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ABSTRACT 

The comparison of between- versus within-person relations addresses a central 

issue in psychological research regarding whether group-level relations among variables 

generalize to individual group members. Between- and within-person effects may differ 

in magnitude as well as direction, and contextual multilevel models can accommodate 

this difference. Contextual multilevel models have been explicated mostly for cross-

sectional data, but they can also be applied to longitudinal data where level-1 effects 

represent within-person relations and level-2 effects represent between-person relations. 

With longitudinal data, estimating the contextual effect allows direct evaluation of 

whether between-person and within-person effects differ. Furthermore, these models, 

unlike single-level models, permit individual differences by allowing within-person 

slopes to vary across individuals. This study examined the statistical performance of the 

contextual model with a random slope for longitudinal within-person fluctuation data. 

A Monte Carlo simulation was used to generate data based on the contextual 

multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the 

predictor variable were varied. The effects of simulation factors on parameter bias, 

parameter variability, and standard error accuracy were assessed. Parameter estimates 

were in general unbiased. Power to detect the slope variance and contextual effect was 

over 80% for most conditions, except some of the smaller sample size conditions. Type I 

error rates for the contextual effect were also high for some of the smaller sample size 

conditions. Conclusions and future directions are discussed. 
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CHAPTER 1 

INTRODUCTION 

Longitudinal data are crucial for developing and testing theories in psychology. 

Not only do longitudinal data allow for establishing temporal precedence (West & 

Hepworth, 1991), increasing power (Muthén & Curran, 1997), and reduction of 

alternative explanations of cross-sectional effects (MacKinnon, 2008), but also they allow 

for simultaneous examination of both within-person change and between-person 

differences. Curran and Bauer (2011) argued that although there has been a recent 

emphasis on collecting and analyzing longitudinal data, models that separate between- 

and within-person effects in longitudinal data have not been used to their full potential in 

psychology research. This is unfortunate, because such models allow development and 

testing of interesting and complex psychological processes that may not be equal across 

different levels of analysis. 

For example, Tennen, Affleck, Armeli, and Carney (2000) described how 

longitudinal data may contain differing between- and within-person effects. They 

collected data from 93 moderate- to heavy-drinking men and women for 60 consecutive 

nights. When examining the between-person data, they found that higher average daily 

drinking was associated with lower average daily emotion-focused coping (an adaptive 

coping strategy). However, when they estimated this relation within persons, they found 

that participants consumed more alcohol on days when they also used emotion-focused 

coping strategies. In a separate study, they found that daily alcohol consumption was 

related to a reduction in nervousness. They concluded that the within-person relation of 

drinking resulting in more positive coping strategies and decreased anxiety had a 
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reinforcing effect such that people with higher anxiety were then more likely to drink 

more alcohol compared to those with lower anxiety. Importantly, although the findings at 

between and within levels contradict each other, they are still both valid, and both of 

these findings have implications for public health and the development of interventions. 

Furthermore, it would be erroneous to make generalizations from one level to the other, 

such as claiming that the more anxiety a person has, the less likely he or she is to drink. 

In an example such as this, there is a complex relation between alcohol and anxiety. 

Simply examining the relation at one level and ignoring the other would be incomplete, 

yet many studies in psychology focus on either within-person relations or between-person 

relations, to the exclusion of the other.  

Because many longitudinal studies in psychology have not properly separated 

between- and within-person effects, it is difficult to know exactly how often between- 

and within-person effects diverge in real data. However, methodologists who study 

longitudinal data structures concur that between-person and within-person effects often 

differ (Hoffman, 2015; Snijders & Bosker, 2012; Bolger & Schilling, 1991). 

Furthermore, Molenaar (2004; 2008) has mathematically demonstrated the stringent 

conditions under which between-person and within-person relations will be equal, and he 

has claimed that many psychological processes inherently will not satisfy these stringent 

conditions. Therefore, if many psychological processes have differing relations at the 

between- and within-person levels, there is a need for methods that can accurately 

uncover these differences. 

This paper discusses how and why relations found at the between-group and 

within-group levels often differ, particularly for longitudinal data where the grouping 
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level is persons. First, the history of between- versus within-group effects is discussed. 

Then these issues are extended to longitudinal data where relations can differ between-

person and within-person. Contextual multilevel models are described as way to properly 

analyze longitudinal data that include both between- and within-person effects. An 

extension of the contextual multilevel model that allows for individual differences in the 

relation between predictor and outcome variable (i.e., a random slope) is described. Next, 

daily diary methods are discussed, as they are an area to which contextual multilevel 

models are particularly well suited. This is followed by a discussion of why person-mean 

centering is an intuitive method of centering in contextual multilevel models and reasons 

why between- and within-person relations may differ. Previous simulation studies on 

contextual multilevel models are then reviewed. Based on this theoretical foundation, 

Chapters 2 and 3 describe an empirical simulation study to assess the performance of 

contextual multilevel models with random slopes for longitudinal data that fluctuates 

over time. Chapter 4 concludes with a discussion of the simulation study results. 

Between- versus Within-Group Effects 

Although this paper focuses on within-person and between-person effects that 

occur in longitudinal psychology data, other disciplines have been grappling with 

analogous issues for decades. Longitudinal data are one specific type of nested (or 

multilevel) data. The individual scores in multilevel data can be grouped in some way, 

and scores within a group are generally not independent from one another. That is, in 

multilevel data, individuals within a group are likely to have more similar scores than 

compared with individuals from different groups. For example, if the academic 

achievement of students in a school is measured, it is likely that the students’ classroom 
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has an effect on achievement. Students in a class with a good teacher might have higher 

achievement scores, whereas students in a class that is very rowdy might have lower 

achievement scores, even if both classes have students with all levels of academic ability. 

In this example, students are nested within classes, and students’ academic achievement 

will be affected by their class membership. In the case of longitudinal data, the person is 

the grouping variable, and the repeated measures across time are nested within persons. 

Multilevel data violate the independence assumption of ordinary least squares (OLS) 

regression and should be analyzed with a model that accounts for the dependencies 

among the data.  

The challenges of multilevel data have long been discussed in fields such as 

education (e.g., students grouped within classrooms), epidemiology (e.g., persons 

grouped within neighborhoods), and sociology (e.g., persons grouped within countries). 

When collecting and analyzing multilevel data, it is important to consider what causes 

and effects exist at each level of analysis. These issues surrounding levels of analysis 

occur with any nested data structure, including repeated measurements nested within 

persons and persons nested within groups. As methods to test between- and within-person 

relations with longitudinal psychology data have not yet been widely developed, it is 

useful to consider the work that has been done to address these issues in other disciplines, 

beginning in the 1950s. 

Robinson (1950) was the first to demonstrate how “ecological correlations,” or 

between-group correlations, cannot be used as substitutes for “individual correlations,” or 

within-group correlations. This incorrect use of ecological correlations as substitutes for 

individual correlations was later described as the ecological fallacy (Selvin, 1958). 
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Likewise, an atomistic fallacy occurs when individual behavior is used to draw false 

conclusions about population behavior (Riley, 1963). More broadly, the ecological 

fallacy has been described as any fallacy that occurs when incorrectly applying inferences 

across any levels of aggregation—not just individuals (Firebaugh, 2001). For example, 

the individual unit could represent classrooms or schools. Susser (1994) suggested that 

we should examine links between all possible levels of analysis, as infinite levels of 

organization exist both between and within individuals.  

Robinson defined individual correlations as those where the statistical object is 

indivisible, and he defined ecological correlations as those where the statistical object is a 

group of persons or objects. When his article was published, ecological correlations were 

prevalent in influential studies. Although the studies used ecological correlations, this 

was not necessarily because the authors were interested in relations at the ecological (or 

group) level. Rather, many researchers at that time used ecological studies to discover 

information about individuals. Robinson (1950) claimed, “Ecological correlations are 

used [in current literature] simply because correlations between the properties of 

individuals are not available” (p. 337). Robinson sought to show, mathematically, the 

discrepant relations between individual and ecological correlations. 

To illustrate how ecological studies could incorrectly apply ecological results to 

the individual level, Robinson (1950) examined the relation of race/nativity and illiteracy. 

Using data from the 1930 U.S. Census, he computed the individual-level correlation 

between illiteracy (illiterate versus literate) and ethnicity (black versus white) as 0.203. 

He then computed ethnicity at the state level as the percentage of the state population 10 

years and older which was black, and illiteracy as the percentage of the state population 
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10 years and older which was illiterate. When considered at the state level, the correlation 

between ethnicity and illiteracy was 0.773. Then he computed ethnicity and illiteracy as 

proportions at the level of nine geographic divisions, according to the U.S. Census 

Bureau. The correlation between illiteracy and ethnicity at this level was 0.946. When 

calculating the correlation between illiteracy and nativity (native-born or foreign born), 

the correlation went from 0.118 at the individual level to -0.526 at the state level. 

However, Robinson (1950) went a step beyond simply showing this inequality with 

sample data and claimed that ecological correlations cannot be used as substitutes for 

individual correlations, as the conditions under which the two correlations will be equal 

are far removed from reality. Furthermore, he implied that his paper was successful if it 

prevented future researchers from calculating “meaningless” ecological correlations (p. 

341).  

Alker (1969) used Robinson’s (1950) basic statistical tools to look for any other 

potential inferential fallacies, beyond the ecological fallacy. Given N units, R groups, and 

T times, one can define averages across units, groups, or times. Similar relations 

(correlations or covariances) can occur at different levels of analysis, but inference from 

one level to another is more complicated. Incorrectly inferring from lower to higher 

levels can be called the aggregation fallacy (Alker, 1969). The individualistic fallacy 

occurs under the same conditions, but the individual-level relation is misapplied to the 

group. Incorrectly inferring from higher to lower levels can be called the disaggregation 

or decomposition fallacy. Alker (1969) described the ecological fallacy as when the 

effects of the grouping variable and within-group covariation interfere with the relation 

between ecological and individual effects. This explains why Robinson’s (1950) 
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individual-level correlation of ethnicity and literacy was 0.2, while the same correlation 

was 0.95 when aggregating the data by geographic region. Alker (1969) concluded that 

the research literature would be vastly different if all researchers were aware of these 

aggregation and spurious correlation fallacies.  

Robinson’s article was quite influential on social science research. Before the 

article was published, ecological correlations were often used to assess individual-level 

relations, but after the article was published, the use of ecological correlations sharply 

decreased (Firebaugh, 2001). Robinson’s study discouraged the use of ecological-level 

analysis for many years, as he suggested that researchers only use ecological data when 

preferable individual-level data were unavailable. Recently, however, there has been a 

reinterest in ecological research and the problems that can occur from only examining 

individual-level relations (Pearce, 2000). In fact, some mechanisms actually do operate at 

the population level, and vital risk factors for diseases such as cancer and asthma have 

been discovered through population-level studies (Pearce, 2000). Singular consideration 

of individual-level effects may obscure important ecological factors that affect individual 

behavior above and beyond individual factors (Blakely & Woodward, 2000). For 

example, the combination of group norms for eating (ecological cause), as well as 

individual hunger (individual cause), is responsible for individuals’ eating behavior. The 

same principle can be applied to longitudinal data as well: the combination of a person’s 

trait stress, as well as their daily stress level, is responsible for their behavior.  

Furthermore, individual variables that have been aggregated at the group level 

may measure a different construct than the corresponding individual variable. For 

example, average age of a sample may measure something different from individual age. 
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Also, the effect of an individual-level variable may differ depending on group-level 

factors: poverty is an individual factor determined by social context (Pearce, 2000). Poor 

people in a wealthy nation or city might face risk factors such as social exclusion and 

lack of access to fresh fruits and vegetables, whereas people of a similar income in 

impoverished nations may not face these same risk factors. Contrary to Robinson’s claim, 

individual-level variables are not always the most important predictors to consider in a 

study, and group-level variables are important to include as well. Given there is evidence 

that variables have effects that operate at multiple levels, simultaneous consideration of 

both individual- and group-level effects through multilevel analysis is ideal. 

Subramanian, Jones, Kaddour, and Krieger (2009) demonstrated this by 

reanalyzing Robinson’s (1950) data using a binomial multilevel logistic model in order to 

show how using only single-level analyses, particularly individual-level analyses, could 

still result in a misspecified model. They found that state-level predictors had important 

effects on individual literacy and thus demonstrated the pitfalls of Robinson’s (1950) 

assertion that only individual-level analyses are “meaningful” (p. 341). Based on this 

understanding that individual-level studies can also be incomplete, many researchers 

have advocated that multilevel modeling can avoid both ecological and individualistic 

fallacies. Ultimately, multilevel models may provide the most complete way to avoid 

both aggregate and disaggregate fallacies, as data can be collected and analyzed 

simultaneously at multiple levels of inference.  

Multilevel Modeling 

Much of the literature on multilevel models considers cross sectional nested data 

where persons can be categorized into groups based on similar context. For example, 
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students can be grouped by classrooms or schools, jury members can be grouped by the 

trial on which they serve, and patients can be grouped by the psychotherapist from which 

they receive treatment. Multilevel data such as these can be analyzed at two levels: the 

first level is the individual level (level-1) where observations from each individual are 

analyzed within the group. The aggregate level (level-2) relations are calculated by first 

forming some summary measure of the observations within each group (such as the 

mean, median, or standard deviation) and then estimating the relations among these 

aggregate measures called “contextual variables.” It is important to consider that 

variables may operate at multiple levels, because if a level is left out of the analysis, 

variance associated with that level will be redistributed to the next lower and next higher 

levels (Snijders & Bosker, 2012). Erroneous standard errors may be obtained for 

coefficients of variables that are defined on this level—tests of such variables will be 

unreliable (Snijders & Bosker, 2012).  

Much of the recent literature on the ecological fallacy has suggested that 

multilevel models should be used when individual-level data are available, so that effects 

at both individual and aggregate levels can be examined simultaneously. The limitations 

of single-level models (including the problem of ecological inference) can be overcome 

by estimating both levels in one model (Diez-Roux, 2000). Specifically, contextual 

multilevel models can separate level-1 predictor variables into level-1 and level-2 

orthogonal (non-correlated) components. This separation of level-1 and level-2 effects 

not only aids in interpretability, but also it allows testing whether the effect of a predictor 

on an outcome is different at each level. 
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Persons as Contexts 

Contextual multilevel models have been explicated mostly for cross-sectional 

data, but they can also be useful for longitudinal data. Although Enders and Tofighi 

(2007) argued that extending multilevel contextual analysis models to longitudinal data is 

easy, Hoffman and Stawski (2009) argued that it is not intuitive at all, hence the need for 

thorough demonstration of how to use existing contextual multilevel analyses to model 

persons as contexts in longitudinal data. However, despite several demonstrations of how 

to apply these models to longitudinal data, there has not yet been a thorough investigation 

of how these models perform with longitudinal data structures and what factors affect 

their performance. Longitudinal data can be analyzed at two levels: the first level is 

within each person, and the second level is between persons (Hoffman, 2015; Hoffman & 

Stawski, 2009). Thus, each person becomes a context, just as group membership or 

geographic location may be a context in cross-sectional nested data. With longitudinal 

data, estimating the contextual effect allows direct evaluation of whether between-person 

and within-person effects differ.  

In longitudinal data, level-1 predictors are called “time-varying predictors.” These 

variables are not constant across time points in a study. Whereas predictors such as 

gender or ethnicity are generally considered to be stable no matter when they are 

measured, other predictors, like mood or tiredness, can vary over weeks, days, or even 

hours. Some time-varying predictors are expected to change stably over time. For 

example, children are expected to show a general increase in their language skills while 

in school. Other time-varying predictors, like mood, are generally expected to fluctuate 

over time without showing any stable growth. This paper focuses on the latter example, 
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for reasons that are discussed below. Note that whether a predictor is expected to grow 

stably or fluctuate may depend on the window of data collection. Although some studies 

have shown that personality traits may change over the course of a lifetime, one would 

not expect them to show stable change within the course of a 30-day study. 

Effects of time-varying predictors, whether they show stable change or fluctuate, 

can be separated into two separate constructs: trait (chronic) effects that reflect stable 

attributes of the person and state (acute) effects that represent short-term deviation from 

stable attributes. People may vary in their amounts of chronic stress due to personality 

differences, family situations, or career choice. However, there will still be days that 

individuals have either more or less stress than usual due to vacations, work deadlines, or 

interpersonal conflict.  

For example, researchers designing a health intervention may ask participants to 

record their daily stress and daily food intake every day for a month. In this case, the 

researchers may be interested in whether higher stress (a time-varying predictor) is 

related to more calories consumed from sugar. When a time-varying predictor relates to 

an outcome at both within-person and between-person levels, the effect of the raw 

predictor is a blend of effects at both levels. A multilevel contextual model, however, is 

able to separate the effect of a time-varying predictor into level-1 and level-2 

components. A multilevel contextual model could be used to determine whether, for 

individuals, more stress is related to more sugar consumption—a within-person (level-1) 

effect—or whether people who have a higher average amount of stress also eat a higher 

average amount of sugar—a between-person (level-2) effect. Just as many have shown 
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that effects may not be equal across levels of a cross-sectional study, between- and 

within-person effects may not be equal as well. 

Hoffman (2015) suggested that it is rare to find a time-varying predictor with 

variation at only level 1; in fact, she said it is a rule rather than an exception that 

between-person and within-person effects of a time-varying predictor will differ in 

magnitude or even direction. Snijders and Bosker (2012) likewise claimed that differing 

within-group and between-group regression effects were more common than not. Bolger 

and Schilling (1991) also suggested that it is common for between- and within-person 

effects in a multilevel model to differ. Contextual multilevel models can accommodate 

differing between- and within-person effects. 

Generally, though, researchers collect longitudinal data because they are more 

interested in within-person effects than between-person effects. Indeed, Bolger and 

Laurenceau (2013) asserted that, although both between-person and within-person effects 

should be included in a multilevel model for proper estimation, between-person effects 

could often be ignored (p. 32). Although longitudinal data are often collected primarily to 

provide information about within-person relations, the data also provide important 

information about cross-sectional, between-person relations as well (Hoffman & Stawski, 

2009; Curran & Bauer, 2011). If the effects of stable individual differences are ignored in 

longitudinal analysis, effects at the within-person level are confounded with the between-

person level. Separating out the between- and within-person level effects in longitudinal 

data has three benefits: 1) there is no confounding of effects at within- and between-

person levels, 2) one can examine the effects of between-person differences in addition to 
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primary examination of within-person effects, and 3) one can examine a contextual effect 

that measures the discrepancy of between- and within-person effects.  

