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ABSTRACT 

 

Nanoscale semiconductors with their unique properties and potential applications 

have been a focus of extensive research in recent years. There are many ways in which 

semiconductors change the world with computers, cell phones, and solar panels, and 

nanoscale semiconductors having a promising potential to expand the efficiency, reduce 

the cost, and improve the flexibility and durability of their design. In this study, 

theoretical quantum mechanical simulations were performed on several different 

nanoscale semiconductor materials, including graphene/phosphorene nanoribbons and 

group III-V nanowires. First principles density functional theory (DFT) was used to study 

the electronic and structural properties of these nanomaterials in their fully relaxed and 

strained states. The electronic band gap, effective masses of charge carriers, electronic 

orbitals, and density of states were most commonly examined with strain, both from 

intrinsic and external sources. For example, armchair graphene nanoribbons (AGNR) 

were found to have unprecedented band gap-strain dependence. Phosphorene 

nanoribbons (PNRs) demonstrate a different behavior, including a chemical scissors 

effect, and studies revealed a strong relationship between passivation species and band 

gap tunability. Unlike the super mechanical flexibility of AGNRs and PNRs which can 

sustain incredible strain, modest yet large strain was applied to group III-V nanowires 

such as GaAs/InAs. The calculations showed that a direct and indirect band gap transition 

occurs at some critical strains and the origination of these gap transitions were explored 

in detail. In addition to the pure nanowires, GaAs/InAs core/shell heterostructure 

nanowires were also studied. Due to the lattice mismatch between GaAs and InAs, the 

intrinsic strain in the core/shell nanowires demonstrates an interesting behavior on tuning 
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the electronic properties. This interesting behavior suggests a mechanical way to exert 

compressive strain on nanowires experimentally, and can create a finite quantum 

confinement effect on the core.  
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Chapter I. INTRODUCTION 

A. Motivation 

Electronic devices, such as computers, solar cells, cell phones, light emitting diodes 

(LEDs), and many other devices in the modern world rely on the newest technology 

available in semiconductors.
1-5

 As demand for faster, smaller, and more efficient devices 

increases, the interest in nanoscale semiconductors rises, creating a vast field of research 

on this particular subset of condensed matter physics.
5, 6

 A principle goal of this field is to 

find materials that allow for devices with smaller size, faster processing speed, greater 

efficiency, longer lifespan and lower cost. In an attempt to achieve this goal, numerous 

researchers in the field produce experimental and theoretical research on semiconductors. 

This study focuses on semiconductor research, through theoretical calculations, to 

explore these novel materials and seek out applications in nanoelectronics and renewable 

energies, as well as to gain a fundamental understanding of the materials’ properties at 

the atomic level. This work utilizes an ab initio quantum mechanical approach to 

theoretical calculations. 

The ab initio quantum mechanical approach used in all calculations in this study is 

performed using density functional theory (DFT). The motivation behind the theoretical 

density functional theory simulations of semiconductors is an efficient predictive 

calculation of favorable electronic properties for technological manipulation within 

devices. DFT simulations are far less expensive than other first principles methods such 

as the ones based on electron wavefunctions,
7
 both of which are significantly cheaper 

than experimentation, especially in regards to predicting and manipulating properties of 
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semiconductors in nanoscale. The study of both structural and electronic properties of 

semiconductors benefits the technological demands of this era. 

There are many approaches to simulating semiconductor materials with the current 

knowledge of condensed matter. Molecular dynamics, statistical mechanics, and DFT are 

all approaches with different advantages and disadvantages, typically trading accuracy 

for computing costs. Even within DFT, there are multiple options on approximations and 

solution methods that change how the problem is solved, how expensive the simulation 

is, and what materials are best studied with a certain approach. For example, localized 

orbital approach is more appropriate for molecular, non-repeating studies, while periodic 

boundary condition plane-wave methods are more appropriate for crystals without defects 

or doping. And the GW approximation (Green’s function with screened Coulomb 

interaction) is a great example of great accuracy in the band gap with huge computational 

cost, forcing limitations that significantly reduce the maximum size of the unit cell. This 

study focuses on a DFT approach with periodic boundary conditions and 

pseudopotentials, which allows for reasonable (about 300 atoms) unit cell size for 

reduced dimensionality structures.  

