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ABSTRACT

In this paper, at first, analytical formulation of J-integral for a non-local particle

model (VCPM) using atomic scale finite element method is proposed for fracture

analysis of 2D solids. A brief review of classical continuum-based J-integral and a

non-local lattice particle method is given first. Following this, detailed derivation for

the J-integral in discrete particle system is given using the energy equivalence and

stress-tensor mapping between the continuum mechanics and lattice-particle system.

With the help of atomistic finite element method, the J-integral is expressed as a

summation of the corresponding terms in the particle system.

Secondly, a coupling algorithm between a non-local particle method (VCPM)

and the classical finite element method (FEM) is discussed to gain the advantages

of both methods for fracture analysis in large structures. In this algorithm, the

discrete VCPM particle and the continuum FEM domains are solved within a unified

theoretical framework. A transitional element technology is developed to smoothly

link the 10-particles element with the traditional FEM elements to guaranty the

continuity and consistency at the coupling interface. An explicit algorithm for static

simulation is developed.

Finally, numerical examples are illustrated for the accuracy, convergence, and path-

independence of the derived J-integral formulation. Discussions on the comparison

with alternative estimation methods and potential application for fracture simulation

are given. The accuracy and efficiency of the coupling algorithm are tested by several

benchmark problems such as static crack simulation.
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Chapter 1

INTRODUCTION

The J-integral formulation for 2D solid was introduced by Rice (Rice 1968). The

J-integral value was shown to be path independent and equivalent with the energy

release rate. The J-integral can be understood both as a fracture energy parameter

and as a stress intensity parameter because J uniquely characterizes crack-tip stresses

and strains. The J-integral has been extensively used to compute energy flow near the

crack tip, to estimate crack opening displacement, and to formulate various fracture

criteria for engineering materials. Numerous analytical and numerical studies have

been done for the estimation and application of J-integral for continuum-based fracture

analysis and will not be further discussed here as it is not the intent of this paper. The

main objective of the proposed study is to develop an estimation method for J-integral

based on the discrete representation of solids with cracks. Thus, correspondence of

fracture analysis using continuum-based and discrete formulation can be established.

There are essentially two major approaches for fracture analysis of solids:

continuum-based and discrete approach. One widely used discrete approach for

fracture simulation is the molecular dynamics (Holian and Ravelo 1995). Lattice

particle method or spring network method is another major type of discrete approach

and have been extensively investigated (Zhao, Fang, and Zhao 2011). All these

model differs in the fundamental hypotheses, formulation, and solution algorithms,

but can be grouped in two major categories: local approach and non-local approach.

For local approach, interactions between particles/nodes/joints only depends on the

neighboring local particles/nodes/joints. The local interactions can be uniaxial or can
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be multiaxial. For non-local approach, interactions between particles not only depends

on the neighboring local particles, but also have contributions from the surrounding

non-local particles/nodes/joints proposed by Chen (Chen, Lin, and Liu 2014). The

non-local approach has been shown to be flexible to model various solid fracture

problems and will be the focus of this study.

Many numerical models have been proposed to overcome these difficulties, such as

the particle method (Hrennikoff 1941; Ostoja-Starzewski 2002; Noor 1988). Particle-

based models represent materials by a system of particles and simulate the underlying

physics on the level of micro-mechanical interaction rules among those particles.

The basic idea is very similar to the idea behind the molecular dynamics. The

governing law of the dynamics of particles is Newton’s equations of motion. These

equations are usually discretized in time and do not involve spatial derivatives that

require the hypothesis of continuity of the material. Thus, particle-based methods

are discontinuous formulation of solids which are especially suitable for simulation of

crack growth, deflection and branching problems.

A novel volumetric-compensated particle model (VCPM) (Chen, Lin, and Liu

2014) has been recently proposed to further improve the Poisson ratio’s restriction by

introducing a non-local multi-body particle interaction into the conventional lattice

model. This is done by treating the solid as a collection of regularly distributed

deformable particles that inter-connected each other by a network of normal springs.

The novelty of the VCPM lies in two aspects: (1) the particles are treated as deformable

bodies which can store volumetric strain energies; and (2) the corresponding non-

local multi-body particle interactions caused by the particles’ volume change effects

are included only through the pair-wise normal spring interactions, which greatly

facilitates the computation. One of the most important benefits of the particle-based
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simulation is that it can describe the fracture of materials by directly incorporating a

cohesive type law into the particle interactions, like the virtual internal bond (VIB)

model proposed by Gao (Gao and Klein 1998).

Most fracture analysis using discrete approach focuses on the simulation with

microscopic damage rules of spring/bonds. Relatively few studies try to calculate

the driving force parameters in the classical fracture mechanics using the discrete

methods. Jin and Yuan (Jin and Yuan 2005) established the connections of fracture

parameters between microscopic and macroscopic description of fracture by using

molecular mechanics simulation to calculate the energy release rates and stress fields

in covalently bonded solids under small strain deformation. Alternative approaches

for atomistic J-integral (Zimmerman and Jones 2013; Jones and Zimmerman 2010)

has been developed based on the Hardy estimates of continuum fields for atomistic

systems. The estimation of J-integral for particle-based material point method (MPM)

was proposed and the background finite element mesh is used for the calculation

(Guo and Nairn 2004). A recent study for the estimation of J-integral using non-local

discrete peridynamic formulation (Hu et al. 2012) was developed. The key idea is

based on the virtual crack extension concept and a double integral is used to estimate

the classical J-integral in the numerical algorithm.