Contextual Multilevel Models 

 Consider again the example of a study which measured i participants over t days 

in order to determine how strongly daily stress (X) was related to daily sugar 

consumption (Y). Again, note that daily stress and daily sugar consumption are not 

expected to change in a stable manner over time.1 In multilevel model notation, the level-

1 relation between stress and sugar consumption is: 

𝑌𝑡𝑖 =  𝛽0𝑖 + 𝛽1𝑖(𝑋𝑡𝑖 − �̅�𝑖) + 𝑟𝑡𝑖.      (1) 

Yti is the number of calories from sugar consumed by person i on day t. β0i is the intercept 

(mean) number of calories from sugar consumed by person i, and β1i is the regression 

slope showing the effect of stress on calories from sugar for person i. Note that stress has 

been centered within person: each person’s mean level of stress (�̅�𝑖) has been subtracted 

from their daily stress scores Xti, so that (𝑋𝑡𝑖 − �̅�𝑖) represents daily deviations in stress 

from a person’s mean level of stress. Centering individual predictor scores based on the 

person mean also implies that the intercept β0i can be interpreted as the predicted amount 

of sugar calories consumed on a day with a mean amount of stress. rti is the level-1 

                                                           
1 For analyzing real data, it is important to include elapsed time as a predictor, even if this 

is not a focal interest, as it may reflect other effects such as boredom or habituation to the 

measures (Iida et al., 2012). However, for simplicity, I will assume in the example here 

and in the simulated data that all effects due to time, like any other confounder, have been 

removed. 
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residual. Now each person’s regression slope β1i and intercept β0i  can be expressed as 

dependent variables at level 2:  

𝛽0𝑖 =  𝛾00 + 𝛾01�̅�𝑖 + 𝑢0𝑖       (2) 

𝛽1𝑖 =  𝛾10         (3) 

In these level-2 equations, 𝛾00 is the mean intercept across all people, and 𝛾10 is the mean 

slope across all people. 𝛾01 is the level-2 slope that indicates the effect of each person’s 

mean stress on their mean sugar consumption, and 𝑢0𝑖  is the level-2 residual. Now the 

equations from both levels can be combined into one model: 

𝑌𝑡𝑖 =  𝛾00 + 𝛾10(𝑋𝑡𝑖 − �̅�𝑖) + 𝛾01�̅�𝑖 + 𝑢0𝑖 +  𝑟𝑡𝑖    (4) 

In this model, each person has a different regression intercept that characterizes the 

relation between daily stress and sugar consumption—all of the regression slopes across 

people are constrained to be equal. (Whether or not this is a tenable assumption is 

discussed later.) According to this model, there are two regression coefficients relating 

stress to sugar consumption: the within-person (level-1) regression coefficient 𝛾10 and the 

between-person (level-2) regression coefficient 𝛾01. Note that the person-specific 

residuals u0i and rti are not explicitly estimated by the model, but rather the variance of 

the level-1 residual is estimated Var(rti) = σ2, and the variance of the level-2 residual is 

estimated Var(u0i) = τ2
00. A contextual effect is present if the within-person effect 𝛾10 and 

the between-person effect 𝛾01 are significantly different.  

The comparison of between- versus within-person relations addresses a central 

issue in psychological research about whether group-level relations among variables 

generalize to individual group members (Molenaar, 2008). However, even if the between-
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person effect has been disentangled from the within-person effect, the model may still fail 

to account for some important between-person differences.  

Idiographic Methods 

For most of past century, psychology has operated with the assumption that the 

relations of variables found among a population of people can generalize to a population 

member’s life trajectory (Molenaar, 2008). This variation between individuals, called 

interindividual variation (IEV), can be conceptualized as the covariance matrix formed by 

observing V variables for N subjects at one time point. Time-dependent variation within a 

single participant’s time series, called intraindividual variation (IAV), can be 

conceptualized as the covariance matrix formed by observing V variables over T times for 

one subject in the population (Molenaar, 2004). If it is true that the variability among 

people can generalize to the variability over time for one person, then the variable by 

person covariance matrix for the population will be asymptotically equal to the variable 

by time covariance matrix for one member of the population (Molenaar, 2004). 

 Although it is often assumed that findings regarding the variation between people 

(IEV) apply to the variation within an individual (IAV), this generalization requires that 

the data meet a set of strict assumptions called ergodicity. The first aspect of ergodicity is 

homogeneity, meaning that all of the same members of a population follow the same laws 

of behavior and are essentially exchangeable units (Gu, Preacher, & Ferrer, 2014). For 

example, homogeneity states that the number of factors and factor loadings for a factor 

analysis of variable by time data are invariant across subjects (Molenaar, 2004). The 

second aspect of ergodicity is stationarity, meaning that the between- subjects variable by 

person data matrix has constant statistical parameters, such as mean, variance, or factor 
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loadings, over time (Molenaar, 2004). Stated another way, ergodicity means that the 

statistical parameters (such as mean, variance, etc.) of a single person’s trajectory over 

time are equal to the statistical parameters (such as mean, variance, etc.) of a group of 

trajectories at a single point in time (Gu et al., 2014). Gu et al., (2014) used a space-state 

model to look at time-related sequences among variables. Because this type of modeling 

allows estimating distinct models for all individuals, it allows the development of 

homogenous subpopulations. 

 Molenaar (2004) argued that few psychological processes meet the conditions for 

ergodicity. In fact, some processes, such as developmental or learning processes, by their 

very nature cannot be stationary because the moments of such data are necessarily time-

varying (Molenaar, 2008). However, even for processes that do not involve stable change 

over time and meet the stationarity assumption, the homogeneity assumption is very 

strong and often violated. Furthermore, standard structural equation modeling of IEV 

does not detect even strong violations of the homogeneity assumption (Molenaar, 2008). 

Velicer (2010) presented several examples of how idiographic analyses revealed very 

different conclusions than corresponding nomothetic analysis. Thus with psychological 

data, between-subjects results are often not generalizable to individuals, and most 

analyses will not be able to detect this deficiency.  

So far, this paper has discussed two main issues that can arise as the result of data 

aggregation. The first issue is the disaggregation or aggregation fallacy: variable relations 

found at one level of analysis are not necessarily equal to those found at another level of 

analysis. For example, does the relation between X and Y within person equal the relation 

between X and Y between person? This can be addressed by using a contextual multilevel 
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model to estimate the relations at both levels simultaneously. The second issue is 

ergodicity, and specifically homogeneity: relations among variables may not be the same 

for all people. For example, is the relation between X and Y the same for each individual?  

 So in order to avoid committing an aggregation or disaggregation fallacy, a 

statistical model (such as a contextual multilevel model) should account for differing 

relations at both individual and aggregate levels. Also, in order to account for non-

homogeneous processes, it should allow for individual differences. This can be done by 

allowing regression parameters to vary across individuals. Even in a multilevel model 

without predictors, the intercept will vary across individuals, but with at least one linear 

level-1 predictor, another parameter can be added that allows the level-1 linear 

regressions (within-person effects) to vary across individuals. Similarly, if quadratic 

level-1 predictors are added to the model, the degree of curvature can be allowed to vary 

across individuals. 

However, individual-specific scores on the intercept and slope are not estimated, 

but rather the mean and variance of the intercept’s and slope’s distributions are estimated. 

Thus people can vary quantitatively in both intercept and slope. Still, the model is 

restricted such that each person still has the same functional form, i.e., one person cannot 

have a linear relation between X and Y while another person is allowed a exponential 

relation between X and Y. Thus, the model is not truly idiographic in the sense that a 

separate longitudinal model is estimated for each individual. However, estimating 

random slope variation helps ensure that at least some individual differences are 

accounted for. In order to meet the ergodicity conditions that allowed inference between 
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within-person and between-person levels, daily diary data would have to be collected 

from a homogeneous sample, and the data would have to be stationary over time.  

Random Slopes in Contextual Multilevel Models 

A contextual analysis model with random slopes not only allows the comparison 

of within- and between-person effects, but also allows the estimation of between-person 

differences. Furthermore, random slopes allow estimation and documentation of 

variability, without needing to know the sources of the variability (Bolger & Laurenceau, 

2013). Equation 5 includes a level-1 predictor divided into level-1 and level-2 effects, as 

well as a random slope of the level-1 predictor. 

𝑌𝑡𝑖 =  𝛾00 + 𝛾10(𝑋𝑡𝑖 − �̅�𝑖) + 𝛾01�̅�𝑖 + 𝑢0𝑖 + 𝑢1𝑖(𝑋𝑡𝑖 − �̅�𝑖) +  𝑟𝑡𝑖  (5) 

Compared to the contextual multilevel model without a random slope as in equation 4, γ10 

now indicates the average within-person effect of daily stress on daily sugar 

consumption, and u1i indicates person i’s random deviation from the average within-

person regression slope γ10. Just as person i’s intercept u0i is not explicitly estimated by 

the model, but rather the variance of all intercepts Var(u0i) = τ2
00 is estimated, the 

variance of all person-specific slopes Var(u1i) = τ2
11 is estimated, and the variance of 

person-level residuals Var(rti) = σ2
 is estimated. The covariance of slope and intercept 

Cov(u0i , u1i) =  τ2
01 is also estimated. The other model parameters are interpreted the 

same as in equation 4, and γ01 - γ10 still indicates the contextual effect: the difference 

between the between-person effect and the average within-person effect. It is important to 

note that in the presence of large slope variation, the implication of the average within-

person effect (and subsequently, the contextual effect) is more nuanced, as persons may 

deviate greatly from the average within-person effect. Furthermore, finding such large 
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variation in within-person relations is ideally proceeded by examining potential 

predictors of such variation (Raudenbush & Liu, 2000). Although this is an important 

topic for future research, the current study remains only concerned with the contextual 

model as seen in equation 5, excluding any predictors of slope variation. 

Daily Diary Studies 

It is important to develop contextual multilevel models for longitudinal data, as 

many currently popular research designs depend on longitudinal data with time-varying 

predictors. One such type of research design, the daily diary study, includes both within-

person and between-person data. Daily diary studies are used to collect repeated 

measurements on participants in a natural environment in real time (Bolger & 

Laurenceau, 2013). Such studies are becoming increasingly widespread in the social 

sciences, including social, personality, clinical, developmental, organizational, and health 

psychology (Iida, Shrout, Laurenceau, & Bolger, 2012). From 2009 to 2012, more than 

250 journal articles per year used daily diary results (Iida et al., 2012). In comparison to 

data collected in a laboratory, or questionnaires that ask participants to recall the events 

and behaviors of the past, daily diary data are collected in a natural environment; they can 

also reduce retrospective bias, as the data can be collected closer in time to when the 

events and behaviors of interest occur (Iida et al., 2012).  

Very basic daily diary studies can involve the collection of a single measure that 

is expected to change or vary over time. However, in many cases, psychologists are 

interested in the antecedents, correlates, and consequences of daily experience (Bolger, 

Davis, & Rafaeli, 2003). So, a daily diary study can not only help determine the within-

person processes of the average person, but also a diary study can reveal how much 
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people vary in their processes and what predicts this variation (Bolger et al., 2003). Some 

within-person processes might be expected to exhibit systematic and durable change over 

time, such as language acquisition in children. However, other within-person processes 

are assumed to vary over time, even if they do not exhibit systematic change over time, 

such as the effect of stress on relationship intimacy. Daily diary studies can address the 

questions of what predicts steady growth in language acquisition and what predicts daily 

variation in relationship intimacy. Much of psychology research has focused on the 

measurement of stable traits or steady states, but many of these constructs are not 

perfectly stable over time. For example, even a construct such as ethnic identity can vary 

from day to day (Yip & Fuligni, 2002). Many researchers may be interested in whether 

these variations are due to measurement error or meaningful within-person variability. 

However, models for within-person change over time have been well explicated, 

but models for within-person fluctuation have not been so heavily explored (Hoffman & 

Stawski, 2009). Furthermore, longitudinal predictors that change systematically over time 

require more complex parameterization than those that simply fluctuate over time 

(Hoffman & Stawski, 2009). Curran and Bauer (2011) demonstrated how, in a model 

with a time-varying predictor that shows no growth and no cycling (as is discussed in this 

paper), the person mean centering strategy (explained below) provides a valid estimate of 

the within-person effect. However, it is more complex to extract the pure within-person 

effect from predictors that show growth over time, and person-mean centering does not 

provide a valid estimate in this case. For these reasons, this paper focuses on longitudinal 

data where variables are expected to fluctuate, rather than show steady change, over the 

interval of data collection.  
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Daily diary studies are an ideal application of multilevel contextual models 

because time-varying predictors almost always include both between- and within-person 

variability (Hoffman 2015). Partitioning between- and within-person variability is 

important even if one is only interested in examining effects at one level, and this step is 

often overlooked in analyses of intensive longitudinal data (Bolger & Laurenceau, 2013). 

Without separating predictor variables into between-person and within-person 

components, the effect of the predictor confounds both sources of variability, and the 

results cannot be properly interpreted to apply at either level (Enders & Tofighi, 2007; 

Hoffman & Stawski, 2009; Hoffman, 2015). Contextual multilevel models offer an 

intuitive way to analyze such longitudinal data where within-person fluctuation (rather 

than systematic change) is expected. These models also directly address the question of 

whether within-person or between-person relations are equal and generalizable to the 

other level.  

Centering in Longitudinal Multilevel Models 

When applying multilevel models to real data, the choice of where to center 

predictor variables is important. Time-varying predictors are generally composed of two 

sources of variation, so they are essentially two variables in one. Whether or not these 

dual sources of variation is viewed as interesting or a nuisance is important to consider. 

Proper specification and interpretation of time-varying predictors is complex. If the 

contextual effect of a person-mean predictor is significant, then the composite effect 

should not be used (Hoffman & Stawski, 2009, p. 108). Predictor variables can be left as 

raw scores, they can be centered at the grand mean, or they can be centered at the cluster 

mean. In grand mean centering, the mean of the predictor across all observations is 
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subtracted from each score. Thus, the predictor now becomes a measure of deviation 

from the overall mean. In cluster-mean centering, the cluster mean is subtracted from 

each score in the cluster. In this case, the predictor is now a measure of deviation from 

the group mean. This applies to cross-sectional data, where the cluster is some grouping 

of persons, and to longitudinal data, where the cluster comprised of multiple observations 

for each person. As this project focuses on the latter case, cluster-mean centering is 

referred to as “person-mean centering” for clarity. The centering of level-1 predictors in 

studies of individual change affects the definition of the intercept, intercept variance, and 

intercept-slope covariance, as all of these parameters are interpreted at the zero value of 

the predictor. The centering of level-1 predictors also affects possible biases in studying 

time-varying covariates, as well as the estimation of variance parameters (Raudenbush & 

Bryk, 2012).  

In multilevel models without a random slope, person-mean centering and grand-

mean centering produce equivalent estimates of the contextual effect. This means that the 

fixed effect parameter estimates (including the contextual effect) from a grand-mean 

centered model can be algebraically equated to those from a person-mean centered 

model, even though the actual estimates are not exactly the same (Kreft, de Leeuw, & 

Aiken, 1995; Enders & Tofighi, 2007). Thus, the choice of centering method is less 

important as parameter estimates obtained from either method provide the same 

information about the size of the within-person effect, the size of the between-person 

effect, and the difference between these estimates (the contextual effect). Person-mean 

centering of time-varying predictors is an intuitively appealing option, as effects at both 
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levels are directly represented; however, grand-mean centering is still more commonly 

used (Hoffman, 2015).  

However, this equivalence no longer holds once a random slope is introduced into 

the model, and so far, there have not been many empirically based recommendations for 

which centering method should be used when a contextual model includes random 

slopes. Under grand-mean-centering, the random effect is based on all variation, whereas 

under person-mean-centering, the random effect is based on within-person variation 

(Hoffman & Stawski, 2009). Snijders and Bosker (2012) advised taking substantive 

theory and model fit into consideration, but ultimately advocated against using person-

mean centering for random slopes unless there is clear theory that deviation scores are 

related to the outcome rather than raw scores. There are not many straightforward 

recommendations in the multilevel literature to indicate which method of centering is 

preferable in a model with a random slope. Either substantive reasoning, such as the case 

where daily deviations from a person’s mean level of stress are the focus of interest, or 

empirical criteria, such as the estimated AIC or BIC, could be used to choose which 

centering method to use when estimating a model with a random slope (Hoffman, 2015). 

There is some evidence that in grand-mean centered models, random slope variance is 

downwardly biased compared to person-mean centered models, perhaps due to the 

models’ differences in random intercepts (Hoffman, 2015). Wang and Maxwell (2015) 

suggested, based on a simulation, that person-mean centering provided the most accurate 

and precise estimates of fixed and random effects. Although there remains much work to 

be done on which centering method is preferable for multilevel models with random 

slopes, this project focuses on person-mean centered predictors, as this method presents a 
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clear and interpretable way to differentiate between orthogonal between-person and 

within-person variation in a predictor. 

Why Contextual Effects Arise 

Although many experts on multilevel modeling suggest that differing between- 

and within-person effects are common (Hoffman, 2015; Snijders & Bosker, 2012; Bolger 

& Schilling, 1991), it is not as clear why such effects differ. These differences could be 

due to substantive and theoretical differences at each level, or they could be due to 

statistical artifacts, such as unreliability in the measure or the effects being measured on 

different scales.  

Contextual effects may arise because some constructs have different meanings at 

the between-person versus within-person levels, as was discussed for cross-sectional data 

as well. We might expect that a person’s average level of positive mood relates to their 

quality of life differently than their amount of positive mood on any given day. If a daily-

observed variable were an entirely different construct than its corresponding aggregate, 

then it seems likely that being different constructs, they would have different effects on 

an outcome. Schwartz (1994) also argued that aggregate measures can be qualitatively 

different constructs than their corresponding individual-level measures. For example, the 

proportion of females in a group can affect group eating behavior in a different way than 

the individual’s gender affects his or her eating behavior. Furthermore, the reasons why 

persons differ from one another may not be the same reasons why any given person 

varies from time to time.  

