysis 

In this case study, the proposed approach is tested on the power systems mentioned 

in the previous section. The unit price of the smart PV inverter is considered to be twice 

that of the conventional PV inverter. The test results are tabulated in Table 6.6, which 

demonstrate: 1) the non-iterative ESDP relaxations are valid for the SIOP problems which 

are mixed-integer problems when a B&B method is used; 2) the ESDP relaxations domi-

nate the BSDP relaxation which has been used in literature; 3) in some cases, the ESDP 

relaxations may not provide tighter solutions. However, the computational efficiency of 

the B&B algorithm is improved since the feasible sets of the node-problems is tightened 

by the added convex constraints. 
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Table 6.6 Results of SIOP in p.u. 

System Relaxation OOV CPU time 

9-bus feeder 

BSDP 2.000 1.000 

ESDP1 2.288 2.364 

ESDP2 2.120 1.091 

ESDP3 2.045 1.045 

ESDP4 2.426 1.182 

ESDP5 2.131 1.227 

ESDP6 2.297 2.636 

13-bus feeder 

BSDP 3.970 1.000 

ESDP1 4.202 2.045 

ESDP2 4.238 1.354 

ESDP3 3.970 1.122 

ESDP4 3.970 1.221 

ESDP5 4.238 1.112 

ESDP6 4.249 1.970 

37-bus feeder 

BSDP 3.000 1.000 

ESDP1 4.200 2.087 

ESDP2 3.600 0.672 

ESDP3 3.000 0.804 

ESDP4 3.000 1.663 

ESDP5 3.600 0.895 

ESDP6 4.800 2.244 

123-bus 

feeder 

BSDP 4.000 1.000 

ESDP1 5.367 2.286 

ESDP2 4.877 1.071 

ESDP3 4.205 1.036 

ESDP4 5.748 1.143 

ESDP5 4.967 1.179 

ESDP6 5.369 2.786 
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Chapter 7 CONCLUSIONS AND FUTURE WORK 

7.1 General Summary 

This thesis develops technologies for utilizing distributed energy storage as well as 

smart PV inverters to mitigate the detrimental impacts of high penetration PV resources on 

distribution systems. As a matter of fact, an actual feeder usually contains considerable 

numbers of single-phase nodes and branches. If the single-phase system is fully modeled, 

the resulting time-coupled OPF may be intractable. If the single-phase system is simply 

neglected, the designed size of the DES is most likely to be inaccurate, since the system 

constraint violations occur in the single-phase system more frequently. To achieve a bal-

ance, this thesis divided the planning stage of DES into two steps. In the first step, the PV 

power and energy imbalance that causes system violations is calculated by OpenDSS, 

where the entire feeder is modeled, to determine the total size of DES required. Second, 

the optimal sites are chosen to allocate the DES determined in the previous step using con-

vex optimization techniques with system limits as constraints and minimizing operational 

costs or power losses as objective. 

The research work in this thesis is mainly concerned with constructing tighter con-

vex relaxations for the optimal allocation and scheduling of DES units, and the optimal 

placement of smart PV inverters in radial distribution systems. First, all the optimization 

models are built based on a branch flow model. Then, the limitations of the SOCP relaxa-

tion which is a well-recognized convex relaxation for the BFM in radial networks are stud-

ied. This study reveals the reasons why the SOCP relaxation works unsatisfactorily for a 

number of the (DESOA), (DESOS) and (SIOP) cases. To obtain better global solutions of 

the (DESOA), (DESOS) and (SIOP) cases for which the SOCP relaxation is not exact, the 
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enhanced SDP relaxations are proposed. The enhanced SDP relaxations are constructed by 

imposing one or some convex constraints that have good approximation to the rank-1 con-

straint on the BSDP relaxation. Most of these convex constraints are proposed in the refer-

ences of analytical optimization and have not been used in power systems. 

To further tighten the convex relaxation of the AC power flow, convex hull formu-

lations of both BIM and BFM are proposed in this research. The convex hull is the tightest 

convex relaxation of a non-convex set. Based on the convex hull formulation of the 

DistFlow model, a novel convex relaxation for optimization problems, e.g. DESOA, 

DESOS, SIOP, OPF, in power systems is proposed. 

7.2 Contributions and Findings 

As an innovative study on convex relaxations of the optimization problems in dis-

tribution systems, the research in this thesis has made the following contributions and find-

ings. 

