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ABSTRACT

Traditional methods for detecting the status of traffic lights used in autonomous

vehicles may be susceptible to errors, which is troublesome in a safety-critical envi-

ronment. In the case of vision-based recognition methods, failures may arise due to

disturbances in the environment such as occluded views or poor lighting conditions.

Some methods also depend on high-precision meta-data which is not always avail-

able. This thesis proposes a complementary detection approach based on an entirely

new source of information: the movement patterns of other nearby vehicles. This

approach is robust to traditional sources of error, and may serve as a viable sup-

plemental detection method. Several different classification models are presented for

inferring traffic light status based on these patterns. Their performance is evaluated

over real-world and simulation data sets, resulting in up to 97% accuracy in each set.
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Chapter 1

INTRODUCTION

Autonomous vehicles are a promising technology, potentially yielding many so-

cietal benefits such as fewer traffic-related fatalities, reduced pollution and energy

consumption, and greater mobility to those incapable of operating a standard auto-

mobile. However, these are complex systems that must be capable of interacting with

human-operated automobiles, pedestrians, and infrastructure, not to mention other

intelligent systems. Unsurprisingly, there are significant challenges that must be over-

come before autonomous vehicles can be considered safe for widespread introduction

into present-day road networks.

One such challenge is the ability to safely navigate complex environments such

as intersections while maintaining compliance with local traffic regulations. Vehi-

cles and pedestrians with varying directions of travel cross paths while being guided

by traffic lights that are optimized for identification by human drivers. This issue

has been partially addressed with the introduction of intelligent traffic light systems

which actively communicate their signal to nearby vehicles through Vehicular Ad Hoc

Networks [23, 11]. Nonetheless, as observed by [21], this remains an open problem as

such systems have thus far been limited to small-scale academic experiments and a

timely integration into current road networks seems unlikely.

It is for this reason that recent work has focused on the real-time identification of

traffic light signals via vision-based systems [9]. This approach can work well but is

subject to errors that can lead to the misidentification of traffic light signals. These

errors can arise due to poor lighting conditions which interfere with the camera sensor

or an obstructed view resulting from a dirty lens or another vehicle, as demonstrated
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Figure 1.1: Example of traffic light occlusion by other vehicles. The light is obscured

in the top image but becomes visible in the bottom image as the traffic starts moving.

in Fig. 1.1. This can potentially lead to disastrous results – an autonomous vehicle

erroneously passing through an intersection could find itself in a situation in which it

is unable to avoid a collision.

1.1 Contributions

This thesis proposes a complementary traffic light identification system that uses

an alternative source of information: the behavior of other nearby vehicles based on

positional data. Conceptually, the system infers the status of a traffic light from

the movements of other vehicles around or in the corresponding intersection. The

advantage of such a system is not that it has fewer failure-inducing cases than a

vision-based system, but rather that they are different failure cases. Ideally, this

system will be paired with a vision-based one such that they complement each other

and reduce the total points of failure.
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Consider the following scenario: a traffic light is non-functional due to an extenu-

ating circumstance. As is typical on US roads, a law enforcement officer is directing

traffic through the intersection. A typical vision-based recognition system is of no

help in this scenario, however, by observing when other vehicles start to pass through

the intersection and from which direction, the proposed system can infer which traffic

the officer is allowing to pass through the intersection.

Similarly, consider a situation in which a vehicle stops at a red light behind a

larger vehicle that is occluding the traffic light. Suppose the preceding vehicle suffers

a mechanical failure and is blocking traffic; the traffic light cycles through its phases

and surrounding traffic bypasses the offending vehicle in other lanes. Once again, a

vision-based system would not be of assistance in this scenario, however, the proposed

system may indicate that the traffic light is green and therefore alternative action

should be taken.

The contributions of this thesis are as follows: we formally define the problem,

present a system for predicting the state of a traffic light based on the spatial move-

ment of nearby vehicles, and evaluate its effectiveness in simulated and real-world

conditions.

1.2 Summary of Publications

A subset of the most salient results from this thesis has been submitted in the

following publication and is currently under review.

• J. Campbell, H.B. Amor, M.H. Ang Jr. and G. Fainekos, Traffic Light

Status Detection Using Movement Patterns of Vehicles under review in

2016 IEEE 19th International Conference on Intelligent Transportation Systems

(ITSC), 2016 [4]
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The following publications are not necessarily directly related to this thesis topic,

however they represent a significant amount of time and effort. Therefore, this section

will briefly describe the publications that the author has contributed to during the

course of this degree.

• K. Kim, J. Campbell, W. Duong, Y. Zhang and G. Fainekos, DisCoF+:

Asynchronous DisCoF with Flexible Decoupling for Cooperative Pathfind-

ing in 2015 IEEE International Conference on Automation Science and Engi-

neering (CASE), 2015 [19]

This work expands on the previously introduced distributed cooperative multi-

robot path planning algorithm DisCoF [36]. In DisCoF, robots initially plan

independently and dynamically couple together into groups when there is risk

of a path conflict, which occurs when more than one robot attempts to occupy

the same position at the same time. When coupled, robots plan together so as

to avoid these conflicts, yet by coupling only when necessary the search space

remains small. The extension, DisCoF+, adds the notion of decoupling in which

robots are no longer grouped together when the risk of a path conflict passes.

