
Use of Bayesian Filtering and Adaptive Learning Methods to Improve the Detection

and Estimation of Pathological and Neurological Disorders

by

Alexander Joseph Maurer

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2016 by the
Graduate Supervisory Committee:

Antonia Papandreou-Suppappola, Chair
Daniel Bliss

Chaitali Chakrabarti
Narayan Kovvali

ARIZONA STATE UNIVERSITY

August 2016



ABSTRACT

Biological and biomedical measurements, when adequately analyzed and pro-

cessed, can be used to impart quantitative diagnosis during primary health care con-

sultation to improve patient adherence to recommended treatments. For example,

analyzing neural recordings from neurostimulators implanted in patients with neuro-

logical disorders can be used by a physician to adjust detrimental stimulation parame-

ters to improve treatment. As another example, biosequences, such as sequences from

peptide microarrays obtained from a biological sample, can potentially provide pre-

symptomatic diagnosis for infectious diseases when processed to associate antibodies

to specific pathogens or infectious agents. This work proposes advanced statistical

signal processing and machine learning methodologies to assess neurostimulation from

neural recordings and to extract diagnostic information from biosequences.

For locating specific cognitive and behavioral information in different regions of

the brain, neural recordings are processed using sequential Bayesian filtering methods

to detect and estimate both the number of neural sources and their corresponding

parameters. Time-frequency based feature selection algorithms are combined with

adaptive machine learning approaches to suppress physiological and non-physiological

artifacts present in neural recordings. Adaptive processing and unsupervised cluster-

ing methods applied to neural recordings are also used to suppress neurostimulation

artifacts and classify between various behavior tasks to assess the level of neurostim-

ulation in patients.

For pathogen detection and identification, random peptide sequences and their

properties are first uniquely mapped to highly-localized signals and their correspond-

ing parameters in the time-frequency plane. Time-frequency signal processing meth-

ods are then applied to estimate antigenic determinants or epitope candidates for

detecting and identifying potential pathogens.
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Chapter 1

INTRODUCTION

1.1 Neural Activity Processing

1.1.1 Neural Source Estimation and Challenges

Illnesses of the mind have historically been misunderstood. We are only recently

starting to make real progress on understanding the mechanisms and treatment of

these diseases. Historically, from trepanation to asylums to the misuse of electroshock

therapy, it has been a troubling path towards the modern day in working with the

brain [5]. Even with an illness of the brain that shows effects primarily in the body

like Parkinson’s disease, the functional early treatments had significant risk and were

fairly drastic, involving scarring areas of the brain to restore a degree of function [6, 7].

Thanks to new technology, we have been able to make progress since the early 1900s

in understanding neurons and how behaviors arise [8–10]. Mapping the brain has

been declared one of the “Grand Challenges of the Mind and Brain” by the National

Science Foundation, and it is also a “Grand Challenge” according to the National

Academy of Engineering [8]. Computing power keeps improving, and many new

techniques and technologies can help to solve the problem of mapping the brain [11].

Parkinson’s disease treatment has advanced through medications up to deep brain

stimulation, which is a focus of this research, along with neural activity localization.

The various scans and measurement techniques available have trade offs, often

between time resolution and space resolution [11]. Methods that look at blood flow

around neurons, like positron emission tomography (PET), magnetic resonance imag-

ing (MRI), and transcranial optics, have strong spacial resolution but poor time res-
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olution. This is because the blood flow, which is the measure of activity for these

methods, is a somewhat slow process. On the other hand, methods such as electroen-

cephalograms (EEG) and magnetoencephalograms (MEG) have strong time resolu-

tion, as electromagnetic information changes quickly, but poor spacial resolution,

since the fields around the entire head are affected by local activity [11–13].

The process of mapping the brain has already lead to advances in the understand-

ing of brain function. The University of Chicago has worked on localizing seizure ac-

tivity. They found that the orientation of the sources differentiated between seizures

from different parts of the temporal cortex [14, 15]. Localized sources are good fea-

tures to use in brain-machine interfaces (BMI), which, as their name implies, allow

a level of communication between the brain and machines. This is useful for ap-

plications like virtual reality, synthetic limbs, and other machines interacting with

the mind [16]. Researchers have examined source localizations in a variety of mental

states, including depression compared to alcoholism [17] and anxiety versus relax-

ation [18]. Diseases of the brain are challenging to treat, and brain mapping is a

great step toward being able to improve and discover treatments [11]. Mental dis-

orders are actually fairly common, and 26.2% of American adults experience mental

disorders every year [19]. Mental illnesses are the third most common disability, after

hearing and vision problems. [20].

One of the goals of this work is to improve the spacial resolution of EEG by local-

izing the activity in the brain. This can be done by solving the inverse problem, going

from measurements to neural sources. The source model we use is a localized dipole

of current with a particular position and orientation. It is intended to approximate

the action potential of neurons [2, 11, 21–23]. Many neurons working together form

a localized current, resulting in volume currents and the propagation of electromag-
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netic fields through the head, which can be measured with sensors. MEG measures

the magnetic field and EEG measures the electric potential.

Different methods have been used to solve the inverse problem in literature [4, 11,

13, 24–37], including recursively applied projected multiple signal classification (RAP

MUSIC) [13, 24], spatial filtering or beamforming [25], low resolution electromagnetic

tomography (LORETA), and Bayesian methods, such as Kalman filtering in [28,

31] and particle filtering in [26, 29, 31]. Methods using the probability hypothesis

density filter (PHDF) were considered in [36, 37] to estimate both the unknown

number of neural dipole sources and their parameters for real EEG/MEG data, and

the probabilistic data association filter was applied in [4].

Artifact signals, which are signals that show up in measurements of the brain,

but do not originate from the brain, are important to account for [38–48]. They

include physiologic artifacts like muscle movements, breathing and heartbeat, and

non-physiologic artifacts like the signal leaking from the power line, electrode pop-

ping, sweat on the electrode, or movement of the patient. Artifacts corrupt the

measurements of EEG and MEG, impeding analysis. Thus, various methods were

used for artifact suppression including independent component analysis (ICA) fol-

lowed by pattern recognition [39, 49], wavelets [45], regression techniques [41], and

using principle component analysis along with minimum norm estimation [40]. Noise

canceling filters were used in real time in [47, 48] and blind source separation in [46].

1.1.2 Neurostimulation

An important applicability of realizing relations between function and brain region

is to assist in the therapy and monitoring of subjects with implantable neurostimula-

tors. Neurostimulation is a neurosurgical procedure that modifies the brains electrical

activity to provide potential treatments for a large spectrum of neurological disor-
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ders, such as Parkinson’s disease, essential tremor, and most recently, depression and

obsessive-compulsive disorder [50]. Neurostimulation modulates local field potential

(LFP) oscillations in the deep brain nuclei and affects cortical and subcortical con-

nections, key to decision-making, learning and cognitive association [51, 52]. The

complexity of these networks and the placement of the neurostimulation results in a

variety of individual specific effects in behavior and cognitive function. These are also

dynamic networks, which cause side effects to vary over time. To advance neurostim-

ulation and reduce its side effects, it is crucial to understand inter-subject variability

from the neural signals. However, there currently does not exist a method to measure

the impact of neurostimulation on cognitive functionality.

Parkinson’s disease is a degenerative age-related brain disorder caused by the

death of neurons responsible for contributing to dopamine production, resulting in

tremors and muscle control difficulties. While there are effective medications for

managing the symptoms, deep brain stimulation (DBS) is an option in certain cases,

including when medications have significant side effects for a certain patient [6, 7,

53, 54]. DBS is a reversible surgical technique that uses implanted electrodes. It has

replaced permanent techniques, surgeries called pallidotomies and thalamotomies,

that remove small areas of the brain [7, 55]. The electrodes are used to apply an

electrical waveform deep into the brain, similar to a pacemaker for the heart [6, 53,

54, 56]. An important research direction is detecting when the parameters of the

stimulation waveform need to change to improve the efficacy of the treatment.

EEG as well as other measurements can be used to monitor brain activity in

Parkinson’s disease patients, as well as understand what happens in the brain when

patients perform activities that can aggravate Parkinson’s disease symptoms. We

would like to use this monitoring to adjust the DBS parameters and improve the

quality of disorder treatment. This will be achieved by using EEG to detect when the
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stimulation parameters need adjustment due to changes in the symptoms of Parkin-

son’s disease, to improve upon the current open loop DBS system. Our work toward

this end is to classify segments of EEG of patients performing different tasks without

DBS, as well as using specific filter methods to remove the DBS artifact and classify

the tasks even when the DBS is active. Differences in the beta and gamma bands

of neural activity can be seen in Parkinson’s disease patients, and can be measured

with EEG and used for classification of patient activity. The classification can be

used for monitoring how the DBS treatment is working and if adjustments need to

be made [16, 28, 57–67].

When drug therapy is no longer sufficient, DBS can alleviate motor symptoms

by targeting the subthalamicnucleus (STN) using high-frequency electrical stimula-

tion [6, 53, 54, 56]. Similar to the majority of neurostimulation systems, clinicians are

able to use one or a configuration of multiple electrodes to apply electrical stimulation

to a small target area. Efficacy of DBS relies on the accuracy of placement of the

DBS lead at the target area, which is typically on the order of 5 mm in diameter.

DBS leads are inserted into the target area with the guidance of a stereotactic frame

while patients are awake, allowing neurophysiological recording of brain areas and

intraoperative monitoring of electrical stimulation side effects and clinical efficacy.

Note, however, that DBS also has negative side effects in certain people such as im-

pairments in cognitive function [54, 68]. Studies have also demonstrated that DBS

impairs verbal fluency [69–72] and reactive inhibition [73, 74].

Current methods for removing DBS artifact in EEG include local curve fitting [75,

76], empirical mode decomposition (EMD) detrending followed by time-frequency

filtering [77], undersampling and interpolation [78], Hampel filtering [79], and matched

filtering [80].
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1.2 Proposed Work for Artifact Suppression in Source Estimation and

Neurostimulation

Our approach to localizing neural activity while suppressing artifacts is the use of

a particle filter implementation of the probabilistic data association filter (PDAF) [3,

4, 81–84]. The PDAF is designed to take in measurements of uncertain origin, which

include source measurements and artifact measurements, where the sources and ar-

tifacts have different distributions and average densities in the measurement space.

It requires the number of sources to be known a priori, accounting for all possible

association possibilities between measurements and sources [3, 4, 81–84]. We propose

the use of the PDAF to suppress artifact activity, such as eye blinks and movements,

while tracking neural activity. We integrate the PDAF with ICA that is used to

obtain separated measurements that lack association to sources, requiring a method

such as the PDAF to determine which measurements belong to artifacts or sources

and which source the measurement is associated with. The measurements are not

preprocessed after ICA other than performing a transformation of the data to al-

low the PDAF to discriminate between the source model and artifact model, unlike

methods that require preprocessing to reject measurements before tracking.

We also look at the probability hypothesis density filter (PHDF) [22, 23, 36, 37, 85–

89] to track an unknown number of sources. It can be used to estimate the number of

sources present as well as the parameter values for the sources by propagating the first

moment of the source random finite set, the probability hypothesis density (PHD).

The PHD has the property that when integrated over any region of the measurement

space, it provides the expected number of sources in the region. The peaks of the

PHD are where the sources are most likely to be [23, 37, 85].

6



We consider various methods to suppress DBS artifacts that can impede task pro-

cessing and classification, including matched filters [80], Hampel filters [79], and the

empirical mode decomposition [90–92]. We then concentrate on the beta and gamma

frequency bands that DBS has been shown to affect [16, 28, 57–67], using the DBS

artifact suppressed EEG in an adaptive learning clustering method to discriminate

between behavioral tasks in Parkinson’s disease patients implanted with neurostimu-

lators. The ultimate goal is to find a biomarker for the Parkinson’s disease treatment,

in order to perform home monitoring using EEG. We perform classification using

Gaussian mixture modeling (GMM) [93]. The advantage to this classifier is that the

Dirichlet process Gaussian mixture model (DP-GMM) [94–102] does not need the

number of tasks specified beforehand. It can also be used to adaptively classify the

tasks when new EEG data becomes available. If the new data is classified as belong-

ing to the same task, then it can be deduced that no changes have occurred with the

patient’s condition. If new classes are formed, then that could indicate that the DBS

parameters need to be adjusted.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present the par-

ticle filter implementations of the PDAF and PHDF. In Chapter 3, we present the

non-linear EEG model for neural sources, as well as a model for signals arising from

artifacts. After proposing a transformation of the observed measurements to bet-

ter separate sources from artifacts, we tie these models into the PDAF and PHDF

equations to show how artifacts can be suppressed. We then present results showing

artifact suppression while tracking neural sources. In Chapter 4, we further discuss

Parkinson’s disease and deep brain stimulation, then present the GMM and DP-GMM

for classification using features from the matching pursuit decomposition. We show
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results from using the DP-GMM to classify local field potential measurements from

different tasks. In Chapter 5, we discuss the artifact signal that is created by the

operation of the DBS unit, as well as methods to remove this artifact, including the

Hampel filter, EMD, and sinusoidal matched filter. Finally, we present results show-

ing the classification of EEG measurements for different taasks in Parkinson’s patients

with the DBS unit active and inactive. Chapter 6 contains conclusions and future

work. Appendix A presents a previously published book chapter on work completed

during this Ph.D., that is unrelated to the neural activity work in the main chapters.
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Chapter 2

SEQUENTIAL BAYESIAN FILTERING METHODS FOR DYNAMIC

PARAMETER ESTIMATION

2.1 The Particle Filter Algorithm

The particle filter (PF) is a technique used with non-linear, dynamic system mod-

els and non-Gaussian noise situations to estimate unknown time-varying parameters

in noisy conditions. It uses measurements that are taken over time of a system whose

underlying parameters are changing over time. The measurements or processed in-

formation received are not directly related to the unknown parameters of interest.

The particle filter algorithm uses a system representation in terms of two models:

a model that maps the noisy measurements into the parameter space to the mea-

surement space, and a transition model that relates the current and past parameter

values. When the models are linear and the measurement noise is Gaussian, the

Kalman filter [103] can be employed, which performs the estimation in closed form.

For non-linear models and non-Gaussian noise, the particle filter can be used instead

of the Kalman filter. A common problem solved with Kalman or particle filters is

the tracking of the positions and velocities of targets in a radar system. Another

problem is the estimation of the location and orientation of neural activity given

EEG/MEG recordings from sensors placed at various points on the head to measure

electromagnetic fields. Using acceptable models that relate the physical unknown

parameters, estimates of neural activity should give information about the status of

a patient [104, 105].
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We consider the general problem of estimating the dynamic state parameter vector

xk of a moving object using the noisy measurement vector zk at time step k. The state

space model has two equations, describing how the underlying parameters change

over time and how the measurement is related to the underlying parameters. These

equations are: [105].

xk = fk(xk−1) + uk−1. (2.1)

zk = hk(xk) + vk. (2.2)

In (2.1), fk(xk−1) is the transition function of the parameters at time k− 1, and uk−1

is a random process vector that represents possible errors in the function. Specifically,

the function describes how the state at time k−1 transitions to the new state at time

k, and the random process vector includes both the random portions of the model

transitions and any error in the transition model. In (2.2), zk is the measurement

vector obtained from the system, and hk(xk) is the measurement function that relates

the state parameter vector, xk, to the measurement vector, zk. The measurement

noise vector vk can include both the noise that comes from taking the measurement

as well as any error in the measurement model [84, 105].

If fk(·) and hk(·) are linear and uk and vk are Gaussian, xk can be estimated in

closed form using the Kalman filter [104]. The extended Kalman filter [106] and the

unscented Kalman filter [107] can be used for non-linear functions; however, when

fk(·) and hk(·) are non-linear and uk−1 and vk are non-Gaussian, the particle filter is

a popular choice to find a sequential Monte Carlo estimate of the state parameters.

[105].

The particle filter arises from taking a state model and measurement model for

a system and looking to estimate the state from measurements taken of the system.

10



The goal is to obtain an estimate,x̂k of the system state, x̂k at time step k, given a set

of measurements, Z1:k = {z1, z2, . . . zk}, up to time k. The minimum mean-squared

error (MMSE) estimator of xk can be given by

x̂k = E[p(xk|Z1:k)], (2.3)

where E[·] denotes statistical expectation and p(xk|Z1:k) is the posterior distribution

of the state. This estimator simply minimizes the error of the estimate by using

the posterior distribution. In practice the posterior distribution is not available.

The particle filter approximates the posterior distribution as a discrete distribution

of samples or “particles.” Particles in the state space form a discrete probability

distribution as long as each particle has a weight, and the weights sum to one. With

enough particles and a good way of finding weights, we can approximate the posterior

distribution, p(xk|Z1:k).

There are two steps to implementing the particle filter algorithm: a state and par-

ticle update called the prediction step, and a weight update called the update step,

which arises naturally from a few rules of conditional probability. The prediction

step uses Equation (2.1) to predict the new state from the old state. This is done

by updating each particle’s location in the state space. The update step uses Equa-

tion (2.2) to update the weights for each particle. The process begins by drawing

an initial set of particles in the state space from a distribution p(x0). These steps

alternate to estimate the state of the system at each time step, with one iteration of

prediction and update per time step.

The prediction step uses the Chapman-Kolmogorov equation to account for the

past state possibilities:

p(xk|Z1:k−1) =

∫ ∞
−∞

p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1. (2.4)
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In this equation, the newest measurement, zk, has not been used yet. The predic-

tion step can be completed using the estimated posterior from the last update step,

p(xk−1|Z1:k−1), and the transition probability density function (pdf), p(xk|xk−1), that

arises from the state equation, Equation (2.1). Bayes’ rule can then be used to com-

plete the update step, and obtain the posterior density as

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)∫∞
−∞ p(zk|xk)p(xk|Z1:k−1)

. (2.5)

The integrals in (2.4) and (2.5) cannot be evaluated in closed form. Instead, let

x
(n)
k and w

(n)
k , n = 1, . . . , N denote a set of N particles and associated weights. Then

we obtain the approximate posterior:

p(xk|Z1:k) ≈
N∑
n=1

w
(n)
k δ

(
xk − x

(n)
k

)
. (2.6)

More particles will yield a better estimate of the posterior pdf and thus a better

estimate of the parameters xk. The state estimate can be found as above in (2.6) as

x̂k =

∫
xkp(xk|Z1:k)dxk ≈

N∑
n=1

w
(n)
k x

(n)
k . (2.7)

We use the sampling importance resampling particle filter (SIR PF) algorithm,

since we cannot sample from the posterior pdf. This method uses an importance

density q(xk|Z1:k) to sample from, which is ideally as close to the posterior as possible,

but easily samplable [105]. It is not the true distribution, so we modify the samples

we get from it. If q(xk|Z1:k) = p(xk|Z1:k), then we do not need to weight the samples

to obtain samples from p(·|Z1:k), as we are sampling from the true posterior. However,

q(xk|Z1:k) 6= p(xk|Z1:k), so we need to weigh our samples. The weighted distribution

can be written as:

w
(n)
k ∝

p(x
(n)
k |Z1:k)

q(x
(n)
k |Z1:k)

, (2.8)
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where the weights sum to 1 over all n, in order to form a valid pdf. A powerful class

of proposal distributions have the following property:

q(xk|Z1:k) = q(xk|xk−1, zk) q(xk−1|Z1:k−1). Then x
(n)
k can be sampled from

q(xk|xk−1, zk). It can then be shown using Bayes’ rule and the Chapman-Kolmogorov

equation that (2.8) can be factored to obtain

w
(n)
k ∝

p(zk|x(n)
k )p(x

(n)
k |x

(n)
k−1)p(x

(n)
k−1|Z1:k−1)

q(xk|xk−1, zk)q(xk−1|Z1:k−1)
. (2.9)

Then (2.8) and (2.9) give the result that

w
(n)
k ∝ w

(n)
k−1

p(zk|x(n)
k )p(x

(n)
k |x

(n)
k−1)

q(xk|xk−1, zk)
. (2.10)

A simple choice for a known distribution with this property is the distribution derived

from the state update equation, Equation (2.1). This results in the prediction of

xk only depending on xk−1. The proposal distribution is then, q(xk|Xk−1,Zk) =

p(xk|xk−1). This causes (2.10) to reduce to

w
(n)
k ∝ w

(n)
k−1p(zk|x

(n)
k ). (2.11)

Particle x
(n)
k is obtained from x

(n)
k−1 via (2.1), as this is a draw from p(xk|xk−1).