Finite element method (FEM) has an extensive application in the mechanical

analysis of the deformation of structures and materials. However, due to the re-

quirement for a fixed topological connectivity between nodes, it always encounters

numerical difficulties for the problems with crack, fracture and fragmentation, such as

the continuum mesh refinement for a moving crack and the inaccuracies introduced

by the highly distorted elements (Belytschko et al. 2013).

So, in recent years, particle-based methods such as VCPM models has attracted
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an increasing interests and become a robust alternative to FEM to overcome these

difficulties since no re-meshing is necessary (Ostoja-Starzewski 2002; Zhao, Fang, and

Zhao 2011; Zhao et al. 2012; G Wang et al. 2009; Ge Wang et al. 2009; Chen, Lin, and

Liu 2014). However, due to that large number of particles and small time-steps are

usually required in the particle-based methods to guaranty the numerical convergence

and stability, particle based method’s computational effort is generally much higher

than that of FEM (Zhao et al. 2012; G Wang et al. 2009; Ge Wang et al. 2009; Chen,

Lin, and Liu 2014). Even though the super computers with parallel technologies can

improve the efficiency of methods to some degree, it seems more beneficial to develop

a coupling method that can directly bring together the advantages of both methods

(Xiao and Belytschko 2004; Fernández-Méndez, Bonet, and Huerta 2005; Zhang,

Qiang, and Gao 2011; Liu et al. 2004; Rabczuk, Xiao, and Sauer 2006; Lei and Zang

2010). There are many concurrent methods developed for coupling molecular dynamics

models with the continuum models which are very useful in studying local phenomena

such as fracture. The region in subdomain modeled by continuum mechanics can

be very coarser than in molecular dynamics model and hence, such coupling models

permit the use of far less equations than in strict molecular dynamics models.

But, there are some difficulty in such concurrent multiscale coupling models. Doll

and Adelman (Doll and Dion 1976; Adelman and Doll 1976) found that, often the

high frequency parts of waves are spuriously reflected at the molecular/continuum

interface. Holmes and Belytschko (Holmes and Belytschko 1976) also noted the same

phenomenon in finite element models with different element sizes. These spurious

reflections can be explained by noting that for a wave with a frequency greater than

the cutoff frequency of the continuum model, the interface appears as an almost rigid

boundary. So instead of smoothly propagating into the continuum model, the high
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frequency part of the wave is reflected. This results in spurious growth of energy in

the molecular domain.

Recently, several coupling models have been developed. Karpov (Karpov, Wagner,

and Liu 2005) developed the coupling methods based on lattice dynamics. He modeled

the molecular displacements as the sum of coarse scale and fine scale. A finite element

model was used in the continuum model and the spurious reflections at the edge

of molecular models are eliminated by introduction of force equivalent to lattice

impedance. This included the evaluation of inverse Laplace transforms in time, and

for multidimensional problems, a Fourier transform in space. Belytschko and Xiao

(Belytschko and Xiao 2003) have developed a coupling method for molecular mechanics

and continuum mechanics models based on a bridging domain method. A scaling of

the fine and coarse scale potential is used in conjunction with Lagrange multipliers on

the overlapping subdomain.

From the above study, here the basic idea is just to use the discrete particle model

(VCPM) that can naturally capture the material failures in the regions of interest, e.g.

the regions where the fracture process is expected to occur, while use the continuum

FEM in the remaining region to reduce the degrees of freedom and improve the

simulation efficiencies. Such coupling models are developed using transition elements

at the interfaces. (Lin, Chen, and Liu 2015)

There are two major objectives of this study: First, to derive the J-integral using

the non-local particle method by (Chen and Liu). The difference of the proposed

algorithm with respect to the existing algorithms are: (1) it is not based on the

virtual crack extension (Hu et al. 2012) and only need one single integral for the

calculation; (2) it is based on the calculation of the particle solutions and does not

need the background finite element mesh (Guo and Nairn 2004). And, second, to

5



develop a seamless particle-FEM coupling method to model the static failure problems

in large structures. In the developed coupling method, the dis-continuum domains

are described by using the newly developed volume-compensated particle method

(VCPM) (Chen, Lin, and Liu 2014) while the continuum domains are modeled by

using the traditional finite element method. At the interfaces, virtual VCPM particles

are generated and attached to the finite element nodes to account for the non-local

effect of VCPM method and to guaranty the interfacial continuity. 10-particle element

is also developed to solve the VCPM domains by employing the energy minimization

concept shown in the atomic-scale finite element method (AFEM) (Liu et al. 2004).

