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ABSTRACT 

In the American Southwest, an area which already experiences a significant number 

of cooling degree days, anthropogenic climate change is expected to result in higher average 

temperatures and the increasing frequency, duration, and severity of heat waves. 

Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles 

County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to 

increase both morbidity and mortality and rising temperatures represent a threat to public 

health. As a result there has been a significant amount of research into understanding 

existing socio-economic vulnerabilities to extreme heat which has identified population 

subgroups at greater risk of adverse health outcomes. Additionally, research has shown that 

man-made infrastructure can mitigate or exacerbate these health risks.  However, while 

recent socio-economic heat vulnerability research has developed geospatially explicit results, 

research which links it directly with infrastructure characteristics is limited. Understanding 

how socio-economic vulnerabilities interact with infrastructure systems is a critical 

component to developing climate adaptation policies and programs which efficiently and 

effectively mitigate health risks associated with rising temperatures.  

The availability of cooled space, whether public or private, has been shown to greatly 

reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of 

which households have access to this infrastructure results in an incomplete understanding 

of the health risks associated with heat. This knowledge gap could result in the misallocation 

of resources intended to mitigate negative health impacts associated with heat exposure. 

Additionally, when discussing accessibility to public cooled space there are underlying 

questions of mobility and mode choice. In addition to captive riders, a growing emphasis on 
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walking, biking and public transit will likely expose additional choice riders to extreme 

temperatures and compound existing vulnerabilities to heat.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Infrastructure and Heat Vulnerability 

Civil infrastructures are vital elements of urban systems that support economic 

development and quality of life. While the services provided by infrastructure are ultimately 

what is valued to and by the public, discussions of infrastructure, particularly in the context 

of climate change resilience, tends towards its physical manifestation (e.g. roadways, bridges, 

pipelines, and transmission lines) (Little 2003). Of course, concerns for service continuity 

motivate these discussions. With the growing threat of climate change, government 

institutions, academics, and infrastructure professionals are assessing climate change risks 

and identifying specific vulnerabilities to critical civil infrastructure. Engineering principles 

and practices are evolving to address these risks and vulnerabilities. These are significant 

achievements, but our focus on physical infrastructure has let us neglect the interface 

between people and the services that these infrastructure systems provide. The global 

population is rapidly urbanizing and with it the frequency of human-infrastructure 

interactions. As we address civil infrastructure questions related to climate change, we should 

better understand how we interface with these systems, what that means today, and what it 

will mean in a climate change impacted future.   

Extreme heat is a leading cause of weather-related death in the United States but there 

is a lack of public recognition of this hazard (NCHS 2014). Unlike other extreme weather 

events, heatwaves are natural disasters that do not leave a physical path of destruction. 

Hurricanes, tornados, and coastal storms can destroy infrastructure leaving lasting reminders 
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of the dangers they pose while sporadic episodes of extreme heat are quickly forgotten as 

temperatures dissipate (Luber and McGeehin 2008). In the absence of adaptation and 

mitigation efforts and human acclimatization, increasing heat-related morbidity and mortality 

due to anthropogenic climate change is expected (Oleson et al. 2015). Increasing average 

temperatures and the increasing frequency, duration, and severity of heatwaves are growing 

threats to public health and there are growing efforts to understand and characterize these 

health risks. Yet, there is little research focused on understanding how civil infrastructure can 

mitigate or compound these heat-health risks.  

Research has shown, and it is widely accepted, that the human health impacts to 

extreme heat, in magnitude and direction, varies both inter- and intra-regionally (Hondula et 

al. 2015). Acknowledging these cross-scale differences, there has been a recent focus on 

studying the non-climatic factors that contribute to heat vulnerabilities in order to develop 

targeted interventions to protect the public during periods of extreme heat (Hondula et al. 

2015; Hunt and Watkiss 2011). The existing literature has largely focused on identifying 

demographic, social and economic determinants of heat vulnerability. These characteristics 

include (but are not limited to): age, race, poverty status, education level, and measures of 

social isolation. By identifying these characteristics researchers have been able to develop 

geospatial assessments of heat vulnerability to help policymakers determine where adaptive 

resources should be deployed (Chow et al. 2012; Harlan et al. 2013; Johnson et al. 2012; Reid 

et al. 2009; Rinner et al. 2010; Weber et al. 2015). What is largely absent from the existing 

heat-health literature, outside of urban heat island research, is an understanding of 

infrastructure characteristics which may lessen or increase health risks associated with 

extreme heat. Research is needed to fill this knowledge gap in order to develop more 

effective and efficient adaptation policies to address a growing threat to public health. In this 



 

 3 

dissertation, I examine characteristics of the coupled land use and transportation systems 

and how these characteristics may mitigate or compound heat-health risks for system users. 

Many cities and transportation planning agencies are actively promoting public transit 

and active modes of transportation for the simultaneous benefits of greenhouse gas emission 

reductions, congestion reduction, improvements in regional air quality, and public health 

improvement (Harlan and Ruddell 2011; Hosking et al. 2011; Sallis et al. 2004; Younger et al. 

2008). While the benefits of public transit use, cycling, and walking are well-established, 

these modes typically require environmental exposure and may increase the risks of negative 

health outcomes during periods of extreme heat. In addition to direct heat-related health 

impacts (heat stroke, heat exhaustion, heat syncope, and heat cramps), exposure to high 

temperatures is also known to exacerbate existing medical conditions leading to additional 

urgent care and emergency room visits, hospitalizations, and potentially early mortality 

(Gronlund et al. 2016; Kovats and Hajat 2008; Schwartz 2005). During periods of extreme 

heat, public health agencies and the national weather service issue warnings and direct people 

to limit outdoor activities (AZDHS 2016; NWS 2016). This directive has the potential to 

limit access to goods and services for those reliant on public transit, cycling and walking for 

mobility. At the same time, mobility needs may require individuals to endure heat exposure, 

the length of which is directly related to how we have designed our transportation-land use 

infrastructure systems. At a time when the world population is rapidly urbanizing, city 

planners are pursuing new land use and development patterns to achieve modal shifts, and 

transportation agencies are heavily investing in transit, bicycle and pedestrian infrastructure. 

Research is needed to understand the heat-health risks for system users and how these risks 

may change due to climate change. With a better understanding of these exposure pathways, 
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we can identify opportunities to limit exposure while still meeting the mobility and 

accessibility needs of people in order to mitigate adverse heat-health outcomes.  

1.2 Case Studies Sites: Los Angeles County, CA and Maricopa County, AZ 

The dissertation focuses on two regions in the American Southwest: Los Angeles 

County, California and Maricopa County, Arizona (Figure 1). These areas encompass two of 

the largest metropolitan regions in the southwestern United States, both in terms of 

population and land area. While both areas are predicted to experience increases in average 

summer temperatures as well as the increasing frequency, duration, and severity of 

heatwaves, interregional climate and topography differences make addressing climate change 

and heat unique to each location. Los Angeles County is spread across five climate zones 

that range from a moderate coastal climate to a high desert climate located in the northeast 

corner of the county (California Energy Commission 2014). While the coastal portion of the 

county typically experiences a moderate summer climate (average daily high of 22 C˚), inland 

temperatures are significantly higher. On average summer highs are 7 C˚ warmer in the San 

Fernando and San Gabriel Valley than on the coast and 12 C˚ warmer in the high desert 

areas. In contrast, extreme heat during the summer is a regular occurrence in Maricopa 

County with daily maximums consistently above 40 C˚ throughout the summer months 

(National Climate Data Center 2015). Though the nature of temperature extremes is quite 

different in these two locations, summer temperatures have been associated with elevated 

health risks and adverse health outcomes in both (Anderson and Bell 2009; Petitti et al. 2015; 

Sheridan et al. 2012). 
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Figure 1: Los Angeles County, CA and Maricopa County, AZ 

There are several other reasons that make these two regions suitable areas of study: 

 Both regions have established extreme heat response plans to address the growing 

threat to public health. 

 Heterogeneous land use characteristics across the regions may limit access to 

necessary goods and services for population subsets during periods of extreme heat. 

 In response to climate change and growing concerns with congestion, cities within 

both regions have emphasized alternative modes (walking, biking, and public transit). 

 There are known spatial disparities in vulnerability to climate change and extreme 

heat (Cooley et al. 2012; Harlan et al. 2012; Reid et al. 2009). 
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1.3 Research Objectives 

The dissertation addresses the following objectives: 

1. Identify public cooling resources and quantifying household measures of 

accessibility to these resources. 

2. Show that the current distribution of public cooling centers could be improved 

and identify locations that should be targeted during network expansion. 

3. Assess and quantify environmental exposure resulting from transit use. 

4. Modify existing transit schedules to reduce ridership heat-health risks. 

1.3.1  Chapter 2: Assessing Household Accessibility to Public Cooling Resources. 

In Chapter 2, I assess the location public cooling resources and develop an 

accessibility index to these resources for individual households. The availability of cooled 

space, whether public or private, has been shown to greatly reduce morbidity and mortality 

risks during periods of extreme heat (O’Neill et al. 2005).  However, we lack fine scale-

knowledge of where this infrastructure exists in cities and, more importantly, who does and 

does not have access to this infrastructure. This knowledge gap could result in a 

misallocation of resources intended to mitigate negative health impacts associated with heat 

exposure. Using Los Angeles and Maricopa as case studies I identify existing public 

infrastructure including cooling centers (a component of extreme heat response plans in 

many cities), which by virtue of being air-conditioned, may help reduce heat-health risks and 

quantify an accessibility metric to these resources for individual households. The metric is 

based on pedestrian access and considers mobility limitations due to concerns for heat 

exposure. 
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1.3.2 Chapter 3: Cooling Center Location Optimization 

 In Chapter 3, I develop a method for strategically locating official cooling centers. 

The provision of public cooling centers is a recommended strategy for emergency heat 

management programs and networks of these centers have been developed in many regions 

including Los Angeles and Maricopa (Uejio et al. 2011). These centers help the public escape 

the heat and prevent long-term heat exposure. However, while these centers have been 

effective at reducing heat health risks there has not been significant thought regarding the 

strategic placement of these facilities. The siting of these facilities ought to consider heat 

vulnerability of the population that would have access to these facilities as well as existing 

resources that could also provide heat relief. By applying location optimization theory, I 

show that re-siting existing facilities could improve regional access to a life-saving resource 

and identify a set of facilities that should be targeted if Los Angeles and/or Maricopa look to 

expand their existing networks.  

1.3.3 Chapter 4: Assessing Transit Exposure 

In Chapter 4, I assess exposure resulting from transit access and waiting time across 

the Los Angeles Metro and Velley Metro systems. The design of public transit systems, both 

stop placement and transit schedules, directly contribute to exposure for riders. For those 

dependent on transit for their mobility needs as well as choice riders, the nature of public 

transit requires exposure that, during heatwaves, may be a health hazard. While convenient 

and frequent service are goals of transit agencies, demand and funding constraints lead to 

variations in transit stop density and vehicle headways. These variations contribute to 

different exposure experiences for transit riders across the system. 
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CHAPTER 2 

HOUSEHOLD ACCESSIBILITY TO HEAT REFUGES: RESIDENTIAL AIR 

CONDITIONING, PUBLIC COOLED SPACE, AND WALKABILITY 

 

This chapter has been published in Environment and Planning B: Planning and Design and appears 

as published with the exception of text and figure formatting. The citation for the article is: 

Fraser, Andrew A, Mikhail V. Chester, David Eisenman, David Hondula, Stephanie Pincetl, 

Paul English, and Emily Bondank (2016) “Household Accessibility to Heat Refuges: 

Residential Air Conditioning, Public Cooled Space, and Walkability.” Environment and Planning B 

(DOI: 10.1177/0265813516657342 )  

1.5 Introduction 

The link between temperature extremes and human morbidity and mortality is well 

established. Currently, heat is a leading cause of weather-related mortality many developed 

countries In the United States, heat exposure resulted in 3,332 deaths between 2006-2010 

(Berko et al. 2014). It is estimated that the 2003 European heatwave contributed to 70,000 

excess mortality events across sixteen countries (Robine et al. 2008) and in May 2015, 

extreme temperatures were blamed for 2,500 deaths in India (Das 2015). In addition, heat 

exposure is known to cause distinct clinical illnesses (e.g. heat cramps, heat exhaustion, heat 

stroke) which often require medical attention. Heat exposure is also known to exacerbate 

preexisting conditions (e.g. respiratory and cardiovascular disease) contributing to additional 

emergency room visits, hospitalizations and premature death (Berko et al. 2014; Luber and 

McGeehin 2008). Although heat has long been a public health issue, programs and policies 

in the United States which explicitly address and manage health risks associated with heat 
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exposure are relatively new (Maller and Strengers 2011). Furthermore, general circulation 

models predict increasing annual average temperatures and the increasing frequency, severity 

and duration of heatwaves (defined as a period of unusually hot and/or humid weather) 

potentially increasing the likelihood of morbidity and mortality resulting from heat exposure 

(Karl and Melillo 2009; Solomon et al. 2011). Urbanization is also a significant driver of 

changes in climate at the regional scale. In cities, temperature increases associated with urban 

growth may rival those associated with global warming and further exacerbate health risks to 

urban populations (Georgescu et al. 2014; Hondula et al. 2014; Stone Jr et al. 2014). To 

address the health risks associated with environmental heat, improvements to strategies used 

to combat heat-related morbidity and mortality will likely be needed to offset the 

consequences of expected future increases in heat exposure.  

Epidemiological studies have shown the presence and use of air conditioning (AC) 

can significantly reduce the health risks associated with higher temperatures (Anderson and 

Bell 2009; Ferreira Braga et al. 2001; Kilbourne et al. 1982; O’Neill et al. 2005; Ostro et al. 

2010). However, there is limited knowledge of the extent of residential access to AC within a 

city and whether this infrastructure is equitably distributed (Bell et al. 2009; O’Neill et al. 

2005).  The epidemiological studies have largely focused on the protective effects of 

residential AC ownership and use but there has not yet been a study which assesses the 

potential for publically available cooled space (instead of, or as a complement to, home air 

conditioning) to mitigate heat-health risks. Despite a lack of research regarding protective 

effects of public cooled space, the known association between residential AC and lower 

incidences of heat-related illness and death has prompted many regions to establish public 

cooling center networks. These networks are comprised of designated public spaces which 
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serve as air conditioned heat refuges for those who may not have in-home access to AC or 

those who may not be able to afford to use it (Uejio et al. 2011).  

While there is limited systematic and scientific knowledge regarding the composition, 

operation, and effectiveness of cooling center networks, a recent public health evaluation of 

the Phoenix Heat Relief Network (set in Maricopa County, Arizona) provides insights for 

one geographic setting (Berisha et al. 2016; MCDPH 2015; MCDPH 2015; MCDPH 2015). 

In Maricopa County, the cooling center network is comprised of a mixture of community 

centers, senior citizen centers, libraries, places of worship, humanitarian organizations, and 

government buildings. Some of the cooling centers are facilities operated by local 

governments, but many other facilities participate voluntarily. The network structure is thus 

more emergent than intentional, and the nature of the network may result in uneven spatial 

and temporal coverage of facility location and open hours (Uebelherr et al. 2015). Most 

facilities in the Phoenix Heat Relief Network operate as a cooling center continuously 

throughout the region’s persistently hot summer months instead of activating during specific 

heat emergencies or warning periods as designated by the National Weather Service or 

public health agencies. In 2014, it was estimated that at least 1,500 people used cooling 

center facilities on a daily basis, although the specific motivation of these visits as driven by 

heat exposure or desire for other services offered at facilities was more difficult to ascertain.  

The network clearly helped many people in the region cope with summer heat, however: 

many of those who visited facilities spent more than an hour in the publicly accessible 

cooled space, and many thousands of bottles of water were distributed over the course of 

the summer (Berisha et al. 2016; MCDPH 2015; MCDPH 2015; MCDPH 2015). It was 

unclear from the public health evaluation if the formal cooling center network is an effective 

or useful resource for all individuals seeking cooling relief in Maricopa County, however, but 
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a 2015 survey of 337 households in the County found that more than 75% of households in 

areas with a high incidence of heat-related illness were unaware of their availability (MCDPH 

2015). 

