
Automated Iterative Tolerance Value Allocation and Analysis

by

Deepanjan Biswas

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved May 2016 by the

Graduate Supervisory Committee:

Jami Shah, Chair

Joseph Davidson

Yi Ren

ARIZONA STATE UNIVERSITY

August 2016

i

ABSTRACT

Tolerance specification for manufacturing components from 3D models is a tedious

task and often requires expertise of “detailers”. The work presented here is a part of a

larger ongoing project aimed at automating tolerance specification to aid less

experienced designers by producing consistent geometric dimensioning and

tolerancing (GD&T). Tolerance specification can be separated into two major tasks;

tolerance schema generation and tolerance value specification. This thesis will focus

on the latter part of automated tolerance specification, namely tolerance value

allocation and analysis. The tolerance schema (sans values) required prior to these

tasks have already been generated by the auto-tolerancing software. This information

is communicated through a constraint tolerance feature graph file developed

previously at Design Automation Lab (DAL) and is consistent with ASME Y14.5

standard.

The objective of this research is to allocate tolerance values to ensure that the

assemblability conditions are satisfied. Assemblability refers to “the ability to

assemble/fit a set of parts in specified configuration given a nominal geometry and its

corresponding tolerances”. Assemblability is determined by the clearances between

the mating features. These clearances are affected by accumulation of tolerances in

tolerance loops and hence, the tolerance loops are extracted first. Once tolerance loops

have been identified initial tolerance values are allocated to the contributors in these

loops. It is highly unlikely that the initial allocation would satisfice assemblability

requirements. Overlapping loops have to be simultaneously satisfied progressively.

ii

Hence, tolerances will need to be re-allocated iteratively. This is done with the help of

tolerance analysis module.

The tolerance allocation and analysis module receives the constraint graph which

contains all basic dimensions and mating constraints from the generated schema. The

tolerance loops are detected by traversing the constraint graph. The initial allocation

distributes the tolerance budget computed from clearance available in the loop, among

its contributors in proportion to the associated nominal dimensions. The analysis

module subjects the loops to 3D parametric variation analysis and estimates the

variation parameters for the clearances. The re-allocation module uses hill climbing

heuristics derived from the distribution parameters to select a loop. Re-allocation Of

the tolerance values is done using sensitivities and the weights associated with the

contributors in the stack.

Several test cases have been run with this software and the desired user input

acceptance rates are achieved. Three test cases are presented and output of each

module is discussed.

iii

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my advisor Dr. Jami J. Shah, for his

valuable guidance, teachings, support and believing in me with the task at hand. I am

also equally thankful to Dr. J.K. Davidson and Dr. Yi Ren for serving on my

committee, sharing valuable knowledge and showing the way with their expertise

with difficult problems.

I am thankful to all the current researchers at DAL especially my project team

mates for being supportive and involve in brainstorming solutions when approached

with a problem.

Finally I am thankful to DMDII (Digital Manufacturing and Design Innovation

Institute, grant number - 14-02-05) for financial support throughout the project term.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ...vii

LIST OF FIGURES ... viii

ABBREVIATIONS, NOMENCLATURE AND SYMBOLS x

CHAPTER

1. INTRODUCTION .. 1

1.1 Problem Definition .. 1

1.2 Background ... 2

1.3 Scope of Work... 3

1.4 Problem Decomposition .. 5

1.5 Overview of Approach .. 6

1.6 Organization of Thesis .. 7

2. LITERATURE REVIEW.. 9

3. AUTO-TOLERANCING FRAMEWORK ... 24

3.1 Auto-Tolerancing Framework ... 24

3.2 Pre-processor Modules .. 25

3.2.1 STEP to SAT Translation and Input Geometry Refinements 26

3.2.2 Assembly Feature Recognition (AFR).. 27

3.2.3 Pattern Feature Recognition (PFR) ... 30

v

3.3 Schema Generator ... 31

3.4 Tolerance Allocation and Analysis Module .. 32

3.5 Tolerance Conversion Module .. 34

4. AUTOMATIC LOOP DETECTION .. 35

4.1 Assembly Stacks ... 35

4.2 Automatic Loop Detection .. 35

4.2.1 Conceptual Design .. 36

4.2.2 Exhaustive Breadth First Search for loop detection 37

5. TOELRANCE ANALYSIS .. 41

5.1 Selection of Tolerance Analysis Method for Auto-tolerancing 41

5.2 3D Parametric Variation Analysis .. 43

5.3 Determination of Sensitivities ... 45

6. TOLERANCE ALLOCATION .. 47

6.1 Allocation Procedure for Designers .. 47

6.2 Tolerance Allocation for Auto-tolerancing ... 52

6.2.1 Domain Independent Iterative Re-design 53

6.2.2 Initial Tolerance Allocation .. 55

6.2.3 Tolerance Re-Allocation ... 61

7. TEST CASES .. 77

7.1 Cam Follower .. 78

vi

7.2 Radio Car .. 79

7.3 Cylinder Body Cap .. 81

8. CLOSURE .. 85

8.1 Contributions ... 85

8.2 Limitations .. 86

8.3 Future Work .. 87

9. REFERENCES .. 88

vii

LIST OF TABLES

Table Page

2- 1: Tolerance Chart .. 14

3- 1: ASU DAL Pattern Feature Library ... 31

6- 1: Initial Tolerance Distribution Tab-Slot Feature from Figure 6- 3 59

7- 1: Tolerance Analysis Verification Test Case Time Statistics 77

viii

LIST OF FIGURES

Figure Page

2- 1: Radio Car Support Brackets .. 13

2- 2: Variation Algorithm for Cylindrical Feature ... 16

2- 3: Global GD&T Model .. 19

2- 4: Section A in CTF: File Directory .. 19

2- 5: Section B in CTF: Part and Member Features ... 19

2- 6: Section C in CTF: Assembly Constraints and Basic Dimensions 20

2- 7: Section D in CTF: Tolerances and Associated Degree of Freedom 20

2- 8: Section E in CTF; Assembly Hierarchy .. 20

2- 9: Proposed Auto-Tolerancing Framework under AVM program 21

2- 10: Auto-tolerance Pre-processing Modules under AVM program 23

3- 1: Auto-Tolerancing Framework ... 25

3- 2: Current Assembly of Auto-tolerance Pre-processing Modules 26

3- 3: Assembly Feature Recognition Schematic .. 29

3- 4: ASU DAL Assembly Feature Library ... 30

3- 5: General Overview of 1st Order GD&T Schema Generator Module 32

3- 6: Tolerance Allocation and Analysis Module .. 33

3- 7: Data Translation Module ... 34

4- 1: Example of Geometric Dimensioning and Mating Constraint Graph 36

4- 2: Illustration of Loop Detection Search Tree ... 38

5- 1: 3D Parametric Variation Analysis ... 43

ix

Figure Page

6- 1: Cost vs Precision ... 47

6- 2: Inception of Allocation after Loop Detection ... 52

6- 3: Tab and Slot Assembly .. 58

6- 4: Initial Allocation .. 60

6- 5: Tolerance Re-allocation Framework ... 62

6- 6: Cost vs Machining Cost and Scrap rates ... 63

6- 7: Loss Function .. 64

6- 8: Distribution of Stacks after Initial Allocation ... 65

6- 9: Loss Function Discretized ... 65

6- 10: Acceptance Rates Distribution After 1
st
 Phase of Re-Allocation 72

6- 11: Acceptance Rate Distribution after Satisficing of Tolerances 74

7- 1: Cam Follower Assembly in Exploded View.. 78

7- 2: Automated GD&T Output for Right Support of Cam Follower 79

7- 3: Final distribution for Critical Stacks of Cam Follower 79

7- 4: Radio Car Assembly Exploded View .. 79

7- 5: Automated GD&T Output for Radio Car Chassis and Rear Cross Beam 80

7- 6: Final distribution for Critical Stacks of Radio Car Assembly 80

7- 7: Body Cap Assembly Exploded View .. 82

7- 8: Automated GD&T Output for Cylinder Body and Cap 84

7- 9: Final Distribution for Critical Stacks of Cylinder Body Cap Assembly 85

x

ABBREVIATIONS, NOMENCLATURE AND SYMBOLS

1-D: One Dimensional, alternatively written as 1D

2-D: Two Dimensional, alternatively written as 2D

3-D: Three Dimensional, alternatively written as 3D

Assemblability: Term to describe that manufactured component parts successfully fit

together

Assembly Feature: Mating feature pairs on distinct parts in an assembly

Basic Dimension: Nominal dimensions defined to identify the controlled dimensions

and help locate the tolerance zones

Controlled Dimension: Dimension exclusively specified to have specific tolerance

value and not dependent on other toleracnes

DoF: Degree of freedom are the position, orientation and size of geometric entities

when treated as rigid bodies in 3D

Feature of Size (FOS): Any 3 dimensional feature with a size dimension is a feature

of size

GD&T: Geometric Dimensioning and Tolerancing

Master DRF: Feature that is datum to another feature but does not have any position

or orientation tolerance

Local DRF: Feature that is datum for another feature and itself has position and

orientation tolerances

xi

Primary Tolerances: Position and size tolerances

Product Manufacturing Information (PMI): Manufacturing information like GD&T

and surface finish

Secondary Tolerances: Orientation and form tolerances

Tolerance Schema: Specification of tolerance frame parameters like datums,

modifiers and material modifiers

Tolerance: Extent of variation permitted from nominal form and size

Tolerancing: Includes tolerance specification, representation, inspection, synthesis

and analysis

Uncontrolled Dimension or Sum Dimension: Dimensions not exclusively specified by

designer but can be derived from the specified dimension and is not exclusively

assigned any tolerance but has a derived tolerance zone from its contributors

Variability: Extent of variance associated with entity

MBD: Core definition of a product in Model Based Enterprise

1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Product Specification is an important part of New Product Development (NPD)

process. Engineers design components along with a list of specifications that will

determine the quality of the product. These specifications are specific, measurable,

attainable and results-oriented. One such field which has enormous scope for

automation is tolerance specification. Generating proper GD&T for assemblies takes

years of experience and knowledge. Designers often generate incomplete, inconsistent

and low-quality GD&T because of either lack of tools or expertise. Such delays in

product specification prolong the total product development time. Commercial CAT

systems are available that assist designers and detailers to do tolerance analysis, but

none of these systems synthesize tolerances. There has been work in progress at

ASU Design Automation Lab to fill this gap by trying to automate tolerance synthesis

and scale down the reliance on designer’s skill and cognition. An automated system

can potentially mitigate incomplete and inconsistent GD&T, reduce overall product

development time, improve the overall quality of GD&T schema and maximize

allowable tolerances conserving assemblability and functionality.

In the desire towards automating tolerance synthesis Haghighi et al [5] classifies

the undertaking in 2 primary tasks, schema generation, and allocation/verification.

Schema generation primarily involves identifying required tolerance controls, basic

dimensioning, datum selection and assigning material modifiers based on some

heuristics. It is an under-development tool-set in its advanced stages at ASU Design

Automation Lab (DAL). This research here suggests an architecture and execution of

2

automated iterative 1st order tolerance allocation/verification on the statistical fit basis

using a method founded on some fundamental heuristics. The development of a

toolset for systematic tolerance value allocation and satisficing those for required

acceptance rate for assemblies will be discussed. It aims to automate the 1
st
 order

tolerancing and therefore targets tolerancing only for assemblability and does not

directly implement production economics or consider functionality in any section of

its implementation.

1.2 Background

Tolerances are associated with the nominal dimensions to specify an acceptable

variability to the manufactured features of a part. Attaining exact nominal dimension

is almost impossible with the current state of technologies and is not required.

Components can meet the required performance characteristics even with acceptable

variations due to deformation and wear, causing changes in dimension. The designers

do not know the environmental conditions under which the component will be used. It

is therefore neither possible nor necessary to manufacture parts having nominal

dimensions.

Geometric dimensioning and tolerancing (GD&T) is the universal way to convey

the design intent and dimensional requirement to the downstream stages till product

realization and provides the vital link between products function and process

capability. Apart from design intent and manufacturing aspects of GD&T, it is also

necessary for metrological purposes i.e. formulating inspection procedures. GD&T is

communicated over different stages as mentioned before and therefore underscores

the need for a standard practice to specify them. There are two standards in use for

specifying tolerances on drawings, ISO 1101 and ANSI/ASME Y14.5M. The

3

standards have defined different tolerance classes for dimensional variations: Size,

and geometric variations: form, orientation, profile, position, and runout as shown in

Figure 1- 1. Functionality and assemblability requirements drive the types of variation

that will be controlled by the tolerance classes.

FormForm OrientationOrientation

Straightness Straightness

FlatnessFlatness

CircularityCircularity

ParallelismParallelism

PerpendicularityPerpendicularity

AngularityAngularity

 Size Size

TolerancesTolerances

CylindricityCylindricity

LocationLocation

PositionPosition

ConcentricityConcentricity

SymmetrySymmetry

RunoutRunout

CircularCircular

TotalTotal

ProfileProfile

LineLine

SurfaceSurface

Figure 1- 1: Classes of Tolerances According to the Standards

For example, the form needs to be controlled for surface variations;

perpendicularity is critical for insertion of the orientation of a long feature; feature

size and location must be controlled for proper assembly. Whereas, datums define a

reference system on which these tolerances are applied. A group of tolerance classes,

tolerance values, and datums specified in design that control the variations in a part to

be manufactured. This entire set of information is commonly referred to as a tolerance

scheme. It is not possible to give a review of the entire standards here.

1.3 Scope of Work

The primary objective is to develop and implement a flexible architecture for the

tool so that auxiliary features or new tolerance optimization algorithms can be easily

added to the tool.