This 10-particle element allows the seamless linkage of VCPM domains with the

continuum FEM domains since they are in the same theoretical framework.

Based on the above discussion, the outline of this paper is organized as follows:

First, the basic concept and formulations of the VCPM and J-integral is briefly

discussed. Next, discussion on the implicit numerical techniques, Atomic Finite

Element Method (AFEM), is given for the particle system solution under static

loadings. The J-integral estimation is formulated using the particle displacement

solutions and stress tensor mapping from the discrete system to its corresponding

continuum domain. Following this, the coupling method between the VCPM and FEM

is presented in Chapter 2. Then several numerical examples are used in Chapter 3 to

validate the proposed algorithm with analytical solutions and finite element solutions,

the applications of two coupling methods on the modeling of static fracture problems.

Special focus is on the accuracy, convergence, path independence, and failure criterion

using the particle-based J-integral estimation. Finally, several conclusions and future

work are drawn in Chapter 4 based on the proposed study.
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Chapter 2

VOLUMETRIC COMPENSATED PARTICLE MODEL AND COUPLING

BETWEEN VCPM AND FEM MODEL

2.1 Brief Review of the Non-local Lattice Particle Method (VCPM)

The proposed J-integral estimation method is based on a non-local lattice particle

method called volumetric-compensated particle model (VCPM) (Chen, Lin, and Liu

2014). Detailed derivation can be found in the referred article and only the basic

ideas and key equations are reviewed here for the completeness of the description.

The basic idea of the VCPM model is to discretize a solid body into particles that

are packed in a regular lattice manner and inter-connected by a network of axial

springs. In this paper, we only focus on the densest packing of equal-sized spheres,

i.e., hexagonal lattice in 2D, as shown in Fig.1(a). The particles at their initial stage

are interacting with its neighbors through normal forces, which are represented by

normal springs. Thus, a unit cell that periodically repeats the discrete model can be

obtained to calculate the strain energy, as shown in Fig.1(b)

Figure 1. (a) Hexagonal lattice packing of VCPM and (b) Unit cell for hexagonal
packing
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The strain energy stored in the VCPM unit cell is composed of two parts: the

energy stored in the local pair-wise axial springs Us and the energy associated with

the volume change of the particle Uv, which can be expressed as

Ucell = Us + Uv (2.1)

These energies are given by the following relations:

Us =
k

2

6∑
j=1

(δLij)
2 (2.2)

Uv =
T

2

(
6∑
j=1

δL2
ij

)
(2.3)

where δL is the length change of the entire bond. The model parameters are spring

stiffness k and volume change parameter T . These parameters are related to elastic

constants (Young’s modulus E and Poisson’s ratio ν) as,

k =
E√

3(1 + ν)
, T =

√
3

18

E(4ν − 1)

2(1 + ν)(1− 2ν)
(2.4)

for the plane strain problems and

k =
E√

3(1 + ν)
, T =

√
3

18

E(3ν − 1)(1− ν)

2(1− 2ν2)(1 + ν)
(2.5)

for the plane stress problems.

The key factor for the numerical implementation of VCPM model is to accurately

define the interaction force between the particles. For an equilibrium system under

static / quasi-static loadings, the force acting one each particle must satisfy the

equilibrium conditions. The interaction force within a spring given certain length

change δlαN can be obtained by taking derivative of the total energy of a unit cell

Ucell with respect to the length change of such spring δlαN as:

fαN =
∂Ucell
∂δlαN

(2.6)
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The final interaction force between particle α and its neighbor particle β can be

defined as

Fαβ =
1

2
knδLαβ +

√
3

18
T

(
6∑

N=1

δLαN +
6∑

M=1

δLβM

)
(2.7)

The particle interaction force consists of two parts: the spring-related part that comes

directly from the pair-wise particle interactions and the volume-related part that is

associated with the volume changes of those two particles in pair. Since the volume

change of a certain particle arises from its connected neighbors, the force between

particles is non-local.

Classical particle dynamics can be used to solve the particle systems under loading.

Alternatively, energy minimization principle can be used to solve the system implicitly.

This algorithm is referred as the Atomic Finite Element Method (AFEM)(Liu et al.

2004).

The energy minimization process can be expressed as

∂Utot
∂x

= 0

where Utot =
∑
Ucell −

∑N
i=1 F̄ix̄i denotes the total energy of the VCPM discrete

system; F̄i is the external force exerted on particle i; x = (x1, x2, ..., xN)T is the

position of particles. The Taylor expansion of Utot around an initial guess x(0) =(
x
(0)
1 , x

(0)
2 , ..., x

(0)
N

)T
of the equilibrium state gives

Utot ≈ Utot(x
(0)) +

∂Utot
∂x
|x=x(0)(x− x(0)) +

1

2
(x− x(0))T ∂

2Utot
∂x∂x

|x=x(0)(x− x(0)) (2.8)

The following equilibrium equation is obtained:

Ku = P (2.9)

where u = x− x(0) is the particles’ displacement;

K =
∂2Utot
∂x∂x

|x=x(0) (2.10)
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is the stiffness matrix;

P = (Fi − (
∂Utot
∂x

)) |x=x(0) (2.11)

is the non-equilibrium force vector

It is observed that the governing equation is identical to the governing equation

of classical FEM if the particles are taken as nodes. Unlike conventional continuum

FEM, we do not divide energy into elements but calculate the first and second order

derivatives of Etot needed in the governing equation, directly from this AFEM element.