Additionally, the prior requirement that robots must operate in synchronized

time steps has been removed, allowing asynchronous planning. My contribution

to this work was an experimental simulation in which multiple iRobot Creates

employed the DisCoF+ algorithm to cooperatively plan in an obstacle-filled

environment in the Webots [24] simulator.

• U. Gupta, J. Campbell, U.Y. Ogras, R. Ayoub, M. Kishinevsky, F. Pa-

terna and S. Gumussoy, Adaptive Performance Prediction for Integrated

GPUs to appear in 2016 IEEE/ACM International Conference on Computer

Aided Design (ICCAD), 2016 [15]
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In this paper we introduce an adaptive prediction model based on Recursive

Least Squares which is capable of accurately predicting GPU performance in

an efficient manner at run-time. This is particularly relevant for power manage-

ment in embedded devices such as smart phones, as an accurate performance

model enables Dynamic Voltage and Frequency Scaling (DVFS) algorithms. My

contribution was to assist in the development of the prediction model, perform

experiments on a physical platform, and analyze the results.

• J. Campbell, C.E. Tuncali, P. Liu, T.P. Pavlic, U. Ozguner and G. Fainekos,

Modeling Concurrency and Reconfiguration in Vehicular Systems: A

π-Calculus Approach to appear in 2016 IEEE International Conference on

Automation Science and Engineering (CASE), 2016 [5]

J. Campbell, C.E. Tuncali, T.P. Pavlic and G. Fainekos, Toward Model-

ing Concurrency and Reconfiguration in Vehicular Systems in 9th In-

teraction and Concurrency Experience, Satellite Workshop of DisCoTec 2016,

2016 [6]

This work introduces a hierarchical modeling framework for cooperation among

autonomous vehicles. Supervisory communication and control is handled by a

high-level layer via π-calculus expressions, and low-level dynamics and contin-

uous control are defined by hybrid automata. My contribution was the initial

development of the framework, definition of the π-calculus expressions and hy-

brid automata for a vehicle platoon case study, and experimental analysis of

the framework.

5



Chapter 2

RELATED WORK

Vision-based traffic light detection systems have been widely analyzed in previous

works. The majority of these works have focused purely on image recognition [25, 34,

22]. Of particular interest, however, are those that seek to minimize the risk posed by

errors inherent to vision-based detection systems. In [9], the authors propose using a

detailed map of traffic lights to act as prior knowledge so that the detection system

knows when it should be able to see traffic lights. If traffic lights are not detected

at an expected position, the autonomous vehicle can take preventative action such

as slowing down under the assumption that the light is red or yellow. If the light

is actually red or yellow, then this course of action is the correct one. If the light

is actually green then the vehicle slowing is an annoyance at best, and results in a

collision with human-operated vehicles due to unpredictability at worst. If the system

has a poor detection rate this could start to degrade the flow of traffic along a road

as vehicles slow down for a green light. In addition, this approach requires detailed

prior map knowledge of the traffic lights.

Similarly, in [21] the authors acknowledge the difficulties in building a purely

vision-based traffic light detection system and so augment theirs with prior map

knowledge as well as temporal information. While yielding good results, the system

still fails to identify traffic light signals in certain cases. Indeed, the authors indicate

that a possible approach for improvement would be to introduce 3-dimensional LIDAR

data into the mix in order to improve recognition of the traffic lights themselves.

In [26], the authors use the movement patterns of pedestrians to apply semantic

labels to the environment. They infer the location of pedestrian crossings, sidewalks,

6



and building entrances and exits based on the activity patterns of pedestrians. This

is similar in spirit, if not in execution, to the labeling of traffic lights based on vehicle

movement patterns introduced in this thesis.
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Chapter 3

PROBLEM FORMULATION

We can formalize the problem from a probabilistic perspective as follows: let Z

be a discrete random variable which represents the state of a traffic light with respect

to a target vehicle. The specific value of Z is denoted by z, and in this work can take

the value of either green or red. The goal is to then determine the probability that

a traffic light is either green or red with respect to our target vehicle at a specific

point in time t: p(Zt = zt). To simplify the notation, from this point on we will refer

to this probability as simply p(zt).

Clearly we cannot determine an accurate probability for p(zt) without additional

A

By

x

1
2

3

Figure 3.1: A scenario in which vehicle A’s current position is ambiguous, as there

are multiple paths it could have taken which could be used to infer different traffic

light states.
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information. Therefore, we would like to consider observations of nearby vehicles

when determining this probability. The simplest approach is to consider the spatial

position of every nearby vehicle independently at each point in time. We define the

state g of vehicle n at time t as a vector:

gn,t =

[
xn,t, yn,t

]
(3.1)

If we place the target vehicle at the origin of a Cartesian coordinate plane with

the positive x-axis extending towards the front of the vehicle and the positive y-axis

extending towards the left-hand side of the vehicle, then x is the distance along the

x-axis from the target vehicle to the observed vehicle n. Similarly, y is the distance

along the y-axis to vehicle n. This yields a conditional probability of the following

form, where N is the total number of observable vehicles at time t.

p(zt|g1,t,g2,t, ...,gN,t) = p(zt|g1:N,t) (3.2)

However, this approach has a significant drawback which is visualized in Fig. 3.1.