The specific properties of semiconductors studied in this work include band gap 

tunability, predictions of new nanostructure configurations, effective masses of charge 

carriers including electrons and holes, density of states (DOS), band structure, and the 

work function of nanostructure semiconductors. These properties are essential for 

engineering the next improvements to solar cells, LEDs, lasers, and other device 

applications. An additional goal of this research is to help explain phenomena observed 

by experimental research into nanoscale semiconductors, after the materials have already 
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been synthesized.
5
 Unlike with traditional simulations which focus on materials of the 

future, this work focuses on specifically matching structural and electrical properties of 

specific samples from experimental groups to help explain the data found by these 

groups. There are many amazing, unique features of nanoscale semiconductors, including 

their incredible strain capacity, their unique structural stability, and the more prominent 

observable quantum confinement effect in their smaller structures. The high strain 

capacity of graphene,
8
 the lowering of formation energy for wurtzite GaAs in nanowires,

9
 

and the band gap growth by the size of nanowires from quantum confinement are unique 

and interesting properties of nanoscale semiconductor structures.
10, 11

  

DFT is a effective method to study these semiconductor nanostructures. With unit 

cells between dozens and hundreds of atoms, the scale of structural analysis is well 

within the limits of DFT. The usefulness of DFT in structural and electronic properties of 

semiconductor materials is also well documented, and the deficiencies in band gap 

calculations can be corrected using more advanced calculation methods such as hybrid 

functional analysis, where necessary. The ease with which strain can be applied to 

systems is beneficial as well. Calculations of semiconductor electronic properties like 

band structure, electronic orbitals, DOS, work function, and other measurements, which 

are all influenced by factors like size, edge passivation, and strain, are relatively simple to 

simulate with DFT calculations. This work includes intrinsic and extrinsic strain, size 

effects of nanowires and electronic states, and multiple edge passivation methods, and 

how they alter the electronic properties of the nanoscale semiconductors, and DFT is a 

remarkable tool for these studies. For example, intrinsic strain is strain introduced to the 

system through heterostructure interfaces, while extrinsic strain is artificially applied 
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using the periodic boundary conditions in this DFT methodology. However, it is 

necessary to first introduce the methodology behind these DFT simulations before 

delving into the results of this work. 

 

B. The Schrödinger Equation 

One could argue that everything within quantum mechanics lies within a many 

bodied, relativistic, time dependent Schrödinger Equation.  

 
𝑖

𝑑

𝑑𝑡
Ψ(𝒓, 𝑡) = �̂�Ψ(𝒓, 𝑡) (I.1) 

In this perspective, it will truly forever remain unknown, since mathematically it is 

not possible to solve problems where more variables exist than equations. However, for 

the sake of progress in science, certain assumptions are made to make predictions as 

close to reality as possible. First, scientists can reduce the problem to time independent 

solutions of the Schrödinger Equation. It is well-known that one can easily expand into 

time dependent solutions to the Schrödinger Equation using linear combinations of time 

independent solutions. Looking to the time independent solutions to the Schrödinger 

Equation, we find (in atomic units) equation (I.2). 
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𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖
− ∑ ∑
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𝑟𝑖𝐴

𝑀

𝐴

𝑁

𝑖
+ ∑ ∑

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴
) Ψ 

(I.2) 

In the above Hamiltonian H, 𝑀𝐴 is the ratio of the mass of nucleus A to the mass of 

an electron, 𝑍𝐴 is the atomic number of nucleus A, 𝑟𝑖𝐴 is the distance between the 

electron 𝑖 and nucleus 𝐴, 𝑟𝑖𝑗 and 𝑅𝐴𝐵 are the distances between two electrons (𝑖 and 𝑗) and 
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between two nuclei (𝐴 and 𝐵) respectively. Still, this is a many bodied system that has 

electron and nuclei potentials, kinetic energies, and interactions between all particles 

within. Reducing the problem further, the Born-Oppenheimer approximation assumes 

that the nuclei of the system are so massive with respect to electrons that they can be 

treated as stationary, allowing factorization of the wave function of electrons and nuclei 

to be split into different steps in finding a solution to the total Schrödinger Equation. For 

now, the focus will be on the electronic part of the problem, as seen in (I.3). 

 
�̂�𝑒𝑙𝑒𝑐Ψ =  ∑ −

1

2
∇𝑖

2
𝑁

𝑖
Ψ + ∑ ∑

1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖
Ψ − ∑ ∑

𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴

𝑁

𝑖
Ψ (I.3) 

Even here there is still a many electron equation with many interacting terms that are 

difficult if not impossible to solve. It is at this point that DFT is applied to the problem, to 

continue reducing the complexity of the problem into something solvable. There are other 

methods such as Hartree-Fock (HF) method which also can solve the problem
11

, and HSE 

methods which merge DFT and HF methods will be mentioned briefly later.  