The particle system displacement can be solved using any linear solver, which will be

used for the J-integral calculation shown below.

2.1.1 J-integral Estimation Using Particle Displacement Solutions

In this section, we will derive the equation of J-integral for VCPM for a mode

I crack. This approach is based on the formulation from Linear Elastic Fracture

Mechanics (LEFM). As has been shown by Rice (Rice 1968), the J-integral around a

crack tip is path independent. And the expression for calculating the J-integral in 2D

case as shown in the figure 2 reads

J = −∂π
∂a

=

∫
γ

(wdx2 − T
∂ui
∂x1

)ds (2.12)

where, a = crack length, π = potential energy of body, w = strain energy density of

a unit cell, T = the traction vector, ui = displacement vector, ds = a length increment

along the contour γ. Equation 2.12 can be rewritten as since T = σijnj

J =

∫
γ

(wn1ds− σijnj
∂ui
∂x1

)ds (2.13)
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Figure 2. Arbitrary contour around crack tip

∴

J =

∫
γ

(wδj1 − σij
∂ui
∂x1

)njds (2.14)

δj1 is the components of first column of kronecker delta, σij is the stress tensor, nj is

the components of the outward normal unit vector.

In order to link the particle system solution to its corresponding continuum domain,

the stress tensor mapping is used between these two different formulations. The stress

tensor of the unit cell can be obtained through the Cauchy-Born rule (Tadmor, Ortiz,

and Phillips 1996). For elastic solids, the strain energy is a function of the strain

components only (“Continuum Mechanics for Engineers” 1999),

u = u(εij)

u̇ =
∂u

∂εij
ε̇ij

so that u is the internal energy. From the energy balance law, we have

u̇ =
1

ρ
σij ε̇ij

1

ρ
σij ε̇ij =

∂u

∂εij
ε̇ij

Since W = ρu , one has

σij = ρ
∂u

∂εij
=
∂W

∂εij
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By mapping the stress tensor to the unit cell in the particle system, one can obtain

σij =
∂W

∂εij
=

1

Vcell

∂Ucell
∂εij

(2.15)

The stress tensor at position k can be defined given the strain energy density at the

position k as

σ
(k)
ij =

1

A(k)

∂U
(k)
particle

∂ε
(k)
ij

(2.16)

where U (k) is the strain energy and A(k) is the corresponding volume at position k.

In 2D case, A is the corresponding area.

Using chain rule, Equation 2.16 can be further expanded as

σ
(k)
ij =

1

A(k)

∂U
(k)
particle

∂lkl

∂lkl

∂ε
(k)
ij

(2.17)

where ∂lkl is the spring elongation of the l neighbor of k particle. Applying the

strain mapping relationship ekl = ε
(k)
ij n

kl
i n

kl
j , the stress tensor can be derived as

σ
(k)
ij =

lkl
A(k)

∂U
(k)
particle

∂lkl
nkli n

kl
j (2.18)

where nkli is unit normal vector for spring kl as shown in Fig. 1(b). If the particle

system displacements are solved using the AFEM as described above, Equation 2.14

can be written in the discrete form as

J =

nγ∑
k=1

(
w(k)δj1 − σ(k)

ij

∂u
(k)
i

∂x1

)
n
(k)
j ∆(k) (2.19)

where superscript (k) indicates the quantities are evaluated at position k . Thus,

J-integral is a contour integral along path γ (see Fig. 2). In the above equation,

the derivatives of displacement is required and ( ∂ui
∂x1

) is evaluated using the central

difference method.

12



Figure 3. Illustration of central difference scheme

The central difference approximation of ∂ui
∂x1

for triangular lattice shown in Figure

3 can be written as:
∂u

(n)
1

∂x1
=
u
−(n+1)
1 − u−(n−1)1

2∆x(n)
(2.20)

∂u
(n)
2

∂x1
=
u
−(n+1)
2 − u−(n−1)2

2∆x(n)
(2.21)

where ui is the components of the displacement vector. Equations 2.19-2.21 are

the proposed J-integral estimation formulation.

2.2 Brief Review of Coupling Method

2.2.1 The VCPM Element

As discussed in the previous section, the derivation of VCPM is based on the

discrete unit cell energy approximation to the continuum solid. It can be regarded

as a very special case of the FEM, where the connectivity of the elements in FEM

is reconstructed by a search for the VCPM particle’s effective neighbors. When

the particle interactions are characterized only by a pair potential, the FEM spring

element (linear/nonlinear) can be straightforwardly employed to describe the particle

interactions. However, for the VCPM, due to the non-local interactions between the
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particle (as shown in equation 2.7), a new VCPM element should be developed to keep

the consistency between the VCPM and the FEM and make the coupling between

these two methods successful.