Previous surveys of individual-level strategies to cope with hot weather reveal that 

official cooling center networks are not the only resource that people use to stay cool 

(Hayden et al. 2011; Kalkstein and Sheridan 2007; MCDPH 2015). One strategy is to use 

non-residential air conditioned space that is publically available, sometimes at a cost, such as 

that which can be found in shopping malls, restaurants, grocery stores, and movie theaters. 

However, there is currently little to no information regarding the distribution of these 

facilities and who may have access to them creating a somewhat limited view of the options 

for and behaviors of people in a city when seeking heat refuge. To more effectively and 

efficiently deploy resources to mitigate the health risks associated with heat a better 

understanding of public and private cooling resources within a city and which households 

have access to them is needed. 

Much of the research on the health-related impacts of heat has focused on socio-

economic vulnerabilities (Harlan et al. 2006; Reid et al. 2012; Reid et al. 2009; Stafoggia et al. 

2006; Uejio et al. 2011). However, studies that have included information about air 

conditioning availability and health outcomes nearly unanimously conclude that air 

conditioning is a significant protective factor (Kovats and Hajat 2008; Naughton et al. 2002; 

O’Neill et al. 2005; Ostro et al. 2010). Multiple authors have suggested that increasing 

prevalence of home air conditioning is a major contributor to decadal-scale declines in heat-

related mortality observed in many developed countries (Davis et al. 2003; Gasparrini et al. 

2015), although one study suggested that increases in air conditioning prevalence was not a 

significant contributor (Bobb et al. 2014). Given the apparent importance of air 



 

 15 

conditioning, we were motivated to explore how the availability of private and public access 

to AC is distributed across cities.  To effectively address public health needs associated with 

heat, cities should consider differences in privately-held resources and public 

accommodations. Residential AC is the primary example of a privately-held cooling resource. 

Publicly accessible cooled spaces include county cooling centers, commercial space, and 

other buildings which may serve as a heat refuge. Establishing where in a city lower 

penetration of residential AC exists is important as it means that there is a potential 

vulnerability that could be mitigated with the deployment of a county cooling center. Beyond 

private cooling resources, knowledge of existing public cooling resources can help to 

effectively locate future cooling resources to areas with few opportunities. Neighborhood-

scale knowledge of the distribution of AC, both private and public, can help cities effectively 

plan for resource investment to mitigate heat vulnerability.  

1.5.1 Cooling Resource Access Case Studies 

Using Los Angeles County, California and Maricopa County, Arizona (whose seat is 

Phoenix), we study how in-home AC and public cooled space are distributed across heat 

vulnerable cities. These areas encompass two of the most populous metropolitan regions in 

the southwestern United States and high summer temperatures and heatwaves in both 

counties have been associated with elevated risks of adverse heat-health outcomes (Petitti et 

al. 2015; Sheridan et al. 2012). We assess the availability of residential AC and accessibility to 

publicly cooled space at a census tract scale in both regions to i) develop a framework for 

comprehensively inventorying privately and publicly accessible cooled space across cities, 

and ii) create new insight into the equitability of access to public cooled space including 

county cooling centers, libraries, and commercial establishments. 
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1.6 Residential Access to Air Conditioning 

We start by assessing the prevalence of private AC, namely central AC in residential 

buildings to identify which areas of each county have lower penetration of the resource 

thereby a greater need for access to public AC. While the presence and use of residential AC 

has been shown to reduce the risk associated with heat-related mortality and morbidity 

during heatwaves, research studying the protective effects of residential AC at the regional 

level has commonly been limited by a lack of fine-scale (e.g., parcel-level) knowledge of 

which households have access to—and are able to use—this infrastructure. To address this 

gap, new methods are needed to develop a systematic understanding of where this 

infrastructure has been deployed and what that means for social heat vulnerability. There are 

several types of in-home AC units including central AC, room or window unit AC, and 

evaporative cooling systems. The relative performance of room/window units and 

evaporative systems during heatwaves compared to central AC has not been established and 

it is unclear if these types of units are effective in reducing the health risks associated with 

heat exposure. 

We start by estimating the prevalence of central air conditioning (CAC) at the 

household scale to highlight areas where this infrastructure is lacking and thus, where 

residents may need to rely on other cooling resources when temperatures exceed healthy 

thresholds. The presence of CAC may not universally lower risks associated with heat and 

there are scenarios in which even those households which have CAC may also need to utilize 

cooling center infrastructure. For example, some households may face constraints in CAC 

use  due to the associated electricity costs, other households may be unable to afford repairs 

to broken CAC units, and others may prefer not to use CAC based on personal comfort 

preferences and/or environmental concerns (Hayden et al. 2011; MCDPH 2015). 
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 The presence of CAC at the household level is identified through building 

characteristic data available in the county assessor’s databases and from the American 

Household Survey(AHS), which details the presence of CAC as well as other building level 

characteristics, such as age and type (e.g. single family, multifamily) (Census 2010; Los 

Angeles County Assessor Office 2009; Maricopa County Assessor Office 2010). Los Angeles 

and Maricopa assessor databases contain different levels of detail regarding CAC. In Los 

Angeles, the assessor’s database details the presence of CAC in single family homes and 

small (< 4 stories) multi-family buildings but does not include these details for other 

residential buildings, such as large multifamily buildings. The presence of CAC in these 

buildings was estimated with the AHS (Census 2010). In contrast, the Maricopa assessor 

database contains information on the presence of CAC for all residential building types. 

The presence of CAC differs between the two regions and is likely influenced by average 

regional temperatures and the relative age of the residential infrastructure. In Maricopa, 

where daily summer maximum temperatures typically exceed 40˚ C, we find that 

approximately 95% of all households have CAC. In addition to the desert climate, the high 

prevalence of CAC may also be due to the relative age of buildings in the region. In 1950, 

around the time that installation of in-home CAC began to take hold, approximately 350,000 

people lived in the region (Cooper 1998). By 2010, Maricopa County was home to 4 million 

people largely housed in homes built after the widespread use of CAC became common 

(Census 2010). The 5% that do not have CAC typically rely on evaporative cooling systems, 

and are mostly found in the oldest residential developments in the region (Figure 2). In 

contrast, Los Angeles, which is spread across 5 different climate zones that range from a 

moderate coastal climate to a high desert climate located in the northeast corner of the 

region (CEC 2014), CAC is not nearly as common. While less than 50% of households have 
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CAC, the distribution of households with central AC is skewed towards the areas of the 

region which experience higher average daily summer temperatures. The results show that 

there is limited residential availability of CAC, with less than 30% of the households 

possessing CAC along the coastline and in the Los Angeles Basin, where the typically 

moderate weather is influenced by the proximity of the Pacific Ocean. As average daily 

temperatures increase relative to the distance from the ocean, the presence of household 

CAC also increases. In the San Fernando and San Gabriel Valley, which experience summer 

highs typically 7 Co warmer than the temperatures on the coast, 60% of all households have 

CAC. Moving northeast into the high desert where average summer temperatures are 12 Co 

warmer, 82% of residential households have CAC (NCDC 2015). Similar to Maricopa, areas 

associated with newer development within each climate region in Los Angeles tend to have a 

higher penetration of CAC. 

 

Figure 2 Proportion of Households with Central Air Conditioning (note the differing 
scales)  
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1.7 Access to Public Cooled Space  

As with residential AC, little is known about the distribution and availability of cooling 

centers and it is unclear whether these resources are deployed to effectively mitigate health 

risks. Additionally, most attention is focused on the availability of county cooling centers and 

there remains limited insight into how publicly accessible cooled commercial space is 

distributed.    

The location of county cooling centers is determined by the availability of 

government buildings, social services, and volunteer organizations. While some cooling 

centers are established by government agencies, other facilities participate in the network on 

a volunteer basis. This results in an ad hoc network that may not be optimally located to 

serve particularly vulnerable populations. In addition to designated cooling centers there may 

also be other public places which, by virtue of being air-conditioned, may help to reduce the 

health-related risks of heat. We explore the distribution of official cooling centers and other 

public spaces (collectively referred to as cooling resources) that could provide heat relief. We 

then develop household level accessibility measurements to these locations. 

 Measurements of accessibility, defined as the relative generalized transportation costs 

of reaching activity locations from given origins, has been a research topic in transportation 

planning, urban planning and geography for many decades (Geurs and Van Wee 2004; 

Hansen 1959; Langford et al. 2012; Luo and Qi 2009).  Generalized transportation costs 

include both monetary (e.g. Transit Fare) and non-monetary (e.g. Time) costs of a journey. 

Fundamentally, accessibility studies aim to understand the impact of urban form (spatial 

distribution of origins and activity locations) and the transportation system (network 

connectivity and modal options) on an individual’s ability to fulfill needs and desires (Scott 

and Horner 2008). Accessibility methods have been utilized to understand transportation 
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related exclusion, health care facility service areas, economic impacts of transportation 

infrastructure investment, the effect of public transit on employment opportunities, and the 

existence of food deserts (Páez et al. 2012).   

Because historic land use and transportation policies have led to the separation of land 

uses which then contributes to disproportionate individual access to goods and services, 

household accessibility metrics are an essential tool to assess inequalities. Two of the most 

common methods of developing an accessibility measurement are the cumulative 

opportunities and gravity-based approaches. Cumulative opportunities typically consider the 

total number of opportunities within a given distance or travel-time threshold (e.g. total 

number of job locations within 30 miles). Gravity-based approaches consider the generalized 

costs associated with reaching alternative destinations such that opportunities with lower 

generalized costs receive a larger weighting than opportunities associated with higher 

generalized costs (Páez et al. 2012).  Where previous accessibility studies are often based on 

the generalized costs between centroid locations, increasing computational power and 

spatially disaggregate data allow for the development of accessibility measurements at a more 

granular scale. Using a modified cumulative opportunity and gravity-based approach we 

estimate household level access to cooling resources to understand access disparities across 

each region. 

1.7.1 Accessibility Methods 

1.7.2 Cooling Resources 

We consider three types of publicly accessible cooled space: county cooling centers, 

libraries, and public/commercial space. The first category is official cooling centers which 

are established by local agencies as  air-conditioned public places of refuge. These facilities 
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are generally targeted towards those without AC at home, the elderly, and the homeless, 

though they are open to the public. In addition to providing a cooled space, these centers 

sometimes provide additional services, including basic medical care. The second category is 

public libraries, which are not members of the official cooling center network. While these 

spaces are not intended for use as heat relief locations, they are public spaces available at no 

cost to all residents, including vulnerable and homeless individuals (ALA 2012). The third 

category consists of public and commercial spaces including malls, restaurants, and 

museums. As with libraries, these spaces are not primarily intended as spaces of heat relief, 

but the cooled space can be thought of as an ancillary benefit to those who seek out goods 

and services at these locations. 

1.7.3 Data Sources 

Household accessibility to cooling resources is estimated using spatially disaggregated 

data for residential and cooling center locations. Residential and cooling center locations 

were developed from several data sources. Residential locations were determined from Los 

Angeles and Maricopa property assessment rolls which include information on property use 

and building type for all taxable land parcels (Los Angeles County Assessor Office 2009; 

Maricopa County Assessor Office 2010). There are approximately 2.1 million residential 

parcels in Los Angeles and 1.1 million in Maricopa. Residential parcels, ranging from single 

family homes to large multi-family apartment complexes, were weighted by the total number 

of dwelling units on each parcel to understand cooling center accessibility at a household 

scale. Addresses of official cooling centers were geocoded from information provided by the 

Los Angeles County Emergency Survival Program and the Maricopa Association of 

Governments (the regional agencies responsible for network coordination) for the 2014 
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cooling center network (County of Los Angeles 2014; MAG 2014). In 2014, there were 142 

official cooling centers in Los Angeles and 45 in Maricopa. It should be noted that the 

locations of cooling centers may change from year to year depending on voluntary 

participation which would affect our results. Public library locations in Los Angeles and 

Maricopa were geocoded through an address database (Publiclibraries.com 2015). Libraries 

already serving as official cooling centers were excluded to prevent double counting. 

Libraries associated with educational institutions and specialty interests were excluded from 

the analysis as they are unlikely to serve the general population. The locations of other public 

spaces which may serve as cooling resources were also determined from property assessment 

rolls. For interregional comparisons, a crosswalk was developed to link similar property use 

and building codes between the two counties. Public spaces that directly offer goods or 

services to the general public were selected as potential cooling resource locations. It is 

assumed that individuals would need to remain in a cooled space for a prolonged time 

period to receive effective heat relief.  Therefore, we have excluded public building types 

where the estimated transaction time is less than 30 minutes. By this definition county 

parcels coded as indoor shopping malls, movie theatres, and restaurants are accepted as 

potential cooling resources, while banks and gas stations (services <30 minutes) and 

commercial offices and private social clubs (not for the general public) were excluded.  

1.7.4 Accessibility Measurement 

Measures of accessibility for residential access to cooled space were based on the 

distance between any pair of cooling resource locations and individual residential parcels.  

While motorized modes of transportation are often utilized in accessibility studies, we 

developed an accessibility metric based strictly on pedestrian access. In this way, we defined 
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a metric that describes accessibility for a particularly vulnerable subset of the population 

(those without motorized transport). In a recent survey of Maricopa County cooling centers, 

more than one third of all patrons walked to the facility (Berisha et al. 2016; MCDPH 2015).  

Additionally, while previous accessibility metrics are often based on generalized costs 

between centroid to centroid or centroid to specific locations, we developed our accessibility 

metrics for individual households.. Using this approach, individual household accessibility 

metrics can be aggregated to any geographic scale to allow for commensurate comparisons 

with socio-economic information. 

Cooling center accessibility is defined by three parameters: walking time, walking 

speed, and the existing street network. The National Household Travel Survey (NHTS) is 

used to assess typical walking durations to set the maximum walk time for those attempting 

to seek heat relief. The 75th percentile for walking duration for non-leisure trips, 15 minutes, 

was selected as the maximum time for this analysis (USDOT 2009). The 15 minute time 

horizon was then coupled with average walking speeds for sedentary elderly (1.4 kilometers 

per hour) , average elderly (3.5 kilometers per hour), and active adults (5.6 kilometers per 

hour) to estimate maximum walking distances (do) (Bohannon and Andrews 2011). These 

distances (0.33, 0.89, and 1.4 kilometers respectively) were assessed within the regional road 

networks to establish catchment areas for each cooling resource. Assuming individuals 

would select the shortest path,  ArcGIS’s Network Analyst tool was used to generate the 

catchment areas for every cooling resource location (ESRI 2015). The tool relies upon a 

path-based algorithm which computes linear distance along a network from a specified 

origin. All roadway types except those designated as freeways or highways were included. As 

these catchment areas are defined by the street network, it is assumed that all pedestrian 

travel occurs along adjacent sidewalks. We acknowledge that the design of certain streets 
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(particularly those without sidewalks or that are not pedestrian friendly) may be inimical to 

walking, but we were not able to identify information on the “pedestrian friendliness” of 

streets to incorporate into our assessment. Potential shortcuts through open space parcels 

are excluded from the analysis. A residential parcel (i) is considered to have access to a 

cooling resource (j) if it falls within the catchment area of cooling resource (j) (Figure 3). 

 

Figure 3 Residential Access to Cooling Resources by Catchment Area Method. 
Households are considered to have access to a cooling resource (j) if they fall within its 
catchment area which is defined by the geometry of the street network and maximum 
walking distance. 

 
A modified cumulative opportunities and gravity-based approach is used to estimate 

an accessibility index for each residential parcel in Los Angeles and Maricopa. First, each 

type of cooling resource (j) is assigned a weight (wj) which describes the utility derived at 

each type of facility, based on the quality of relief available at the facility and estimates of the 

time an individual can stay there and the associated monetary cost (Table 1). Locations 
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where an individual may stay for extended periods of time for little to no monetary cost 

receive higher weightings than facilities with shorter lengths and higher associated costs. For 

example, official cooling centers which are dedicated to providing heat relief and where an 

individual is free to stay as long as the center is open received a higher weight than a 

restaurant where heat relief is an ancillary benefit to goods and services which have a 

monetary cost and a potential time limit. Facility types were determined using assessor 

database property use codes. Second, the total amount (K) of each type of cooling 

centeraccessible by an individual residential parcel (i) is determined by overlaying the 

catchment areas and residential parcel locations. Traditionally, accessibility measurements 

often consider the utility of each additional location to be equivalent. For an individual 

household, each cooling center (j) may provide the same heat relief utility; however, the 

temporal aspect of access should be considered when developing an accessibility metric. 