Primary tasks under the research

→ Develop modularized architecture to ensure flexibility, adaptability, and

scalability for automatic iterative tolerance allocation and analysis

4

→ Design and implement tolerance allocation tool for systematic tolerance

allocation and satisficing. Also, develop robust tolerance convergence

strategies that ensure convergence or gives suggestive feedback to the user.

The research does not aim to formulate a sophisticated optimization algorithm

as the primary goal is to explore the possibilities of automating tolerancing

and develop the primitive version of auto-tolerancing tool

→ Investigate suitability of different tolerance analysis methods for auto-

tolerancing and adapt it for the automatic tolerance allocation/verification tool

→ Record the outputs of various test cases and discuss the output at different

stages.

Tolerancing based on process capability data and functional tolerances i.e. 2
nd

order and cost optimization tolerancing i.e. 3
rd

 order is not in the scope of this project.

Additional toolsets or user feedbacks can be useful for automating 2
nd

 and 3
rd

 order

tolerancing and will be tackled in the future. The current state of the art technologies

developed at ASU DAL can be used to develop the 1
st
 order tolerancing i.e. tolerances

for assemblability automation, and here we describe the value allocation/verification

technology for 1
st
 order tolerancing.

To confirm this, the results of test runs on CAD assemblies is also shown here.

The tolerances are assigned systematically based on weights and sensitivities

associated with the contributor. To support allocation/verification, a separate tool to

detect all 1D/multidimensional stacks is also developed and is discussed in detail with

outcomes. Future work can include a tolerancing based on cost model and can be

included as an additional feature in the current tool-set, but for now, we limit

ourselves to satisfying the tolerance allocation for required acceptance rates of

5

assemblability. It is likewise significant to highlight that profile and runout tolerance

under the geometric tolerances in current implementation are not covered as these are

important from a functional position and not assemblability. The current

implementation aims to surpass or match the quality of GD&T generated by most

designers with five years of experience.

1.4 Problem Decomposition

The objective of tolerance allocation and analysis module is to assign values once the

tolerance frames have been set up by schema generator. Assigning tolerance is an

iterative process and requires simultaneously satisfying multiple overlapping loops.

Logically, it was identified that tolerancing for assemblability can be achieved by

seeking solutions to the following problems and integrating them in a single system.

Loop (Tolerance stack) Detection: For assemblability, clearances at mating features

should be a positive value. The clearances at the mating features are affected by

accumulation of tolerances in the loop. Loops are a continuous series of controlled

dimensions between mating features that form closed chains.

Tolerance Analysis: Before proceeding with tolerance allocation, an appropriate

tolerance analysis method should be selected that can be used to verify the tolerance

values that satisfy the assemblability requirements. The analysis method should be

able to deal with multi-dimensional loops and give a good approximation of the

variation of the analyzed dimension.

Initial Tolerance Allocation: In practice it is easier to assign some initial tolerance

values and then improve the values iteratively with analysis. Therefore, good initial

6

tolerance values should be assigned as a start point. Otherwise as mentioned earlier, it

is hard to satisfice all inter-related loops simultaneously.

Tolerance Re-allocation: The tolerance analysis may indicate that the initial

allocation does not meet the assemblability requirements. In such situation the

tolerances should be adjusted methodically in iteration with tolerance analysis.

1.5 Overview of Approach

Problems mentioned under section 1.4 can be addressed as follows

Loop Detection: The clearances at the assembly features are affected by

accumulation of tolerances in the loop. The primary task is to automatically identify

these loops and control them. The mating constraints and geometric dimensions relate

to the mating features and directly controlled dimensions respectively. This

information can be derived from a previously generated tolerance schema. The

relation between features, constraints and dimensions forms a graph structure with

nodes as the features and the links as the dimensions and constraints. Exhaustive

search is carried out on the graph to extract the loops associated to the clearances.

Tolerance Analysis Method: For the purpose of automated tolerance analysis

standard tolerance analysis methods could be used like worst case, Root Sum Square

(RSS), variation analysis and T-Maps. Since the aim is to control acceptance rates of

assemblies, exploring statistical tolerance analysis methods is of main interest. The

selected tolerance analysis method is used to compute acceptance rates for positive

clearance from the variation parameters of clearance.

Initial Tolerance Allocation: Once the tolerance loops are identified, the values are

allocated in such a way that the clearance variations can be controlled. Assigning very

7

tight tolerances may result in 100% assemblability. But in several cases achieving

tight tolerances could be impractical and can raise the cost of product significantly.

Therefore, initial tolerance allocation should aim to allocate some realistic values.

This may be achieved by considering the geometric dimension related to the

contributors. For example a pin with bigger diameter is prone to larger size variation

than a pin with a much smaller diameter. Therefore, larger tolerance should be

assigned to the pin with the bigger diameter.

Tolerance Re-allocation: The initially allocated tolerance values are analyzed and

multiple iterations are carried out to bring all the loops within the desired acceptance

rates. Some practical considerations should be made for re-allocation of tolerances

just like initial allocation. So consideration may be given to geometric dimensions

while re-allocating. Re-allocation should also ensure that the tolerances allocated are

within achievable limits.

1.6 Organization of Thesis

In Chapter 2, a detailed literature review for automatic stack detection and

tolerance allocation methods. Chapter 3 gives an overview of the auto-tolerancing

framework and briefly discusses all the modules of the tool. Chapter 4 describes two

alternative automatic tolerance stack detection method, conceptual design, and the

implementation. Chapter 5 discusses past DAL work in Tolerance analysis and also

discusses the three most important tolerance analysis methods, pros and cons of each

method, adaption for auto-tolerancing, conceptual design, and implementation.

Chapter 6 discusses some initial tolerance allocation guidelines for designers and the

tolerance allocation procedure adapted for auto-tolerancing including the different

user input methods, the conceptual design, and implementation. Chapter 7 documents

8

output from various test assemblies and discusses them to make interpretations.

Chapter 9 concludes the work and addresses limitations and possible future work.

9

CHAPTER 2

LITERATURE REVIEW

Automated Loop Detection

A tolerance chain is a sequence of features that accumulate to augment variability of

the sum dimension. They are also commonly referred as tolerance stacks. To

synthesize adequate GD&T these stacks should be analyzed and qualified within a

confidence limit. Lai and Yeun [9] developed a vector based transformation scheme.

Mohan et al[4] has presented a loop detection method that does not require GD&T

schema and can be done directly on a CAD model. But these loops are not exactly

stacks, instead assembly feature loops. These do not include the intermediate datum

flow chains between the mating features on a part. Therefore these loops cannot be

directly used for tolerance analysis. The above methods are difficult to incorporate for

allocation/verification purposes as it needs extraction of all loops with defined datum

paths. The Loop detection presented in this research is a supporting tool for

allocation/verification that extracts all 1D/multidimensional stacks using the

constraint graph.

Tolerance Allocation and Optimization

Tolerance allocation encompasses schema generation (datum selection, assigning

modifiers and material modifiers), tolerance values and optimization. Tolerance

allocation is classified as 1
st
 order allocation, 2

nd
 order allocation and 3

rd
 order

allocation. Haghighi et al [5] established this classification based on the intent behind

GD&T.

1
st
 order tolerance allocation: Allocation based on assemblability of parts

10

2
nd

 order tolerance allocation: Allocation based on assemblability and

functionality

3
rd

 order tolerance allocation: Allocation based on assemblability, functionality

and manufacturing

Several methods have been proposed for tolerance value allocation. Bjork [6]

suggests few approaches for designers to establish initial tolerance values. He

suggests equal tolerance allocation, tolerance allocation proportional to dimension and

tolerance allocation proportional to process deviation. All these approaches first

require identifying stacks associated to sum dimension. The initial step common to

these approaches is to determine the allowed deviation of sum dimension or tolerance

budget based on assimilability and/or functionality requirements. Equal tolerance

allocation method suggests distributing this tolerance budget equally over all

dimensions in the stack. It has no consideration of any trend in manufacturing

variation. Proportional to dimension approach distributes tolerance budget

proportional to the dimensions associated to the tolerances. The rationale behind this

is that higher process deviation should be associated with bigger dimensions.

Proportional to process deviation distributes the tolerance budget proportional to the

process deviation associated with dimension. This approach requires prior knowledge

of the processes required to manufacture the parts.

Tolerance optimization is one of the most important tasks in product development

as it directly affects the functionality and cost of production. Optimizing tolerances

takes years of experience, expertise and practical knowledge. Several propositions

have been made to optimize tolerances using math models. Speckhart [8] proposes an

approach to automate tolerance synthesis using a mathematical model aimed at

11

minimizing production cost. It targets 3
rd

 order tolerancing and heavily relies on an

accurate cost model for each individual feature. Lee and Woo [10] proposed a

tolerance synthesis algorithm based on a cost model and proposed an automation

theory. It falls short when variability distribution is non-normal, and it is highly likely

that distribution will lose normality if orientation and form tolerances are also

included. It also fails to include the effect of sensitivities of the contributors in its

algorithm. Bowman [11] proposes a gradient based optimization method aimed at

reducing manufacturing cost. It estimates the yield gradient by Monte-Carlo

Simulation, based on which tolerances are adjusted to achieve the required yield. The

above methods target 3
rd

 order tolerancing and relies heavily on cost models. They

also fail to propose a framework to automate their methods with inclusion of all

tolerance classes. Allocation/verification method proposed in this research utilizes

allocation module to systematically assign tolerances. The analysis module evaluates

the allocation and computes associated statistical parameters. The Analysis module

coupled with allocation module, iteratively synthesizes satisficing tolerance on

statistical fit basis.

Tolerance Analysis

Once initial tolerance values are established it’s important to conduct tolerance

analysis to ensure that the GD&T conforms to assemblability, functional and

manufacturing requirements. Usually analysis and allocation are carried out in a loop

and usually takes more than a single iteration to satisfy the above requirements. Some

of the common methods used for tolerance analysis are as below.

Tolerance charting:

12

The most common method for tolerance analysis is the tolerance charting method

which is a sure fit method. A local co-ordinate system is set up for each stack at the

left most feature (horizontally oriented stack) or bottom most feature (vertically

oriented stack) of the sum dimension. The direction from this origin to the other

feature of the analyzed dimension is the positive direction and negative in the other

direction. The final outcome of accumulation is the range of variation associated with

the analyzed dimension. For dimensional tolerances when travelling in positive

direction upper limit is entered in max column and lower limit is entered in min

column. When travelling in negative direction the upper limit goes into the max

columns and lower limit to the min column. For geometric tolerances half tolerance

value is entered in max column with positive sign and the other half tolerance in the

min column with negative sign regardless of direction of travel.

When material modifiers is assigned to the feature bonus tolerances have to be

accounted for. When MMC condition is associated with position tolerance zero bonus

tolerance is entered in the column with MMC radius and max bonus is entered in

column with LMC radius. When LMC condition is associated with the feature then

max bonus is entered in the column with MMC size and zero is entered in the column

with LMC condition. And when only centerline or center plane of a feature is used in

the stack, max bonus tolerances are added on both the columns. When material

modifier is assigned to datums, shift tolerances should be accounted for. For MMC to

a datum max shift tolerance is entered in the column with LMC size of datum and min

shift tolerance is entered in column with MMC size. Conversely, when LMC is

assigned to a datum the max shift is entered in the column with MMC size of datum

and min shift is entered in column with LMC size of datum. When center line of the

13

FOS is used, max shift tolerance is entered in both columns. Figure 2- 1 shows a

simple illustration of charting method on radio car support brackets and the stack is

shown with black dotted arrows. It can be noticed that the size dimensions of both

FOS are in negative direction. Therefore in Table 2- 1 maximum sizes are entered in

min column with negative sign and minimum sizes are entered in max column with

negative sign. Position tolerance for FOS2 is split to both columns. Max shift

tolerance from datum D i.e. FOS1 is entered in column with min size of FOS1 and

min shift is entered in column with max size of FOS1. Max bonus tolerances are

entered in the column with LMC size and zero tolerance is entered in the column with

MMC size.

Figure 2- 1: Radio Car Support Brackets

14

Table 2- 1: Tolerance Chart

Linearized Tolerance Analysis :

Often in assemblies while detailing several multidimensional stacks may be

encountered. It is just as important to analyze the multidimensional stacks as the 1D

stack. In general the dimension to be analyzed can be expressed as function of all the

contributing dimensions i.e.

 𝐴 = 𝑓(𝑑1, 𝑑2, 𝑑3, … .)

2. 1

This function is referred as the design function and may be non-linear w.r.t some or all

dimensions. To simplify the tolerance analysis this function can be approximated by a

linearizing the function by taking the first order terms of its Taylor series expansion as

mentioned by Shah et al [15]

𝐴 ≈ 𝑓(𝑑1, 𝑑2, 𝑑3

̅̅ ̅, … .) + ∑
𝜕𝑓

𝜕𝑑𝑖

𝑛

𝑖

∆𝑑𝑖

2. 2

Both worst case and statistical analysis can be performed once equation is linearized.