In equation 2.7,
∑6

N=1 δLαN , are the spring length changes of particle 1’s 6

neighbors (spring 1-2, 1-3, 1-4, 1-5, 1-6, 1-7) and
∑6

M=1 δLβM , are the spring length

changes of particle 2’s 6 neighbors (spring 2-9, 2-10, 2-3, 2-1, 2-7 and 2-8). We

understand that to calculate the spring force between particle α i.e. 1 and particle

β i.e. 2, we will need the deformation information of local particles (δLαβ and∑6
N=1 δLαN ), and also the deformation information of non-local particles

∑6
M=1 δLβM .

Therefore, totally 10 particle’s deformation information will be needed to get the

spring force. This is why we design the VCPM element as 10-particle element. The

same rule can be applied in the remaining 5 springs for particle.

Figure 4. Definition of 10-particle VCPM element according to the particle interaction

A 10-particle VCPM element can be developed as shown in Fig.4. This element

consists of two direct interacted particles (particle #1 and particle #2) and their

nearest neighbor particles(#2,3,4,5,6,7 for particle #1 and #9,10,3,1,7,8 for particle

#2). Such an element captures the non-local effect of the VCPM method, and the

internal forces on the two direct interacted particles are calculated according to

equation 2.7.
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This new element can be applied in the analysis of both dynamic and static

problems.

Based on the AFEM method (Liu et al. 2004), K and P can be assembled by the

10-particle VCPM element stiffness matrix Kelement and the non-equilibrium force

vector P element , which can be explicitly expressed as:

Kelement =


(
∂2Uαβ
∂x1∂x1

)
2×2

(
1
2

∂2Uαβ
∂x1∂xi

)
2×18(

1
2

∂2Uαβ
∂xi∂x1

)
2×18

(0)18×18

 (2.22)

P element =


(
F1 − ∂Uαβ

∂x1

)
2×1

(0)18×1

 (2.23)

Since the above Kelement and P element for the 10-particle VCPM element are in

the same theoretical framework with the conventional FEM element, this provides an

opportunity to develop a VCPM/FEM interface linkage to seamlessly couple the two

methods

2.2.2 VCPM/FEM Interfacial Coupling Method

Given the above definition of 10-particle VCPM elements, the coupling of

VCPM/FEM method conceptually is very similar to the usage of different types

of elements in the conventional FEM to solve the whole simulation domain. However,

transitional elements should be developed to smoothly link the VCPM and FEM

elements, as shown in Fig 5, where the real circle, broken circle, broken hexagon

and real rectangle in the figure represent the VCPM particle, the virtual VCPM

particle, the effective domain of the VCPM particle and the conventional FEM node,

respectively.
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Figure 5. VCPM/FEM edge-to-edge coupling method

(a) virtual VCPM particles attach to the FE nodes; (b) effective domain of
second-layer interface particle and the contribution of the six springs to the
calculation of forces on the particle; (c) effective domain of first-layer interface
particle and the contribution of four springs and three FE elements to the calculation
of forces on the particle; (d) 10-particle VCPM element defined on the VCPM springs
(spring forces are calculated according to the 10 VCPM particles); (e) 10-particle
transitional VCPM element defined on the transitional VCPM springs (spring forces
are calculated according to the 8 VCPM particles and 2 virtual particles); (f)
10-particle boundary VCPM element defined on the boundary springs (spring forces
are calculated according to the 7 VCPM particles).

Source: Lin, Chen, and Liu (2015)
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When coupling two regions, only one layer of virtual VPCM particles are needed

(see the dotted circle in Fig.5, they are attached on the FEM nodes). For VCPM

particles at the 2nd interface layer, (the particle β in Fig. 5a), one layer of virtual

VCPM particles is defined and attached to the FE nodes in order to eliminate the

boundary effect and to take count the non-local effect from the FEM domain. As

indicated in Fig.5b, the forces exerted on the particle β can be calculated by the

derivation of its six neighbor springs’ strain energies Uspring with respect to the

particle’s coordination as:

Fβ =
∂U1−2

spring

∂xβ
+
∂U1−3

spring

∂xβ
+
∂U1−4

spring

∂xβ
+
∂U1−5

spring

∂xβ
+
∂U1−6

spring

∂xβ
+
∂U1−7

spring

∂xβ
(2.24)

The transitional elements are defined on the spring #1−#6 and #1−#7 , where

the virtual VCPM particles are included to calculate the spring forces. This allows the

FE nodes to be added in the particle β ’s effective domain, making particle β become

equivalent to those bulk particles in the material interiors and avoiding the boundary

effect. For VCPM particles at the 1st interface layer (i.e the particle α right at the

interface in Fig.5a), the same transition elements as those in the second-layer interfacial

particles are defined in the spring #1 - #3 and #1 - #4 to keep the consistency of

the springs forces, as shown in Fig. 5c. However, it should be noted that a portion

of the deformation energy of the spring #1 - #2 and #1 - #5 have already included

in the FE elements ∆#1 −#5 −#6 and ∆#1 −#7 −#2. Therefore, the virtual

particles are excluded in the definition of the corresponding VCPM elements, and the

boundary elements are used in these cases (as indicated in Fig.5f).The forces exerted

on the particle α then can be calculated by:

Fα =
∂U1−2

spring

∂xα
+
∂U1−3

spring

∂xα
+
∂U1−4

spring

∂xα
+
∂U1−5

spring

∂xα
+
∂U1−5−6

element

∂xα
+
∂U1−6−7

element

∂xα
+
∂U1−7−2

element

∂xα
(2.25)
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Since the element energies U1−5−6
element, U

1−6−7
element and U

1−7−2
element have significant influence on

the calculation of froces on the particle α, the size of the interfacial FEM elements

thus is chose to keep the same as the hexagonal packing size of the VCPM particles

to reduce the influence and to readily attach the virtual particles to the FE nodes.

The VCPM/FEM coupling method presented above can be readily implemented

into the general finite element code since both the VCPM and FEM elements are

defined under the same theoretical framework. In fact, we have developed the coupling

algorithm in the FORTRAN for the description of VCPM elements.
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Chapter 3

NUMERICAL RESULTS AND DISCUSSION

In this section, several numerical studies are done using a single edge cracked

rectangular plate model to verify the proposed solution of J-integral. In the numerical

simulation, the material parameters are: Young’s modulus is 69 GPa and Poisson’s

ratio is 0.25. The top edge of model is fixed in both the x-direction and y-direction

(Fig. 6). The plain strain condition is employed, where pure tensile loading with a

displacement of −5× 10−4m is applied on the bottom edge of the model as shown in

Fig. 6. A sharp edge crack is introduced by breaking the interaction of crack surface

particles with its neighbor particles and defining the crack tip as shown in Fig. 6. The

proposed simulation results are also compared with the solution from the commercial

FEM software ABAQUS. The “seam crack” option is used to create the crack and

use special crack tip quadratic elements around the crack tip (“ABAQUS, ABAQUS

Theory Manual and Users Manuanl, version62, Hibbit, Karlsson and Sorensen Inc,

Pawtucket, RI, USA, 2002.” n.d.).

3.1 Stress Response Comparison

Before the comparison of the J-integral, the stress response of the cracked plates

are compared first. Traditional methods like point matching entails inferring the stress

intensity factor from the stress fields in front of the crack tip (Anderson and Anderson

2005).
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Figure 6. Configuration of a rectangular model and Introduction of sharp crack

On the crack plane (θ = 0), KI is related to the stress normal to the crack plane

as: KI = limr→ 0[σyy
√

2πr]

The stress-intensity factor can be inferred by plotting the quantity in square

brackets against distance from the crack tip, and extrapolating to r = 0 as shown

in figure 7. It is shown that for plane strain problems, the numerical results are in

good agreement with the theoretical values with an error of 7%. If we remove some of
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initial particles to obtain the uniform rising slope, the value of KI converges more to

analytical value of FEM as proved from figure 7.

Figure 7. Stress Intensity Factor (KI) with the distance from crack tip

The stress simulation results predicted by VCPM for the plane strain problems

and their comparison with ABAQUS results are shown in Fig. 8. In addition, the

stress normal to the crack plane in mode I is plotted and compared with the same

from ABAQUS results as given in Fig. 8. It is observed that the VCPM has almost

the identical stress distribution with that from the classical FEM in ABAQUS.

Since the J-integral involves the components of stress and displacement fields, it is

of interest to compare these fields with those obtained from sufficiently fine classical

FEM mesh. As shown in Fig 9 and Fig 10, the contour plots of stress field in x and

y-directions are almost identical to the FEM calculations. This comparison verifies

the proposed finite element implementation of VCPM J integral. Since the mesh sizes

are different in both systems and one is of particle nature, somewhat non-uniform

contours may be seen.
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Figure 8. Comparison of stress fields in y-direction in front of the crack tip

Figure 9. Contour plots of stress in y-direction obtained by VCPM and FEM

3.2 Convergence Study

The convergence characteristic of the VCPM model is simulated with different

particle sizes by using the same simulation model and the results are summarized in
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Figure 10. Contour plots of stress in x-direction obtained by VCPM and FEM

Table 1 and Figure 11. As can be seen from figure, the value of J-integral converges as

the number of particles increases. Unlike the classical FEM method, the convergence

for the particle-based J-integral is partially due to the “skin-effect” in the discrete

formulation. The particles at the free edge do not have their complete neighbors as

the unit cell. Thus, if the particle number is small, the impact of the free edge particle

to the entire simulation domain is higher. In the proposed study, no intent to correct

the “skin-effect” is made and it is required additional investigations. The proposed

study increase the total particle numbers and the percentage of free edge particles

reduces and their effect also reduces. Thus, in the following analysis, in order to

make a better comparison with FEM results, the particle radius R = 5× 10−5m (total

number of particles of model is 34874) is used as the convergence study indicates that

this is sufficient for the J-integral estimation

23



Figure 11. Convergence of J-integral with particle density

Table 1. Convergence of J-integral with particle density
Number of Par-
ticles on model’s
bottom edge