However, contextual effects may also arise because of statistical reasons: 

between-person and within-person effects may differ simply because they are 
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unstandardized coefficients estimated on different scales, as shown by Hoffman and 

Stawski (2009) and Hoffman (2015). To the extent that the variation in the predictors and 

outcomes is not equally distributed across between- and within-levels, effects at each 

level will likely differ simply due to this unequal distribution of variation (Hoffman & 

Stawksi, 2009). One way to ensure that any contextual effect is not simply due to this 

statistical property is to calculate standardized fixed effects. Unlike in OLS linear 

regression, the formulae for calculating standardized regression coefficients are not as 

straightforward. However, one can obtain pseudo-standardized coefficients by 

multiplying the unstandardized coefficient by its sample standard deviation and dividing 

it by the residual variance of Y at its level. Equations 6 and 7 demonstrate how to obtain 

the pseudo-standardized between-person coefficient (γ01std) and within-person coefficient 

(γ10std) 

𝛾01𝑠𝑡𝑑 =  𝛾01 ∗
𝑆𝐷(𝑋𝐵)

𝑆𝐷(𝑌𝐵)
        (6) 

𝛾10𝑠𝑡𝑑 =  𝛾10 ∗
𝑆𝐷(𝑋𝑊)

𝑆𝐷(𝑌𝑊)
        (7) 

where SD(XB) and SD(XW) give the standard deviation of X between-person and within-

person, respectively. The standard deviation of X at each level can be obtained simply 

through sample statistics. In the case of the person-mean centered model in equation 5, 

the standard deviation at each level can be computed as: 

𝑆𝐷(𝑋𝐵) = 𝑆𝐷(�̅�𝑖)        (8) 

𝑆𝐷(𝑋𝑊) = 𝑆𝐷(𝑋𝑡𝑖 − �̅�𝑖).       (9) 

However, there are different ways to calculate the standard deviation of Y at the 

between- and within-levels. Hoffman and Stawski (2009) suggested obtaining the level-2 
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and level-1 residual variance of Y using a means-only multilevel model (that is, an 

unconditional multilevel model with no predictors) so that  

SD (YB ) = √τE
2         (10) 

SD (YW) = √σE
2  .         (11) 

Applying these formulae to real data can indicate if the contextual effect is simply 

due to the comparison of unstandardized regression coefficients. If the standardized 

contextual effect γ01std – γ10std is still non-zero, however, this indicates that there is still a 

contextual effect. 

Previous Research 

There is scant literature on the power, bias, and accuracy of contextual effects. 

Only a few published statistical simulation studies have examined contextual effects or 

random slopes. Only one published study has used a statistical simulation to test a 

multilevel model that includes both a contextual effect and a random slope variance 

component, although this study only considered 144 conditions (Wang & Maxwell, 

2015). 

 Only two published papers have done statistical simulations focusing on the 

estimation of contextual effects. Both of these studies were done to address the problem 

of unreliability in the level-2 predictors. When level-2 predictors are created by simply 

aggregating level-1 observation within each group, there is an implicit assumption that 

this group mean is perfectly reliable. If the group mean is not perfectly reliable, then the 

contextual effect and its standard error can be biased. Lüdtke, Marsh, Robitzsch, and 

Trautwein (2008) and Lüdtke, Marsh, Robitzsch, Trautwein, Asparouhov, and Muthén 
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(2011) introduced a multilevel latent covariate (MLC) model that corrects for this 

unreliability and provides more unbiased estimates in some conditions. 

 In particular, Lüdtke et al. (2008) simulated data based on a within-cluster 

centered contextual model and varied the number of groups, number of observations 

within each group, ICCx, and sampling ratio (the proportion of the population of group 

members that were actually sampled for each group.) For each simulated data set, they 

estimated a contextual multilevel model using manifest group means (the multilevel 

manifest covariate, or MMC, approach as seen in equation 4) as well as an MLC model. 

They found that whereas the MMC approach produced more biased estimates of the 

contextual effects, the MLC approach produced contextual effects with more variability. 

However, Lüdtke et al. (2008) provided recommendations for when the MMC versus 

MLC approaches were appropriate based on the nature of the aggregated construct. For 

formative constructs, they recommended the MMC approach in most cases, especially 

with high ICCx values and large cluster sizes. For reflective constructs, they recommend 

using the MLC approach.  

In the case of daily diary data, it is not always clear-cut whether daily score 

aggregation represents a formative or reflective construct. Lüdtke et al. (2008) argued 

that if within-cluster variation in scores were a substantively meaningful group 

characteristic, then the construct would be considered formative. However, if within-

cluster variation in scores were simply unreliability or lack of agreement among 

individual scores, then the construct would be considered reflective. For daily diary data, 

fluctuation in a construct over time often may be substantively meaningful, particularly if 

the construct indicates mood or affect. If large daily fluctuations in negative mood are 



 
 

28 

observed for one person, this variability may be related to other important variables 

(including average negative mood) and should not necessarily be dismissed as 

“unreliability” in daily measures of mood. For this reason, it is appropriate to use a 

multilevel manifest covariate approach to estimate contextual effects with daily diary 

data, as discussed here. Furthermore, the MMC approach is by far the most commonly 

used in research practice (Lüdtke et al., 2008), so the findings of this study will be useful 

to those who collect daily diary data and use manifest group means as between-person 

predictors. 

 Lüdtke et al. (2011) compared four different contextual models: those that 

corrected for either sampling error or measurement error, a model that corrected for both, 

and a model that corrected for neither. The model that corrected for neither sampling 

error nor measurement error was equivalent to the random-intercept contextual model in 

equation 4. The models that corrected for sampling error decomposed observed predictor 

scores into observed and unobserved components, while the models that corrected for 

measurement error assumed the independent variable was measured by multiple 

variables. Lüdtke et al. (2011) showed mathematically that uncorrected or partially 

corrected models would result in biased estimates of the contextual effect. However, in a 

simulation study with similar conditions to those used in Lüdtke et al. (2008), Lüdtke et 

al. (2011) found that partial correction approaches can actually perform better than the 

full correction approach in some circumstances. Specifically, the partial correction 

approaches do better than the full correction approach when there are a small number of 

clusters and a low ICCx. Still, both of these papers focused on data characteristics that are 
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common in cross-sectional data: including lower ICCx values. Furthermore, in both 

simulation studies, the size of the contextual effect was not varied (it was set at 0.5).  

 Wang and Maxwell (2015) used a contextual multilevel model with a random 

slope to compare various methods of centering and detrending. However, they only 

considered three contextual effects (-0.5, 0, 0.5) and found that the person-mean 

centering approach was preferable to grand-mean centering or no centering in estimating 

both fixed and random effects. 

Curran and Bauer (2011) performed a very small simulation to test the parameter 

recovery of a contextual multilevel model with a between-person effect γ01 = 1.5 and a 

within-person effect γ10 = -1.0. With 500 simulated cases and 9 repeated measures, they 

found that the model estimates were very accurate. Further simulation research is needed 

to understand the behavior of the multilevel contextual model with contextual effects of 

all sizes and directions, including zero and negative contextual effects. 

Increased power to detect fixed effects can be achieved by increasing the duration 

of the study, or increasing the frequency of observations. All else being equal, increasing 

the duration of the study will increase reliability (Raudenbush & Bryk, 2002.) It is 

important to note that these findings from Raudenbush and Bryk (2002) focused 

primarily on multilevel models applied to longitudinal data where stable change over 

time was expected. Bolger and Laurenceau (2013) demonstrated how increasing the 

number of level-2 units (in this case, persons), was more effective in increasing power to 

detect a level-2 treatment-by-time slope than increasing the number of level-1 units 

(repeated measurements per person.) 
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Research on the performance of significance tests for variance components in 

multilevel models indicates that in general, it may be difficult to detect non-zero slope 

variance. Snijders and Bosker (2002) found that there was low power for the significance 

test of slope variance. Hertzog, Lindenberger, Ghisletta, and von Oertzen (2006) 

similarly found that slope covariance was difficult to detect in most cases. However, Rast 

and Hofer (2014) found that longitudinal studies did have adequate power to detect slope 

variances and covariances. 

Hox (2002) showed that fixed effects were estimated more precisely than random 

effects. It is common practice for researchers to only include a cross-level interaction in 

the multilevel model if the slope variance is significant (La Huis & Ferguson, 2009). 

However, La Huis and Ferguson (2009) used real multilevel data to demonstrate that 

there could be a significant cross-level interaction, even if there was no significant slope 

variance. Thus, it may not be good practice to include a cross-level interaction only after 

finding a significant slope variance.  

Raudenbush and Liu (2000) found that power for tests of variance components 

and fixed effects related to the number of groups, group size, and effect size, and the 

greatest determinant of power to detect significant slope variance was group size. La Huis 

and Ferguson (2009) tested the power and Type I error rates of three significance tests for 

slope variance: the chi-square test, the likelihood ratio test, and the corrected likelihood 

ratio test. They varied the number of groups, group size, and effect size of slope variance. 

Effect size of slope variance was specified by varying the degree to which the slope was 

related to a level-2 predictor. La Huis and Ferguson (2009) found that there was not a 

great difference in performance among the three tests, although the one-tailed likelihood 
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ratio test had the best balance of low Type I errors and high power. They also found that 

group size and effect size had the biggest influence on the power to detect significant 

slope variance (La Huis & Ferguson, 2009). However, they found that significance tests 

for slope variance components do not always correspond directly to the relation of level-2 

to the slope. La Huis and Ferguson (2009) suggested that future simulation research 

should vary ICC values, as well as fixed effect parameter sizes to determine their effect 

on the power of variance components tests. If a random slope is omitted, the standard 

errors of cross-level interactions may be incorrectly estimated (Snijders & Bosker, 2012). 

Snijders and Bosker (2012) advised that in order to precisely estimate variance 

parameters, at least 30 observations should be used at either level and the independent 

variable should have enough dispersion within level-2 units.  

The Present Study 

This study investigates the statistical performance of the contextual model with a 

random slope for longitudinal within-person fluctuation data. Furthermore, the few 

existing studies on contextual multilevel models have either not examined a variety of 

contextual effect sizes, not included a random slope parameter or have focused on data 

characteristics common in cross-sectional research, rather than those common in 

longitudinal research. In particular, this study incorporates larger ICC values than those 

studied by Lüdtke et al. (2008), as well as contextual effects of different sizes and 

directions. Typical dairy studies have ICC values ranging from .20 to .40 (Bolger & 

Laurenceau, 2013). Further research has been recommended for elaborating guidelines on 

how to choose sample size approximately for the estimation of variable parameters in 

random slope models (Snijders & Bosker, 2012). Curran and Bauer (2011) argued that 
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existing multilevel models are not always appropriate for the wide variety of longitudinal 

data structures and much quantitative work is needed to make these methods more 

applicable to longitudinal data. 

Incorporating a random slope makes a multilevel model even more flexible to 

accommodate individual differences, which again relates to Molenaar's admonition that 

between-person and within-person relations should never be assumed equal. Again, 

however, the model in the current study is not a truly idiographic model where 

individuals are allowed to have entirely different models. But assuming that the 

individuals in the data are homogenous with respect to the functional form of the X-Y 

relation over time, estimating a random slope allows for any heterogeneity that may be 

present in the strength or direction of the X-Y relationship. To my knowledge, there has 

been only one limited simulation study of a contextual model with random slopes (Wang 

& Maxwell, 2015), and in fact, Lüdtke et al. (2008) specifically suggested this as an area 

for future research.  

The secondary focus of this study is to further explore standardized contextual 

effects as described by Hoffman and Stawski (2009) and Hoffman (2015). In their 

example with real data, they showed that even when standardized to the same scale, the 

between and within effects still differ. Comparing the unstandardized and standardized 

contextual effects with simulated data can demonstrate how frequently a significant 

contextual effect is only due to the regression coefficients being on different scales and 

how frequently the standardized between and within effects are truly different. If 

seemingly large and significant contextual effects are only due to this problem of 

different scales, this would undermine the idea that contextual effects are substantively 
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important and meaningful. The goal of this work on standardized contextual effects is to 

address a potential criticism of contextual effects and thus address a criticism of the more 

general idea that between and within person effects will often differ. 

Hypotheses 

Effect Size of Fixed Effects 

Larger effect size of the within-person and between-person fixed effects should 

increase power to detect these effects. However, Lüdtke et al. (2008) showed 

mathematically that the contextual effect will be underestimated if the between-person 

effect is larger than the within-person effect in the population. Likewise, the contextual 

effect should be positively biased in the sample if the between-person effect is smaller 

than the within-person effect (Lüdtke et al., 2008). 

Effect Size of Slope Variance 

Smaller slope variance will result in better power to detect the average within-

person effect (Bolger & Laurenceau, 2013), and pilot studies I performed have shown 

that smaller slope variance also increased power for the contextual effect. 

Sample Size 

Number of persons (i) will be more important than the number of observations per 

person (t) in increasing power to detect the within-person effect, between-person effect, 

and contextual effect (Raudenbush & Liu, 2000). However, the number of observations 

per person (t) will have a greater impact than the number of persons (i) on increasing 

power to detect the slope variance. Increasing the number of observations per person (t) 

should decrease bias of the contextual effect. 
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Intraclass Correlation (ICCx) 

Larger ICCx values of the predictor should result in less bias for the contextual 

effect (Lüdtke et al., 2008). Pilot studies I performed have shown that larger ICCx values 

will increase power to detect the contextual effect. These pilot studies also showed an 

interaction with ICCx and number of observations per person (i) such that larger ICCx 

improved coverage and Type I error rates for the contextual effect and slope variance at 

smaller sizes of i, but larger ICCx corresponded with poorer outcomes at larger sizes of i.  
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CHAPTER 2 

METHOD 

Simulation Conditions and Procedure 

Data were simulated in Mplus 7 according to Equation 5:  

 𝑌𝑡𝑖 =  𝛾00 + 𝛾10(𝑋𝑡𝑖 − �̅�𝑖) + 𝛾01�̅�𝑖 + 𝑢0𝑖 + 𝑢1𝑖(𝑋𝑡𝑖 − �̅�𝑖) +  𝑟𝑡𝑖   (5) 

where Yti and Xti represent outcome and predictor scores, respectively, for person i at time 

t. This study varied the number of observations per person (t), number of persons (i), 

within-person fixed effect size (γ10), between-person fixed effect size (γ01), random slope 

variance effect size (τ2
11), and intraclass correlation (ICCx) of X. The intraclass 

correlation of X represents the proportion of variation in X that is between-person, 

relative to the total variation in X. So then:  

𝐼𝐶𝐶𝑥 =  
𝑉𝑎𝑟(𝑋𝐵)

𝑉𝑎𝑟(𝑋𝑊)+𝑉𝑎𝑟(𝑋𝐵)
.                (12) 

For equation 5 that is person-mean centered, the variation within person and 

between person can easily be obtained from the predictor terms (𝑋𝑡𝑖 − �̅�𝑖) and �̅�𝑖 as they 

are orthogonal. So then for a person-mean centered multilevel model: 

𝐼𝐶𝐶𝑥 =  
𝑉𝑎𝑟(�̅�𝑖)

𝑉𝑎𝑟(𝑋𝑡𝑖−�̅�𝑖)+𝑉𝑎𝑟(�̅�𝑖)
.                (13) 

The performance of the contextual effect and the slope variance parameter 

estimates was assessed by calculating parameter bias, parameter variability, and standard 

error accuracy. The simulation followed a factorial design with six manipulated data 

characteristics including number of observations per person (t = 5, 10, 20, 40, 80), 

number of persons (i = 30, 50, 100, 150, 200), intraclass correlation for the predictor 

variable (ICCx = .10, .20, .50, .60), between-person fixed effect size (γ01 = -.59, -.14, 0, 
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.14, .59), within-person fixed effect size (γ10 = -.59, -.14, 0, .14, .59), and random slope 

variance effect size (τ2
11 = 0.05, 0.01, 0.15). Contextual effect sizes (γcontextual = γ01 – γ10) 

ranged from -1.18 to 1.18. The other model parameters were specified as: 0 for the 

intercept, 0 for the intercept-slope covariance, 0 for the mean of X at both between and 

within levels, 1 for the total variance of X and Y, and 0.2 for the unconditional intraclass 

correlation of Y given by: 

𝐼𝐶𝐶𝑦 =  
𝜏𝐸

2

𝜏𝐸
2 + 𝜎𝐸

2.              (14) 

 In generating data according to equation 5, only the residual variance of Y at 

between and within levels could be specified explicitly. However, Snijders and Bosker 

(2012) provided an equation (Appendix B) that gave the variance decomposition of Y for 

a multilevel model with random slopes. Based on the simulation parameters in each study 

condition, the residual variance of Y at each level was computed so that Y in each 

population model had a total variance of 1 and an unconditional ICCy = .2. Mplus 7 was 

used to generate the data and to analyze correctly specified models using maximum 

likelihood estimation. Appendix C gives example Mplus code for data generation and 

estimation of the contextual model and estimation of a means-only model for calculating 

the standardized contextual effect. All data characteristics were fully crossed. There were 

5 (t) x 5 (i) x 4 (ICCx) x 5 (γ10) x 5 (γ01) x 3 (τ2
11) = 7,500 conditions, with 1,000 

replications generated for each condition. The independent variables and their respective 

levels were chosen based on previous Monte Carlo studies and common findings in the 

substantive research. 
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Much of the other simulation work with multilevel models has focused on their 

use with cross sectional data, and thus the chosen simulation parameters have reflected 

the sample sizes and effect sizes commonly seen in cross-sectional data. However, the 

present study’s focus is on repeated observations within persons, so following Ohly, 

Sonnentag, Niessen, and Zapf, (2012) this study varied the number of observations per 

person between 5 and 80 and varied the number of persons between 30 and 200. Ohly et 

al. (2012) suggested that daily diary research published in top journals generally have at 

least 5 repeated measurements per person and at least 100 participants, although anything 

smaller than 30 may lead to biased results. Likewise, Lüdtke et al. (2008) chose relatively 

low ICCx values for their simulation, based on commonly observed ICCx values in 

organizational research. However, ICCx values chosen for the present study reflect the 

higher ICC estimates obtained in daily diary research. Typical dairy studies have ICC 

values ranging from .20 to .40 (Bolger & Laurenceau, 2013), although larger ICC values 

of .60 are also commonly seen. ICC values of .50 and .60 were chosen to explore how 

having equal or larger amounts of variation at between-person level affects estimation. 