The worst can be conducted based on below equations

"+/-" Max "+/-" Min Δ

Size(FOS1) - 2.45 - 2.55 0.1

Basic dim + 28 + 28 0

Position (FOS2) + 0.1 - 0.1 0.2

Shift (datum FOS1) + 0.15 - 0.05 0.2

Size(FOS2) - 2.45 - 2.55 0.1

Bonus + 0.1 - 0 0.1

Total 23.45 22.75 0.7

15

 �̅� = 𝑓(𝑑1, 𝑑2, 𝑑3
̅̅ ̅, … .) 2. 3

𝐴 ≈ ∑

𝜕𝑓

𝜕𝑑𝑖

𝑛

𝑖

∆𝑑𝑖
2. 4

For statistical analysis the mean can be computed using equation 2. 3 and the

deviation of analyzed dimension can be computed by below equation

𝜎𝐴 = √∑ (
𝜕𝑓

𝜕𝑑𝑖
𝜎𝑑𝑖

)
2𝑛

𝑖

2. 5

The acceptance rates can be computed from the from the mean and standard deviation

values of the analyzed dimension.

3D Parametric Variation Analysis: Linearized tolerance analysis discards the higher

order terms of assembly equation’s Taylor’s expansion which can affect its accuracy.

Another shortcoming in statistical linearized tolerance analysis methods is that it’s not

capable of capturing the refinement effect of the orientation and form tolerances.

Linear statistical tolerance analysis captures variability of features only in 1

dimension whereas realistic variations occur in 3D space. This may result in less

conservative outcomes thus showing fewer failures than actual. The 3D parametric

tolerance variation analysis accounts for the above shortcomings. It is difficult to

formulate the closed form equations for 3D variation. Therefore, Monte Carlo

simulation is used to collect randomized samples of variation. It treats tolerances as

random variables and collects random samples from its PDFs. It computes the

transformation matrix for the feature based on these variations. Finally, it combines

these transformations in a stack to compute the resulting variation of analyzed

dimension. These samples of analyzed dimension variation are used to estimate its

population’s distribution parameters.

16

Figure 2- 2: Variation Algorithm for Cylindrical Feature

It uses variation algorithms for different features described by Shen et al [19], but

sampling sequence is maintained. For example in a cylindrical feature (Figure 2- 2),

the form zone is sampled first with zero mean and given standard deviation (some

scaled value of tolerance). Following this the instantaneous form zone is sampled

within the size zone. This instantaneous form zone is also sampled within the

orientation zone. The resulting zone is then sampled within the position zone. The

related actual mating envelope can be computed from the above variations and also

the location variations. Based on the values of this variation a transformation matrix is

developed for the feature. The algorithm takes care of shift and bonus tolerances by

adding correction to tolerance zones.

T-Maps:

A T-Map® is a hypothetical Euclidean point space, the size and shape of which

reflects all variational possibilities for a target feature. It is the range of points

resulting from a one-to-one mapping from all the variational possibilities of a feature,

within its tolerance zone, to the Euclidean point space. These variations are

17

determined by the tolerances that are specified for controlling size, position,

orientation, etc., of the feature. It is currently is an evolving technology and being

developed at ASU DAL.

Commercial CAT systems:

Current major CAT packages include VisVSA from UGS, eTol-Mate from

Tecnomatix, Mechanical Advantage from Cognition Co., 3-DCS from Dimensional

Control Systems Inc., and CETOL from Sigmetrix LLC. Some other computer aided

design (CAD) systems such as IDEAS® (IDEAS is also a registered trademark of

UGS) from UGS also have tolerance analysis modules. Of all these packages, the first

four (VisVSA, eTol-Mate, 3-DCS, Mechanical Advantage) and the new

version CETOL can be broadly classified as one category. Most CAT packages take

advantage of the same parametric/variational approach used in CAD systems and

apply the Monte Carlo simulation to tolerance analysis (22, 23, 24).

ASU Tolerance Analysis Testbed:

In the past tolerance analysis testbed was developed with C++ for windows platform

using HOOPS for rendering. The testbed constituted three tolerance analysis methods

Tolerance charting [14], 3D Parametric Tolerance Variation Analysis [18] and T-Maps

[20, 21]. A fundamental issue for automatic geometric tolerance analysis is the

representation model, which should, in conjunction with CAD models, accurately and

completely represent the GD&T specification according to the GD&T standards. The

ASU GD&T global model is used to communicate GD&T to the ASU tolerance

analysis testbed.

GD&T Global Model :

18

To transmit geometric dimension and tolerance information completely, to CAT

systems a rich data structure is needed. The data structure should be able to capture all

types of geometric dimensions, mating constraints, tolerances and features. The

comprehensive ASU GD&T Global Model [7] gives just that and can represent all

tolerance types in conformity with ASME Y14.5 standards. Though STEP AP242

also allows transmitting the GD&T, but it is not suitable for conducting dimension

variation analysis as varying the features directly on CAD model is neither

computationally feasible nor is it desirable. This further strengthens the case for

utilizing ASU GD&T Global Model represented as the Constraint Tolerance Feature

Graph (CTF) as it gives all relevant data for tolerance analysis exempting the CAD

model.

Figure 2- 4 is a representation of the global GD&T model and shows the

connectedness between GD&T information. The data structure contains 5 main

sections

Sec A: contains the name of the B-rep file.

Sec B: contains information about the features in a Part and their data. In case of an

assembly this section will have multiple parts and their feature information.

Sec C: contains data about the constraints and metric relations, including the mating

conditions.

Sec D: tolerance data and DoFs

Sec E: assembly hierarchy

19

Feature0

Root Part0

Part1

Part2

Geometric Data

Feature1

Constraints

…

T0

T1

T2
…

C0

C1

C2
…

P0

P1

P2

Tolerances

Points

…

…

…

…

…

…

…

…

Dof0

Dof1

Dof2

DOFs

Figure 2- 3: Global GD&T Model

The entities are related in a doubly linked list structure as shown in Figure 2- 3.

Figure 2- 4 shows Section A in CTF with the B-rep file name and directory

information.

Figure 2- 4: Section A in CTF: File Directory

Figure 2- 5 shows Section B in CTF with parts and their feature information.

Parts point to its member features which are trimmed feature representation of real

features [7] and these features contain face IDs, location and geometric information.

Figure 2- 5: Section B in CTF: Part and Member Features

Figure 2- 6 shows Section C with basic dimension pointing to member features

and assembly constraints (or mating constraints) pointing to member features. This is

particularly useful for stack detection and will be elaborated in section 4.2.

20

Figure 2- 6: Section C in CTF: Assembly Constraints and Basic Dimensions

Figure 2- 7 shows Section D with tolerances along with modifiers, datums and

material modifiers for both feature and datums. It also has the degrees of freedom

DOF restricted by the datums of the target feature.

Figure 2- 7: Section D in CTF: Tolerances and Associated Degree of Freedom

Figure 2- 8 shows Section E with the assembly hierarchy with pointers to the

parts and sub-assemblies. Sub-assembly #51(‘assembly_1’) points to parts #7 and #10

and #52 (‘assembly_0’) points to part #1 and #4 and sub-assembly #51

Figure 2- 8: Section E in CTF; Assembly Hierarchy

This model will be used in the auto-tolerancing project described in this research.

Past work in Auto-tolerance at ASU DAL: Work on the auto-tolerancing project

began as a part of DARPA Adaptive Vehicle Make (AVM) program. This program

consisted of a series of crowd sourced design competitions based on computational

tools, DBs, KBs provided by AVM contractors. The objective was to demonstrate and

achieve DARPA’s target of 10X reduction in development time and cost. Thus, heavy

reliance on automated tools was required, both for aiding designers in their tasks (part

catalogs, simulation tools) and for DARPA to evaluate those designs (testbenches).

Competitors used different CAD systems, so GD&T could not be communicated

digitally (STEP AP203 translators in current commercial CAD do not support GDT

data). Also, we discovered that even when GD&T could be communicated (via pdf

21

files or native CAD), competitors often submitted incomplete & inconsistent GD&T

that could not be analyzed for assemblabilty. Automating GD&T from nominal

models of assemblies was proposed as a means for solving both the data

communication problem and the lack of GD&T expertise amongst competitors.

GD&T on parts directly affects its functionality, assemblability and

manufacturability. Encompassing all these factors in automation of GD&T is a

paramount task. To simplify the problem, tolerancing is classified based on intent of

GD&T as 1
st
 order tolerancing, 2

nd
 order tolerancing and 3

rd
 order tolerancing. 1

st

order tolerancing is based on assemblability of parts in an assembly. 2
nd

 order

tolerancing is based on assemblbility and functionality. 3
rd

 order tolerancing is based

on assemblability, functionality and manufacturing cost optimization. The initial

proposition made by Mohan et al [4] for automating tolerance generation was aimed

at 1
st
 order tolerance allocation and tolerancing fits and fasteners. Figure 2- 9 shows

the proposed auto-tolerancing framework under the AVM program.

Figure 2- 9: Proposed Auto-Tolerancing Framework under AVM program

22

The framework can be divided into pre-processing tool-sets and primary auto-

tolerancing tool-sets. Past work focused on building the pre-processing tool sets and

their assembly is shown in Figure 2- 10. The pre-processing tools constitute the

Assembly Feature Recognizer (AFR), Pattern Feature Recognizer and the Assembly

Analysis modules. We are particularly interested in mating or assembly features

because they dictate assemblability. The AFR detects all mating features in an

assembly using the assembly liaison graph with details given in Mohan et al [4]. The

Assembly analysis module extracts all possible direction of controls (DoC) in an

assembly and detects all the mating pair loops. DCG is useful to determine possible

directions of control for a feature. Assembly feature loops may help with tolerance

analysis by identifying stacks. The primary tools constitute the schema (datums,

modifiers and material modifiers) generator, the allocation/verification and the PMI

translation module. Haghighi et al [5] established the M, D, P, L, X rules to generalize

schema development for automation. M rules handle selection of primary datums, D

and P rules handle selection of secondary and tertiary datums. L rules define the

datum flow chains in a schema. X rules handles the refinement tolerances i.e.

orientation and form tolerances. Under AVM, the auto-tolerancing project did not

constitute development of any of the primary tools of auto-tolerancing. Development

of primary tools is carried out under DMDII’s initiative to complete tasks under

AVM.

23

Figure 2- 10: Auto-tolerance Pre-processing Modules under AVM program

24

CHAPTER 3

AUTO-TOLERANCING FRAMEWORK

This section describes the modified auto-tolerancing framework constituting all

the pre-processor and primary modules. It gives a schematic overview of each of these

modules and data transmitted to downstream modules.

3.1 Auto-Tolerancing Framework

The auto-tolerancing framework was proposed by Haghighi et al [5]. Shown in Figure

3- 1 is the current standing framework. It starts with assembly STEP AP203 file and

outputs the CAD in STEP AP242 standard with the generated PMI information.

The initial proposition of the auto-tolerancing framework was made in the past

ASU DAL under the AVM program as discussed under literature review. Some

modifications have been made to the current auto-tolerancing framework based on

requirements. An additional tool was added to pre-processor to assign persistent IDs

to faces in STEP AP203. This information added to AP203 is useful during translation

of AP203 to AP242. It allows consistent association of tolerances with its respective

features during data translation.

Initial auto-tolerancing proposed the loop detection to be used in the assembly

analysis module to identify stacks. But these loops detected are not particularly

tolerance stacks and cannot be directly useful for analysis. These loops constitute only

the assembly features and no intermediate chains between them. A new loop detection

tool has been implemented that identifies stacks once schema is generated.

It is integrated in the auto-tolerancing system between the schema generation and

tolerance allocation module. In the initial auto-tolerance framework it was proposed

to extend its capabilities to tolerancing fits and fasteners. This seemed to be a bigger

25

challenge than initially perceived. For example, when assigning tolerances to shaft

and bearing the operating torque should be known. This poses challenges when trying

to achieve complete automation.

This research describes the method and implementation of the second primary

tool-set in the sequence that synthesizes systematic tolerance allocation and

verification.

Figure 3- 1: Auto-Tolerancing Framework

3.2 Pre-processor Modules

Before defining GD&T on a part a detailer needs to evaluate the assembly i.e.

determine the assembly constraints, determine clearances, kinematic constraints, etc.

For automation of GD&T similar evaluations are needed. Past works at ASU DAL

have successfully developed some tools for this purpose and assembled under the pre-

processing block. Assembly features are the mating feature of sizes and planes. They

are of particular interest as these dictate assemblability of parts in an assembly. 1
st

26

order tolerancing should be based on these mating features. Assembly Feature

Recognizer is used for automatic detection of these assembly features. Feature pattern

recognizer identifies pattern features from AFR output. Identifying pattern features

allows allocation of pattern specific tolerances to the pattern features.

Figure 3- 2: Current Assembly of Auto-tolerance Pre-processing Modules

Figure 3- 2 shows a schematic of the re-designed implementation in the pre-

processor block. The interop implementation embedded in the pre-processor translates

it to ‘.sat’ ACIS native format. The assembly feature recognition (AFR) module reads

in the ‘.sat’ file. Feature Pattern Recognition module uses output of AFR to identify

patterned set of features.

3.2.1 STEP to SAT Translation and Input Geometry Refinements

The CAD data is input to the auto-tolerancing software in STEP AP203 file format.

Since auto-tolerance software is built upon the ACIS geometric kernel, the STEP

AP203 is translated to native SAT format.

27

During the translation process two additional operations are carried out: merging

of half cylindrical faces for cylindrical features and attaching persistent IDs to the

faces entities.

3.2.2 Assembly Feature Recognition (AFR)

Figure 3- 3 shows a schematic representation of the AFR. Efficient assembly feature

recognition algorithm can be implemented by identifying contact regions. It can

greatly reduce the graph size and therefore the search space as will be explained

below. But the question stands that how close two faces must be, to be considered

contacting each other. We refer to this distance as the proximity value. The ACON

implementation in AFR identifies the contact regions based on the proximity value.

AFR offers two ways of determining proximity values, adaptive value method and

user defined method.

