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ABSTRACT 

Cohesive zone model is one of the most widely used model for fracture analysis, but still 

remains open ended field for research.  The earlier works using the cohesive zone model 

and Extended finite element analysis (XFEM) have been briefly introduced followed by an 

elaborate elucidation of the same concepts. Cohesive zone model in conjugation with 

XFEM is used for analysis in static condition in order to check its applicability in failure 

analysis. A real time setup of pipeline failure due to impingement is analyzed along with a 

detailed parametric study to understand the influence of the prominent design variable. 

After verifying its good applicability, a creep model is built for analysis where the cohesive 

zone model with XFEM is used for a time dependent creep loading. The challenge in this 

simulation was to achieve coupled behavior of cracks initiation and propagation along with 

creep loading. By using Design of Experiment, the results from numerical simulation were 

used to build an equation for life prediction for creep loading condition. The work was 

further extended to account for fatigue damage accumulation for high cycle fatigue loading 

in cohesive elements. A model was conceived to account for damage due to fatigue loading 

along within cohesive zone model for cohesive elements in ABAQUS simulation software. 

The model was verified by comparing numerical modelling of Double cantilever beam 

under high cycle fatigue loading and experiment results from literature. The model was 

also applied to a major industrial problem of blistering in Cured-In-Plane liner pipelines 

and a demonstration of its failure is shown. In conclusion, various models built on cohesive 

zone to address static and time dependent loading with real time scenarios and future scope 

of work in this field is discussed. 
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1. INTRODUCTION 

One of the most imperative models for the analysis of fracture and damage of structural 

materials is the cohesive zone model. There has been numerous work in cohesive zone 

model due to good agreement with experimental results for various numerical studies. The 

main advantage of the cohesive zone model is that it can avoid the singularity during the 

numerical simulation of discontinuities and can include both crack initiation and 

propagation in a single framework. This work consists of two parts. The first part is using 

cohesive zone model (CZM) in conjugation with Extended Finite Element Method 

(XFEM) for a static load case to study pipeline cracking due to rock impingement, this is 

followed by a creep analysis using the same CZM with XFEM to predict the life to failure 

of pipe structure. The second part consists of incorporating a model accounting for fatigue 

damage due to high cycle loading in cohesive zone model. Then, the model was used to 

simulate Double Cantilever beam to verify its agreement with experimental results from 

the literature. The modified cohesive zone model to account for fatigue damage was 

applied to a real time problem in the multilayered pipeline.  

Cohesive zone models have been used extensively in past decade in numerical simulations. 

Pablo [1] used cohesive model for shell elements to model crack propagation in thin walled 

structures wherein he showed simple 3D plate crack propagation and studied the variation 

due to shell and solid elements in analysis. Park et al. [2] explained the traction separation 

based cohesive zone model and the different relationship with respect to fracture surface. 

An XFEM based approach has been used for a long time by many researchers to obtain 
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information on crack propagation of the materials under study. Ebrahimi et al [3] used an 

XFEM to study crack analysis in composite media and determined the mixed mode stress 

intensity factor based on interactive integral approach to determine J integrals which were 

in good agreement to values of other models. 

Many models have been developed using XFEM due to their advantages in handling 

discontinuity and cracks, further they do not require remeshing like other FEM analysis. 

Yazdani et al [4] gave modelling and analysis of delamination in composite laminates by 

combining the lower-order plate theory and the novel XFEM technique, and this model is 

able to accurately calculate the delamination onset and the propagation with less 

computational effort.  

In Chapter 2, XFEM + CZM is used as an analysis methodology for static analysis to 

understand the working of the methodology and also to show how well the conjugation 

works on real time pipe system problems. This is followed by a time-dependent loading 

analysis where, maximum load is maintained for a particular time period similar to creep 

loading and the crack propagation in pipeline is studied. A detailed Design of Experiment 

(DoE) is conducted to obtain the model along with the crack growth vs time plot for the 

model. Bouvard et al [5] studied the fatigue and creep-fatigue crack growth in single crystal 

super alloys using cohesive zone model by traditional cyclic loading method to predict the 

crack growth. Kyungmok Kim [6] has worked on Creep–rupture model of aluminum alloys 

using Cohesive zone approach to analyze the long-term creep using a time jump strategy 

in cohesive zone law. Pouria Hajikarimi [7] et al used extended finite element method for 
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two dimensional creep analysis of a linear viscoelastic medium using a 4-node rectangular 

element and also studied the effect of enrichment function on the analysis. 

In chapter 3, a model to address the fatigue damage due to high cycle loading is developed 

without actual loading and unloading. An envelope is developed to account the effect of 

high cycle loading instead of actual cyclic loading. This is then incorporated in Cohesive 

element in Abaqus using UEL and then verified by using DCB model. The results give a 

good match with existing values from literature. Then this model is used for analysis of a 

imperative problem in piping system and results are shown. Yangjian Xu [8] et al had 

worked on damage accumulations in mixed-mode fatigue crack growth using cyclic 

cohesive zone model along with XFEM, where a cyclic load was applied and results were 

obtained. This work though, is a similar approach to that of Hallett et al [9] who developed 

a model for fatigue degradation using cohesive zone model using an enveloped model 

instead of conventional cyclic model. 
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2. NUMERICAL SIMULATION USING COHESIVE ZONE MODEL FOR 

POLYMER MATERIAL 

2.1 General Cohesive zone model 

The cohesive zone modeling (CZM) is one of the most widely used fracture phenomenon 

based on the separation of surfaces involved in cracking. It is defined by cohesive tractions 

that exists in between material surfaces which is resisted by crack propagation. The main 

advantage of this method is that it has no stress singularity at crack tip. Unlike conventional 

methods, size of non-linear zone around crack tip does not have to be negligible and further 

it can also predict behavior of un-cracked structures. 

The cohesive zone model has different governing equations but the most predominant one 

is traction-separation response model. This is a bilinear curve between the traction force 

and separation. This curve has two main parts; a damage initiation criterion and a damage 

evolution law. The initial response is assumed to be linear till damage initiation. However, 

once a damage initiation criterion is met, damage can occur according to a user-defined 

damage evolution law.  

 
Figure 1: Traction separation response curve 
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Damage initiation is the first linear part of the bilinear curve which is governed by 

maximum strength of the material, beyond which the degradation of the cohesive response 

begins. The process of degradation starts once the contact stresses and/or contact 

separations is beyond the damage initiation criterion. The damage initiation criterion can 

be set in terms of maximum strain and stress of the material. Each damage initiation 

criterion also has an output variable which indicates the criterion status, if the value is 

beyond 1 it means the damage initiation criterion has started. Damage initiation criteria not 

associated with evolution law can still be used to evaluate the propensity of the material to 

undergo damage without actually modeling the damage process (i.e., without actually 

specifying damage evolution). 

The four ways to set the damage initiation criterion are listed as Eq (1) to (4): maximum 

stress, maximum separation, quadratic stress and quadratic separation. Damage is assumed 

to initiate when the maximum contact stress ratio reaches a value of one.  

                                                   max {
𝑡𝑛

𝑡𝑛
𝑜 ,

𝑡𝑠

𝑡𝑠
𝑜 ,

𝑡𝑡

𝑡𝑡
𝑜} = 1     (1) 

                                                   max {
𝛿𝑛

𝛿𝑛
𝑜 ,

𝛿𝑠

𝛿𝑠
𝑜 ,

𝛿𝑡

𝛿𝑡
𝑜} = 1    (2) 

     {
tn

tn
0}

2

+ {
ts

ts
0}

2

+ {
tt

tt
0}

2

= 1                   (3) 

    {
δn

δn
0}

2

+ {
δs

δs
0}

2

+ {
δt

δt
0}

2

= 1                   (4) 
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where 𝑡𝑛
𝑜 , 𝑡𝑠

𝑜and 𝑡𝑡
𝑜 represent the maximum contact stress when the separation is either 

purely normal to the interface or purely in the first or the second shear direction 

respectively. Likewise, 𝛿𝑛
𝑜, 𝛿𝑠

𝑜 and 𝛿𝑠
𝑜represent the maximum contact separation, when the 

separation is either purely along the contact normal or purely in the first or the second shear 

direction respectively. 

The next part of traction separation is damage evolution law, which describes the rate at 

which the cohesive stiffness is degraded once the corresponding initiation criterion is 

reached. The general framework for describing the evolution of damage takes place in two 

stages: softening of the yield stress and degradation of the elasticity.  A scalar damage 

variable D, represents the overall damage at the contact point. It initially has a value of 0. 

If damage evolution is modeled, D monotonically evolves from 0 to 1 upon further loading 

after the initiation of damage. The contact stress components are affected by the damage 

according to Eq (5) to (8) 

𝑡𝑛 = {
   (1 − 𝐷)𝑡�̅�                 𝑖𝑓 𝑡𝑛  ≥ 0

         𝑡�̅�                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 

𝑡𝑠 = (1 − 𝐷)𝑡�̅�         (6) 

𝑡𝑠 = (1 − 𝐷)𝑡�̅�         (7) 

There are mainly two components to define damage evolution: the first component is either 

specifying the effective separation at complete failure 𝛿𝑓 relative to the effective separation 

at the initiation of damage 𝛿𝑜; or the fracture energy dissipated due to failure 𝐺𝑐. The 
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second component to the definition of damage evolution is the specification of the nature 

of the evolution of the damage variable D, between initiation of damage and final failure. 

This can be defined by linear or exponential softening laws or specifying D directly as a 

tabular function of the effective separation relative to the effective separation at damage 

initiation. 

The Figure 2 shows the schematic representation of the dependence of damage initiation 

and evolution on the mode mix for a traction-separation response with isotropic shear 

behavior. The figure shows the traction on the X axis and the magnitudes of the normal 

and the shear separations along the two Y axes. The unshaded triangles in the two vertical 

coordinate planes represent the response under pure normal and pure shear separation, 

respectively. All intermediate vertical planes (that contain the vertical axis) represent the 

damage response under mixed-mode conditions with different mode mixes. The 

dependence of the damage evolution data on the mode mix can be defined either in tabular 

form or, in the case of an energy-based definition, analytically.  
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Figure 2[24]: Schematic Diagram showing mixed mode traction separation response 

The cohesive zone model can be implemented by either using cohesive elements or 

cohesive surfaces. Though they follow the same bilinear curve there are some differences. 