Effect sizes were chosen following Cohen’s (1988) small and large benchmarks for 

regression slope parameters, and a slope parameter of 0 was added to test for Type I error 

rates. In most of the existing simulations of contextual models, effect size was not of 

primary interest. For example, Lüdtke et al. (2008) and Lüdtke et al. (2011) only 

considered a within-group regression slope of 0.2 and a between-group regression slope 

of 0.7 leading to a contextual effect size of 0.5. Curran and Bauer (2011) used a within-

group regression slope of -1.0 and a between-group regression slope of 1.5 leading to a 

contextual effect size of 2.5. This study is one of the first to examine a range of 
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contextual effect sizes, including negative effect sizes, and the effect of a zero contextual 

effect size on Type I error rates.  

Slope variance sizes were chosen following Raudenbush and Liu’s (2000) rules of 

thumb for small, medium, and large variances of a fixed effect. A small variance of 0.05 

implies that the fixed effect has a standard deviation of 0.22, a medium variance of 0.10 

implies that the fixed effect has a standard deviation of 0.32, and a large variance of 0.15 

implies that the fixed effect has a standard deviation of 0.39. 

Dependent Variables 

This study assessed the performance of the parameter estimates for the contextual 

effect and slope variance by calculating parameter bias, parameter variability, and 

standard error accuracy. The accuracy of a standardized contextual effect was also 

evaluated (Hoffman & Stawski, 2009; Hoffman, 2015). For each replicated data set, a 

means-only model for Y was estimated, and a standardized contextual effect was 

calculated as in equations 6 and 7. This standardized contextual effect was compared to 

the population standardized contextual effect.  

Parameter bias was evaluated by calculating raw parameter bias, relative 

parameter bias, and standardized parameter bias. Raw parameter bias was calculated by 

subtracting the true value of the parameter from the within-cell average of the simulated 

parameter estimate. Relative parameter bias was calculated by dividing the raw parameter 

bias by the parameter’s true value, and standardized parameter bias was calculated by 

dividing raw parameter bias by the standard deviation of the parameter across all 

replications in each design cell. Parameter variability was measured by estimating the 

root mean square error (RMSE) across all observations in a cell. 
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Standard error accuracy was evaluated by observing the coverage of the 95% 

Confidence Interval (CI) and standard error (SE) bias. If the true parameter was within 

the confidence interval, then coverage was given a value of 1; if the true parameter was 

outside of the confidence interval, then coverage was given a value of 0. The proportion 

of times the true parameter lies above the CI and the proportion of times the true 

parameter lies below the CI was also calculated. Raw standard error bias was calculated 

by finding the difference between the within-cell mean of the standard errors of the 

parameter estimates across and the within-cell standard deviation of parameter estimates. 

Statistical power was also be assessed by calculating the proportion of times across all 

replications that a parameter was significant at the 0.05 alpha level when there was a true 

non-zero effect. Type I error rates were similarly studied by observing the proportion of 

times across all replications that a parameter was significant at the 0.05 alpha level when 

the true value of the effect was 0. All significance tests for the parameters of interest were 

performed using a Wald chi-square test available in Mplus. Although there have been 

some indications that a one-tailed likelihood ratio test would be ideal for testing variance 

components, the chi-square test is still widely used by applied researchers. Furthermore, 

La Huis and Ferguson (2009) concluded that the chi-square test did not result in any large 

differences from likelihood ratio tests.  
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CHAPTER 3 

RESULTS 

The results section includes four parts. The first part describes the findings from 

the full simulation proposed in the prospectus meeting. ANOVA was used to determine 

which study factors affected parameter recovery and whether the hypotheses were 

supported. For each ANOVA, effects that had an effect size of η² ≥ .10 were reported and 

described. Corresponding tables and figures were included for simulation factors had an 

effect size of η² ≥ .10. Then, for a subset of the original conditions, replication-level 

logistic regression analyses were conducted to see which factors affected coverage, 

power, and Type I error at the replication level. Then effect of autocorrelated residuals on 

parameter recovery was also described for a single condition. Finally, an empirical 

illustration of how to fit a contextual multilevel model to real daily diary data was 

described. 

Statistical Analyses 

The main purpose of this study was to examine the effect of sample size, 

covariate effect size, number of indicators, and quality of indicators on simulation 

outcomes using analysis of variance (ANOVA). ANOVAs for the full simulation were 

conducted at the cell level, where a given outcome measure across all replications in one 

study condition was computed and treated as one observation. In a simulation study such 

as this, the large sample size had high statistical power to detect even very small effect 

sizes. Results therefore focused on the effect size measure η² = SSeffect/SStotal. Omega 

squared (ω² = (SSeffect – MSerror)/(SStotal + MSerror)) was also calculated for each analysis, 

but ω²and η² were nearly identical, so only η² was reported here. Specifically, factors that 
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showed an effect size of η² ≥ .10 were interpreted, independent of other factors in the 

model. Values of η² ≥ .10 are considered to be at least “medium” effect sizes (Cohen, 

1988) and using η² to determine meaningful effects has been used in other simulation 

studies (Krull & MacKinnon, 1999). For specific effects that were hypothesized, the 

benchmark was also used to determine which effects were meaningful.  

Using an effect size benchmark of η² ≥ .10 was appropriate for this study, as the 

analyses were performed on cell-level means (discussed below.) Performing the same 

analyses on the replication versus cell level leads to differing effect sizes, as the cell-level 

data removes some of the variability in the replication-level data, inflating the effect 

sizes. For example, two ANOVA models for raw bias of the contextual effect were 

estimated in a subset of 112 conditions. Computed at the replication level, the effect of 

level-1 sample size was η² = .0004, but computed at the cell level, the effect of level-1 

sample size was η² = .258. Thus, a somewhat exclusive η² ≥ .10 threshold was chosen to 

account for the effect size inflation that occurred when analyzing cell-level means. 

 Ideally, ANOVAs would be conducted at the individual-replication level in order 

to account for within-cell variability. However, with a total of 7,500,000 replications, 

PROC GLM did not have enough memory to compute a factorial ANOVA. So, ANOVAs 

were conducted at the cell level. The initial cell-level ANOVAs included all possible 

interactions up to five-way interactions, but these models would not converge. The SAS 

User’s Guide suggested that specifying Type III sums of squares (SS) may create 

computational difficulties in a large model, and other SS types could be specified to 

decrease the computational load. However, using Type III SS was necessary when were 

are missing design cells (as was the case with this data where some simulation cells had 
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zero converged replications), so this solution was untenable. The User’s Guide also 

suggested using the ABSORB or REPEATED statements or instead performing the 

analysis with PROC ANOVA or PROC REG, which were also not appropriate for this 

study. The other suggestion was to eliminate terms, especially high-level interactions. 

Eliminating the five-way interaction terms allowed the models to converge. Still, the 

effects of the five-way interaction terms were still of interest. This was addressed by 

conducting replication-level ANOVAs on a subset of the simulation data, as described 

below. 

Convergence 

No convergence problems were encountered when estimating the unconditional 

models (i.e., means-only multilevel models for Y with no predictors). However for the 

conditional multilevel models, one-tenth (750) of the 7,500 simulation cells failed to 

converge for all replications in the cell. This occurred where ICCx = 0.6 and γ01 = -.59 or 

γ01 = .59. Many of the error messages for these replications indicated a non-positive 

definite covariance matrix. Because of the high rates of non-convergence for the ICCx = 

0.6 condition, this factor was removed from subsequent analyses, leaving 5,625 

simulation conditions available for further analysis 

Across the other conditions, 72 conditions had a least one replication that did not 

converge, totaling 81 non-converged replications. This only occurred in conditions where 

γ01 = -.59 or γ01 = .59 and level-1 sample size was equal to 5, 10, or 20 and ICCx = .2 or 

ICCx =.5. In most cases, only one replication per cell did not converge, but seven 

conditions had two replications that did not converge, and one condition had three 
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replications that did not converge. All replications were also checked for out-of-bounds 

estimates. All converged replications had non-negative variance estimates. 

Parameter Bias 

Relative bias was originally proposed as the primary measure of parameter 

accuracy. However, relative bias cannot be computed when the true value of the 

parameter is zero, excluding 5 of the 25 total contextual effect size conditions. Relative 

bias was evaluated for the applicable conditions and found that while relative bias was 

generally low for the slope variance (M = -0.014%, SD = 0.41%), the contextual effect 

(M < 0.001%, SD = 0.57%), and standardized contextual effect (M = 0.001%, SD = 

0.83%), in a few cases, relative bias was quite high for the standardized contextual effect 

estimate. For example, where the true value of the standardized contextual effect was 

small but non-zero (i.e., γ01std – γ10std = ± 0.049), the average relative bias was as high as 

112%. However, raw bias for the standardized contextual effect did not differ greatly 

between conditions with a small true standardized contextual effect and a large true 

standardized contextual effect. Thus, the large relative bias values were not due to the 

absolute difference between estimated and true values, but rather dividing the raw bias by 

a small true value (γ01std – γ10std = ± 0.049). Across slope variance, contextual effect, and 

standardized contextual effect, the pattern of raw and relative bias did not differ greatly, 

so only raw bias was reported here. 

In order to deal with the issue of zero and near-zero true values, standardized bias 

was estimated as well, by taking the mean of within-cell parameter estimates minus the 

true value of the parameter, and dividing that difference by the within-cell parameter 

estimate standard deviation. Standardized bias was reported as a percentage of the within-
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cell standard deviation (SD) of the parameter, 100 x (average estimate – true value of 

parameter)/within-cell SD of parameter estimate; standardized bias values above an 

absolute value of 40% are seen as problematic (Collins, Schafer, & Kam, 2001). 

However, standardized bias can be difficult to compare across sample size conditions, as 

the within-cell SD of a parameter estimate generally decreases with larger sample sizes. 

In the case where sample size is very large and the within-cell SD is very small, 

standardized bias may appear quite large compared to smaller sample size conditions, 

even if the raw bias is similar across sample size conditions. For that reason, raw bias was 

also examined in this study. 

Standardized bias for the slope variance ranged from -19.00% to 23.8% (M = -

6.33%, SD = 5.52%) across all cells included in the analysis. Level-1 sample size 

explained the largest amount of variance in slope variance standardized bias (ηt² = .355), 

followed by the interaction of level-1 and level-2 sample size (ηt x i² = .216), and level-2 

sample size (ηi² = .212). Slope variance standardized bias was generally reduced by 

increasing both level-1 and level-2 sample size, although the interaction of level-1 and 

level-2 sample size meant that in some cases, slope variance standardized bias increased 

slightly with larger sample size, as seen in Figure 1. However, this may have been an 

artifact of standardization. The variability of the slope variance estimate decreased with 

larger level-1 sample sizes, inflating the standardized bias of the slope variance for large 

level-1 sample size conditions.  

Standardized bias for the contextual effect ranged from -2.50% to 9.83% (M = 

3.15%, SD = 3.06%). Level-1 sample size explained the largest amount of variance in 

contextual effect standardized bias (ηt² = .687), followed by the interaction of level-1 and 
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level-2 sample size (ηi² = .249). Contextual effect standardized bias actually showed a 

general increase with larger level-1 sample size, although because of the interaction 

effect, that increase was not always monotonic. In many cases, contextual effect 

standardized bias was lowest for t = 5 or t = 10 and highest for t = 40, as seen in Figure 2.   

Standardized bias of the standardized contextual effect ranged from -27.17% to 

28.18% (M = 2.98%, SD = 5.19%). The interaction of level-1 sample size with level-2 

fixed effect explained the largest amount of variance in standardized bias of the 

standardized contextual effect (ηt x γ01² = .271), followed by level-1 sample size (ηt² = 

.213) and level-2 fixed effect (ηγ01² = .139), as well as the interaction of ICCx and level-2 

fixed effect size (ηICCx x γ01² = .108), as seen in Figure 3. In general, standardized bias 

increased with larger level-2 effect size, decreased with ICCx values, and increased with 

level-1 sample size, although the highest average standardized bias occurred with t = 40. 

The interaction occurred such that the difference in standardized bias among level-2 

effect size conditions increased with larger ICCx values. 

Average raw bias for the slope variance ranged from -0.010 to 0.019 (M = -0.002, 

SD = 0.002). Slope variance raw bias was affected by level-2 sample size (ηi² = .239), 

slope variance effect size (ητ211² = .136), and level-1 sample size (ηt² = .114). Level-2 

sample size also interacted with slope variance effect size (ηi x τ211² = .111) and level-1 

sample size (ηi x t² = .105), as seen in Figure 4. While raw bias decreased with larger 

level-2 sample size, the amount of decrease was smaller with larger level-1 sample size. 

Likewise, the effect of increasing level-2 sample size was generally stronger for slope 

variance effect size conditions τ2
11 = .15 than for τ2

11 = .05. 
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Average raw bias for the contextual effect ranged from -0.004 to 0.027 (M = 

0.004, SD = 0.005). Contextual effect raw bias was affected by level-1 sample size (ηt² = 

.404) level-2 sample size (ηi² = .132), and the interaction of level-1 and level-2 sample 

size (ηt x i² = .265), as seen in Figure 5. In general, raw bias decreased with larger level-2 

sample size and increased with larger level-1 sample size, although the largest average 

raw bias occurred with t = 40. The interaction among sample size conditions did not 

display a clear pattern of effects on raw bias. Therefore, interaction of level-1 and level-2 

sample size was investigated by plotting the raw bias against effective sample size (as 

shown in Figure 6) calculated by the following  

𝑁𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =  
𝑁𝑛

1+(𝑛−1)𝐼𝐶𝐶𝑦
               (15) 

where Nn represents the total sample size (in this case Nn = t*i), n represents the level-1 

sample size (in this case n = t), and ICCy is the ICC of the outcome variable, which was 

generated to be .20 in all conditions in this study (Snidjers & Bosker, 2012). While the 

general trend was decreasing raw bias with larger effective sample size, the trend was not 

monotonic. Relative bias showed a similar pattern. However, considering that average 

raw bias for the contextual effect only ranged from -0.004 to 0.027, some of the 

fluctuations in raw bias among sample sizes could have been due to sampling error. 

Average raw bias for the standardized contextual effect ranged from -0.11 to 0.12 

(M = 0.003, SD = 0.01). Standardized contextual effect raw bias was affected by the 

interaction of level-1 sample size and level-2 effect size (ηt x γ01² = .267), such that the 

effect of raw bias decreasing with larger level-1 sample sizes was generally stronger for 

larger level-2 effect sizes (γ01 = ± 0.59), than for level-2 effect sizes near zero, as seen in 

Figure 7. There was also a three-way interaction of level-1 sample size with level-2 effect 
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size and level-2 sample size (ηt x γ01 x i² = .298), such that the effect of increasing level-2 

sample size on decreasing raw bias was largest for smaller level-1 sample size (i = 5) and 

large level-2 effect sizes (γ01 = ± 0.59).  

In this study, contextual effects had positive average raw bias across all 

contextual effect sizes as seen in Table 1. Whereas positive raw bias was expected for 

contextual effects less than zero, negative raw bias was expected for contextual effects 

greater than zero (Lüdtke et al., 2008). However, Lüdtke et al. (2008) based their 

expectations on analytical, rather than simulation, work. 

Although ICCx corresponded to decreasing raw bias of the contextual effect (F = 

1.4 x 107, p < .001), this hypothesized effect was not supported as the effect was small 

(ηICCx² = .054). Contrary to expectation, level-1 sample size (t) actually increased the raw 

bias of the contextual effect (ηt² = .404), which went from an average of 0.001 at t = 5 to 

an average 0.006 at t = 200, as seen in Table 2.  

Difference between Unstandardized and Standardized Contextual Effect 

The raw difference between unstandardized and standardized contextual effect 

was also calculated as an outcome. The average difference ranged from -0.57 to 0.57 (M 

= 0.00, SD = 0.15). The largest factor affecting variability in the difference between 

unstandardized and standardized contextual effects was the interaction of level-2 effect 

size and ICCx (ηγ01 x ICCx ² = .832). For ICCx = .20, the difference between unstandardized 

and standardized contextual effects was near zero, and the difference was much greater 

for the ICCx values above and below .20; however, this effect decreased with smaller 

level-2 effect sizes until  γ01 = 0 conditions had near-zero differences for all ICCx 

conditions, as seen in Figure 8. The difference in standardized and unstandardized 
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contextual effects was negligible in conditions where ICCx = .20, because then ICCx = 

ICCy, and the standardized contextual effect was computed to take into account differing 

ICC values for X and Y (Hoffman, 2015).  

Parameter Variability 

Parameter variability was assessed by calculating the empirical standard deviation 

and root mean squared error (RMSE) for the slope variance estimate, contextual effect 

estimate, and standardized contextual effect estimate. Results for empirical standard 

deviation and RMSE were very similar for each outcome, in terms of proportion of 

variance explained by each effect. So only RMSE results were reported here. 

RMSE for the slope variance estimate ranged in magnitude from 0.01 to 0.12 (M = 0.03, 

SD = 0.02). While slope variance RMSE decreased with larger level-1 (ηt² = .392) and 

level-2 (ηi² = .302) sample sizes, it increased with larger slope variance effect sizes (ητ211² 

= .146), as seen in Figure 9. 

RMSE for the contextual effect ranged from 0.03 to 0.37 (M = 0.14, SD = 0.07). 

Contextual effect RMSE decreased with larger level-2 sample sizes (ηi² = .528) and 

larger ICCx values (ηICCx² = .333), as seen in Figure 10. 

RMSE for the standardized contextual effect ranged from 0.02 to 0.80 (M = 0.12, 

SD = 0.07). Standardized contextual effect RMSE decreased by both increasing level-1 

(ηt² = .583) and level-2 sample sizes (ηi² = .133), as seen in Figure 11. 