In earlier version of AFR, proximity value for adaptive method is computed as a

fixed percentage of the radius of the largest cylinder feature in the assembly. One

major shortcoming in this method is that it fails to consider the case when an

assembly does not have any cylindrical features. To fix this and make better

approximation in the current version an alternate method is used to compute

proximity values. The current method takes the equivalent length of smallest part’s

volume and ratio of largest part to the smallest part into account. Equation 3. 1 shows

the formulation of the current adaptive method for computing proximity value.

𝑃 =

1

(
1

1.5

√𝑟
3

+ 1) ∗ 5

∗ 𝐿𝑒𝑞 3. 1

Where,

P = Proximity value

28

r =
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

Leq = √𝑉𝑚𝑖𝑛
3

Vmin = Bounding box volume of the smallest part in the assembly

Vmax= Bounding box volume of the biggest part in the assembly

Once contact pairs are identified by the ACON, the AFR builds the modified face

adjacency graph (FAG) constituting all the contact pair faces and their neighboring

faces. The nodes of the graph are face entities and the arcs are the edges or the contact

links. The modified (FAG) is subdivided into more local level graphs to reduce the

search space.

An existing feature library specifies geometric parameters, algebraic parameters,

geometric constraints and algebraic constrains for primitive assembly features. The

feature library is created through the assembly feature tutor tool [17]. The Assembly

Feature Tutor tool was developed at ASU for users to interactively input feature

definitions. These tool outputs the feature definitions in N-rep format. These primitive

assembly features are read in by AFR and stored as a graph structure. The nodes are

faces and the arcs are the edges and the contact links.

The primitive assembly feature graph is matched with the local level modified

face adjacency graphs to identify isomorphic subgraphs. Graph matching is a NP hard

problem with worst case exponential time complexity [16]. But the graph matching

problem for AFR is of smaller size as the primitive feature graphs are relatively very

small. Additionally, the modified FAG is divided into smaller local level graphs that

further reduce the complexity of graph matching algorithm. Therefore the popular

critique of graph matching algorithms being unfeasible is not warranted here.

29

Once isomorphic subgraphs are identified the geometric parameters, algebraic

parameters, geometric constraints and algebraic constraints are verified. The features

consistent with primitive feature definitions are the detected features. These detected

features’ feature IDs, feature types, and geometric parameters are output to a ‘.afr’

file. Figure 3- 3 shows the high level overview of the AFR. Figure 3- 4 shows the

current assembly features in the library.

AFR

ACON

Create Face Adjacency Graph
(master B-Rep)

Contact Features
(Possible Contact Features based on

pin ball radius or proximity value)

Decompose master B-reps
to more localized B-reps

(multiple localized B-Reps)

Body_entity[i]

Select potential assembly
features from
Body_entity[i]

(selects the contact pairs that)

Topology, Geometry and location
validation

(Compares local B-Reps to N-Reps from library)

ASM_Feature list

i≤number of bodies; i++

Figure 3- 3: Assembly Feature Recognition Schematic

30

Figure 3- 4: ASU DAL Assembly Feature Library

 3.2.3 Pattern Feature Recognition (PFR)

We define a feature pattern as a group of related features at part interfaces. Common

arrangements are circular, linear, and rectangular. The mating pattern features also

dictate assemblability just like other assembly features. These features are often

toleranced as a group. ASME Y14.5 defines some rules for assigning pattern

tolerances. These rules are incorporated in auto-tolerancing to account for pattern

feature tolerancing.

But first we should be able to automatically identify pattern features. Once

assembly features have been recognized, we can search for patterns and pattern

parameters. Input files for PFR is the ‘.afr’ file, ‘.ppf’ file output from the upstream

AFR module and the ‘.sat’ file. There are two main tasks under pattern recognition to

detect pattern features

1. Pattern feature matching which is checking conditions for pattern existence

between features. Set of features that make potential pattern feature must have

same feature type (pin tab, etc.) and same geometric parameters (diameter, width,

etc.). They also must lie on the same plane and mate with the same counterpart.

2. Pattern type matching which is matching the pattern type with pre-defined pattern

shapes. Figure 5 shows the library of pre-defined pattern types.

31

Some details of the available patterns in the library of ASU DAL Pattern Feature

Recognizer are given in Table 3- 1.

Table 3- 1: ASU DAL Pattern Feature Library

3.3 Schema Generator

It cannot be stressed enough the importance of developing a good tolerance schema as

it directly decides the process design, inspection procedure and cost of manufacturing

the assembly. Schema Generator module is designed to develops the tolerance frame

for features in the part by evaluating the required tolerance types, datums, modifiers

and material modifiers.

The rule sets developed to generate schema [5] is classified into five main rules

(M, D, P, L, X). M rules is used for selection of primary datums. D and P rules are

used to setup DRFs i.e. select secondary and tertiary datums. L rules help define the

datum flow in schema i.e. maintain the right flow of connectedness between datums if

multiple DRFs are used for tolerancing part. Finally X rules define the secondary

tolerances or refinement tolerances i.e. orientation and form tolerances.

Input in the schema generator is the ‘.sat’, ‘.afr’, ‘.pfr’, ‘.dcg’ and ‘.ld’ files.

Using the sat file and outputs from pre-processor tools it identifies the assembly

32

features, pattern features, direction of potential datum flows and assembly constraint

loops as have been described in previous sections. At this stage all the tolerance

frames have been setup, but no tolerance values have been assigned. It outputs the

feature trimmed geometric representation with face IDs and the tolerance frames with

zero tolerance values in a ‘.ctf’ file. Figure 3- 5 shows the schematic representation of

current implementation of the schema generator.

Figure 3- 5: General Overview of 1st Order GD&T Schema Generator Module

3.4 Tolerance Allocation and Analysis Module

The research presented here focuses on this module and will be discussed in more

detail in the following sections. The input for this module is the ‘.ctf’ output from the

schema generator. The loop detection uses the basic dimension and assembly

constraint list from the CTF to detect multi-dimensional assembly level tolerance

stacks and is discussed in detail in chapter 4.

These stacks are used to systematically allocate tolerances based on weights and

sensitivities. The allocation module iteratively improves the allocated tolerance with

33

feedback from the analysis module. Allocation tool is subdivided into two separate

modules for initial allocation and re-allocation. Initial allocation generates initial

tolerance values purely entirely based on weights. Re-allocation module re-distributes

and adjusts the tolerances in different stacks based on some hill climbing heuristics.

Allocation module is discussed in detail in chapter 6. The tolerance analysis module

uses variation analysis and computes acceptance rates for the tolerance stacks that are

used by re-allocation module to compute heuristics. Though ASU DAL tolerance

testbed has capabilities of automated tolerance charting, RSS tolerance analysis and

3D parametric dimension variation analysis, but in the current implementation of

allocation/verification module 3D parametric dimensional variation analysis is used to

compute acceptance rates. Chapter 6 discusses the reasoning behind selecting 3D

parametric variation analysis over other methods.

Figure 3- 6: Tolerance Allocation and Analysis Module

34

Figure 3- 6 shows the different modules for tolerance allocation and analysis and

their interaction. CTF parser reads in the CTF file produced by schema generation

module and populates an intermediate data structure. The tolerance values are

assigned zero at this stage in the CTF file. Loop detection uses the constraint list to

extract tolerance stacks. These stacks are used by tolerance allocation and analysis

module to adjust tolerance values. The stack acceptance rates are controlled based on

a user defined loss function. The concept of loss function will be introduced under the

discussion of tolerance allocation and analysis module.

3.5 Tolerance Conversion Module

GD&T generation is complete at this stage but it is important to translate the tolerance

information into standard format so that it can be consumed by all commercial CAD

systems. Tolerance conversion module is a translator that specifically translates the

tolerance PMI information in CTF to standard STEP AP242 format. It uses STEP

Tools dlls to achieve this. Currently several vendors are working on developing STEP

AP242 parsers including the PMI information. Model based representation of

tolerances in standard format may substitute 2D drawings in the future and will be

extremely convenient and save enormous amount of resources that is put into

detailing.

Figure 3- 7: Data Translation Module

35

CHAPTER 4

AUTOMATIC LOOP DETECTION

This chapter describes a new method to automatically extract all tolerance stacks from

the geometric dimension and mating constraint graph that are important for

assemblability.

4.1 Assembly Stacks

Before proceeding with estimation of assembly acceptance rates it is important to

establish the concept of tolerance accumulation or stacks in a part. The geometric

dimensions form chains of these dimensions. The uncontrolled dimensions to which

the chain is associated to by the start point and end point is the analyzed dimension.

For example, closed chains are usually associated to gaps (uncontrolled dimensions)

and therefore gaps are the analyzed dimensions for closed chains.

As already discussed before, every dimension in a part is associated with some

variation. In a chain these variations of the dimensions accumulate to augment the

overall variability of the chain or stack. This augmented variation of uncontrolled

dimensions may diminish the quality and reduce assembly acceptance rates. The

mating face gaps dictate the assemblability and should maintain a positive clearance.

Therefore, we are particularly interested in controlling the variations of closed chains.

In reality, to conserve functionality of the assembly it may be useful to analyze some

of the open chains but it is not in the scope of this project.

4.2 Automatic Loop Detection

For auto-tolerancing we are interested in automatic detection of all the closed basic

dimension chains in an assembly. The loop detection module is designed to extract all

36

closed chains automatically. Loop detection is implemented as a stand-alone tool and

is readily compatible with ASU DAL GD&T global model definitions.

4.2.1 Conceptual Design

Before describing the loop detection tool itself, it is important to interpret the theory

behind it. Geometric dimensions and mating constraints in an assembly form a

network and is an undirected (dis-regarding datum flow) weighted graph structure and

may not be well connected. The nodes of the graph are features and pattern features as

shown in Figure 4- 1. And the links are dimensions (including angular) or the mating

constraints.

Figure 4- 1: Example of Geometric Dimensioning and Mating Constraint Graph

Fortunately there are standard graph traversal algorithms that can be implemented

to detect loops from the constraint and dimension graph. These assembly level loops

that can be extracted comprise of part level open chains. To be a valid stack it is to be

ensured that these part level chains have a consistent datum flow. The datum flow is

consistent if there is one master datum and all the other features stack-up as chain. A

37

feature cannot have 2 of its datums in the same stack. An assembly feature can be

used as a start point to build an exhaustive search tree and find all the closed paths.

Things to avoid while building a search tree so that the loops are detected efficiently

1. When traversing the dimension and mating constraint graph, keep track of the

datum flow and terminate the trail in the search tree that violates the datum flow

2. Closed chains comprise of part level chains from different parts in an assembly. It

should be ensured that a part has only one set of continuous chain in the assembly

level closed chain. This is because tolerance accumulation between two features

from the same part happens only through the part level stacks. On the contrary two

sets of separate stacks from a part in the same closed chain would mean that

accumulation occurs between the set of features in the same part through variations

of features in other parts. This would be considered an invalid stack.

3. Ensure same chain do not pass through same feature multiple times

4. Adopt strategies to avoid detecting duplicate loops

A loop detection algorithm designed based on the above listed considerations will

not only make the search more efficient but also sidestep adding filters to remove

invalid loops and duplicate loops.

4.2.2 Exhaustive Breadth First Search for loop detection

The loop detection tool is developed to extract the closed chains/loops. It traverses the

weighted dimension and mating constraint graph to detect all the loops. The

dimension and constraint graph is communicated to the loop detection system through

constraint tolerance feature (CTF) graph as discussed before under ASU GD&T

global model. CTF can communicate mating constrains, length dimensions and

angular dimensions. Therefore, CTF is capable of entirely defining all the controlled

38

degrees of freedom of a feature. Loop detection sequentially picks one mating pair at

a time from the CTF mating constraint list. The loop detection algorithm traverses the

graph from one of the features of this mating pair. The traversal algorithm uses an

exhaustive BFS (breadth first search) tree till all paths to the corresponding mating

feature have been traversed. From leaf nodes where the corresponding mating feature

is stored, it traverses the tree upwards to extract all the loops. Figure 4- 2 shows a

small illustration for fully constrained assembly, corresponding constraint connection

list, its graph representation and the loop detection search tree.

Figure 4- 2: Illustration of Loop Detection Search Tree

The algorithm selects s1-t1 mating pair to detect all closed loops related to the

mating pair. The search tree starts building from either of the features of the selected

mating pair say node t1. The algorithm traverses the graph by breadth first search till

all paths to its corresponding mating feature s1 are traversed. The search tree can be

39

traversed upwards from the leaf nodes that store the s1 feature to extract the loops.

Though the algorithm can be easily extended to detect even the open chains, but for

the 1
st
 order tolerancing these are discarded. The algorithm then moves to the next

mating pair which is s2-t2 to extract all related loops. It traverses the graph starting

node as t2, but this time it ensures to not include s1-t1 mating pair in search tree. As

initially when search tree was built for s1-t1 mating pair, all loops that include s1-t1

were already detected in the search. To show this, if the loops for s1-t1 are noticed in

figure 5, both cross s2-t2 mating pair. Therefore to avoid detecting these loops once

again s1-t1 mating constraint is not included in search tree for s2-t2 mating pair. This

not only reduces the size of search trees but also mitigates the need for duplicate loop

filter. This may give considerable advantage when dealing with deeper search trees.

Also, when adding features, it is important to ensure that it is not repeated in a loop

and therefore needs repeated traversal up the trail to the root.

It also may happen that loop detection extracts a chain that contains two or more

separate stacks from the same part as algorithm may exit a part from one assembly

feature and enter it through another. To avoid entering the same part once exited as

may happen when building the search tree, a log of parts visited is kept for each

potential stack.