 Identifying the impact of a chosen objective function on the exactness of the convex 

relaxations.  

Convexification of the OPF problem has attracted substantial research efforts. In 

OPF problems, researchers usually consider an objective function which is a linear or a 

convex nonlinear function in terms of the outputs of the various generators and represents 

the generation cost. However, the objective function of a (DESOA/DESOS/SIOP) problem 

may vary due to the needs for DES/smart inverters to meet various operational require-

ments. As a result, some conclusions on the convex relaxations for OPFs may not be valid 

for the (DESOA), (DESOS) and (SIOP) problems. This research finds that the descent 
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direction of a selected objective function in the feasible set plays an important role in the 

exactness of the convex relaxations for the (DESOA), (DESOS) and (SIOP) problems. 

 Proposing a mathematical description of the necessary and sufficient condition for the 

exactness of the SOCP relaxation. 

Although the SOCP relaxation is good convex relaxation for the BFM in radial 

networks, the case study in Section 6.2 shows that the exactness of the SOCP relaxation 

for the DESOSs is determined by various factors, which means the sufficient conditions 

studied in literature are not clear enough to reveal the true properties of the SOCP relaxa-

tion. The necessary and sufficient condition proposed in this report provides an insight into 

the inherent nature of the SOCP relaxation. 

 Construction of the non-iterative enhanced SDP relaxations 

To avoid the limitations of the SOCP relaxation and achieve better globally optimal 

solutions for the cases for which the SOCP relaxation is not exact, the ESDP relaxations in 

the non-iterative computing framework are proposed by imposing convex constraints to 

the BSDP relaxation. The introduced convex constraints can offer strong links between the 

auxiliary semidefinite matrix X and the rank-1 matrix  xTx. Most of these convex con-

straints are first applied in power systems in this report. The results of the case study elu-

cidate that they work effectively in the power system cases. 

 Proposed a novel convex relaxation for decision-making processes in power systems 

based on the convex hull formulation of the AC power flow equations in radial net-

works 

Although a large number of research efforts have been directed towards the SOCP 

relaxation and SDP relaxation, there is still a strong desire to obtain tighter relaxations for 
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the AC power flow. In this thesis, the properties of the non-convex quadratic equalities in 

two typical AC power flow models, i.e. the BIM and BFM, are fully studied, following 

which the quasi-convex hull of the quadratic equalities in the AC power bus injection 

model (BIM) and the exact convex hull of the quadratic equality in the AC power branch 

flow model (BFM) are proposed respectively. Based on the exact convex hull formulation 

of non-convex quadratic constraint in BFM, a novel convex relaxation for many decision-

making processes, like the DESOA, DESOS and SIOP problems are proposed. 

 Sizing method of DES based on time resolutions 

The DES has multiple functions, e.g. time-shifting of energy supplied and fast-

ramping. These functions work at different time resolutions respectively. Time resolution 

based sizing methods of DES are proposed in this report. The proposed sizing method are 

implemented in the OpenDSS platform which can model the entire feeder more precisely 

so that over-sizing is largely avoided.  

7.3 Suggested Future Work 

Interesting approaches for convexifying the (DESOA), (DESOS) and (SIOP) algo-

rithms have been proposed and compared with the existing methods in this thesis. To make 

these novel methods practical, work that needs to be conducted in the future includes: 

 Exploit sparsity in the ESDP relaxations 

The computational burden of solving the ESDP relaxations of the (DESOA), 

(DESOS) and (SIOP) problems is still a concern, even though [57] has reported that the 

solution time for solving the basic SDP relaxation in an OPF problem for the IEEE 300-

bus system has been reduced to 5.7s by exploiting the sparsity. One still needs to confirm 

that the existing dimension reduction techniques are valid for the ESDP relaxations of the 
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(DESOA), (DESOS) and (SIOP) problems. If not, novel techniques need to be developed 

to reduce the CPU times of solving the ESDP relaxations. 

 Advanced modeling of DES 

The DES model presented in Chapter 3 has been widely adopted in related refer-

ences since it is simple and does not increase the overall complexity of the optimization 

model. However, a more accurate DES model is desired in the future application in power 

systems. An advanced DES model means a mathematical model of DES that does not in-

troduce much complexity to the overall optimization model but can accurately capture the 

performance of both batteries and converters. 
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Proof 1: DESOA with objective function 3.1 (DESOA_1). 