Because an individual may only occupy a single space at any time, the utility of each 

additional cooling center diminishes. We included a constant (xj) to describe the diminishing 

marginal utility of each additional cooled space that is accessible from each residential parcel. 

This is analogous to the travel friction coefficient (B) utilized in gravity based methods 

(Hansen 1959). The accessibility measure at a residential parcel (i) can be expressed as:  

𝐴𝑖 = ∑ ∑ 𝑊𝑗 ∗ 𝑑𝑖𝑗
−Β ∗ 𝑘−𝑥𝑗

𝐾𝑖𝑗

𝑘=1𝑗∈𝑆𝑗

 

where Sj is the set of all cooling centers j within a specified threshold distance from 

resideintial parcel i and dij is the walking distance between i and j.Since there are no studies 

that describe the declining marginal utility of access, we considered four values (0, 1, 1.25, 2) 

for the diminishing utility coefficient to evaluate the sensitivity of the accessibility measure to 
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this parameter. Because accessibility is determined at distances less than 1.4 km, we utilize 

zero for the travel friction coefficient based on the underlying assumption that there would 

be no deterrence over such short distances though we included it in the index formulation 

for future research.  

 

Table 1: Cooling Resource Types and Associated Accessibility Weights 

Facility Type (j) 
Length of 

Stay (hours) 

Estimated 

Cost  

($) 

Weight 

(Wj) 

Official Cooling Centers 4+ None 2 
Libraries 4+ None 1 
Indoor Shopping Mall 4+ None-Low 0.5 
Outdoor Shopping Center with 
Multiple Retail Locations 

1-4 Low 0.4 

Department Store/Big Box Retail 1-4 Low 0.4 
Supermarket/Grocery Store 1-2 Low 0.35 
Museums 4+ Medium 0.3 
Hotel/Motel Indefinite High 0.3 
Movie Theater, Bowling Alley, 
Indoor Miniature Golf, Ice & 
Roller Skating Rink 

1-4 Medium 0.25 

Restaurant/Bar 1-2 Low-High 0.2 
General/Unspecified Commercial 
Retail 

1 Low-High 0.2 

Amusement Facilities 4+ High 0.1 

 

To develop a neighborhood-level accessibility index, household-level accessibility 

measurements were aggregated at the census tract (Census 2014). The mean of household 

accessibility scores are utilized to characterize neighborhood level accessibility.  
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1.7.5 Results 

Cooling resources are unevenly distributed throughout each region resulting in differing 

accessibility measurements from one census tract to another. The spectrum of residential 

access to publically available cooled space ranges from neighborhoods which have access to 

many locations, to neighborhoods where residents would not have access to even a single 

public cooling resource.  We find that the land use characteristics, roadway network, walking 

speeds, total cooling resource opportunities, and declining marginal utility coefficient can all 

have large impacts on index values. 

There are substantial interregional and intraregional differences for residential access to 

cooling resources. These are detailed in Table 2 which shows the proportion of residential 

parcels served by the various types of cooling resources in Los Angeles and Maricopa 

Counties for the three catchment area sizes. Residential access to official cooling centers is 

low in both counties because there are a limited number of these facilities. At average 

walking speeds, official cooling centers serve an average of 460 residential parcels in Los 

Angeles and 430 in Maricopa. In total, these cooling center networks are accessible only to a 

small fraction of households in each county, approximately 3% and 2% respectively. While 

there are slight interregional differences in access to official cooling centers, which might be 

expected given that Los Angeles has three times as many locations as Maricopa; there are 

notable differences among the other two categories. Interregional accessibility differences are 

a function of the total number of locations but are also dependent on the density of the built 

environment.  Areas with higher building densities lead to shorter distances travelled 

between origin and destination. Additionally, high intersection densities increase the 

connectivity to the network leading to larger catchment areas (Leslie et al. 2007; Scott and 

Horner 2008).  
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Table 2 Proportion of households served by at least one cooling resource by resource 
type and walking speed. 

 

Official Cooling 
Center Library Commercial 

Walking 
Speed 

Slow Average Fast Slow Average Fast Slow Average Fast 

Los Angeles 0.3% 3% 10% 1% 11% 29% 36% 80% 91% 

Maricopa 0.3% 2% 5% 0.2% 2% 7% 7% 39% 69% 

 

We quantified the effect of intersection and parcel density on access to cooling 

resources. Figure 4 illustrates the parcel and intersection density distributions for census 

tracts in Los Angeles and Maricopa. The mean parcel density in Los Angeles is 870/km2 

while the mean intersection density is 89/km2. In contrast, the Maricopa means are 580 

parcels/km2 and 63 intersections/km2. In addition to having a built environment more 

suited for walkable access, the zoning paradigm in Los Angeles is more heterogeneous than 

Maricopa, which decreases the relative distances between residential and non-residential 

parcels. Based on these characteristics alone, it can be expected that residents in Los Angeles 

would have greater access to cooling resources of any kind than their counterparts in 

Maricopa.  
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Figure 4 Intersection and Parcel Density by Census Tracts 

Developing an accessibility index with household level resolution makes it easier to 

understand inter- and intra-regional accessibility differences. Aggregated at the census tract 

scale, the results illustrate how access to cooled space differs across the two regions; it also 

indicates which areas may be particularly vulnerable due to a lack of available cooling 

resource infrastructure. Moreover, individual walking speed and the declining marginal utility 

coefficient have a significant impact on the accessibility index (Table 3). Across all 

permutations, census tracts in Los Angeles consistently have higher accessibility scores than 

those in Maricopa. The most significant factor impacting the inter-regional accessibility score 

discrepancy is the relative proximity of commercial space and residential parcels. The 

interregional differences are the most pronounced when the marginal utility coefficient is 

zero, i.e., each cooled space has equal weight in terms of its utility (Table 3). As the marginal 

utility coefficient increases, that is, that each additional accessible cooled space is worth less 

and less to those seeking a heat refuge, the relative difference between the two counties 
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decreases. Higher coefficients may offer a more balanced view of cooling resource 

accessibility by limiting the range of accessibility scores. When all accessible cooled spaces 

are weighted equally, the range of accessibility scores is significantly impacted by mixed use 

neighborhoods where residents have access to numerous locations. Further research is 

needed to determine an appropriate coefficient, which likely varies for each cooling resource 

type. Also noted in Table 3 is the correlation between accessibility scores with parcel and 

intersection density.  The coefficient of determination (R2) ranges between 0.32 and 0.48 

between the 12 permutations which means that parcel density and intersection density are 

important determinants of access to publically available cooled space. While the variance is 

not fully explained by parcel and intersection densities, these measures may be good starting 

points to evaluate neighborhood access to other goods and services.  

Table 3: Mean Census Tract Accessibility Index Score. In addition to total resource 
opportunities, index scores are influenced by the declining utility coefficient, walking speed, 
parcel density and intersection density. 

  

Declining 

Utility 

Coefficient

Walking 

Speed
Los Angeles Maricopa

Correlation with 

Parcel and 

Intersection 

Density

Slow 1.58 0.14 0.38

Average 16.60 1.60 0.45

Fast 39.89 5.29 0.46

Slow 0.53 0.09 0.41

Average 1.80 0.55 0.48

Fast 2.69 1.21 0.46

Slow 0.46 0.08 0.41

Average 1.36 0.48 0.45

Fast 1.99 1.02 0.41

Slow 0.34 0.07 0.40

Average 0.87 0.38 0.37

Fast 1.31 0.76 0.32

0

1

1.25

2
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Accessibility scores vary across each region and tend to be highest in urban areas and 

lowest in fringe suburbs. Figure 5 illustrates the mean accessibility score for Los Angeles 

and Maricopa counties at the census tract scale. These scores reflect all three walking speeds 

and a marginal utility coefficient of 2. At slow walking speeds, access scores tend to be 

highest in older areas of each region. At the neighborhood scale we find that cooling 

resources are more accessible in Los Angeles than in Maricopa County. In the Los Angeles 

Basin and San Fernando Valley area of Los Angeles, most neighborhoods have access to at 

least at least one cooled space within 0.87 km. At 1.4 km the only areas of Los Angeles with 

limited access are the neighborhoods located in Palos Verdes, the Santa Monica Mountains, 

and the San Gabriel Mountains.  Palos Verdes is a large, affluent, residential neighborhood 

located just north of Long Beach, CA with relatively low intersection and parcel density as 

well as a limited number of cooling resources. Intuitively, one might expect the 

neighborhoods associated with the Santa Monica and San Gabriel foothills and mountains to 

have limited access due to the topography and limited development. 

  In contrast, Maricopa County, a region that has experienced rapid growth since the 

early 1990s, has significantly lower accessibility scores across all three walking speeds. In 

addition to lower building and intersection densities, one of the primary contributors to this 

difference is the large separation of residential developments from other land uses leading to 

greater distances between residential locations and cooling resources. Much of the 

population growth in Maricopa since 1990 has been accommodated by fringe suburban 

growth which is characterized by large residential developments served by few commercial 

centers (Census 2010; Heim 2001). One of the most significant contrasts between the two 

regions is the relative proportion of census tracts which receive an average access score of 

zero (Table 4).  
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Table 4: Proportion of Census Tracts with an Average Accessibility Score of Zero 

 
Walking Speed 

 
Slow Average Fast 

Los Angeles 4% 1% 0.4% 

Maricopa 25% 9% 5% 
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Figure 5 Neighborhood Accessibility to Cooling Resources. The figure illustrates the 
effect of walking speed on mean household accessibility index score for each census tract. 
Land-use and street network characteristics significantly impact individual access to cooling 
resources. 
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1.8 Discussion 

 From our analysis come three major findings. First, officially designated cooling 

centers are unlikely to serve large portions of the population in both counties. Second, 

commercial cooled public spaces are widely dispersed and could provide access for large 

portions of the population in each region. Lastly, land use characteristics and the design of 

the street network impact individual household accessibility to cooled spaces.   

The goal of cooling center networks is to provide relief on particularly hot days and 

during prolonged heatwaves. However, given the limited number of locations of official 

cooling centers, there is an underlying assumption that residents have adequate 

transportation to these locations. This assumption is problematic for several reasons. As we 

show, these locations can only serve a small fraction of households in each region if the 

transportation mode utilized was walking. For most households to reach these resources 

some form of motorized transport would be needed (either personal or public). We could 

generally expect households with access to automobiles to have the financial means to utilize 

other relief resources making them unlikely to seek out designated cooling centers. Public 

transportation provides another potential means for accessing these locations; however, 

access may not be universally available or practical for several reasons.  Public transit use 

would necessitate heat exposure resulting from ingress/egress (which also requires modest 

physical activity further exacerbating potential heat stress) and waiting time at transit stop 

locations increases heat-related health risks which cooling centers attempt to mitigate (Fraser 

and Chester 2016; Karner et al. 2015) .This is potentially more problematic in areas where 

transit service is infrequent and/or unreliable. For some groups, such as the elderly, which 

have some of the highest risk levels associated with heat exposure, designated cooling 

centers may be inaccessible due to a lack of mobility options (Luber and McGeehin 2008; 
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Taylor and Tripodes 2001). Designated cooling centers may help reduce risks but the results 

suggest that they likely serve only a small fraction of households. To increase the 

effectiveness and coverage of official cooling centers, locations should be optimally chosen 

to serve those at greatest risk and in accordance with transportation provisions. Future 

efforts to aid in the optimization of cooling center networks and other public resources 

aimed at reducing heat exposure could engage additional data sources, including incidence of 

heat-related morbidity and mortality and its spatial variability within the city (Harlan et al. 

2013; Hondula et al. 2015), vulnerability indicators (Reid et al. 2009), or additional survey-

and interview-based data about air conditioning use and constraints (Hayden et al. 2011).  

Based on their quantity and distribution, cooled public commercial space has the greatest 

potential to provide relief during heatwaves to regional populations. However, since these 

spaces are not intended for use as heat relief locations they likely do not provide ancillary 

health services to address negative heat-health outcomes. It should be acknowledged that 

these spaces likely have different operating hours and capacity constraints which cannot be 

determined through available data. Future research could develop a time- and capacity-

dependent accessibility index for these public buildings. While these spaces do not provide 

the same quality of service that might be found at formally designated cooling centers, they 

can provide heat relief. Publically accessible cooling resources and the ability of nearby 

households to utilize these spaces should be considered when deploying additional resources 

to mitigate the health risks associated with heat exposure.Additionally heat management 

programs could stress the importance of cooled space and suggest the use of these types of 

facilities for those without in-home AC and for those whose mobility may be constrained. 

This analysis reflects a type of theoretical accessibility score, but there could also be 

important social and cultural dynamics at work in terms of the types of people who are 
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willing to/welcome at/able to visit certain types of locations that could provide additional 

constraints on accessibility.  

In both Los Angeles and Maricopa counties, accessibility to cooling resources 

decreases when moving from the urban areas to the outlying suburbs. Both counties have 

developed around the automobile, which resulted in transportation land-use decisions 

emphasizing automobile mobility over other modes.  The disaggregation of land uses 

(residential and commercial) further increases travel costs for accessing necessary goods and 

services. The transportation and land-use systems in both regions, which cater to the 

automobile, place greater generalized transportation costs on the outer regions. The 

declining accessibility from the core to the outer areas results from decreasing parcel density, 

decreasing intersection density, and the increasing homogeneity of land use (e.g. separation 

of residential and commercial land uses). Households in the suburbs have limited access to 

cooled space via walking and would be the most reliant on motorized forms of 

transportation in order to access these resources. This effect is more pronounced in Phoenix 

where residential developments tend to be larger and commercial locations are clustered in 

commercial parks 

The relative increase in risk for negative heat-health outcomes that may be associated 

with a lack of access to cooled space may be disproportionate depending on socio-economic 

variables. Though extreme heat can adversely affect the health of anyone, there are 

population subsets which may be particularly vulnerable. Previous research has shown these 

subsets, which include the elderly, low-income, and socially or linguistically isolated, exhibit 

higher morbidity and mortality incidence rates during hot weather. To minimize overall 

health risks associated with heat, policies and programs should target areas of cities that lack 
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both the infrastructure to mitigate the effect of heat and those where residents may be more 

vulnerable to heat based on intrinsic socio-economic characteristics. 

  



 

 38 

1.9 References 

ALA (2012). "Policy Statement: Library Services to the Poor." American Library Association, 
Chicago, IL. 

Anderson, B. G., and Bell, M. L. (2009). "Weather-Related Mortality: How Heat, Cold, and 
Heat Waves Affect Mortality in the United States." Epidemiology (Cambridge, Mass.), 
20(2), 205-213. 

Bell, M. L., Ebisu, K., Peng, R. D., and Dominici, F. (2009). "Adverse health effects of 
particulate air pollution: modification by air conditioning." Epidemiology (Cambridge, 
Mass.), 20(5), 682. 

Berisha, V., Hondula, D., and Roach, M. (2016). "Assessing Adaptation Strategies for 
Extreme Heat: A Public Health Evaluation of Cooling Centers in Maricopa County, 
Arizona." Weather, Climate and Society, In Review. 

Berko, J., Ingram, D. D., Saha, S., and Parker, J. D. (2014). "Deaths attributed to heat, cold, 
and other weather events in the United States, 2006–2010." National Center for 
Health Statistics, Hyattsville, MD, 1-16. 

Bobb, J. F., Peng, R. D., Bell, M. L., and Dominici, F. (2014). "Heat-related mortality and 
adaptation to heat in the United States." Environmental Health Perspectives (Online), 
122(8), 811. 

Bohannon, R. W., and Andrews, A. W. (2011). "Normal walking speed: a descriptive meta-
analysis." Physiotherapy, 97(3), 182-189. 

CEC (2014). "Building Climate Zones." California Energy Commission, Sacramento, CA. 

Census (2010). "American Community Survey." U.S. Bureau of the Census, Washington, 
D.C. 

Census (2010). "American Housing Survey." U.S. Bureau of the Census, Department of 
Housing and Urban Development, Washington D.C. 