The cohesive surfaces use the material properties as interaction properties where initial 

stiffness is contacted automatically. In cohesive element, the cohesive zone model is 

defined as material property along with special cohesive element definition. The initial 

stiffness has to be defined as a material property and is easier to manipulate according to 

requirement. 
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2.2 Extended Finite Element Analysis (XFEM) 

The Finite Element Method (FEM) has been used for decades to analyze and solve 

imperative problems. There are number of instances where the usual FEM methodology 

have certain restrictions in efficiently solving some problems involving interior 

boundaries, discontinuities or singularities, because of the need of remeshing and high 

mesh densities. The Extended Finite Element Analysis (XFEM) is a latest development in 

the field of Finite Element Analysis in which a special enriched function is introduced in 

order to effectively model discontinuities, such as cracks, without conforming the mesh to 

the discontinued geometry. Only solid (continuum) elements can be associated with the 

enriched feature. XFEM is a methodology where local elements are partition of unity in 

order to account for the discontinuity. 

𝒖ℎ(𝒙) =  ∑ 𝜙1(𝒙)𝑢1𝑛𝐼∊ 𝑆 +  ∑ 𝜙𝐽(𝒙)𝑛𝐽∊ 𝑆𝛹
𝛹(𝒙)𝙖𝐽   (8) 

The Extended Finite Element Analysis (XFEM) is defined by Eq (8) of which the first part 

is from FEM and second part is Enrichment function. XFEM extends the piecewise 

polynomial function space of conventional finite element methods with extra functions. 

The enrichment function can be divided into two parts, Heaviside enrichment term that 

accounts for jump discontinuity and crack tip enrichment function which handles the crack 

tip. The Eq (9) shows the enrichment function divided into Heaviside enrichment and crack 

tip enrichment. 

       𝒖ℎ(𝒙) =  ∑ 𝜙1(𝒙)𝑢1𝑛𝐼∊ 𝑆 +  ∑ 𝜙1(𝒙)𝐻(𝒙)𝐼∊ 𝑁𝛤
𝙖𝐼  + ∑ 𝜙1(𝒙)𝐹𝛼(𝒙)𝑏𝐼

𝛼
𝐼∊ 𝑁𝛬

  (9) 
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  𝐻(𝑥) = {
1, 𝑖𝑓 (𝑥 − 𝑥∗) 𝑛 ≥ 0

−1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (10) 

 

[𝐹𝛼(𝑥), 𝛼 = 1 − 4] =  [√𝑟 sin
𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin 𝜃 sin

𝜃

2
, √𝑟 sin 𝜃 cos

𝜃

2
  ]  (11) 

 

 

In Eq (10) which represents the Heaviside enrichment function, x is an integration point, 

x* is the closest point to x on the crack face and n is the unit normal at x* and Eq (11) 

represents the crack tip enrichment function where (r, 𝜃) denote coordinate values from a 

polar coordinate system located at the crack tip. 

The crack tip and Heaviside enrichment functions are multiplied by the conventional shape 

functions thus the enrichment is locally associated around the crack. The crack location is 

defined by using level set method, where two function 𝜙 and 𝛹 are used to completely 

describe the crack. The function 𝜙 represents the crack face and interaction of 𝜙 and 𝛹 

function denotes the crack front. These functions are defined by nodal values whose spatial 

variation is determined by using finite element shape functions. The function’s values are 

specified only at nodes belonging to elements being cut by crack. 

When the crack propagates through the element it cracks the element nodes and creates 

phantom nodes on both the divided elements.  The discontinuous element with Heaviside 

enrichment is treated as a superposition of two continuous elements with phantom nodes. 

The Figure 3 below shows the creation of phantom nodes for a clear representation. 
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Figure 3: Phantom nodes creation and crack propagation 

In Classical finite element method (FEM) adaptive meshing can be used for crack analysis, 

but it is very time consuming for large system analysis. Since objective is to develop an 

efficient and accurate failure analysis and prediction, XFEM in conjugation with Cohesive 

zone model is used. In FEM there are many methods to simulate crack propagation but due 

to high accuracy requirement and ease of computation we choose XFEM over FEM.  The 

main reason to use XFEM + CZM is that the use of CZM will enable predictions under 

complex loading conditions and for different failure modes. XFEM allows non-matching 

mesh with respect to the crack and allows the arbitrary tracking of the CZM within the 

simulation domain. 
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2.3 Numerical simulation of Surface Cohesive Zone Model for static loading 

The numerical simulation to study cohesive zone model has been done using ABAQUS 

software as it gave the freedom to use both XFEM and CZM technique. The most important 

parameters to define the model in ABAQUS are pipe dimensions, material model, loading 

and boundary condition. In the following section, modeling technique used for pipeline 

model, material model used for XFEM + CZM, loading and boundary condition to simulate 

a real time problem has been elaborated in detail. 

2.3.1 Modeling Technique 

In this part, the numerical modeling was done using ABAQUS for a pipe model with close 

to real time dimensions. As XFEM + CZM simulation takes longer to analyze a full model 

analysis leading to an increased computation cost and time, only a quarter of the model is 

modelled along with the region of interest like the pipe impingement. The results for a 

quarter model will be same as full scale model but the modeling uses lesser number of 

elements along with appropriate boundary conditions. The model was meshed using 

various control parameters such as imprinting faces, edge biasing, edge divisions etc. to 

achieve good quality elements in the desired region. Tet elements were used as model had 

a curved surface. The meshing is done more near the region of interest so as to get a more 

accurate result. After meshing, material model was assigned which is described in the next 

section. The modeling is done in two stages were the pipe is first modelled with a 
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dimension of outer diameter of 120 mm and inner diameter of 100 mm and an impingement 

of 20 mm sphere which is divided into half along YZ axis and XZ axis respectively. 

 

 

 

 

 

 

Figure 4: Modelling of pipeline structure 

The circular section in Figure 4 represents the pipeline and the half sphere represents the 

impingement and are created as separate parts and then assembled to form the model. 

2.3.2 Material Model 

The material model has three main parts: property, element type and section assignment. 

The section assignment of each part is solid section and the element type is 3D stress 

element. The material used is PA11 and the values are obtained from literature [10]. The 

properties associated with the model is listed below in the table 

Table 1: Properties of material PA11 

S.No Property of Material Value 

1 Modulus of Elasticity 1700 MPa 

2 Poisson’s Ratio 0.4 

3 Utimate Tensile Strength 68.9 MPa 

- = 
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4 Yield Tensile Strength 44 MPa 

5 Max. Principal Stress value for CZM 62 MPa 

6 Fracture Energy for CZM 620 KJ/m2 

 

2.3.3 Loading and boundary condition 

The loading and boundary condition are imperative part to any analysis, they are key to an 

accurate analysis. The boundary conditions are set such that they are close to real time 

applications so as to narrow the difference between the actual occurrence and simulation 

result. There are some universal rules for giving boundary conditions. 

 BCs can only be applied in directions that the element has DoF’s. 

 Every DoF must be restrained in at least one place in the model. 

 There must be at least one applied load to get a solution. 

The internal pressure of the pipeline was maintained as 30 MPa and load due to rock 

impingement was 15 MPa. The figure below shows the boundary condition given to the 

model. 

 

Figure 5: Boundary condition given to model 
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2.3.4 Simulation results for static analysis 

The simulation results can be viewed in two perspectives: crack propagation which can be 

obtained by Status of XFEM that shows visual of crack growth along with the indication 

of elements failure, Von - mises stress which gives an idea about the maximum stress along 

the region of interest. This is an analysis for visualization of the failure giving us the 

ultimate load that the material can bear before failure. Figure 7 and 8 shows stages of crack 

propagation and von - mises stress respectively. 
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Figure 6: Crack Propagation 

 

 

 

Figure 7: Von – mises Stress Plots 
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2.3.5 Parametric Study on Static analysis 

The static analysis gives us an idea about all the parameters of the analysis and for the next 

time dependent analysis it is important to determine the important parameters so as to close 

the difference between actual value and analysis values. Thus a detailed parametric studies 

is carried out by considering three major parameters: Internal Diameter, Pipe Thickness, 

Cavity (impingement diameter). 

These parameters were varied individually while keeping others constant to understand the 

impact of that particular parameter under analysis. This technique is called blocking. It is 

suggested that only trends of the graphs should be observed and not the values since the 

values chosen for material model were taken from literature available and not from any 

material manufacturer. All the graphs are plotted for Pi and Pc where Pi indicates the 

pressure at which the crack first appears in the model. Pc stands for critical pressure at 

which crack grows throughout the thickness. Deformation mentioned in the graphs is the 

deformation at a point on the inner surface of the pipe indicating the amount by which pipe 

has expanded. 

2.3.5.1 Internal Diameter 

The internal diameter was varied over a range to understand its impact on the crack 

initiation and propagation. Attached below is the data compiled from the simulations. 
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Table 2: Parametric study - Internal Diameter 

 

 

Figure 8: Pi vs. Deformation (Internal Dia.) 

 

Figure 9: Pc vs. Internal Diameter 

U1 Para value

0.6718 8.0616 0.8675 10.41 60

0.4918 5.9016 2.07792 0.6118 7.3416 80

0.3818 4.5816 2.34779 0.497 5.964 100

0.3218 3.8616 2.97229 0.4255 5.106 120

0.2818 3.3816 3.29145 0.3611 4.3332 140

Parameter
P1 P2

Graph1 Graph2

Internal 

Diam.
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Both Pi and Pc decrease with parameter value indicating a negative effect of the parameter 

on the crack. Higher the value of internal diameter, higher is the risk of crack initiation and 

propagation. 