Standard Error Accuracy 

Standard error accuracy was assessed by calculating 95% coverage and power of 

the slope variance and non-zero contextual effect estimates. Coverage rates exceeding 

90% (Collins et al., 2001), and power rates exceeding 80% (Cohen, 1988) were 
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considered satisfactory. Type I error rates were also assessed for zero contextual effect 

estimates, and any Type I error rates that fell within the liberal interval criterion of [2.5%, 

7.5%] were considered acceptable (Bradley, 1978). Cell-level raw standard error bias was 

also calculated for the slope variance and contextual effect by subtracting the within-cell 

standard deviation of the parameter estimate from the average standard error of the 

parameter, across replications in a cell. 

Coverage 

Coverage for the slope variance estimate ranged from 83.6% to 99.1% (M = 

91.6%, SD = 2.97%). Both sample size conditions, as well as the interaction between 

them, accounted for at least 10% of the variance in slope variance 95% coverage. Slope 

variance coverage generally decreased with larger level-1 sample size (ηt² = .152) and 

increased with larger level-2 sample sizes (ηi² = .419), as seen in Figure 12. There was 

also an interaction among sample sizes (ηt x i² = .135) such that the differences in 

coverage among level-2 sample size conditions were greater for larger level-1 sample 

size conditions. Coverage for the contextual effect ranged from 89.8% to 95.8% (M = 

93.3%, SD = 1.1%). Contextual effect coverage increased as level-2 sample size 

increased (ηi² = .670), as seen in Figure 13. 

The hypothesized interaction between ICCx and level-2 sample size on contextual 

effect coverage was not supported for slope variance coverage rates as seen in Table 3. 

Although this effect was significant (F = 184.58, p < .001), it only explained .4% of the 

variance in slope variance coverage (ηi x ICCx² = .004).  

The hypothesized interaction between ICCx and level-2 sample size was not 

supported, as seen in Table 3 (ηi x ICCx² = .037). Coverage did increase with ICCx for i = 
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30 and 50, but decreased with ICCx for i =100 and 150. With i = 200, coverage decreased 

from ICCx = .10 to .20, but then increased from ICCx = .20 to .50. Furthermore, the 

interaction between ICCx and level-2 sample size only explained 3.7% of the variance in 

contextual effect coverage. 

Power and Type I Error 

Power to detect the slope variance ranged from 2.1% to 100% (M = 85.8%, SD = 

27.1%). Cell-level power to detect the slope variance increased monotonically by 

increasing either level-1 (ηt² = .405) or level-2 (ηi² = .139) sample size. There was an 

interaction of level-1 and level-2 sample size (ηt x i² = .103), such that the power 

difference among level-2 sample size conditions was much greater at smaller level-1 

sample size conditions, and this power difference decreased with larger level-1 sample 

size conditions, as seen in Figure 14. Power to detect the contextual effect ranged from 

10% to 100% (M = 77.1%, SD = 30.8%). Cell-level power to detect the contextual effect 

was influenced level-2 effect size (ηγ01² = .368), level-1 effect size (ηγ10² = .348), and the 

interaction between level-1 and level-2 effect sizes (ηγ01 x γ10 ² = .183). Cell-level power to 

detect the contextual effect was highest for the largest parameter values of γ01 – γ10, as 

seen in Figure 15.  

Level-2 sample size (i) was the only study factor that explained at least 10% of 

the variance in contextual effect Type I error rates (ηi² = .665), and Type I error decreased 

as level-2 sample size increased, as seen in Figure 16.  

As expected, power to detect both within- and between-person effects increased 

dramatically as the effect size at each respective level increased as seen in Table 4. For 

example, power to detect the between-person effect was at 40.20% for γ01 = .14, but there 
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was 95.53% power for γ01 = .59 (ηγ01² = .729). Likewise, power to detect the within-

person effect was at 77.86% for γ10 = .14 and 99.98% for γ10 = .59 (ηγ10² = .299). 

Although smaller slope variance effect sizes corresponded to greater power to 

detect the within-person effect (F = 166504, p < .001), as seen in Table 5, this 

hypothesized effect was not supported as the effect was small (ητ211² = .017). Likewise, 

the hypothesis of contextual effect power increasing with smaller slope variance was not 

supported. Even though this effect was significant (F = 93.65, p < .001), the effect 

explained less than .1% of the variance in contextual effect power (ητ211² < .001). 

As expected, level-2 sample size (i) had a larger impact than level-1 sample size 

(t) on increasing power to detect the within-person effect (ηi² = .226, ηt² = .072), between-

person effect (ηi² = .062, ηt² = .005), and contextual effect (ηi² = .084, ηt² = .009), as seen 

in Table 6. Also, level-1 sample size (t) had a greater impact than level-2 sample size (i) 

on increasing power to detect the slope variance (ηt² = .405, ηi² = .139). Type I error rates 

by level-1 and level-2 sample size for the fixed and random effects can be seen in Table 

7. 

Although larger ICCx values corresponded to increased power to detect the 

contextual effect (F = 45936, p < .001) and decreased contextual effect Type I error (F = 

445.28, p < .001), as seen in Table 8, these hypothesized effects were not supported as 

the effects were small (contextual effect power ηICCx² = .053, contextual effect Type I 

error ηICCx² = .019). 

The hypothesized interaction of level-2 sample size and ICCx was also not 

supported for contextual effect Type I error rates, also seen in Table 9 (F = 225.33, p < 

.001; ηi x ICCx² = .038). Type I error did decrease with larger ICCx for i = 30, 50, and 200, 
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but it increased with ICCx for i =100. With i = 150, Type I error increased from ICCx = 

.10 to .20, but then increased from ICCx = .20 to .50. Furthermore, the interaction 

between ICCx and level-2 sample size explained 3.8% of the variance in contextual effect 

Type I error rates. 

Raw Standard Error Bias 

Average raw bias for the slope variance SE ranged from -0.006 to 1.06 (M = 

0.002, SD = 0.033). None of the simulation factors or interactions accounted for more 

than 10% of the variability in slope variance SE raw bias. Average raw bias for the 

contextual effect SE ranged from -0.035 to 0.357 (M = -0.006, SD = 0.011). Larger level-

2 sample sizes corresponded to decreasing contextual effect SE raw bias (ηi ² = .222), as 

seen in Figure 17.  

Replication-Level Analyses 

In order to investigate the results more closely, a subset of the total simulation 

data were selected and the effects of the study conditions were assessed for outcomes that 

were calculated at the individual level. This included coverage, power, and Type I error 

for the slope variance and contextual effect. Logistic regression with effect coding for the 

simulation factors was used, except for the contextual effect, which was treated as 

continuous. All possible interactions were included in the analysis.  

To choose the subset of conditions for the logistic regressions, conditions were 

considered that corresponded to variability in power and coverage for the slope variance 

and contextual effect. Among level-2 sample size conditions, the two smallest conditions 

i = 30 and i = 50 typically had the most variability in outcomes. Among the level-1 

sample size conditions, t = 5 and t = 40 typically had the most variability in outcomes. 
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While increasing level-1 sample size generally improved outcomes, for some parameter 

recovery (for example, see Figure 2), t = 40 had worse outcomes. Thus, these four sample 

sizes were selected for further investigation. Also, there were 25 total effect size 

conditions in the full study: 5 conditions where γ01 – γ10 = 0, 10 conditions where γ01 – γ10 

> 0, and 10 conditions where γ01 – γ10 < 0, as seen in Table 10. Outcomes were similar for 

contextual effect sizes of the same absolute value; i.e., γ01 – γ10 = -.59 showed similar 

outcome patterns to γ01 – γ10 =.59. Therefore, 7 unique effect size conditions where γ01 – 

γ10 ≥ 0 were selected to further investigate. This included all γ01 = .59 conditions, as well 

as (γ01 = .14, γ10 = -.14) and (γ01 =.14, γ10 = 0).  

Analysis of the full simulated data set showed that slope variance effect size did 

not have a large effect on many of the outcomes, nevertheless small and large slope 

variance effect sizes τ2
11 = .05 and τ2

11 = .15 were selected to study further as this was a 

primary factor of interest in this study. Finally, two ICCx conditions ICCx = .10 and ICCx 

= .50 were chosen to investigate further. Table 9 shows the disparity between ICCx = .10 

and ICCx = .50 in terms of power to detect the slope variance and the contextual effect. 

Whereas power to detect the contextual effect is greatest for ICCx = .50, power to detect 

the slope variance is greatest for ICCx = .10. Thus the subset of conditions chosen for 

analysis at the replication level included 112 conditions (2 x 2 x 7 x 2 x 2) with 1000 

replications per condition. Only four replications in this subset did not converge. 

As with the ANOVAs described earlier, there was high power to find even small 

effects with such a large sample size, so only effects with an odds ratio greater than 4 or 

less than .25 (indicating a large effect) are described (Rosenthal, 1987). An OR = 4 can 

be converted into Cohen’s d = .765, or medium-large effect size (Chinn, 2000). 
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Replication-Level Coverage  

Table 11 shows replication-level 95% coverage rates for the slope variance and 

the contextual effect. Slope variance coverage was above 90% for most conditions except 

where t = 40 and i = 30. In this case, it ranged from 83.7% to 85.8%. Slope variance 

coverage also ranged from 87.9% to 89.2% for conditions where (t = 5, i = 30, ICCx = 

.20, τ2
11 = .15). There were several other i = 50 conditions where slope variance coverage 

was 89.8% to 89.9%. Slope variance coverage values were very similar, and in some 

cases identical, across some contextual effect sizes. This likely occurred because the 

absolute value of the between-person effect was equal for some contextual effect sizes, 

and the analysis on the full data set indicated that the between-person fixed effect had 

almost no effect on slope variance coverage (ηγ01
2 = .00005).  

No simulation factors or interactions had OR > 4 or OR < .25 for slope variance 

or contextual effect coverage. Replication-level slope variance coverage was higher in 

τ2
11 = .05 conditions than τ2

11  = .15, but only in conditions where the level-1 sample size 

was t = 5. For t = 40 conditions, there was negligible difference in coverage among slope 

variance effect sizes. Replication-level contextual effect coverage was above 90% for all 

conditions. Contextual effect coverage values were very similar, and in some cases 

identical, across some contextual effect sizes. This likely occurred because the absolute 

value of the between-person effect was equal for some contextual effect sizes, and the 

analysis on the full data set indicated that the between-person fixed effect had a very 

small effect on contextual effect coverage (ηγ01
2 = .007). So in this smaller data set, there 

was not enough variability in between-person effect sizes to show any relationship 

between contextual effect size and contextual effect coverage. 
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Replication-Level Power 

Table 12 shows replication-level power rates for the slope variance and contextual 

effect. Power to detect the replication-level slope variance was above 80% for all t = 40 

conditions except where (i = 30, ICCx = .50, τ2
11 = .05), where power ranged from 60.1% 

to 75.5%. For t = 5 conditions, power was only above 80% in two cases: when (i = 50, 

ICCx = .10, τ2
11 = .15, γ01 – γ10 = 0) or (i = 50, ICCx = .10, τ2

11 = .15, γ01 – γ10 = 1.18). In 

the rest of the t = 5 conditions, power to detect the slope variance ranged from 2.3% to 

70.9%. In every case, power to detect the slope variance was much higher for γ01 – γ10 = 0 

or γ01 – γ10 = 1.18 than for the other contextual effect sizes. 

Increasing level-1 sample size (ORt = 0.005) and increasing slope variance 

(ORτ211 = 0.026) increased the power to detect slope variance. However, increasing the 

ICC of the predictor variable actually decreased power to detect the slope variance 

(ORICCx = 4.464). There was also an interaction between level-1 sample size and slope 

variance effect size (ORt x τ211 = 8.834) such that the difference in power between slope 

variance effect sizes was much more pronounced for t = 5 conditions than for t = 40 

conditions. As was the case with coverage, slope variance power was identical for some 

contextual effect size conditions, likely because the analysis of the full data set showed 

the between-person fixed effect had almost no effect on slope variance power (ηγ01
2 = 

.00007). 

The only factor that consistently had more than 80% power to detect the 

contextual effect in all cases was γ01 - γ10 = 1.18. Across the other contextual effect sizes, 

power to detect the contextual effect ranged from 10.8% to 100%. Power to detect the 

contextual effect increased with larger contextual effect sizes (OR γ01 – γ10 = 20819.32). 
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This effect was moderated by level-1 sample size (OR t x γ01 – γ10 = 0.236) such that the 

influence of increasing contextual effect size was more pronounced for t = 5 conditions 

than for t = 40 conditions. The effect of contextual effect size was also moderated by the 

ICC of the predictor variable (OR ICCx  x γ01 – γ10 = 0.023) such that with ICCx = .10, power 

grew more slowly with increasing contextual effects compared to ICCx = .50, for which 

power increased more rapidly for increasing contextual effects. 

Replication-Level Type I Error 

Table 13 shows replication-level Type I error rates for the contextual effect. No 

simulation factors or interactions had OR > 4 or OR < .25 for contextual effect Type I 

error. For ICCx = .10, Type I error exceeded the liberal 7.5% criterion (Bradley, 1978) in 

all but one case—where (t = 5, i = 50, τ2
11 = .05), Type I error was 7.3%. For ICCx = .50, 

Type I error was below the 7.5% criterion in all but one case—where (t = 40, i = 50, τ2
11 

= .05), Type I error was 7.7%.  

Standardized Contextual Effect 

 Tables 14, 15, and 16 display the within-cell standard deviation of the 

standardized within-person effect, standardized between-person effect, and standardized 

contextual effect, respectively. Although these standardized effects take into account the 

ICC of both predictor and outcome variables, they do not have standard deviations of 

one. Still, these effects are useful to calculate, especially when the ICC of predictor and 

outcome variables differs greatly. Perhaps it is more helpful to view the standardized 

contextual effect as a descriptive effect size, rather than a truly standardized coefficient. 
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Autoregression 

Although the simulation studies just described generated the data under the 

assumption of independence among the within-person residuals, it is likely that a 

longitudinal study would include some dependencies among the residuals. For example, 

the amount of stress experienced on day 1 of a daily diary study is likely to affect the 

amount of stress experienced the following days, although the longer time passes, the 

weaker this relation becomes.  

First, the relation of autocorrelation to ICC in the simulated data was considered 

by estimating lag-1 autoregression of both X and Y in a subset of conditions, although 

autocorrelation was not specified in the data generation. Autoregression was estimated 

for the set of conditions where level-1 sample size t = 5 and t = 10, level-2 sample size i = 

30 and i = 50, between-person effect γ01 = 0, within-person effect γ10  = 0, ICCx = .10, 

.20, .50, .60, and slope variance τ11
2 = .05, .10, .15. For each replication, PROC MIXED 

TYPE = AR(1) with Y as the outcome variable was used in a model with no predictors to 

estimate the lag-1 autocorrelation of Y. Uncentered X was treated likewise to determine 

the lag-1 autocorrelation of X. 

In general, the lag-1 autocorrelation for both X and Y was slightly less than the 

respective ICCs that had been generated (ICCx = .10, .20, .50, ICCy = .20). Table 17 

shows the means and standard deviations of lag-1 autocorrelations across ICCx 

conditions. Note that while the ICC of X was varied as a simulation condition, the ICC of 

Y was generated to be .20 in all simulation conditions. 

In order to investigate how well the contextual multilevel model performed under 

the assumption of autocorrelation, data from a multilevel contextual model was generated 
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with 75 persons and 5 observations per person, a level-2 fixed effect of γ01 = .45, a level-

1 fixed effect of γ10 = .14, and a slope variance of τ11
2 = .15. The autocorrelation of the 

outcome variable was generated at ρ = .7, which meant that the correlation among 

residuals for time 1 and time 2 was ρ = .7, the correlation among residuals for time 1 and 

time 3 was ρ2 = (.7)2 = .49, …, and the correlation among residuals for time 1 and time 5 

was ρ4 = (.7)4 = .240. Similar autoregression parameters have been used in other 

simulations of daily diary data structures (Seidman, Shrout, & Bolger, 2006).  

To facilitate specification of the autoregression, the data were generated in a 

latent growth curve, rather than multilevel, framework. The data for the other simulation 

studies in this paper were generated as univariate, with each observation representing 

person i’s score on X and Y at time t. However, the autoregression data had to be 

generated as multivariate with one observation per person and variables Y1… Yt, X1… Xt 

representing person i’s scores for X and Y at each time point. Following Hoffman (2015) 

and Curran, Lee, Howard, Lane, and MacCallum (2012), individual Y variables were 

regressed on the individual X variables to estimate a random within-person effect. A 

latent intercept factor was estimated for the Y variables and for the X variables. In many 

applications, a slope factor for the outcome and/or predictor would be included as well, 

but the current study was focused on variables that fluctuate, rather than change steadily, 

over time. So, the data generating model was limited to latent intercepts for predictor and 

outcome. Regressing the latent Y intercept on the latent X intercept yielded the 

contextual effect, or the effect of average X on average Y above and beyond the within-

person effect. Thus, the level-2 fixed effect in the data-generating model (γ01 = .45) 

represented the contextual effect, and the sum of the fixed effects (γ01 + γ10 = .14 + .45 = 



 
 

59 

.59) represented the between-person effect (Curran et al., 2012). For this single condition, 

1000 replications were generated and a correctly specified model was fit to the data. 

A second model was fit to the data where the autoregressive structure was not 

accounted for and the residuals of the Y variables were uncorrelated. To further compare 

the effect of autocorrelation on parameter recovery for the contextual multilevel model, 

the generated data were transformed to “long” univariate format and the contextual 

multilevel model was fit (as seen in Equation 5). Results of the three models can be seen 

in Table 18. 

Across all models, standardized bias of the contextual effect and slope variance 

was below the 40% threshold, except for the contextual effect estimated in the contextual 

multilevel model, where it exceeded -110%. Variability of the contextual effect, assessed 

by the Mean Square Error (MSE) was lowest for the contextual multilevel model and 

highest for the latent growth model with uncorrelated residuals. MSE for the slope 

variance was lowest for the two growth models and highest for the contextual multilevel 

model. Coverage for the contextual effect was above 90% for all models except the 

contextual multilevel model, where it was 78.5%. Overall, power to detect the contextual 

effect was very low with across the four models, ranging from 14% to 32%. Coverage for 

the slope variance was above 89.3% for all models, and power to detect the slope 

variance was above 80% for all models. 