Census (2014). "TIGER/Line Shapefile - Census Tract Boundaries." US Bureau of the 
Census, ed., U.S. Bureau of the Census, Washington, DC. 

Cooper, G. (1998). Air-conditioning America: Engineers and the Controlled Environment, 1900-1960, 
The Johns Hopkins University Press, Baltimore, MD. 

County of Los Angeles (2014). "Los Angeles County Community Cooling Centers." 
Emergency Survival Program, Los Angeles, CA. 

Das, K. N. (2015). "India minister blames climate change for deadly heatwave, weak 
monsoon." Reuters. 



 

 39 

Davis, R. E., Knappenberger, P. C., Michaels, P. J., and Novicoff, W. M. (2003). "Changing 
heat-related mortality in the United States." Environmental Health Perspectives, 111(14), 
1712. 

ESRI. 2015. ArcGIS Desktop Extension - Network Analyst Environmental Systems 
Research Institute, Redlands, California. 

Ferreira Braga, A. L., Zanobetti, A., and Schwartz, J. (2001). "The Time Course of Weather-
Related Deaths." Epidemiology, 12(6), 662-667. 

Fraser, A., and Chester, M. (2016). "Transit System Design and Vulnerability of Riders to 
Heat." Journal of Transport & Health, In Review. 

Gasparrini, A., Guo, Y., Hashizume, M., Kinney, P. L., Petkova, E. P., Lavigne, E., 
Zanobetti, A., Schwartz, J. D., Tobias, A., and Leone, M. (2015). "Temporal 
variation in heat–mortality associations: a multicountry study." Environmental Health 
Perspectives, 123(11). 

Georgescu, M., Morefield, P. E., Bierwagen, B. G., and Weaver, C. P. (2014). "Urban 
adaptation can roll back warming of emerging megapolitan regions." Proceedings of the 
National Academy of Sciences, 111(8), 2909-2914. 

Geurs, K. T., and Van Wee, B. (2004). "Accessibility evaluation of land-use and transport 
strategies: review and research directions." Journal of Transport Geography, 12(2), 127-
140. 

Hansen, W. G. (1959). "How accessibility shapes land use." Journal of the American Institute of 
Planners, 25(2), 73-76. 

Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., and Larsen, L. (2006). 
"Neighborhood microclimates and vulnerability to heat stress." Social science & 
medicine, 63(11), 2847-2863. 

Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., and Petitti, D. B. (2013). 
"Neighborhood effects on heat deaths: social and environmental predictors of 
vulnerability in Maricopa County, Arizona." Environmental Health Perspectives (Online), 
121(2), 197. 

Hayden, M. H., Brenkert-Smith, H., and Wilhelmi, O. V. (2011). "Differential adaptive 
capacity to extreme heat: a Phoenix, Arizona, case study." Weather, Climate, and Society, 
3(4), 269-280. 

Heim, C. E. (2001). "Leapfrogging, urban sprawl, and growth management: Phoenix, 1950–
2000." American Journal of Economics and Sociology, 60(1), 245-283. 

Hondula, D. M., Davis, R. E., Saha, M. V., Wegner, C. R., and Veazey, L. M. (2015). 
"Geographic dimensions of heat-related mortality in seven US cities." Environmental 
research, 138, 439-452. 



 

 40 

Hondula, D. M., Georgescu, M., and Balling, R. C. (2014). "Challenges associated with 
projecting urbanization-induced heat-related mortality." Science of the Total Environment, 
490, 538-544. 

Kalkstein, A. J., and Sheridan, S. C. (2007). "The social impacts of the heat–health 
watch/warning system in Phoenix, Arizona: assessing the perceived risk and 
response of the public." International journal of biometeorology, 52(1), 43-55. 

Karl, T. R., and Melillo, J. M. (2009). Global climate change impacts in the United States, 
Cambridge University Press, New York, NY. 

Karner, A., Hondula, D. M., and Vanos, J. K. (2015). "Heat exposure during non-motorized 
travel: Implications for transportation policy under climate change." Journal of 
Transport & Health, 2(4), 451-459. 

Kilbourne, E. M., Choi, K., Jones, T., and Thacker, S. B. (1982). "Risk factors for heatstroke: 
A case-control study." Journal of the American Medical Association, 247(24), 3332-3336. 

Kovats, R. S., and Hajat, S. (2008). "Heat stress and public health: a critical review." Annu. 
Rev. Public Health, 29, 41-55. 

Langford, M., Fry, R., and Higgs, G. (2012). "Measuring transit system accessibility using a 
modified two-step floating catchment technique." International Journal of Geographical 
Information Science, 26(2), 193-214. 

Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., and Hugo, G. (2007). "Walkability 
of local communities: Using geographic information systems to objectively assess 
relevant environmental attributes." Health & Place, 13(1), 111-122. 

Los Angeles County Assessor Office (2009). "Los Angeles County Assessor Database."Los 
Angeles, CA. 

Luber, G., and McGeehin, M. (2008). "Climate change and extreme heat events." American 
journal of preventive medicine, 35(5), 429-435. 

Luo, W., and Qi, Y. (2009). "An enhanced two-step floating catchment area (E2SFCA) 
method for measuring spatial accessibility to primary care physicians." Health & Place, 
15(4), 1100-1107. 

MAG (2014). "Water Hydration Stations and Refuge Locations, Summer 2014." Maricopa 
Association of Governments, Phoenix, AZ. 

Maller, C. J., and Strengers, Y. (2011). "Housing, heat stress and health in a changing climate: 
promoting the adaptive capacity of vulnerable households, a suggested way forward." 
Health Promotion International, 26(4), 492-498. 

Maricopa County Assessor Office (2010). "Maricopa County Assessor Database."Phoenix, 
AZ. 



 

 41 

MCDPH (2015). "Community Assessment for Public Health Emergency Response(Casper): 
Heat Vulnerability and Emergrency Preparedness needs Assessment." Maricopa 
County Department of Public Health, Phoenix, AZ. 

MCDPH (2015). "Maricopa County Cooling Center Evaluation Project - Facility Manager 
Results." Maricopa County Department of Public Health, Phoenix, AZ. 

MCDPH (2015). "Maricopa County Cooling Center Evaluation Project - Observational 
Survey Results." Maricopa County Department of Public Health, Phoenix, AZ. 

MCDPH (2015). "Maricopa County Cooling Center Evaluation Project - Visitor Survey 
Results." Maricopa County Department of Public Health, Phoenix AZ. 

Naughton, M. P., Henderson, A., Mirabelli, M. C., Kaiser, R., Wilhelm, J. L., Kieszak, S. M., 
Rubin, C. H., and McGeehin, M. A. (2002). "Heat-related mortality during a 1999 
heat wave in Chicago." American journal of preventive medicine, 22(4), 221-227. 

NCDC (2015). "1981-2010 Climate Normals." National Climate Data Center, Ashevill, NC. 

O’Neill, M., Zanobetti, A., and Schwartz, J. (2005). "Disparities by race in heat-related 
mortality in four US cities: The role of air conditioning prevalence." Journal of Urban 
Health, 82(2), 191-197. 

Ostro, B., Rauch, S., Green, R., Malig, B., and Basu, R. (2010). "The effects of temperature 
and use of air conditioning on hospitalizations." American Journal of Epidemiology, 
172(9), 1053-1061. 

Páez, A., Scott, D. M., and Morency, C. (2012). "Measuring accessibility: positive and 
normative implementations of various accessibility indicators." Journal of Transport 
geography, 25, 141-153. 

Petitti, D., Hondula, D., Yang, S., Harlan, S., and Chowell, G. (2015). "Multiple Trigger 
Points for Quantifying Heat-Health Impacts: New Evidence from a Hot Climate." 
Environmental Health Perspectives, In Press. 

Publiclibraries.com (2015). "Arizona and California Public Libraries Datasets." 
<http://www.publiclibraries.com/>. (March 15, 2015). 

Reid, C. E., Mann, J. K., Alfasso, R., English, P. B., King, G. C., Lincoln, R. A., Margolis, H. 
G., Rubado, D. J., Sabato, J. E., and West, N. L. (2012). "Evaluation of a heat 
vulnerability index on abnormally hot days: an environmental public health tracking 
study." Environmental Health Perspectives, 120(5), 715-720. 

Reid, C. E., O’Neill, M. S., Gronlund, C. J., Brines, S. J., Brown, D. G., Diez-Roux, A. V., 
and Schwartz, J. (2009). "Mapping Community Determinants of Heat Vulnerability." 
Environmental Health Perspectives, 117(11), 1731. 

http://www.publiclibraries.com/%3e


 

 42 

Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.-P., and 
Herrmann, F. R. (2008). "Death toll exceeded 70,000 in Europe during the summer 
of 2003." Comptes rendus biologies, 331(2), 171-178. 

Scott, D., and Horner, M. (2008). "Examining the role of urban form in shaping people’s 
accessibility to opportunities: an exploratory spatial data analysis." Journal of Transport 
and Land Use, 1(2). 

Sheridan, S. C., Allen, M. J., Lee, C. C., and Kalkstein, L. S. (2012). "Future heat vulnerability 
in California, Part II: projecting future heat-related mortality." Climatic change, 115(2), 
311-326. 

Solomon, S., Battisti, D., Doney, S., Hayhoe, K., Held, I., Lettenmaier, D., Lobell, D., 
Matthews, D., Pierrhumbert, R., and Raphael, M. (2011). "Climate stabilization 
targets: emissions, concentrations, and impacts over decades to millennia." National 
Acadamy Press, Washington, D.C. 

Stafoggia, M., Forastiere, F., Agostini, D., Biggeri, A., Bisanti, L., Cadum, E., Caranci, N., 
de'Donato, F., De Lisio, S., and De Maria, M. (2006). "Vulnerability to heat-related 
mortality: a multicity, population-based, case-crossover analysis." Epidemiology, 17(3), 
315-323. 

Stone Jr, B., Vargo, J., Liu, P., Habeeb, D., DeLucia, A., Trail, M., Hu, Y., and Russell, A. 
(2014). "Avoided heat-related mortality through climate adaptation strategies in three 
US cities." PloS one, 9(6), e100852. 

Taylor, B. D., and Tripodes, S. (2001). "The effects of driving cessation on the elderly with 
dementia and their caregivers." Accident Analysis & Prevention, 33(4), 519-528. 

Uebelherr, J., Hondula, D., and Johnston, E. W. (2015). "Innovative participatory agent 
based modeling using a complxity governance perspective." Proceedings of the 16th 
Annual International Conference on Digital Government Research, 307-308. 

Uejio, C. K., Wilhelmi, O. V., Golden, J. S., Mills, D. M., Gulino, S. P., and Samenow, J. P. 
(2011). "Intra-urban societal vulnerability to extreme heat: The role of heat exposure 
and the built environment, socioeconomics, and neighborhood stability." Health & 
Place, 17(2), 498-507. 

USDOT (2009). "National Household Travel Survey." U.S. Department of Transportation, 
Bureau of Transportation Statistics, Washington DC. 

 
 

  



 

 43 

CHAPTER 3 

OPTIMAL LOCATION ANALYSIS FOR PUBLIC COOLING CENTERS 

1.10 Introduction 

With increasing evidence of climate change, cities are developing response and 

management plans to mitigate its potential impacts (Rockefeller Foundation 2016). In 

addition to the impacts to infrastructure, there is also a significant concern for how climate 

change and the increasing frequency, intensity and duration of extreme weather events will 

affect people (Epstein 2005; Haines et al. 2006; Huang et al. 2011; McMichael and Lindgren 

2011). Hurricanes, tornadoes, and coastal storms are widely recognized for their destructive 

potential but there is also a growing concern for the impact that rising average temperatures 

and future heatwaves will have on public health (Luber and McGeehin 2008). Health 

impacts resulting from heat exposure can range from mild discomfort and fatigue to death. 

In addition to known heat-related clinical syndromes, environmental heat stress is also 

known to exacerbate existing medical conditions leading to increases in hospitalizations and 

mortality (Schwartz 2005; Stafoggia et al. 2006). Still in their infancy, heat management plans 

and programs are being implemented in many cities across the United States to reduce public 

health risks. Evaluation of these programs finds positive impacts but there are still concerns 

as to whether they are adequately reaching those who are at the greatest risk of negative 

health outcomes (Bassil and Cole 2010). 

One solution for reducing health risks associated with high temperatures is to ensure 

that individuals have access to cooled space (Kovats and Hajat 2008). Air-conditioning has 

been shown to be an important protective factor and the prevalence of in-home units has 

increased but there are many places (e.g. older neighborhoods and temperate climate cities) 
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where it is still uncommon in residential buildings (Braga et al. 2001; Curriero et al. 2002; 

Kaiser et al. 2001; O’Neill et al. 2005). In response to known disparities in access to in-home 

air-conditioning, cities across the United States have developed networks of public cooling 

centers to provide heat refuges. These facilities help the public to escape the heat and 

prevent long-term heat exposure. Cooling centers are often sited at public libraries, senior 

citizen centers, and community based organizations. However, while these centers can help 

reduce health risks there has not been significant thought regarding the strategic placement 

of these facilities.  Everyone is vulnerable to heat but there are particular population subsets 

that are more likely to experience negative health outcomes when exposed to extreme 

temperatures (Harlan et al. 2013; O’Neill et al. 2005; Reid et al. 2009; Weisskopf et al. 2002). 

The strategic placement of these facilities should consider underlying characteristics (age, 

ethnicity, economic status, etc.) of nearby communities that contribute to higher heat-health 

risk. A recent study by Bradford et al. (2015) used heat vulnerability indices to strategically 

site new cooling centers in Pittsburgh, PA but there are additional factors that authors could 

have also considered.  

Public cooling centers are meant to serve as the alternative for those who may not 

have access to or are unable to use in-home air-conditioning. However, there are other types 

of facilities that could serve, and may currently be serving, as de facto cooling centers. These 

facilities include public libraries, indoor shopping malls, museums and commercial 

establishments that, because they are air-conditioned, could also provide heat relief. In 

addition to population vulnerabilities, the strategic placement of these cooling center 

facilities ought to consider other resources that are already available to the public.  
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1.10.1 Case Study – Maricopa County 

Since the summer of 2006 the Maricopa County Department of Public Health 

(MCDPH) has promoted a network of cooling centers to the community. Maricopa County, 

whose seat is Phoenix, Arizona, is a region of 4 million people as of 2015 forecasted to grow 

to 6.9 million people by 2050 (ADOA-EPS 2015). The county is located in the Sonoran 

Desert and experiences daily summer highs in excess of 40˚ C (National Climate Data 

Center 2015). The county’s cooling center network is largely comprised of volunteer 

locations. Additionally, the locations of these centers tend to change annually with facilities 

opting in and out of the program (MCDPH 2015). Due to the ad-hoc nature of the network, 

the facilities are scattered across the county (Figure 6) and it is unclear if the current sites are 

capable of serving the most vulnerable peoples. While the Phoenix-Mesa and Avondale-

Goodyear urban areas (the two urban areas in Maricopa County) cover more than 1,200 mi2 

more than half (24 of 46) of the 2015 cooling center locations are located within 5 miles of 

downtown Phoenix (MAG 2012). 
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Figure 6: Maricopa Department of Public Health 2015 Cooling Centers. The map 
shows the cooling centers found in the urbanized areas (red) of Maricopa County (blue). The 
doted red line is a 5 mile buffer around downtown Phoenix, AZ. 

 Due to high summer temperatures, Maricopa County has been a focus of a 

significant amount of research related to public health, extreme heat, and social heat 

vulnerability (Golden et al. 2008; Harlan et al. 2006; Harlan et al. 2013; Kalkstein and 

Sheridan 2007; Petitti et al. 2013; Reid et al. 2009; Ruddell et al. 2009; Yip et al. 2008). These 

and other studies note that specific population and community characteristics are known to 

increase the risks of negative heat health outcomes and find that vulnerability to heat varies 

from neighborhood to neighborhood. It has been recommended that public health 

interventions to mitigate the risks associated with heat exposure, including the provision of 

cooling centers, target areas where the underlying characteristics make the population 

particularly vulnerable to extreme heat. Extreme heat is defined as “periods of summertime 

weather that are substantially hotter and/or more humid than average for a given location at 

that time of year” (U.S. EPA 2006).  
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 Using location analysis, this paper identifies a method to improve the siting of 

cooling center facilities in order to provide a life-saving resource to those who need it the 

most, and identify new facilities that should be targeted for the expansion of Maricopa’s 

cooling center network. Specifically, the paper addresses the following: i) how is the existing 

network positioned relative to vulnerable populations and existing cooling resources, ii) to 

what degree would location analysis improve the ability of these facilities to reach those who 

might need their services, iii) what areas, and more specifically which facilities, should 

MCDPH target to expand their network of cooling centers?  