The associated weight is updated to w
(n)
k from w

(n)
k−1 via (2.2), which is a draw from

p(zk|x(n)
k ).

A situation called “particle degeneracy” is a common problem for the particle

filter. As the particle filter operates, individual particles obtain high weights and the

other particles vanish. Resampling the particles can be used to avoid this issue. This

is done between time steps after obtaining the final estimate for the time step. Low

weight particles are thrown away and high weight particles are split into multiple

lower weight particles at the same location in the state space. There are several

different ways to employ resampling. A commonly used approach first finds the
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cumulative distribution for the posterior distribution by numbering the particles with

the integers. For the nth pre-resampling particle, we denote the cumulative sum of

the weights as cn, for n = 1, . . . , N , with N being the number of particles. We then

draw a threshold, d0 from a uniform distribution on [0, 1/N), and we calculate the

next threshold, dm = d0 + (m − 1)/N , for m = 1, . . . , N . While cn ≥ dm, the mth

resampled particle is set equal to the nth pre-resampling particle, with weight 1
N

;

then once cn < dm, we compare the cumulative weight of the next particle to the

threshold [105]. This generates N new particles with weight 1
N

, a valid pdf estimate.

The overall particle filter algorithm presented so far is for the theoretical case of

estimating the parameters of a single object, and it is summarized in Algorithm 1 [3,

23, 105]. It can be extended to multiple objects given a known measurement associa-

tion, so that we know which object generated which measurement. However, such an

association is not normally available. If the measurement sources are independent,

we can use a separate particle filter for each source.

2.2 Probabilistic Data Association Filter

The particle filter on its own is able to track a fixed and known number of ob-

jects when the association of measurement to object is known. When the association

of measurement to source is not known, the particle filter can be modified to im-

plement the probabilistic data association filter, which accounts for all association

possibilities [3, 4, 81–84].

The PDAF assumes imperfect source detection, with probability of detection PDk
.

It also assumes that spurious measurements also appear, called clutter. Clutter is

modeled as arising from a point Poisson process, which is distributed in the measure-

ments space according to some probability distribution. In the PDAF, the distribution

is uniform. The average number of clutter measurements at a given time is λ, though
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Algorithm 1 SIR Particle Filter Algorithm.

Initialization

. Sample N particles x
(n)
0 ∼ p(x0) {chosen uniform over expected state values}

. Compute associate weights w
(n)
0 = 1/N , n = 1, . . . , N

while k ≤ K do

Prediction Stage {K is the maximum time step}

. Predict the state for each particle according to x
(n)
k = x

(n)
k−1 + u

(n)
k−1

. Maintain the weights w
(n)
k−1 = w

(n)
k−1

Update Stage

. Maintain particle x
(n)
k

. Update corresponding weight w
(n)
k = w

(n)
k−1 p(zk|x

(n)
k )

. Normalize the particle weights to sum up to 1

Resampling Stage

. Evaluate the cumulative sampled distribution cn

. Draw threshold d0 from a uniform distribution between 0 and 1/N

. Initialize m = 1 and n = 1

for m = 1 : N do

dm = d0 + (m− 1)/N

if cn ≥ dm then

Replicate the particle

x
(m)
k,resamped = x

(n)
k

w
(m)
k,resamped = 1/N

else

Discard the particle

Set n = n+ 1
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end if

end for

. x
(m)
k = x

(m)
k,resamped, m = 1, ..., N

. w
(m)
k = w

(m)
k,resamped, m = 1, ..., N

. Set k = k + 1

end while

the number is Poisson distributed. The PDAF assumes the distribution of the clutter

measurements over the measurement space is uniform, resulting in a clutter density

of %, and also assumes a validation region in the measurement space around the ex-

pected object locations, of volume Vk. So, the probability of ζk clutter measurements

arising at at time k is given by [81–84]:

ψ(ζk) =
exp(−% Vk)(% Vk)ζk

(ζk)!
, (2.12)

Since the PDAF has clutter measurements and may have missed detections, we obtain

mk ≥ 0 measurement components at time k, Zk = {zk,1zk,2 . . . zk,mk
}. This includes

measurements from objects and clutter, but we cannot be sure how many are from

the known number of objects. If we assume that all different possible associations for

a given number of detections are independent and equally likely, then we can combine

their likelihoods. If the objects are well separated in the measurement space, their

validation regions do not overlap, and the objects are tracked independently. For the

lth object, we have [81–84]:

p(Zk|xk,l) ∝ (1− Pdk)ψ(mk)V
−mk
k +

Pdkψ(mk − 1)V
−(mk−1)
k

mk

mk∑
j=1

p(zk,j|xk,l) .

which simplifies to

p(Zk|x(n)
k,l ) ∝ (1− Pdk) +

Pdk
%

mk∑
j=1

p(zk,j|xk,l) . (2.13)
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For more than one object, at each time step, the objects are tracked jointly if

some measurements fall within the validation regions of more than one object. The

possible associations at time step k can be given by [81]

Bk =

mk⋂
l=1

Bk,j,lj ,

where Bk,j,lj is the event that the jth measurement came from the ljth object and mk

is the number of measurements at time step k. The association probability is [81],

p(Bk|Zk) ∝
∏
j

(
1

%
p(zk,j|xk,lj))τj

∏
l

(Pdk)δl(1− Pdk)1−δl , (2.14)

where % is the clutter density, zk,j is the jth measurement, xk,lj is the state for object

lj, τj is the jth measurement association indicator, and δl is the lth object detection

indicator.

For the case of two objects, we obtain the joint probability,

p(Zk|xk,1,xk,2) ∝ (1− Pdk)2 (2.15)

+
Pdk(1− Pdk)mk

%n1

∑
i∈J1

p(zk,i|xk,1) +
Pdk(1− Pdk)mk

%n2

∑
j∈J2

p(zk,j|xk,2)

+
P 2
dk
mk(mk − 1)

%n

∑
i∈J1∪J3,j∈J2∪J3,i 6=j

p(zk,i|xk,1)p(zk,j|xk,2) .

in this expression, n = [n1n2 +n1n3 +n2n3 +n3(n3−1)] and J1, J2, and J3 are the sets

of measurement indices that fall within the validation regions of object 1, object 2,

and both objects. Additionally, n1, n2, and n3 are the number of indices in each set.

This can be generally extended to more jointly tracked objects, as discussed in [81–

84]. Marginal distributions can be calculated and used in particle filtering [82, 84].

The data association algorithm is summarized in Algorithm 2.

2.3 Probability Hypothesis Density Filter

While data association is able to handle unknown measurement associations, it re-

quires that the number of objects be known. When this is not the case, the probability
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Algorithm 2 SIR Particle Probabilistic Data Association Algorithm.

Initialization

Given known number of objects L

. Sample N particles for each object x
(n)
0,l ∼ p(x0) {chosen uniform over expected

state values}

. Compute associate weights w
(n)
0,l = 1/N , n = 1, . . . , N

while k ≤ K do

Prediction Stage {K is the maximum time step}

. Predict the state for each particle according to x
(n)
k,l = x

(n)
k−1,l + u

(n)
k−1

. Maintain the weights w
(n)
k−1,l = w

(n)
k−1,l

Update Stage

. Maintain particle x
(n)
k,l

. Perform measurement validation for each object based on its prediction

location at time k − 1

For all objects l that can be tracked independently at time k

. Update corresponding weight w
(n)
k,l = w

(n)
k−1,l p(Zk|x(n)

k,l ) (Eq. 2.13)

. Normalize the particle weights to sum up to 1

For all groups of objects l1, l2, ..., l` that must be jointly tracked at time k

. Calculate joint weights w
(n1,...n`)
k,(l1,...,l`)

= (
∏̀
i=1

w
(ni)
k−1,li

) p(Zk|x(n1)
k,l1

, ...,x
(n`)
k,l`

) (Eq. 2.14

and 2.15)

. Marginalize out corresponding weights w
(ni)
k,li

. Normalize the particle weights to sum up to 1
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Resampling Stage

. Evaluate the cumulative sampled distribution cn for each object l, one at a

time

. Draw threshold d0 from a uniform distribution between 0 and 1/N

. Initialize m = 1 and n = 1

for m = 1 : N do

dm = d0 + (m− 1)/N

if cn ≥ dm then

Replicate the particle

x
(m)
k,resamped = x

(n)
k

w
(m)
k,resampled = 1/N

else

Discard the particle

Set n = n+ 1

end if

end for

. x
(m)
k,l = x

(m)
k,l,resamped, m = 1, ..., N

. w
(m)
k,l = w

(m)
k,l,resamped, m = 1, ..., N

. Set k = k + 1

end while
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hypothesis density filter (PHDF) can be used to estimate the number of objects, even

when the number varies with time [22, 23, 36, 37, 85–89]. The PHDF uses the idea of

random finite sets (RFS) to handle the varying number of objects to track [85]. The

underlying state has a varying number of objects with corresponding parameter vector

set given by, Xk = {xk,1, ...,xk,Nk
}, where Nk is the number of objects at time at each

time step k. There is also varying number of measurements, Zk = {zk,1, ..., zk,Mk
}

at time step k, where Mk is the number of measurements at time k. In the PHDF

algorithm, these measurements are not known to be associated to any object, some

objects may fail to generate a measurement, and some measurements may originate

from clutter, instead of an object [85, 87–89]. Measurements from clutter become part

of the RFS and a probability of object detection is included in the PHDF algorithm.

2.3.1 PHDF Formulation

The state RFS Xk and xk ∈ Xk, as well as the measurement RFS Zk, can be char-

acterized using the probability hypothesis density or complexity function, ζ(xk|Zk).

Integrating this function on a region R gives the expected number of objects within

the region. The peaks in the distribution are estimates of the state parameters of the

objects [85–89].

We form a new state RFS Xk from the RFS at the previous time step k, Xk−1.

The new state RFS consists of the states of the objects still present from the previous

time step, represented as Xprev
k|k−1, the states of newly appearing objects, represented as

Xnew
k , and the state of objects that spawned from objects in the previous time step,

represented as Xspn
k|k−1. The PHDF assumes that the prior and posterior densities

for the states of the multiple objects can be characterized by their first moments.

The prior intensity function at time k, ζ(xk|Z1:k−1), can then be obtained from the
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posterior intensity at time step k − 1, ζ(xk−1|Z1:k−1) as,

ζ(xk|Z1:k−1) = ζ(xnewk )

+

∫
[Pk|k−1(x̃k−1)p(xk|x̃k−1) + ζ(xspnk |x̃k−1)]

ζ(x̃k−1|Z1:k−1)dx̃k−1,

(2.16)

where xnewk ∈ Xnew
k ,xspnk ∈ Xnew

k|k−1, and Pk|k−1(x̃k−1) is the probability of a object

present at time step k − 1 remaining at time step k. Then we can determine the

posterior as,

ζ(xk|Z1:k) = (1− PDk
(xk))ζ(xk|Z1:k−1)

+
∑

zk,m∈Zk

PDk
(xk)p(zk,m|xk)ζ(xk|Z1:k−1)

ζ(Zclt
k ) +

∫
PDk

(x̃k)p(zk,m|x̃k)ζ(x̃k|Z1:k−1)dx̃k
,

(2.17)

where PDk
(xk) is the detection probability at time step k, and ζ(Zclt

k ) is the clutter

intensity. In this forumlation, measurements are assumed to be mutually independent

and the clutter and objects also assumed independent.

2.3.2 Implementation of PHDF using PF

The PHDF can be implemented using a particle filter, as shown in a radar context

in [85, 87–89]. The intensity function, ζ(xk−1|Z1:k−1) at time step k − 1 can be

approximated with Np particles and associated weights, x
(`)
k−1,w

(`)
k−1 for ` = 1, ..., Np,

as follows,

ζ(xk−1|Z1:k−1) =

Np∑
`=1

w
(`)
k−1 δ

(
xk − x

(n)
k

)
. (2.18)

The prediction step can be written as

ζ(xk|Z1:k−1) =

Np∑
`=1

w
(`)
k−1[Pk|k−1(x̃

(`)
k−1)p(xk|x̃(`)

k−1) + ζ(xspnk |x̃
(`)
k−1)] + ζ(xnewk ). (2.19)

We then apply importance sampling as described in Section 2.1 for the particle

filter algorithm. The first Np samples are drawn from qk(x
(`)
k |x

(`)
k−1,Z1:k−1), and the
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next Nq samples are drawn from an importance intensity function Ek(x
(`)
k |Z1:k−1).

Note thatNp andNq are user-specified. We then obtain a representation with particles

and associated weights, x
(`)
k ,w

(`)
k|k−1 for ` = 1, ..., Np +Nq:

ζ(xk|Z1:k−1) =

Np+Nq∑
`=1

w
(`)
k|k−1δ(xk − x

(`)
k ), (2.20)

where

w
(`)
k|k−1 =


w

(`)
k−1

[Pk|k−1(x
(`)
k−1)p(x

(`)
k |x

(`)
k−1)]+ζ(x

(`),spn
k |x(`)

k−1)

qk(x
(`)
k |x

(`)
k−1,Z1:k−1)

, ` = 1, ..., Np

ζ(x
(`),new
k )

Nq Ek(x
(`)
k |Z1:k−1)

, ` = Np + 1, ..., (Np +Nq)

If spawned objects are not allowed by the model, and the proposal distributions are

chosen to be qk(x
(`)
k |x

(`)
k−1,Z1:k−1) = p(x

(`)
k |x

(`)
k−1) and Ek(x

(`)
k |Z1:k−1) = ζ(xnewk |Z1:k),

then this simplifies to

w
(`)
k|k−1 =


w

(`)
k−1[Pk|k−1(x

(`)
k−1)], ` = 1, ..., Np

ν
Nq
, ` = Np + 1, ..., (Np +Nq),

where ν is the expected number of new objects. We then obtain via substitution the

representation for the posterior intensity,

ζ(xk|Z1:k) =

Np+Nq∑
`=1

w
(`)
k δ(xk − x

(`)
k ), (2.21)

where

w
(`)
k = w

(`)
k|k−1

[
1− P det

k (x
(`)
k ) +

∑
zk,m∈Zk

P det
k (x

(`)
k )p(zk,m|x(`)

k )

ζ(Zclt
k ) + Ck(Zk)

]
(2.22)

and

Ck(zk,m) =

Np+Nq∑
`=1

w
(`)
k|k−1P

det
k (x

(`)
k )p(zk,m|x(`)

k ). (2.23)

This enables us to estimate the state parameters at any time step from the particle

approximation at the previous time step. The PHDF is able to track multiple objects

and estimate the number of objects present. The final localization at each time step
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requires finding the peaks of the PHD. This can be done in a few ways, but the most

straightforward is to take the estimated number of objects from summing the weights,

and use a Gaussian mixture model or k-means clustering to find the clusters within

the particles. It is an algorithm used often in radar and sonar applications, but can

be applied to the neural tracking problem as long as separate measurements can be

provided. Obtaining good separation from the ICA algorithm is critical. Pseudocode

for the particle filter implementation of the PHDF is provided in Algorithm 3.

2.3.3 OSPA Error Metric

Since the PHDF must estimate the number of objects, the mean square error is not

directly applicable. Different error metrics on random finite sets have been proposed,

including the OSPA metric [108]. The OSPA metric was proposed with the intent

of improving the OMAT metric [109], which it uses within. The OSPA metric takes

in two sets and uses the OMAT metric to determine the best association in terms of

distance between the elements of the set, though if the sets have different sizes, some

elements of the larger set are not associated to any element of the smaller set. The

distance between each associated pair is computed, and the distance is set to infinity

for the unassociated elements of the larger set. Each distance is then compared to

a user specified threshold c, and the minimum of the absolute value of the distance

and c is kept. These values are then raised to a user specified power p, averaged,

and pth-rooted to obtain the final OSPA metric. The cutoff can be thought of as the

distance past which an element of the set is considered unassociatable. It is presented

in Algorithm 4. Choosing order p = 2 resembles an RMSE.
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Algorithm 3 Particle Implementation of the Probability Hypothesis Density Filter.

Initialization

. Define number of particles per continued object, N , and for new objects Nq

. Make initial guess about number of objects T̂0

. Sample Np,0 = N T̂0 particles x
(`)
0 ∼ p(x0) {chosen uniform over expected state

values}

. Compute associate weights w
(`)
0 = T̂0/Np,0, ` = 1, . . . , Np,0

while k ≤ K do

Prediction Stage {K is the maximum time step}

. Predict the state for each particle according to x
(`)
k = x

(`)
k−1,resamped + u

(`)
k−1

. Draw Nq particles for new objects {chosen uniform over expected state

values}

. Calculate the prediction weights,

w
(`)
k|k−1 =


w

(`)
k−1,resampled[Pk|k−1(x

(`)
k−1)], ` = 1, ..., Np,k−1

ν
Nq
, ` = Np,k−1 + 1, ..., Np,k−1 +Nq

Update Stage

. Maintain particle x
(n)
k

. Update corresponding weight

w
(`)
k = w

(`)
k|k−1[1− P det

k (x
(`)
k ) +

∑
zk,m∈Zk

P det
k (x

(`)
k )p(zk,m|x(`)

k )

ζ(Zclt
k ) + Ck(Zk)

] (2.24)

. Calculate the estimated number of objects, T̂k =
∑Np,k−1+Nq

`=1 w
(`)
k

. Find Tk, which is T̂k rounded to the nearest whole number of objects
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Resampling Stage

. Divide all particle weights by T̂k

. Calculate Np,k = N Tk

. Evaluate the cumulative sampled distribution cn

. Draw threshold d0 from a uniform distribution between 0 and 1/(Np,k)

. Initialize m = 1 and n = 1

for m = 1 : Np,k do

dm = d0 + (m− 1)/(Np,k)

if cn ≥ dm then

Replicate the particle

x
(m)
k,resamped = x

(n)
k

w
(m)
k,resamped = T̂k/Np,k

Set m = m+ 1

else

Discard the particle

Set n = n+ 1

end if

end for

. x
(m)
k = x

(m)
k,resamped, m = 1, ..., Np,k

. w
(m)
k = w

(m)
k,resamped, m = 1, ..., Np,k

. Set k = k + 1

end while
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Algorithm 4 OSPA Metric.