To ensure loop detection maintains consistent datum flow the algorithm ensures

that the parent and child of a node are not both datums. Embedding this in the

algorithm would reduce unnecessary adding of nodes to the tree and avoid

implementation of filters later on in the code. Below is a pseudo code of the current

implementation of this method.

40

Pseudo Code:

Read the constraint list from CTF

Iterate through mating feature list

Assign one of the mating features as root of search tree and add it to queue

Loop through the queue

 Loop through all constraints till a connection found

 If datum flow consistent and unique feature in the stack

 Add features connected by constraint as child member

 Store it in queue

 Copy and update part logs

 End looping through all connection constraint lists

End looping if end of queue

Move to next mating feature and purge the current mating feature from list

End

41

CHAPTER 5

TOELRANCE ANALYSIS

5.1 Selection of Tolerance Analysis Method for Auto-tolerancing

In GD&T specification process tolerance analysis is necessary to verify the allocated

values to ensure specified design requirements are met. Tolerance analysis evaluates

uncontrolled dimension variability that occurs because of the accumulation of

tolerances. As already mentioned previously ASU DAL Tolerance Analysis Testbed

constitutes 3 different kinds of tolerance analysis techniques worst case, 3D

Parametric Variation and Tolerance Maps. Worst case is a sure fit approach to

tolerance analysis. In other words worst case can determine if the assembly fails in the

max or min stack up conditions. 3D parametric variation method imposes random

variation to features w.r.t. characteristic probability distribution function (PDF) of

assigned tolerances to the feature. After each instantaneous variation a sample of

resulting stack up on analyzed dimension are stored. The resulting PDF parameters

for the variation analyzed dimension are estimated from these variation samples.

Tolerance Maps or T-Maps is a point space whose shape and size reflects the space in

which the feature can be varied. Out of these three techniques T-Maps is the most

accurate representation of tolerance zones but it is still an under development

technology. Its application is being generalized to all types of features of sizes (FOS)

like pins, holes and center plane type features.

For the purpose of auto-tolerancing primary interest is in statistical interpretation

of dimension variability for reasons that are covered under Tolerance Allocation

chapter. Root Sum Square is one of the methods that can be used for statistical

tolerance analysis. It needs determination of assembly equations. Assembly equations

42

22 2

2 2 2

1 2

1 2

1 2

1 2

 ...

 ...

A d d dn

n

n

n

f f f

d d d

f f f
A d d d

d d d

are the relation between dimensions in a stack and the analyzed dimension. At times

there might be non-linear dependencies in assembly equations. These non-linear

dependencies can be simplified through linearization. Linearization can be achieved

by determining first order derivatives (sensitivities) of non-linear terms as shown in

equation 5. 1.

One of the challenges in RSS tolerance analysis is incorporating secondary

tolerances such as form and orientation. If the secondary tolerances are also

participating then the subsystems (variables) of the equation may be dependent on

other subsystems. For example, orientation affects allowed position variation

therefore position is dependent on orientation. Similarly, if surface form is included, it

affects the allowed size dimension variation and therefore size is dependent on form.

In such cases equation 5. 2 will not hold true. Therefore RSS is incapable of capturing

the refinement effect of form and orientation.

 𝐴 = 𝑓(𝑑1, 𝑑2, 𝑑3, 𝑑4, …)

 5. 1

Where,

A = sum dimension

di = contributors

 5. 2

3D parametric variation is another method that can be used for statistical analysis.

It randomly varies a feature in its defined tolerance zone. Every tolerance variation is

associated with a characteristic probability distribution function (PDF). The random

43

sampling occurs based on these PDF and these samples are combined to estimate the

PDF of analyzed dimension’s variation. This tolerance analysis method could be

acceptably accurate if enough samples are collected. In most literature available, 30

samples are considered enough to estimate the distribution. This method could be

computationally expensive if large numbers of samples are collected (for higher

accuracy). But one important advantage of variation analysis is that it does not require

exclusive computation of sensitivities and is therefore easier to implement. It also

captures the effects of secondary tolerances (refinement effect) and therefore results

are more meaningful. For auto-tolerancing purposes we use 3D parametric variation

for these advantages. But, enough samples should be collected to maintain accuracy

and reduce random perturbation of analysis results on repeating the analysis.

5.2 3D Parametric Variation Analysis

Figure 5- 1: 3D Parametric Variation Analysis

44

The 3D parametric variation for tolerance analysis is divided into three phases pre-

processing, simulation and post-processing blocks as shown in figure. The inputs to

the tolerance analysis system are the stacks extracted by the loop detection module.

The first process in the pre-processing module extracts the directions in which it

is important to measure the analyzed dimension. For multidimensional loops

clearances should be measured in multiple directions. As, in a multidimensional stack

the transformation accumulation will have components in different vector directions.

These measurement vector directions are simply the directions in which the

dimensions of stack exist.

The second function in pre-processor decomposes an assembly level stack to part

level stacks to simplify computation of total accumulation. Next, the datum flow is

extracted as variations are processed with respect to datum flow pattern. It is also

important to follow the datum flow in carrying out variations so that the instantaneous

bonus from a datum can be computed beforehand and included in the target feature

tolerance zone.

The information generated in the pre-processing module is passed downstream to

the simulation block. As already mentioned the stacks are decomposed into part level

stacks in pre-processing block, it is then passed by assembly simulation to part level

simulation one by one. Part level simulation generates a single instance of variation

on each feature in the stack. The resulting transformations of varied features are

combined w.r.t. the datum flow to compute final accumulated transformations for the

start and end feature. Each instance also generates the related mating envelop for all

FOS in a stack and may be used for stack up if the size dimension participates in the

stack. These instantaneous transformed locations and related mating envelopes of the

45

start and end features of the part level stacks are combined by assembly simulation to

get overall transformation in assembly level stacks. Finally the clearances can be

determined w.r.t the measurement directions. Once enough (acceptable accuracy and

random perturbation) samples of clearances are collected they can be used for

estimating the PDF for analyzed dimension.

5.3 Determination of Sensitivities

In multidimensional stacks the analyzed dimension may hold a non-linear dependency

with some of the contributors. Knowledge of these dependencies of analyzed

dimension could be useful particularly for tolerance analysis and to strategically

allocate tolerance values. As we use variation tolerance analysis we don’t need

exclusive evaluation of the dependencies for tolerance analysis. But we are interested

in evaluating the dependencies particularly to allocate tolerances based on these

dependencies.

The dependencies can be estimated using linearization by determining the

sensitivity of the tolerance on analyzed dimension variation. Chase et al [12]

describes the vector loop method for computing sensitivities. Sensitivities are the first

order terms of the Taylor’s expansion of the assembly equation. This method does not

address floating type mating features where the kinematic joints of the vector loop can

have multiple degrees of freedom.

In the current implementation sensitivity is estimated by a simple two point method.

Two point method is an efficient method to compute derivatives when accuracy is not

critical. Also, since these partial derivatives are not affecting numerical solution

convergence, a simple method can be used to approximate them. It induces small

46

change in the variable and computes the change in the dependent variable. Therefore,

small amount of change is induced in the tolerance value. Using Variation tolerance

analysis the change in analyzed dimension variation is estimated. The sensitivity can

be determined by taking the ratio of induced change in tolerance value to the resulting

change in tolerance value of the analyzed dimension as shown in equation 5. 3.

𝑆𝑖 =

𝜕𝑇𝑖

𝜕𝑇𝑠𝑡𝑎𝑐𝑘
 ≅

∆𝑇𝑖

∆𝑇𝑠𝑡𝑎𝑐𝑘
 =

∆√𝑉𝑖

√∆𝑉𝑠𝑡𝑎𝑐𝑘

5. 3

Where,

 𝑆𝑖 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

 𝑉𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

 𝑉𝑠𝑡𝑎𝑐𝑘 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑡𝑎𝑐𝑘

47

CHAPTER 6

TOLERANCE ALLOCATION

This chapter starts of by discussing a general procedure that designers can use for

tolerance allocation. The chapter then continues to discuss the adaption of a heuristic

iterative re-design system for tolerance allocation. The chapter then moves to discuss

different components of this tolerance allocation module. It uses ideas from the

allocation procedure suggested at the beginning of this chapter and of the iterative re-

design system.

6.1 Allocation Procedure for Designers

Figure 6- 1: Cost vs Precision

The objective of tolerance allocation is to meet different requirements e.g.

assembly, functional, cost etc. Assembly and functional objectives can be met by

simply allocating narrow tolerances to the features and dimensions. But narrow

tolerances i.e. higher precision can increase the production cost of parts exponentially.

Figure 6- 1 from Bjork [6] represents a typical exponentially increasing stepped

48

function of precision vs cost. Therefore, it is greatly desirable to widen tolerances but

without compromising the minimum functional and the minimum assemblability

requirements.

Furthermore, a wider tolerance can reduce the cost of manufacturing significantly

when in the region of higher slope. For example looking at Figure 6- 1 widening the

tolerance from 0.025 to 0.1 will result in large cost reduction but widening tolerance

from 0.1 to 0.3 has relatively lesser cost reduction. Therefore tolerances should not be

impracticably tight in places and needlessly wide (insignificant reduction in cost and

may aggravate the quality of part) in others. Therefore strategies to allocate tolerances

should be tailored to reduce the cost of a product simultaneously keeping the quality

within acceptable limits. This usually cannot be achieved at one shot as several

tolerance stacks are to be satisfied simultaneously. Therefore tolerance allocation is

usually an iterative process.

The evaluation of tolerance allocated after a single iteration is done using

tolerance analysis. Worst case or statistical tolerance analysis methods could be used

to achieve this. Worst case tolerance analysis ensures 100% fit. Though, in a mass

production scenario some assemblies fail to meet assembly or functional dimension

requirements because of random variation of machining processes. This may not

make it possible to control dimensions within given bounds if they are too narrow. In

general these failures are permitted. As trying to control the dimension within the

given tolerance zone 100% of the times could be very expensive (exponential increase

with precision). Adopting statistical (maybe simulation based) tolerance analysis

would allow the designer to estimate the failure rates and directly control the

allocation based on acceptable failure rates of the assembly.

49

A general approach to allocate tolerance to parts based on statistical fit can be

easily established for designers. Equation 6. 1 equates variability of analyzed

dimension to the variability of the contributor which is the RSS approach to tolerance

analysis. This equation assumes that probability distribution of the contributors is

normal resulting in a normally distributed analyzed dimension. The sensitivities may

be computed using vector loop method [12] or some other perturbation techniques.

σΣ

2 = ∑(𝑠𝑖𝜎𝑖)
2

𝑛

𝑖=1

6. 1

Where,

 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

 𝜎𝛴 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣. 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑤. 𝑟. 𝑡. 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑡𝑎𝑐𝑘

 𝜎𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣. 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

 𝑠𝑖 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

As the acceptable range of variation for analyzed dimensions are pre-determined

(assemblability or functional dimension limit) by designers, the required total

variance of a stack can be easily computed if the target acceptance rate of the stack is

pre-determined. So a strategy could be to set several intermediate targets in short

intervals (as all interrelated stack should be satisfied simultaneously) for the stacks

and then try to adjust the tolerances to achieve these acceptance rates for each target.

For each iteration, select the worst conditioned (either failing or has very tight

tolerances) loop. Then satisfy this stack for the next intermediate target acceptance

rate. The general procedure that can be adopted by designers for allocation assuming

variability is normal, is as follows

50

1. Identify the important uncontrolled dimensions to be analyzed

2. Determine all the contributors in a stack

3. Determine the geometrical dependency between contributors and sum

dimensions

4. Determine the sensitivities (coefficient of linear term in Taylor expansion) of

contributors if non-linearly related by taking derivative or Euler’s method

5. Define the confidence interval for the sum dimension value i.e. the acceptance

rate for the stack. If dealing with inter-related stacks allocation should be done

in iterations i.e. set several intermediate targets. This ensures that tolerances

equally distributed over all the interrelated stacks

6. Say a gap dimension is being analyzed for assemblability then the allowed

standard deviation of the sum dimension can be assessed as follows

 σ = Gap/n

6. 2

Where,

𝜎 = 𝑆𝑢𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐺𝑎𝑝 = 𝑠𝑢𝑚 𝑜𝑓 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑡𝑎𝑐𝑘

𝑛 = 𝑟𝑎𝑛𝑔𝑒 𝑜𝑛 𝑢𝑛𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒

e.g. assuming 99.7% which is the 3-sigma value acceptance rate

 n = 6

 𝜎 = 𝐺𝑎𝑝/6

Tolerances are assumed to be a scaled value of standard deviation of feature

variation and are usually 6 times the standard deviation

51

 Δ = 6 Gap/n

6. 3

Where,

 Δ = Tolerance budget

The above equation to compute tolerance budget assumes normality of

stochastic effect of the tolerances in the stack. Another assumption is made

that the designer always leaves a positive clearance in the mating features such

that positive tolerance budget is computed. This assumption may fail when

zero clearance or negative clearance mating features exist in a stack. This

issue will be addressed and solutions will be proposed under initial allocation

in this chapter.

7. Distribute the tolerance on the primary contributors (position and size

tolerances) in such a way that following equation is satisfied

Δ2 = ∑(𝑆𝑖𝑇𝑖)

2

n

i=1

6. 4

Where,

 Ti = 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 i𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

This equation is equivalent to equation 6. 1.

The above suggested process can be implemented manually by a designer. But it

could be a tedious process even when dealing with moderately sized assemblies

because of reasons like interrelated stacks, multi-dimensional stacks, lack of

experience with GD&T. etc. A convenient alternative solution would be to automate

the above suggested approach.