21 41 61 81 101

Total number of
particles 1435 5630 12584 22379 34874
Particle Radius
(m) 2.5× 10−4 1.25× 10−4 8.33× 10−5 6.25× 10−5 5× 10−5

J-integral (Pam) 549824 176905 164239 129804 118572
Error(%) 364 49.57 38.86 9.75 0.25

3.3 Path Independence of the Proposed J-integral Calculation Algorithm

Rice (Anderson and Anderson 2005) presented a mathematical proof of the path

independence for the J-integral. The proposed particle-based J-integral estimation

algorithm should also have this property and is verified here. Four different contours

are used for the J-integral calculation and the schematic plot is shown in Fig. 12.

Contour (a) is close to crack tip and contour (d) is away from the crack tip. The

values are given in table 2. The errors for the J-integral estimation is calculated by
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Figure 12. Four different integral contours to compute VCPM J integral

assuming the ABAQUS results as the ground truth. The errors are normalized using

the ABAQUS results and are shown in table 2. It is shown that the path independence

for the proposed J-integral estimation is valid.

Table 2. Path independence of J-integral
Contour a Contour b Contour c Contour d

J integral(Pam) 124793 118572 116012 112847
Error (%) 5.53% 0.27% 1.88% 4.56%

3.4 Accuracy Study

In this section, the accuracy of the proposed J-integral estimation is investigated by

comparing the solutions with that from the ABAQUS for various crack lengths. Due to

the finite dimension of the plate, the geometric correction for the finite dimension will

affect the final J-integral estimation. Results of the proposed J-integral calculation for

VCPM and coupling model and ABAQUS solution are shown in figure 13. Satisfactory

results are observed for different crack lengths. It is seen that the error increases as

the crack length increases. This is probably due to the “skin effect” since the contour

will be close to the free surface boundary when the crack lengths increases. Table 3
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shows the percentage error in J-integral of VCPM and coupling model compared with

ABAQUS FEM model.

Figure 13. J-integral versus crack length in mode I

Table 3. Error in J-integral of VCPM and Coupling model compared with FEM
model
Crack Length (mm) 1 1.5 2 2.5 3 3.5 4

VCPM 4.03% 8.01% 2.09% 5.25% 9.3% 15.93% 21.36%
VCPM/FEM 1.45% 0.64% 2.47% 1.4% 2.58% 4.01% 8.9%

3.5 VCPM/FEM Coupling Model Results

The geometry dimensions and boundary conditions of the static beam problem are

similar to the beam explained earlier just the beams center region is discretized by

VCPM particles as shown in Fig.14 . The material properties are set as E = 69 GPa

and ν = 0.25. The upper edge of beam is fixed in x and y directions and a uniform

displacement field of −5× 10−4 (tensile load) is applied on bottom edge.
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The VCPM/FEM coupling simulation results are firstly compared with those of

FEM and pure VCPM to verify the proposed method, as shown in Fig.17. The Uy

displacements along the center line of the beam are plotted in figure.

To allow a better comparison, the nodes in the FEM model and the particles/nodes

in the VCPM/FEM model are kept at the same coordinates. Also the continuity

of the displacement across the VCPM and FEM interface can be observed through

the introduction of transition elements as shown in fig.15. The figure shows the

displacement contour plots along the top and bottom coupling interface.

The continuity of the displacement across the VCPM/FEM coupling interface can

also be seen in Fig.16, which shows the displacements along the beam’s bottom and

top coupling interface, respectively.

3.5.1 J integral in VCPM/FEM Coupling Model

Since the J integral is already formulated and calculated for VCPM model, it

is of great interest to estimate the J integral value in VCPM/FEM coupling model

which proves the feasibility of the proposed algorithm. The same contour integral

methodology as used above is adopted in the particle region to find J value. For

different crack lengths, the value of J-integral from coupling model is estimated and

compared with those of pure VCPM and FEM model. The figure 13 and table 3 shows

the variation of J-integral with crack lengths and error with FEM model respectively.

Hence, it can be concluded that with the same formulation of J integral in VCPM

model, J integral in VCPM/FEM coupling model also can be accurately estimated.
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Figure 14. The geometry of VCPM/FEM coupling model

3.5.2 Static Crack Growth Simulation using Fracture Criterion

Extensive researches have been proposed to simulate crack initialization, prop-

agation, branching from different engineering discipline. The developed numerical

methods can be categorized into two groups: the continuum-based methods and the
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Figure 15. Uy displacement field for VCMP/FEM coulping model and FEM model

discontinuous approaches. For fracture problems, the classical finite element method

(FEM) uses mesh matching and remeshing techniques which is computationally very

expensive. The cohesive elements does not require very dense mesh near the crack tip

region, but usually requires the crack path as a prior knowledge for the computational

efficiency. eXtended FEM (XFEM) treats the discontinuity via level sets method and

enrich the crack tip elements with analytical solution for the stress or displacement

from linear elastic fracture mechanics. Arbitrary crack branching and coalesce is still
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Figure 16. Particles/nodes displacement at the beam’s bottom and top coupling
interface

challenging in the XFEM framework. The discontinuous approaches, such as lattice

particle models and peridynamics, can handle fracture problems very efficiently. No

additional criteria are needed as the crack growth is a natural outcome of the system

evolution. As the elongation of the connecting bonds exceeds the critical value, it

breaks and the crack propagates automatically.