If vehicle A is an observable vehicle at time t, it may have taken several different

paths to arrive at this position: path 1, 2, or 3. Each of these paths could result in

a different traffic light state zt. For example, if vehicle B is our target vehicle and

we are observing A, zt could hold the value of green if vehicle A followed path 2, red

for path 1, and either green or red for path 3 (depending on local traffic regulations

for right-on-red turns). This leads to an ambiguous situation, in which the state of

vehicle A at this point in time does not necessarily help us determine zt.

We can alleviate this problem if we consider a temporal trace of the position. We

could alter the vehicle state to include information on the position over time in the

form of velocity.

9



gn,t =

[
xn,t, yn,t, ẋn,t, ẏn,t

]
(3.3)

This is susceptible to the same ambiguity problem, however. In the example from

Fig. 3.1, if path 2 resulted from A accelerating through a light which recently turned

green, then the velocity at time t could be roughly the same for all paths. The same

holds true when acceleration is considered.

gn,t =

[
xn,t, yn,t, ẋn,t, ẏn,t, ẍn,t, ÿn,t

]
(3.4)

A more effective approach is to consider the state of vehicle n not just for a single

time step t, but rather over a time window, i.e., t− 1, t− 2, and so on. If we consider

a window size of T time steps in the past, then we can represent the state of vehicle

n as a time series s at time t.

sn,t = gn,t,gn,t−1, ...,gn,t−Tn (3.5)

p(zt|s1,t, s2,t, ..., sN,t) = p(zt|s1:N,t) (3.6)

If observations are ideal, then the entire path for vehicle A is now taken into

account and there is no more ambiguity. In practice, this may not be the case and

the effective window size Tn may vary from vehicle to vehicle. For example, A may

only enter the sensor range of our target vehicle once it reaches the position depicted

in Fig. 3.1. We now provide a formal problem statement and define our assumptions.

Problem: Given a set of observations L of nearby vehicles, determine p(zt|L).

1. L is either a set of independent vehicle states g, or a set of independent series

of states s.

10



2. Each series s may contain a variable number of states, however, they must

correspond to sequential time points.

3. At least one vehicle must be observed for at least one time step.

In practice, Assumption 2 is not strong as this is implicitly satisfied by a Bayesian

tracking algorithm in this work.

11



Chapter 4

METHODOLOGY

The problem we have defined is in general known as a classification problem: given

an input, classify it by applying a discrete label. In this case, the input to our problem

is a set of vehicle observations L and we wish to label it with a discrete value zt, either

green or red. This work tackles the classification problem via a method known as

supervised learning [3]. In supervised learning, an existing data set of labeled inputs

is used to infer the label of other inputs. For example, we could collect the labeled

data set – known as a training set – by observing nearby vehicles at an intersection

and applying labels by directly observing the traffic light. We can then use this data

set to infer the labels for future observations where the traffic light is not observable.

The rest of this chapter will provide an introduction to several classification methods

and how they are employed in this work. For simplicity, the examples will assume

the input data is the most basic vehicle state as defined in Eq. 3.1.

4.1 Nearest Neighbor

So how can the training data be used to infer labels for other observations? The

simplest method for doing so is to directly compare the new observation to the train-

ing data and use the most populous label among the closest training inputs [7], as

measured by a distance metric. Figure 4.1 shows the three closest neighbors to the

new observation A as determined by euclidean distance. Once the neighbors are

identified, it is a simple matter of ”majority rule”; the label that is used by the most

neighbors is applied to the new point. In Fig. 4.1, two of the three closest neighbors

are green, therefore we say that the new point’s label is also green. This method is

12
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Figure 4.1: Left: We would like to classify the new observation point, A. Right: the

three nearest neighbors to A are circled. Since the majority of neighbors are labeled

green, then so too is A.

known as k-Nearest Neighbors (k-NN), where k is the number of neighbors that is

used – typically an odd number so that a majority is guaranteed. One way to view

this method is that it implicitly divides the input space up into discrete regions, with

each region corresponding to a specific label [3]. New points are given the label that

corresponds to the region in which they lie. The borders that separate regions are

known as decision boundaries.

The disadvantages of this method are two-fold: k-NN is not probabilistic, meaning

that it infers zt directly given L and not p(zt|L); and k-NN is a special type of non-

parametric model that must store and operate over all training data instances [3].

The latter point is especially problematic, as we would like a model that can operate

in real-time on an autonomous vehicle. This places an upper limit on how many

training data instances can be stored and may adversely affect the ability of k-NN to

generalize.

13



4.2 Artificial Neural Networks

Therefore, we turn to parametric models whose computational and storage re-

quirements for classification do not scale with the number of training data instances.