1.11 Location Analysis 

Location Analysis refers to a class of problems that locate facilities to optimize some 

objective. Various models have been utilized to strategically locate both private and public 

facilities including warehouses, airline hubs, restaurants, schools, fire stations and emergency 

medical services(Current et al. 2001). In the private sector the location of a facility influences 

a firm’s ability to compete in the marketplace and in the public sector, facility location 

influences the efficiency with which public services are provided (Current et al. 2001). 

Humans have been making location decisions since before the first cities were built but the 

location analysis field formally began in 1909 with the Weber problem, which sought to 

locate a single facility (a warehouse) in order to minimize the total transportation cost 

between the warehouse and demands.  There were a number of early studies that were 

inspired by the Weber problem but the field really began to develop following a 1964 

Hakimi publication, Optimum locations of switching centers and the absolute centers and medians of a 

graph (Owen and Daskin 1998). Since Hakimi’s seminal work there have been a large number 

of models developed (see: (Owen and Daskin (1998), ReVelle and Eiselt (2005) & Revelle et 



 

 48 

al. (2008) for detailed overviews of various location model formulations and previous 

studies). The selection of a particular model for application depends on the models 

parameters (objectives, constraints, and variables) and the specific location problem being 

analyzed.  

Broadly, static and deterministic location analysis problems can be classified in three 

groups based on their objectives: Median Problems, Covering Problems, and Center 

Problems (Owen and Daskin 1998). Median models seek to locate facilities to minimize the 

demand weighted average distance between demand nodes and facilities. Covering models 

locate facilities in order to cover all or as much weighted demand as possible within a 

specified service distance. A service distance threshold or maximum service distance implies 

that the proximity of a demand to a facility is critically important. Center problems are 

another class where the objective is based on the relationship between positioning of 

facilities and the most remote demand. The most common center problem seeks to 

minimize the distance between the most remote demand node and its nearest facility. These 

classifications reflect three of the most common structural forms and there are countless 

variants which have been developed to address specific location problems.  

The selection of a particular model depends on the model’s functional form and the 

location problem being addressed. In order to select an appropriate model for locating 

cooling centers the context of their use needs to be considered. Cooling centers are meant to 

be utilized during periods of extreme heat because exposure to extreme heat is a known 

health hazard. There are a number of exposure pathways, but one that is critical to 

understand when siting cooling centers is mobility-based exposure. For those who utilize 

active modes of transportation, walking or cycling, accessing a cooling center requires 

exposure to a hazard that cooling centers are trying to protect them from. If mobility-based 
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exposure is ignored, it would be reasonable to select a median or center based model for 

siting cooling center facilities. However, because cooling centers are a public service 

designed to protect people from heat their placement needs to consider exposure thresholds 

for those who may be limited to active transportation modes. It is well documented in the 

literature that the elderly and those living in poverty are among the most vulnerable 

populations to heat and are among the groups that are more reliant upon non-automobile 

transportation modes (U.S. DOT FHWA 2011). The Occupational Safety and Health 

Administration recommends limiting work to 15 minutes during periods of extreme 

temperatures to avoid negative health outcomes (USDOL 2014). For the same reasons 

walking or cycling trips longer than 15 minutes should also be avoided during heatwaves. 

Because of this threshold, a covering model should be utilized for siting cooling centers. 

Covering models have also been used to site other time-dependent public services such as 

fire stations and emergency medicals services (Eaton et al. 1985; Schilling et al. 1980). 

There are two distinct subclasses of the covering problem: location set covering 

problem (LSCP) and maximal covering location problem (MCLP). LSCP, first developed by 

Toregas et al. (1971), requires that every demand be covered by at least one facility and 

minimizes the total number of facilities selected. A demand node is considered covered if 

the distance between it and the nearest facility is less than the maximum service distance. 

The complete coverage requirement is restrictive and can produce a number of facilities that 

is unrealistic given budget constraints. Additionally, depending on the spatial relationship 

between facility locations and demand nodes a feasible solution may not exist. Recognizing 

these shortcomings Church and ReVelle (1974) developed MCLP. The problem relaxes the 

complete coverage constraint and seeks to site a set number of facilities such that the 

weighted sum of demand nodes that are covered is maximized. MCLP is particularly suited 
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for siting cooling centers for two reasons: i) due to resource constraints it would not be 

feasible to offer a set of cooling centers which would result in complete coverage of 

Maricopa County, ii) MCLP specifies a maximum service distance to define coverage. 

1.11.1 Geographic Information Systems and Location Analysis 

The combination of geographic information systems (GIS) and traditional location 

analysis has been at the forefront of advances in spatial analysis capabilities in recent years 

(Murray 2010). GIS is a collection of hardware, software and procedures that support 

decision-making using spatially referenced information. While the two fields developed 

independently, location analysis problems have become increasingly complex and the need 

for better and more accurate spatial data has been supported by GIS (Chruch and Murray 

2009).  One of the initial challenges of integrating these two fields was the incompatibility of 

their applications and data having to be frequently transferred between the two. However, 

recent GIS software has developed location analysis tools and integrated them into the GIS 

platform. ArcGIS’s Network Analyst extension and the Location-allocation toolset provide users 

with the functionality to solve location analysis problems with spatially referenced data. For 

large-scale applications, the toolset expedites the location analysis process by automatically 

generating much of data that would be needed to solve the problems using optimization 

software including a shortest-path cost matrix between all candidate sites and demand nodes. 

ArcGIS’s location analysis solver relies on Hillsman editing (Hillsman 1984) and a vertex 

substitution heuristic (Teitz and Bart 1968), and metaheuristic to return near-optimal results 

(ESRI 2016). Because of its functionality and ease of use ArcGIS has been used to solve a 

number of location analysis problems (Bradford et al. 2015; Escavy and Herrero 2013; 

García-Palomares et al. 2012; Haines et al. 2006; Ripley et al. 2014; Vijay et al. 2008).  
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1.12 Methods 

The 2015 cooling center network in Maricopa County featured 46 facilities. The analysis 

identifies a set of candidate facilities and proceeds to selects locations to improve the 

coverage provided by these and future facilities. A new method is developed in order to 

develop a solution that is both robust and computationally feasible. The analysis is 

completed exclusively with ArcGIS 10.3 using general GIS functions and those included in 

the Network Analyst extension. 

1.12.1 Data 

A critical issue for using any location analysis model is obtaining and deriving the data 

needed in order to use the framework. Model and components and their sources are 

identified below: 

Demand Locations – Demand locations are considered to be all residential parcels in Maricopa 

County (1.1 million). These data were developed from the Maricopa County Assessor 

database (MCAO 2010). The database details the location of each parcel, type of residential 

building, and total number of dwelling units. Additionally, an index describing parcel access 

to nearby public cooling resources is included as an additional demand node attribute (Fraser 

et al. 2016).  

Candidate Sites – Official cooling centers in Maricopa County have previously been sited at a 

number of different types of facilities including libraries, senior centers, community centers, 

and humanitarian and religious organizations (MAG 2014). All existing libraries, senior 

centers, community centers, and humanitarian and religious organizations within the county 

were considered candidate facilities (≈ 2,300 locations, Figure 6). The addresses of these 

facilities, with the exception of religious facilities, were geocoded from directory searches 
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and the assessor database. Religious facilities were identified with the county assessor 

database using property use codes. Some have suggested that public schools could serve as 

cooling centers (Bradford et al. 2015) but schools have increasingly moved toward closed 

campus policies for student safety and have been excluded as candidates in this analysis 

(Perumean-Chaney and Sutton 2013).   

 

Figure 7: Cooling Center Candidate Sites 

Network Dataset – In order to utilize ArcMaps’s location-allocation models a network dataset 

is needed. A line shapefile for the Maricopa County Street network was used to generate the 

network data set (ESRI 2007). The assessment assumes pedestrian paths would follow the 

existing street network and all existing roadways, with the exception of freeways and 

highways, are considered to be pedestrian accessible. 



 

 53 

Heat Vulnerability Estimates – In order to identify areas of Maricopa County where residents 

may be particularly vulnerable to heat, morbidity and mortality data were used to identify 

social and economic characteristics associated with negative health outcomes. Following the 

work of Eisenman et al. (IN REVIEW) vulnerability scores are developed for each census 

tract based on the principal component which was found to be the overall best predictor of 

both all-internal causes and heat-related deaths during periods of extreme heat. The variables 

used to estimate the relative heat-health risk for census tracts include percent 

Hispanic/Latino, percent foreign born, percent uninsured, percent income below the 

poverty level, percent construction works, and percent female householder (no husband 

present) (Figure 8). 



 

 54 

 

Figure 8 - Socio-economic Heat Vulnerability 

 

1.12.2 Random Thiessen Aggregation 

Location models are difficult to solve and their computational complexity is a key 

reason why widespread interest in the field did not begin until after the development of 

computers. Realistically scaled problems can have hundreds of thousands of constraints and 

variables and standard optimization methods can consume an unreasonable amount of 

computer resources and time (Current et al. 2001). Due to computational constraints, 

heuristics are often used to identify a near-optimal solution. However, even with heuristics, 
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realistically scaled problems can be intractable using average computer hardware. In this case 

study, computer resources were insufficient to generate an origin-destination matrix between 

the specified demand nodes and candidate sites largely due to the total number of demand 

nodes. In order to eliminate demand points but still establish a solution at a residential parcel 

resolution a new method developed using GIS tools. The stepwise procedure is described 

below and partially illustrated in Figure 9. 

Step 1: Population information from the U.S. Census was used to generate random 

points within each census tract for every 100 residents (rounded down). This 

procedure produces approximately 34,000 points throughout the county. This step is 

identical to the procedure employed by Bradford et al. (2015) in a similar study for 

siting cooling centers in Pittsburgh, PA. 

Step 2: Thiessen polygons are then generated from the set of random points within 

each census tract. This subdivides the 915 census tracts in Maricopa County into 

34,000 irregular polygons.  

Step 3: Individual residential parcels are then aggregated to the Thiessen polygons. 

Each polygon was assigned characteristics of the residential parcels that fall within its 

boundaries including the total number of households and the mean accessibility 

index score. 

Step 4: Centroids are then generated for each polygon and assigned a weight. These 

centroids are used as representative demand locations and weighted based on the 

total number of households within each, the average cooling resource accessibility 

index, and a measure of social-economic vulnerability based on the following: 

𝑊𝑖 = 𝐻𝐻𝑖 ∗ 𝑆𝑉𝑖 ∗ 𝐶𝑅𝐴𝑖
−1 

𝑊ℎ𝑒𝑟𝑒: 
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𝐻𝐻𝑖 =  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑖𝑛 𝑖 

𝑆𝑉𝑖 = 𝑇ℎ𝑒 𝑠𝑜𝑐𝑖𝑎𝑙 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑖𝑛 𝑖 𝑡𝑜 ℎ𝑒𝑎𝑡 

𝐶𝑅𝐴𝑖 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑖𝑛 𝑖 

Step 5: Remove all new demand locations where the weighted demand is equal to 

zero to produce the final set of demand nodes. Steps 1-5 reduce the total number of 

demand nodes from 1.1 million to 27,000 (a 97.5% reduction). 

Step 6: The Location Allocation tool in ArcMap’s Network Analyst package is used 

to determine a maximal coverage solution. The coverage distance was defined by a 

15 minute exposure time limit and average walking speed for adults at 0.75 miles 

(Bohannon and Andrews 2011).  

Step 7: Iterate. Steps 1-4 can contribute to solution uncertainty for several reasons. 

First, there are known issues with aggregating data to larger geographic scales and the 

procedures artificially groups households together (Dark and Bram 2007). The 

demand weights are directly related to how the parcel level data was randomly 

aggregated in steps 1-3. Secondly, centroid locations may not be a good 

representation of an average demand position. Lastly, because ArcMap’s location-

allocation tool relies on a heuristic we can only say that any solution derived from it is 

simply a good solution rather than one that is optimal. Due to these three issues, it is 

unlikely that any two iterations would identify the same set of facilities. By 

comparing the solutions of repeated iterations, it is possible to identify candidate site 

sets that were chosen in most iterations, sometimes, rarely, or not at all. At the scale 

of this case study, a complete iteration takes 3.5 hours to complete. The generation 

of the of the Thiessen polygons is the most significant in terms of computational 

processing at over 2.5 hours. 
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Figure 9: Random Thiessen Method Step 1 – Generate Random Points, Step 2 – 
Generate Thiessen Polygons, Step 3 – Aggregate Residential Parcels to Thiessen 
Polygons, Step 4 – Generate Thiessen Centroids and Assign Weights.  

1.13 Results 

The model was used to evaluate the existing cooling center network by comparing their 

current locations and those identified using location analysis. The 2015 Cooling Center 

Network in Maricopa included 46 locations. The model was iterated 50 times to determine 

which 46 locations would have been better suited to serve as cooling center locations. 

Across all 50 iterations, 117 of the 2,300 candidates were selected as facility locations at least 

once. Of these, 48 were selected in fewer than 10% of the iterations and 20 were selected 

only once. Of the 46 facilities that were selected most often, 26 were selected in 90% of the 

iterations, 12 facilities were selected every time, and only one is an existing cooling center. 

Figure 10 illustrates the selection percentage for all 117 facilities and the average demand 
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weight covered.  Beyond the top 26, there is a rapid decay in how frequently the facilities are 

chosen. Despite this decay, each facility among the top 46 was selected in at least 50% of the 

iterations. While it is not possible to describe these 46 locations as the optimal solution, the 

selection percentage implies that these facilities are likely positioned to serve vulnerable 

communities without access to cooling alternatives. There is a weak but positive correlation 

between the frequency with which facilities are chosen and the average weighted demand 

they cover meaning that the method generally identifies those that could serve the greatest 

deamnd. However, additional consideration should be given to those facilities outside the 

top 46 where the average weighted demand served significantly exceeds those among the top 

46. 

 

Figure 10 Facility Selection Percentage and Average Weighted Demand Covered 

The 2015 Maricopa County cooling centers were well positioned to serve vulnerable 

people with 25 of the 46 facilities found in census tracts in the upper quintile for heat 

vulnerability. However, many of these facilities were also located in areas where residents 
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would have significant access to cooled space alternatives. More than 75% of the 2015 

facilities were located in tracts with the highest access to public cooling resources. The 

network was largely concentrated in the urban core with limited facilities serving the urban 

fringe where residents have no or little access to publically available cooled space. Figure 11 

shows the 2015 centers and the top 46 facilities identified using location analysis. In contrast, 

none of the identified locations are found in tracts in the highest quintile for cooled space 

access and 17 are located in highly vulnerable areas. The greatest density of selected facilities 

occurs in an area bounded by the I-10 Interstate, Arizona State Route 101, and US 60. The 

Maryvale community is predominantly Hispanic and has a poverty rate of 36%; two 

characteristics associated with heat vulnerability (Eisenman et al. IN REVIEW). 

Additionally, this is primarily a residential area with very few public cooling alternatives. The 

model also identifies a number of locations in North and South Phoenix in areas that were 

not served by the 2015 network. In total, the identified facilities cover nearly 2.5 times as 

many residential parcels as the 2015 cooling center network (89,000 compared to 35,000). 

Although it has more to do with social and infrastructure characteristics than the covering 

model framework used, the identified set of facilities is more dispersed than the 2015 

network. While the focus of this analysis was to provide coverage to those who may access 

cooling centers via walking, the increased dispersion likely reduces the average distance for 

those who would drive to these facilities making this set of facilities more accessible to the 

general population in Maricopa County than those in the 2015 network.   