Suppose that S  ((A.1)) is the optimal solution of (DESOA_1) which makes the 

greater-than sign hold in (4.2) in branch kg at moment l. To prove Proposition 4.1 by con-

tradiction, another solution Ŝ  ((A.2)) is considered,   

 

 , , , , , ,DES DES Grid Grid, , p qS p q P Q v u                            (A.1) 

 ˆ ˆ ˆˆˆ ˆ ˆ ˆˆ ˆ, , , , , ,DES DES Grid Grid, , p qS p q P Q v u .                           (A.2) 

 

The details of Ŝ  are given as follows 
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If Ŝ  satisfies condition (A.6), by substituting it into (3.4) – (3.7), it can be easily 

proved that constraints (3.4) – (3.6) hold at each bus, and (3.7) holds in branch kg and (4.1) 

holds in branch hk.  
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            (A.6) 

Although the equality sign of (4.1) in branch hk no longer holds under condition (A.6), Ŝ  

shows that the relation 2 2

i ij ij ijv P Q   can be transferred from a specific branch to its up-

stream branch without deteriorating the objective value if the condition in Proposition 4.1 

holds. Repeating the transformation as shown in Figure A.1, one can obtain 

 2 2

1 12 12 12v P Q                                                    (A.7) 

where i = 1 is the substation bus number, and the equals sign of (4.1) holds for all the other 

branches.  
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Figure A.1  Illustration of transformation of SOC constraint. 

 

When the relation 2 2

i ij ij ijv P Q   is transformed from branch kg to branch hk, a 

reduction of ɛh1 is imposed on ,

DES

h lp . Similarly, there is also a reduction imposed on  1 ,

Grid

i t
p


 

when 2 2

i ij ij ijv P Q   is transformed to branch 12, which means 

1 1
ˆ ˆ

T N Grid

t tt i
f c p f   .                                        (A.8) 

Relation (A.8) means Ŝ  is the optimal solution of the SOCP relaxation of (DESOA_1) 

instead of S . In condition (A.6), there are 9 equalities and 4 inequalities while the number 

of variables is 13. According to some basic theorems in algebra, it is possible to obtain a 

feasible solution Ŝ  that satisfies (A.6). The details of Ŝ  are not provided here. If some 

reader is interested in obtaining an Ŝ , one can replace other variables with ɛg1, ɛg2, ɛk1 and 

ɛk2 based on the equivalent relationship and choose suitable values for these four variables. 

Proof 2: DESOA with objective function 3.2 (DESOA_2). 

For (DESOA_2), if there exists an optimal solution S  ((A.1)) that makes the inequal-

ity sign hold in (4.1), a feasible solution Ŝ  ((A.2)) for which the details are given as 
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ˆ v v                                                   (A.9) 
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When Ŝ  is substituted into (3.4)-(3.7), it suffices to show that Ŝ  satisfies all equation. 

Substitute Ŝ  into the objective function (3.2), then 
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Relation (A.12) means Ŝ  is the optimal solution of the SOCP relaxation of (DESOA_2) 

instead of S . 

The proof of Proposition 4.1 is now completed. 
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PROOF OF PROPOSITION 4.2 
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If d belongs to a vector set Φk where there are no active SOCCNLCs (j ∊ ∅), there 

exists a point x* on the SOCC surface at which the normal of the SOCC is parallel to d. 

For a convex problem, it suffices to show that x* is the optimal solution. If x* is the optimal 

solution of the SOCP that is located on the SOCC surface, according to the first-order 

condition for optimality, d should be vertical to the tangent plane of the SOCC surface at 

x*, namely belong to Φk. 