Artificial neural networks are parametric mathematical models capable of accurately

approximating any continuous function [10]. More specifically, it has been previously

shown that ANNs can accurately approximate a Bayesian posterior [27], depending

on the network complexity and cost function. This indicates that unlike k-NN, ANNs

can efficiently approximate p(zt|L), making them an ideal classification method for

this problem.

4.3 Single-layer Perceptron

Single-layer perceptrons [28] are the simplest type of artificial neural network [16].

The general idea is that we want to construct a function – known as a discriminant

– which accepts an input and produces a classification label. If there are only two

labels, the most basic discriminant is simply a linear combination of the inputs [2].

on,t(gn,t) = w0xn,t + w1yn,t = wTgn,t (4.1)

If on,t > 0, then the input is given one label; for on,t < 0, the other label. The

coefficients w0 and w1 are referred to as weights and are considered parameters of the

model. These coefficients are determined during a training phase which utilizes the

training data set. This model is easily extended to an arbitrary number of labels

oz,n,t(gn,t) = wT
z gn,t (4.2)

where the label is determined by the largest value of o

max oz,n,t (4.3)

14



xn,t

yn,t

ogreen,n,t(gn,t)

ored,n,t(gn,t)

Input Output

Figure 4.2: Single-layer Perceptron.

This model can be viewed in terms of layered network of nodes as shown in Fig. 4.2.

For a single-layer perceptron, there is only one layer which performs computations:

the output layer. This is also referred to as a feedforward neural network (FFNN)

since the network connections are acyclic and directed from input to output.

This model can be further generalized by passing the linear combination of inputs

to a nonlinear activation function f .

oz,n,t(gn,t) = f(wT
z gn,t) (4.4)

It has been shown [27, 2] that for a logistic sigmoid or softmax activation function

the outputs accurately approximate a posterior probability. Thus, the single-layer

perceptron yields the desired probability

p(zt|gn,t) = f(wT
z gn,t) (4.5)

However, owing to its simplicity, the single-layer perceptron is limited in its classi-

fication ability. Though a nonlinear activation function is used, it is monotonic [2].

The result is that the single-layer perceptron is a linear discriminant and can only

15
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Figure 4.3: Left: a linearly separable data set. Right: a linearly inseparable data set.

generate linear decision boundaries. This makes it relatively ineffective unless the

training data is linearly separable, i.e., points with different labels can be separated

by a straight line as in Fig. 4.3.

4.4 Multilayer Perceptron

A multilayer perceptron [29] is simply a single-layer perceptron with one or more

additional layers between the input and output. By taking linear combinations of the

inputs more than once in succession, multilayer perceptrons are capable of producing

nonlinear decision boundaries. In fact, with just one additional layer (two layers

total) a multilayer perceptron can approximate any continuous function [10]. These

additional layers are referred to as hidden layers, and result in a network such as in

Fig. 4.4. Following the notation in [3], the linear combination of inputs for any given

node of a multilayer perceptron can be generalized as

ak =
∑
j

wk,jaj (4.6)
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Figure 4.4: Multilayer Perceptron.

which is transformed by a nonlinear activation function f to yield the output value

of node k

ok = f(
∑
j

wk,joj) (4.7)

where ok is the output value of node k with j connecting nodes from the previous

layer. By applying this equation recursively, it is possible to find the output values

of the network.

It was previously mentioned that the weights of a network are determined during

a training phase. More specifically, we use an algorithm that feeds the network inputs

from the training data and compares the network’s output to the actual output. The

network weights are then iteratively adjusted in order to minimize the output error.

This is commonly accomplished with an algorithm known as backpropagation [30].

Backpropagation consists of two steps: propagate the training inputs forward

through the network starting at the input layer to compute the output of every node,
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then propagate the error backwards through the network starting at the output layer

and use it to update the weights of each node. The first step simply requires applying

Eq. 4.6 to each node for every input in the training data. For the second step we must

first determine a suitable measure of error for the network. With a softmax activation

function used in the output layer of the network, the error can be expressed as the

cross entropy of K network outputs and the expected outputs t from a single training

instance [3].

E =
K∑
k=1

tklog(ok) (4.8)

We are interested in the partial derivative of this error with respect to the network

weights so that we can evaluate how the weights contribute to the error.

∂E

∂wk,j

=
∂E

∂ak

∂ak
∂wk,j

= δkoj (4.9)

The node error δ is what we will use to modify the weights of the network. For

nodes in the output layer, this is simply the difference in the network outputs and

the expected output.

δk = ok − tk (4.10)

In the hidden layers, it is expressed as the differentiated nonlinear activation function

multiplied by the weighted errors in the subsequent nodes (remember that we are

propagating backward).

δj = f ′(aj)
∑
k

wk,jδk (4.11)

Once δ has been found for each node in the network, it is used to calculate the change

in weights.