Inputs: Two sets X = {x1, ...,xM} and Y = {y1, ...,yN}, whose elements are

vectors of the same size, N ≥M

d(x,y) is a distance metric

Πk is the set of all permutations of {1,2,...,k}

c > 0 is a distance cutoff

d(c)(x,y) = min(c, d(x,y))

Final metric:

d
(c)
p (X,Y) =

(
1
n

(
min
π∈Πm

m∑
i=1

d(c)(xi,yπ(i))
p + cp(m− n)

))1/p
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Chapter 3

NEURAL ACTIVITY ESTIMATION AND ARTIFACT SUPPRESSION

3.1 Neural Activity Dipole Source Model

The fundamental mechanics of brain function are fairly straightforward. Special

cells called neurons activate, firing electric currents called action potentials, in re-

sponse to other neurons and electrochemical conditions. Coordinated neuron activity

controls every brain function, from giving instructions to muscles to considering the

mysteries of the universe. These clusters of neural activity can each be modeled as

single dipole current sources. Kirchoff’s current law requires that the net current

within the head must be zero, so the dipole’s local primary current must be closed to

a weaker volume current throughout the brain, skull, and scalp [11, 22, 23]. Brain cur-

rent then generates an electric potential and magnetic field that can be measured with

a sensor net. The goal is then to solve for the parameters of the current that generated

the field, though it is a challenge to do so. [11]. The solution is not unique [11], as a

continuous distribution is sampled at the sensor locations, and the Nyquist theorem

on the spacial frequencies present cannot be guaranteed. One method, the one used

in this work, uses the assumption that the neural currents are accurately modeled as

dipole sources to look for the unique solution that then arises [11, 23, 110].

A current density, Jn, formed by neuron current in the head generates a measure-

ment vector of electric potentials. The forward problem is solved by calculating the

potentials at the electrodes when given an electrical source. The number of dipole

sources can vary as the brain performs different tasks. Mathematically, L dipolar
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current sources form a current density at time n of [11, 110]

Jn =
L∑
l=1

δ(r− rn,l) θn,l, (3.1)

where rn,l = [r
(x)
n,l r

(y)
n,l r

(z)
n,l ]

T and θn,l = [θ
(x)
n,l θ

(y)
n,l θ

(z)
n,l ]

T are the position and moment,

respectively, of the lth dipole source in the brain. In this model, the amplitude, sn,l,

and orientation, qn,l = [q
(x)
n,l q

(y)
n,l q

(z)
n,l ]

T are folded into the moment θn,l. The moment is

then given by θn,l = sn,l qn,l. We model the head as concentric spheres for the brain,

cerebral fluid, skull, and scalp and use the static equations of electromagnetics due to

the low frequency nature of the electroencephalogram (EEG) and magnetoencephalo-

gram (MEG) measurements [11]. The dipole sources then generate measurements

according to the Biot-Savart law, Ohm’s law, and the definition of electric potential.

The Biot-Savart law for the magnetic field at time n, Bn(r), for a region V and

current density Jn(r′) is [11]

Bn(r) =
µ0

4π

∫∫∫
r′∈V

Jn(r′)× (r− r′)

|r− r′|3
dr′, (3.2)

where µ0 is the permittivity of free space and (a × b) denotes the cross product

between vectors a and b. We assume an isotropic current flowing through the layers

of the head with conductivity σs(r) for the brain, skull, and scalp [2], and that the

current generates an electric field at time n, En(r). Using Ohm’s law,

Jn(r) = σn,s(r) En(r). (3.3)

The electric potential and electric field are related as follows:

Vn(r) =

∫
C

En(r′) dr′. (3.4)

Combining these equations forms a model for the measurements obtained from neural

currents. The measurements can be placed in vector form: [22, 23, 110]

yn = Ansn + vn, (3.5)
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where yn is an M × 1 column vector of measurements, M is the number of sensors,

An is an M ×L lead-field matrix that is a function of the positions rn,l and moments

θn,l of the L dipoles, sn = [sn,1 . . . sn,L]T is an L × 1 column vector of the dipole

amplitudes, and vn is an M × 1 column vector of measurement noise, all at time

n [22, 23, 110].

EEG and MEG have different models for An. In the case of EEG, the elements

an,m,l, mapping dipole l to sensor m at time n, which compose matrix An in the case

of a single sphere model, are [22, 23, 110, 111]

an,m,l =
1

4πσs
cos(αn,l)

[
2

d3
n,m,l

(
|rn,l| cos(γn,m,l)− r

)
+

1

|rn,l|dn,m,l
− 1

|rn,l|r

]
(3.6)

+
1

4πσs
sin(αn,l) cos(βn,m,l) sin(γn,m,l)[

2r

d3
n,m,l

+
dn,m,l + r

r dn,m,l(r − |rn,l| cos(γn,m,l) + dn,m,l)

]
.

The elements of the lead-field matrix for MEG, An, are [22, 23, 110, 111]

an,m,l =

[
µ0

4πf(rn,l, rm)2

(
f(rn,l, rm)θm × rn,l − θm × rn,l · rmF(rn,l, rm)

)]T
qn,l,(3.7)

where the position relative to the origin and moment of the M sensors are rm and

θm respectively, rn,l is the position of dipole l relative to the center of the sphere at

time n, qn,l is the orientation of dipole l at time n [22, 23, 110, 111], r is the radius of

the spherical head model, dn,m,l is the distance between dipole l and sensor m, γn,m,l

is the angle between rn,l and rm, αn,l is the angle between rn,l and qn,l, and βn,m,l is

the angle between two planes, the plane formed by rl and qn,l and the plane formed

by rl and rm,

f(rn,l, rm) = dn,m,l(dn,m,l |rm|+ |rm|2 − rTn,l rm),

F(rn,l, rm) =

(
d2
n,m,l

|rm|
+

(rm − rn,l)
T rm

dn,m,l
+ 2 dn,m,l + 2|rm|

)
rm

−
(
dn,m,l + 2 |rm|+

(rm − rn,l)
T rm

dn,m,l

)
rn,l,
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µ0 is the permittivity of free space, and σs is permeability. We use a four spherical

shell model, for brain, fluid, skull, and scalp, which is more complex. Figure 3.1

depicts an example of the relationship between the dipoles and sensors.

γ
α

d
γ

d
α

Sensor

(0,0,0)

Dipole

Figure 3.1: Demonstration of the Three-Dimensional Parameters Used in the EEG

Lead-Field Matrix Formulation, Created Using EEGLAB [2, 3].

Equation (3.5) can also be written as

yn =
L∑
l=1

h(rn,l,qn,l, sn,l) + vn, (3.8)

with h(rn,l,qn,l, sn,l) a highly nonlinear function of rn,l, but linear in qn,l and sn,l,

according to (3.5). It can also be written as

yn =
L∑
l=1

D(rn,l)qk,lsn,l + vn, (3.9)

where D(rk,l) isM×3 vector function of the dipole position rk,l, and Ak,l = D(rk,l)qk,l.

Estimating rn,l, qn,l, and sn,l for all times n and all L dipoles is referred to as the

inverse problem [11]. Next, we examine our use of particle filtering to solve the inverse

problem [22, 23].
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3.2 Dipole Source Parameter Estimation

In the simplest case for EEG source localization, we would obtain many separate

measurements, all of which are generated by single dipolar neural activity that we

want to track, we would know which measurement comes from which dipole, and we

would know that the number of dipoles does not change. Then we could directly use

the particle filter to estimate the source parameters, without requiring more advanced

algorithms. We will use independent component analysis as a tool to obtain separate

measurements, but we still have to account for a changing number of dipoles and

lack of association between dipole and measurement. This requires the use of the

probability hypothesis density filter (PHDF).

We assume that there are L dipoles at time step n, and that a raw EEG measure-

ment is obtained from M sensors placed over the head of the form

yn =
∑L

l=1 D(rn,l)qn,lsn,l+vn. Here, sn,l, rn,l = [r
(x)
n,l r

(y)
n,l r

(z)
n,l ]

T and qn,l = [q
(x)
n,l q

(y)
n,l q

(z)
n,l ]

T

are the lth dipole amplitude, position vector, and orientation vector, respectively, for

l= 1, . . . , L. The particle filter (PF) requires a state transition equation and mea-

surement equation of the forms in Equations (2.1) and (2.2) to obtain an estimate

of the dipole parameters. Determining the measurement equation involves taking

the EEG/MEG lead-field equations in (3.5) and finding a way to obtain separate

measurements from each dipole source, to match up to the model:

yn = Ansn + vn =
L∑
l=1

D(rn,l)qn,lsn,l + vn, (3.10)

where the elements of An for EEG and MEG are provided in (3.6) and (3.7), re-

spectively, sn is a column vector of dipole amplitudes, and vn is measurement noise.

Then, each column of An can we written as An,l = D(rn,l)qn,l.
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3.2.1 Independent Component Analysis

The measurements obtained from EEG/MEG contain a mixture of all of the neural

activity. Separating them into measurements from individual sources is difficult. A

method used by the group who made the EEG processing program EEGLAB [2] is

independent component analysis (ICA). This method is based on finding the most

temporally independent components in the data. It can be applied to EEG since the

time courses of dipoles in different areas of the brain should be independent, even

if there is a causal relationship between activity. Some use of ICA on EEG data

can be found in [2, 49, 112]. ICA finds individual measurements that have removed

the large dependencies that appear in the sensors across the head. They should

tend to correspond to particular sources, allowing us to use them in the particle

filter to estimate the dipole position, orientation, and amplitude parameters [22, 23].

ICA maximizes temporal independence using one of several possibilities, including

minimizing the mutual information as well as maximizing the non-Gaussianity of the

data using metrics like the kurtosis of the sources. In order to apply ICA, we need

a segment of data on which the dipole position and orientation are approximately

constant.

Not all of the separated components come from brain activity, however. There

can be other electrical activity that shows up on the EEG/MEG, including eye move-

ments, muscle movements, line noise from a power source, or electrodes popping.

These components can interfere with neural analysis unless they are suppressed. After

ICA, these components appear at the output of the ICA [113] and can be suppressed

with signal processing techniques.
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First, we inspect some data provided with EEGLAB and see the results of using

ICA. The provided real data comes from a visual reaction experiment, and has the

following description on the EEGLAB wiki [114]:

In this experiment, there were two types of events “square” and “rt”;

“square” events correspond to the appearance of a green colored square in

the display and “rt” to the reaction time of the subject. The square could

be presented at five locations on the screen distributed along the horizontal

axis. Here we only considered presentation on the left, i.e. position 1 and

2 as indicated by the position field (at about 3 degree and 1.5 degree

of visual angle respectively). In this experiment, the subject covertly

attended to the selected location on the computer screen responded with

a quick thumb button press only when a square was presented at this

location. They were to ignore circles presented either at the attended

location or at an unattended location. To reduce the amount of data

required to download and process, this dataset contains only targets (i.e.,

“square”) stimuli presented at the two left-visual-field attended locations

for a single subject [114].

The data comes with markers for events, including the presentation of the visual

cue. Using these markers, we select a three second segment that begins one second

before the cue, and two seconds after. There are 80 such intervals, giving 240 sec-

onds of data with 32 sensors placed over the head. The sensor locations are shown

in three-dimension (3-D) and in a two-dimensional (2-D) projection in Figure 3.3.

Detrending, baseline removal, and average referencing follow the procedure on the

EEGLAB wiki [114]. We first run ICA on the full 240 second interval and examine
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the components that arise. Three “epochs,” which are the three second segments

around each visual cue, are shown in Figure 3.3 [2].

EOG1

F3  Fz  F4  

EOG2

FC5 FC1 FC2 

C3  C4  Cz  T8  

CP5 CP1 CP2 

P3  Pz  P4  

P8  

PO3 POz PO4 
PO8 

FPz 

FC6 

T7  

CP6 

P7  

PO7 

O1  Oz  
O2  

Figure 3.2: Diagram of EEG Sensor Locations, Created Using EEGLAB [2, 3].

The third interval appears to include an artifact as there is a large spike around a

half second into the interval. It is most prominent in channels at the top of the plot,

which tend to be near the front of the head, so the strongest potential is found near

the face, indicating the presence of an eye-related artifact. The way that the signal

rises and falls to the same level indicates an eye blink instead of a movement [38].

Using ICA, we separate the artifact component using the linear transformation used

by the algorithm to obtain independent components [112]. The creators of EEGLAB

have had success in using ICA to separate artifacts, even though ICA does not use

information about the underlying neural model [49, 112]. Figure 3.4 shows the final

resulting ICA components. The spike observed before appears to have separated out

to component 6. The blink also appears in the same component more times over all

epochs. Some more artifacts appear in the final components. There is another eye

artifact in component 10, though its amplitude is different before and after the jump,
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Figure 3.3: EEG Readings from Channels around Visual Stimulus from -1 to 2 s,

Created Using EEGLAB [2, 3].

which is more likely to be an eye movement than a blink [38]. Component 28 is a

jump that looks like an electrode pop or some other temporary mean shift but does

not show up clearly in the original data. A useful way to examine artifacts is to plot

the mixture coefficients at each sensor to try and identify the location of the current

generating the component. Figure 3.5 and Figure 3.6 show these plots for components

6 and 10, respectively. The large mixture coefficients near the eyes are clear. This

strongly indicates their classification as eye artifacts. Once the measurements are
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separated, the PF algorithm can be applied as the measurements are associated to

their corresponding sources.
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Figure 3.4: EEG Readings of 32 Independent Components around Visual Stimulus

from -1 to 2 s, Created Using EEGLAB [2–4].

3.2.2 Particle Filter Tracking of a Known Number of Neural Sources

As stated before, to apply ICA, an interval on which the dipole position and

orientation are approximately constant is required. We assume that this is true on

intervals of length L, so that the matrices from Equations (3.6) and (3.7) can be

constructed. We have An ≈ Ak for n = (k − 1) ∗ L + 1, ..., k ∗ L, and we extract

36



 

 

−

+

Figure 3.5: Strength of Channels in Independent Component 6, Created Using

EEGLAB [2–4].

Lk separated measurements at a particular time interval k, where k = 1, ..., K. We

denote these separated measurements as ζk,l for l = 1, ..., Lk. These are extracted

via ICA on the raw measurement {yk∗L+1, ...,y(k+1)∗L}. With the modification of the

measurement equation in terms of the separated measurements and the separated

state vectors xk,l, the state parameters of the lth dipole at time interval k becomes

ζk,l = Ak,lsk,l + vk,l = B(rk,l)qk,lsk,l + vk,l, (3.11)

where Ak,l is the lth column of the EEG/MEG matrix from Equations (3.6) and

(3.7), sk,l is the 1×L time course on independent component l, and vk,l is a Gaussian

noise vector. ICA provides an estimate of the Ak matrix and separated signals sk.

In the particle filter, we can use Ak,l to estimate the lth dipole position, rk,l. We

can use sk,l to discriminate brain activity from artifacts, since the amplitude contains

frequency information and the overall waveform of the independent components. We

assume that σk,l is a vector of features that are functions of sk,l and discriminate

brain activity from artifacts. If the measurement does not include artifacts and the

37



 

 

−

+

Figure 3.6: Strength of Channels in Independent Component 10, Created Using

EEGLAB [2–4].

measurement to source association is known, the lth dipole measurement vector for

the particle filter is simply zk,l = Ak,l + nk,l, where Ak,l is the lth column of the

mixture matrix Ak, and nk,l is Gaussian noise. Note that, in general a Gaussian

model is not required as the particle filter allows for non-Gaussian noise. When

features are incorporated, denoted as σT
k,l, that discriminate neural activity from

artifacts, we have zk,l = [AT
k,l,σ

T
k,l]

T + nk,l. This gives a model probability density

function (pdf) for neural activity. We denote the measurement vector pdf for brain

activity as p(zk,l|xk,l), with xk,l = rk,l. This equation is used during the weight update

in the particle filter, applying the forward model to solve the inverse problem. We

assume that the dipoles remain in a local region for as long as they continue to exist.

New dipoles may arise and old dipoles may vanish, but for a dipole to be considered as

a single dipole moving, it should stay around a particular lobe of the brain. Thus, we

apply a random walk model as the state transition equation. Thus, for each particle,

x
(n)
k,l = x

(n)
k−1,l + uk,l, with uk is assumed zero-mean Gaussian. The final state model

38



becomes

xk,l = xk−1,l + uk−1,l, (3.12)

and our measurement model:

zk,l =

Ak,l

σk,l

+ nk,l =

D(xk,l)qk,l

σk,l

+ nk,l . (3.13)

This results in

p(zk,l|xk,l,qk,l) ∼ N


D(xk,l)qk,l

µσ

 ,CN

 , (3.14)

where µσ is the model mean for the frequency discrimination features for targets,

and CN is the model noise covariance. For use in the PF, we approximate p(zk,l|xk,l)

using with maximum likelihood estimation, as

p(zk,l|xk,l) ≈ p(zk,l|xk,l, q̂k,l) ∼ N


D(xk,l)q̂k,l

µσ

 ,CN

 , (3.15)

where q̂k,l = (D(xk,l)
TD(xk,l))

−1D(xk,l)
Tzk,l by least squares. These models are

applied directly to the particle filter, probabilistic data association filter (PDAF) and

PHDF in Algorithms 1, 2 and 3, respectively, in Chapter 2.

3.2.3 Tracking an Unknown Number of Sources

The particle filter can track neural activity sources for a fixed and known number

of sources when the association of measurement to source is known. If this association

is not known, the PDAF can be used to perform the tracking. However, it is often

the case that the number of sources varies over time, which is not accounted for

by the PDAF algorithm. When the number of sources varies with time, the PHDF

can be used as it can estimate the number of sources at different time steps [22, 23,
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36, 37, 85, 86]. Some results using the PHDF in our research group can be found

in [22, 23, 36, 37, 115].

3.3 Artifact Suppression

3.3.1 Characterization of Artifacts

After applying ICA to EEG data, we obtain separate measurements, some of which

originate from neural activity, and some of which originate from other non-neural elec-

trical activity. The measurements that originate from non-neural electrical activity

are artifacts that need to be suppressed before tracking neural sources. There are

many kinds of artifact signals, and many different methods were designed to identify

or suppress them [38–48]. Physiologic artifacts include muscle movements, breath-

ing and heartbeat, while non-physiologic artifacts include the signal leaking from the

power line, electrode popping, sweat on the electrode, or movement of the patient or

bed. The artifact measurements can reduce the neural source estimation performance

of the tracker unless methods are integrated with the tracker to account for the spuri-

ous artifact measurements. Some methods used for artifact suppression include ICA

followed by pattern recognition [39, 49], wavelets [45], regression techniques [41], and

using principle component analysis along with minimum norm estimation [40]. Noise

canceling filters were used in real time in [47, 48] and blind source separation was

applied in [46].

We considered artifact characteristics by inspection in order to obtain a model for

the artifact distribution for use in the measurement model. Using the real dataset

provided by EEGLAB [114], we developed a model for discriminating between neural

activity and artifacts. The model depends on the amplitude parameter vector sk,l,

though it is possible to incorporate the leadfield components in Ak,l as well. Our
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chosen artifact discrimination statistic for the measurement model in Equation (3.13)

is given by

σk,l =

∫ 25

4
|Sk,l(f)|2df∫ 4

0
|Sk,l(f)|2df +

∫ 64

25
|Sk,l(f)|2df

, (3.16)

where Sk,l(f) is the Fourier transform of sk,l(t). The model statistic is computed by

approximating the integrals with sums, and it assumes that the neural source activity

occurs between 4 Hz and 25 Hz in the frequency domain.

3.3.2 Suppression of Artifacts Based on Data Association

Our artifact suppression method is based on the use of the probabilistic data asso-

ciation filter (PDAF) after the EEG recordings are processing using ICA [3, 4]. The

PDAF accounts for spurious measurements in its model by assuming measurements

are not associated to sources, and it allows for some measurements formed by arti-

facts. Models for sources and artifacts are required, so we form an artifact model

based on the frequency domain properties of the artifacts, as in the previous section.