 Let x* be the optimal solution that is located on the boundaries which are the junc-

tures of the SOCC and some of the SOCCNLCs (e.g. point 1 and 2 in Figure 4.2) and ∆x 

be a small changes on x* along the boundary of the feasible set. If d belongs to a vector set 

Φg where there exist active SOCCNLCs (j ∉ ∅), without loss of generality, assume for 

simplicity that l1(x) is the only active SOCCNLC for x*, then dT(x* + ∆x) = dTx* - (γ0∇s(x*) 

+ γ1∇l1)
T∆x. If (x*+∆x) is located on the surface of SOCC, then ∇s(x)T∆x ≈ 0 and ∇l1

T∆x 

≤ 0 since s(x*) + ∇s(x*)T∆x ≈ s(x* + ∆x) = 0 and the included angle between ∇l1 and ∆x is 

an obtuse angle due to the convexity respectively. If (x*+∆x) is located on SOCCNLC, 

then ∇l1
T∆x = 0 and ∇s(x*)T∆x ≤ 0 since l1(x*+∆x) = l1(x*) + ∇l1

T∆x = 0 and the included 

angle between ∇s(x*) and ∆x is an obtuse angle due to the convexity respectively. There-

fore, in both the cases, we have dT(x* + ∆x) ≥ dTx* (x* is the optimum). 

If x* is the optimal solution of the SOCP and located on the boundary that connects 

s(x) and l1(x), it should satisfy dT(x* + ∆x) = dTx* + dT∆x ≥ dTx* where dT∆x ≥ 0. Assume 

that x*+∆x1 and x*+∆x2 are on the SOCCNLC and SOCC respectively, then d should sat-

isfy both dT∆x1 ≥ 0 and dT∆x2 ≥ 0. Since ∆x1 and ∆x2 are vertical to ∇l1 and ∇s(x*) respec-

tively, d satisfying dT∆x1 ≥ 0 and dT∆x2 ≥ 0 is equivalent to d = -γ0∇s(x) – γ1∇l1 due to the 

geometrical characteristic of the convex feasible set.   
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Matrix C is a full-rank matrix means |SLE | = n. Suppose that constraint (4.17) is 

imposed to generate the ESDP relaxation. bix = xbi = xci
Tx = xxTci, as a result, Xci = xxTci 

which is equivalent to XC = xxTC. Post-multiply both sides of XC = xxTC by C-1, then X = 

xxT. If (4.18) or (4.19) is adopted instead of (4.17), the resulting ESDP relaxation is also 

exact since (4.18) and (4.19) are tighter than (4.17).                                                     
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PROOF OF THEOREM 5.1 

  



99 

(i) BTw = d crosses all the w points.  

Supposing that u is a 2-dimensional vector, then the is given as  

2 21
1 2 1 2

22 2

1 12 2

3 22

2 21 1
4 2 2

1 2 1 2

u u u u

u u u u

u u u u

u u u u

  
  

   
     
    

w

w

w

w

.                                        (D.1) 

It is easy to show that the rank of the above matrix is 3, assuming that 1u , 1u , 2u and 2u  are 

different from each other. That means tw (t = 1, …, 4) are linearly dependent. If the dimen-

sion of u is increased to 3, then w is changed into  

2 2 2
1 3 1 2 3 1 2

2 2 2
2

3 1 3 12 2

2 223
3 2 3 21 1

24 2 2

3 31 2 1 2

5 2 22

1 2 1 23 3
6

22 2

1 13 2 3 2
7

22 2

2 23 1 3 18
2 2 2

3 1 2 3 1 2

u u u u u u

u u u u u u

u u u u u u

u u u u u u

u u u u u u

u u u u u u

u u u u u u

u u u u u u

  
  
   
  

   
      
    
  
   
  
   
  

 

w

w

w

w

w

w

w

w














 

.                               (D.2) 

It also suffices to show that the rank of the above matrix is 4.  

Supposing that the dimension of u is k, then the corresponding is a (2k×(k+1))-

dimensional matrix whose rank is (k+1). If rank( w ) ≥ (k+2), there always exists a set of 

(k+2) row vectors of that are linearly independent. However, in any arbitrarily selected 

(k+2) row vectors of w , one can always find a bound of one element of u that appears (k+1) 

times according to the definition of tw . Cases (D.1) and (D.2) are two good examples. It 

suffices to show that the (k+1) chosen vectors that contain this bound of the variable are 

linearly dependent, e.g. the first 4 rows in (D.2) all of which contain 3u . Therefore, the rank 

w

w

w
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of is not greater than (k+1), which means one can obtain a hyperplane BTw = d that crosses 

all the points represented by w .  