Interfacial debonding in above beam specimen using a dedicated VCPM region

near crack tip is tested first. The simple bond based critical force failure criterion is

adopted to demonstrate the capability of fracture modeling. Thus, the spring breaks

when,

Fn ≥ Fc (3.1)

where Fn is the normal force and Fc is the critical normal force defined by the

failure criteria. Within the linear elastic fracture mechanics, for a given material,

the above critical force criterion can be derived from the material strength through

Fc = 2Rσs/
√

3 (where R is the particle radius). And it can also be readily related

to the critical energy/ elongation criterion based on the material properties, such as

the fracture toughness KIc = Y σs
√
πa (where a is the initial crack length) and the

critical energy release rate GIc ≈ K2
Ic.
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Figure 17. Comparison of VCPM/FEM simulation results with those of FEM and
VCPM model: Particles/nodes displacements along the center line of the beam

During the simulation, the system’s equilibrium states are evaluated according in

each iteration step and the corresponding spring forces are calculated according to

equation 2.7. Whenever the force of an equilibrated spring exceeds the critical one in

equation 3.1, it is deleted and excluded in the following iteration steps. When the

location of crack tip exceeds the boundaries of particle domain, particle domain is

shifted ahead to accurately capture the crack effects.

In the current simulation, the material parameters of model are set as E = 69

GPa and ν = 0.25 with particle radius R = 1× 10−4m; the springs’ critical force is

set as Fc = 54272N ; and the force increment is chosen as 1× 10−4. The crack growth
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at different loading stages are shown in Fig.18 The section is zoomed to accurately

view the particle region.

Figure 18. The static crack propagation predicted by VCPM/FEM coupling model at
different loading stages. The pictures are colored according to the uy displacement.
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3.5.3 Maximum Force as a Material Property

The maximum force developed in the particle spring in front of the crack tip can

be estimated using the equation 2.7. To prove that maximum force developed in the

spring is a material property, the maximum force for different number of particles i.e.

different mesh sizes is plotted as shown in Fig. 19.

From the curve, it can be inferred that as the particle numbers increases, the

curve converges to a constant value. It means that the maximum force if treated as

a critical force parameter, can be concluded that it is a material property . Since

critical force can be readily related to the critical energy/ elongation criterion based

on the material properties and can be easily derived from a material strength. This

behavior is unlike in classical FEM where the plot of maximum stress developed in

front of the crack tip with element size/mesh density, increases continuously.

Figure 19. Maximum force as a material property

33



Chapter 4

CONCLUSION AND FUTURE WORK

A new non-local particle method-based J-integral estimation algorithm is proposed

in this paper and verified with classical finite element results. The coupling algorithm

is also developed between non-local particle model and classical FEM model. In

the developed coupling method, the VCPM model is implemented in the regions of

interests such as crack initiation and propagation. Several conclusions can be drawn

based on the current investigation-

- The proposed J-integral does not need continuum-based finite element mesh

for the calculation of the contour integral and can be directly calculated using the

particle system solution, which avoid the interpolation using shape function in classical

FEM. It is noted that the used atomic finite element method does not involve any

approximations like shape functions since it uses only the first and second order

derivatives of particle’s strain energy.

- The calculated J-integral is non-local as compared to the classical J-integral since

the traction force on the contour depends on the non-local particle displacement in the

proposed particle-based algorithms. The calculated values are same compared with

the FEM-based calculation and also shows that path-independence of the classical

J-integral.

- The intrinsic “skin-effect” of the discrete formulations affects the computational

efficiency of the J-integral estimation, especially when the contour is close to the free

surfaces. Future study is required to improve this behavior and the proposed study
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suggest two tentative ways to reduce the “skin effect”: increase of particle density and

contour selection should be away from the free surfaces.

- The proposed coupling method is applied in the static beam simulation to find

the J integral. The calculated values for different crack lengths are witinn a range

compared to the FEM based calculation which indicate that the coupling method

works well and also maintains the computational accuracy.

- The static crack growth simulation is performed using coupling algorithm through

simple bond based critical force failure criterion. Unlike classical FEM static simulation

where critical energy release rate criteria is used, coupling model uses simple bond

based critical force failure criterion which is easy and simple to implement.

- The current investigation is only for linear elastic analysis. Additional study

is required for J-integral calculation for nonlinear plastic materials. Additional

investigation is required for the “skin effect” in the particle-based J-integral calculations.

The calculation and application of J-integral for growing crack needs more effort

- More investigation needs to be performed on coupling model. The classical FEM

mesh needs to be of varying size i.e. coarse far from region of interest and gradually

getting denser near the interest region. This will greatly reduce the computer efforts.
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