The PDAF uses the model to decide whether the measurements are more likely to be

sources than artifacts before estimating the source locations. Note that our approach

does not require any further pre-processing of the measurements after ICA, unlike

other methods that require pre-processing to suppress artifact components before

tracking.

The artifact model we considered in Equation (3.16) takes into consideration that

the neural activity based measurements have high power in the alpha and beta fre-

quency bands. We assume that the patient is awake, so there is not significant low

frequency delta waves, which are strong during sleep [116]. We thus assume that

strong power in very low frequencies is likely caused by eye artifacts, which have

strong low frequency content. Using this frequency-based characterization for arti-
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facts and neural activity, we can obtain estimates of the mean and variance of the

discrimination statistic as well as the leadfield values for sources and artifacts needed

for use in the PDAF model [4]. For the PDAF algorithm, described in Chapter 2, we

model the artifacts as clutter distributed uniformly over the the measurement region;

λ is the average number of artifacts and % is the average density in the measurement

space that is calculated using the volume of the measurement space where artifacts

take on values, V . In the EEG model, the measurements consist of a column vector

of mixture coefficients Ak,artifact appended with an artifact discrimination statistic

σk,artifact. Denote the range of values the mixture coefficients ak,m,artifact take on for

M sensors as arange,artifact, and the range of values the the discrimination statistic

takes on for artifacts as σrange,artifact Then, the uniform volume artifact measurements

appear within, V = (arange,artifact)
Mσrange,artifact. Then, % = λ

V . Plugging % into the

PDAF allows for tracking neural sources while suppressing artifacts [4].

3.4 Tracking Performance for an Unknown Number of Neural Sources with

Artifacts

We test this algorithm on synthetic data [4]. This data is sampled at 1,024 Hz. We

place 2 dipole sources uniformly over the model head region, an upper hemisphere

of radius 85 mm. Their position and orientation are unchanged over second long

intervals, which is the duration of a particle filter time step. Their orientation is

uniformly distributed over all possible angles at each second long set of 1,024 samples.

Each position is updated every second with a 10 mm random walk, but prevented

from leaving the hemisphere. Each source has an amplitude that varies in time at

each sample.

Each of the synthetic sources and synthetic artifact signals are assumed to have two

frequency components to make the sources temporally independent. One frequency is
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within the range of neural activity frequencies, between theta and low beta frequencies

(4 Hz to 25 Hz) [116]. Each source and artifact also has a frequency below 4 Hz or

above 25 Hz up to 64 Hz. The frequency range can be different for each artifact and

change over time; both frequencies stay the same over time for the sources.

To form the model pdf of the discrimination function, σk,l, for sources and arti-

facts, we used the real EEG data provided on the website with EEGLAB [114]. We

performed ICA over 240 seconds of data, and we used the scalp maps, the residual

variance from the DIPFIT model provided by EEGLAB [117], and the estimated po-

sitions from DIPFIT to manually separate the ICA components into neural activity

and artifacts. We estimated value for the discrimination function was 0.2 and 1.7 for

artifacts, and between 2 and 4 for neural activity.

In constructing the synthetic data, the discrimination function value was drawn

uniformly on the interval [2, 4] for sources, and from a normal distribution of mean 0.9

and variance 0.071 for artifacts. The frequency components are scaled appropriately

to fit the value. New artifacts are drawn at each time step, and the number of

artifacts is Poisson distributed with mean 2. The mixed measurements also included

some Gaussian noise. Note that ICA decomposition adds additional error and is the

primary cause of separated measurement noise.

To determine the model parameters, we drew 4,000 components this way and

examined the signals obtained after ICA, comparing the true mixed signals to the ones

extracted by ICA, to determine the approximate artifact density and a reasonable

range for modeling the source measurement variance. For sources, the frequency

function is modeled as a normal distribution with mean 3 and variance 0.11, so that

the distribution falls on the interval [2,4]. The state model is a 10 mm random walk.

The principal component analysis dimension reduction threshold, which determines

the number of components ICA separates, was set based on test runs, so that the
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cutoff was placed at the “elbow” of the plot, where the steepness decreases suddenly

as the remaining eigenvectors extract noise. The probability of detection is set at

0.99.

We performed 100 Monte Carlo simulations of synthetic data with two sources,

with different sources each time. We present a plot of a typical run for two dipole

sources in Figure 3.7. In this plot, the hollow markers connected with solid lines are

the true positions, and the cross-shaped marked markers connected by dashed lines are

the estimates positions. The root mean-squared error (RMSE) for the source position

across the Monte Carlo runs is provided in Figure 3.8. The estimation error falls off

over time as the PDAF locks onto the sources, dropping below 8 mm, assuming a head

of radius 85 mm. Note that is difficult to ensure that signals are properly constructed

to be independent. The individual runs indicate that sources whose frequencies are

harmonic with other sources present more of a challenge for ICA.
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Figure 3.7: Typical Run of PDAF on Synthetic Data with Two Sources [4].

44



0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

RMSE of 100 Monte Carlo Simulations of Synthetic Data

Time (s)

P
o
si
ti
o
n
R
M
S
E

Target 1 RMSE

Target 2 RMSE

Figure 3.8: RMSE for 100 Monte Carlo Runs with Two Sources [4].

45



Chapter 4

ADAPTIVE CLUSTERING OF TASKS WITH NEUROSTIMULATION

4.1 Neurological Disorders and Neurostimulations

Recently, neurostimulation has been used to treat disorders such as Parkinson’s

disease and essential tremor. Patients with Parkinson’s disease suffer from severe

tremors as the disease progresses, slowly making movements more difficult. The

primary symptoms listed on the Mayo Clinic website are: “tremor, slowed movement,

rigid muscles, impaired posture and balance, loss of automatic movements, speech

changes, and writing changes [6].” The tremor tends to show at rest, and it can early

on take the form of rolling the thumb and first finger together. Shorter steps and

dragging feet are common. Parkinson’s disease patients can have reduced automatic

movements, possibly blinking less or no longer swinging their arms while walking.

Monotone voice or slurring of words can be a symptom, as well as loss of penmanship.

The disease can also bring dementia, depression, difficulty swallowing, sleep disorders,

bladder and digestive issues, loss of sense of smell, and other symptoms [6, 63, 65].

Parkinson’s disease is caused by the death of neurons that produce dopamine. The

lost dopamine directly causes the symptoms of Parkinson’s disease. The exact reasons

for the onset of Parkinson’s disease are not certain, but genetics and the environment

both play a role. It tends to affect men and usually develops at age 60 or older. It

is incurable, but the symptoms can be managed with medication. However, as the

disease advances, the medications can stop working as well as they worked when the

disease began. This is when a treatment called deep brain stimulation (DBS) can be

employed [6, 7, 53, 54].
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The treatment of Parkinson’s disease is very individualized, as treatments affect

everyone differently. Dopamine replacement can be performed with a combination

of levidopa and carbidopa. Over time, the symptoms return sooner after doses and

patients can experience significant “off” times before it is time for the next dose.

Some drugs can extend the duration of levidopa action when added to the treatment.

Dopamine mimics can also be used to manage symptoms and amantadine can reduce

tremors in some cases [6, 56].

There are also surgical techniques to manage the symptoms of Parkinson’s disease.

Older surgical techniques, such as pallidotomies and thalamotomies were replaced by

deep brain stimulation (DBS) [7, 55]. The older techniques left permanent lesions in

particular locations, as opposed to DBS, which is reversible and adjustable, charac-

teristics important to managing a changing disease like Parkinson’s disease [7]. Deep

brain stimulation uses a surgical implant that is reminiscent of a pacemaker for the

brain instead of the heart. Parkinson’s disease symptoms were shown to improve

after placing electrodes at particular points in the brain and applying certain wave-

forms electrically. Although DBS carries risks just like any other surgery, it is a

powerful technique for certain cases of Parkinson’s disease, such as those with severe

medication side effects [6, 7, 53, 54].

Research on Parkinson’s disease using electroencephalogram (EEG) measurements

suggest possible changes in the signal power both in the beta band (13 - 30 Hz) and

gamma band (30 - 100 Hz) frequencies [16, 28, 57–67]. In particular, significant

fluctuations in beta power were observed during motor and language tasks in [67].

Repetitive motion tasks and tasks with both speech and motor caused significant

increases in beta power, and these tasks can make the Parkinson’s disease tremors

more evident. These beta power changes seem to be related to the pathology of

Parkinson’s disease [16, 28, 57–67].
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In the next section, we present some clustering methods that we apply to discrim-

inate different tasks performed by Parkinson’s disease patients in later sections.

4.2 Clustering Approaches

4.2.1 Gaussian Mixture Modeling

The Gaussian mixture model (GMM) is fundamentally a probabilistic model for

measured data that considers that all possible measurement vectors x are obtained

from a finite number of Gaussian distributions whose parameters need to be estimated.

The multivariate Gaussian pdf over a k-dimensional space has two parameters, the

mean, µ ∈ Rk and covariance, C ∈ Rk×k, where R is the set of real numbers, and is

given by

p(x;µ,C) =
1

(2π)(k/2)det(C)(1/2)
exp(−1

2
(x− µ)TC−1(x− µ)), (4.1)

where det(C) is the determinant of matrix C. A Gaussian mixture model is just a

weighted combination of Gaussian pdfs. If there are M components on the GMM,

then we consider the indicator variable zm,m = 1, ...,M , such that only one indicator

variable is 1 and the others are 0. The weight of the mth Gaussian pdf is then given

by αm = Pr(zm = 1), where Pr(·) denotes probability. As the GMM is also a pdf, all

the weights add to 1,
∑M

m=1 αm = 1, and the pdf of the GMM can be written in the

k-dimensional space using Θ = {α1, ..., αM ,µ1, ...,µM ,C1, ...,CM}, as

p(x|Θ) =
M∑
m=1

αm
(2π)(k/2)det(Cm)(1/2)

exp(−1

2
(x− µm)TC−1

m (x− µm)), (4.2)

or more compactly as

p(x|Θ) =
M∑
m=1

αmp(x|zm,µm,Cm), (4.3)

with

p(x|zm,µm,Cm) =
1

(2π)(k/2)det(Cm)(1/2)
exp(−1

2
(x− µm)TC−1

m (x− µm)). (4.4)
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The GMM can be used as a classifier for different measurements xn, n = 1, . . . , N ,

by calculating a classification weight for xn for each of the M GMM components.

The GMM construction does not make a hard decision until the very end, when the

highest classification weight indicates in which class to assign the measurement. The

weights can be found using Bayes’ rule for each data point xn and class m as:

wnm = Pr(znm = 1|xn,Θ) =
pm(xn|zm,µm,Cm)αm∑M
`=1 p`(xn|z`,µ`,C`)α`

. (4.5)

Using the GMM for classification requires that the number of classes, M , is known.

However, the exact type of each of the M classes is not required, thus leading to an

unsupervised classifier that does not require training. The algorithm to find the

GMM looks to maximize the probability of receiving the data set from the GMM

pdf. This is done approximately using the expectation maximization (EM) algorithm

that is provided in Algorithms 5 - 7. The stopping criteria of the EM is when the log-

likelihood changes less than a certain threshold between iterations. The log-likelihood

at iteration j is lj =
∑N

n=1 log[p(xn|Θ)]

Note that the derivation here mirrors the one in [93].

4.2.2 Dirichlet Process Gaussian Mixture Models

As discussed in Section 4.2.1, the GMM algorithms requires knowledge of the num-

ber of classes when used for clustering the provided measurements. In many cases,

however, the number of classes is unknown. As such, we employ the Dirichlet Process

Gaussian Mixture Model (DP-GMM) [94–102]. Since the DP-GMM decides the num-

ber of classes itself, it can reclassify when new data is provided. This is important for

our application as it can be used to monitor changes in the patient’s brain activity.

The Dirichlet process can be thought of as a distribution on distributions [97]. Draws

from a Dirichlet process generate discrete distributions almost surely. Specifically, we
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Algorithm 5 Expectation Maximization for Gaussian Mixture Model.

Initialization

{x1, ...,xN} is the data to classify

There are M mixture components

j = 0

Initialization option 1:

Start with all initial w0
nm

Enter while loop at M step

Initialization option 2:

Start with all initial α0
m,µ

0
m,C

0
m

Enter while loop at E step

while |lj − lj−1| ≤ ε do

Perform E step (Algorithm 6):

Perform M step (Algorithm 7):

Iteration:

j = j + 1

end while

Output GMM parameters at last iteration

Algorithm 6 Expectation (E) Step.

for n = 1 : N do

for m = 1 : M do

wjnm = pjm(xn|zjm,µj
m,C

j
m)αj

m∑M
`=1 p

j
`(xn|zj` ,µ

j
` ,C

j
`)αj

`

end for

end for
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Algorithm 7 M Step.

for m = 1 : M do

N j
m =

∑N
i=1 w

j
nm

end for

for m = 1 : M do

αjm = Nj
m

N

end for

for m = 1 : M do

µj
m = 1

Nj
m

∑N
n=1 wnm xn

end for

for m = 1 : M do

Cj
m = 1

Nj
m

∑N
n=1wnm(xn − µm)(xn − µm)T

end for

consider a Dirichlet process G as

G ∼ DP (α,G0), (4.6)

where α is called the concentration parameter and G0 is some base distribution,

which may be continuous. In clustering applications, this is a distribution on a

vector of parameters. For the a DP-GMM, it is a distribution on the means and

covariances for the mixture components. The mixture model has some distribution

that is parameterized by values that are in the space that G0 is defined on. A way to

visualize the Dirichlet Process (DP) is by using the description of a Chinese restaurant

process [97–99]. It proceeds as follows: there is a restaurant (the space that the base

distribution is defined on) with tables (points in the space) for customers to sit at.

Each new customer may join any table or start a new one. The probability of starting

a new table is proportional to the concentration parameter, α, and the probability to
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join an existing table is proportional to the number of customers already there. The

process starts with the first customer selecting a table (a draw from G0 is made, which

is one of the discrete points in the distribution G). The second customer may join

this table with probability 1
1+α

or select a new one with probability α
1+α

. If the second

customer joins the first table, then the probability for customer three to join the first

table (a weight is added to the point) is 2
2+α

, and to select a new table (a new point is

drawn from G0) is α
2+α

. If the second customer formed Table 2, then the probability

to join Table 1 is 1
2+α

, to join Table 2 is 1
2+α

, and to select a new table is α
2+α

.

This process continues, providing a clustering effect and a discrete distribution that

resemblesG0. The cluster associations are drawn for theN measurements to construct

mixture components. This construction makes G a discrete probability distribution

for clusters: each point with non-zero probability in G gives the parameters for a

component in the mixture model distribution, and the probability at that point is

the weight of that distribution within the mixture model. A measurement drawn

from a mixture model can be obtained by first drawing which mixture component it

came from, and then the measurement is drawn from the distribution specified by

the mixture component parameters. The parameters correspond to the means and

covariances for the DP-GMM, so that the nth draw from G is

θn|G ∼ G, n = 1, ..., N, (4.7)

with θn = [µn,Cn], associated to each measurement and not unique, due to the

discreteness of G.

The measurement set, x1,x2, ...,xN can be drawn from each parameter vector,

which is also a cluster association due to the discreteness of G

xn|θn ∼ N (µn,Cn), n = 1, ..., N. (4.8)
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Since an infinite mixture model can be described via the Dirichlet process, the

challenge then becomes to estimate the mixture components and weights. To start

with, we explicitly describe G, which has a simple stick-breaking construction:

G(θ) =
∞∑
m=1

wmδ(θ − θm). (4.9)

wm ∼ vm

m−1∏
i=1

(1− vi),m = 1, ...,∞. (4.10)

vi ∼ Beta(1, α), i = 1, ...,∞. (4.11)

θm ∼ G0,m = 1, ...,∞. (4.12)

with wm = Pr(θ = θm), and all θm are not associated to any measurement and

unique, being drawn from the continuous G0.

To make the construction more explicit, we eliminate G by introducing category

variables, cn, which associate the measurements xn to parameter vectors θm. Each

discrete point in G with non-zero probability is associated to a positive integer cat-

egory variable. We designate that discrete distribution on the counting numbers as

Discrete. This changes the final model of the data, xn, n = 1, ..., N to:

xn|cn ∼ p(xn|θcn), n = 1, ..., N. (4.13)

cn|w ∼ Discrete(w), n = 1, ..., N. (4.14)

wm = vm

m−1∏
i=1

(1− vi),m = 1, ...,∞. (4.15)
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vi ∼ Beta(1, α), i = 1, ...,∞. (4.16)

θm ∼ G0,m = 1, ...,∞. (4.17)

This construction allows the data points to be assigned to the most likely mixture

component. This way, the number of clusters does not have to be specified beforehand,

since a possibly infinite number of clusters can be used. Additionally, only a finite

number of clusters can have “large” weights, so for practical applications, the number

of clusters can be reduced to achieve a certain level of error. If N is the number of

data points and M is the number of clusters to truncate to, the truncation error is:

ε = 4N exp(−(M − 1)/α). (4.18)

Note that the truncation limit should be higher than the number of clusters that

are reasonable for the data set, so that there are still clusters available to allow fair

movement through the space.

With a model established, we would like to estimate all of the parameter vectors

θm and associated weights wm for m = 1, ...,M , where M is the truncation limit

on the number of clusters, as well as each of the cluster associations for each data

point, cn for n = 1, ..., N , where N is the number of data points. Specifically, the

posterior distribution, p(θ1, ...,θM , c1, ..., cN , w1, ...wM |x1, ...,xN), needs to be approx-

imated. We can use the blocked Gibbs sampler [102, 118] to obtain samples from this

distribution indirectly, under certain conditions. In order to do so, we start with

some initial guess for all of the random variables involved, then sample certain blocks

of random variables from their distribution conditioned on all of the other random

variables and the data. A new sample is obtained after one full cycle of conditional
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sampling. After a sufficient burn-in period, the samples will explore the posterior dis-

tribution. We can then use these samples to estimate all of the means, covariances,

weights, and associations. One possible order is as follows: for iteration i,

θ(i)
m ∼ p(θm|c(i−1)

1 , ..., c
(i−1)
M ,x1, ...,xN),m = 1, ...,M. (4.19)

c(i)
n ∼ p(cn|θ(i)

1 , ...,θ
(i)
M , c

(i−1)
1 , ..., c

(i−1)
M ,x1, ...,xN), n = 1, ..., N. (4.20)

w(i)
m ∼ p(wm|c(i)

1 , ..., c
(i)
M ),m = 1, ...,M. (4.21)

Some simplifications from conditional independence have been applied. By choos-

ing conjugate priors, we can obtain the following:

p(θm|c1, ..., cM ,x1, ...,xN) ∝ G0(θm)
∏

n:cn=m

p(xn|θm),m = 1, ...,M. (4.22)

p(cn|θ1, ...,θM , w1, ..., wM ,x1, ...,xN) =
M∑
m=1

(wmp(xn|θm)) δ(cn −m),

n = 1, ..., N.