52

6.2 Tolerance Allocation for Auto-tolerancing

Figure 6- 2: Inception of Allocation after Loop Detection

From the detected stacks (output of loop detection tool), assembly (system) equations

can be formed. These equations have to be satisfied for functionality and

assemblability. Figure 6- 2 shows the flow of allocation process after the loop

detection. Assuming all potentially critical stacks have been identified by loop

detections, the auto-tolerancing system process can proceed with tolerance value

allocation

For assemblability, evaluation of assembly equations for closed chains should be

greater than zero i.e. clearances at mating faces greater than zero. In current

implementation we use statistical evaluation to meet overall acceptance rates

requirements for the assembly.

The main aim of this research is not to suggest a robust and precise tolerance

optimization model, but to describe a flexible auto-tolerancing architecture and

tolerance satisficing allocation scheme. Nonetheless, the flexibility added to the

software design allows optimization schemes to be incorporated in the future. The re-

53

allocation method presented here is primarily based on intuitive scoring system and

heuristics. Analysis module gives feedback about the acceptance rates and distribution

parameters of stacks, which is utilized by allocation module to re-allocate or re-adjust

tolerances. Therefore analysis and allocation is iterated till all or maximum number of

stacks is in satisfactory bracket and distributed based on a user defined loss function.

This will be described under re-allocation. First, we describe how domain

independent heuristics driven iterative re-design methods can be used for allocation.

6.2.1 Domain Independent Iterative Re-design

Dixon et al [3] developed a system “Dominic” an adaptive and domain independent

iterative redesign method. This system encodes a heuristic hill climbing method that

supports achieving various levels of satisfaction for multiple objectives. The Dominic

system is useful for design problems when relations between variables and the

performance parameters are complex, hard to define and acceptable zone design

suffices i.e. optimum design is needless. The ultimate objective of the Dominic

system is to attain an acceptable solution (not optimal) by iterative redesign. ASU

Design Shell developed at ASU DAL is based on similar principle of iterative

redesign with the aim to reach an acceptable design. But there are several fundamental

differences between both these systems. ASU Design shell uses mathematical model

unlike Dominic which uses Heuristic knowledge. ASU design shell evaluates the

design based on a utility function unlike Dominic which uses levels of satisfaction

given on ad-hoc basis. Moreover, the ASU Design Shell is user driven iteration

whereas Dominic is automatic. Some of the features of the Dominic and the ASU

Design Shell can be useful if integrated for tolerance allocation problem. Like for

tolerance allocation the ASU Design Shell system would allow changing set of

54

tolerances (multiple independent variables). This will be useful for faster convergence

and uniform allocation of tolerance values. Dominic allows changing one variable per

iteration and is not suitable for uniform distribution of tolerance or fast convergence.

One very important feature of Dominic is that it uses pre-specified solution procedure

which is rule based and therefore iterations can be easily automated.

 An adaptation of ideas from Dominic method and ASU Design Shell for the

tolerance allocation problem is shown below

1. Problem specification parameters - Desired assembly acceptance rates and

the critical loops

2. Variables- Contributors of stacks

3. Performance parameters – Stack acceptance rates

4. Specified initial design- Initial allocation

5. Analysis -Using MC simulation

6. Dependencies- Assembly equations

7. Dependency order list- Contributors sorted based on weights and sensitivity

8. Perf satisfaction - Based on User defined utility function

Both Dominic and ASU Design Shell need an initial design before the iterative

redesign process. This may be made with some rationale behind it but rarely this

would give the best solution. The initial allocation assigns initial tolerance values and

is described below.

55

6.2.2 Initial Tolerance Allocation

This section first describes some methods that can be used by designers to distribute

the tolerance budget at an early stage assuming 1D stacks. Then the section proceeds

to the adaption of one of these methods in auto-tolerancing.

Equal tolerance distribution:

Once the tolerance budget is computed using equation 6. 3 the tolerance budget can

be distributed with different methods. One simple method is to equally distribute

tolerances between primary contributors. Therefore,

𝑇𝑖 =

∆

√𝑛

6. 5

 𝑇𝑖 = 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

 ∆ = 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡

The above expression satisfies the equation 6. 4 assuming sensitivities are unity.

Where,

Tolerances proportional to dimensions:

The size of variation in dimension is generally also associated to larger dimension

values. Usually the larger the dimension the larger is the variation. Tolerance

allocation based on proportionality with the dimension can better capture this

behavior and is more suitable than the previous method.

56

𝑤𝑖 =

𝑑𝑖

√∑ dj
2𝑛

𝑗

𝑇𝑖 = 𝑤𝑖∆

6. 6

𝑑𝑖 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑡𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠

The dimension is divided by root sum square to compute weights of primary

tolerances. The assumption made here is that primary tolerance variance should sum

up to variance of sum dimension i.e. satisfies equation 6. 4 assuming sensitivities are

unity.

Tolerances proportional to Process Deviation:

Tolerances can be also allocated proportional to the standard deviation associated

with the machining process of a feature.

wi =

σi
2

√∑ σj
2n

j

Ti = wi∆

6. 7

Where,

 σi
2 = 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘

Initial Allocation method for auto-tolerancing:

Evaluating the methods discussed above a suitable method for initial allocation is

selected. Estimating the process deviation needs pre-determined machining process

for each feature and may not be ideal for auto-tolerancing. This goes away if there is

some reliable feature recognition technology available that specifies suitable

57

machining processes for features. Equal tolerance budget distribution dis-regards the

fact that bigger dimensions are prone to higher variability. The tolerance allocation

proportional to dimension method seems to be a more meaningful method as it tends

to associate higher variability with bigger dimensions. Moreover, it can be easily

evaluated from geometry unlike tolerances proportional to process deviation. This

method is adopted for generating the initial allocation in the auto-tolerancing tool and

is described below.

Each contributor is associated with a weight factor and is a heuristic attribute

computed using equation 6. 6. Tolerance budget is computed from the total nominal

clearance at mating faces in the stack. If total clearance in stack is zero or negative the

lower limits of tolerance values (adaptive or user defined) can be allocated to the

contributors.

Initial allocation uses only the weights for distributing tolerance irrespective of

the contributor being in plane or out of plane (multidimensional stack). As the

sensitivities (derivatives) are unknown at this stage of allocation, 1D stack assumption

is maintained. Once initial tolerance values have been established, sensitivities can be

computed by perturbing the values. The method can be better explained by a simple

illustration and can be directly extended to more complex assemblies. Figure 6- 3

shows an assembly of a part with two slot features mating with a part with two tab

features. Equation 6. 8 shows tolerance budget evaluation for the target acceptance

rate (AR). Equation 6. 9 shows root sum square of dimensions.

Table 6- 1 shows the allocated tolerances for the dimensions. This assumes

variation of feature is linear which may not be accurate. But nonetheless it should

give a good approximation and should drive the solution to faster convergence. Also,

58

since the nominal dimensions don’t change, the weights are an invariant heuristic

attribute of a contributor.

Figure 6- 3: Tab and Slot Assembly

∆=
6 (

FOS4 − FOS1
2 +

FOS3 − FOS2
2)

n

6. 8

Where,

∆ = tolerance budget

 Unit normal probability between ±𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =AR%

Tolerance budget is computed from total gap in the stack. For tolerance analysis we

adjust the parts in such a way that the analyzed dimension adds up to be the total gap

in the stack. Even during variation analysis the instant total gaps are measured (in

different measurement directions for multidimensional stacks) for each stack. We now

evaluate dimension root sum square

59

𝐿 = √(
(

𝐹𝑂𝑆1

2
)

2

+ (𝐿2)2 + (𝐿1)2 + (
𝐹𝑂𝑆2

2
)

2

+ (
𝐹𝑂𝑆3

2
)

2

+ (𝐿4)2 + (𝐿3)2 + (
𝐹𝑂𝑆4

2
)

2

)

6. 9

Where,

L = Root sum square of dimensions

Table 6- 1: Initial Tolerance Distribution Tab-Slot Feature from Figure 6- 3

Dimensions Weights Tolerances

𝐹𝑂𝑆1 (ℎ𝑎𝑙𝑓 𝑠𝑖𝑧𝑒)
𝐹𝑂𝑆1

2𝐿

𝐹𝑂𝑆1

2𝐿
∆

𝐿2
𝐿2

𝐿

𝐿2

𝐿
∆

𝐿1
𝐿1

𝐿

𝐿1

𝐿
∆

𝐹𝑂𝑆2 (ℎ𝑎𝑙𝑓 𝑠𝑖𝑧𝑒)
𝐹𝑂𝑆2

2𝐿

𝐹𝑂𝑆2

2𝐿
∆

𝐹𝑂𝑆3 (ℎ𝑎𝑙𝑓 𝑠𝑖𝑧𝑒)
𝐹𝑂𝑆3

2𝐿

𝐹𝑂𝑆3

2𝐿
∆

𝐿4
𝐿4

𝐿

𝐿4

𝐿
∆

𝐿3
𝐿3

𝐿

𝐿3

𝐿
∆

𝐹𝑂𝑆4 (ℎ𝑎𝑙𝑓 𝑠𝑖𝑧𝑒)
𝐹𝑂𝑆4

2𝐿

𝐹𝑂𝑆_4

2𝐿
∆

Figure 6- 4, shows the initial allocation module flowchart

60

Figure 6- 4: Initial Allocation

Ambiguity arises when common contributors exist between different chains i.e.

inter-related stacks, as different stacks might produce different values because of

different weights. For such situation Bjørke [6] suggests to use the smallest value of

the computed values for a contributor from different stacks. This is a conservative

approach to avoid over-prediction of tolerance change.

Another ambiguity is when assigning weight for secondary tolerances, orientation

and form. These tolerances are the refinement tolerances i.e. they reduce process

deviation for a feature and as a result reduce total stack variability. In current

implementation an estimate is used where the assigned weight is fraction of primary

tolerance weights and depends on feature’s length-diameter ratio (
𝑙

𝑑
 for cylinders) or

height-width (
ℎ

𝑤
 for center-planes) ratios. Allocation module ensures the following

GD&T conditions are met.

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 < 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝐹𝑜𝑟𝑚 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 < 𝑆𝑖𝑧𝑒 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝐹𝑜𝑟𝑚 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 < 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

Non participating features (features not part of any closed stack) are assigned

adaptive or user defined tolerance values.

Zero or Negative tolerance budget:

61

In cases when stacks have interference or no-clearance fit type mating features the

tolerance budget computed from previously described method may compute negative

tolerance budget. This would tend to allocate negative or zero tolerance values to

contributors which has practically no realizable meaning. Therefore, when doing the

initial allocation, designer may adopt another method to ensure that positive tolerance

values are allocated. One way is to allocate tolerances based on some percentage of

the associated dimension, therefore giving no regard to assembly equations and

assembly feature clearances. Following this, designer can satisfy these values

iteratively based on the tolerance analysis results, so the eventual outcome will be

based on the assembly equations and assembly feature clearances. Another way to

ensure positive non-zero tolerances are assigned is that, whenever a stack has negative

tolerance budget (i.e. interference) or zero tolerance budget, all its contributors may

be set to their lowest limit allowed for a dimension. This may be fixed values decided

based on industry standards.

6.2.3 Tolerance Re-Allocation

Tolerance allocation is not a one shot deal. They have to be analyzed for

assemblability, functionality and manufacturability. If these requirements are not met,

tolerances are re-allocated and this process iterates till all targets are satisfied.

Typically tolerance allocation should also include an accurate cost model to minimize

the machining cost. But it is difficult to automatically predetermine machining

processes used for features. Therefore, for now we limit ourselves to satisficing

tolerances for the required assemblability rate based on some heuristics and rule based

procedure. This heuristic hill climbing algorithm adjusts the tolerances systematically

62

to achieve assemblability for certain acceptance rate of stack. Shown in Figure 6- 5 is

the tolerance reallocation framework.

Figure 6- 5: Tolerance Re-allocation Framework

Application of heuristics based iterative re-design concepts for tolerance re-

allocation, tolerance distribution method for re-allocation and convergence strategies

are discussed below in detail.

Loss Function:

Maintaining tight control over the dimensions of a product may reduce the number of

faulty assemblies as the dimensions will tend to be very close to nominal. On the

other hand, with tighter dimension control manufacturing processes tend to become

exponentially expensive as discussed under section 6.1. Also more liberal dimension

control result in lower machining cost, but it may lead to increased rates of the faulty

assemblies due to failure to meet required dimensional specifications. Therefore, for

an assembly in a production environment assembly scrap rates are usually inversely

related to machining cost and both contribute to the total cost of production. Figure 6-

6 shows the usual trend of total cost with tolerances and scrap rates.

63

Figure 6- 6: Cost vs Machining Cost and Scrap rates

Thus, tolerances should be adjusted in such a way that the total cost due to

machining process and scrapped assemblies are reduced (close to optimal point in

Figure 6- 6) while maintaining quality. This is achieved by controlling the acceptance

rates of stacks so that some allow higher scrap rates (wider tolerances) and others

allow lower scrap rates (narrower tolerances). This can be accomplished by on a loss

function basis as shown in Figure 6- 7. Negative side of peak signifies higher scrap

rates and wider tolerances (lower machining costs) and the other side signifies

narrower tolerances (higher machining cost) consequently reducing scrap rates.

Acceptance rates below lower bound are unacceptable as it indicates unacceptably

high scrap rates. Acceptance rates above upper bound indicate insignificantly low

contribution to overall scrap rate of assembly. Defining an accurate loss function

could take some in-depth analysis of manufacturing data. The research here does not

64

focus on the process of defining a loss function. Instead this research focuses on

utilizing a loss function for allocation once defined.