Empirical Illustration 

The example data were taken from Wave 2 of the National Survey of Midlife in 

the United States (MIDUS II): Daily Stress Project, 2004-2009 (Ryff & Almeida, 2004-

2009). The main study sample was composed of (N = 1079) participants, 56.35% (N = 
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608) of which were women. The mean age was 57.6 years (SD = 12.50). Participants in 

the study answered questions via telephone interview each night over the course of eight 

days. Questions targeted the experience of day-to-day life stressors, as well as physical 

and emotional well-being. The effect of severity of physical symptoms on stressor 

negative affect was considered 

To assess severity of physical symptoms, for every symptom experienced, 

participants rated the daily severity (1-10; 1 = Very Mild; 10 = Very Severe) of the 

physical symptoms. Severity of physical symptoms was calculated as an average of the 

individual severity items. Higher scores reflected higher severity. Severity of physical 

symptoms had M = 2.62, SD = 1.89. Figure 18 shows how severity of physical symptoms 

fluctuated over the course of the study for a subset (N = 242) of participants. Black lines 

represent an ordinary least squares (OLS) regression line for individuals’ physical 

symptom severity, and the thick red line is an overall spline curve. The flatness of the 

overall curve and the fluctuation of the individual scores over time (also assessed using a 

spline function, not shown) indicated that using a person-mean centered contextual 

multilevel model was appropriate. 

To assess stressor negative affect, the respondents indicated how much of the time 

they experienced each emotion over the past 24 hours: How angry were you feeling? 

How nervous or anxious were you feeling? How sad were you feeling? How shameful 

were you feeling? Each item was rated on a 0-3 scale (0 = Not at all; 3 = Very); and then 

the average across items was computed. Stressor negative affect had M = .81, SD = .57. 

Figure 19 shows how stressor negative affect fluctuated over the course of the study for a 

subset of participants. Black lines represent a smoothed spline curve for individuals’ 
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stressor negative affect, and the thick red line is an overall spline curve. The flatness of 

the overall curve and the fluctuation of the individual scores over time (also assessed 

using a spline function, not shown) indicated that using a person-mean centered 

contextual multilevel model was appropriate. 

First, severity of physical symptoms was person-mean centered to reflect daily 

deviations in one’s mean amount of physical symptom severity. As in Equation 5, 

person-mean centered physical symptom severity and mean physical symptom severity 

were used to predict the amount of stressor negative affect, allowing for variability in the 

slope parameter. Figure 20 shows the linear relation between physical symptom severity 

and stressor negative affect for a subset of the data, where each black line indicates one 

participant. The thick red line indicates a small positive relation between physical 

symptom severity and stressor negative affect, although some of the individual-level 

slopes had a strong positive or strong negative relation. Including a random slope in the 

model should account for this variability in the relation of physical symptom severity and 

stressor negative affect. Note that the model did not account for any weekly cycling in the 

predictor or outcome variables, as the data collection occurred over the course of eight 

days, making any weekly cycle difficult to detect. A similar study with a longer data 

collection period should consider a modeling strategy that accounts for weekly trends in 

the data (Liu & West, 2015). Likewise, a similar study with data collected monthly or 

yearly should account for systematic growth that might be seen in the variables (Wang & 

Maxwell, 2015; Curran & Bauer, 2011).  

In order to aid in convergence, observations with missing values for severity of 

physical symptoms were excluded from the analysis, leaving N = 1024 participants in the 
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final analysis. Analysis in Mplus showed that there was a significant average within-

person effect of physical symptom severity on stressor negative affect (γ10 = 0.025, p = 

.019), indicating that on average, for every person’s 1-unit increase in daily physical 

symptom severity, daily stressor negative affect increased on average by 0.025. There 

was also a significant between-person effect of physical outcome severity on stressor 

negative affect (γ01 = 0.072, p < .001), indicating that if an person increased their average 

stressor severity by 1 unit, their stressor negative affect would increase, on average, by 

0.072. There was also a significant contextual effect (γ01 - γ10 = 0.047, p = .004), 

indicating that the between-person effect was significantly larger than the average within-

person effect. The slope variance was significant (τ2
11 = 0.007, p = 0.034), indicating that 

people significantly differed in how their daily physical symptom severity related to their 

daily stressor negative affect. The standardized contextual effect was γ01std - γ10std = 0.297, 

indicating that the difference of between-person effect and within-person effect was not 

simply due to the discrepant ICCs of predictor and outcome variables. 
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CHAPTER 4 

DISCUSSION 

Daily diary studies can be used in social science research to assess within-person 

relations. However, data from daily diary studies also contain information about between-

person relations. It is important that within-person and between-person relations are both 

estimated, as otherwise, the two effects are conflated. Contextual multilevel models can 

simultaneously estimate both between-person and within-person effects. The purpose of 

this study was to examine the performance of contextual multilevel models with random 

slopes for daily diary-type data. Sample size, effect size, and ICC were varied in a Monte 

Carlo simulation to investigate how these factors influenced parameter recovery.  

Summary and Discussion of Results 

Across all simulated data, coverage, power, and Type I error were assessed for the 

slope variance and contextual effect estimates. Parameter bias and variability were also 

assessed for the full set of simulation conditions. For the full simulation conditions, 

parameter estimates were generally unbiased, and in most cases, increasing level-1 or 

level-2 sample size had the largest effects on decreasing parameter bias.  

Although larger ICCx values corresponded to decreasing raw bias of the 

contextual effect as predicted (Lüdtke et al., 2008), this effect fell below the η² ≥ .10 

threshold set for this study (ηICCx² = .054). This discrepancy may have been because 

Lüdtke et al. (2008) considered far fewer total conditions in their simulation study. 

Lüdtke et al. (2008) also showed analytically how contextual effect raw bias would be 

negative when the contextual effect was above zero (γ01 > γ10) and positive when the 

contextual effect was below zero (γ01 < γ10), although bias would decrease towards zero 
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with larger level-1 sample size and larger ICCx. However, the contextual effect in the 

current study was consistently overestimated for all fixed effect size conditions. This was 

likely because of the larger ICCx conditions and larger level-1 sample size conditions 

considered in this study versus the analytical work of Lüdtke et al. (2008). Lüdtke et al. 

(2008) showed that asymptotically, as the level-1 sample size increased and as ICCx 

increased, expected contextual effect bias decreased towards zero.  

Raw bias of the contextual effect actually increased with larger level-1 sample 

sizes, contrary to another hypothesis that larger level-1 sample sizes would decrease 

contextual effect raw bias, although the increase was minimal and likely due to sampling 

error, as raw bias in general was near zero. Increasing level-1 or level-2 sample size had 

the largest effects on decreasing parameter variability. Slope variance RMSE also 

increased with larger slope variance effect size and contextual effect RMSE decreased 

with larger ICCx. 

Coverage for the contextual effect and slope variance was generally between 90% 

and 95% for most conditions—the exception being i = 30 conditions, where slope 

variance coverage averaged 88%. Ideally, coverage should be close to 95% to ensure that 

parameter estimates are accurate. However, based on a more liberal criterion of 90%, 

most of the conditions showed acceptable coverage for both contextual effect and slope 

variance estimates.  

Average power was 89.6% for the within-person effect, 64.7% for the between-

person effect, 77.1% for the contextual effect, and 84.8% for the slope variance across all 

the data conditions included in this study. However, power to detect random and fixed 

effects estimates varied widely across sample size and effect size conditions. Among the 
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25 total sample size conditions, there were no conditions where the average power to 

detect the between-person effect was above 80%, 20 conditions where the within-person 

effect power was at least 80%, 13 conditions where the contextual effect power was at 

least 80%, and 18 conditions where the slope variance power was at least 80%. This 

indicates that while the within-person effect and the slope variance were generally 

detectable, the contextual effect and between-person effect remains difficult to detect. 

Although some have claimed that it is often difficult to detect a non-zero slope variance 

(Snijders & Bosker, 2002; Hertzog et al., 2006), the current study found that there was 

adequate power to detect slope variance even with a small number of individuals, 

provided that there were enough repeated measurements (Rast & Hofer, 2014). This 

finding corresponded to the suggestion of Snijders and Bosker (2012) that at least 30 

units at either level were needed to precisely estimate variance parameters. Future 

research should consider the accuracy of slope variance hypothesis tests for contextual 

multilevel models, and whether a bootstrap test might be appropriate based on the skewed 

distribution of slope variance parameters. 

Average Type I error was 5.7% for the within-person effect, 6.8% for the 

between-person effect, and 6.7% for the contextual effect. Ideally, Type I error should be 

close to 5%, although based on a liberal criterion of 2.5%-7.5%, most conditions with at 

least i = 50 level-2 units showed acceptable Type I error rates for the contextual effect. 

However, the high rates of Type I error for i = 30 conditions indicate that estimating a 

contextual multilevel model with this sample size may lead to incorrect conclusions about 

the presence of a contextual effect.  
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When examined at the cell level, increasing level-1 or level-2 sample size had the 

largest effects on increasing coverage accuracy and power and decreasing Type I error, 

except for power to detect the contextual effect estimate. As predicted, level-2 sample 

size was more influential than level-1 sample size in increasing power to detect the 

within-person effect, between-person effect, and contextual effect (Bolger & Laurenceau, 

2013; Raudenbush & Liu, 2000), but level-1 sample size was more influential in 

increasing power to detect the slope variance (Raudenbush & Liu, 2000; La Huis & 

Ferguson, 2009). Power to detect the contextual effect estimate was strongly influenced 

by increasing within-person and between-person effect sizes. 

Power to detect a fixed effect is affected by the variability of the estimator. When 

the within-person effect estimate varies among people, as is the case when there is non-

zero slope variance, then the effect becomes more difficult to detect. Although larger 

slope variance estimates corresponded to lower power to detect the within-person effect, 

consistent with previous findings (Bolger & Laurenceau, 2013), this effect (ητ211² = .017) 

was below the threshold set for this study. As the contextual effect is calculated as the 

difference of between-person and within-person effects, the standard error (and thus the 

power) of the contextual effect is affected by the standard error of the within-person 

effect. So, the power to detect the contextual effect should also be affected by slope 

variance. However, the hypothesized effect of the amount of slope variance on power to 

detect the contextual effect power was not supported in this study. Although the effect of 

slope variance on both the within-person effect and contextual effect power was not 

found in this study, this may have been due to the limited range of slope variance effect 
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sizes chosen (τ2
11 = .05, .10, .15). Larger effects may have been found by increasing the 

range of slope variance effect sizes. 

The hypothesized effect of ICCx on contextual effect power was also not 

supported. Larger ICCx values corresponded to increased contextual effect power as 

expected, but the effect was small (ηICCx² = .053). The predicted interaction of level-2 

sample size and ICCx also did not have effects on slope variance coverage (ηi x ICCx² = 

.004), contextual effect coverage (ηi x ICCx² = .037), or Type I error (ηi x ICCx² = .038). This 

hypothesis had been developed based on findings from a pilot study. However, the data 

generation was specified slightly differently in the pilot study, where ICCx was generated 

not as the unconditional ICC, but the model-conditional ICC of X. Furthermore, 

simulation conditions in the pilot study differed slightly from those chosen for the current 

study. In particular, the pilot study included conditions where ICCx = .6, which were 

ultimately excluded from the current study, as those conditions where ICCx = .6 and γ01 = 

.59 or -.59 failed to converge. Thus, any results in the pilot study that were due to the 

ICCx = .6 condition may not have been present in the larger study where these conditions 

were excluded. 

This failure to converge have been because it was impossible to generate 

multilevel data with a positive definite matrix that also fulfilled all of these conditions 

simultaneously. The data that were generated for these cases should be analyzed further 

to determine why the multilevel models were unable to converge using this data, and the 

limits of data generation procedures in Mplus should be explored as well. 

When examined at the replication level for a subset of the simulation data, the 

effect size factors (slope variance effect size and contextual effect size) often interacted 
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with sample size on standard error accuracy outcomes. For example, larger slope variance 

effect sizes corresponded to higher power to detect the slope variance estimate, but this 

effect became less pronounced with increasing level-1 sample size. Increasing ICCx also 

had effects on increasing coverage of the contextual effect, decreasing power to detect the 

slope variance, and decreasing contextual effect Type I error. 

I also investigated the effect of autocorrelation on estimation of the contextual 

effect in a multilevel modeling framework. Many daily diary data sets include serially 

dependent variables, and it was of interest to see how much autocorrelation would affect 

estimation of the contextual effect. For the data generated to have autocorrelated 

residuals (ρ = .70), most parameter recovery was generally acceptable across three 

models fit to the data: two models were contextual latent growth models (one that 

accounted for autocorrelation, one that did not), and the third model was the contextual 

multilevel model. However, power to detect the contextual effect remained under 32% 

for all models. Also, the contextual multilevel model had the poorest outcomes, with over 

110% standardized bias of the contextual effect and 78.5% coverage of the contextual 

effect. Note that the latent growth models may have performed better with this simulated 

data, as it was generated within a latent growth, rather than multilevel, framework. 

The contextual multilevel model was applied to a daily diary data set from 1,079 

persons measured each day over 8 days. The effect of average severity of physical 

symptoms on average stressor negative affect, which was evaluated for person mean 

centered data with the means included in the model. Both between-person and within-

person effects, as well as the contextual effect were significant. This indicated that the 

between-person relation of stressor negative affect and severity of physical symptoms 
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was significantly larger than the within-person relation of stressor negative affect and 

severity of physical symptoms. The slope variance estimate was not significant, 

indicating that there were not significant differences in the within-person relation of 

negative affect and severity of physical symptoms. 

Recommendations 

 The results of this study provide several recommendations to applied researchers. 

Note that these recommendations are offered based on the conditions included in this 

study. It is always good practice for a researcher planning a study to conduct a power 

analysis to determine the sample size needed to detect any effects. Such power analyses 

can easily be performed in the Mplus Monte Carlo utility. Bolger, Stadler, and 

Laurenceau (2012) demonstrated how a Monte Carlo simulation could be used to perform 

a power analysis for a multilevel model with diary data.   

1) If detecting a contextual effect is of interest, then studies should include at least i 

= 100 participants with at least t = 20 time points, or i = 150 participants with at 

least t = 5 time points in order to have at least 80% power to detect the contextual 

effect. Note that contextual effect power may be low with contextual effect sizes 

less than 0.45 (assuming the variables have a standard normal distribution).  

2) For detecting slope variance, studies should include at least i = 150 participants 

with at least t = 5 time points, or i = 50 participants with at least t = 10 time 

points, or i = 30 participants with at least t = 20 time points.  

3) Researchers who fit a person-mean centered multilevel model may find a non-

significant between-person effect, but it is still important to estimate the 

contextual effect, which may be significant. All 25 sample size conditions in this 
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study had average power of less than 80% to detect the level-2 fixed effect, but 

there was at least 80% power to detect the contextual effect in over half of the 

sample size conditions. This indicated that there were several conditions where 

there was not adequate power to detect the level-2 fixed effect, but there was 

adequate power to detect the contextual effect. 

4) The contextual multilevel model will likely provide biased estimates of the 

contextual effect if there is unaccounted autocorrelation. If the data contain 

autocorrelation, a better alternative would be either estimating the model in a 

latent growth framework that accounts for the autocorrelation, or using the 

method of Curran and Bauer (2011) where the autoregression is modeled, and 

then a contextual multilevel model is fit to the residuals.  

5) It is useful to estimate the standardized contextual effect and compare it to the 

unstandardized contextual effect, especially if the ICC of predictor and outcome 

variables differ and the level-2 effect is non-zero. In this study, the difference 

between standardized and unstandardized contextual effects approached 0.4 in 

conditions with a large (positive or negative) level-2 effect size and ICCx = 0.5. 

Although the standardized contextual effect is not a truly standardized parameter 

(i.e., it does not have a standard deviation of one), it can still be useful as an effect 

size that describes the difference among between- and within-person effects, 

accounting for differential ICCs of the predictor and outcome variables. 

Limitations and Future Directions 

The results of this simulation study produce many questions for future research. 

In particular, this study only examined three values for the ICC of the predictor variable: 
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ICCx = .10, .20, and .50. Conditions with ICCx = .60 were also generated, but there was a 

100% rate of non-convergence in these conditions where the between-person effect was 

large (γ01 = -.59 or .59). This may indicate that such data combinations are problematic 

for estimating contextual multilevel models, although further research would be needed 

to determine exactly why these conditions failed to converge. Still, it is of interest to see 

how contextual multilevel models behave when the ICC of the predictor variable exceeds 

.50, that is, when the predictor variable contains more variability at level-2 than at level-

1. Preliminary analyses that included the ICCx = .60 simulation conditions indicated that 

ICCx = .50 may have been a hinge point. For example, Type I error decreased with larger 

ICCx values until ICCx = .50, after which Type I error increased again. However, this 

finding is likely confounded with the high rate of missingness among ICCx = .60 cells in 

this simulation. Further research including ICCx values above and below .50 is needed to 

determine if this relationship holds.  

 Related to this, the present study did not vary the ICC of the outcome variable—it 

was set to be ICCy = .2 across all conditions. Future studies should simultaneously vary 

the ICC of the predictor and outcome variables. In daily diary studies, both predictor and 

outcome variables are likely to have high ICC values (Bolger & Laurenceau, 2013). 

There may be high rates of non-convergence with data sets where both predictor and 

outcome variables have more variability at level-2 than at level-1.  

 This study included a random slope component that allowed for variation in the 

within-person relation of X and Y. In some cases, researchers may be interested in simply 

discovering and quantifying this variability, especially if they have no hypotheses about 

the sources of such variability. However in many cases, researchers are interested in 
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uncovering the determinants of such variability, or even testing hypotheses about what 

might predict slope variability (Raudenbush & Liu, 2000; Bolger et al., 2003). Thus, 

future simulations studies should examine models where some variable, such as the 

between-person effect, predicts slope variability.  

 Another aspect of the current study that should be examined in future research is 

the intercept-slope covariance. In the present study, this parameter was generated to be 

zero in the population and constrained to zero when the models were fitted, in order to 

aid in convergence. However, it is likely that a non-zero intercept slope covariance may 

exist and have a substantively meaningful interpretation.  