C. Density Functional Theory 

The Born-Oppenheimer approximation does much to simplify the equation, removing 

2 of the 5 terms in the Hamiltonian in equation I.2, by treating the nuclei as stationary 

relative to the electrons. The kinetic energy of the nuclei is treated as zero, and the 

Coulomb potential from the nuclei becomes a constant value. Density Functional Theory 

(DFT) attempts to solve the remaining many electron time-independent Schrödinger 

Equation by replacing the main focus of the Schrodinger Equation, the wave function, 

with an electron density, 𝑛(𝒓).  
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𝑛(𝒓) = ∑ |𝜓𝑖(𝒓)|2

𝑁

𝑖
 (I.4) 

In choosing to represent this many body problem using an electron cloud density as 

given by the Kohn-Sham Method,
13

 the number of variables in this problem are greatly 

reduced, and separating the interactions between electrons is possible. It also provides a 

relatively simple method of energy minimization, as dictated by the Hohenberg-Kohn 

theorem.
14

  

 𝛿[𝐸(𝑛) − 𝜇(∫ 𝑛(𝒓)𝑑𝑟 − 𝑁)] = 0 (I.5) 

In the above equation, 𝜇 is the Lagrange multiplier, and 𝑁 is the number of electrons. 

Since it is known that the external potential yields a unique wave function, and that the 

electron density is essentially the wavefunction squared, it remains to show the one-to-

one relationship between the electron density and the external potential. There is a one-

to-one relationship between the external potential and the electron density, shown below. 

The argument is made by contradiction. Assume that two different external potentials 

𝑣(𝒓) and 𝑣’(𝒓) corresponding to two separate ground state wave functions Ψ and Ψ′ 

yield the same electron density 𝑛(𝒓); if this is the case, then the relationship between 

𝑣(𝐫) and 𝑛(𝒓) is not one-to-one. Through the variational principle (Rayleigh-Ritz) it 

would seem that the following equations (I.6) and (I.7) are true when two wave functions 

with different external potentials yield the same electron density. 

 
𝐸 =  〈Ψ| �̂�|Ψ〉 < 〈Ψ′| �̂�|Ψ′〉 = 𝐸′ + ∫ 𝑑3𝑟 𝑛(𝒓)[𝑣(𝒓) − 𝑣′(𝒓)] (I.6) 

 
𝐸′ =  〈Ψ′| �̂�′|Ψ′〉 < 〈Ψ| �̂�′|Ψ〉 = 𝐸 + ∫ 𝑑3𝑟 𝑛(𝒓)[𝑣′(𝒓) − 𝑣(𝒓)] (I.7) 

However, if you add (I.6) and (I.7) together they yield the result,  
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 𝐸 + 𝐸′ < 𝐸′ + 𝐸 (I.8) 

 which is a contradiction, meaning that 𝑛(𝒓) has a one-to-one relation with 𝑣(𝒓).  

Once it is shown that the relationship is one-to-one, the next step is to simplify the 

individual electronic Hamiltonians with a separation of interactions. 

 
ℎ𝑠𝜓𝑠 = −

1

2
∇2𝜓𝑠 + 𝑣𝑒𝑓𝑓(𝒓)𝜓𝑠 = 휀𝑠𝜓𝑠 (I.9) 

In the equation above, ℎ𝑠 is the electronic Hamiltonian of a single electron, 𝑣𝑒𝑓𝑓 is 

the effective potential of the system, and 휀𝑠 the eigenvalue for this electron. By treating 

the electrons as non-interacting, fictitious particles in an effective potential, the system 

can be reduced to the individual fictitious electron Hamiltonians of the system to find the 

overall electronic wave function. In treating the electrons as non-interacting, fictitious 

particles in an effective potential, we find that the energy is given by (I.10). 

 𝐸[𝑛] = 𝑇𝑠[𝑛] + ∫ 𝑛(𝒓)𝑣𝑒𝑥𝑡(𝒓)𝑑𝒓 + 𝐽[𝑛] + 𝐸𝑥𝑐[𝑛] (I.10) 

In the equation above, 𝑇𝑠 is the kinetic energy of the fictitious non-interacting 

electrons, 𝑣𝑒𝑥𝑡 is the external potential acting on the electron density, 𝐽[𝑛] is the 

Coulomb interaction term, and 𝐸𝑥𝑐[𝑛] is the exchange-correlation energy term. Since we 

are using 𝑇𝑠 as the kinetic energy instead of the actual kinetic energy, it is possible to 

calculate exactly. Going into more detail, the exchange correlation energy term is shown 

in equation (I.11).  

 𝐸𝑥𝑐[𝑛] ≡ 𝑇[𝑛] − 𝑇𝑠[𝑛] + 𝑉𝑒𝑒[𝑛] − 𝐽[𝑛] (I.11) 

In the above equation, 𝑇[𝑛] is the true kinetic energy of the electrons, 𝑉𝑒𝑒[𝑛] is the 

electron-electron interaction potential, and 𝐽[𝑛] is the classical Coulomb electron 

interaction energy. The choice of fictitious, non-interacting “electrons” in effective 
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potential results in an addition of the kinetic energy difference terms as well as the 

Coulomb interaction to the exchange correlation energy term. Because all potential terms 

are functions of the electron density, by providing an initial electron density guess, the 

effective potential can be calculated, and be used to recursively energy minimize the 

electron density. 