Figure 6- 7: Loss Function

Re-Allocation Method:

Once the loss function is established the acceptance rates of stacks should be equally

distributed about the peak dropping off on both sides.

The method proposed here to achieve the distribution of stacks, can be better

visualized by simple illustrations. Figure 6- 8 shows the input loss function. Stack

acceptance rates are represented by blue points and are distributed over the loss

function after initial allocation. Initial allocation though done systematically is based

on approximations discussed under 6.2.2. Therefore, it is unlikely that initially

allocated values would satisfy the assemblability requirements. In this illustration the

figure shows that most stacks after initial allocation have acceptance rates higher than

peak. This indicates that there is room to widen tolerances (lowers production cost).

65

Figure 6- 8: Distribution of Stacks after Initial Allocation

To simplify and speed up the allocation process the function is first discretized

into discrete levels as shown in Figure 6- 9. Each step will be treated as a target

bracket with same score throughout its range. The convergence method targets these

brackets (range of values) instead of one single value resulting in fewer numbers of

convergence iterations. This is further discussed under bisection and double up

convergence.

Figure 6- 9: Loss Function Discretized

The re-allocation happens in two phases, 1) identifying the critical loops 2)

satisficing these critical loops.

1) Identifying the critical loops-

The first phase pushes the acceptance-rates of stacks towards the lower bound of the

loss function by widening the tolerances. If a stack lies in the unacceptable zone, the

66

algorithm would first bring their acceptance rates above the lower bound of loss

function by narrowing tolerance values. Then the algorithm pushes acceptance rates

of stacks towards lowest bound. This process exhausts when no further tolerance

values could be widened without sending a stack in the unacceptable zone. The

objective is to identify the stacks that lie within the loss function range when

tolerances are widened while ensuring acceptance rates of all stacks are above lower

bound. The acceptance rates of stacks above the upper bound are not critical as they

do not have significant contribution to scrap rates. Therefore the stacks lying within

the loss function range after first phase are considered critical stacks. In the following

phase of allocation these critical stacks can be used to drive the tolerance satisficing

process.

Some terms need to be defined before proceeding with the description of the

process for first phase of allocation.

Acceptance Rate Brackets – The loss functions is subdivided into discrete set of

levels (ranges of acceptance rates). For a single iteration these brackets will be set as

target (range of values instead of one value). This will allow faster convergence of

solution and will be explained under convergence method in this chapter. The score

throughout the range of a bracket is constant.

Effective weights (EW) – In re-allocation process some contributors in the selected

stack may not be changed in which case the effective weights of other contributors are

computed. Using effective weights for re-allocation ensures that the entire tolerance

budget change is utilized for tolerance distribution in every iteration.

67

𝑒𝑤𝑖 =

Ci𝑤𝑖

√∑ Ci𝑤𝑖
2

6. 10

Where,

𝑒𝑤𝑖 = Effective weight 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

𝑤𝑖 = 𝑊eight 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

𝐶𝑖 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟

𝐶𝑖 = 1, 𝑖𝑓 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑

𝐶𝑖 = 0, 𝑖𝑓 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑁𝑂𝑇 𝑡𝑜 𝑏𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Assigning some heuristic scores to the stacks can be useful to rank them. Once the

initial tolerance values are assigned, the tolerance analysis tool evaluates the stacks.

Based on the acceptance rates and other heuristics, the re-allocation module selects a

candidate loop for tolerance re-adjustment. The re-allocation loop selection process is

listed below

1. Selects loops from the lowest bracket and puts them through a selection

process. It is similar to dependency lists from Dominic instead here a set of

tolerances (variables) are getting ranked instead of just one variable. If loops

are in the unacceptable zone then select

loops from the unacceptable zone first to bring them in the acceptable zone.

This stage selects a set of worst conditioned loops to make them as close as

possible to the lower bound. This stage ensures that all the stacks are

collectively close to the lower bound.

2. Stacks with acceptance rates in the bracket and closest to lower bound are not

altered. This holds true unless there is a contributor shared with a stack in

68

unacceptable zone. Conversely, stack not in the unacceptable zone happen to

share contributors with a stack with acceptance rate in the bracket closest to

lower bound, then these shared contributors are not altered. Therefore, these

shared contributors are designated 0 to their change labels (Ci) as described

under effective weights definition. If all the contributors in the selected set of

stacks have change labels of 0 then process reselects set of stacks from the

next worst conditioned acceptance rate bracket

3. Assign effective weights using equation 6. 10. Weight 𝑤𝑖 is computed during

initial allocation

4. The target bracket for next iteration will be the neighboring bracket towards

the lowest bound

5. Once target acceptance rate bracket is determined the required budget change

can be computed for every loop from the selected set of loops. The required

budget change can be computed by determining variance required to attain the

target (closest bound of target bracket) acceptance rate (AR%). Using standard

root finding algorithms like secant method to compute the new required

variance (for the AR%). Taking the difference with this required variance with

the current variance gives the required variance change. Shown below in

equation 6. 11 and equation 6. 12 are tolerance budget change formulations.

Since primary tolerances are assumed to be scaled 6 times the standard

deviation, the new standard deviation change should be scaled by 6 to

compute the tolerance budget change. This tolerance budget change is an

approximation and is subject to change for convergence to the target as is

discussed below.

69

if 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝑒𝑤 > 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡

∆𝑐ℎ𝑎𝑛𝑔𝑒= 6√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝑒𝑤 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡

6. 11

if 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝑒𝑤

∆𝑐ℎ𝑎𝑛𝑔𝑒= −6√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝑒𝑤 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡

6. 12

'Where,

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑛𝑒𝑤 = 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑢𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑅

∆𝑐ℎ𝑎𝑛𝑔𝑒= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒

Note: The value is scaled by 6 because tolerances are considered to be 6 times the

standard deviation values.

6. From equation 6. 13 compute minimum mean tolerance change per contributor

(𝑅𝑚𝑖𝑛) for the set of loops qualified till this stage. Total tolerance value

change made to primary contributors divided by number of the primary

contributors gives a heuristic measure on effective tolerance budget distributed

per contributor. This value is used to rank loops with stacks having smallest

non-zero values on top. Computing (𝑅𝑚𝑖𝑛)

𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛 {
 (∑

𝑒𝑤𝑖
𝑠𝑖

)
𝑗
|∆𝑐ℎ𝑎𝑛𝑔𝑒𝑗

|

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟𝑠)𝑗
}

6. 13

Where,

𝑗 = 𝑖𝑠 𝑠𝑡𝑎𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑎𝑐𝑘𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑝 3

 𝑖 = 𝑖𝑠 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑠𝑡𝑎𝑐𝑘

70

 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑗
= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑗𝑡ℎ 𝑠𝑡𝑎𝑐𝑘

Stacks satisfying equation 6. 14 are qualified in this step

 𝑅𝑚𝑖𝑛 ≤ 𝑅𝑖 ≤ 𝑅𝑚𝑖𝑛 + 20%𝑅_𝑚𝑖𝑛
6. 14

Where,

 𝑅𝑖 = (
(∑

𝑒𝑤𝑖
𝑠𝑖

)
𝑗
|∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

|

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟𝑠)𝑖
) , 𝑖𝑡ℎ𝑠𝑡𝑎𝑐𝑘

Where,

 𝑗 = 𝑖𝑠 𝑠𝑡𝑎𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑠𝑡𝑎𝑐𝑘𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑝 3

 𝑖 = 𝑖𝑠 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑠𝑡𝑎𝑐𝑘

 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑗
= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑗𝑡ℎ 𝑠𝑡𝑎𝑐𝑘

Here 20% buffer is a default value and can be defined by end user

7. If multiple loops passed till this stage, select the stack with acceptance rate

closest to the target acceptance rate bracket.

This heuristic based selection process identifies the stack which requires smallest

mean tolerance change. The identified stack performance parameters are sent to the

next bracket in this 1
st
 phase of re-allocation. This loop selection strategy aims to

achieve evenly distributed tolerance allocation.

The tolerance budget change computed from equations 6. 11 or 6. 12 for selected

loop are distributed over the contributors using equation 6. 15, 6. 16 and 6. 17

If, Lower Limit < 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑒𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) < upper limit, then

71

 𝑇𝑖𝑛𝑒𝑤
= 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡

+ (
𝑒𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) 6. 15

If, 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑒𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) > upper limit, then

 𝑇𝑖𝑛𝑒𝑤

= 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 6. 16

If, 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑒𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) < Lower limit, then

 𝑇𝑖𝑛𝑒𝑤

= 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 6. 17

Here,

 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

 𝑇𝑖𝑛𝑒𝑤
= 𝑛𝑒𝑤 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

 𝑒𝑤𝑖 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑒𝑞uation 6. 10

 𝑠𝑖 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑚𝑜𝑑𝑢𝑙𝑒)

 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 = max allowable tolerance value

 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 = min allowable tolerance value

The above loop selection process and tolerance allocation is continued till: a) all

stacks are in the lowest bracket or b) acceptance rates cannot be brought any closer to

the lower bound of loss function without sending a loop in the unacceptable zone.

After initial allocation the new distribution may look like Figure 6- 10 (b).

72

Figure 6- 10: Acceptance Rates Distribution After 1
st
 Phase of Re-Allocation

The stacks lying within the loss function bound are considered critical stacks.

After 1
st
 phase these critical stacks are used to drive the tolerance satisficing based on

loss function, though all of the stacks are evaluated by analysis module after every

iteration.

2) Satisfice Tolerances Using Critical Loops-

This phase of allocation aims at achieving tolerance values to reduce the overall cost

of production based on the definition of loss function. The acceptance rates of critical

stacks should be equally distributed about the peak on both sides. As already

established negative side of the peak signifies wider tolerances and higher scrap rates

while the other side signifies tighter tolerances and lower scrap rates. Overall the

stacks should be as close to the peak as possible, as liberalizing narrower tolerances

(tolerances stacks on right side) of peak gives larger gains in cost (section 6.1). Wider

(a) Acceptance Rates after Initial Allocation

(b) Acceptance Rates after 1st Phase Re-allocation

73

tolerances on left side would give higher gains from reduced losses on assemblies. To

measure the balance about the loss function the total score should be equal on both

sides. The balance of score can be computed from the equation 6. 18. Value closer to 0

indicates equal distribution on both sides of the peak.

 ∑{(−1)𝑎. 𝑆𝑐𝑜𝑟𝑒𝑖}

𝑛

𝑖

 6. 18

Where,

 𝑎 = 1, 𝑓𝑜𝑟 𝑠𝑡𝑎𝑐𝑘𝑠 𝑤𝑖𝑡ℎ 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒𝑠 𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑝𝑒𝑎𝑘

 𝑎 = 0, 𝑓𝑜𝑟 𝑠𝑡𝑎𝑐𝑘𝑠 𝑤𝑖𝑡ℎ 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒𝑠 𝑜𝑛 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑝𝑒𝑎𝑘

The loop selection process for tolerance satisficing phase is explained below

1. Select set of critical stacks with acceptance rates in the lowest bracket on the

high scrap rate side of the peak to ensure that all stacks are collectively

balanced

2. Target acceptance rate bracket is the neighboring bracket towards higher

acceptance rate

3. Compute required tolerance budget change for each loop using equation 6. 11

or 6. 12 for the selected set of loops till this stage.

4. From the set of loop the one with smallest mean tolerance change per

contributor Rmin (equation 6. 13) is selected for re-allocation.

Once a loop has been selected tolerances can be allocated using the equations below

If, Lower Limit < 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) < Upper limit, then

74

 𝑇𝑖𝑛𝑒𝑤
= 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡

+ (
𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) 6. 19

If, 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) > Upper limit, then

 𝑇𝑖𝑛𝑒𝑤

= 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 6. 20

If, 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+ (

𝑤𝑖

𝑠𝑖
 ∆𝑐ℎ𝑎𝑛𝑔𝑒𝑖

) < Lower limit, then

 𝑇𝑖𝑛𝑒𝑤

= 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 6. 21

Here,

 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

𝑇𝑖𝑛𝑒𝑤
= 𝑛𝑒𝑤 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

 𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡

 𝑠𝑖 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑚𝑜𝑑𝑢𝑙𝑒)

 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 = max allowable tolerance value

 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 = min allowable tolerance value

The iterations continue till 0 or minimum balance (equation 6. 18) has been achieved.

Finally the distribution of acceptance rates may look like Figure 6- 11 with scores

balanced on both sides of the peak.

Figure 6- 11: Acceptance Rate Distribution after Satisficing of Tolerances

75

Bisection and Double up for Convergence:

The tolerance allocation method described above is based on approximations and may

give deviated results than expected and therefore we need some convergence method.

For auto-tolerancing the bisection and double up allocation methods (Figure 6- 5) help

achieve convergence. After allocation if the acceptance rate of a stack overshoots

from the target bracket, the allocation is bisected i.e. the change added to the

tolerances from previous iteration are halved. The bisection continues till the

acceptance rate of stack reaches the undershoot zone or neighborhood of target. On

the other hand if stack acceptance rate undershoots the required acceptance rate, the

allocation is doubled up i.e. the tolerance change from previous iteration is doubled

up. The tolerance is doubled up till the allocation is in overshoot zone or converges to

the target bracket. The bisection and double-up methods may be called alternatingly

depending on undershoot or overshoot. In this situation if the change from last

bisection was say ∆𝑡 for a contributor i.e ∆𝑡 was subtracted from a contributor then

for double up this value is halved and added to the contributor. Similarly if bisection

is invoked after double up that sent the stack in overshoot zone, the tolerance change

∆𝑡 of a contributor from the previous double up method is halved and subtracted. This

sidesteps the oscillation of solution indefinitely about a target. This happens

simultaneously to all contributors that undergo change in the selected stack. It is also

important to put a lower and upper limit on tolerance values based on feature size or

some fixed values defined by user. This would avoid assigning impractical values i.e.

close to zero values or unnecessarily high values. To avoid going into long

convergence iterations the discretization of loss function should be of reasonably low

76

resolution (subdivided into wide discrete levels). Then during convergence cycle if

the value reaches the target bracket, the solution will be considered converged. Higher

resolution discretization will take more number of cycles to converge to the target

bracket and therefore should be avoided.