(4.23)

p(vm|c(i)
1 , ..., c

(i)
M ) = Beta(1 +N∗m, α +

M∑
m′=m+1

N∗m′),m = 1, ...,M. (4.24)

wm = vm

m−1∏
j=1

(1− vj),m = 1, ...,M. (4.25)

In these expressions, n : cn = m is the values of n such that cn = m, N∗m is the

number of such values of n, and α is the concentration parameter. The pdf for the

Beta distribution is: p(x; a, b) = x(a−1)(1−x)(b−1)Γ(a+b)
Γ(a)Γ(b)

. The conjugate prior for means

and covariances is the Normal-Wishart distribution, NW . By using that as the prior

for θ, the prior and posterior conditional distributions are:

G0(θ) ∼= NW(µ,Σ−1;µN , τN ,ΨW , νW), (4.26)
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p(θ|c1, ..., cM ,x1, ...,xN) ∼= NW(µ,Σ−1; µ̃N , τ̃N , Ψ̃W , ν̃W). (4.27)

Here, µN is a real vector of length N , τN is positive and real, ΨW is an N × N

precision matrix, and νW is the number of degrees of freedom, greater than N − 1.

The equations for µ̃N , τ̃N , Ψ̃W , and ν̃W are:

µ̃N =
τNµN +Nµx

τN +N
, (4.28)

τ̃N = τN +N, (4.29)

Ψ̃W = ΨW + Σx +
τNN

τN +N
(µN − µx)(µN − µx)T , (4.30)

and

ν̃W = νW +N, (4.31)

where µx and Σx are the mean and covariance of the data, x1, ...,xN . Algorithm 8

describes the blocked Gibbs sampler algorithm, following [97].

Much of the notation is borrowed from [95–97]. A deeper discussion of the DP-

GMM can be found in [100–102].

4.3 Clustering Behavior Tasks of Parkinson’s Disease Patients

4.3.1 Neural Signals and Time-Frequency Features

As discussed in Section 4.1, Parkinson’s disease patients that have undergone

DBS may suffer from cognitive, speech, and balance side effects. By customizing

DBS therapy to a patient’s task, these stimulation side effects may arise only when

they are non-detrimental to the patient’s current goals. It is thus important to be

able to use adaptive learning methods to identify different behavioral tasks of patients
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Algorithm 8 Blocked Gibbs Sampler for Dirichlet Process Gaussian Mixture Model.

Inputs: Data X = {x1, ...,xN} with each vector dimension k, Dirichlet process

innovation parameter α, DP cluster truncation value M , Normal-Wishart hyper-

parameters µN , τN ,ΨW , νW .

Outputs: L (specified) samples of {µ(i)
m ,σ

−1(i)
m , c

(i)
m , w

(i)
m } for m = 1, ...,M .

Loop for some duration of burn-in followed by useful samples as required, Gibbs

iterations i=1,2,...

Update θ
(i)
m = {µ(i)

m ,Σ
−1(i)
m } ∼ p(µm,Σ

−1
m |c(i−1),X),m = 1, ...,M :

. Let Xm = {xn : c
(i−1)
n = m} and Nm = cardinality(Xm),m = 1, ...,M .

. For all m = 1, ...,M , compute:

µxm =
1

Nm

∑
n:c

(i−1)
n =m

xn (4.32)

Σxm =
1

Nm

∑
n:c

(i−1)
n =m

(xn − µxm)2 (4.33)

µ̃N ,m =
τNµN +Nmµx

τN +Nm

(4.34)

τ̃N ,m = τN +Nm (4.35)

Ψ̃W,m = ΨW + Σxm +
τNNm

τN +Nm

(µN − µxm)(µN − µxm)T (4.36)

ν̃W,m = νW +Nm, (4.37)
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. Draw sample Σ
−1(i)
m from Wishart distribution: W(Σ−1

m ; Ψ̃W,m, ν̃W,m

. Draw sample µ
(i)
m from Normal distribution: N (µm; µ̃N ,m,

Σ
(i)
m

τ̃N ,m
)

Update c
(i)
n ∼ p(cn|µ(i),Σ−1(i),w(i−1),X)n = 1, ..., N :

. Let qm,n ∼= w
(i−1)
m N (xN ;µ

(i)
m ,Σ

(i)
m ), n = 1, ..., N

. Normalize q′m,n = qm,n∑M
m=1 qm,n

,m = 1, ...,M and n = 1, ..., N

. Draw sample c
(i)
n ∼

∑M
m=1 q

′
m,nδ(cn,m), n = 1, ..., N

Update w
(i)
m ∼ p(wm|c(i)),m = 1, ...,M :

. Draw sample vm ∼ Beta(1 +N∗m, α +
∑M

m′=m+1N
∗
m′),

where N∗m
∼= cardinality({n : c

(i)
n = m}),m = 1, ...,M

. Evaluate w
(i)
m = vm

∏m−1
j=1 (1− vj),m = 1, ...,M.

with Parkinson’s disease. In particular, local field potential (LFP) signals, collected

during DBS implantation surgeries when a patient is performing various tasks, can

be clustered and used to monitor changes in the severity of the patient’s disease.

LFP recordings are often performed with either invasive microelectrodes or DBS

leads and reflect oscillatory activity within nuclei of the basal ganglia. As long data

records are normally collected, relevant features are extracted and processed for clus-

tering to reduce computational complexity. As these signals are time-varying in na-

ture, task informative time-frequency based features can be extracted to provide

distinct patterns for the different behavior tasks. Such features can be obtained using

the matching pursuit decomposition (MPD) algorithm [119–121]. Using the MPD, a

signal can be decomposed into a linear expansion of Gaussian basis functions that are

selected from a redundant basic dictionary. The dictionary signals are time-shifted,

frequency-shifted and scaled versions of an elementary Gaussian atom; these basis

functions are chosen in order to best match the signal structure. The features ob-
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tained from the MPD are the time-shift, frequency-shift, scale change and weight

coefficient of each selected Gaussian in the signal expansion.

The MPD feature extraction algorithm is described as follows. We consider an

MPD dictionary D consisting of the Gaussian signals g(t; q) that are defined as

g(t; q) =
1

(πa)1/4
exp

(
−(t− τ)2

2a

)
exp(−j2πν) , (4.38)

where q = [τ ν a]T , T denotes vector transpose, and τ , ν, and a are the time

shift, frequency shift, and scale change parameters, respectively, of a basic Gaussian

function located at the time-frequency origin. Using the iterative MPD, a continuous-

time signal x(t) can be decomposed after P iterations as [119]

x(t) =
P−1∑
p=1

αp gp(t) + rN(t) , (4.39)

where αp is the corresponding weight coefficient rP (t) is the remainder signal, and

gp(t) = g(t; qp) is the selected Gaussian signal with qp = [τp νp ap]
T . Using r1(t) =

x(t) for the first iteration, the best matched Gaussian signal gp(t) at the pth iteration

is selected such that it results in maximum correlation with the remainder signal.

Specifically,

gp(t) = arg max
g(t;q)∈D

∣∣∣∣∫ ∞
−∞

rp(t)g(t; q)dt

∣∣∣∣ . (4.40)

The weight coefficient is thus given by

αp =

∫ ∞
−∞

rp(t)gp(t)dt , (4.41)

and the new remainder is rp+1(t) = rp(t) − αpgp(t). The algorithm can be stopped

when the remainder has sufficiently small energy.

The resulting feature vectors resulting from the MPD decomposition of x(t), as-

suming P MPD iterations, correspond to the 4-dimensional vector Fp = [αp qp]
T =

[αp τp νp ap]
T , for p = 1, . . . , P .
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4.3.2 Problem Formulation of Behavioral Tasks

We consider LFP signals, from Parkinson’s disease patients. The signals corre-

spond to tasks that describe four types of behaviors: simple motor task (m = 1),

language (m = 2), language with motor task (m = 3), and language without mo-

tor task (m = 4) [1]. The LFP signal set obtained from I experiments is given by

S = {s1
i s2

i s3
i s4

i }, where smi = [smi (1) . . . smi (K)]T , i= 1, . . . , I, corresponds to the

signal vector for the mth task, m = 1, . . . , 4, and smi (k) is the discretized LFP signal

from the mth task at time sample k, k= 1, . . . , K. The extracted MPD features for

the ith experiment is given by F = {F1
i F2

i F3
i F4

i }, where Fm
i = [Fm

i,1 . . . Fm
i,P ]T is

the MPD feature matrix extracted from the LFP signal smi . The feature vector from

the pth iteration, p= 1, . . . , P , is Fm
i,p = [αm(i,p) τ

m
(i,p) ν

m
(i,p) a

m
(i,p)]

T , corresponding to the

weight coefficient, time shift, frequency shift, and scale change parameters, respec-

tively. Using these extracted features for clustering, the mth cluster corresponds to

the mth task.

4.4 Adaptive Clustering Using Experimental LFP Signals

We consider a Parkinsonian LFP signal set provided by the Colorado Neurological

Institute [122]. The signal set was obtained from twelve Parkinson’s disease patients.

The signal segments associated with different behavioral tasks were labeled by physi-

cians during data collection. Equal numbers of experiments are taken for each task,

using a sampling rate of 4 kHz, collecting K = 2, 000 data samples for each LFP sig-

nal. The LFP signals are labeled based on the task the patient is performing by the

experimenter. As listed before, the tasks are: simple motor task (m= 1), language

with motor task (m= 3), and language without motor task (m= 4) [1]. Note that

Task 2 combines tasks 3 and 4.
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We performed adaptive clustering using the DP-GMM to classify Tasks 1, 3,

and 4. The presence or absence of a motor component of a task is important for

Parkinson’s disease because fine motor control is a challenge for the patients. The

data was collected with the DBS off, though obtained during DBS surgery. After

feature extraction, we determined that the best feature vector resulted by using the

weight coefficient and the time shift features, thus Fm
i,p = [αmi,p τ

m
i,p ]. Figures 4.1(a),

4.2(a), and 4.3(a) show the contour plots of the DP-GMM model, displaying the

shapes of the DP-GMM classes, while Figures 4.1(b), 4.2(b), and 4.3(b) show the

weight distribution of the resulting DP-GMM classes. Tables 4.1, 4.2, and 4.3 show

the confusion matrices for the pairwise classifications. The parameters used in the

DP-GMM were set as: innovation parameter 0.6, truncation error = 1e− 2, number

of burn-in Gibbs iterations = 2000, and number of sampling Gibbs iterations = 1000.

Pred. Class 1 Pred. Class 3

True Class 1 0.92 0.08

True Class 3 0.22 0.78

Table 4.1: Confusion Matrix, Simple Motor m = 1 vs. Language with Motor m =

3 [1].

Pred. Class 1 Pred. Class 4

True Class 1 0.84 0.16

True Class 4 0.10 0.90

Table 4.2: Confusion Matrix, Simple Motor m = 1 vs. Language without Motor

m = 4 [1].
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(a)

(b)

Figure 4.1: (a) Contour Plot of DP-GMM Output for m = 1 (Simple Motor Task) vs.

m = 3 (Language with Motor Task). (b) Weight Distribution of the Two Classes [1].
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(a)

(b)

Figure 4.2: (a) Contour Plot of DP-GMM Output for m = 1 (Simple Motor Task)

vs. m = 4 (Language without Motor Task). (b) Weight Distribution of the Two

Classes [1].
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(a)

(b)

Figure 4.3: (a) Contour Plot of DP-GMM Output for m = 3 (Language with Motor

Task) vs. m = 4 (Language without Motor Task). (b) Weight Distribution of the

Two Classes [1].
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Pred. Class 3 Pred. Class 4

True Class 3 0.96 0.04

True Class 4 0.28 0.72

Table 4.3: Confusion Matrix, Language with Motor m = 3 vs. Language without

Motor m = 4 [1].

The contour plot for classifying all three classes is shown in Figure 4.4(a). The

feature vectors resulting in the best classification, in this case, are Fm
i,p = [τmi,p a

m
i,p]

T ,

corresponding to time shift and scale change parameters. Figure 4.4(b) shows the

weight distribution of the three classes. Table 4.4 is the confusion matrix for the

three task classification.

Pred. Class 1 Pred. Class 3 Pred. Class 4

True Class 1 0.78 0.11 0.11

True Class 3 0.035 0.93 0.035

True Class 4 0.095 0.095 0.81

Table 4.4: Confusion Matrix, Simple Motor m = 1 vs. Language with Motor m = 3

vs. Language without Motor m=4 [1].
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(a)

(b)

Figure 4.4: (a) Contour Plot of DP-GMM Output for m = 1 (Simple Motor Task)

vs. m = 3 (Language with Motor Task) vs. m = 4 (Language without Motor Task).

(b) Weight Distribution of the Three Classes [1].
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Chapter 5

ADAPTIVE CLUSTERING WITH NEUROSTIMULATION ARTIFACT

SUPPRESSION

5.1 Structure of Deep Brain Stimulation Artifacts

The most common neurostimulation system currently available is deep brain stim-

ulation (DBS), an advanced surgical technique that provides substantial relief of the

motor signs of Parkinson’s disease. DBS can be used to alleviate motor symptoms

using high-frequency electrical stimulation when drug therapy is no longer sufficient

[53, 54]. Similar to the majority of neurostimulation systems, clinicians are able to

use one or a configuration of multiple electrodes to apply electrical stimulation to a

small target area. The stimulation uses a periodic waveform with short pulses, which

is characterized in the frequency domain by narrow spikes at the primary frequency

(130 Hz) and its harmonics. DBS leads are inserted into the target area with the

guidance of a stereotactic frame while patients are awake, allowing neurophysiolog-

ical recording of brain areas and intraoperative monitoring of electrical stimulation

side effects and clinical efficacy. New evidence demonstrates that neurostimulation

increases firing rates and induces synchronization of neurons in downstream nuclei

[123, 124]. This influence on communication between distant neuronal ensembles

[125, 126] may disrupt cortico-cortical and cortico-subcortical oscillatory synchroniza-

tion between connected brain regions, which form the basis of cognitive association,

decision making, and learning. Changes of the effect caused by neurostimulation can

determine whether variations to the stimulation waveform need to be made so that

it continues to alleviate disease symptoms.
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In order to be able to detect changes for monitoring the effect of DBS on Parkin-

son’s disease patients, it is important to adequately process electroencephalograms

(EEG) recordings obtained during DBS. However, DBS also causes artifacts in EEG

that preclude meaningful neurophysiological activity from being quantified during

stimulation. As the DBS artifact is generated entirely by the propagation of the DBS

waveform through the head, and does not originate from brain activity, the artifact

is independent of the patient paradigm and should be suppressed in order to improve

processing performance.

The stimulation frequency and its harmonics can be removed with a lowpass filter

as the EEG components at high frequencies are not necessary to the application [79].

Another frequency that must be suppressed using filtering is the the 60 Hz power line

frequency. The DBS artifact suppression technique needs to take into consideration

the narrow frequency domain spike nature of the artifacts. It must not, however,

affect important EEG information at low frequencies. Specifically, it has been shown

that the beta-band (13-30 Hz) and gamma-band (31-100 Hz) frequencies have critical

information for Parkinson’s disease patients [127]. In particular, subthalamic nucleus

DBS has been shown to change the cortical profile of response inhibition in the beta-

band for Parkinson’s disease patients and also to reduce the magnitude of coupling

between beta-phase and gamma-amplitude [53, 57, 128–130].

We demonstrate DBS signals, in time and frequency, using EEG recorded activity

from patients who had been bilaterally implanted with a neurostimulation system;

the data was provided by CNI [122]. Figure 5.1 shows the time-domain plot of a 0.2

second EEG recording segment with both DBS units active, without any processing.

It can be observed that the EEG is masked by the periodic stimulation waveform.

Figure 5.2 shows the Fourier transform (FT) of a longer segment of DBS data; the

spikes can be clearly seen in the frequency domain. Figure 5.3 provides a zoomed
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Figure 5.1: EEG Recording in the Time Domain, With Both DBS Sides Active.

version of Figure 5.2, showing only FT components up to 300 Hz. The spike around

12 Hz, and spikes offset from the DBS harmonics about 12 Hz, can be seen. The

recording is then filtered using a lowpass filter with 90 Hz cut-off frequency; the FT

of the processed signal is shown in Figure 5.4 and its corresponding time domain

signal is shown in Figure 5.5. After filtering, the time domain signal looks more like

EEG, although some large sinusoidal components, due to DBS artifacts, are clearly

present. Figures 5.6 and 5.7 show the EEG signal, in frequency and time respectively,

after it was processed using a Hampel filter (see next section) to suppress the DBS

artifact. The time domain plot can be compared to Figure 5.8 that shows the EEG

of the same data segment but recorded when the DBS was turned off.
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Figure 5.2: Fourier Transform (FT) of the Recording in Figure 5.1.

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
m

pl
itu

de

-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 5.5: Recording in Figure 5.4 in the Time Domain.
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Figure 5.3: Zoomed Version of Figure 5.2, for Frequencies Up to 300 Hz.
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Figure 5.6: FT of the Signal in Figure 5.5 after Applying a Hampel Filter.
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Figure 5.4: FT of Recording After Lowpass Filtering with 100 Hz Cut-off Frequency.

5.2 DBS Artifact Suppression

5.2.1 Hampel Filter

One approach for suppressing DBS artifacts is the use of the Hampel filter to

process the EEG recordings [79]. The Hampel filter is a variant on the median filter

that first examines a signal for outliers using a median absolute deviation metric. It

is used to process data sets that have outliers, which is useful for DBS artifact sup-

pression, as the frequency domain of the DBS artifacts consists of narrow spikes [79].

When outliers are found, those points are replaced by the median value of nearby

points. If the Hampel filter is applied in the frequency domain, the narrow spikes can

be removed, leaving behind neural activity unaffected in other frequency bins.
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Figure 5.7: Recording in Figure 5.6 in the Time Domain.

In particular, the outlier detection is performed using the median and median

absolute deviation. If the data sequence {X0, X1, ..., XN−1} is the input to the Hampel

filter, then the test for identifying a point Xk as an outlier is |Xk−X∗| > β B, where

X∗ = median{Xk−L, Xk−L+1, . . . , Xk, . . . , Xk+L−1, Xk+L}, β and L are user-specified

parameters, and B = 1.4286 median{|Xk−L −X∗|, . . . , |Xk −X∗|, . . . , |Xk+L −X∗|}.

The smaller the value of β, the more points are considered as outliers and L varies

the number of points around a candidate outlier when computing the median. Note

that the median filter uses β = 0. If a point is determined to be an outlier, that

point is replaced with the median value X∗. This method is applied to the real and

imaginary parts of the EEG signal in the frequency domain in order to remove the

DBS spectral spikes.
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Algorithm 9 Hampel Filter

Initialization

x[n], n = 0, 1, . . . , N − 1, is the EEG data

Xk, k = 0, 1, . . . , N − 1, is the Fourier transform (FT) of the EEG data

L is user-defined

β is user-defined

for i = 0 : N − 1 do

X∗ = median{Xk−L, Xk−L+1, . . . , Xk, . . . , Xk+L−1, Xk+L}

(The FT sample is not used to compute the median if its index is outside

the {0, 1, . . . , N − 1} range)

B = 1.4826 median{|Xk−L −X∗|, |Xk−L+1 −X∗|, . . . , |Xk −X∗|, . . . ,

|Xk+L−1 −X∗|, |Xk+L −X∗|}

if |Xk −X∗| > β B then

Yk = X∗

else

Yk = Xk

end if

end for

Output filtered signal {Y0, Y1, . . . , YN−1}
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Figure 5.8: Short Segment of EEG With DBS Turned off.

5.2.2 Time-frequency Filtering

Another method for removing the DBS artifact proposed in literature is the

matched time-frequency filter [80]. This method assumes that the DBS artifact is

composed of a series of pure sinusoids. It thus searches, and then removes, for a

single sinusoid whose frequency, amplitude and phase matches the frequency spike

present in the DBS data [80]. The algorithm iteratively finds the frequency that best

correlates a spike in the EEG signal spectrum. Specifically, first a sinusoid with fre-

quency fi is computed as y[n] = sin(2πfin/fs), n = 0, 1, . . . , N − 1, where fs is the

sampling frequency and N is the number of samples.