 While these 46 identified facilities would provide better coverage than those in the 

2015 network, closing the existing facilities, or removing them from the list of designated 

cooling centers, is not be recommended. These facilities are likely familiar to existing users 

and closing them would remove a resource they now rely on. Alternatively, the methods can 
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be used to identify a set of facilities to target for network expansion that complement 

existing facilities. Using the same procedure but fixing the existing cooling center locations 

an additional 50 iterations were performed to identify 10 facilities to target to expand the 

network. In all 50 iterations, the same 10 facilities were selected (Figure 12). Although there 

are a number of cooling centers already in the Maryvale Community, 4 of the 10 sites to 

target for network expansion are found in an unserved portion on the west side of the 

community. All 10 of the identified facilities are found in areas with high population density, 

high socio-economic heat vulnerability, and limited access to alternative cooling resources.  
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Figure 11: Improved Location of Cooling Center Facilities 
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Figure 12: Target Facilities for Network Expansion The size of the green dots are 
relative to the weighted demand covered by each facility. Network expansion should target 
the largest circles first. 
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1.14 Discussion 

Location analysis has been used to site many different types of public facilities and the 

results suggest that these methods should also be employed for developing networks of 

cooling center facilities. This type of analysis has been made easier with the advent of GIS, 

MCDPH and any other region looking to establish or expand cooling center networks 

should make use of these tools. However, the solutions we derive from these methods are 

dependent on the quality of the input data. GIS makes it possible to make decisions using 

extremely precise spatial data but the attributes and weights ascribed to the spatial data are 

what drive the selection of specific facilities. In this case study, weights were derived from 

census data, relative heat-health risk estimates, and measurements of access to cooling 

resource alternatives and each is associated with its own uncertainty. While the census data 

may suggest a highly vulnerable population inhabits particular neighborhood, immigration 

and emigration can change the demographics of a neighborhood quickly. This may be 

especially true in urban core neighborhoods in Phoenix and many other U.S. cities that have 

attracted young and relatively affluent millennials who are less vulnerable to heat while 

displacing lower income minorities who are more vulnerable to heat. (Walker 2016). 

Similarly, our understanding of the social, economic, and infrastructure factors that 

contribute to individual heat vulnerability continue to improve. While existing heat 

vulnerability assessments have been shown to perform well in predicting negative health 

outcomes(Reid et al. 2012), determining cooling center locations should use the most up-to-

date and state-of-the-art heat vulnerability metrics. Lastly, our understanding of individual 

behavior during heat waves and the manner in which people engage public cooling resources 

is limited. The results are based on the assumption that people will seek out and use these 

spaces but  Sampson et al. (2013) found that the tendency to engage in cooling behaviors can 
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vary across populations. Additional research is needed to understand adaptive cooling 

behaviors. Despite this uncertainty, the principles of location analysis, would help public 

health agencies determine facilities that would be better positioned to serve vulnerable 

populations and those with limited access to cooling alternatives. As new and improved 

spatial attribute data become available, cooling center networks should be revaluated to 

insure that they are positioned to serve those who need the services the most. 

 A large fraction of the facilities identified in this analysis as ideal for sites for cooling 

centers are associated with religious institutions. Religious facilities are good candidates for 

cooling center locations because they are ubiquitous in most U.S. cities and many of them 

are located in close proximity to or in residential neighborhoods. Additionally, many of these 

facilities would be available for use on most days aside from periods of worship. While many 

religions are compelled to engage in community service, not all may be willing to participate 

as a public cooling center. Specifically, certain religious facilities may be wary to open their 

doors to the public. If any of the facilities identified in the analysis are found to be unwilling 

to participate, the analysis should be repeated excluding their location as a candidate site. 

While cooling centers have previously been sited at religious facilities, there may be 

individual reluctance to utilize these facilities. Non-believers and those belonging to other 

faiths may feel uncomfortable going to certain facilities. If religious facilities are used as 

cooling centers, it is important to make sure their services are marketed as inclusionary of all 

individuals regardless of faith.   

There are several other issues that public health officials should consider in the siting of 

cooling center facilities. Despite the large number of candidate sites, there are still areas of 

Maricopa County that could not be covered by any facility (Figure 7). Alternative 

interventions may need to be considered for neighborhoods without candidate sites where 
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residents are particularly vulnerable to heat and have limited access to other cooling 

resources. These alternatives could include the construction of new facilities, mobile cooling 

centers, or providing transportation to existing facilities. This analysis uses residential parcels 

to describe the location of demand for cooling centers. Homeless and transient individuals 

have been identified as highly vulnerable subgroups (Ramin and Svoboda 2009; Uejio et al. 

2011)and their demand and need for cooling centers would not be captured using residential 

parcels or census data. Their whereabouts and movements should also be considered when 

siting facilities. Additionally, location analysis methods could also consider the daily 

movements of a population to site cooling center facilities. However, without a fully 

developed travel demand model detailing the characteristics of the population it would be 

difficult to define a time-of-day dependent vulnerability measure. Finally, this analysis 

assumes that vulnerable populations are particularly reliant upon walking. Research into how 

cooling centers are accessed could provide additional insight for siting these facilities. It is 

also possible to use location analysis principles to site facilities based on alternative 

transportation modes.  

Computer power is increasing and location analysis problems of this scale and resolution 

may be within reach in the future. In the short-term, however, the methods described in this 

analysis can assist policy and decision makers in identifying better solutions for siting 

facilities by simplifying the location decisions. For location analysis problems siting a 

relatively small number of facilities these methods can produce robust results. In this case 

study, the methods produced the same set of facilities across all iterations when the total 

number of facilities to site was equal to ten.  However, this type of result is also dependent 

upon the study area. In particular, these methods may not be applicable in rural areas where 

limited density may lead to significant aggregation errors and centroid positions that are not 
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representative of actual demand locations. For larger problems, these methods are capable of 

identifying critical facilities (those selected in every or almost every iteration) and eliminating 

large quantities of facilities for consideration (those that are never selected). Decision makers 

can then focus their attention on facilities that are chosen in some but not all iterations. 

While siting facilities based on the number of times they are selected will lead to a good 

solution it is possible that a better solution exists if coverage areas of any of the selected 

facilities overlap. In this instance, the modeler could select the top facilities as fixed facilities 

and repeat the process until a set of non-overlapping facilities is identified.  
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CHAPTER 4 

TRANSIT SYSTEM DESIGN AND VULNERABILITY OF RIDERS TO HEAT 

This chapter has been accepted for publication in the peer-reviewed Journal of Transport & 

Health and appears as accepted.  The citation for the article is: Fraser, Andrew A, & Mikhail 

V. Chester, (2016) “Transit System Design and Vulnerability of Riders to Heat” Journal of 

Transport & Health (Volume, Issue and DOI forthcoming) 

1.16  Introduction 

In response to climate change concerns, the Federal Transit Administration (FTA) has 

identified public transit systems, and their increased utilization, as a critical component in 

reducing energy use and greenhouse gas emissions associated with the transportation sector 

(Hodges 2010). Additionally, public transportation offers ancillary benefits including 

congestion reduction, reduced mobility costs, improved public health (by stimulating 

additional walking/cycling trips), and increased mobility equity (Litman 2011). As a result, 

policies and programs, such as the Safe, Accountable, Flexible, Efficient Transportation Equity Act 

and Moving Ahead for Progress in the 21st Century Act, have encouraged the growth of public 

transportation infrastructure and transit ridership. In the United States between 2000 and 

2012 public transit services (operated vehicle kilometers) increased by 32%, ridership 

(unlinked passenger trips) increased by 13%, and funding allocated to public transportation 

increased by 81% (APTA 2014). While these metrics indicate that policies and programs 

designed to promote and improve public transit in the U.S. have had some measure of 

success, there is a tension between policies and programs which promote transit use as a 

climate change mitigation strategy and the potential impact of an uncertain climate future on 

transit infrastructure and its riders. Recent research has begun to study the potential impacts 
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associated with climate change on transit infrastructure but there is still very little known 

regarding how climate change may impact transit riders or how transit operators should 

respond to reduce environmental risks to their riders (Coumou and Rahmstorf 2012; Ma et 

al. 2013; Meyer 2008; Molarius et al. 2014; Rosenzweig et al. 2011).  

Temperature, precipitation and wind have been shown to affect transit ridership 

(Arana et al. 2014; Guo et al. 2007; Kalkstein et al. 2009; Kuby et al. 2004; Singhal et al. 

2014; Tao et al. 2016). These studies are largely concerned with predicting and understanding 

the loss of transit riders due to adverse weather and developing strategies to mitigate these 

losses. These studies do not, however, consider the impact adverse weather may have on the 

remaining transit users who may not have modal alternatives for necessary trips. Specifically, 

exposure during to weather extremes may increase certain health risks for transit riders. 

General circulation models predict the increasing duration, severity, and frequency of 

extreme weather events potentially compounding existing health risks. While the risks 

associated with some extreme weather events, such as hurricanes, may be obvious to riders 

and operators alike, previous research has found that individuals are generally less aware of 

the dangers of extreme heat exposure and even among those who acknowledge that heat 

exposure is a potential health threat, the level of perceived risk is often low (Abrahamson et 

al. 2009; Bittner and Stößel 2012; Kalkstein and Sheridan 2007). Despite individual 

perceptions, extreme heat is known to be a serious threat to public health and exposure to 

extreme heat, while often preventable, is a leading cause of weather-related mortality 

worldwide (Berko et al. 2014; Robine et al. 2008; USEPA 2006). Moreover, exposure to 

extreme heat can result in heat-related illnesses such as heat cramps, heat stroke and heat 

exhaustion and exacerbate preexisting chronic conditions such as respiratory and 
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cardiovascular diseases contributing to emergency room visits, hospitalizations, and 

premature death (Berko et al. 2014; Luber and McGeehin 2008). Transit agencies and future 

transit policies should consider the potential risks of negative health-related outcomes due to 

extreme temperature exposure when designing and planning transit systems. 

The design of a public transportation system contributes to outdoor exposure in two 

ways. First, transit stop location relative to a rider’s origin or destination influences the mode 

used and time spent to access transit. In the United States, public transit systems are typically 

designed for pedestrians and as a result the dominant mode used to access transit in urban 

areas is walking, accounting for 85% of all U.S. transit trips with an average duration of 7.1 

minutes (USDOT 2009). Once at the transit stop, any rider would then experience waiting 

for the next transit vehicle, the duration of which is directly influenced by service frequency 

and reliability. On average, U.S. transit riders experience a wait time of 9.9 minutes (USDOT 

2009). While the average transit rider would experience 17 minutes of outdoor exposure 

there are likely areas served by a transit system where urban form characteristics and 

demand-based transit scheduling contribute to extended access and wait times.  

To this end, this study develops a methodology to assess how current transit design 

contributes to environmental exposure for transit riders and where transit design may 

contribute to prolonged periods of outdoor exposure. Using Los Angeles Metro (Los 

Angeles, California) and Valley Metro (Phoenix, AZ) as case studies, we estimate 

environmental exposure resulting from transit use by examining transit ingress/egress 

walking times and waiting times. The method spatially identifies areas of the transit systems 

where current design may result in prolonged heat exposure. Though this research focuses 

on extreme heat exposure for pedestrian-transit users, the methods could also be utilized to 
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assess exposure to extreme cold and exposure from alternative access modes including 

cycling.  

The Los Angeles Metro and Valley Metro systems serve two of the largest 

metropolitan areas in the American Southwest and rank as the 3rd and 37th largest transit 

agencies in the country respectively based on total unlinked passenger trips (APTA 2014). 

Each agency is the largest transit provider in their respective region and the transit service 

areas for each agency, depicted in Figure 13, extend across numerous municipalities with 

services that include local, commuter, and rapid bus service as well as rail options. These 

services are almost exclusively surface level (the exception being two subway lines operating 

in Los Angeles) and a majority of the stops (>99%) are exposed to the environment. While 

Valley Metro operates as the primary provider of public transit in the Phoenix Metropolitan 

Area, Los Angeles Metro’s service area includes regions where there are also additional local 

transit services (e.g. Santa Monica’s Big Blue Bus). Though these other transit agencies may 

offer complimentary service, and sometimes redundant mobility options, the case study 

focuses specifically on transit users of these transit agencies.  
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Figure 13: Los Angeles and Valley Metro Service Areas. The colored portion of the map 
shows the areas of the Los Angeles and Phoenix Metropolitan regions within 800m of a 
transit stop which are served by Los Angeles Metro and Valley Metro respectively. 

 These two agencies and regions are particularly suited for this case study as both are 

actively expanding service, have experienced significant ridership increases over the last 

decade, and found in areas where climate models predict increasing average summer 

temperatures as well as the increasing frequency, severity, and duration of extreme heat 

events (APTA 2014; Bartos and Chester 2014; Bartos and Chester 2015). The results provide 

a perspective on how transit system design within urban environments contributes to 

environmental exposure and can be used to develop transit strategies to respond to aspects 

of climate change which may impact transit riders.    

1.17 Methods  

The potential for transit rider heat exposure resulting from transit stop positioning 

and vehicle scheduling for the Los Angeles Metro and Valley Metro Systems is analyzed. 

Exposure to extreme heat and its potential to increase health risks is evaluated in three steps. 

First, access exposure is estimated for each residential location within the service areas by 

estimating walking times to/from the nearest transit stops. Second, exposure resulting from 
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waiting at individual transit stops is established from published transit schedules. Lastly, 

access and waiting exposure estimates are aggregated at a neighborhood scale to identify 

areas where current transit system designs contribute to longer than average exposure. The 

service areas for both transit agencies are defined as the areas within a reasonable walking 

distance of any transit stop.  

1.17.1 Estimating Access Exposure 

Walking times are estimated using geospatially explicit data for household locations 

and individual transit stop locations. The locations of residential parcels were determined 

from county  property assessment rolls, which includes property use and building type 

information (including total dwelling units), for all taxable land parcels, and the 

accompanying GIS shape files (Los Angeles County Assessor Office 2009; Maricopa County 

Assessor Office 2010). While Los Angeles Metro’s service extends slightly into other 

counties, the case study is limited to areas that lie within Los Angeles County.  To develop 

household level estimates, each residential parcel – which range from single family homes to 

multi-story sprawling apartment complexes – was weighted by the total dwelling units 

associated with the property. Transit stop locations were determined from publically 

available general transit feed specification data (GTFS) for Los Angeles Metro and Valley 

Metro (Los Angeles Metro 2015; Valley Metro 2015). While reasonable walking distances are 

likely to differ among transit riders we assume a maximum of 800 meters which is consistent 

with the Transit Capacity and Quality of Service Manual standard and existing research (Arrington 

and Cervero 2008; Cervero et al. 2002; TCRP 2013). Approximately 60% of residential 

parcels in both Los Angeles and Maricopa Counties are found to be within a reasonable 

walking distance of transit stops.  
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 Walking times to transit for individual households are based on two parameters: the 

distance, which is based on the relative positions of residential parcels and transit stops, and 

walking speed. A walking speed of 4.7 km/hour was chosen as the average walking speed for 

a transit rider and is consistent with speeds for average adults established by gait studies 

(Bohannon and Andrews 2011). Walking distances for each residential parcel to the nearest 

three transit stops are determined using a shortest path algorithm based on linear distance. It 

is assumed that pedestrians who access transit do so using available sidewalks and so 

potential pathways are defined by the roadway networks in Los Angeles and Phoenix and 

include all roadway types except freeways and highways (ESRI 2015). Associated walking 

times to the three nearest transit stops are then averaged and assigned to each household. 

The underlying assumptions are that an individual’s mobility needs would be met by lines 

closest to their household and that the closest stop may not meet all of their mobility needs. 

1.17.2 Estimating Waiting Times 

Passenger waiting time is affected by service frequency and reliability as well as knowledge of 

transit schedules by transit riders. For urban transportation systems, it is common to assume 

an average passenger wait time equivalent to half the headway between subsequent arrivals. 

However, as Larsen and Sunde (2008) note, this approach, which assumes a random normal 

distribution of passenger arrivals, may not be applicable for areas where transit service is less 

frequent due to extrinsic knowledge of service schedules. It is suspected that passengers, 

especially those who frequently use the same transit service, arrive at transit stops based on 

expected vehicle arrivals. The validity of the “half the headway” approach was assessed by 

comparing headway based estimates with reported wait times from Los Angeles Metro’s on- 
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on board passenger survey on individual service routes (Los Angeles Metro 2014; Los 

Angeles Metro 2015). 