2.3.5.2 Pipe Thickness 

Pipe thickness was varied keeping internal diameter and loading constant. Attached below 

is the data compiled from the simulations. 

Table 3: Parametric study – Pipe Thickness 

 

 

Figure 10: Pi vs. Deformation (Pipe thickness)      

U1 Para value

0.2818 3.3816 2.11463 0.3699 4.4388 15

0.3818 4.5816 2.34779 0.497 5.964 20

0.4818 5.7816 2.69947 0.6468 7.7616 25

0.6118 7.3416 3.02949 0.772 9.264 30

0.4318 8.636 3.19506 35

Parameter
Graph1 Graph2

P1 P2

Thickness
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Figure 11: Pc vs. Pipe Thickness 

From the graphs it can be observed that pipe thickness has a positive impact on crack. 

Thicker the pipe, higher will be the value of Pi and Pc.  

2.3.5.3 Cavity Radius 

Cavity radius was varied keeping internal and outer diameter and loading constant. 

Attached below is the data compiled from the simulations. 

Table 4: Parametric study – Cavity Radius 
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Figure 12: Pi vs. Deformation (Cavity Radius) 

 

 

Figure 13: Pc vs. Cavity Radius 

It can be observed from the graphs that cavity radius has a negative impact on the crack. 

The arrow marked in figure represents the direction of graph where data for first value of 

the parameter is represented by top right corner. The graph flows from top right corner to 

bottom left corner. Higher the value of cavity radius, higher will be the risk of crack. 
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2.4 Time dependent Creep Loading 

Mechanical properties of polymers vary enormously with time and temperature. The time 

dependence complicates measurement of these properties since specific conditions under 

which experiments are carried out must necessarily be incorporated into the definition of 

appropriate parameters. Thus, the terms creep, stress relaxation and dynamic mechanical 

measurements are all common in this field [11]. The mechanical properties of a polymeric 

component are dominated by its viscoelasticity. This is reflected by the time-dependency 

of the mechanical response of a component during loading. Hence, a polymer behaves 

differently if subjected to short term or long term loads [12]. A brief review for the 

fundamental creep mechanics is briefly mentioned below. 

A polymer, at a specific temperature and molecular weight, may behave as a liquid or a 

solid, depending on the speed (time scale) at which its molecules deform. This behavior, 

which ranges between liquid and solid, is generally referred to as the viscoelastic behavior 

or material response. Polymers are viscoelastic materials and exhibit time-dependent 

relaxations when subjected to stress or strain. While creep is a measure of increase in strain 

with time under a constant stress, stress relaxation is the reduction of stress with time under 

a constant strain. Therefore, creep and stress relaxation tests measure the dimensional 

stability of a polymer over time. Such tests are of great importance for investigated 

materials, particularly if a polymer must be in service under stress and strain for long 

periods [13]. The model for simulation is limited to linear viscoelasticity, which is valid 

for polymer systems undergoing small or slow deformations. Non-linear viscoelasticity is 
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required when modeling large rapid deformations, such as those encountered in flowing 

polymer melts. In linear viscoelasticity, the stress relaxation test is often used, along with 

the time temperature superposition principle and the Boltzmann superposition principle, to 

explain the behavior of polymeric materials during deformation [12]. 

When a plastic material is subjected to a constant load, it deforms continuously. The initial 

strain is roughly predicted by its stress-strain modulus. The material will continue to 

deform slowly with time indefinitely or until rupture or yielding causes failure. The 

primary region is the early stage of loading when the creep rate decreases rapidly with time. 

Then it reaches a steady state which is called the secondary creep stage followed by a rapid 

increase (tertiary stage) and fracture. 

 

Figure 14[11]: Schematic illustration of creep behavior 

If the applied load is released before the creep rupture occurs, an immediate elastic 

recovery equal to the elastic deformation, followed by a period of slow recovery is 

observed which is shown in Figure 15. The material in most cases does not recover to the 



 

 

24 

 

 
 

original shape and a permanent deformation remains. The magnitude of the permanent 

deformation depends on length of time, amount of stress applied, and temperature [14]. 

 

Figure 15[14]: Schematic illustration of strain recovery 

In this numerical study, the same methodology of XFEM and cohesive zone which has 

been used for previous analysis is used along with certain modifications to the loading to 

get the time-dependent creep loading. For this the time period of the analysis was increased 

to a particular value say 10 which represents actual time period. The load is then applied 

such that the entire load is ramped up for the first time period and then maintained at this 

time period for rest of the complete time period. Figure 16 shows a representation of the 

time period vs load for a clearer illustration. 
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Figure 16: Load vs time plot for simulation model 

2.5 Numerical study of cohesive zone model on creep loading 

2.5.1 Model for Numerical analyses of creep loading 

In the previous section, static fracture of Poly-Amide 11 was done and the focus was on 

the failure strength prediction with existing impingement in representative pipe structure. 

Also, thorough parametric studies were carried out on the design variables to understand it 

pivotal role in failure of pipelines. The design variables were varied one at a time while 

keeping others constant. This helped in screening the effect of each variable on the 

response. The pressure at which crack initiates in the pipe was selected to be the response 

variable. The failure mode was simulated using XFEM method and Cohesive Zone Model. 

Moving forward a methodology is defined on how to simulate Slow Crack Growth under 

creep behavior with given loading conditions. This investigation focuses on the time 

dependent failure of pipeline structures. As done earlier in all simulations, XFEM and 

cohesive zone model was also used. The challenge in this simulation was to achieve 
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coupled behavior of cracks initiation and propagation along with creep loading. This 

methodology is explained below and later the simulation result for pipe model is described.  

The stress relaxation and the creep test are well-known long-term tests. The stress 

relaxation test is difficult to perform and is, therefore, often approximated by data acquired 

through the more commonly used creep test. The stress relaxation of a polymer is often 

considered the inverse of creep. The creep test, which can be performed either in shear, 

compression or tension, measures the flow of a polymer component under a constant load. 

It is a common test that measures the strain ε, as a function of stress, time and temperature. 

Standard creep tests such as DIN 53 444 and ASTM D2990 can be used. Creep tests are 

performed at a constant temperature, using a range of applied stress. On plotting creep data 

in a log-log graph, in the majority of the cases, the creep curves reduce to straight lines. 

Hence, the creep behavior of most polymers can be approximated with a power law where 

strain over time is based on stress ‘σ’ and time ‘t’ and creep constant k(T) which depends 

on Temperature (T) [12,14]: 

                                           ε (t ) = k(T) σm tn    (12) 

In this methodology, Creep properties are used for analysis where the Creep constant k(T) 

is given for a particular temperature and the loading is given for a particular time period. 

The full magnitude is applied within the first time period and then maintained for rest of 

time period in analysis. 
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2.5.2 Modelling Technique 

The above discussion only serves as a general background for the simulation. The values 

used in numerical simulation are from literature. The full pipe model is developed but the 

properties of XFEM + CZM is applied to region of interest around the impingement region 

so as to save computational time and cost. The model is meshed by using Tet element due 

to curved shape of pipeline and are concentrated at the region of impingement so as to 

study the initiation and propagation of crack. After meshing the material model is applied 

with properties from literature for PA11 including creep properties which are listed in 

material model. Unlike the previous model, there is no cut due to impingement as the 

simulation is time-dependent and the load applied has to be for a long time period. Hence 

the region of impingement is taken as circular region of interest. The modeling is a pipe 

section with dimension of outer diameter of 120 mm and inner diameter of 100 mm and a 

circular section of diameter 20 mm on the top surface represents the area of impact of 

impingement, where maximum load is going to occur. A region of interest is created by 

segmenting the pipe section around the impingement circle by dividing 10 mm on both 

side of circle with XZ datum plane. The Figure 17 shows the modelled section used for 

numerical simulation for creep analysis.  

 

Figure 17: Pipe section for numerical simulation for creep loading 
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Figure 18: Mesh for pipe section for numerical simulation for creep loading 

2.5.3 Material model 

The material model for this creep analysis consist of both Cohesive zone properties and 

also creep properties from literature. The section used is solid section with 3D stress 

element for the analysis. The properties for the material PA11 are listed below in a Table 

5 

Table 5: Creep properties of material PA11 

S.No Property of Material Value 

1 Modulus of Elasticity 1700 MPa 

2 Poisson’s Ratio 0.4 

3 Utimate Tensile Strength 68.9 MPa 
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4 Yield Tensile Strength 44 MPa 

5 Max. Principal Stress value for CZM 62 MPa 

6 Fracture Energy for CZM 620 KJ/m2 

7 Creep Power Law Multiplier 2.45E-7 MPa-n time-1 

8 Creep Stress exponent, m  6.5 

9 Time order 0 

10 Dimensionless time period 70 

11 Creep tolerance 0.00001 

2.5.4 Loading and boundary condition 

The boundary condition is similar to the previous analysis as the basic principle of analysis 

remains the same. The loading for this creep analysis is different, as explained earlier the 

load is applied over a time period. The full load is applied within the first time period and 

then it is maintained at this load for rest of time period. The internal pressure of the pipeline 

was maintained as 30 MPa and load due to rock impingement was 15 MPa The region of 

loading and boundary conditions are shown Figure 19. 

 

Figure 19:  Loading region and Boundary Condition for creep analysis 
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2.5.5 Numerical Simulation result for Creep Analysis 

The simulation is similar to that of previous analysis except an additional creep factor is 

added. In this model, a Visco step is added to do the creep analysis along with the crack 

domain definition, crack initiation criterion and crack evolution criterion. The important 

factor of creep analysis is time period. The time period chosen is 70, for which the analysis 

takes place. The analysis uses initial and minimal time increment as 0.001 and maximum 

time increment as 1. The tolerance for maximum difference in creep strain increment has 

been set as 1e-5 

In stress based model, the calculation is done to convert the time period obtained from 

analysis to actual time period. In general, the time period is multiplied with 365 days and 

24 hours as the creep constant is in terms of year time unit.  The value is then multiplied 

by a constant (multiplying factor) to get the appropriate time in actual time frame. But by 

modifying the creep constant it is possible to get direct real-time value from simulation. 