At the jth iteration check set of frequencies Fj. For a particular test frequency fi ∈

Fj, we optimize over the available time shifts to apply to the sinusoid in the matched

filter using cross correlation. We check integer time shifts from
⌈
−1

2
fs
fi

⌉
to
⌈

1
2
fs
fi

⌉
. Let
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the EEG signal be x = [x0, x1, ..., xN−1] and the zero padded EEG signal be x[n]. Let

y[n] = sin[2πfin
fs

], and (x ? y)[k] =
∑∞

n=−∞ x[n]y[n + k] since our signals are real. We

then want to find a sinusoid of the form yi[n] = Ai ∗ sin[2πfi(n+∆ki)
fs

]. We repeatedly

find the optimal frequency, time shift, and amplitude among the frequencies we test,

then recenter our test around that frequency and check a smaller region in frequency

around it, until we narrow in on a specific sinusoid to subtract out from the EEG

signal.

5.2.3 Empirical Mode Decomposition

The empirical mode decomposition (EMD), also known as the Hilbert-Huang

Transform, can be used to decompose a signal into a fixed number of signal com-

ponents in time [90–92]. The signal components are called intrinsic mode functions

(IMFs) and have unique instantaneous frequencies that are constrained to regions in

frequency that change with time. The IMFs form a complete and nearly orthogonal

basis for the original signal and they satisfy two unique properties: the envelope of

the IMF averages to zero everywhere, and the number of zero crossings and number of

extrema differ by at most one. The EMD algorithm extracts IMFs until the remainder

signal has constant instantaneous frequency. The steps of the EMD, following [92],

are provided in Algorithms 11 and 12. It is based on identifying, and subtracting out,

the fastest oscillation (or highest nonlinearity in the time-frequency plane) present in

the signal, and then iterating the residual signal.

As the EMD approach is data-driven and the IMFs are unique in the time-

frequency plane, we use it to obtain time-frequency features that are different from

those obtained using the matching pursuit decomposition (MPD), as presented in

Chapter 4. The EMD can also be used as an approach to remove the DBS artifact.
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Algorithm 10 Matched Filter Sinusoid Removal

Initialization

x[n], {n = 0, 1, ..., N − 1} is the EEG data

F1 is a course initial set of test frequencies

for j = 1 : J do

for fi ∈ Fj do

y[n] = sin[2πfin
fs

]

∆ki = argmax(x ? y)[k]
{

s.t.
⌈
−1

2
fs
fi

⌉
≤ k ≤

⌈
1
2
fs
fi

⌉}
corrmax = (x ? y)[∆ki]

Ai = 2corrmax

N

end for

iopt = argmaxAi

Aopt = Aiopt

∆kopt = ∆kiopt

fopt = fiopt

Fj+1 is a finer set of frequencies centered around current estimate fopt

end for

y[n] = x[n]− Aopt sin[2πfopt(n+∆kopt)

fs
]

Output filtered signal y[n]
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Algorithm 11 Empirical Mode Decomposition

Initialization

x(t) is the input signal

k = 0

x−1(t) = x(t)

while xk−1(t) 6= 0 and xk−1(t) does not have constant instantaneous frequency do

φk(t) = SIFT(xk−1(t))

xk(t) = xk−1(t)− φk(t)

k = k + 1

end while

φk(t) = xk−1(t)

Output set of intrinsic mode functions {φk(t)}

Algorithm 12 SIFT

Initialization

xk−1 is the input data to sift

e(t) 6= 0

while e(t) 6= 0 do

Find U = {(tp, up)} set of all local maxima of xk−1

Find L = {(tp, lp)} set of all local minima of xk−1

u(t) = cubic spline of U

l(t) = cubic spline of L

e(t) = u(t)+l(t)
2

r(t) = r(t)− e(t)

end while

φ(t) = r(t)

Output intrinsic mode function φ(t)
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However, we observed that the IMFs capture much of the brain activity at frequencies

near to the frequencies where the DBS artifact can be found.

5.3 Adaptive Clustering with DBS Artifact Suppression

5.3.1 Description of Data from DBS System

With the ultimate goal being to monitor the DBS automatically to ensure the

treatment is still working well, we look to classify what task a patient is performing

to demonstrate that differences in EEG can be detected and classified algorithmically.

We use 64 channel EEG data from a Parkinson’s disease patient with DBS stimulators

on both sides. Data is available from the patient performing six different tasks, with

each side of the DBS system turned on or off, so that there is data for no DBS, left or

right DBS only or both DBS sides on. The first two tasks are Button Force Left and

Button Force Right, which require pressing a button with a specific force with either

the left or right hand. The third and fourth task are Verbal Fluency tasks, either

Spoken or Written. This involves giving the patient a letter or category, and the

patient gives words verbally or written in the category or that start with the letter.

The fifth task is Reading, reciting the months of the year, and the sixth task is Touch

Pursuit, which is tracing on a touch screen. The tasks are listed in Table 5.1.

5.3.2 DBS Feature Extraction

In Chapter 4, we discussed the use of the MPD with a Gaussian dictionary to

extract features from neurostimulation recordings for use in clustering behavioral

tasks. The features obtained using the MPD are the amplitude, time shift, frequency

shift and scale change of all the Gaussian signals used to expand the data. Another

possible feature set can be obtained using a dictionary of IMFs obtained by expanding
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Class # Name of Task Abbreviation

1 Button Force Left BFL

2 Button Force Right BFR

3 Verbal Fluency Spoken VFS

4 Verbal Fluency Written VFW

5 Reading R

6 Touch Pursuit TP

Table 5.1: Task Information

the data using the EMD. For the EMD based dictionary, we considered 500 time-

domain EEG segments, both for the DBS system turned off and turned on. As IMFs

with the highest nonlinear instantaneous frequency are extracted first, we use the first

IMFs as the feature vectors.

5.3.3 DBS Artifact Suppression

We considered two methods for suppressing the DBS artifacts. The first method is

the Hampel filter, which worked relatively well in removing frequency spikes present in

the data. The second method is based on decomposing the data using the EMD into

specific frequency bands and then removing the IMFs with peak frequencies present

where the DBS artifact is expected. Note that the second method did not provide

very good results as important frequency information near the artifact frequencies

were also suppressed. An example of using the EMD for DBS artifact suppression is

shown in time and frequency, respectively, in Figures 5.9 and 5.10.

When using the Hampel filter to suppress the DBS artifact, we applied it both on

the real and imaginary parts of the frequency domain representation; this provided a

80



finely sampled set for clustering. As this approach was computationally time inten-

sive, we first lowpass filtered the data using a 100 Hz cutoff frequency. The Hampel

filter used a 301 point median operation, with β value 4. The lowpass filter applied

was a Chebyshev II of order 14 with 80 dB stopband attenuation and a cutoff of 100

Hz. This was followed by a highpass Butterworth filter of order 4 at 1 Hz to remove

the DC component, which was performed with forward-backward filtering.

For the EMD artifact suppression, the data was similarly lowpass and highpass

filtered before applying the EMD. IMFs with high peaks the frequency spikes at

12 Hz and 60 Hz were first removed, before the remaining IMFs are combined to

obtained the artifact-suppressed signal. Note that for robustness, we applied a slightly

modified version of the EMD as in [91], with some more advanced maxima and minima

detection based on interpolation as well as a sifting stop criteria based on the ratio

of energy in the original signal versus the average of the IMF envelopes.

5.3.4 Adaptive Task Clustering

The aforementioned data processing resulted in six different data sets that were

then used for task clustering. The data set (DS) description, based on the processing,

is given as: MPD Gaussian features and Hampel filtering for artifact suppression (DS

1); MPD Gaussian features and EMD artifact suppression (DS 2); MPD Gaussian

features and no artifact suppression (DS 3); IMF features and Hampel filtering for

artifact suppression (DS 4); IMF features and EMD artifact suppression (DS 5);

and IMF features and no artifact suppression (DS 6). The adaptive clustering was

performed using a Gaussian mixture model (GMM), described in Chapter 4, with

a fixed number of 2 classes. Each class consisted of 15 EEG segments, each of 1

second duration, initiated at the beginning of the patient response. We considered all

pairwise task combinations from Table 5.1, Note that as the initialization of the GMM
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Figure 5.9: EEG Recording with DBS On (Red) and after EMD DBS Suppression

(Blue), Vertical Axis: Amplitude, Horizontal Axis: Time (s).

presented a challenge, we compared the log-likelihood obtained from many different

initializations, with the initial centers placed on all combinations of two points from

the set, and then kept the GMM result with the best log-likelihood.

The clustering results for the six data set combinations are provided in Tables 5.2

and 5.3. Note that we observed a significant difference in the final results based on

the selection of the features used as input to the GMM. The results reported in the

two tables correspond to the selection of the best feature set. For example, when

using the MPD, we did not always select all four Gaussian feature parameters for all

MPD iterations.

The classification results are further demonstrated using two cases. The first

case uses the Button Force Right (BFR) and Verbal Fluency Written (VFW) tasks
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Classes Suppression Method

Class A Class B Gaussian, Hampel Gaussian, EMD Gaussian, None

1 2 63.33% 63.33% 60.00%

1 3 60.00% 73.33% 70.00%

1 4 66.67% 63.33% 63.33%

1 5 93.33% 83.33% 90.00%

1 6 56.67% 63.33% 60.00%

2 3 86.67% 63.33% 66.67%

2 4 80.00% 63.33% 73.33%

2 5 100.00% 93.33% 86.67%

2 6 60.00% 56.67% 63.33%

3 4 60.00% 60.00% 83.33%

3 5 70.00% 73.33% 80.00%

3 6 90.00% 73.33% 63.33%

4 5 66.67% 76.67% 90.00%

4 6 86.67% 60.00% 60.00%

5 6 96.67% 76.67% 86.67%

Ave. 75.78% 69.56% 73.11%

Table 5.2: Classification Results Using a Gaussian MPD Dictionary and Various DBS

Suppression Methods, Best Case Features.
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Classes Suppression Method

Class A Class B IMF, Hampel IMF, EMD IMF, None

1 2 63.33% 60.00% 66.67%

1 3 73.33% 70.00% 86.67%

1 4 76.67% 66.67% 83.33%

1 5 93.33% 90.00% 93.33%

1 6 56.67% 60.00% 70.00%

2 3 80.00% 80.00% 80.00%

2 4 70.00% 66.67% 63.33%

2 5 93.33% 90.00% 90.00%

2 6 63.33% 60.00% 60.00%

3 4 80.00% 66.67% 63.33%

3 5 66.67% 73.33% 73.33%

3 6 80.00% 66.67% 73.33%

4 5 80.00% 90.00% 93.33%

4 6 70.00% 70.00% 66.67%

5 6 80.00% 93.33% 93.33%

Ave. 75.11% 73.56% 77.11%

Table 5.3: Classification Results with IMF Dictionary and Various DBS Suppression

Methods, Best Case Features.
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Figure 5.10: The Fourier Transform of the Signals in Figure 5.9, Vertical Axis: Mag-

nitude Spectrum, Horizontal Axis: Frequency (Hz).

with the data processed using MPD Gaussian features and Hampel filtering artifact

suppression (DS 1). Figures 5.11 and 5.12 demonstrate the GMM clusterering for the

VFW task and BFR task, respectively, obtained using the magnitude and frequency

shift MPD Gaussian features. In these figures, the BFR task features for each data

point to classify are marked with white Os; white Xs are used for the VFW data

points. The decision region used for clustering is shown in Figure 5.13. We can see

the five misclassifications for BFR (two on top of each other) and one misclassification

for VFW, resulting in an overall correct classification rate of 80%. The second case

uses the Reading (R) task and the Touch Pursuit (TP) task with the data processed

using EMD IMF features and Hampel filtering artifact suppression (DS 4). The three

corresponding plots are provides in Figures 5.14, 5.15, and 5.16. The R task points
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are marked with white Xs and the TP task points are marked with white Os. The

best feature set selected consisted of the amplitudes of the first two IMF components.
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Figure 5.11: Gaussian Cluster for VFW Task.

5.4 Clustering Using Disease-Matched Features

As discussed at the beginning of this chapter, studies have shown that the beta

frequency band ranging from 13 to 30 Hz and the gamma frequency band ranging

from 31 to 100 Hz from EEG and LFP recordings provide critical information on

the pathology of Parkinson’s disease as well as on task performance [16, 28, 57–

67, 127]. Tasks involving movement and word recognition have been shown to change

the activity in the beta and gamma bands, as well as other bands, in characteristic

ways that could be useful for classification. Using this prior information, we now
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Figure 5.12: Gaussian Cluster for BFR Task.

select EEG recording features that concentrate in these specific frequency bands in

order to increase classification performance.

We thus processed EEG recordings to consider five different cases, such that the

resulting signals only contain components in specific frequency bands. All the record-

ings correspond to two behavioral tasks: Verbal Fluency Written (VFW) and Reading

(R). In Case 1, the processing involved suppressing the DBS artifact near 12 Hz (when

the DBS is turned on) and the power line artifact at 60 Hz using the time-frequency

filtering approach. Case 2 consisted of frequencies in the delta band (frequencies be-

low 4 Hz), beta band and gamma band, resulting from a 100 Hz lowpass filter and

4-13 Hz bandstop filter; Case 3 consisted of frequencies in the beta and gamma bands,

resulting from a 100 Hz lowpass filter and a 13 Hz highpass filter; Case 4 consisted

of frequencies in the beta band only, resulting from a 13-30 Hz bandpass filter; and
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Figure 5.13: GMM Decision Boundary.

Case 5 consisted of frequencies only in the gamma band, resulting from a 30-100 Hz

bandpass filter. Note that all filters used a 40th order Butterworth with half-power

at the designated frequencies.

For this classification, we selected 15 EEG recordings from each task from the

Cp2 electrode. This specific electrode was selected in order to minimize the effects

of muscle and speaking artifacts in the EEG recordings. The Cp2 location is slightly

back and to the right from the top of the head, which is far from the physical locations

of the tongue tip and neck. The data is referenced to the mastoid, setting the EEG

reference to the corner of the jaw to further reduce muscle effects. Also, half of the

data segment was taken from before the patient starts to move, so only half of each

signal is possibly corrupted by muscle and speaking artifacts.
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Figure 5.14: Gaussian Cluster for R Task.

For the clustering, we first obtained MPD time-frequency features and used them

with a GMM with two classes representing two specific tasks. We considered clas-

sification results by varying the number of MPD iterations, for a maximum of 60

iterations. We provide results for the number of iterations that resulted in the high-

est overall correct classification rate; past that number, noise present in the data was

decomposed and thus reduced classification performance. The GMM was initialized

by using 100 replicates of the k-means++ initialization, using k-means to obtain a

starting guess for the clusters.

When the DBS was turned on, we obtained the highest classification performance

for Case 5 (only gamma band). The rate of correct classification remains between

80% and 83% (using 28 to 34 MPD iterations) before dropping off past 73%. When

the DBS is turned off, Case 2 resulted in the highest classification performance (76%
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Figure 5.15: Gaussian Cluster for TP Task.

to 80% using 21 to 24 MPD iterations. The confusion matrices for Case 5 and DBS

turned on are shown in Tables 5.4 and 5.5 (corresponding to range in performance).

The confusion matrices for Case 2 and DBS turned off are shown in Tables 5.6 and 5.7.

In order to ensure that the classification results were obtained using representative

information, we consider the signal energy captured by the MPD features. The follow-

ing figures show the 95% confidence interval of the MPD residual energy, normalized

to the energy of the initial signal, for the 15 signals in each class. Figure 5.17 shows

the residual energy curve for Case 5 with DBS turned on, and Figure 5.18 shows the

residual energy curve for Case 2 with the DBS turned off. As another example, Fig-

ure 5.19 shows the residual energy for Case 4 (only beta band) with the DBS turned

on. As compared to Case 5 in Figure 5.17, even most of the signal is decomposed
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Figure 5.16: GMM Decision Boundary.

after a few iterations, the resulting features did not provide useful information for

classification.

Class VFW Class R

True Class VFW 86.7% 13.3%

True Class R 20% 80%

Table 5.4: Confusion Matrix, Case 5 with DBS Turned on.
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(a) Class VFW

(b) Class R

Figure 5.17: Residual Energy (vertical axis) Versus Number of Iterations (horizontal

axis), Case 5 with DBS Turned on: Classes (a) VFW and (b) R.
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(a) Class VFW

(b) Class R

Figure 5.18: Residual Energy (vertical axis) Versus Number of Iterations (horizontal

axis), Case 2 with DBS Turned off: Classes (a) VFW and (b) R.
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(a) Class VFW

(b) Class R

Figure 5.19: Residual Energy (vertical axis) Versus Number of Iterations (horizontal

axis), Case 4 with DBS Turned on: Classes (a) VFW and (b) R.
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Class VFW Class R

True Class VFW 80% 20%

True Class R 20% 80%

Table 5.5: Confusion Matrix, Case 5 with DBS Turned on.

Class VFW Class R

True Class VFW 93.3% 6.7%

True Class R 33.3% 66.7%

Table 5.6: Confusion Matrix, Case 2 with DBS Turned off.

Class VFW Class R

True Class VFW 86.7% 13.3%

True Class R 33.3% 66.7%

Table 5.7: Confusion Matrix, Case 2 with DBS Turned off.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Biomedical and biological signals provide very powerful information in medicine.

We propose advanced signal processing methods that allow for the detection and

treatment of some neurological diseases. These include methods in neuroscience that

perform artifact suppression to track the location of brain activity and classify be-

havioral patient tasks for the purpose of improving the currently used deep brain

stimulation treatment for Parkinson’s disease. They also include methods in immune

response that use time-frequency methods to process microarray data to determine

what protein sequence from a possible pathogen generated antibodies.

6.1.1 Neural Stimulation and Activity Tracking

We use object tracking algorithms, originally based on radar applications, which

account for spurious measurements to track the sources of neural activity in the

brain. Independent component analysis (ICA) is used to separate the measurements

from neural current sources and artifacts such as eye blinks and movements, the

power line, muscle movements, heartbeats, and electrode popping. Our proposed

method, the probabilistic data association filter, tracks neural sources, suppressing

measurements that appear to originate from artifacts. This is done by looking at the

power spectrum of the ICA separated measurements to discriminate neural activity

from artifact. The source location error metric falls below 8 mm in an 85 mm radius
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head region. Further methods of neural source tracking and artifact suppression have

been explored by other members of the research group in [115, 131].

We also use the matching pursuit decomposition (MPD) to extract features for

classification of electroencephalogram (EEG) recordings in Parkinson’s disease pa-

tients for the purpose of assessing their deep brain stimulation (DBS) treatment.

We look to detect differences in the brain rhythm as treatment progresses to see if

the stimulation parameters need adjusting. To that end, we look to classify EEG

recordings when the patient is performing different tasks to see if any changes in the

patient’s symptoms can be detected. The classifier is based on the Gaussian mixture

model (GMM), an unsupervised clustering approach that does not need training. The

features extracted by MPD describe the time-frequency characteristics of the EEG

signal. We are sometimes able to achieve classification using particular features from

just the first few atoms, but this likely will not provide a stable classification as it

uses very little information about the signal. Thus, we perform classification using

many MPD atoms that contain most of the energy in the signal. We are able to get

83% classification between a mental recitation task and writing task using about 30

MPD atoms comprising 80% of the energy in the signal within the relevant frequency

bands examined. We chose the frequency bands to match up to the bands where brain

activity has been found to occur in cognitive and behavioral tasks in the literature.