 Although this study touched briefly on the effect of autocorrelation in estimating 

contextual multilevel models, it is important to also examine other trends and cycles that 

may occur in longitudinal data, such as daily or weekly cycling (Curran & Bauer, 2011; 

Liu & West, 2015). Ignoring trends and cycling in longitudinal data may lead to falsely 

detecting a significant X-Y relation (Liu & West, 2015). Future research should extend 

the present study, as well as the work of Liu and West (2015) to examine the effect of 

ignoring trends and cycling in daily diary data where there is a contextual effect and 

random slope variance. 

 Although a random slope estimate can capture some intraindividual variation in 

the X-Y relation over time, the model considered in this study assumed that every 

individual in the study had the same linear functional form of X-Y relation. Such an 

assumption may not be realistic. For example, while some people may have a linear 

relation between their daily stress and sugar consumption, others may have a quadratic or 
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an exponential relation. Future statistical models that allow these intraindividual 

differences should be developed and tested. 

 Other potential research topics include evaluating the contextual multilevel 

models when there is missing data (often a problem with longitudinal studies), as well as 

imbalanced measurement designs and lagged relations, where the effect of X on Y may 

occur after some time lag.  

Although this study was mainly concerned with using a multilevel manifest 

(MMC) approach to modeling the contextual effect, as seen in Equation 5, the multilevel 

latent covariate (MLC) model also has advantages as well. Whereas the MMC approach 

uses observed group means as a level-2 predictor, the MLC approach assumes there is 

some unreliability in the observed group means, and a latent group mean is instead used 

as a level-2 predictor. 

Lüdtke et al. (2008) found that the MLC model had less biased estimates of the 

contextual effect than the MMC model examined in the present study. However, the 

MLC model produced contextual effect estimates with more variability than the MMC 

model. While the present study in many ways replicated and expanded this earlier 

simulation work, a key difference is that Lüdtke et al. (2008) generated data based on an 

MLC model, and the present study generated data based on an MMC model. Thus, it was 

of interest to see how well the MLC model performs under conditions examined here 

where the true population parameters are based on an MMC model. 

In order to examine the relative performance of the two modeling strategies, a 

small subset of the total simulation conditions were selected and an MLC model was 

fitted to the generated data. The effect of ICCx and contextual effect size on parameter 
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outcomes for both MMC and MLC models on a total of six conditions. In general, the 

outcomes for the MLC model were worse than the corresponding MMC conditions—

coverage and power for the contextual effect were lower with the MLC than the MMC 

model, and Type I error for the contextual effect was much higher with the MLC model. 

(Only power to detect the slope variance was comparable across models.) However, this 

discrepancy in accuracy of contextual effect estimates could be due to some property of 

the data generating mechanism in Mplus. Future work is needed to clearly explain the 

differences in the data generating mechanisms and why the MLC model might perform 

poorly when data is generated using the MMC model. 

Conclusions 

 Many researchers need longitudinal data in order to test and develop 

psychological theories. Longitudinal data include information about both within-person 

relations and between-person relations, although models that separate these two relations 

have not been properly utilized in psychological research (Curran & Bauer, 2011). Any 

statistical model that fails to decompose effects into between-person and within-person 

components risks an ecological fallacy where the two effects are incorrectly assumed to 

be equal. As shown in the empirical example, a within-person effect between two 

variables (stressor negative affect and severity of physical symptoms) may be 

significantly different than the corresponding between-person effect among the same two 

variables.  

The current study discussed how and why between-person and within-person 

relations often differ. A simulation study was used to assess how well contextual 

multilevel models could account for these differences, especially when the within-person 
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relation differs among people. While estimates of the contextual effect and slope variance 

were, overall, unbiased, there was often inadequate power to detect these effects with 

sample sizes in typical daily diary studies. Still, the current study demonstrated how 

contextual multilevel models could be applied to longitudinal data and used to compare 

between- and within-person relations. 
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Table 1 

Raw Bias of the Contextual Effect Estimate by Fixed Effect Sizes 

Between-

persons 

effect  size 

γ01 

Within-persons effect size γ10 

γ10 = -.59  γ10 = -.14  γ10 = 0  γ10 = .14  γ10 = .59 

          

γ01 = -.59 0.003  0.004  0.004  0.004  0.003 

γ01 = -.14 0.004  0.004  0.004  0.004  0.004 

γ01 = 0 0.004  0.004  0.004  0.004  0.004 

γ01 = .14 0.004  0.004  0.004  0.004  0.004 

γ01 = .59 0.003  0.004  0.004  0.004  0.003 
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Table 2   

Raw Bias of the Contextual Effect 

Estimate by Level-1 Sample Size 

No. (t) of level-1 

units within each 

level-2 unit 

Contextual 

effect raw bias 

t = 5  0.001 

   

t = 10  0.001 

   

t = 20  0.003 

   

t = 40  0.009 

   

t = 80   0.006 
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Table 3 

Coverage of Slope Variance and Contextual Effect  

Estimates by ICCx and Level-2 Sample Size 

No. (i) of 

level-2 

units 

ICCx 

ICCx = .10  ICCx = .20  ICCx = .50 

 Slope variance coverage 

i = 30 87.70%  87.82%  88.96% 

      

i = 50 90.36%  90.55%  91.38% 

      

i = 100 92.43%  92.44%  92.85% 

      

i = 150 93.25%  93.24%  93.32% 

      

i = 200 92.99%  92.97%  93.30% 

 Contextual effect coverage 

i = 30 91.12%  91.49%  92.35% 

      

i = 50 92.81%  92.89%  93.35% 

      

i = 100 94.05%  93.99%  93.90% 

      

i = 150 94.02%  93.93%  93.89% 

      

i = 200 93.99%  93.92%  94.14% 
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Table 4   

Power [and Type I Error] Rates for 

Between- and Within-Person Effects by 

Fixed Effect Size 

Fixed effect 

size 
 

Power [and 

Type I error] 

Between-person effect 

γ01 = -.59  95.21% 

γ01 = -.14  32.35% 

γ01 = 0  [6.83%] 

γ01 = .14  33.80% 

γ01 = .59  95.53% 

Within-person effect 

γ10 = -.59  99.99% 

γ10 = -.14  79.54% 

γ10 = 0  [5.66%] 

γ10 = .14  79.05% 

γ10 = .59   99.99% 

Note. Power values are given in regular 

face; Type I error rates are given in bold in 

brackets. 
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Table 5        

Power and Type I Error Rates for Within-Person and Contextual Effects by Slope 

Variance Effect Size 

  
    

Within-persons effect 

estimate 
  Contextual effect estimate 

Slope variance 

effect size τ2
11 

  Power Type I error   Power Type I error 

τ2
11 = .05  92.73% 5.83%  77.51% 6.67% 

        

τ2
11 = .10  89.55% 5.62%  77.11% 6.67% 

        

τ2
11 = .15   86.66% 5.51%   76.72% 6.68% 
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t = 5 t = 10 t = 20 t = 40 t = 80

i = 30 46.58% 50.11% 52.48% 53.89% 53.81%

i = 50 52.95% 56.19% 58.46% 59.82% 60.03%

i = 100 61.60% 64.90% 66.81% 67.85% 68.05%

i = 150 66.89% 70.04% 71.96% 73.36% 73.53%

i = 200 70.57% 74.07% 76.31% 77.46% 77.80%

i = 30 63.84% 70.29% 76.59% 81.13% 82.92%

i = 50 70.08% 78.78% 85.93% 89.96% 92.06%

i = 100 82.84% 92.36% 96.52% 98.17% 98.74%

i = 150 90.99% 97.30% 99.21% 99.64% 99.80%

i = 200 95.23% 99.01% 99.84% 99.94% 99.96%

i = 30 55.37% 61.09% 64.42% 66.17% 67.42%

i = 50 65.04% 69.57% 72.31% 73.95% 74.87%

i = 100 75.73% 79.21% 81.22% 82.10% 82.79%

i = 150 80.50% 83.43% 85.12% 86.09% 86.57%

i = 200 83.31% 86.07% 87.81% 88.58% 89.12%

i = 30 21.76% 47.81% 77.72% 94.24% 99.10%

i = 50 36.35% 66.82% 90.98% 99.05% 99.97%

i = 100 59.50% 86.66% 98.44% 99.99% 100.00%

i = 150 72.35% 93.43% 99.63% 100.00% 100.00%

i = 200 79.61% 96.24% 99.93% 100.00% 100.00%

Contextual effect estimate

Slope variance estimate

Note . Grey cells denote power for conditions with Type I error rates that exceed 

the 7.5% threshold.

Table 6

Power Rates of Fixed and Random Effects by Level-1 and Level-2 Sample Size

No. (i) of 

level-2 

units

No. (t) of level-1 units within each level-2 unit

Between-persons effect estimate

Within-persons effect estimate
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Table 7 

Type I Error Rates of Fixed Effects 

No. (i) of 

level-2 

units 

No. (t) of level-1 units within each level-2 unit 

t = 5  t = 10  t = 20  t = 40  t = 80 

 Between-persons effect estimate 

i = 30 8.72%  10.12%  10.53%  9.77%  9.74% 

i = 50 7.29%  6.56%  8.42%  7.94%  6.91% 

i = 100 4.52%  5.10%  6.26%  6.42%  6.15% 

i = 150 4.65%  5.32%  5.61%  6.30%  5.59% 

i = 200 5.04%  5.67%  6.70%  6.26%  5.07% 

 Within-persons effect estimate 

i = 30 7.56%  6.67%  5.48%  7.28%  6.26% 

i = 50 4.49%  5.73%  5.05%  6.30%  6.02% 

i = 100 4.85%  5.04%  4.67%  5.30%  5.39% 

i = 150 5.38%  5.55%  5.27%  5.71%  6.19% 

i = 200 5.63%  6.01%  5.40%  4.82%  5.36% 

 Contextual effect estimate 

i = 30 7.46%  8.59%  8.51%  8.98%  8.15% 

i = 50 6.95%  6.20%  6.82%  7.78%  7.22% 

i = 100 5.20%  6.16%  6.18%  6.61%  5.98% 

i = 150 6.08%  6.23%  5.61%  6.62%  5.73% 

i = 200 5.63%  6.38%  5.74%  6.28%  5.77% 
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Table 8     

Power and Type I Error Rates of the Contextual 

Effect by ICCx 

ICCx   Power   Type I error 

ICCx = .10  68.18%  6.81% 

     

ICCx = .20  77.71%  6.75% 

     

ICCx = .50   85.46%   6.46% 
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Table 9 

Power [and Type I Error Rates] for Slope Variance and  

Contextual Effect by ICCx and Level-2 Sample Size 

No. (i) of level-2 

units 

ICCx 

ICCx = .10  ICCx = .20  ICCx = .50 

 Slope variance power 

i = 30 75.20%  71.71%  57.46% 

i = 50 84.84%  81.94%  69.13% 

i = 100 93.39%  91.50%  81.86% 

i = 150 96.33%  95.05%  87.86% 

i = 200 97.70%  96.76%  91.01% 

 Contextual effect power 

i = 30 49.11%  63.81%  75.76% 

i = 50 59.79%  72.61%  81.03% 

i = 100 72.73%  80.84%  87.06% 

i = 150 78.12%  84.38%  90.53% 

i = 200 81.12%  86.89%  92.91% 

 Contextual effect Type I error 

i = 30 8.88%  8.52%  7.62% 

i = 50 7.23%  7.12%  6.63% 

i = 100 5.95%  6.01%  6.11% 

i = 150 5.99%  6.09%  6.08% 

i = 200 6.02%  6.03%  5.85% 

Note. Power values are given in regular face; Type I error rates are 

given in bold in brackets. Grey cells denote power for conditions with 

unacceptable Type I error rates. 
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Table 10      

Population Contextual Effect Sizes  

 Between-persons fixed effect 

Within-persons 

fixed effect 
γ01 = -.59 γ01 = -.14 γ01 = 0 γ01 = .14 γ01 = .59 

γ10 = -.59 0 0.45 0.59 0.73 1.18 

γ10 = -.14 -0.45 0 0.14 0.28 0.73 

γ10 = 0 -0.59 -0.14 0 0.14 0.59 

γ10 = .14 -0.73 -0.28 -0.14 0 0.45 

γ10 = .59 -1.18 -0.73 -0.59 -0.45 0 
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Table 11

 γ01 - γ10  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15

0 94.6% 87.9% 97.1% 91.3% 94.0% 90.8% 98.9% 91.1%

0.14 97.8% 89.2% 96.6% 93.5% 98.6% 90.5% 98.8% 93.9%

0.28 97.7% 89.0% 96.6% 93.4% 98.6% 90.3% 98.8% 93.9%

0.45 98.0% 88.9% 96.6% 93.9% 98.7% 89.8% 99.1% 93.7%

0.59 98.0% 89.0% 96.6% 93.8% 98.7% 89.9% 99.1% 93.9%

0.73 98.0% 88.9% 96.6% 93.9% 98.7% 89.8% 99.1% 93.7%

1.18 94.6% 87.9% 97.1% 91.3% 94.0% 90.8% 98.9% 91.1%

0 85.4% 85.6% 83.8% 85.8% 90.5% 90.5% 90.2% 90.4%

0.14 84.5% 85.4% 83.9% 85.4% 90.1% 90.5% 90.3% 90.5%

0.28 84.5% 85.4% 83.7% 85.3% 90.1% 90.5% 90.4% 90.4%

0.45 84.5% 85.4% 84.0% 85.3% 90.1% 90.5% 89.9% 90.5%

0.59 84.6% 85.4% 84.0% 85.3% 90.1% 90.4% 90.1% 90.5%

0.73 84.5% 85.4% 84.0% 85.3% 90.1% 90.5% 89.9% 90.5%

1.18 85.4% 85.6% 83.8% 85.8% 90.5% 90.5% 90.2% 90.4%

0 91.6% 91.7% 92.8% 92.4% 92.7% 92.4% 94.7% 94.6%

0.14 92.7% 91.8% 93.2% 93.1% 92.3% 92.7% 93.1% 93.4%

0.28 92.6% 91.8% 93.2% 93.0% 92.5% 92.8% 93.1% 93.4%

0.45 93.0% 91.9% 93.1% 92.5% 92.1% 92.9% 94.5% 94.4%

0.59 92.9% 91.9% 93.1% 92.6% 92.1% 93.0% 94.5% 94.4%

0.73 93.0% 91.9% 93.1% 92.5% 92.1% 92.9% 94.5% 94.4%

1.18 91.6% 91.7% 92.8% 92.4% 92.7% 92.4% 94.7% 94.6%

0 90.6% 90.5% 92.9% 93.0% 92.1% 91.5% 92.3% 93.3%

0.14 90.9% 90.7% 91.1% 91.5% 91.9% 92.4% 92.3% 92.0%

0.28 90.9% 90.7% 91.1% 91.5% 91.9% 92.4% 92.3% 92.0%

0.45 91.0% 90.5% 92.6% 93.1% 92.1% 92.6% 92.7% 92.8%

0.59 91.0% 90.5% 92.6% 93.2% 92.1% 92.6% 92.7% 92.8%

0.73 91.0% 90.5% 92.6% 93.1% 92.1% 92.6% 92.7% 92.8%

1.18 90.6% 90.5% 92.9% 93.0% 92.1% 91.5% 92.3% 93.3%

i = 30 i = 50

95% Coverage of the slope variance

95% Coverage of the contextual effect

ICCx = .10 ICCx = .50 ICCx = .10 ICCx = .50

Coverage of the Slope Variance and Contextual Effect by Slope Variance Effect Size, ICCx, Level-2 Sample Size, Level-1 

Sample Size, and Contextual Effect Size

t = 40

t = 40

t = 5

t = 5

No. (i) of level-2 units

No. (t) 

of level-

1 units
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Table 12

 γ01 - γ10  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15  τ
2

11 = .05  τ
2

11 = .15

0 13.8% 70.9% 3.0% 25.4% 25.4% 92.8% 7.1% 47.7%

0.14 5.4% 40.0% 2.2% 15.0% 10.3% 64.8% 4.1% 27.9%

0.28 5.4% 41.0% 2.2% 15.4% 10.6% 66.7% 4.2% 28.3%

0.45 5.5% 41.6% 2.3% 16.2% 10.7% 67.1% 4.7% 32.1%

0.59 5.5% 40.6% 2.3% 15.8% 10.4% 66.1% 4.5% 31.7%

0.73 5.5% 41.6% 2.3% 16.2% 10.7% 67.1% 4.7% 32.1%

1.18 13.8% 70.9% 3.0% 25.4% 25.4% 92.8% 7.1% 47.7%

0 99.1% 100.0% 75.5% 99.9% 100.0% 100.0% 96.5% 100.0%

0.14 91.0% 100.0% 60.1% 99.2% 99.6% 100.0% 88.5% 100.0%

0.28 91.8% 100.0% 61.0% 99.2% 99.6% 100.0% 89.5% 100.0%

0.45 91.8% 100.0% 62.5% 99.3% 99.6% 100.0% 89.4% 100.0%

0.59 90.9% 100.0% 61.8% 99.3% 99.6% 100.0% 88.7% 100.0%

0.73 91.8% 100.0% 62.5% 99.3% 99.6% 100.0% 89.4% 100.0%

1.18 99.1% 100.0% 75.5% 99.9% 100.0% 100.0% 96.5% 100.0%

0.14 10.8% 11.1% 13.5% 14.1% 11.4% 11.1% 18.0% 17.2%

0.28 16.4% 16.9% 34.7% 32.2% 22.2% 21.7% 47.5% 44.5%

0.45 29.8% 31.2% 77.2% 74.5% 43.5% 43.8% 93.9% 91.0%

0.59 44.9% 45.6% 91.5% 91.4% 61.6% 61.3% 99.5% 99.4%

0.73 60.0% 60.4% 97.6% 97.6% 78.8% 79.1% 99.9% 100.0%

1.18 95.9% 96.1% 99.9% 100.0% 99.7% 100.0% 100.0% 100.0%

0.14 14.4% 14.9% 28.1% 25.0% 15.6% 15.3% 33.0% 29.2%

0.28 26.6% 26.1% 64.0% 57.5% 31.5% 30.9% 81.0% 74.8%

0.45 50.7% 50.6% 99.9% 99.2% 65.7% 64.3% 100.0% 100.0%

0.59 70.0% 68.8% 100.0% 100.0% 86.0% 84.8% 100.0% 100.0%

0.73 82.5% 81.7% 100.0% 100.0% 95.0% 95.1% 100.0% 100.0%

1.18 99.0% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Note. Conditions where Type I error exceeded the 7.5% threshold are filled in grey.