In the strain based model, the time period for the simulation can be converted to real-time 

time by multiplying by same methodology. The constant for creep analysis has been 

modified such that it gives the real time life of the pipe model. A nominal value of creep 

constant is to be chosen if it is very small time then the crack propagation is very quick and 

rapid, thus crack growth cannot be studied in detail whereas if it is very high small crack 

propagation is very slow, this takes a lot of computational time. 
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The stress based simulation results are shown in Figure 20. It shows the crack through 

thickness of the pipe due to creep loading. Since a constant pressure is applied by a rock 

impingement the creep crack grows as time period increases. The crack simulation shows 

the initiation of crack within the material and tends to travel along the thickness first and 

then travels in axial direction. 

 

Figure 20: Crack propagation a) initial loading b) t=10.09 c) t=21.98 d) t= 67.58 

The strain based simulation results are shown in Figure 21. This simulation is strain based 

which is representative of the sudden rupture in pipeline due to sharp rock impingement 

with high loading. This scenario tries to model the hole that we see as effect of sudden rock 

impingement force. 



 

 

32 

 

 
 

 

Figure 21: Crack propagation a) initial loading b) t=10.09 c) t=21.98 d) t= 67.58 

2.5.6 Design of Experiment for Creep Analysis 

Design of experiments are widely used for generating samples that can uniformly cover the 

whole domain of the explanatory variables [15,16]. In order to accurately capture the 

system characteristics, a full factorial approach is necessary to investigate all possible 

combinations. However, it is infeasible to do the full factorial design for high dimensional 

problems. Latin hypercube design is considered as an optimal method for high dimensional 

experimental design, because every variable can be represented identically no matter how 

many samples are selected [17].  In this study, five variables are chosen to investigate the 

system response based on the numerical investigation. Latin hypercube sampling is 

employed to generate multiple combinations (i.e. DoE) of design variables. The 

corresponding system response of each DoE can be computed using the developed finite 

element model. With these samples, a surrogate model that can capture this system 
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behavior is developed, which makes it possible for probabilistic analysis with respect to 

each design variable using Bayesian updating.  

The Latin hypercube sampling (LHS) is very flexible to be used to create any number of 

design of experiments. A lot of work has been done on the optimization of Latin hypercube 

from both optimization algorithm and objective criteria [18,19,20,21]. An experiment 

design with 𝑁 point in 𝐷 dimension is given as 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑁]𝑇, in which each column 

represents a random variable and each row 𝑥𝑖 represents a realization.  A Latin hypercube 

design is performed in such a way that each dimension is divided into 𝑁 equally probable 

intervals and there is only one sample within each interval. In this study, a criterion with 

maximizing the minimum distance is implemented to generate Latin hypercube samples. 

Five random variables are chosen and the corresponding sampling interval for each 

variable is listed in Table 6. 

Table 6: Sampling interval for each random variable 

Random 

variable 

Creep constant 

(𝑀𝑝𝑎/𝑇𝑖𝑚𝑒) 

Fracture Energy  

(MJ/𝑚𝑚2) 

n Principal 

stress 

(𝑀𝑝𝑎) 

Load 

(𝑀𝑝𝑎) 

Mean 2.15× 10−3 0.620 6.5 51 25 

Sampling 

interval 
[1.15,3.25] × 10−3 [0.590, 0.650] [4.5,8.5] [46,56] [15,35] 

 

Using Latin hypercube sampling method, 20 design of experiments are generated which 

are listed in Table 7. The projection of these samples on 2D plane is shown in Figure 22. 
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Figure 22: Projection of 20 samples on each 2D plane 

For each DoE, the system response such as crack length vs. time curve can be generated 

using the FEM model developed above. During simulation, some cases may crash because 

of impractical variable combination is input into the FEM model. By ignoring them, crack 

growth curves for 8 DoEs are plotted in Figure 23. 

 

Figure 23: Crack growth curves for 8 DoEs 
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Table 7: The 20 DoE samples generated using LHS 

S.No Creep 

Constant 

A (e-3) 

Fracture 

Energy 

(e-3) 

Stress Order 

n 

Principal 

Stress 

Constant 

Load 

1 1.625218 640.9721293 6.477983 55.67172305 19.40992 

2 2.702999 637.4050148 6.831243 52.36128171 34.99771 

3 1.930486 649.9379596 6.647187 53.64543485 31.05547 

4 2.272673 617.6231862 7.583964 54.93485224 28.20752 

5 2.104886 622.4275118 5.812922 47.73800136 17.60067 

6 2.509233 599.1437521 7.21698 46.97705494 25.12655 

7 1.554258 590.6893212 5.689157 54.44934716 16.3256 

8 2.426683 602.5502794 8.248061 50.26553246 26.75763 

9 1.744176 609.7218497 4.651164 53.14467682 29.83156 

10 1.100611 607.0993455 7.758181 55.1993268 32.13888 

11 2.66107 623.9591286 4.76823 48.39754151 18.67336 

12 2.911832 611.424453 7.476164 48.69060674 20.67485 

13 1.310673 641.3846212 5.474156 50.65042494 27.59983 

14 2.0614 614.3088125 6.084406 51.34258566 22.23649 

15 2.327245 629.4692397 4.952952 52.59760568 24.83593 

16 1.208735 594.5445463 5.18877 51.91098878 30.31171 

17 1.009587 627.5343785 6.933126 47.37934714 33.35668 

18 1.891855 646.8039981 8.478775 49.70263502 15.17865 

19 1.496666 597.6290569 8.048688 49.06588354 21.62145 

20 2.842759 633.2133341 6.289175 46.09066581 23.8881 

 

Conceptually, the developed surrogate model should be a time dependent model that has 

design variables as input parameters. However, it is not that straight forward to get this 

model in one step. The idea in this study is to fit the crack length with respect to time 

relationship using power law, and then the effect of design variables is incorporated in the 

model coefficients using other regression methods. Bearing this idea in mind, the proposed 

surrogate model is expressed as  
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𝒂 = 𝒇𝟏(𝑷)𝒕𝒇𝟐(𝑷) + 𝒇𝟑(𝑷)    (13) 

where 𝑡 is the creep time and 𝑓1(𝑃) = 𝛼0 + 𝛼𝑖𝑝𝑖, 𝑓2(𝑃) = 𝛽0 + 𝛽𝑖𝑝𝑖, 𝑓3(𝑃) = 𝛾0 + 𝛾𝑖𝑝𝑖, 

in which  𝑝𝑖 represents the design variables. After fitting this model, the true and predicted 

crack length vs. time data are illustrated in Figure 24. In order to investigate the model 

sensitivity with respect to each design variable, the crack length variation due to 10% 

perturbation of each design variable at creep time 𝑡 = 10 years is shown in figure 25.  

 

Figure 24: Comparison between true and predicted crack length 
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Figure 25: Crack length variation for the perturbation of each design variable 

As seen in Figure 24, the proposed model can generally capture the crack growth trend for 

different DoE samples, but there are relatively large uncertainties embedded in the 

prediction. Based on this model, it can be concluded that the crack growth is more sensitive 

to the parameters that control the crack initiation and material creep behavior, which is 

given as the fracture energy and n in Figure 25. 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

Creep
constant

Fracture
energy

n Principal
stress

Load

D
a

Design variables



 

 

38 

 

 
 

3. NUMERICAL STUDY ON USING COHESIVE ZONE MODEL FOR 

COMPOSITE MATERIAL 

This section proposes a model that can be used for high cycle fatigue loading for composite 

material analysis using cohesive zone model. In literature, most of the work on the fatigue 

damage accumulation for high cycle fatigue follows a cyclic model which consumes more 

computation time and is theoretically more complex. Hence in this work, an attempt has 

been made to create a model which can be applied with Abaqus simulation software to 

address the high cycle fatigue damage using cohesive zone elements. 

3.1 Model for fatigue damage accumulation using cohesive zone model 

The various models developed in the past have been very successful in addressing low 

cycle fatigue but there are a very few models for high cycle fatigue loading. There are 

mainly two methods to account for cyclic loading: loading and unloading pattern and 

degrading stiffness on a cycle by cycle basis which is mainly used for low cycle fatigue 

application where there is significant hysteresis, the other method is developing an 

envelope strategy, where maximum load remains constant (like creep loading) for a 

particular time period and interface elements are degraded on discrete number of cycles 

after each time step.  The second strategy is the basis for this methodology which has two 

main requirements: extraction of strain energy release rate from elements within cohesive 

zone; enabling the interface elements within the cohesive elements to be degraded such 

that rate of crack advance matches with that given by the Paris law from the corresponding 

strain energy release rate. The envelope strategy has been adopted for high cycle fatigue 

damage accumulation prediction in Cohesive zone model using ABAQUS simulation 
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software. The cohesive zone model has been explained earlier and the stress degradation 

occurs depending on Damage parameter, D as shown in the equation below 

     σ =  σmax (1 − D)            (14) 

In order to account for the fatigue damage this damage parameter D is divided into two 

parts, one for static ds and other for fatigue damage df where the damage due to static is 

defined in abaqus by default as 

𝑑𝑠 =  
𝛿− 𝛿𝑒

𝛿𝑓− 𝛿𝑒
      (15) 

In this model the factor df is calculated and added to damage due to static to form a total 

damage accumulation Dtot, which modifies the strength degradation law as follows 

σ =  σmax (1 − 𝐷𝑡𝑜𝑡)    (16) 

Dtot =  ds +  df    (17) 

The main user inputs required for this analysis is Number of cycles N and R-ratio which is 

a ratio of minimum load to maximum load (Pmin/Pmax). The main assumptions for the model 

are it is a constant amplitude loading and tension-tension fatigue loading. Thus the 

maximum strain energy release rate in each fatigue cycle Gmax can be converted to change 

in strain energy release rate ∆𝐺 by using the equation below 

∆G = (1 − R2)Gmax    (18) 