∆wk,j = αδkoj (4.12)
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Figure 4.5: Recurrent Neural Network

4.5 Recurrent Neural Networks

The examples until this point have used the independent vehicle states g defined

in Eq. 3.1 as inputs. So how can we classify with the time series of states s defined in

Eq. 3.5? In a feedforward neural network such as a multilayer perceptron, the nodes

are not allowed to form cycles; inputs propagate through the network layers from the

input layer to the output layer. This is suitable for classification when separate input

vectors are treated as independent, however, it is not ideal when we would like to

consider some inputs as dependent and use multiple inputs to derive a single output.

This is the case when approximating the posterior probability in Eq. (3.6), as it is

conditional on a time series of vehicle states sn,t as defined in Eq. (3.5). This can
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be accomplished with recurrent neural networks (RNNs) [8, 18], which are a variant

of feedforward networks that are allowed to form cyclical connections among hidden

layer nodes as shown in Fig. 4.5. Simply speaking, this allows an RNN to produce an

output from a sequence of prior inputs, e.g., the time series in Eq. (3.5), as opposed

to a single input.

The self-connections in the hidden layer nodes are associated with a time delay

and essentially act as a sort of memory to retain the hidden layer output values for

the previous input. Suppose we have the first input of a time series at t− Tn. Each

hidden layer node will receive the input values along with its previous output value

from the self-connection. However, since this is the first input there is no previous

output value and so it receives the initial state instead. The final network output at

this point is typically discarded, since we are only interested in the output once all

inputs in the series have been processed. For the next input at t−Tn + 1, the hidden

layer nodes receive the new inputs as well as the output values they calculated for

t − Tn. This process continues until all inputs have been processed, at which point

the network output is used.

Recurrent neural networks are still trained with backpropagation, however, an

extra step [35] is necessary due to the cyclical connections. A copy of the network

is made for each input in the time series and the cyclical connections are replaced

with a connection to this copy, essentially forming a multilayer perceptron with many

layers. This is known as unfolding and allows backpropagation to function just as it

would without the cyclical connections.

We use RNNs to estimate p(zt|sn,t) by generating a single output zt from a se-

quence of feature vectors gn,t, which together form the time series sn,t of state vectors

for vehicle n. This is known as sequence classification [13, 12]. However, this is not

the same as the posterior probability defined in Eq. (3.6) which is conditional on all
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observed vehicles, not just one. The feature vector to our network must be a constant

size. This rules out simply concatenating the feature vectors of all observed vehicles,

since the number of observed vehicles may vary at any given time. Instead, we can

take the mean probability of p(zt|sn,t) for all observed vehicles at time t and use that

as an approximation.

p̂(zt|s1:N,t) ≈
∑N

n=1 p(zt|sn,t)
N

(4.13)

4.6 Bidirectional Long Short Term Memory Networks

A variant of the RNN known as the Bidirectional Long Short Term Memory

(BLSTM) network was shown to be exceptionally well-suited for sequence classifica-

tion [14]. Standard RNNs suffer from a problem known as the vanishing gradient [1],

in which the hidden layer node weights for previous inputs converge to zero over time,

thus preventing an RNN from effectively learning from inputs that span a long time

period. The Long Short Term Memory (LSTM) [17] network was designed to mitigate

this problem by introducing the concept of LSTM nodes that are more effective at

retaining previous values. Long Short Term Memory nodes are themselves a compos-

ite of connected nodes, and they replace (some) standard nodes in a recurrent neural

network.

The bidirectional aspect of a BLSTM network is a concept taken from Bidirec-

tional Recurrent Neural Networks (BRNNs) [32]. It is sometimes practical to take

future inputs into account when making predictions with recurrent neural networks.

This can be achieved by delaying the output when training a network; for example,

using a delay of M with the training input/output pair s1:N,t/zt−M . However, it was

found [32] that if this delay is too large then it adversely affects the network predic-

tion accuracy, thereby limiting how far into the future a network can account. An
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alternative approach is to train an RNN with a reversed time series input, e.g., sN :1.

This led to the Bidirectional Recurrent Neural Network in which two RNNs – one

processing the input series forward in time and one backward in time – are connected

to the same output layer. This architecture yields greater prediction accuracy as it

predicts based on past inputs as well as future inputs.

Several existing classification methods have been discussed in this chapter. Of

these, the Nearest Neighbor, Feedforward Neural Network (Multilayer Perceptron),

and Bidirectional Long Short Term Memory Networks have been identified as the

most promising for finding the posterior probability established in Chapter 3. These

methods will be empirically evaluated and analyzed in Chapter 5.
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Chapter 5

EXPERIMENTS

5.1 Experimental Setup

In order to evaluate how well these methods can approximate the posterior prob-

abilities, we collected two sets of data with which to perform experiments. The first

set was generated from real-world sensor data collected by an autonomous vehicle in

Singapore. The second set was generated by the SUMO traffic simulator [20]. The

methodology behind this data collection is discussed in this chapter, along with the

architecture of all classifiers used in experiments.

5.2 Real Data Collection

As this work is targeting autonomous vehicle applications, it is a priority to test

against real-world data collected by an autonomous vehicle. While synthetic data sets

are suitable for a proof of concept, there is an unknown factor in regards to whether a

system will work as designed in a real environment, especially so with a safety-critical

system. Towards that end, we collected data with the Shared Computer Operated

Transport autonomous vehicle platform at the Singapore-MIT Alliance for Research

and Technology’s (SMART) Autonomous Vehicles lab.