t = 40

t = 5

t = 5

t = 40

Power to Detect the Slope Variance and Contextual Effect by Slope Variance Effect Size, ICCx, Level-2 Sample Size, 

Level-1 Sample Size, and Contextual Effect Size

ICCx = .10 ICCx = .50 ICCx = .10 ICCx = .50

No. (i) of level-2 units

i = 30 i = 50No. (t) 

of level-

1 units

Power to detect the slope variance

Power to detect the contextual effect
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Table 13         

Contextual Effect Type I Error Rates by Slope Variance Effect Size, ICCx, Level-

2 Sample Size, and Level-1 Sample Size 

No. (t) of 

level 1 

units 

No. (i) of 

level 2 units 

ICCx = .10  ICCx = .50 

τ2
11 = .05  τ2

11 = .15  τ2
11 = .05  τ2

11 = .15 

t = 5         

 i = 30 8.4%  8.3%  7.2%  7.6% 

 i = 50 7.3%  7.6%  5.3%  5.4% 

t = 40         

 i = 30 9.4%  9.5%  7.1%  7.0% 

 i = 50 8.0%  8.5%  7.7%  6.7% 
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Table 17 

Mean and SD of Autocorrelation of X and Y by ICC of X 

 ICCx 

Autocorrelation ICCx = .10 ICCx = .20 ICCx = .50 

ρy 
M = 0.189 M = 0.189 M = 0.190 

SD = .084 SD = .083 SD = .083 

    

ρx 
M = .097 M = .195 M = .489 

SD = .074 SD = .077 SD = .072 
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Table 18     

Standardized Bias, Mean Square Error (MSE), 95% Coverage, and Power for the 

Contextual Effect and Slope Variance Estimates for AR(1) Simulated Data Across 

Three Models 

Model Outcome variable 
Contextual effect 

estimate 

 Slope variance 

estimate  

AR(1) Latent 

Growth Model 

Standardized Bias 6.8%  -11.3% 

MSE 0.134  0.002 

95% Coverage 93.9%  90.7% 

Power 27.4%  98.6% 

     

Latent Growth 

Model with 

Uncorrelated 

Residuals 

Standardized Bias 7.7%  -5.7% 

MSE 0.187  0.002 

95% Coverage 91.0%  94.0% 

Power 32.0%  90.0% 

     

Multilevel 

Manifest 

Covariate Model 

Standardized Bias -110.7%  -11.1% 

MSE 0.074  0.033 

95% Coverage 78.5%  89.8% 

Power 29.0%  86.7% 

  



 
 

99 

 

F
ig

u
re

 1
. 
A

v
er

ag
e 

st
an

d
ar

d
iz

ed
 b

ia
s 

o
f 

th
e 

sl
o
p
e 

v
ar

ia
n
ce

 e
st

im
at

e 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
  

 



 
 

100 

 

F
ig

u
re

 2
. 
A

v
er

ag
e 

st
an

d
ar

d
iz

ed
 b

ia
s 

o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
  



 
 

101 

 

 

 

F
ig

u
re

 3
. 
A

v
er

ag
e 

st
an

d
ar

d
iz

ed
 b

ia
s 

o
f 

th
e 

st
an

d
ar

d
iz

ed
 c

o
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 e

ff
ec

t 
si

ze
 (

γ 0
1
) 

an
d

 

le
v
el

-1
 s

am
p
le

 s
iz

e 
(t

).
  



 
 

102 

 

F
ig

u
re

 4
. 
A

v
er

ag
e 

ra
w

 b
ia

s 
o

f 
th

e 
sl

o
p
e 

v
ar

ia
n
ce

 e
st

im
at

e 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

),
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

),
 a

n
d
 s

lo
p
e 

v
ar

ia
n
ce

 e
ff

ec
t 

si
ze

 (
τ²

1
1
).

 

 



 
 

103 

 

F
ig

u
re

 5
. 
A

v
er

ag
e 

ra
w

 b
ia

s 
o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
 



 
 

104 

 

F
ig

u
re

 6
. 
A

v
er

ag
e 

ra
w

 b
ia

s 
o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
b

y
 e

ff
ec

ti
v
e 

sa
m

p
le

 s
iz

e.
 



 
 

105 

  

F
ig

u
re

 7
. 
A

v
er

ag
e 

ra
w

 b
ia

s 
o
f 

th
e 

st
an

d
ar

d
iz

ed
 c

o
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 e

ff
ec

t 
si

ze
 (

γ 0
1
),

 l
ev

el
-2

 

sa
m

p
le

 s
iz

e 
(i

),
 a

n
d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
  



 
 

106 

 

F
ig

u
re

 8
. 
A

v
er

ag
e 

d
if

fe
re

n
ce

 b
et

w
ee

n
 u

n
st

an
d
ar

d
iz

ed
 a

n
d
 s

ta
n
d
ar

d
iz

ed
 c

o
n

te
x

tu
al

 e
ff

ec
t 

b
y
 I

C
C

 o
f 

th
e 

p
re

d
ic

to
r 

v
ar

ia
b
le

 

(I
C

C
x
) 

an
d
 l

ev
el

-2
 f

ix
ed

 e
ff

ec
t 

si
ze

 (
γ 0

1
).

 



 
 

107 

 F
ig

u
re

 9
. 
A

v
er

ag
e 

R
M

S
E

 o
f 

th
e 

sl
o
p
e 

v
ar

ia
n

ce
 e

st
im

at
e 

b
y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

),
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

),
 a

n
d
 s

lo
p
e 

v
ar

ia
n
ce

 e
ff

ec
t 

si
ze

 (
τ2

1
1
).

  



 
 

108 

 F
ig

u
re

 1
0
. 
A

v
er

ag
e 

R
M

S
E

 o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 s

am
p

le
 s

iz
e 

(i
),

 a
n
d
 I

C
C

 o
f 

th
e 

p
re

d
ic

to
r 

v
ar

ia
b
le

 

(I
C

C
x
).

 



 
 

109 

 F
ig

u
re

 1
1
. 
A

v
er

ag
e 

R
M

S
E

 o
f 

th
e 

st
an

d
ar

d
iz

ed
 c

o
n

te
x

tu
al

 e
ff

ec
t 

es
ti

m
at

e 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 

si
ze

 (
t)

. 



 
 

110 

 F
ig

u
re

 1
2
. 
A

v
er

ag
e 

9
5
%

 c
o
v
er

ag
e 

o
f 

th
e 

sl
o
p
e 

v
ar

ia
n
ce

 e
st

im
at

e 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
 

 



 
 

111 

 

F
ig

u
re

 1
3
. 
A

v
er

ag
e 

9
5
%

 c
o
v
er

ag
e 

o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
es

ti
m

at
e 

b
y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

).
 



 
 

112 

 

F
ig

u
re

 1
4
. 
A

v
er

ag
e 

p
o
w

er
 t

o
 d

et
ec

t 
th

e 
sl

o
p
e 

v
ar

ia
n
ce

 e
st

im
at

e 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

) 
an

d
 l

ev
el

-1
 s

am
p
le

 s
iz

e 
(t

).
 



 
 

113 

 

 

 

F
ig

u
re

 1
5
. 
A

v
er

ag
e 

p
o
w

er
 t

o
 d

et
ec

t 
th

e 
co

n
te

x
tu

al
 e

ff
ec

t 
b

y
 c

o
n

te
x

tu
al

 e
ff

ec
t 

si
ze

 (
γ

0
1
- 

γ 1
0
).

 

 



 
 

114 

 

 

F
ig

u
re

 1
6
. 
A

v
er

ag
e 

T
y
p
e 

I 
er

ro
r 

ra
te

 o
f 

th
e 

co
n
te

x
tu

al
 e

ff
ec

t 
b

y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

).
 

 



 
 

115 

 

 

F
ig

u
re

 1
7
. 
A

v
er

ag
e 

co
n
te

x
tu

al
 e

ff
ec

t 
st

an
d
ar

d
 e

rr
o

r 
ra

w
 b

ia
s 

b
y
 l

ev
el

-2
 s

am
p
le

 s
iz

e 
(i

).
 

 



 
 

116 

 

 

Figure 18. Spaghetti plot of physical symptom severity over time with overall spline 

curve. 
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Figure 19. Spaghetti plot of stressor negative affect over time with overall spline curve. 
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Figure 20. Individual and overall linear relation of physical symptom severity and 

stressor negative affect. 

 

 

 

 

 



 
 

 

APPENDIX A 

SYMBOL GLOSSARY 
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ICCx Intraclass correlation coefficient of X 

ICCy Intraclass correlation coefficient of Y   

rti  Within-persons (level-1) residual for person i at time t 

SD(XB) Standard deviation of X at between-persons level (level-2) 

SD(XW) Standard deviation of X at within-persons level (level-1) 

SD(YB) Standard deviation of Y at between-persons level (level-2) 

SD(YW) Standard deviation of Y at within-persons level (level-1) 

T10 Vector of intercept-slope covariances 

T11 Covariance matrix of random slopes 

u0i  Between-person (level-2) residual for person i 

u1i  Between-person (level-2) slope residual for person i 

VAR(XB) Variance of X at between-persons level (level-2) 

VAR(XW) Variance of X at within-persons level (level-1) 

XB Portion of X that is purely between-persons (level-2) 

 

  

Xti Value of predictor variable X for person i at time t 
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XW Portion of X that is purely within-persons (level-1) 

�̅�𝑖 
 

 

Mean of X for person i 

𝑋𝑡𝑖 − �̅�𝑖 
 

 

Deviation of X at time t from the mean for person i 

YB Portion of Y that is purely between-persons (level-2) 

Yti  Value of outcome variable Y for person i at time t 

YW Portion of Y that is purely within-persons (level-1) 

β0i  Intercept (predicted mean value of Yti) for person i 

β1i  Within-persons (level-1) regression slope coefficient of Y on a 

predictor variable for person i 

γ Vector of regression slope coefficients for all predictor variables 

γ00  Intercept (predicted mean value of Yti) for all persons 

γ01  Average within-persons (level-1) regression slope coefficient of Y 

on a predictor variable 

γ01 – γ10 Contextual effect 

γ01std Standardized average within-persons (level-1) regression slope 

coefficient 

γ01std – γ10std  Standardized contextual effect  

γ10  Between-persons (level-2) regression slope coefficient of Y on a 

predictor variable 



 
 

122 

γ10std Standardized between-persons (level-2) regression slope 

coefficient of Y on a predictor variable 

γB Vector of regression slope coefficients for between-persons (level-

2) predictors 

γW Vector of regression slope coefficients for within-persons (level-1) 

predictors 

𝜇′
𝑋(𝑞) Vector of means of predictor variables 

η² Proportion of explained variance in the outcome variable due to a 

specific factor in ANOVA; given by η² = SSeffect/SStotal 

σ2 Within-persons (level-1) residual variance in a multilevel model 

with predictors 

𝜎𝐸
2 Within-persons (level-1) residual variance in a multilevel model 

without predictors 

 𝛴𝑋
𝐵 

 

 

Between-persons (level-2) covariance matrix of X 

𝛴𝑋(𝑝) Covariance matrix of predictor variables that have random slopes 

𝛴𝑋(𝑞) Covariance matrix of all predictor variables 

𝛴𝑋
𝑊 

 

 

Between-persons (level-2) covariance matrix of X 

𝜏00
2  Between-persons (level-2) intercept residual variance in a 

multilevel model with predictors 

𝜏01
2  Between-persons (level-2) covariance of intercept residual and 

slope residual 

𝜏11
2  Between-persons (level-2) slope residual variance 

𝜏𝐸
2 Between-persons (level-2) residual variance in a multilevel model 

without predictors 
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APPENDIX B 

COMPONENTS OF VARIANCE 
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Snijders & Bosker (2012) provided a formula that shows the variance 

decomposition of Y in a multilevel model with q predictor variables, p of which have 

random slopes.  

𝑣𝑎𝑟(𝑌𝑖𝑗) =  𝛾′𝛴𝑋(𝑞)𝛾 +  𝜏00
2 + 2𝜇′

𝑋(𝑞)𝑇10 + 𝜇′
𝑋(𝑞)𝑇11𝜇𝑋(𝑞) +  𝑡𝑟𝑎𝑐𝑒(𝑇11𝛴𝑋(𝑝)) + 𝜎2 

So 𝛾 is the vector of regression coefficients of all predictor variables, 𝛴𝑋(𝑞)is the 

covariance matrix of all predictor variables, 𝛴𝑋(𝑝) is the covariance matrix of predictor 

variables that have random slopes, 𝜇′𝑋(𝑞) is the mean vector of predictor variables, 𝑇10 is 

the vector of intercept-slope covariances, 𝑇11 is the covariance matrix of random slopes, 

and 𝜏00
2  and 𝜎2 are the between-group and within-group residuals, respectively. 

According to equation 5, the data-generating model has one predictor with a random 

slope at the within-level (𝑋𝑖𝑗 − �̅�𝑗) and one predictor at the between-level (�̅�𝑗), so 

𝛾′𝛴𝑋(𝑞)𝛾 can be decomposed into within and between components  

𝛾′𝛴𝑋(𝑞)𝛾 =  𝛾𝑊
′  𝛴𝑋

𝑊𝛾𝑊 + 𝛾𝐵
′  𝛴𝑋

𝐵𝛾𝐵 

and  

𝛴𝑋(𝑝) =  𝛴𝑋
𝑊. 

Also, the means of both within-group and between-group predictors are generated to be 

zero, so 𝜇𝑋(𝑞) = 0. Then the residual variance of Y at each level can be found by: 

. 8 = 𝜎𝐸
2 =  𝛾𝑊

′  𝛴𝑋
𝑊𝛾𝑊 + 𝑡𝑟𝑎𝑐𝑒(𝑇11𝛴𝑋

𝑊) +  𝜎2  

. 2 = 𝜏𝐸
2 =  𝛾𝐵

′  𝛴𝑋
𝐵𝛾𝐵 + 𝜏00

2  
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For example, let one simulation condition have ICCx = .4, 𝛾10= .59, 𝛾01= .59, and random 

slope variance τ2
11 = 0.01. Across all simulation conditions, X and Y have a variance of 1, 

Y has an unconditional ICC of .2(𝜏𝐸
2 =  .2 and 𝜎𝐸

2 =  .8), and the mean of X is zero both 

between and within groups. 

Then  

𝜎2 =  .8 − ( 𝛾𝑊
′  𝛴𝑋

𝑊𝛾𝑊 + 𝑡𝑟𝑎𝑐𝑒(𝑇11𝛴𝑋
𝑊))  

𝜎2 =  .8 − ( .59(. 6). 59 + .01(.6)) 

𝜎2 =  .58514 

and 

𝜏00
2 = .2 − (𝛾𝐵

′  𝛴𝑋
𝐵𝛾𝐵)  

𝜏00
2 = .2 − (.59(. 4). 59) 

𝜏00
2 = .06076 

These values of 𝜎2 and 𝜏00
2  are then given as the residual within-persons and between-

persons variance of Y, respectively, in the Mplus data generation code.   
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APPENDIX C 

EXAMPLE MPLUS CODE 
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Example Mplus code for generating multilevel data 

TITLE: Monte Carlo Simulation within size = 20 between size 

= 100 between effect = 0.59 within effect = 0.59 ICCx = 0.4 

slopevar = 0.01  

 

Montecarlo: 

 

    NAMES ARE X Y xmean; 

    NOBSERVATIONS = 2000; 

    NREPS = 1000; 

    SEED = 6712345; 

    NCSIZES = 1; 

    CSIZES = 100(20); 

    WITHIN = X; 

    BETWEEN = XMEAN; 

    REPSAVE = ALL; 

    SAVE = clustermeandata_20_100_0.59_0.59_0.4_0.01_*.dat; 

    RESULTS = 

clustermeanRESULTS_20_100_0.59_0.59_0.4_0.01.DAT; 

 

MODEL POPULATION: 

    %WITHIN% 

    X*0.6; 

    [X*0]; 

    SLOPE | Y ON X; 

    Y*0.585; 

    %BETWEEN% 

    XMEAN *0.4; 

    [XMEAN *0]; 

    [Y*0]; 

    Y ON XMEAN *0.59; 

    [SLOPE*0.59]; 

    SLOPE*0.01; 

    Y*0.06; 

    Y WITH SLOPE@0; 

 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 

MODEL: 

    %WITHIN% 

    X*0.6; 

    SLOPE | Y ON X; 

    Y*0.585; 

    %BETWEEN% 



 
 

128 

    XMEAN *0.4; 

    [Y*0]; 

    Y ON XMEAN *0.59 (b); 

    [SLOPE*0.59] (w); 

    SLOPE*0.01; 

    Y*0.06; 

    Y WITH SLOPE@0; 

 

MODEL CONSTRAINT: 

    NEW(CONTEXTUAL*0); 

    CONTEXTUAL = b - w; 

 

Example Mplus code for estimating means-only model 

 

TITLE: Monte Carlo Simulation within size = 20 between size 

= 100 between effect = 0.59 within effect = 0.59 ICCx = 0.4 

slopevar = 0.01  

 

DATA: 

 

    FILE = data_20_100_0.59_0.59_0.4_0.01_LIST.dat; 

    TYPE = MONTECARLO; 

 

VARIABLE: 

 

    NAMES = XMEAN Y X CLUSTER; 

    USEVARIABLES = Y; 

    CLUSTER = CLUSTER; 

 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 

MODEL: 

    %WITHIN% 

    Y*.80; 

    %BETWEEN% 

    [Y*0]; 

    Y*.20; 

 

SAVEDATA: 

 

    RESULTS ARE 

    UNRESULTS_20_100_0.59_0.59_0.4_0.01.dat; 