In our model the maximum strain energy release rate can be obtained from the cohesive 

elements from the traction-separation response directly adjacent to numerical crack tip 
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In order to calculate the mixed mode crack growth rate the Paris law that equates crack 

growth rate and stress intensity factor is used 

𝜕𝑎

∂N
= C(∆K)m     (19) 

By using modified Blanco’s model which is a modified version of Paris law we can write 

the equation as 

𝜕𝑎

∂N
= C(∆G)m     (20) 

Where ∆G is change in strain energy rate and C and m are material constants which can be 

determined from the equations below, where CI ,CII ,Cm and mI ,mII ,mm are mode I, mode 

II and mixed mode constants. 

log 𝐶 = log 𝐶𝐼 + (
𝐺𝐼𝐼

𝐺𝑇
) log 𝐶𝑚 + (

𝐺𝐼𝐼

𝐺𝑇
)

2

log
𝐶𝐼𝐼

𝐶𝑚𝐶𝐼
  (21) 

m =  mI +  (
GII

GT
) mm + (𝑚𝐼𝐼 −  𝑚𝐼 −  𝑚𝑚) (

𝐺𝐼𝐼

𝐺𝑇
)

2

  (22) 

GT, GI and GII are the total, mode I and mode II strain energy rates which are obtained from 

the traction displacement response of cohesive elements.  The fatigue damage degrades 

according to the strain energy release rate extracted from the traction separation law. The 

total rate of fatigue damage accumulation is dependent on the crack growth 
∂a

∂N
 and interface 

element crack length Le. The relationship can be written as  
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∂a

∂N
=

Le

∆Nf
     (23) 

But our requirement for the propagation of crack is damage accumulated due to fatigue in 

each cycle 
∂d𝑓

∂N
 which can be derived on the basis of failure of the element due to static and 

fatigue damage as following  

∂d𝑓

∂N
=

(1−𝑑𝑠)

∆Nf
     (24) 

∂d𝑓

∂N
=

(1−𝑑𝑠)

Le
 (

𝜕𝑎

𝜕𝑁
)    (25) 

Thus, the damage due to fatigue is updated every time period and this can be expressed by 

using the equation (26) where ∆𝑁 is change in number of cycle in that particular time 

period 

𝑑𝑓,𝑡+∆𝑡 =  𝑑𝑓,𝑡 +  ∆𝑁 (
∂d𝑓

∂N
)    (26) 
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3.2 Modeling for high cycle fatigue damage in Double Cantilever Beam model 

The model to account for fatigue damage accumulation is used to analyze the delamination 

in composite based Double Cantilever Beam in order to verify its accuracy with 

experimental data available in Literature. 

3.2.1 Modelling Technique 

The Double Cantilever Beam model has been used for mode I fatigue testing for a very 

long time and gives most accurate values which is used for verifying the model proposed 

for high cycle fatigue damage accumulation in numerical simulation.  In this model two 

beams of length 120 mm and breath of 20 mm are attached to each other with a cohesive 

element layer. The cohesive elements in between the layers serve as the interface elements 

in our fatigue damage model. The cohesive layer serves as the adhesive layer 

(epoxy/polyamide) in case of a composite layup and hence this numerical simulation can 

be viewed as delamination of composite material. The specimen used for analysis is shown 

below. 

 

Figure 26: Specimen Geometry 
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The model is built for 8-node rectangular cohesive 3D element and the modification of 

damage criterion is incorporated in UEL which has to be used along with the ABAQUS 

input file.  

3.2.2 Material Model 

The materials used in this analysis are divided into two categories: Laminate properties and 

interface properties. There are two element types used - shell element for the laminate 

properties and cohesive element for interface properties. Similarly, the section assignment 

for laminate element is composite shell and for interface element it is cohesive section. The 

properties for both elements are listed below in Table 8 

Table 8: Properties of DCB simulation 

S.No Property of Material Value 

Laminate Properties 

1 E11 120000 MPa 

2 E22 = E33 10500 MPa 

3 G12=G13 5250 MPa 

4 G23 1500 MPa 

5 ν12 = ν13 0.3 

6 ν23  0.51 

Interface Properties 

7 GIC 0.26 N/mm 

8 GIIC 1.002 N/mm 

9 σImax 30 MPa 

10 σIImax 60 MPa 

11 KI 105 N/mm3 

12 KII 105 N/mm3 

13 R 0.1 

14 N 1000 cycles 

Blanco’s Paris law model constants 

15 CI 2.1 (mm/cycle) (N/mm)-m 

16 CII 0.12 (mm/cycle) (N/mm)-m 
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17 Cm 436600 (mm/cycle) (N/mm)-m 

18 mI 5.09 

19 mII 4.38 

20 mm  5.48 

3.2.3 Loading and Boundary condition 

The loading for this model is an extension of creep model where the load was maintained 

constant after reaching the maximum load, thus during this time period the fatigue law is 

activated in this region, during which the damage due to fatigue df term is calculated and 

strength degradation occurs. The loading for the high cycle fatigue damage is shown below 

in Figure 27. 

 

Figure 27: Schematic diagram of loading in fatigue cycle 

The boundary condition for DCB model is fixing one end of the Cantilever beam and 

creating a pre-crack of 35 mm on the other side, and the application of load is on width of 

the beam on the side of pre-crack. 
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3.2.4 Numerical simulation results 

The simulation for Double Cantilever Beam requires two inputs along with the model that 

has been prepared, the input file in ABAQUS and UEL file which has modified COH3D8 

element for accounting the fatigue damage accumulation. The crack propagation at 

different time period which actually indicates number of cycle under high cycle fatigue is 

shown in  

Figure 28 below  
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Figure 28: Crack propagation at different time period for DCB specimen (from t=1 to 11) 
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It clearly indicates that the crack growth is rapid during the last time period which indicates 

high number of cycles, in order to visualize this effect two plots of 
𝜕𝑎

∂N
 vs GI/GIC which has 

maximum stress values of 30 MPa and 60 MPa is shown below in Figure 29.  

 

Figure 29: Rate of crack growth per cycle for DCB specimen 

Also, the crack growth versus number of cycles plot has been shown below in Figure 30 

to indicate the crack growth in high cycle fatigue damage  
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Figure 30: Plot of crack growth vs number of cycles for DCB specimen 
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3.3 Application of High cycle fatigue model for pipeline system 

3.3.1 Background of the problem 

The model for fatigue damage accumulation is used for real-time application in Cured-IN 

pipe structure [22]. There are special types of pipelines used for transport of high pressure 

natural gas called the Cured-In-Plane Liner pipelines, which has a liner material and a 

metallic pipeline layer. In general, the inner material is composite and outer material is 

metal. In these pipelines the pressure of natural gas is very high and when they are 

depressurized for maintenance or emergency repair, there is a void formed between the 

liner material and the pipe as shown in Figure 31. 

 

Figure 31[22]: Pipe and liner material with pressurized void 

Once the void is formed, the variation in the pressure in the pipeline is going to induce a 

cyclic loading which creates a fatigue damage in the piping system. Thus the high cycle 
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fatigue damage model can be applied to this piping system to study the effect of fatigue 

damage on the Cured-In-plane Liner pipeline. 

3.3.2 Numerical simulation and results 

The numerical simulation for Cured-In-plane pipeline system has been done using 

ABAQUS with the fatigue model developed for high cycle fatigue damage. The simulation 

model prepared consists of three layers: outer layer which is metallic pipe, inner layer 

which is liner material and a cohesive element layer in between to address the fatigue 

damage due to high cycle loading. In this model, only a quarter of pipe model is developed 

as the region where pressurized void is formed is the region under study. The reason for a 

quarter model is that it uses lesser number of elements and hence the computation time and 

cost would reduce. The modeling is done in two stages were the pipe is first modelled with 

a dimension of outer diameter of 120 mm and inner diameter of 100 and then the model is 

cut in between to create cohesive layer with a thickness of 5 mm. The model created is 

shown below in Figure 32. 

 

Figure 32: Model for Cured-In-Plane pipeline system 
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3.3.2.1 Material Model 

The material model consists of three section: metallic part, cohesive section and liner 

material. The corresponding section assignment for each part is solid section, cohesive 

section and shell composite. The properties associated with the model is listed below in 

the table 

Table 9: Properties of various material in model 

S.No Property of Material Value 

Metal properties 

1 Young’s Modulus 20500  

2 Poisson’s Ratio 0.4 

Laminate Properties 

3 E11 120000 MPa 

4 E22 = E33 10500 MPa 

5 G12=G13 5250 MPa 

6 G23 1500 MPa 

7 ν12 = ν13 0.3 

8 ν23  0.51 

Interface Properties 

9 GIC 0.26 N/mm 

10 GIIC 1.002 N/mm 

11 σImax 30 MPa 

12 σIImax 60 MPa 

13 KI 105 N/mm3 

14 KII 105 N/mm3 

15 R 0.1 

16 N 1000 cycles 

Blanco’s Paris law model constants 

17 CI 2.1 (mm/cycle) (N/mm)-m 

18 CII 0.12 (mm/cycle) (N/mm)-m 

19 Cm 436600 (mm/cycle) (N/mm)-m 

20 mI 5.09 

21 mII 4.38 

22 mm  5.48 
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3.3.2.2 Loading and boundary condition 

The loading is given at the cohesive layer between the liner material and the pipeline in 

order to study the fatigue damage due to void creation. The edges of the model have a fixed 

boundary conditions in order to have a stability in analysis. The internal pressure of the 

pipeline was maintained as 100 MPa and load at the layer was 50 MPa. The figure below 

shows the boundary condition and loading given to the model. 

 

Figure 33: Boundary condition and Loading 

3.3.2.3 Simulation results for analysis 

The simulation results show the void formation due to fatigue and its enlargement and 

increment in void pressure over time due to cycle loading. The fatigue damage is restricted 

to the layer because only cohesive element has fatigue damage accumulation term. Figure 

34 final stage of crack propagation with respect to time period. 
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Figure 34: Final Stage of crack propagation with respect to time period 
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4. SUMMARY 

In conclusion, cohesive zone model has been studied for various loading conditions and 

analysis. In static loading case we were able to get a desirable result by using CZM in 

conjunction with XFEM which overcomes the disadvantage of cohesive zone model of 

indication of crack direction. It also shows this methodology applies well for failure 

analysis as both XFEM and CZM compliments each other in reducing their disadvantages. 