Data collection was performed in Singapore, at 56 intersections within the vicin-

ity of the National University of Singapore campus. Spatial point cloud data was

collected with a SICK LMS 151 LIDAR sensor operating at 50Hz. As there is no

ground truth available with which to form the vehicle time series, the data was fed

through a two-stage vehicle tracking algorithm.
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Figure 5.1: The autonomous vehicle that performed data collection.

The first stage [33] decomposes the point cloud data into a subset of clusters, in

which each cluster consists of a collection of points in close proximity to each other.

The clusters are then tracked over several measurement frames to yield an average

spatial position and a velocity vector for a given point in time.

The second stage treats these independent measurements as observations to a

particle filter-based multi-target tracking algorithm [31]. In this algorithm, particle

filters are used to model distinct vehicle tracks. Each new observation is associated

with the particle filter that has the highest likelihood of producing that observation.

Vehicle time series are then derived from the particle filters and down-sampled to

10Hz. Supervised labels were manually generated from camera inputs collected si-

multaneously with the LIDAR data. This process yielded a data set consisting of

1011 unique time series.
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Figure 5.2: The SUMO road network for an intersection in New York City.

5.3 Simulated Data Collection

Despite the inherent value of real-world data, there is a limit to how much can

be feasibly collected. Additionally, due to practical constraints, we could only collect

data from nearby intersections which limits how well we can generalize. Therefore,

we turned to synthetic data generated with the SUMO traffic simulator [20]. Road

networks for 13 intersections were generated from OpenStreetMap data: 3 in Tempe,

Arizona, 2 in New York City, New York, and 8 in Singapore. An example of an

intersection in New York is shown in Fig. 5.2.

Simulations were run in which traffic passed through the intersections from each

direction and either traveled straight, turned left, or turned right. The vehicles were

uniformly distributed to one of three behavior models: aggressive, average, and sub-

missive. These behaviors were manually defined and adjusted user-facing parameters.

Table 5.1 lists the parameters for all behaviors.

SUMO is capable of writing floating car data (FCD) output, which contains the

position, velocity, and heading of every vehicle at each sampling interval for the

duration of the simulation. To correspond with the real data set, the sampling interval

was fixed to 10Hz. This data was then transformed with respect to a chosen target

vehicle, and used to generate state vectors for each other vehicle within a 50m sensor
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Parameter Aggressive Average Submissive

Acceleration 3.0m/s2 1.0m/s2 1.0m/s2

Deceleration 7.0m/s2 5.0m/s2 4.0m/s2

Speed Factor 1.5 1.0 0.9

Speed Deviation 0.3 0.2 0.2

Minimum Gap 1.0m 2 3

σ 1.0 0.5 0.5

τ 0.5s 2.0s 3.0s

Maximum Speed 80m/s 70m/s 60m/s

Impatience 1.0 0.5 0.1

Table 5.1: SUMO parameters for vehicle behaviors. The current speed is obtained by

multiplying the road’s speed limit by a sample from a normal distribution centered

at Speed Factor with a standard deviation of Speed Deviation. Minimum gap is

the following distance between a vehicle and its leader. Sigma is the variability in a

vehicle’s behavior. Tau is the following time between a vehicle and its leader, e.g. 3s.

Impatience is the vehicle’s disposition to forcibly changing lanes in front of others.

range of the target. Since the FCD data includes a vehicle identifier, these states

can then be assembled into a time series for each vehicle. These time series’ were

segmented in order to coincide with the states of the intersection’s traffic light and

labeled as either green or red. This process yielded a data set consisting of 2311

unique time series.
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5.4 Classifier Architecture

The BLSTM network used in these experiments is composed of an input layer

followed by two parallel LSTM layers with 32 nodes each; one layer processes the

input sequence forward and one layer backwards. The output from the LSTM layers

is concatenated into a dropout layer with a 0.5 drop rate. The FFNN is a standard

multilayer feedforward network with 3 hidden layers and 256 nodes per layer. In

both networks, the size of the input layer is dependent on the vehicle state, while the

output layer always consists of two nodes in order to produce a one-hot encoding of

zt. The networks are trained using RMSProp backpropagation with categorical cross-

entropy loss and a softmax activation function. The K-Nearest Neighbor algorithm

was evaluated for K = 1.

5.5 Results and Discussion

The first experiment of interest is to evaluate the relative performance of each

classifier on our data sets. The classification accuracy is evaluated for the pos-

terior probabilities produced by both the FFNN and BLSTM classifiers, with a

train/validation/test set split of 60%/20%/20%, as well as the 1-NN classifier with a

80%/20% train/test split. This experiment reveals that despite being the simplest,

the 1-NN classifier performs significantly better than all other classifiers on the Real

data set with a 97% classification rate. This is an unexpected result, and interested

in whether the noise reduction caused by the Bayesian tracking had a significant im-

pact on the 1-NN performance, we created a Real (No Track) data set with only the

raw measurements obtained by the clustering algorithm. However, despite slightly

reduced performance, the 1-NN classifier is still the best performer on this data set.