Comparisons between the half-the-headway estimates and survey response waiting 

times show that using the half-the-headway approach is likely to underestimate waiting times 

along high frequency routes and significantly overestimate waiting times along low frequency 

routes. Figure 14 compares half-the-headway estimates with average passenger response 

waiting times for individual routes, rank ordered from shortest to longest based on half-the-

headway approach. Along high frequency routes, the discrepancy between the two may 

result from the tendency of survey respondents to round time estimates to the nearest five 

minutes as well as overestimate waiting time. However, for low frequency routes the results 

suggest that transit passengers are responsive to transit schedules resulting in a skewed 

distribution of passenger arrivals based on vehicle schedules rather than a normal 

distribution assumed by the half-the-headway approach. Though there is some variation, 

average passenger waiting time appears to approach a limit between 10 and 15 minutes. To 

estimate wait times along all routes a simple model is developed to relate published transit 

schedules and actual passenger wait times reported in the on-board surveys. Figure 14 shows 

the linear relationship between half-the-headway estimates for passenger wait times and the 

difference between half-the-headway estimates and average rider responses for individual 

transit routes. The following liner model is used to estimate passenger wait time for 

individual vehicles based on scheduled headways (minutes) (H):  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 = 0.10615𝐻 + 7.8959 
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Figure 14: Average Transit Rider Waiting Time – Survey Responses vs. Estimates 
Based on Headway. The half-the-headway approach for estimate average passenger 
waiting time tends to underestimate passenger wait times along routes where headways are 
less than 20 minutes and overestimate wait times along routes with headways greater than 20 
minutes (Left Figure). The linear relationship between half-the-headway estimated wait times 
and ridership survey response wait times are used to estimate waiting times across the Los 
Angeles and Valley Metro Service Areas (Right Figure). 

The relationship between half-the-headway estimates and actual passenger waiting 

times for Los Angeles Metro transit lines are used to establish waiting time estimates at both 

Los Angeles Metro and Valley Metro transit stops from published transit schedules(Los 

Angeles Metro 2014; Watkins et al. 2011). In addition to capturing arrival behavior that is 

influenced by schedule knowledge, this method may also effectively capture longer waiting 

periods associated with breakdowns in schedule reliability for Los Angeles Metro. However, 

the factors that influence transit reliability (e.g. traffic congestion, vehicle breakdowns) may 

differ between the two agencies leading to some uncertainty associated with Valley Metro 

waiting time estimates. Another potential shortcoming of this method is its inability to 
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accurately capture waiting time associated with route transfers. To develop waiting time 

estimates for transit stops that include transfer waiting time, additional information is 

needed. This includes a travel demand model detailing origin-destination demand of transit 

passengers and survey questions and responses that specifically address wait time associated 

with route transfers. This aspect is left for future research. Despite the uncertainty associated 

with additional transfer waiting time, the methods establish waiting time estimates for single 

ride transit trips, which make up 60% of all transit trips, and a baseline for transfer trips by 

capturing waiting associated with the first leg (Iseki et al. 2012). 

1.17.3 Neighborhood Scale 

To identify areas where extended walk and wait times may increase the risks 

associated with extreme heat exposure, household estimates for walking and stop waiting 

times are aggregated at the neighborhood scale as defined by U.S. census tract boundaries 

(Census 2014).  

1.18 Results  

 The results focus on evaluating environmental exposure heterogeneity in 

neighborhoods served by the Los Angeles and Valley Metro systems. We explore how 

several key variables including transit system layout, transit scheduling, and urban form 

characteristics contribute to longer access and waiting exposures for transit riders.  

1.18.1 Access Time 

Households within the Los Angeles Metro service area are found to have an average 

ingress/egress walking time of 4.7 (σ = 1.0) minutes while households in the Valley Metro 

service area experience an average walk time of 6.2 minutes (σ = 1.5). For individual 

households, access time is influenced by the existing street network and the relative position 
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of the three nearest transit locations. However, when individual household walk times are 

aggregated to the neighborhood scale the impact of transportation land-use decisions 

become more apparent.  Figure 15 shows average access walking times for neighborhoods 

served by Los Angeles Metro and Valley Metro which range from 0.5 to 7.6 minutes and 1.9 

to 9.9 respectively. Residential density is often cited as a precondition for transit 

effectiveness and neighborhoods with lower residential densities are found to have fewer 

transit stops per square kilometer (Handy 2005). The discrepancy in average walk times 

between the two regions results largely from differences in residential density. Within the 

Los Angeles Metro service area, the average population density is 7,200/mi2 and the average 

population density in neighborhoods served by Valley Metro is 2,900/mi2.  Decreased 

residential density coupled with fewer transit stop alternatives results in greater access times 

for these low density neighborhoods. Conversely, as residential density increases we find that 

average access times tend to decrease.   

 

Figure 15: Average Walk Time Quintiles (minutes) to Transit. Neighborhood walk 
times, which are impacted by residential density, transit stop placement, transit stop density, 
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and the geometry of the street network, are lowest in the urban core and highest in 
neighborhoods along the fringe of the service area.  

 Intra-regional disparities result from the interaction of urban form characteristics and 

the design of the transit systems. In addition to overall residential density, density around 

transit stops and routes are found to impact average access times. Within the dense urban 

core where access times are found to be the lowest, mid to large sized multifamily residential 

buildings ( > 4 dwelling units) tend to be proximate to higher capacity roads featuring transit 

stops and routes while smaller multifamily buildings and single family home are typically 

found further from these types of facilities. The relative proximity of large multifamily 

buildings to transit facilities reduces average access time for urban neighborhoods.  In less 

dense neighborhoods, especially at the suburban fringe, there is often limited residential 

development and density adjacent to transit stops and routes. Even in less dense 

neighborhoods bisected by transit routes, residential household density tends to be more 

homogenous and made up of smaller multifamily units and single family homes. 

Proportionately there are fewer households adjacent to transit facilities in these areas and the 

result is longer average access times. Additionally, neighborhoods found in the dense urban 

core tend to feature highly gridded street networks that improve pedestrian access reducing 

walking distances to nearby transit facilities. Movement away from the urban core finds 

gridded street networks that feature longer block lengths as well as irregular branching 

networks terminating in cul-de-sacs resulting in longer walking distances and times. The 

density of the built environment and the design of the street network have been cited as a 

critical determinants of pedestrian mode choice (Cervero and Kockelman 1997; Moudon et 

al. 2006; Rodrı́guez and Joo 2004) but for transit users these elements, in conjunction with 
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the placement of transit stops, also impact how long they are exposed to the environment 

potentially leaving them at risk for negative heat-related health outcomes.  

1.18.2 Waiting Time 

 Applying the linear model to GTFS schedules, average wait times are found to be 

fairly consistent for both Los Angeles Metro and Valley Metro. Overall, the average wait 

time at transit stops is found to be 11.2 minutes (σ = 0.59) for Los Angeles Metro riders and 

11.1 minutes (σ = 1.0) for Valley Metro riders. Neighborhood stop averages range between 

8.9 to 14.3 minutes in the Los Angeles Metro service area and 9.0 – 14.1 minutes in the 

Valley Metro service area (Figure 16) which are consistent with waiting times reported by 

2009 NHTS respondents (USDOT 2009).  

  

 

Figure 16: Average Waiting Time Quintiles (minutes) for Transit. Transit riders in 
neighborhoods adjacent to high capacity roadways and along direct paths connecting major 
activity centers experience the most frequent transit service and lowest average waiting times 
across the service areas. Lower frequency service and longer average waiting times occur in 
neighborhoods with lower capacity roadways and those which are not along direct routes 
connecting activity centers. 
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 Transit route design and scheduling is a complex task that ultimately contributes 

passenger waiting times that are uneven across the transit system. The process usually 

includes accounting for mobility demand, road network geography, in-route travel times, 

expected delays, fiscal and resource constraints. Because a single route can cover large 

portions of the transit service area, waiting times are less dependent on density 

characteristics than access times are. Within the service areas of Los Angeles and Valley 

Metro, the highest frequency routes are typically found connecting major activity centers 

(business & commercial centers). Though these routes are not always linear, they are 

typically the most direct way of connecting these locations. In the transit context directness 

implies the path with the shortest travel time and high frequency routes tend to utilize high 

capacity roadways. Neighborhoods that are adjacent to arterial roadways connecting activity 

centers will, on average, experience the lowest waiting times across transit systems. In 

contrast, transit frequencies are found to be lower along non-arterial roadways and the 

lowest in the fringe neighborhoods of the service area leading to increases in expected 

waiting time. A decrease in total transit demand is often associated with a reduction in transit 

service frequency, however, these neighborhoods may also experience decreased frequency 

owing to the fact that they are not located along direct paths between major activity centers. 

Cost-effective resource allocation to meet the competing transit goals of area coverage and 

total ridership, combined with the distribution of activity locations and the geography of the 

street network leads to waiting times that are longer for some riders than others and may 

increase the risks associated with heat exposure.  
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1.18.3 Uncertainty  

 Exposure estimates are sensitive to several methodological assumptions. First, access 

time estimates are based on walking speeds of an average adult, though walking speeds can 

vary significantly by age and physical condition. Walking times may increase by up to 30 % 

for the slowest age group (females, age 80-89) and decrease by up to 10% for fastest group 

(males, age 40-49) (Bohannon and Andrews 2011). In assessing access time, it was assumed 

that individual mobility needs would be met by routes serving the nearest transit stops and 

that the existing street network defines pedestrian pathways. It is possible that some transit 

users may walk to stops farther away leading to an underestimate of walking time at the 

household level. Transit users may rely on shorter paths through parking lots or other cut 

throughs which are not captured using the street network and may also select routes that are 

longer than the shortest path. The analysis also excludes all households where the distance to 

the nearest transit stop is greater than 800 meters. While existing data suggest that the 

probability of transit riders walking more than 800 meters is low, excluding these riders leads 

to lower average neighborhood walking times. Access times may be fairly consistent for 

individual transit riders but there may be issues with schedule reliability which impact waiting 

time that are obscured or not captured with the current methods. Specifically, the methods 

are unable to address waiting times which may vary throughout the day due to demand-

based transit schedules as well inter-route service reliability issues. Finally, characterizing and 

comparing neighborhoods by average access and waiting times may not identify transit riders 

who experience the greatest exposure, the riders who are at the right most extreme for 

access and/or waiting time. It should also be noted that the relative health risks associated 

with heat exposure are likely higher during physical activity (e.g., walking to transit) than 
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sedentary activity (e.g., waiting for transit) though the relative risk will vary depending on 

individual characteristics and behavior.  

1.19 Discussion 

 In most places transit agencies are tasked with designing and implementing transit 

systems that work within the context of existing urban infrastructure. Even though urban 

infrastructure systems are primarily out of the control of transit agencies, often a legacy of 

land use and transportation decisions stretching across decades, they impact how and where 

an agency will operate and overall service quality. For transit riders, some amount of 

environmental exposure is inevitable. Upon closer inspection of the results, we find that 

transit riders living in areas where residential density is low, with limited high capacity 

roadways and irregular street networks, and not along direct paths between major activity 

centers are likely to experience the greatest total exposure (access and waiting). Areas with 

these characteristics tend to have lower demand for public transit (Bento et al. 2005; Cervero 

and Kockelman 1997; Chen et al. 2008; Frank et al. 2008), however, riders in these areas that 

are dependent on transit services for mobility may be at the greatest risk for heat-related 

health effects. For Los Angeles and Valley Metro, the areas with highest total exposure are 

found primarily along the edge of the service areas (Figure 17) and might be areas where the 

agencies could focus efforts to reduce exposure and its health impacts during summer 

months and other periods of unusually warm weather. 



 

 88 

 

Figure 17: Average Total Exposure Resulting from Transit Use. Total exposure is 
access time plus wait time. Transit riders living in low density neighborhoods with irregular 
street networks along the fringe of the service area are likely to experience the longest 
average exposure associated with transit use.  

  Exposure to extreme heat is a universal health risk but there are some individuals 

who are more susceptible to harm than others. The ability to respond and cope with heat 
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stress can vary significantly from one individual to another but research has shown that 

certain population subgroups including the elderly, young children, those living in poverty, 

and those with underlying medical conditions are predisposed to heat-related morbidity and 

mortality (Kenny et al. 2010; Kovats and Hajat 2008). By combining characteristics known 

to increase heat vulnerability and population demographics researchers have developed 

methods that spatially identify neighborhoods and regions where residents are more at risk 

of negative heat-health outcomes (Cooley et al. 2012; Harlan et al. 2012; Reid et al. 2009). In 

addition to socio-economic traits indices can also include environmental factors such as 

vegetation and surface temperatures which have been shown to be significant factors in 

predicting heat-related morbidity and mortality (Harlan et al. 2012).   When developing 

policies and programs aimed at reducing health risks for riders, transit agencies should also 

consider spatial variations in rider demographics and environment characteristics which may 

increase heat vulnerabilities. 

While transit systems have been designed and implemented to meet mobility needs, 

climate change gives cause to rethink system designs in order to protect users from extreme 

weather events. Because extreme heat can be forecasted with sufficient lead time, identifying 

areas with relatively longer access and waiting times can help transit planners and operators 

adjust system designs to reduce overall outdoor exposure. Transit systems are subject to a 

number of constraints, notably funding, but there are a number of options available which 

may reduce health risks. Despite the recent increase in public transit spending the costs 

associated with the additional stops, drivers, and vehicles required to significantly reduce 

access and waiting time across the system are likely prohibitive.  However, the results 

indicate that existing transit resources could be temporarily reallocated across the system in 
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order to reduce waiting time in areas where total exposure is the greatest and/or areas with 

high social vulnerabilities to heat.  

There are existing transit system components which may mitigate transit user health 

risks during periods of hot weather. Paratransit and other dial-a-ride services already serve 

potentially vulnerable groups (elderly and the disabled) though there are other groups with 

underlying heat vulnerabilities that may not be eligible for these services. Yet, for these 

services to be effective in mitigating health risks during hot weather, riders must first 

acknowledge their own vulnerability to heat and opt for these services instead of public 

transit. Transit agencies should actively promote the use of these services for all riders with 

underlying vulnerabilities to heat in addition to expanding these service options. Existing 

transit shelters and other cooling amenities (e.g., water fountains) may also reduce risks 

associated with transit use during periods of hot weather. Agencies should give consideration 

to current exposure as well as underlying social vulnerabilities to heat when determining 

appropriate locations for additional shelters. Although temperatures in the shade are 

generally cooler, the extent to which these facilities may protect riders during severe heat is 

not understood and additional research is needed to determine whether current shelter 

designs are adequate in mitigating potential heat-health effects. In places where agencies are 

developing new routes or expanding existing routes to service new developments, transit 

planners should consider the two elements of exposure, access and waiting, when siting 

transit stops and developing transit schedules.  

There are potential technological solutions which may mitigate health risks for transit 

riders. Real-time schedule arrival applications, which use GPS location data and historical 

travel times to predict transit vehicle arrivals at individual stops, are being implemented by 
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some transit agencies in the U.S. and have been shown to reduce passenger waiting times by 

30% (Watkins et al. 2011). While these applications were primarily developed to increase 

rider satisfaction and increase transit ridership by improving the perception of reliability, the 

widespread use of real-time information could significantly reduce waiting times during 

periods of extreme heat. These real-time services can provide next vehicle arrival 

information to riders through a number of mediums including website, telephone, SMS text 

messaging and smart-phone applications (Watkins et al. 2011) allowing riders to reduce their 

wait time even when transit services are running off schedule. Even so, there is some 

question as to whether this type of technical solution would be available to vulnerable riders, 

especially those living in poverty. This type of service also opens up the possibility of 

partnering with nearby air conditioned public spaces or businesses which could display real-

time arrival information and offer a respite from heat while riders wait for the next vehicle. 

While the benefit to the transit rider is obvious, a digital reader board which displays real-

time transit schedule information could also bring new customers to businesses adjacent to 

transit stop locations.  