The real time problem of pipeline crack propagation due to rock impingement is also done 

using this methodology. Also, parametric study was conducted which gives a clear 

illustration of effect of internal diameter, pipe thickness and cavity on crack initiation and 

propagation. 

 

In the next part, a time dependent creep loading is used where the load is held for particular 

time period in and the crack propagation is increased.  The creep model developed using 

CZM and XFEM is tested by using numerical simulation. Also, Design of experiment was 

done using Latin cube method to define a model for life prediction. This gave a good insight 

on the crack propagation that occurs over time with minimal variation in temperature 

factor. The model was then used for simulation of crack propagation in pipe impingement 

problem to obtain a realistic life prediction of an in service gas pipeline. The results were 

satisfying and were quite a good match with the literature values. 

In the third chapter, a model was developed to account for fatigue damage accumulation 

where a factor was added to existing damage due to static. The loading was similar to that 

of creep model were the maximum load was maintained and the time period is increased 
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but here with the increase in every time period there is particular number of cyclic loading 

associated with it thus leading to fatigue damage. This fatigue damage factor is determined 

and added to existing static analysis. Thus the model account for both static and fatigue 

damage. 

There is a lot of scope for future work in this field such as addition of XFEM in fatigue 

damage accumulation which will help to determine the crack propagation without crack 

path definition. Moreover, the mixed mode criterion can be altered to see its applicability 

with other models as well. 
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APPENDIX A 

FORTRAN CODE FOR FATIGUE DAMAGE ACCUMULATION 
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SUBROUTINE UEL (RHS, AMATRX, SVARS, ENERGY, NDOFEL, NRHS, 

NSVARS,PROPS, NPROPS, COORDS, MCRD, NNODE, U, DU, V, A, JTYPE, 

TIME,DTIME, KSTEP, KINC, JELEM, PARAMS, NDLOAD, JDLTYP, ADLMAG, 

PREDEF, NPREDF, LFLAGS, MLVARX, DDLMAG, MDLOAD, PNEWDT, JPROPS, 

NJPROP, PERIOD) 

c 

INCLUDE 'ABA_PARAM.INC' 

c      

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*), 

SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL), 

DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*), 

JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*), 

PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*) 

c 

DIMENSION ds1(4),ds2(4),dn(4),Trac(MCRD,NRHS), 

Trac_Jacob(MCRD,MCRD),R(MCRD,MCRD),coord_l(MCRD,NNODE), 

GP_coord(2),sf(4),B(MCRD,NDOFEL),co_de_m(3,4), 

B_t(NDOFEL,MCRD), Transformation_M(NDOFEL,NDOFEL), 

Transformation_M_T(NDOFEL,NDOFEL),temp1(MCRD,NDOFEL) 

c 

DIMENSION stiff_l(NDOFEL,NDOFEL),temp2(NDOFEL,NDOFEL), 

stiff_g(NDOFEL,NDOFEL),residual_l(NDOFEL,NRHS), 

residual_g(NDOFEL,NRHS),aJacob_M(2,3),delu_loc_gp(mcrd), 

co_de(mcrd,nnode) 

c 

DOUBLE PRECISION G_fn, G_ft, f_tn, f_tt, alpha, beta, rn, rt, 

alphaV, betaV, alphaP, p_m, p_n, deln, delt, tmax, pmax, opn,  

opt, del_e, del_f, D_st, D_fat 

 

c 

c Define Inputs 

c  

      G_fn=PROPS(1) 

      G_ft=PROPS(2) 

      f_tn=PROPS(3) 

      f_tt=PROPS(4) 

      alpha=PROPS(5) 
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      beta=PROPS(6) 

      rn=PROPS(7) 

      rt=PROPS(8) 

      N = PROPS(9) 

      R = PROPS(10) 

      C_I = PROPS(11) 

  m_I = PROPS(12) 

  del_e = PROPS(13)  

      alphaV=1 

      betaV=1 

      alphaP=1 

      GP_n=4d0 

c 

c Initialize Matrices and Vectors 

c  

      call k_vector_zero(ds1,4) 

      call k_vector_zero(ds2,4) 

      call k_vector_zero(dn,4) 

      call k_matrix_zero(Trac,mcrd,nrhs) 

      call k_matrix_zero(Trac_Jacob,mcrd,mcrd) 

      call k_matrix_zero(R,mcrd,mcrd) 

      call k_matrix_zero(coord_l,mcrd,nnode) 

      call k_vector_zero(GP_coord,2) 

      call k_vector_zero(sf,4) 

      call k_matrix_zero(Transformation_M,ndofel,ndofel) 

      call k_matrix_zero(Transformation_M_T,ndofel,ndofel) 

      call k_matrix_zero(B,mcrd,ndofel) 

      call k_matrix_zero(B_t,ndofel,mcrd) 

      call k_matrix_zero(temp1,mcrd,ndofel) 

      call k_matrix_zero(stiff_l,ndofel,ndofel) 

      call k_matrix_zero(temp2,ndofel,ndofel) 

      call k_matrix_zero(stiff_g,ndofel,ndofel) 

      call k_matrix_zero(residual_l,ndofel,nrhs) 

      call k_matrix_zero(residual_g,ndofel,nrhs) 

      call k_matrix_zero(aJacob_M,2,3) 

      call k_matrix_zero(rhs,ndofel,nrhs) 

      call k_matrix_zero(amatrx,ndofel,ndofel) 

      call k_matrix_zero(co_de,mcrd,nnode) 
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      a_Jacob=0.d0 

c 

c Determine Inputs to Cohesive Model 

c 

p_m=(alpha*(alpha-1.0)*rn**2.0)/(1.0-alpha*rn**2.0) 

p_n=(beta*(beta-1.0)*rt**2.0)/(1.0-beta*rt**2.0) 

deln=(G_fn/f_tn)*alpha*rn*(1.0-rn)**(alpha-1.0) 

&*((alpha/p_m)+1.0)*((alpha/p_m)*rn+1.0)**(p_m-1.0) 

del_f=(G_fn/f_tn)*rn*(1)**(m_I-1) 

da/dN = C_I*(G_fn)**m_I 

D_st=(deln - del_e)/(del_e - del_f) 

N=N+1000 

D_fat=D_fat+ N*((1-D_st)/1.25)*da/dN 

D_tot = D_fat + D_st 

f_tn= f_tn*(1-D_tot)       

c 

c Do local computations 

c  

      do i = 1, mcrd 

         do j = 1, nnode 

            co_de(i,j)=coords(i,j)+U(3.0*(j-1.0)+i) 

         end do 

      end do 

c 

c Do Calculations at Gauss Points 

c 

      do i = 1, GP_n 

c 

      call k_matrix_zero(aJacob_M,2,3) 

c 

      gpt = i 

c 

      call k_local_coordinates(gpt,co_de,R,coord_l,Transformation_M, 

& Transformation_M_T,a_Jacob,aJacob_M,coords,u,ndofel,nnode, 

& mcrd, SVARS) 

 

c 

c Compute shear and normal local opening displacements 
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c  

      do j = 1, 4 

         ds1(j)=coord_l(1,j+4)-coord_l(1,j) 

         ds2(j)=coord_l(2,j+4)-coord_l(2,j) 

         dn(j) =coord_l(3,j+4)-coord_l(3,j) 

      end do 

c 

c Determine the values of the shape function at each Gauss Point 

c 

         call k_shape_fun(i,sf) 

c 

         call k_vector_zero(delu_loc_gp,mcrd) 

c 

c Determine shear and normal opening displacements at Gauss points 

c          

         do j = 1, 4 

            delu_loc_gp(1)=delu_loc_gp(1)+ds1(j)*sf(j) 

            delu_loc_gp(2)=delu_loc_gp(2)+ds2(j)*sf(j) 

            delu_loc_gp(3)=delu_loc_gp(3)+ dn(j)*sf(j) 

         end do 

c 

         opn=delu_loc_gp(3) 

         opt=sqrt(delu_loc_gp(1)**2.0+delu_loc_gp(2)**2.0) 

c 

         if ((Svars(GP_n*(i-1.0)+1.0) .LT. opt) .AND. 

     & (opt .GT. rt*delt)) then 

            Svars(GP_n*(i-1.0)+1.0)=opt 

         end if 

         if ((Svars(GP_n*(i-1.0)+2.0) .LT. opn) .AND. 