Results for BLSTM and feature sets containing acceleration are not included for this
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Classifier Feature Set
Real

(No Track)
Real Sim Sim-Real

1-NN x, y 0.678 0.853 0.737 0.719

1-NN x, y, ẋ, ẏ 0.910 0.977 0.968 0.934

1-NN x, y, ẋ, ẏ, ẍ, ÿ 0.943 0.972 0.969

FFNN x, y 0.669 0.697 0.655 0.690

FFNN x, y, ẋ, ẏ 0.850 0.897 0.796 0.774

FFNN x, y, ẋ, ẏ, ẍ, ÿ 0.899 0.862 0.852

BLSTM x, y 0.655 0.764 0.683

BLSTM x, y, ẋ, ẏ 0.790 0.870 0.740

BLSTM x, y, ẋ, ẏ, ẍ, ÿ 0.782 0.908 0.804

Table 5.2: The mean test accuracy for 1-Nearest Neighbor, Feedforward Neural Net-

work, and Bidirectional Long Short Term Memory classifiers. The best classifier for

each data set is highlighted in green.

data set as they require the time series information provided by the tracking algo-

rithm.

Furthermore, 1-NN has the highest classification accuracy on the Simulation data

set. This seems to indicate that the Sim data set is a good approximation of the

real data set since it yields similar results, but on further analysis the test sample

distribution between the two data sets is strikingly different. This can be observed in

Fig. 5.3. The Real data set is heavily skewed, with a large portion of the test samples

coming from intersections where only a small number of vehicles were observed for a

short period of time. Meanwhile, the Sim data has a much flatter distribution over a

wider domain.
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Figure 5.3: The distribution of test samples in each data set according to the num-

ber of observed vehicles per time step, and the mean observation length among all

observed vehicles per time step.

In order to determine whether this distribution has a prominent effect on classifi-

cation accuracy, we ran an optimization algorithm to minimize the Kullback-Leibler

divergence between the distributions of the two data sets. This was accomplished by

truncating a random portion of the time series by a variable factor. The initial KL

divergence between the Real and Sim data sets is 1.35, however, after several rounds

of this optimization routine that was reduced to 0.09. The resulting data set is re-

ferred to as Sim-Real, and it can be seen in Fig. 5.3 that the associated test sample

distribution is similar to that of the Real data set. As in the other data sets, the 1-NN

classifier is again the best performer on the Sim-Real data and indicates robustness

to changes in the test sample distribution. Additionally, since the simulation data

yields similar results to the real-world data and is capable of closely approximating

the real-world observation distribution, we consider it an accurate representation of

the real-world data.

The only time we observed the 1-NN classifier perform poorly is on data sets with

a considerable amount of noise. Gaussian noise with a standard deviation of 2.0 was
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Classifier Feature Set
Sim

(Noisy)

Sim-Real

(Noisy)

1-NN x, y 0.813 0.599

1-NN x, y, ẋ, ẏ 838 0.648

1-NN x, y, ẋ, ẏ, ẍ, ÿ 0.833 0.627

FFNN x, y 0.642 0.684

FFNN x, y, ẋ, ẏ 0.692 0.716

FFNN x, y, ẋ, ẏ, ẍ, ÿ 0.695 0.709

BLSTM x, y 0.765 0.679

BLSTM x, y, ẋ, ẏ 0.874 0.742

BLSTM x, y, ẋ, ẏ, ẍ, ÿ 0.863 0.718

Table 5.3: The mean test accuracy for 1-Nearest Neighbor, Feedforward Neural Net-

work, and Bidirectional Long Short Term Memory classifiers. The best classifier for

each noisy data set is highlighted in green, while the classifiers that are not signifi-

cantly different are highlighted in yellow.

applied to all values in the Sim and Sim-Real data sets, resulting in Noisy variations.

The results in Table 5.3 show that 1-NN yielded a considerably worse classification

accuracy in this scenario, while BLSTM was largely unaffected by the additional noise

and achieved the best accuracy with 87% and 74% on the Sim and Sim-Real data

sets respectively.

The results in Tables 5.2 and 5.3 also allow us to examine the impact of the differ-

ent vehicle states defined in Eqs. (3.1), (3.3), and (3.4) on the overall accuracy. The

first observation we can make is that the addition of velocity information into the

feature set results in a statistically significant (p-value < 0.05) increase in accuracy
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Figure 5.4: The BLSTM (full feature set) test accuracy for real data (solid blue line)

and simulation data (solid green line) at each time step in relation to the number of

observed vehicles.

for every classifier on every data set. This is a strong result, and in line with the

hypothesis that the introduction of velocity information will help alleviate the inter-

section ambiguity problem. However, it is interesting to note that the addition of

acceleration information does not always lead to a further increase in accuracy. The

noisy data sets, in particular, actually exhibit either a statistically significant decrease

in accuracy or no change at all. This suggests that we can reduce the complexity of

our classifiers without penalizing accuracy on noisy data sets by leaving acceleration

out of the feature set.