When the DBS system is on, there is an artifact generated that can be suppressed

with some lowpass filtering to remove the high frequency components of the artifact,

leaving behind high spectral peaks that can be attenuated using with Hampel filtering

in the frequency domain or a time-frequency matched filter in the time domain.
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6.1.2 Pathogen Detection

Some additional work, separate from the neuroscience work in this thesis, is pre-

sented in Appendix A on pathogen detection based on peptide microarrays [121]. By

using time-frequency matching pursuit methods, we were able to identify significant

subsequences of monoclonal antibodies within peptide microarray data by determin-

ing which subsequences raised the fluorescence response higher for one monoclonal

antibody than the others. Some antibodies only had partial matches, though this is

consistent with antibodies having a specific active region that is not the full pathogen

protein. The ability to identify protein sequences on a microarray that draw a strong

antibody response can be used for pathogen identification by determining what pro-

tein sequences the antibodies respond to, and matching these up to pathogen proteins.

6.2 Future Work

For EEG source tracking, a metric for discriminating between neural activity and

artifacts, more aligned with the physiological differences between neural sources and

artifacts than a general frequency content energy trend, is important. It is difficult

to construct synthetic data that both follows the model and is independent so that

ICA can be applied, leading to ICA making errors in separation that challenge the

tracking algorithm. Work towards this end has been undertaken by other members

of the research group in [115, 131]. We will work toward suppressing more types of

artifacts, as well as looking at additional experimental EEG data sets. We are also

considering more involved models for the head, including patient specific magnetic

resonance imaging (MRI) scan models.

The next step for the deep brain stimulation research is working with more data.

The Colorado Neurological Institute (CNI) is reducing the complexity of the tasks
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being performed, as it is difficult to extract information for the many tasks in our

current data set, especially with the complexity of the tasks. Use of the Dirichlet

process GMM (DP-GMM) instead of the GMM, so that the number of tasks does

not need to be specified beforehand, is also important. This is because the ability

of the DP-GMM to determine the number of classes allows for the addition of new

data to past data. If the patient’s brain activity has changed significantly since pre-

vious measurements, the DP-GMM will place the new activity in a new class instead

of the already established class, allowing for further monitoring of the neurological

treatment. Additional features provided to the DP-GMM would also increase its

monitoring potential, including location and orientation features of the neural source

activity. Incorporating the artifact suppression available while tracking could be used

to help reduce possible muscle artifacts during tasks even further than the algorithms

considered in this work. It is important to obtain measurements from more patients

to generalize these results and examine the patient specificity of the time-frequency

features. With more patients, the DBS artifact could be better characterized for

suppression. Another idea is to improve the feature selection using beta distribu-

tion fitting and measuring the difference between the distributions, similarly to the

method discussed in [97].

For pathogen detection, early results for identifying monoclonal antibodies on the

peptide arrays are promising. New data with many monoclonals tested at the same

time to minimize processing differences would be the next step, followed by testing

immune responses of people with known diseases. Multiple patients with the same

disease or monoclonal antibody target should be tested for patient specificity, as not

all immune systems are the same. For patients with a known disease, estimated epi-

topes can be compared with protein databases to find proteins that drew the response.

Finding multiple epitopes that map to pathogen proteins is strong evidence of a pa-
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tient having a specific disease. The MPD algorithm can be improved by incorporating

information about common substitutions and properties such as the hydrophobicity

of amino acids. Matching could also be performed with three-dimensional protein

information by mapping onto multidimensional Gaussians.
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A.1 Description of Work in Appendix

This appendix contains a published chapter, referenced as [121] above, in the

references section for the main chapters. This work is part of collaborative research

on biological signal processing, and it is not related to the biomedical signal processing

work presented in Chapters 1-5.

A.2 Abstract

Diagnostic information obtained from antibodies binding to random peptide se-

quences is now feasible using immunosignaturing, a recently developed microarray

technology. The success of this technology is highly dependent upon the use of ad-

vanced algorithms to analyze the random sequence peptide arrays and to process

variations in antibody profiles to discriminate between pathogens. This work presents

the use of time-frequency signal processing methods for immunosignaturing. In par-

ticular, highly-localized waveforms and their parameters are used to uniquely map

random peptide sequences and their properties in the time-frequency plane. Ad-

vanced time-frequency signal processing techniques are then applied for estimating

antigenic determinants or epitope candidates for detecting and identifying potential

pathogens.

A.3 Introduction

A.3.1 Signal Processing of Biological Sequences and Challenges

The area of bioinformatics is mainly involved with the management of biological

information using computer technology and statistics. Signal processing for molec-

ular biology, on the other hand, encompasses the development of algorithms and

methodologies for extracting, processing and interpreting information from biological
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sequences [1-6]. Intelligent use of signal processing algorithms can provide invaluable

insight into the structure, functioning and evolution of biological systems. For exam-

ple, complex assays to determine functional activities of analytes or peptide chips to

manifest key residues for protein binding can provide a wealth of information on un-

derlying biological systems. However, in each of these cases, appropriately designed

processing is required to robustly extract the most relevant information. Images of

array fluorescence are enhanced to improve the estimation of gene reactivity, while

gene expression classification performance is increased by including biological and

experimental variability in the algorithm design [4].

Genomics and proteomics, in general terms, study the functions and structures

of genomes and proteomes, respectively. Genomes, which are genetic material of

organisms encoded in deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and

proteomes, which are expressed proteins in given organisms, provide discrete infor-

mation, represented in sequences of unique elements [7,8]. More specifically, DNA

are bio-molecules that are represented as letter sequences of precise orderings of four

nucleobases; the different orderings correspond to patterns that influence the forma-

tion and development of different organisms. Similarly, proteins are bio-molecules

represented as sequences of unique orderings of twenty linked amino acids, with each

amino acid represented by a letter of the alphabet. DNA and protein sequence analysis

requires significant processing of the discrete gene orderings in order to identify in-

trinsic common features or find gene variations such as mutations [9,10]. One genome

analysis application is gene sequence periodicity as regions of genetic repetition have

been shown to correlate with functionally important genes [11,12]. Gene periodic-

ity has been analyzed using spectral methods [13-16]; such methods have also been

used to estimate variations in base pair frequencies between organisms as they can

indicate phylogenic origin from the species genome. Time-frequency signal process-
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ing methods such as wavelet transforms have also been used in gene sequencing such

as to characterize long range correlations or identify irregularities in DNA sequences

[14,17,18].

Signal processing methods have also been used for sequence alignment, or arrang-

ing sequences to identify regions of similarity due to functional, structural, or evolu-

tionary relationships between the sequences [19,20]. As thousands of organisms have

been sequenced completely, and many more have been partially sequenced, search-

ing for these similarities requires a vast number of computations. There are many

algorithms designed to perform these searches including dynamic programming algo-

rithms such as Smith-Waterman and BLAST, correlation based methods, Bayesian

approaches, and time-frequency (TF) based methods [10, 21-28]. Computational

alignment tools based on dynamic programming such as the Smith-Waterman algo-

rithm is guaranteed to find all similarity matches, but it runs slowly [21]. Other tools,

such as BLAST [22,23], are widely made available for database similarity searching as

they were developed to provide a fast approach of approximating the complete align-

ment found by dynamic programming algorithms. BLAST runs very quickly, around

an order of magnitude faster than the complete alignment algorithms, and finds most

significant alignments under most circumstances. However, it tends to miss align-

ments for queries with repetitive segments. Correlation based methods map DNA or

amino acid sequences to real or complex numbered sequences and use sequence cor-

relation to achieve a match in similarity [26]. The algorithm can be implemented fast

using the fast Fourier transform; however, errors increase when aligning sequences of

longer lengths. We have recently developed a TF based method that first uniquely

maps sequences to highly-localized Gaussian waveforms in the TF plane, and then

uses the matching pursuit decomposition (MPD) algorithm to perform alignment [28-
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30]. The alignment approach is compared to other approaches and shown to perform

well with repetitive segments in real time without pre-processing.

In addition to gene sequencing, microarray analysis has also played a significant

role in the extraction and interpretation of genomic information. Microarrays can

provide measurements of expression levels of large numbers of genes. For example,

peptide microarrays have been used to study binding properties and functionality

of different types of protein-protein interactions and provide insight into specific

pathogens [31-35]. Peptide microarrays are a relative new application for biologi-

cal signal processing. The technology to create assays using single peptide chains

has been around for a while in the form of the enzyme linked immunosorbent assay

(ELISA) [36]. In recent years, as the cost of printing many peptide clusters onto a

single substrate has been dropping, tens or hundreds of thousands of peptide clusters

can be reasonably printed on a single array. In addition to be able to construct large

scale peptide arrays to detect specific diseases, another important aspect is the robust

interpretation and analysis of the extracted data in order to establish relationships

between peptide sequences and binding strengths. Some recent analysis approaches

include support vector machine (SVM) modeling methods [37], computational align-

ment approaches [38], and statistical tools such as t-test and analysis of variance

linear regression [39-41].

A.3.2 Signal Processing Challenges: Random-Sequence Microarrays

The recently developed immunosignaturing technology uses microarrays with ran-

dom-sequence peptides to associate antibodies to a pathogen or infectious agent, in a

patient’s blood sample [32, 42-49]. The immunosignatures can potentially provide pre-

symptomatic diagnosis for infectious diseases [35,44,48]. The large number of peptide

sequences on each microarray, and the attraction of the ability to diagnose as many
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pathological ailments as possible, renders a challenging problem in signal processing.

This is further complicated by the fact that, in general, training data is not available.

Current processing methods include statistical tests [45] and supervised classification

and learning methods such as support vector machines [43,48]. Recently, we have de-

veloped adaptive learning methodologies for unsupervised clustering integrated with

immunosignature feature extraction approaches [50-52].

This work develops new algorithms for analyzing and processing random peptide

sequences in the TF plane in order to recognize pathogens from variations in antibody

profiles without any prior information. Given immunosignaturing random-sequence

peptide microarray data for an individual, the task is to detect and identify the

binding sites of antibodies for target antigens. These binding sites, or linear epitopes,

are short continuous sub-sequences of the peptide sequence that correspond to the part

of an antigen that is recognized by the antibodies [32,53,54]. Detecting which peptides

bind to which antibodies by identifying the corresponding antibody sub-sequence

binding sites using immunosignaturing data is very useful as one dataset contains

can localized information on multiple pathogens [52]. As a result, the detection

and identification algorithms can be used to characterize antibody specificity for the

molecular recognition of the immune system or for deciphering molecular mechanisms

for various diseases.

A.4 Random Sequence Peptide Microarrays

Immunosignaturing is a microarray-based technology that uses random peptide

sequences to provide a comprehensive profiling of a person’s antibodies [42,44,55]. It

has been shown that a person’s antibody profile, about 109 different antibodies in the

blood at a given time, is a sensitive indicator of the person’s health status. Part of the

body’s response to a foreign pathogen is to create antibodies which identify and aid in
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the destruction of that pathogen. Pathogen detection and determination is possible

due to a uniquely identifying amino acid sequence on its exterior called an antigen.

The antibodies created in response to the pathogen are designed to only bind to that

specific antigen sequence, or one that is very similar. As the antibodies amplify when

the host is exposed to an infectious agent, the amplified antibody response enables

monitoring a disease upon infectivity. Rather than trying to identify an antibody by

designing a microarray specific to a pathogen, the concept of immunosignaturing is

to identify an entire immune response. This is achieved by printing an array with

many different random peptides, so that small subsets of peptide sequences are similar

enough to antigen sequences of specific pathogen antibodies to bind to them.

The immunosignaturing technology has been developed by the director and re-

searchers of the Center for Innovations in Medicine (CIM) at the Biodesign Institute

at Arizona State University [56]. In particular, the random-peptide microarray data

used for algorithm demonstration in this work was provided by CIM. Information

on the technology, such as a description of the equipment, arrays, and a technolog-

ical overview, can be found at http://www.immunosignature.com. The immuno-

signaturing technology currently employs slides spotted with peptides, resulting in

microarrays with 330,000 peptide sequences (330k chip). The peptides sequences are

20 amino acids long and a random number generator is used to generate the specific

peptide sequences. Other than cysteine that is used as the C-terminal amino acid,

all natural amino acids are included in the peptide sequence generation. As a result,

the peptide sequences are random and not related to any naturally occurring peptide

sequence; however, the sequence on each spot on the slide is known. This ensures

that the peptide array is not designed to monitor one specific disease or a set of dis-

eases. Array peptides are designed to fluoresce in proportion to an antibody binding

strength when light of a specific frequency is shined on them. Peptides with attached
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antibodies are expected to fluoresce more brightly than the those not related to the

antigen. Multiple identical peptides are printed within a predefined circular area on

the array; after the sample is given sufficient time to bind, the array is washed and

then illuminated. An image of the fluorescing array is taken, and the median flu-

orescence value of the pixels in each circular area is calculated and recorded. The

resulting data used for analysis is the peptide sequence of amino acids and its cor-

responding median fluorescence value at each array spot. Using the data from the

whole array, the problem is to detect the highly fluorescing peptides and identify the

corresponding underlying pathogens.

This is not a simple detection and identification problem; processing can be com-

plicated by the fact that there are additional macromolecules in blood samples that

can also bind to peptides due to hydrogen bonding, electrostatic interactions and van

der Waals forces [57]. The concept of adding a large number of random peptides on

the array is novel as more pathogens can be detected on a single patient. However, the

large number of sequences to process also increases the number of sequences that are

close in structure to more than one pathogen’s antigen. Antibodies bind with enough

variability that trends across multiple peptides must be used. However, a significant

difficulty in finding these trends is that only a sub-sequence of the peptide which

binds to the antibody is responsible for the binding, and within that sub-sequence

there can be one or two peptides which have little or no effect on the binding strength.

Determining which peptide sub-sequences are responsible for that binding must be

determined using multiple peptides with similar sub-sequences [44,45].

A.5 Time-Frequency Processing of Peptide Sequences

The novel signal processing algorithms presented in this work aim to improve

pathogen detection and identification performance when using immunosignaturing
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random peptide sequences. Toward this end, advanced signal processing methodolo-

gies are exploited to first map amino acid sequences to unique and highly TF localized

waveforms and then use matched TF representations to identify specific peptide sub-

sequences.

A.5.1 Mapping Peptide Sequences to Time-frequency Waveforms

The biosequence-to-waveform mapping considered must provide a unique wave-

form in the TF plane for each peptide sequence. When deciding on appropriate

waveforms to use in the mapping, the waveform parameters and properties must be

selected to ensure uniqueness in peptide representation and robustness in matched

correlation-based processing, respectively. Following the scheme we adopted in [28].

Gaussian waveforms are selected for mapping as they are the most localized waveforms

in both time and frequency [58]. A basic Gaussian waveform g(t) is first obtained as

g(t) =
1

(πσ2)1/4
e−t

2/(2σ2), t ∈ (−Tg/2, Tg/2) , (A.1)

with unit energy and centered at the origin in the TF plane. The parameter σ2

affects the waveform’s duration Tg and spread in frequency. When this waveform is

time-shifted by nT and frequency-shifted by kF ,

gn,k(t) = g(t− nT ) ej2πkF (t−nT ), t ∈ (nT − Tg/2, nT + Tg/2) (A.2)

for integer n and k, the resulting Gaussian waveform is highly-localized at the TF

point (nT, kF ). Note that the time shift step T > Tg and the frequency shift step F ,

and thus σ2 in (A.1), are chosen to ensure that the spacing between the time-freqency

shifted Gaussian waveforms is compact and the waveforms are non-overlapping.

For the biosequence-to-waveform mapping, the time shift and frequency shift are

used to uniquely represent properties of the amino acids in the peptide sequence. Each
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of the twenty possible different amino acids in a peptide sequence can be characterized

by a unique one-letter code, as shown in the first two columns of Table A.1. For the

mapping, twenty possible frequency shifts kF , k= 1, . . . , 20, in Equation (A.2) are

used to represent the twenty different types of amino acids, as shown in the third

column of Table A.1. The position of the amino acid in the peptide sequence is

mapped to the time shift parameter nT in (A.2). Considering a peptide sequence

of length N = 20 amino acids, N time shifts are needed to represent the peptide

sequence; the number of time shifts is the same as the length of the sequence. A TF

representation of all possible Gaussian waveforms needed to map peptide sequences

of length N = 10 amino acids is demonstrated in Figure A.1(a).

Considering a peptide sequence p[n] =αn, n= 1, . . . , N , of N amino acids α1 α2

. . . αN−1 αN , the mapping function f [{αn}] = k is used to identify the one-letter code

representing the amino acid αn and its corresponding frequency shift kF from Table

A.1. Note that the range of the mapping function f [{·}] is the set of positive integers,

k= 1, . . . , 20; the domain of the function consists of the one-letter codes from Table

A.1. Using this mapping function, the resulting waveform that is used to map peptide

sequence p[n] is given by

gpept(t) =
N∑
n=1

gn,f [{αn}](t; p) =
N∑
n=1

g(t− nT ) ej2πf [{αn}]F (t−nT ) . (A.3)

The duration of the overall waveform gpept(t) N T + Tg.

An example of a peptide sequence of length N = 10 is given by ARVHHKHVVE; its

corresponding TF representation is shown in Figure A.1(b). The waveform in (A.3)

used to map this sequence is a linear combination of 10 TF-shifted Gaussian wave-

forms. Ten unique time shifts are used in the mapping; the frequency shifts are not

unique since the same amino acid can occur multiple times in a peptide sequence. It

follows that there is only one Gaussian waveform at each time shift but (possibly)
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Amino One-letter Mapped

Acid Code Frequency

Alanine A 20F

Arginine R 19F

Asparagine N 18F

Aspartic acid D 17F

Cysteine C 16F

Glutamic acid E 15F

Glutamine Q 14F

Glycine G 13F

Histidine H 12F

Isoleucine I 11F

Leucine L 10F

Lysine K 9F

Methionine M 8F

Phenylalanine F 7F

Proline P 6F

Serine S 5F

Threonine T 4F

Tryptophan W 3F

Tyrosine Y 2F

Valine V F

Table A.1: Frequency Mapping of Twenty Amino Acids.
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(d) ARV--KHVVE

Figure A.1: Time-Frequency Representation of Gaussian Mapped Waveforms (a)

for Peptide Sequences of 10 Amino Acids in Length; (b) for Amino Acid Sequence

ARVHHKHVVE; (c) for the Same Sequence with Any Substitution in the 4th Amino Acid

position, ARV-HKHVVE; (d) for the Same Sequence with Any Substitutions in the 4th

and 5th Amino Acid Positions, ARV--KHVVE.
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multiple Gaussian waveforms at different frequency shifts; a peptide sequences does

not necessarily consist of all possible 20 amino acids. For the example of the length

10 peptide sequence ARVHHKHVVE in Figure A.1(b), and using the mapping in (A.3)

and the information from Table A.1, α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 = A R V H H K H V V E

and f [{α1}]=20, f [{α2}]=19, f [{α3}]=f [{α8}]=f [{α9}]=1,

f [{α4}]=f [{α5}]=f [{α7}]=12, f [{α6}]=9, and f [{α10}]= 15. Specifically, the three

histidine (H) amino acids in the sequence are represented in Figure A.1(b) by the

three Gaussian waveforms at the same frequency shift 12F and different time shifts,

4T , 5T , and 7T , respectively.