     & (opn .GT. rn*deln)) then 

            Svars(GP_n*(i-1.0)+2.0)=opn 

         end if 

         tmax=Svars(GP_n*(i-1.0)+1.0) 

         pmax=Svars(GP_n*(i-1.0)+2.0) 

c 

c Determine Traction vector and tangent modulus matrix 

c  

call k_cohesive_law(Trac,Trac_Jacob,G_fn,G_ft,deln,delt, 
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&alpha,beta,p_m,p_n,pmax,tmax,alphaV,betaV,alphaP,delu_loc_gp, 

&mcrd, nrhs, SVARS) 

c 

c Determine B matrix and its transpose 

c  

         call k_Bmatrix(sf,B,mcrd,ndofel) 

c 

         call k_matrix_transpose(B,B_t,mcrd,ndofel) 

c 

c Compute the stiffness matrix 

c 

call k_matrix_multiply(Trac_Jacob,B,temp1,mcrd,mcrd, 

& ndofel) 

call k_matrix_multiply(B_t,temp1,stiff_l,ndofel, 

& mcrd,ndofel) 

c 

c Compute Global stiffness matrix  

c 

call k_matrix_multiply(Transformation_M_T,stiff_l, 

& temp2,ndofel,ndofel,ndofel) 

call k_matrix_multiply(temp2,Transformation_M,stiff_g, 

& ndofel,ndofel,ndofel) 

c 

c Multiply Jacobian with the Global stiffness and add contribution from each Gauss Point 

c 

call k_matrix_plus_scalar(amatrx,stiff_g,a_Jacob, 

& ndofel,ndofel) 

c 

c Compute the global residual vector 

c Local_residual = B_t * Trac 

c Global_residual = T' * Local_residual 

c  

call k_matrix_multiply(B_t,Trac,residual_l,ndofel, 

& mcrd,nrhs) 

call k_matrix_multiply(Transformation_M_T,residual_l, 

& residual_g,ndofel,ndofel,nrhs) 

c 

c Multiply the Global residual by the Jacobian and add the  
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c contribution from each point 

c    

         call k_matrix_plus_scalar(rhs,residual_g,a_Jacob, 

     & ndofel,nrhs) 

      end do 

c 

      return 

      end 

c==========================SUBROUTINES======================== 

 

c Determine the strain-displacement (B) matrix 

c 

      subroutine k_Bmatrix(sf,B,mcrd,ndofel) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension sf(4),B(mcrd,ndofel) 

      B(1,1) =  sf(1) 

      B(1,4) =  sf(2) 

      B(1,7) =  sf(3) 

      B(1,10)=  sf(4) 

      B(1,13)= -sf(1) 

      B(1,16)= -sf(2) 

      B(1,19)= -sf(3) 

      B(1,22)= -sf(4) 

      B(2,2) =  sf(1) 

      B(2,5) =  sf(2) 

      B(2,8) =  sf(3) 

      B(2,11)=  sf(4) 

      B(2,14)= -sf(1) 

      B(2,17)= -sf(2) 

      B(2,20)= -sf(3) 

      B(2,23)= -sf(4) 

      B(3,3) =  sf(1) 

      B(3,6) =  sf(2) 

      B(3,9) =  sf(3) 

      B(3,12)=  sf(4) 

      B(3,15)= -sf(1) 

      B(3,18)= -sf(2) 

      B(3,21)= -sf(3) 
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      B(3,24)= -sf(4) 

c 

      return 

      end 

c=============================================================== 

 

      subroutine k_cohesive_law(T,T_d,G_fn,G_ft,deln,delt, 

     & alpha,beta,p_m,p_n,pmax,tmax,alphaV,betaV,alphaP,delu, 

     & mcrd, nrhs, SVARS) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension T(mcrd,nrhs),T_d(mcrd,mcrd),delu(mcrd),SVARS(38) 

       DOUBLE PRECISION G_fn, G_ft, f_tn, f_tt, alpha, beta, 

     & alphaV, betaV, alphaP, p_m, p_n, deln, delt, tmax, pmax, 

     & popn, popt, gam_n, gam_t, Tn, Tt, Dnn, Dnt, Dtt, T_d, T, 

     & delu  

c 

      popn=delu(3) 

      popt=sqrt(delu(1)**2.0+delu(2)**2.0) 

c 

      call k_Mac(pM1,G_fn,G_ft) 

      call k_Mac(pM2,G_ft,G_fn) 

c 

      if (G_fn .NE. G_ft) then 

         gam_n=(-G_fn)**(pM1/(G_fn-G_ft))*(alpha/p_m)**p_m 

         gam_t=(-G_ft)**(pM2/(G_ft-G_fn))*(beta/p_n)**p_n 

      elseif (G_fn .EQ. G_ft) then 

         gam_n=-G_fn*(alpha/p_m)**p_m 

         gam_t=(beta/p_n)**p_n 

      end if 

c 

c Pre-calculation of the normal cohesive traction Tn 

c 

      if (popn .LT. 0.0) then 

         popn=0.0 

      elseif ((popn .GE. deln) .OR. (popt .GE. delt)) then 

         Tn = 0.0 

      elseif (popn .GE. pmax) then 

         Tn=(gam_n/deln)*(p_m*(1.0-(popn/deln))**alpha*((p_m/alpha) 
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     & +(popn/deln))**(p_m-1.0)-alpha*((1.0-(popn/deln))**(alpha-1.0)) 

     & *((p_m/alpha)+(popn/deln))**p_m)*(gam_t*(1.0-(popt/delt)) 

     & **beta*((p_n/beta)+(popt/delt))**p_n+pM2) 

      else 

         Tn=(gam_n/deln)*(p_m*(1.0-(pmax/deln))**alpha*((p_m/alpha) 

     & +(pmax/deln))**(p_m-1.0)-alpha*((1.0-(pmax/deln))**(alpha-1.0)) 

     & *((p_m/alpha)+(pmax/deln))**p_m)*(gam_t*(1.0-(popt/delt)) 

     & **beta*((p_n/beta)+(popt/delt))**p_n+pM2)*popn/pmax 

      end if 

c 

c 

c Algortihm 1  

c 

c Normal Cohesive Interaction 

c (1) Contact 

      if (delu(3) .LT. 0.0) then 

         Dnn = -(gam_n/(deln**2))*(p_m/alpha)**(p_m-1.0)*(alpha+p_m)* 

     & (gam_t*(p_n/beta)**p_n + pM2) 

         Dnt = 0.0 

         Tn = Dnn * delu(3) 

      else if ((popn .LT. deln) .AND. (popt .LT. delt)  

     & .AND. (Tn .GE. -1.0E-5)) then 

         Tn = Tn 

c (2) Softening Condition 

         if (popn .GE. pmax) then 

         Dnn=(gam_n/(deln**2.0))*((p_m**2.0-p_m)*((1.0-(popn/deln)) 

     & **alpha)*((p_m/alpha)+(popn/deln))**(p_m-2.0)+(alpha**2.0-alpha) 

     & *((1.0-(popn/deln))**(alpha-2.0))*((p_m/alpha)+(popn/deln))**p_m 

     & -2.0*alpha*p_m*((1.0-(popn/deln))**(alpha-1.0))*((p_m/alpha) 

     & +(popn/deln))**(p_m-1.0))*(gam_t*(1.0-(popt/delt))**beta 

     &*((p_n/beta)+(popt/delt))**p_n+pM2) 

         Dnt=(gam_n*gam_t/(deln*delt))*(p_m*((1.0-(popn/deln))**alpha) 

     & *((p_m/alpha)+(popn/deln))**(p_m-1.0)-alpha*((1.0-(popn/deln)) 

     & **(alpha-1.0))*((p_m/alpha)+(popn/deln))**p_m)*(p_n 

     & *((1.0-(popt/delt))**beta)*(((p_n/beta)+(popt/delt))**(p_n-1.0)) 

     & -beta*((1.0-(popt/delt))**(beta-1.0))*((p_n/beta)+(popt/delt)) 

     & **p_n) 

c (3) Unloading/reloading condition 
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         else 

         Dnn=(gam_n/deln)*(p_m*(1.0-(pmax/deln))**alpha*((p_m/alpha) 

     & +(pmax/deln))**(p_m-1.0)-alpha*((1.0-(pmax/deln))**(alpha-1.0)) 

     & *((p_m/alpha)+(pmax/deln))**p_m)*(gam_t*(1.0-(popt/delt)) 

     & **beta*((p_n/beta)+(popt/delt))**p_n+pM2)/pmax 

         Dnt=(gam_n*gam_t/(deln*delt))*(p_m*((1.0-(pmax/deln))**alpha) 

     & *((p_m/alpha)+(pmax/deln))**(p_m-1.0)-alpha*((1.0-(pmax/deln)) 

     & **(alpha-1.0))*((p_m/alpha)+(pmax/deln))**p_m)*(p_n 

     & *((1.0-(popt/delt))**beta)*(((p_n/beta)+(popt/delt))**(p_n-1.0)) 

     & -beta*((1.0-(popt/delt))**(beta-1.0))*((p_n/beta)+(popt/delt)) 

     & **p_n)*popn/pmax 

         end if 

c (4) Complete Failure 

      else 

         Tn = 0.0 

         Dnn = 0.0 

         Dnt = 0.0 

      end if     

c 

c=============================================================== 

      subroutine k_local_coordinates(gpt,co_de,R,coord_l,Transformation_M, 

     & Transformation_M_T,a_Jacob,aJacob_M,coords,u,ndofel,nnode, 

     & mcrd, SVARS) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension R(mcrd,mcrd),coord_l(mcrd,nnode),aJacob_M(2,3), 

     & Transformation_M(ndofel,ndofel),coords(mcrd,nnode), 

     & Transformation_M_T(ndofel,ndofel),u(ndofel), 

     & co_de(mcrd,nnode), co_de_m(3,4),SFD(2,4),SVARS(38) 

       DOUBLE PRECISION x1, x2, x3, x4, y1, y2, y3, y4, y5, y6, z1, z2, 

     & z3, z4 

c 

      call k_matrix_zero(co_de_m,3,4) 

c 

      do i = 1, 3 

         co_de_m(i,1)=(co_de(i,1)+co_de(i,5))*0.5 

         co_de_m(i,2)=(co_de(i,2)+co_de(i,6))*0.5 

         co_de_m(i,3)=(co_de(i,3)+co_de(i,7))*0.5 

         co_de_m(i,4)=(co_de(i,4)+co_de(i,8))*0.5 
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      end do 

c 

      x1=co_de_m(1,1) 

      x2=co_de_m(1,2) 

      x3=co_de_m(1,3) 

      x4=co_de_m(1,4) 

c 

      y1=co_de_m(2,1) 

      y2=co_de_m(2,2) 

      y3=co_de_m(2,3) 

      y4=co_de_m(2,4) 

c 

      z1=co_de_m(3,1) 

      z2=co_de_m(3,2) 

      z3=co_de_m(3,3) 

      z4=co_de_m(3,4) 

c 

      if (gpt .eq. 1) then 

         c_r=-sqrt(1.0d0/3.0d0) 

         c_s=-sqrt(1.0d0/3.0d0) 

      elseif (gpt .eq. 2) then 

         c_r= sqrt(1.0d0/3.0d0) 

         c_s=-sqrt(1.0d0/3.0d0) 

      elseif (gpt .eq. 3) then 

         c_r= sqrt(1.0d0/3.0d0) 

         c_s= sqrt(1.0d0/3.0d0) 

      elseif (gpt .eq. 4) then 

         c_r=-sqrt(1.0d0/3.0d0) 

         c_s= sqrt(1.0d0/3.0d0) 

      end if 

c 

      SFD(1,1) =-0.25*(1-c_s) 