The second experiment is designed to test how the BLSTM classifier would per-

form in a realistic scenario. In real-world use, we do not have access to the full vehicle

time series in the data sets; we only have the vehicle observations that have occurred

until the current time step. The network is first trained with the full vehicle time

series from all but one of the intersections. With the remaining time series, time is

treated as a discrete value and incremented in steps. At every time step, the net-

work is used to estimate the mean temporal probability in Eq. (4.13) from the vehicle
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Figure 5.5: The BLSTM (full feature set) test accuracy for real data (solid blue

line) and simulation data (solid green line) at each time step in relation to the mean

observation length among all observed vehicles.

time series that have had an observation within the past 3 seconds. Only the obser-

vations that have occurred before the current time step are considered. The mean

classification accuracy for all time steps is shown in Table 5.4.

With further analysis, it is evident that a significant number of misclassified time

steps occur when only one vehicle is observed. As more distinct vehicles are observed,

the classification accuracy increases, which is an intuitive result. This is visualized in

Fig. 5.4. If we examine the distribution of test samples over the number of observed

vehicles, it is clear that a large portion of the samples occur when only one vehicle is

observable. Taking this into consideration, if the test accuracy is evaluated only for

time steps in which two or more vehicles are observed, then the accuracy increases

from 71% to 84% on the Real data set as shown in Table 5.4. In contrast, the

simulation data has a flatter distribution, and as a result the corresponding accuracy

does not see a proportional increase. With the positive correlation between accuracy

and the number of vehicles, we might also expect such a relationship between the

classification accuracy and the length of time that vehicles are observed. The plots
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Feature Set α Mean Real Mean Sim

x, y, ẋ, ẏ 1 0.693 0.861

x, y, ẋ, ẏ, ẍ, ÿ 1 0.718 0.866

x, y, ẋ, ẏ 2 0.837 0.863

x, y, ẋ, ẏ, ẍ, ÿ 2 0.842 0.870

x, y, ẋ, ẏ 3 0.877 0.868

x, y, ẋ, ẏ, ẍ, ÿ 3 0.876 0.876

Table 5.4: The BLSTM mean test accuracy for all time steps with at least α observed

vehicles.

in Fig. 5.5 show a positive correlation, indicating that this is true to some extent.

Furthermore, there is also a positive relationship between the accuracy and the

BLSTM classifier’s prediction confidence, which we define as the maximum proba-

bility among all values of zt. In other words, as the classifier observes more vehicles

it grows more confident in the prediction and this results in a higher classification

accuracy. However, there are instances in which this does not hold true. Specifically,

it can be seen that the accuracy is poor while the prediction confidence is high for the

Real data set when the mean observation length is between 4s and 5s in Fig. 5.5. On

further analysis, this occurred when the target vehicle was stopped in front of pedes-

trians crossing a red light. A single vehicle was tracked for several seconds moving

directly in front of the target vehicle with an average speed of 2.83m/s. The most

likely scenario is that the pedestrians crossing the street were mistaken for a vehicle

turning left, which resulted in a high confidence prediction of a green light when in

fact, the light was red.
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classification with high confidence. The camera image is on the left, and the corre-

sponding time series given by the particle filter is on the right.
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Chapter 6

CONCLUSION

This thesis has shown that it is possible to accurately infer the current state of a

traffic light by analyzing the spatial movements of nearby vehicles with respect to a

target vehicle. This method was evaluated on real-world data gathered in Singapore

and synthetic data generated from a traffic simulator. In both cases, encouraging

results were achieved with three different classifiers: a feedforward neural network, a

bidirectional long short-term memory network, and a nearest neighbor classifier. It

was found that in most tested scenarios, a nearest neighbor classifier obtained the best

classification results (at the cost of higher computational and storage requirements).

However, if the data is particularly noisy, better accuracy may be achieved with a

BLSTM classifier.

Similar to a vision-based approach, the methodology presented here has failure

cases in which inference produces wrong results. The most obvious case is when no

vehicles are in observation range, however, it was also seen that in some scenarios

more than one vehicle may need to be in observation range in order to make an

accurate prediction. Likewise, there are specific instances in which the inference may

be wrong if other vehicles are only observed for an extremely brief period of time.

However, since the failure cases for our approach and a vision-based approach are

not the same, we envision that the best use of our system is to combine it with a

traditional vision-based method. Different failure cases suggests that the systems will

complement each other, and result in a more robust detection system.

This work has also introduced the notion that synthetic data generated from a

traffic simulator can be manipulated such that the KL divergence with respect to
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another data set is minimized. The result is that the distribution of observations

for the synthetic data closely aligns with that of another data set. We have used

this approach to approximate a real-world data set, and conjecture that this can be

extended to generate arbitrary distributions in order to test our method under varying

traffic conditions. This also raises the interesting question of whether it is possible

to train our classifier on a combination of real-world and synthetic data, and then

employ this classifier in other real-world scenarios. We will examine these possibilities

in future work.
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