A.5.2 Processing Waveforms of Mapped Peptide Sequences

The peptide sequence mapping in Equation (A.3) results in a linear combination

of non-overlapping Gaussian signals in the TF plane. A linear epitope or small con-

tinuous segment of the peptide sequence can be used as an antigenic determinant to

a pathogen’s antibodies. Identifying epitopes can be seen as searching for potential

sub-sequences that are either repeated very often or are frequently repeated with

significant binding strength on the microarray. After waveform mapping, the detec-

tion and identification problem of epitopes or repeated sub-sequences over a large

number of peptide sequences on a microarray becomes an estimation problem of the

matched Gaussian waveform parameters representing the amino acids in the epitope.

As a result, epitope waveform parameter (EpiWP) estimation can be performed using

matched signal expansion algorithms, such as the MPD [59]. Specifically, identifying

repetitions in the sequences maps to estimating matched parameters in the waveforms.

The MPD is an iterative algorithm that can decompose a waveform into a linear

combination of weighted dictionary waveforms. The dictionary waveforms are formed

by TF shifting a basis waveform that is selected to be well-matched to the analysis
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waveform. The MPD can be applied to the EpiWP estimation problem using the

Gaussian waveform in (A.1) as the dictionary basis signal. Then the epitope mapped

waveform to be decomposed and the MPD dictionary waveforms are in the form of

A.3. In particular, mapped epitope candidate (MEpiC) waveforms are formed by

considering possible amino acid sub-sequences from the peptide sequences. Using the

MPD to decompose an MEpiC waveform results in a small set of MPD features that

uniquely characterize the MEpiC waveforms; those features are then searched over

all mapped peptide sequences on the microarray. A suitably derived metric for the

number of peptide sequences identified to have the matched MEpiC waveform can

then be used to indicate whether the epitope candidate could be related to an epitope

of the antibodies of a particular pathogen.

Assuming an epitope of length L, the MEpiC waveform gepit(t) is given by Equa-

tion (A.3) with N replaced by L, the length of the epitope. 1 At each iteration,

the MPD identifies a single TF shifted Gaussian waveform from the MEpiC wave-

form. This is accomplished by finding the best match between each of the mapped

amino acids forming the MEpiC waveform gepit(t) and possible mapped amino acids

gpept,n,f [{αn}](t) forming the peptide waveform. The MPD requires L iterations to find

a match of the MEpiC waveform within the mapped peptide waveforms. At the start

of the MPD algorithm, the best matched dictionary waveform between the MEpiC

waveform and the mapped peptide amino acid waveforms is obtained as

g
(1)
n1,f [{αn1}]

(t) = argmax
n

∫
gepit(t) gpept,n,f [{αn}](t) dt , (A.4)

where g
(1)
n1,f [{αn1}]

(t) is a Gaussian waveform centered at time shift n1 T and frequency

shift f [{αn1}]F , and n1 is the value of n that yields the maximum correlation value in

1Note that the same notation, αn, is used to denote amino acids in peptide sequences and amino
acids in epitope sequences, which are sub-sequences of the peptide sequences. The specific type of
sequence, peptide or epitope, is differentiated, when needed, using the notation gpept(t) and gepit(t),
respectively.
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(A.4) after the first iteration. At the `th iteration, `= 2, . . . , L, the residual MEpiC

waveform is given by

r
(`)
epit(t) = gepit(t)−

`−1∑
m=1

g
(m)
nm,f [{αnm}]

(t) .

The best matched dictionary waveform between the residual MEpiC waveform and

the mapped peptide waveform is given by

g
(`)
n`,f [{αn`

}](t) = argmax
n

∫
r

(`)
epit(t) gpept,n,f [{αn}](t) dt . (A.5)

The discrete value n` is the sequence position index n that yields the maximum

correlation value in (A.5) at the `th iteration. Note that there are no correlation

coefficients to consider in the expansion as the Gaussian waveforms are normalized to

have unit energy. The algorithm iteratively continues until L iterations, when there

are no more matches left between the MEpiC waveform and the mapped peptide

waveform. After L iterations, the decomposed mapped peptide waveform is given by

g̃(t) =
L∑
`=1

g
(`)
n`,f [{αn`

}](t) + r
(L+1)
epit (t) . (A.6)

The matched MEpiC waveform components are given by the summation term in the

right-hand side of Equation (A.6); the unmatched ones are in the residue r
(L+1)
epit (t).

The Gaussian waveform matching can then be used to obtain an epitope identification

metric in terms of the energy of the decomposed Gaussian waveform components. The

metric, for a candidate epitope, is given by

sepit =

∫ ∣∣∣ L∑
`=1

g
(`)
n`,f [{αn`

}](t)
∣∣∣2dt (A.7)

Note that each mismatch between the MEpiC waveform and the matched peptide

waveform decreases the matching metric by one as the energy of the decomposed

term also decreases by one.

126



The MPD algorithm can also be used for matching MEpiC waveforms which model

biologically relevant substitutions. The matching is performed using the same MPD

algorithm with a modification to the MEpiC waveforms. This is demonstrated in

Figures A.1(c) and A.1(d) for the length 10 sequence ARVHHKHVVE represented in the

TF plane in Figure A.1(b). In Figure A.1(c), the same sequence is considered but

with a substitution allowed by any amino acid in the 4th position. The effect on

the MEpiC waveform is to include a Gaussian waveform at each frequency shift at

the 4th position (or time shift); this implies that any mapped peptide waveform is

matched to the MEpiC waveform at the 4th time shift. The same sequence but with

two substitutions in the 4th and 5th amino acid positions is demonstrated in Figure

A.1(d).

A.6 Epitope Waveform Parameter Estimation

The epitope waveform parameter estimation algorithm consists of three main

steps. During the first step, the candidate epitope and peptide amino acid sequences

are mapped to Gaussian waveforms, following the discussion in Section A.5.1. Dur-

ing the second step, the peptide sequences are down selected by first pre-processing

the peptide sequences, and then applying some selection criteria and thresholding;

the reduced number of peptides after selection are the ones most likely to have been

bound to by antibodies. The third step performs the epitope waveform parameter

estimation using the MPD-based matching approach discussed in Section A.5.2. The

steps are summarized in Figure A.2.
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Figure A.2: Block Diagram Depicting the Algorithm for Epitope Waveform Parameter

(EpiWP) Estimation.

A.6.1 Peptide Selection Method

Pre-processing. Peptide array data from individual disease samples are median

normalized to account for the different binding times required. Some samples require

longer time to bind fully to the array before the sample solution is rinsed off.

Ranking Based on Peptide Selection Criteria. As the number of microar-

ray random peptide sequences, Mp, is very large for efficient processing, the peptide

sequences need to be ranked according to some peptide selection criteria, and then

a selected smaller number of peptides, Ms, can be used as input to the EpiWP es-

timation algorithm. One peptide selection criterion is based on fluorescent intensity

levels; the peptides with the highest fluorescent intensity levels, or levels above some
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background fluorescent intensity threshold, are selected as they correspond to the

peptides that bind to the antibodies. For some datasets, it is possible for antibodies

to bind weakly to peptides that do not have the highest fluorescence values. As a

result, a different peptide selection criterion is needed for these datasets. The cri-

terion is based on finding correlations or dependence between multiple datasets; the

fluorescent intensity levels from multiple datasets can be compared in order to select

peptides with high fluorescence values relative to the comparison data.

The second peptide selection criterion is applied using Pearson’s correlation co-

efficient between the fluorescent intensity levels of the array peptides and a binary

indicator vector. Assuming D microarray datasets for comparison, with Mp peptides

per microarray dataset, the correlation coefficient for the mth peptide, m= 1, . . . ,Mp,

at microarray d̃, is computed as

rd̃,m =

D∑
d=1

(
fld,m − fl̄m

) (
bd̃,d − (1/D)

)
(

D∑
d=1

(
fld,m − fl̄m

)2

)1/2( D∑
d=1

(
bd̃,d − (1/D)

)2

)1/2
(A.8)

where fld,m is the fluorescent intensity of the mth peptide of the dth array,

fl̄m =
1

D

D∑
d=1

fld,m ,

is the fluorescence sample mean of the mth peptide across all D microarray datasets,

and bd̃,d is 1 if d̃= d and 0 otherwise,

One example of a monoclonal antibody for which a different peptide selection crite-

rion can give different estimation results is 2C11. For this monoclonal antibody, using

the fluorescent intensity peptide selection criterion demonstrates that the antibodies

bind weakly to the peptides relative to background binding and cannot be detected at

any threshold. In particular, there are many peptides with high fluorescent intensity

that do not bind to the 2C11 antibody. This is illustrated in Figure A.3(a), where
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Figure A.3: Histogram Plots for the Monoclonal Antibody 2C11 Using Values of (a)

Fluorescence and (b) Correlation. Top Plots Process All Peptide Sequences; Bottom

Plots Process Only Peptides with the Exact Epitope Sub-Sequence.

the figure on the top is a histogram of all of the 330k fluorescent intensity levels

on the array, while the figure on the bottom is a histogram of just the fluorescent

intensity levels of peptides which contain a sub-sequence of the 2C11 epitope. For

this dataset, as there are peptides with higher fluorescent intensities than most of the

peptides with the mAb epitope, the fluorescent intensity selection criterion fails to

provide correct epitope estimates. On the other hand, if the correlation value peptide

selection criterion is applied, an improved epitope estimation performance. This is

demonstrated in Figure A.3(b), where many of the peptides with the largest correla-

tion values are also the peptides which contain epitope sub-sequences. Note that an

epitope sub-sequence is four or more contiguous amino acids from the epitope and

that the fluorescent intensity levels in Figure A.3(a) were logarithmically transformed

to improve visualization.
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Thresholding. Depending on the peptide selection criterion, thresholding is

used to keep Ms � Mp peptide sequences as input to the epitope estimation. A

background fluorescent intensity threshold is used with the fluorescent intensity cri-

terion. With the correlation coefficient criterion, the correlation coefficient values

rd̃,m of the mth peptide, m= 1, . . . ,Mp, on the d̃ array in (A.8) are first ranked in

descending order and then compared to some threshold.

A.6.2 Epitope Estimation Algorigthms

The epitope candidate sequences are derived from the remaining Ppeptide array

sequences obtained after applying the selection method in Section A.6.1. There are

three different methods considered for epitope waveform parameter (EpiWP) estima-

tion, resulting in the detection and identification of the epitope candidate sequen-

ces. The epitope candidate sequences for the EpiWP-1 estimation method include

all possible sub-sequences of length L adopted from the peptide microarray sequen-

ces. The epitope candidate sequences for the EpiWP-2 estimation method include all

sub-sequences of length L from the peptide array sequences, together with the sub-

sequences formed by allowing for a single amino acid substitution (by any other type of

amino acid). The epitope candidate sequences for the EpiWP-3 estimation method

include all sub-sequences of length L from the peptide array sequences, together

with the sub-sequences formed by allowing for two adjacent amino acid substitutions.

Note that the allowable substitutions in EpiWP-2 and EpiWP-3 are only possible any

amino acid in a sub-sequence that is not at the amino-terminus or N-terminus (start

of an amino acid chain) or the C-terminus (end of amino acid chain).

The main steps of the estimation algorithm are summarized in Algorithm 13.

Using the down-selected Ms peptide sequences, the MPD is used to compare the

peptide sequences to Me epitope candidate sequences. The overall matching score
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uses the metric in (A.7) and the number of peptide sequences that include each of the

Me epitope candidate sequences. Algorithm 14 finds the maximum match between

two sequences with dissimilar lengths. The two sequences are peptide array sequence

of length N and the epitope candidate sequence of length L, where N > L. The

algorithm first maps both sequences to Gaussian waveforms and then uses the MPD

to perform the matching. The number of maximum matches found using Algorithm 13

is recorded, and epitope candidate sequences are sorted in descending order according

to the number of peptides they were found in. The epitope candidate sequences that

occur most frequently are the top epitope estimates.

Algorithm 13 Matches between Peptides and Epitope Candidate Sequences.

for i = 1 to Ms do

for j = 1 to Me do

Run Algorithm 14 on the ith peptide and jth epitope candidate sequences

Record the number of maximum matches for each epitope candidate sequence

end for

end for

Algorithm 14 Maximum Match between Two Sequences.

for n= 1 to N − L+ 1 do

Map peptide sequence p[m], m=n, . . . , n+ L− 1, onto TF waveforms gpept(t)

Map epitope candidate sequence e[l], l= 1, . . . , L, onto TF waveforms gepit(t)

Perform MPD using gpept(t) and gepit(t) to find score sepit

end for
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A.6.3 Evaluation of Epitope Estimation

In order to evaluate the performance of the random-sequence peptide microarray

with the EpiWP estimation method for identifying antibody epitopes, eight mono-

clonal antibodies (mAbs) were acquired. The mAbs used have known epitopes that

were used to probe the microarray. Monoclonal antibodies are used in the evaluation,

instead of blood samples from patients, as the mAbs bind to a single linear epitope

selected for high specificity for the antigen [44, 60-63]. On the contrary, epitopes for

most diseases are not known; even if the epitope for a single strain of a disease is

known, it may not be known for the specific strain of the analyzing sample. The

mAb random-sequence peptide microarray data were provided by CIM [56]; each mi-

croarray sample consists of 330,000 peptide sequences (330k chip). Although this is

a large number of sequences on the array, only a small percentage of the sequences

bind to different mAbs.

Table A.2 provides a list of the eight mAbs used to demonstrate epitope waveform

parameter estimation. The known epitope of each mAb is provided in the third

column of this table. The last column provides the estimated epitopes with varying

lengths. The EpiWP estimation method performed well for all but the monoclonal

antibody ab8 epitope. Based on this result, the mAb epitope estimation performance

is about 88% accurate.

For most of the monoclonal antibody samples, the EpiWP-1 estimation method

performs well in estimating the true epitope. Two examples of this are for estimating

the epitopes of mAbs 2C11 and ab1. The true epitope of the monoclonal antibody

2C11 is NAHYYVFFEEQE; using EpiWP-1 finds YVFFEEQE as the epitope. Similarly, the

epitope for the monoclonal antibody ab1 is RHSVV; EpiWP-1 estimates epitope RHSVV.

The top results for these two epitopes are shown in Figures A.4(a) and A.4(b). In
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Antibody Full Estimated

Epitope Epitope

2C11 NAHYYVFFEEQE YVFFEEQE

4C1 QAFDSH AFDSH

A10 EEDFRV EDFRV

Ab-1 RHSVV RHSVV

Ab-8 SDLWKL -

DMLA AALEKD ALEKD

FLAG DYKDDDDK KDGD

HA YPYDVPDYA YDAPE

Table A.2: Epitope Estimates for Eight Monoclonal Antibodies.

some of monoclonal antibodies, an obvious substitution but not the exact epitope

is found. This is demonstrated in Figures A.5(a) and A.5(b) for the monoclonal

antibody HA with true epitope YPYDVPDYA. The EpiWP-1 estimation method results

in candidate epitopes YDAPE and PYDAP. Allowing one amino acid substitutions as in

estimation method EpiWP-2, the candidate epitopes are -YDAP and YDAP-. One way

to interpret this is that the Y in YDAPE is not required for binding, nor is the final P

in PYDAP; while the Y in YDAPE is part of the true epitope, the second P in PYDAP is

not.
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Figure A.4: Top Epitope Estimates Using Estimation Method EpiWP-1 for Antibody

(a) 2C11 (True Epitope NAHYYVFFEEQE) and (b) ab1 (True Epitope RHSVV).

A.6.4 Comparison with Existing Epitope Identification Methods

Existing sequence alignment approaches [10, 21-26, 64] can potentially be used

for the epitope estimation problem, in order to find similarities between peptide and

epitope sequences. However, most of these approaches were optimized for very long

amino acid sequencers and not for short-length peptide sequences [65]. An approach

for finding a motif or pattern among the peptides is a direct sequence analysis ap-

proach that compares peptide sequences to epitope sequences based on their primary

structure. This was demonstrated in [65] using data obtained using phage display

technology; the scoring used for this approach is similarity between the sequences.

Other approaches use pattern graphs, combinatorics for motif finding, exhaustive

length and substitution analysis, and optimization methods to find motifs by maxi-

mizing scoring functions [66-74]. A most recent statistical based approach arranges

peptides in position specific scoring matrices and computes their mean value for each
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Figure A.5: Top Epitope Estimates for Antibody HA (True eEpitope YPYDVPDYA)

Using Estimation Method (a) EpiWP-1 and EpiWP-2.

position; a threshold value is then used to identify positions where the mean differs

significantly [75].

Directly applied to immunosignaturing, a method called GuiTope was presented

in [47] for mapping random-sequence peptides to protein sequences. The method is

based on using a scoring matrix and a local alignment approach that compares simi-

larity results using a score threshold. Using GuiTope, monoclonal antibody epitopes

were estimated with about 74% to 81% accuracy.

A.7 Efficient Implementation of Epitope Estimation

The aforementioned pathogen detection and identification methods need to be re-

peated tens to hundreds of thousands of times to scan through all necessary peptide

sequences when estimating a single epitope. Therefore, for this method to be useful, it

is very important to decrease the runtime of the epitope estimation algorithm. When

implemented, the algorithm spends most of its time computing the multiplication
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in Equation (A.5). The inner product computational step involves sample multipli-

cation and summation of all products. Reducing the number of multiplications can

drastically decrease the algorithm’s runtime, as discussed next.

Reducing Number of Multiplications. To increase code efficiency, the time

domain waveforms described in Section A.5.1 can be constructed by selecting relevant

parameters T , F , and σ2 so that the Gaussian waveforms are close together in TF

but are non-overlapping. While the Gaussian waveforms are theoretically non-zero

across all time, setting T = 3σ2 and fixing the time-bandwidth product to be T F = 1,

is sufficient for the accuracy required in this application. The resulting Gaussian

waveforms can also be sampled at Nyquist to minimize the number of samples needed

to uniquely represent each frequency shift.

Frequency Domain Implementation of Epitope Estimation. Even after

taking steps to reduce the number of time domain multiplications, it is still more

efficient to represent the waveforms in the frequency domain, where each waveform is

sampled once at the location of all the frequency shifts. Because the Gaussian wave-

forms in the dictionary are non-overlapping, each of the frequency domain samples

will either be a 1 or a 0.

Eliminating all Multiplications. For the EpiWP-1 estimation method, the

multiplications in Equation (A.5) can be eliminated simply by counting the number

of Gaussian waveforms, in each epitope amino acid and peptide amino acid waveform

pairs, that occur at the same TF location. When matched in the TF plane, a maxi-

mum matching score is obtained when all waveform pairs share the same TF support.

The frequency domain implementation can still be used as it uses the smallest number

of samples.
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A.8 Conclusions

This work presented advanced signal processing approaches to analyze immunosig-

nature biosequences. Immunosignaturing technology uses random sequence peptide

microarrays to assess health status by associating antibodies from a biological sam-

ple to immune responses. The immunosignature processing requires the detection

and identification of antibody epitopes from the microarray peptide sequences to

discriminate between pathogens and diagnose diseases. This is achieved by first map-

ping characteristics of peptide and epitope sequences to parameters of highly-localized

Gaussian waveforms in the time-frequency plane. After down-selecting the large num-

ber of sequences from a microarray, time-frequency based matching methods are used

to estimate epitope candidates corresponding to specific pathogens. The performance

of the novel epitope detection and identification method is demonstrated using eight

monoclonal antibodies. The candidate sequences that resulted in a stronger response

for one antibody over the others corresponded well with the actual epitope sequences

that generated the monoclonal antibodies.
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