(ii)     T5.6 ,w B w u u u    CONV d   

It follows from (i) that all the points belong to the set Ω. The coefficient matrix 

of (5.6) is an (n+1)×(n+1) identity matrix which is positive definite. That means f(u) = 0 is 

convex function so that 

        1 1i j i jf f f       u u u u ,                     (D.3) 

where 0 ≤ α ≤ 1. The right hand side of (D.3) is located on the hyperplane BTw = d while 

the left hand side stays within Ω. It implies that the set described by (5.6) belongs to the 

convex set Ω so that (ii) holds. 

(iii)     T5.6 ,w B w u u u   CONV d  

Suppose that βTw ≥ g is a valid cut for CONV((5.6)). That means it will cut off at 

least one point of w  since (D.3) holds. From the definition of Ω, it is direct to show that 

βTw ≥ g is also be valid for Ω. Hence, (iii) holds. 

 

  

w

w
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PROOF OF THEOREM 5.2 
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Note that, unless otherwise stated, all the discussions are within the set described 

by (5.18)-(5.20). 

(i) CONV(Ω0) ⊆ Ω1. 

It suffices to show that  

 2 2

2

ik

ik i ik ik ik ik ik i ik

i ik

P

v P Q Q v

v

 
 

     
  

x x . 

Moreover, 

 2 2

2 2

2

(2)
(2)

i ii ik ik i ik i

i ik ik ik

iik ik ik ik

ik

ik

v v S v S v v
v P Q

S v

   
    

    
    

x x
x

x

, 

since 

2

ii ik i ik ik i
v v v S v   (xik ∊ (2) and 

2

iik ik
S v ). 

That means Ω1 is convex relaxation of Ω0. CONV(Ω0) is defined as the intersection 

of all convex relaxations of Ω0. As a result, (i) holds. 

(ii) CONV(Ω0) ⊇ Ω1. 

Supposed that αTxik ≥ β is a valid inequality for CONV(Ω0), it should be valid for all 

the points in Ω0. Note that “an inequality is valid for a set” means the inequality is satisfied 

by all the points within this set. The convex set Ω1 is enclosed by two sets of boundary. 

They are specified by the second and the third inequalities respectively. Within set (5.18)-

(5.20), the first set of boundary of Ω1 can be described as  

2

ik

ik ik i ik

i ik

P

Q v

v

 
 

  
  

x ,                                            (E.1) 
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which is exactly Ω0. Hence, αTxik ≥ β is valid for set (E.1). 

In the xik-space and within (5.18)-(5.20), assume four points, (
1ik,

P ,
1ik,

Q , ii
v v ,0), (

2ik,
P ,

2ik,
Q , iv ,

ik
), (

3ik,
P ,

3ik,
Q , iv ,

ik
), and (

1ik,
P ,

1ik,
Q ,

i
v , i ik i

v v ), where  

1 1

2 2 2 2 2 2 2

,2 ,2 ,3 ,3 ,4 ,4

0
ik, ik,

ik ik ik ik ik ik ik

P Q

P Q P Q P Q S

 


     
. 

All the above points are located on the hyper-surface (5.17). Therefore, αTxik ≥ β is 

valid for them. The following equality represents an area on the hyperplane that crosses the 

above four points in the xik-space.  

2 3 41

2 3 41

1 2 3 4

0

ik, ik, ik,ik,

ik, ik, ik,ik,

ik

i ii ii

iik ik ik i

P P PP

Q Q QQ

v v vv v

v v

   

      
      
         
      
      

       

x ,                     (E.2) 

where 0 ≤ γi ≤ 1 (i = 1, …, 4) and 
4

1
i

i
  . Substituting (E.2) into αTxik ≥ β results 

in  

 

2 3 41

4
T T T T T2 3 41

1 2 3 4

0

ik, ik, ik,ik,

ik, ik, ik,ik,

ik ii

i ii ii

iik ik ik i

P P PP

Q Q QQ

v v vv v

v v

      

      
      
           
      
      

       

    x  

Hence, αTxik ≥ β is valid for (E.2). Within (5.18)-(5.20), the line segment 

 2 2

i ii ik ik i ik i
v v S v S v v                                               (E.3) 

is exactly the projection of (E.2) onto the (ℓik vi)-space. Consequently, αTxik ≥ β is valid for 

set (E.3). 

In other words, αTxik ≥ β is valid for all the boundary points of Ω1, which means 

αTxik ≥ β is also valid for the set Ω1. Hence, (ii) holds.   
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