      SFD(1,2) = 0.25*(1-c_s) 

      SFD(1,3) = 0.25*(1+c_s) 

      SFD(1,4) =-0.25*(1+c_s) 

      SFD(2,1) =-0.25*(1-c_r) 

      SFD(2,2) =-0.25*(1+c_r) 

      SFD(2,3) = 0.25*(1+c_r) 
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      SFD(2,4) = 0.25*(1-c_r) 

c 

      do i = 1,2 

         do j = 1,3 

            do k =1, 4 

               aJacob_M(i,j) = aJacob_M(i,j) + SFD(i,k)*co_de_m(j,k) 

            end do 

         end do 

      end do 

c 

      dum1 = aJacob_M(1,2)*aJacob_M(2,3) - aJacob_M(1,3)*aJacob_M(2,2) 

      dum2 = aJacob_M(1,3)*aJacob_M(2,1) - aJacob_M(1,1)*aJacob_M(2,3) 

      dum3 = aJacob_M(1,1)*aJacob_M(2,2) - aJacob_M(1,2)*aJacob_M(2,1) 

c 

      a_Jacob = sqrt(dum1**2 + dum2**2 + dum3**2) 

c 

      R(3,1) = dum1/a_Jacob 

      R(3,2) = dum2/a_Jacob 

      R(3,3) = dum3/a_Jacob 

c 

      

aLen=sqrt(aJacob_M(1,1)**2.0d00+aJacob_M(1,2)**2.0d00+aJacob_M(1,3)**2.0d00) 

      R(1,1)=aJacob_M(1,1)/aLen 

      R(1,2)=aJacob_M(1,2)/aLen 

      R(1,3)=aJacob_M(1,3)/aLen 

c 

      aLen2a=R(3,2)*R(1,3)-R(3,3)*R(1,2) 

      aLen2b=R(3,3)*R(1,1)-R(3,1)*R(1,3) 

      aLen2c=R(3,1)*R(1,2)-R(3,2)*R(1,1) 

c 

      aLen2 = sqrt(aLen2a**2.0d00 + aLen2b**2.0d00 + aLen2c**2.0d00) 

c 

      R(2,1) = aLen2a/aLen2 

      R(2,2) = aLen2b/aLen2 

      R(2,3) = aLen2c/aLen2 

c 

      a_J11 = (-0.25*(1-c_s))*x1 + (0.25*(1-c_s))*x2 + (0.25*(1+c_s))*x3 + 

     & (-0.25*(1+c_s))*x4 
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      a_J12 = (-0.25*(1-c_s))*z1 + (0.25*(1-c_s))*z2 + (0.25*(1+c_s))*z3 + 

     & (-0.25*(1+c_s))*z4 

      a_J21 = (-0.25*(1-c_r))*x1 + (-0.25*(1+c_r))*x2 + (0.25*(1+c_r))*x3 + 

     & (0.25*(1-c_r))*x4 

      a_J22 = (-0.25*(1-c_r))*z1 + (-0.25*(1+c_r))*z2 + (0.25*(1+c_r))*z3 + 

     & (0.25*(1-c_r))*z4 

c 

      b_J11 = (-0.25*(1-c_s))*x1 + (0.25*(1-c_s))*x2 + (0.25*(1+c_s))*x3 + 

     & (-0.25*(1+c_s))*x4 

      b_J12 = (-0.25*(1-c_s))*y1 + (0.25*(1-c_s))*y2 + (0.25*(1+c_s))*y3 + 

     & (-0.25*(1+c_s))*y4 

      b_J21 = (-0.25*(1-c_r))*x1 + (-0.25*(1+c_r))*x2 + (0.25*(1+c_r))*x3 + 

     & (0.25*(1-c_r))*x4 

      b_J22 = (-0.25*(1-c_r))*y1 + (-0.25*(1+c_r))*y2 + (0.25*(1+c_r))*y3 + 

     & (0.25*(1-c_r))*y4 

c 

      c_J11 = (-0.25*(1-c_s))*y1 + (0.25*(1-c_s))*y2 + (0.25*(1+c_s))*y3 + 

     & (-0.25*(1+c_s))*y4 

      c_J12 = (-0.25*(1-c_s))*z1 + (0.25*(1-c_s))*z2 + (0.25*(1+c_s))*z3 + 

     & (-0.25*(1+c_s))*z4 

      c_J21 = (-0.25*(1-c_r))*y1 + (-0.25*(1+c_r))*y2 + (0.25*(1+c_r))*y3 + 

     & (0.25*(1-c_r))*y4 

      c_J22 = (-0.25*(1-c_r))*z1 + (-0.25*(1+c_r))*z2 + (0.25*(1+c_r))*z3 + 

     & (0.25*(1-c_r))*z4 

c 

c 

      a_Jacob1 = (a_J11*a_J22 - a_J12*a_J21) 

      a_Jacob2 = (b_J11*b_J22 - b_J12*b_J21) 

      a_Jacob3 = (c_J11*c_J22 - c_J12*c_J21) 

c 

      a_Jacob = sqrt(a_Jacob1**2.0d00 + a_Jacob2**2.0d00 + a_Jacob3**2.0d00) 

c 

c===============================================================

= 

      num=nnode 

c 

      do i = 1, num 

         dum=3.0*(i-1.0) 



 

 

73 

 

 
 

         Transformation_M(dum+1,dum+1)=R(1,1) 

         Transformation_M(dum+1,dum+2)=R(1,2)  

         Transformation_M(dum+1,dum+3)=R(1,3) 

         Transformation_M(dum+2,dum+1)=R(2,1) 

         Transformation_M(dum+2,dum+2)=R(2,2) 

         Transformation_M(dum+2,dum+3)=R(2,3) 

         Transformation_M(dum+3,dum+1)=R(3,1) 

         Transformation_M(dum+3,dum+2)=R(3,2) 

         Transformation_M(dum+3,dum+3)=R(3,3) 

      end do 

c 

      call k_matrix_transpose(Transformation_M,Transformation_M_T, 

     $ ndofel,ndofel) 

c 

c 

      do i = 1, nnode 

         coord_l(1,i)=(R(1,1)*co_de(1,i)+R(1,2)*co_de(2,i) 

     & +R(1,3)*co_de(3,i)) 

         coord_l(2,i)=(R(2,1)*co_de(1,i)+R(2,2)*co_de(2,i) 

     & +R(2,3)*co_de(3,i)) 

         coord_l(3,i)=(R(3,1)*co_de(1,i)+R(3,2)*co_de(2,i) 

     & +R(3,3)*co_de(3,i)) 

      end do 

c     

      return 

      end 

c===============================================================

= 

      subroutine k_shape_fun(i,sf) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension sf(4), GP_coord(2) 

c 

      if (i .eq. 1) then 

         GP_coord(1)=-sqrt(1.0d0/3.0d0) 

         GP_coord(2)=-sqrt(1.0d0/3.0d0) 

      elseif (i .eq. 2) then 

         GP_coord(1)= sqrt(1.0d0/3.0d0) 

         GP_coord(2)=-sqrt(1.0d0/3.0d0) 
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      elseif (i .eq. 3) then 

         GP_coord(1)= sqrt(1.0d0/3.0d0) 

         GP_coord(2)= sqrt(1.0d0/3.0d0) 

      elseif (i .eq. 4) then 

         GP_coord(1)=-sqrt(1.0d0/3.0d0) 

         GP_coord(2)= sqrt(1.0d0/3.0d0) 

      end if 

c 

      sf(1)=(1-GP_coord(1))*(1-GP_coord(2))*0.25 

      sf(2)=(1+GP_coord(1))*(1-GP_coord(2))*0.25 

      sf(3)=(1+GP_coord(1))*(1+GP_coord(2))*0.25 

      sf(4)=(1-GP_coord(1))*(1+GP_coord(2))*0.25 

c 

      return 

      end 

c===============================================================

= 

      subroutine k_matrix_multiply(A,B,C,l,n,m) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension A(l,n),B(n,m),C(l,m) 

c 

      call k_matrix_zero(C,l,m) 

c 

      do i = 1, l 

         do j = 1, m 

            do k = 1, n 

               C(i,j)=C(i,j)+A(i,k)*B(k,j) 

            end do 

         end do 

      end do 

c 

      return 

      end 

c===============================================================

= 

      subroutine k_matrix_plus_scalar(A,B,c,n,m) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension A(n,m),B(n,m) 
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c 

      do i = 1, n 

         do j = 1, m 

            A(i,j)=A(i,j)+c*B(i,j) 

         end do 

      end do 

c 

      return 

      end 

c===============================================================

= 

      subroutine k_matrix_transpose(A,B,n,m) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension A(n,m),B(m,n) 

c 

      do i = 1, n 

         do j = 1, m 

            B(j,i)=A(i,j) 

         end do 

      end do 

c 

      return 

      end 

c===============================================================

= 

      subroutine k_matrix_zero(A,n,m) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension A(n,m) 

c 

      do i = 1, n 

         do j = 1, m 

            A(i,j)=0.d0 

         end do 

      end do 

c 

      return 

      end 
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c===============================================================

= 

      subroutine k_vector_zero(A,n) 

      INCLUDE 'ABA_PARAM.INC' 

      dimension A(n) 

c 

      do i = 1, n 

         A(i)=0.d0 

      end do 

c 

      return 

      end 

c===============================================================

= 

      subroutine k_Mac(pM,a,b) 

      INCLUDE 'ABA_PARAM.INC' 

c 

      if ((a-b) .GE. 0.0) then 

         pM=a-b 

      elseif ((a-b) .LT. 0.0) then 

         pM=0.d0 

      end if 

c 

      return 

      end 

c===============================END============================ 

 

       

 

 