 In addition to concerns for rider health, cities and transportation planners ought to 

consider the impact that extreme heat may have on the demand for transit and other non-

motorized modes. In the United States, transit, cycling, and walking have experienced mode 

share increases in recent years but climate uncertainty and weather extremes may make these 

modes less viable in the future. At a time when cities are encouraging more transit, biking 

and walking by expanding service and improving infrastructure for these modes, efforts 

should also be made to design these systems with elements to protect individuals from 

climate extremes. 
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Los Angeles and Valley Metro are specific transit systems and the broader 

application of the methods to other transit systems should consider a few caveats. First, 

because the Los Angeles and Valley Metro vehicles feature air conditioning, the analysis 

assumes that heat exposure would not occur during the transit trip. For transit agencies 

operating vehicles without air conditioning, vehicle conditions and in-transit exposure 

should also be considered.  Secondly, Los Angeles and Valley Metro are formalized transit 

systems that operate on specified routes, stops, and schedules. More advanced methods are 

needed to understand exposure in areas where people reliant on informal and unregulated 

transit networks. These networks are common in many developing regions including major 

cities in sub-Saharan Africa, Latin America, and Asia (Cervero and Golub 2007). Lastly, the 

transit stops across these two systems are largely exposed and other systems may feature 

indoor air-conditioned stops (e.g.  Air-conditioned bus shelters in Dubai) which should be 

accounted for. 

1.20 Conclusion 

Policymakers and planners need to consider the impacts of climate change on transit 

riders and the associated risks. While public transit can help reduce the energy use and 

greenhouse gas emissions of individual mobility, it also contributes to environmental 

exposure which may be detrimental to rider health, especially in the face of climate change. 

As populations continue to urbanize and public transit becomes an increasingly important 

form of transportation the health risks associated with extreme weather events should be 

considered and planned for in system design.  
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Chapter 5 

CONCLUSION 

This dissertation advances thinking surrounding transportation and climate change 

by examining the potential for infrastructure to affect individual heat-health risks. Population 

vulnerability to heat has been shown to vary across cities (Harlan et al. 2013; Reid et al. 2009) 

and this research identifies specific infrastructure characteristic which can mitigate or 

exacerbate these risks. Assessments of existing civil infrastructure systems are critical to 

developing effective policies, programs, and adaptions to reduce a growing health threat. By 

comparing assessments of population heat vulnerabilities and assessments of infrastructure 

characteristics that may contribute to or reduce heat stress, decision makers can make 

informed choices on where interventions should be targeted.  

Los Angeles and Maricopa developed concurrently with the adoption of the personal 

automobile and their land use and transportation systems are, by and large, dedicated to their 

use. Despite infrastructure systems that incentivize automobile travel that at the same time 

discourages alternative modes, there are still large populations in each region that rely on 

walking, cycling and using transit for their mobility. Pedestrians, cyclists, and transit users are 

frequently exposed to the environment, which could be a health hazard during periods of 

extreme heat. While this work has focused on two regions that are heavily auto-dependent, 

the underlying methods can be applied in other cities where larger fractions of the 

population rely on these modes. Already a public health threat, climate change is predicted to 

increase average temperatures as well as the frequency, severity and duration of extreme heat 

events. This research is needed to understand how alternative mode usage contributes to 
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environmental exposure alternative modes as and how users may be affected in a climate 

impacted future  

In Los Angeles and Maricopa, public air conditioned spaces can mitigate the health 

risks associated with extreme heat. These spaces were found to be unevenly distributed 

throughout each region making access more difficult for some. In both regions, there are 

areas with an abundance of these spaces and others where there presence is extremely 

limited. This variation largely results from different land use patterns and the separation of 

residential and commercial uses. Large residentially zoned areas (e.g., suburbs) were found to 

significantly reduce the presence of public cooling resources. For those with automobiles, 

these disparities may not matter, but for those who rely on walking as a primary form of 

mobility these variations may limit their access to a resource that can reduce the risk of 

negative health outcomes. Concerns for prolonged exposure may prevent individuals from 

walking to these spaces if the time-cost is beyond comfort or safety thresholds. Conversely, 

individuals who are unaware of their own heat-health risks with limited access to facilities in 

close proximity may engage in unsafe behavior attempting to access further locations. 

Broadly, the underlying methods in Chapter 2 can help identify regions in cities where 

individuals may be deprived of, or experience undue exposure in accessing, necessary goods 

and services during periods of extreme heat. 

Designated public cooling centers can help reduce the disparities in cooling resources 

but the research has shown that they have largely been located in areas with an abundance of 

alternatives. Organizations that coordinate cooling center networks need to consider these 

alternatives when siting facilities. Although existing facilities are a service to those in close 

proximity, in many cases they may be redundant. These facilities are needed in locations near 

vulnerable populations with limited access to cooling alternatives. Beyond Los Angeles and 
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Maricopa, many other major cities have also developed networks of cooling centers for heat 

emergencies. Chapter 3 identifies a method that combines heat vulnerability assessments, 

accessibility measures, and location analysis that agencies can use to evaluate the efficacy of 

the existing network and to effectively site future cooling center facilities  

While the private automobile has been the primary method of personal 

transportation in the US Southwest for decades, the issues surrounding congestion, air 

quality, and climate change has led to an increase in public transit spending and usage in Los 

Angeles and Maricopa counties in recent years (FTA 2016). Championed as the “most 

efficient means for large numbers of people to move freely in cities”, public transit also 

exposes people to the environment (Walker 2012). While access time and wait time have 

been shown to be determinants of transit use (Taylor et al. 2009), previous research has not 

considered these elements for their potential to increase heat-health risks. Because transit 

systems are typically designed for cities rather than cities being designed around transit 

systems, locked-in urban forms influence transit stop placement and transit schedules that in 

turn influence exposure for individuals. This dissertation demonstrates that the design of the 

Los Angeles Metro and Valley Metro systems leads to different exposure experiences for 

riders across the system and quantifies that experience. There is a correlation between heat-

vulnerable populations and those that ride transit and overall these transit systems are 

currently designed in a way that leads to lower exposure times for vulnerable populations. 

However, because waiting time is found to be larger on average than access time, transit 

agencies have an opportunity to limit exposure by making improvements to stops and transit 

schedules during periods of extreme heat. As cities continue to urbanize and if public transit 

use continues to grow this research can help transit agencies understand transit use as an 

exposure pathway and where interventions may be needed during periods of extreme heat.  
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1.23 Future Work 

Public transportation planning is a complex process that seeks to maximize the 

quality of service to users within agency budgets. Because these are two competing goals, 

tradeoffs need to be made and optimization techniques are frequently used to evaluate these 

tradeoffs (Guihaire and Hao 2008). However, it may be possible to establish alternative 

services and schedules that incorporate an objective of reducing climate risks to passengers. . 

The public transit process is generally divided into five steps: i) network design (route 

structure and stop placement), ii) route frequencies, iii) timetabling, iv) vehicle scheduling, 

and v) crew scheduling and rostering (Guihaire and Hao 2008). Each is a significant 

undertaking and is typically solved in sequence as separate optimization problems 

(Desaulniers and Hickman 2007). There are opportunities to incorporate rider health risks in 

the overall planning process and the framework described below aims to reduce system wide 

heat health risks by adjusting transit schedules to reduce wait times for vulnerable 

population. The framework is tested by developing new transit frequencies for the Los 

Angeles Metro (LA Metro) local bus system.  

1.23.1 Los Angeles Metro Case Study 

LA Metro ranks among the top five public transit systems in the United States for 

total transit vehicles operated, revenue kilometers, revenue hours, unlinked passenger trips, 

and passenger kilometers (APTA 2015). Between bus and rail service, the system supports 

approximately 1.4 million unlinked daily trips (weekday) originating from 16,047 transit stops 

and covers a service area of 3,711 square kilometers as of 2015 (LA Metro 2015). LA Metro, 

like other transit agencies, develops service frequencies from time-dependent estimates of 

demand and bus passenger capacities. LA Metro’s frequencies vary throughout the day and 
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during peak periods bus frequencies are as high as 10 times per hour for high demand 

routes. These high frequency routes typically follow major arterials. During off-peak times 

frequencies are typically reduced and some routes are even taken out of service. Due to 

demand based service, transit riders using the system during off peak periods likely 

experience longer waiting times than those who use transit during peak periods. 

Coincidently, off peak hours during 1pm to 3pm can be some of the hottest hours of the day 

(Figure 18).  

 

Figure 18 Average Transit Frequency and Daily Temperatures. The dotted lines depicts 
average frequency across all active local routes by time of day and the shaded background 
shows ambient air temperature during an extreme heat event (September 27, 2010)(NCDC 
2016). Demand-based scheduling reduces waiting times during peak periods. Waiting times 

are longer between the hours of 9am and 3pm when outdoor temperatures exceeded 43 C ̊ 

  A simple solution to reducing waiting times during extreme heat events would be to 

increase frequencies along all routes. However, given budget constraints, this type of 

solution is infeasible. A framework is developed to reduce health risks for vulnerable transit 

riders by altering transit frequencies without increasing the costs for the transit agency. 
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1.24 Methods 

 This case study develops new frequencies for all weekday LA Metro local bus routes 

operating between 2pm and 3pm. This time slot was identified as an off peak time where 

service frequencies are low on a number of a routes and temperatures are expected to be 

near daily maximums. General transit specification data for LA Metro was used to determine 

existing transit frequencies and the total number of vehicles beginning operation during this 

time period (LA Metro 2015).  

1.24.1 Determining Transit Rider Demand Potential 

 Detailed time-dependent demand is the most difficult data requirement to obtain for 

developing transit frequencies. Transit agencies rely on on-board surveys and statistical 

forecasting to generate time-dependent origin-destination matrices. Due to the expense and 

effort required to generate system wide demand estimates, transit agencies are often reluctant 

to share these data (Guihaire and Hao 2008). For this assessment, rider demand was 

estimated using the American Community Survey which details transit use among workers. 

For Los Angeles census tracts, potential transit demand is estimated based on the relative 

use of public transit among resident workers and the general population of the census tract 

(USCB 2015). 

1.24.2 Rider Heat Vulnerability 

As in Chapter 3, relative heat vulnerability scores are developed for each census tract. 

The scores are based on the principle component that was found to be the overall best 

predictor of both all-internal causes and heat related deaths during periods of extreme heat 

(Figure 19).  
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1.24.3 Transit Route Weights 

 Individual transit routes are weighted based on total ridership demand potential and 

ridership vulnerability. GIS tools developed by Morang (2016) are used to develop shapefiles 

for LA Metro transit routes and stop locations (Figure 19). Routes are assigned weights that 

are equal to the sum of the transit demand potential multiplied by heat vulnerability for all 

census tracts served by the transit route (Eisenman et al. IN REVIEW). 
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Figure 19: LA Metro Local Bus Routes, Potential Ridership Demand, and Heat 

Vulnerability 
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1.24.4 Optimization Framework 

A non-linear integer programing based optimization model could be used to 

determine new transit frequencies and is defined below: 

𝑀𝑖𝑛 ∑ ∑ (
6.369

𝐹𝑖
+ 7.8959)

𝑗∈𝐶𝑖𝑖

𝐷𝑗𝑉𝑗  

𝑆. 𝑇. 

1) ∑ 𝐹𝑖 < 𝐵

𝑖

 

2) 
𝐹𝑖0

𝐿𝐹𝑖

𝐹𝑖
≤ 1.42 ∀𝑖 

3)1 ≤  𝐹𝑖 ≤ 10, ∈ 𝑍 ∀𝑖  

𝑊ℎ𝑒𝑟𝑒: 

𝑖 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑟𝑜𝑢𝑡𝑒 

𝐶𝑖 = 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑟𝑜𝑢𝑡𝑒 𝑖 

𝐷𝑗 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡 𝑗 (# 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑟𝑖𝑑𝑒𝑟𝑠) 

𝑉𝑗 = 𝐻𝑒𝑎𝑡 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡 𝑗 

𝐹𝑖 = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑖 (
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

ℎ𝑜𝑢𝑟
) 

𝐵 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 

𝐹𝑖0
= 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑖 (

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

ℎ𝑜𝑢𝑟
) 

𝐿𝐹𝑖 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑟𝑜𝑢𝑡𝑒 𝑖 (
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

𝑠𝑒𝑎𝑡𝑠
) 

 

Constraint 1) limits the total number of buses that can be assigned to all routes to those that 

are currently scheduled for service. Constraint 2) ensures that there is sufficient capacity to 

meet existing demand based on current load factors. The maximum load factor for weekday 

service in Los Angeles is 1.42 (LA Metro 2016). Constraint 3) ensures that at least one 

vehicle runs along all routes that currently have service, limits the total vehicles servicing 

each route to 10, and only allows integer values to be assigned. 
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1.25 Results  

The routes serving the greatest vulnerable demand are those that serve the center of 

LA Metro’s service area. The West Los Angeles, Mid-Wilshire, Mid-City West, Mid-City, 

West Adams, and Crenshaw neighborhoods are some of the most heat vulnerable 

neighborhoods in Los Angeles. These neighborhoods are in close proximity to downtown 

and are served by a large number of routes which currently operate at mid to high 

frequencies. Additionally, some of the routes that serve central part of Los Angeles are long 

routes that crisscross the LA Metro system which contributes to their high overall demand 

weight (Figure 20).  

The 736 local buses beginning operation between 2 and 3pm are reallocated across 

95 active bus routes (LA Metro 2015) using the optimization model. Current frequencies 

range from 8 to 1 times vehicles per hour. The optimization of route frequencies to reduce 

waiting times for vulnerable groups was able to improve the objective function by 13%. 

Routes in the center of LA Metro’s service area generally received an increase in frequency 

due to the potential for high demand from vulnerable groups of riders. Vehicles that are 

reallocated to the these central routes are largely drawn from routes operating in the 

periphery of the LA Metro System and in the San Fernando Valley where both potential 

rider demand and heat vulnerability are lower (Figure 20).  
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Figure 20 Weighted Transit Route Demand Vulnerability and Frequency Changes 
from Existing Schedules 

 The results show that it is possible for LA Metro to adjust transit schedules to reduce 

waiting time for vulnerable populations without incurring additional costs. During periods of 
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extreme heat, services should be concentrated on the routes serving the center of the LA 

Metro System. The application of real demand data and rider demographics would 

significantly improve the ability of the model to identify routes should that be targeted for 

frequency increases and where these vehicles could come from. A consequence of this 

method is that it will increase waiting for those along routes where frequencies decrease.  

Additional constraints could be added to the model to limit frequency decreases and 

establish a ceiling for additional wait time on all routes. Because heat waves can be predicted 

with sufficient lead-time, it may also be possible to notify riders of alternative schedules in 

advance to minimize the impact of reduced frequencies on waiting time. This case study 

reflects a single step in the public transit planning process. The next steps for developing a 

functional emergency heat bus service include developing timetables, vehicle scheduling, and 

crew assignment. 

 Recently, LA Metro suggested changes to their bus system that mirror some of the 

changes developed in this case study. Motivated by a service review conducted by the 

American Public Transportation Association (APTA), LA Metro has proposed to make 

changes to their system based on a route performance (RPI) (LA Metro 2015). RPI is based 

on total passenger boarding, passenger miles, and overall operation cost. The APTA review 

included a recommendation to “critically review services & reallocate resources from poorer 

performers to higher productivity”(LA Metro 2015). Overall, the LA Metro proposal calls 

for no additional hours of bus service but reallocates existing services from lower demand 

routes to high demand routes. While the overall objective between LA Metro’s proposal and 

the one presented here different, the results are similar. The network recommended by LA 

Metro’s Blue Ribbon Committee strongly resembles the frequency shifts identified in this 

analysis (Figure 21). LA Metro has not yet implemented these changes but if they do, the 
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new network may also help reduce heat vulnerability because of the routes they are targeting 

for increased frequency. 

 

Figure 21 Blue Ribbon Committee Recommended Bus Network (LA Metro 2015) 

1.26 Conclusion 

The issues identified in this dissertation are applicable to areas outside the US 

Southwest as global climate models project that many cities will experience increasing 

temperatures and more frequent and severe heat (and even cold) events (Wuebbles et al. 

2014). Understanding these characteristics is critical to developing policy and programs that 

effectively address heat as a public health issue. The application of these methods is not 

limited to just high temperature environments. Extreme cold is also known to contribute to 

excess morbidity and mortality (Díaz et al. 2005; Medina-Ramón and Schwartz 2007) and the 
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methods could also be applied to understanding the disparities in residential heating, public 

heating resources, official warming centers, and mode-based exposure.  
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