77

CHAPTER 7

TEST CASES

The allocation/verification method described in this research is the 2
nd

 primary

tool in the auto-tolerancing system. But this tool is not limited to this system, it may

be used as a separate tool where user can input schema and allocation /verification can

generate the values. It can be easily customized to give more user control to modify

tolerance values. This has a potential to reduce the product dimension specification

time significantly and the overall product development time.

It has been successfully tested with different assembly types simulated for at least

2000 samples per loop for tolerance analysis. Table 7- 1 shows the performance chart

of the tolerance allocation and analysis module for 3 test cases. All the three test cases

were allocated based on a user defined loss function defined within the bounds of

95%-99% acceptance rates.

The time consumed by re-allocation and initial allocation was relatively

negligible. Most of the time was consumed by tolerance analysis module. The final

Table 7- 1: Tolerance Analysis Verification Test Case Time Statistics

 Loop detection Allocation/Verification

Loops

Detected

Time

(Seconds)

No. of

tolerances
Iterations

Time

(Seconds)

182 1.203 62 46 312.988

152

0.826 57

30

161.599

27 0.1 97 60 17.693

78

output of the tolerance allocation and analysis module for the three assemblies from

Table 7- 1 are presented below.

7.1 Cam Follower

Figure 7- 1 shows the Cam Follower assembly (3
rd

 assembly in Table 7- 1) with 13

parts and was provided by our industry partner RECON SERVISES. User input loss

function upper and lower bound for this test case is given as 95%-99%.

Figure 7- 1: Cam Follower Assembly in Exploded View

Figure 7- 2 shows the auto-tolerancing STEP AP242 output for the right support

of cam follower and the washer plate on MBDVidia CAD viewer. Total of 9 loops

identified critical out of 27 during the first phase of re-allocation (identifys critical

stacks). Figure 7- 3, shows the final acceptance rates of the critical loops distributed

based on the input loss function between 95%-99%. After the 2
nd

 phase of re-

79

allocation the balance score achieved was 0.12 which is close to zero. Therefore it is

balanced on both sides about the optimum value of the loss function.

Figure 7- 2: Automated GD&T Output for Right Support of Cam Follower

Figure 7- 3: Final distribution for Critical Stacks of Cam Follower

7.2 Radio Car

Figure 7- 4 shows the Radio Car assembly (1
st
 assembly in Table 7- 1) with 9 parts

and was provided by DARPA under the AVM program (figure 4). User input loss

function upper and lower bound for this test case is given as 95%-99%.

Figure 7- 4: Radio Car Assembly Exploded View

80

Figure 7- 5 shows the auto-tolerancing STEP AP242 output for the radio car

chassis and the cross beam on MBDVidia CAD viewer. Total of 39 loops identified

critical out of 182 during the first phase of re-allocation (identifying critical stacks).

All tolerances Figure 7- 6, shows the final acceptance rates of the critical loops

distributed based on the input loss function between 95%-99%. After the 2
nd

 phase of

re-allocation (distribute about the loss function mean) balance score achieved was

0.08 which is close to zero. Therefore it is evenly distributed.

Figure 7- 5: Automated GD&T Output for Radio Car Chassis and Rear Cross Beam

Figure 7- 6: Final distribution for Critical Stacks of Radio Car Assembly

81

7.3 Cylinder Body Cap

Figure 7- 8 shows the Cylinder Body Cap assembly (2

nd
 assembly in Table 7- 1) with

8 parts and was provided by DARPA under the AVM program. User input loss

function upper and lower bound for this test case is given as 95%-99%.

82

Figure 7- 7: Body Cap Assembly Exploded View

83

Figure 7- 8 shows the auto-tolerancing STEP AP242 output for the radio car

chassis and the cross beam on MBDVidia CAD viewer. Total of 26 loops identified

critical out of 152 during the first phase of re-allocation (identifying critical stacks).

Figure 7- 9, shows the final acceptance rates of the critical loops distributed based on

the input loss function between 95%-99%. This is a special case where most of the

84

acceptance rates lay on right side of optimum value of the loss function after first

phase of re-allocation. Therefore, the re-allocation terminates after the first phase.

Figure 7- 8: Automated GD&T Output for Cylinder Body and Cap

85

Figure 7- 9: Final Distribution for Critical Stacks of Cylinder Body Cap Assembly

CHAPTER 8

CLOSURE

This chapter summarizes the research work presented in this thesis. It summarizes the

contributions, lists out the limitations and discusses possible future works.

8.1 Contributions

The research work presented here has made following contributions:

1. It suggests a scalable and a flexible tolerance allocation and analysis

framework for auto-tolerancing. It incorporates the loop detection module,

tolerance allocation module and tolerance analysis modules. All the three

modules are designed as standalone modules. Modifications can be

incorporated easily without affecting the other modules. It will allow different

loop detection, tolerance analysis method or tolerance allocation method to be

easily adopted without modifying other modules. This design will also allow

the modules to be used independently to develop other tools in the future.

2. Describes in detail the loop detection module developed to detect closed

chains of tolerance stacks. Identified automatic stack extraction as a graph

problem. The graph nodes represent tolerance features or datums and edges

represent the geometric dimension or mating constraints. The loop detection

uses Breadth First (level order) search to detect all assembly level stack

between two mating features.

3. Evaluates the different tolerance analysis methods and discusses their

suitability for the auto-tolerancing system. 3D Parametric variation analysis

86

seemed to be suitable choice and can be easily adapted for the system. 3D

Parametric variation analysis does not require exclusive computation of

sensitivities required for the purpose of tolerance analysis. It’s a more

consistent method to conduct tolerance analysis as it varies features in 3

dimensional tolerance zones. It also captures the effect of higher order terms

from Taylor’s series unlike linearized root sum square. Under tolerance

analysis we also discuss the Euler’s approach to estimate the sensitivities (first

order derivatives).

4. Suggests a method for iterative tolerance allocation for a target acceptance rate

that can be used by designers. Introduces the concept of using loss function for

tolerance satisficing. One side of loss function about optimum mean signifies

tighter tolerance and higher acceptance rates and the other side signifies wider

tolerance lower acceptance rates. Thesis proposes a method and software

architecture to automate an iterative tolerance allocation method based on the

loss function. The allocation happens in two phases. Phase 1 identifies the

critical loops. These loops lie within the loss function bounds after the phase

1. Phase 2 satisfices the tolerance allocation by evenly distributing the

acceptance rates about the optimum mean.

8.2 Limitations

The limitations of the research presented here are as follows:

1. Toleranced features are limited to cylindrical features, Center plane type

features and planar features. Currently the auto-tolerancing system cannot

handle free form surfaces and other complex machining surfaces.

87

2. Limited to tolerancing based on assemblability. Current auto-tolerancing

system does not account for functionality and manufacturing cost.

8.3 Future Work

1. Future work in allocation/verification would explore scalability of the tool.

Explore multithreading for the tolerance analysis process.

2. Integrate different tolerance analysis methods to improve the accuracy or

reduce the computational cost

3. Attempt tolerancing based on functional requirements and manufacturing cost

of assemblies which may require more user involvement.

4. Extend the feature library for assembly feature recognizer. Extend the feature

variation algorithm library for tolerance analysis module to other features.

5. Addressing the issue of computing overall acceptance rate of an assembly

from acceptance rates of stacks. This is not a trivial problem as often tolerance

stacks are inter-related and have complex dependence with shared section of

stack. Assuming 2 inter-related stacks assemble as event A and event B. The

probability that they assemble together can be evaluated by finding the

intersection. Here computing the intersection of the events is not a trivial

problem. One approach could be to design a parametric variation method that

directly incorporates the effect of inter-relation of stacks and computes the

overall probability.

88

REFERENCES

1. ASME, 1994, “Dimensioning and Tolerancing, ASME Y14.5M-1994”,

American Society of Mechanical Engineers, New York.

2. ISO 1101, 2012, “Geometrical product specifications (Gps) - Geometrical

tolerancing - Tolerances of form, orientation, location and run-out”, IS0, 2004.

3. Dixon JR, Howe A, Cohen PR, Simmons MK. Dominic 1: Progress toward

domain independence in design by iterative redesign. Engineering with

Computers, 1987, Volume 2, Number 3, Page 137

4. Mohan P, Haghighi P, Vemulapalli P, Kalish N, Shah JJ, Davidson JK.

Toward Automatic Tolerancing of Mechanical Assemblies: Assembly

Analyses. ASME. J. Comput. Inf. Sci. Eng. 2014;14(4):041009-041009-14.

doi:10.1115/1.4028592.

5. Haghighi P, Mohan P, Kalish N, Vemulapalli P, Shah JJ, Davidson JK.

Toward Automatic Tolerancing of Mechanical Assemblies: First-Order

GD&T Schema Development and Tolerance Allocation. ASME. J. Comput.

Inf. Sci. Eng.2015;15(4):041003-041003-9. doi:10.1115/1.4030939.

6. Bjørke Ø, Computer-Aided Tolerancing, 2nd Edition, ASME Press 1989.

7. Shen Z, Shah JJ, Davidson JK. Analysis neutral data structure for GD&T.

Journal of Intelligent Manufacturing, 2008, Volume 19, Number 4, Page 455

8. Speckhart FH. Calculation of Tolerance Based on a Minimum Cost Approach.

ASME. J. Eng. Ind. 1972;94(2):447-453. doi:10.1115/1.3428175.

9. Lai D., Yuen M., 2011, “Vector based Datum Transformation scheme for

computer aided measurement”, Computer-Aided Design & Applications, Vol.

8.

10. Lee, W.J. and Woo, T.C., “Tolerancing: Its Distribution, Analysis and

Synthesis,” Department of Industrial and Operations Engineering, The

University of Michigan, Aug., 1987b

11. Bowman R. Efficient Gradient-Based Tolerance Optimization Using Monte

Carlo Simulation. ASME. J. Manuf. Sci. Eng. 2009;131(3):031005-031005-8.

doi:10.1115/1.3123328.

12. Chase K., 1999, “Multi-Dimensional Tolerance analysis”, Ch. 13,

Dimensioning and Tolerancing Handbook

13. Vemulapalli, Prabhat, Prashant Mohan, Jami J. Shah and Joseph K. Davidson,

“User Defined Assembly Features and Pattern Recognition from STEP

89

AP203”, In ASME 2014 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, pp.

V01AT02A067-V01AT02A067. American Society of Mechanical Engineers,

2014

14. Shen Z, Shah JJ, Davidson JK. Automatic generation of min/max tolerance

charts for tolerance analysis from CAD models. Computer Integrated

Manufacturing, 2008, Volume 28, Issue 8, Page 869

15. Davidson JK, Mujezinović AA, Shah JJ. A New Mathematical Model for

Geometric Tolerances as Applied to Round Faces. ASME. J. Mech. Des.

2002;124(4):609-622. doi:10.1115/1.1497362.

16. Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NPCompleteness. W. H. Freeman and Company, New

York, 1979.

17. Vemulapalli, P., Mohan, P., Shah, J. J., and Davidson, J. K., 2014, “User

Defined Assembly Features and Pattern Recognition From STEP AP203,”

ASME 2014 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, pp. V01AT02A067–

V01AT02A067.

18. Shen, Z., Shah, J. J., and Davidson, J. K., 2005A, “Simulation-Based

Tolerance and Assemblability Analyses of Assemblies with Multiple Pin-Hole

Floating Mating Conditions,” accepted by DETC’05, ASME 2005 DETC/CIE

Conf. , Long Beach, CA, 25–28 Sept., 2005.

19. Shen, Z., Shah, J. J., and Davidson, J. K., 2005B, “A Complete Variation

Algorithm for Slot and Tab Features for 3D Simulation-Based Tolerance

Analysis,” accepted by DETC’05, ASME 2005 DETC/DAC Conf. , Long

Beach, CA, 25–28 Sept., 2005.

20. Davidson, J. K., Mujezinović, A., and Shah, J. J., 2002, “A New Mathematical

Model for Geometric Tolerances as Applied to Round Faces,” ASME J. Mech.

Des. [CrossRef], 124 , pp. 609–621.

21. Mujezinović, A., Davidson, J. K., and Shah, J. J., 2004, “A New Mathematical

Model for Geometric Tolerances as Applied to Polygonal Faces,” ASME J.

Mech. Des. [CrossRef], 126 (3), pp. 504–518.

http://dx.doi.org/10.1115/1.1497362
http://dx.doi.org/10.1115/1.1701881

90

22. Prisco, U., and Giorleo, G., 2002, “Overview of Current CAT Systems,”

Comput.-Aided Eng. J., 9, pp. 373–387.

23. Chiesi, F., and Governi, L., 2003, “Software Review-Tolerance analysis with

eTol-Mate,” ASME J. Comput. Inf. Sci. Eng., special issue on GD&T, 31, pp.

100–105.

24. Shen, Z., 2003, “Software Review-Tolerance analysis with EDS/VisVSA,”

ASME J. Comput. Inf. Sci. Eng., special issue on GD&T, 31, pp. 95–99.