In practice, there are many ways that this exchange energy is described. Local density 

approximation (LDA), generalized-gradient approximation (GGA), and hybrid 

functionals (specifically HSE06 for this work) are all used to describe this term. The most 

basic approach is with LDA, so it will be discussed first. The exchange-correlation terms 

are split into exchange and correlation, such that 𝐸𝑥𝑐 = 𝐸𝑥 + 𝐸𝑐. In LDA calculations it is 

assumed that a uniform electron gas is a good representation for the electron density. The 

generalized-gradient approximation adds to the complexity of LDA with a gradient of the 

electron density, expanding terms to allow for a non-uniform electron density. Finally, 

the hybrid functionals used in this work combine GGA (PBE) approaches with Hartree-

Fock functionals. A mixing term 𝑎 is used to change the ratio of HF to PBE, in order to 

increase the accuracy of the band gap or other important properties of the material 

expected from previously known experimental data.  

D. Pseudopotentials 

While full electron codes do exist today that are much cheaper than in the past, when 

this work was completed many were comparatively expensive in relation to the code used 

in Vienna ab initio Simulation Package (VASP). Thus, with the large supercells studied 

in this work, pseudopotentials that treat the core electrons as part of the nuclei are very 

useful in reducing the computational cost of the simulation. In creating stationary ions 
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rather than nuclei, the number of electrons in the electron density is reduced. With this 

ionic choice, the code can focus on the optimization of the valence electrons that 

contribute the bulk of the bonding and structural behavior in many elements of the 

periodic table. It should be noted however that overlap in core and valence electrons is 

lost to this particular approach, and so often times several options are given with higher 

number of electrons treated as part of the valence electrons, especially d- and f-orbitals.  

In this particular work, it is most common that ultra-soft pseudo-potentials (USPP) or 

projected augmented wave (PAW) PBE potentials are used. Our choice of USPP for the 

graphene studies is further explained within that section, and our use of PAW PBE 

potentials for GaAs and InAs nanowires stemmed mostly from their higher accuracy with 

their structural lattice parameters in bulk. Other choices of pseudopotentials come from 

recommendations from VASP.  

E. The Self-Consistent Method 

After applying DFT to iteratively solve the electronic Schrodinger equation, the 

system is perturbed in the direction of the gradient of the forces acting on the ions, per 

specifications chosen by the author of this work in the relaxation settings of VASP. When 

starting with initial ion locations and an initial electron density guess, the system first 

calculates the Kohn-Sham effective potential, and then uses this to calculate the wave 

function, and thus a new electron density. Once this has been solved, the Hohenberg-

Kohn theorem is used to regenerate the ionic structure, with any changes usually specific 

to the type of DFT calculation being performed, and then an additional update is made to 

the electron density, which then repeats the electronic relaxation again. The electronic 

relaxation must energy-minimize with every new ionic step, but the ionic steps only 
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check for energy minimization with each additional completion of an electronic cycle. 

Once the energy cutoff parameter is met for the ionic system, the calculation is finished. 

After this calculation is completed, the electronic properties of the structure are generated 

from the resulting electron density and nuclei configuration.  

F. Electronic Property Analysis 

In this study, many electronic properties are studied in the same manner across 

several different chapters. To avoid repetition, certain properties will be discussed in 

detail here. The most basic electronic property discussed in each of the following 

chapters is the band gap. However, it should be noted that an approximate treatment of 

the exchange terms leads to errors in the electron-hole interaction, resulting in a poor 

description of band gaps. While the actual band gap value often is a poor match with 

experiment, it is often seen that the trend with strain still models well, so that calculating 

the band gap is still useful. In this study, the band gap is defined as follows.  

 𝐸𝑔 = 𝐸𝐶𝐵𝑀 − 𝐸𝑉𝐵𝑀 (I.12) 

In this equation, Eg is the band gap, ECBM is the energy level of the conduction band 

minimum (CBM), and EVBM is the energy level of the valence band maximum (VBM). It 

is also worth describing direct vs indirect gaps here. Direct gaps occur where the VBM 

and CBM occur at the same position in k-space. Indirect gaps occur when the VBM and 

CBM are located in different spaces in k-space. Each type of band gap has different 

advantages for specific semiconductor applications.  

The next common electronic property studied is the effective mass of charge carriers.  

 
𝑚∗ = ℏ2 (

𝑑2휀

𝑑𝑘2
)

−1

 (I.13) 
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The effective mass m
*
 is related to the electron by the curvature of the band structure 

at the lowest unoccupied molecular orbital (LUMO), and is related to the hole by the 

curvature at the highest occupied molecular orbital (HOMO). The next common 

electronic property studied was the work function from a DFT perspective.  

In a DFT study using VASP, thermodynamic effects are ignored. Therefore, our 

definition of work function is slightly different from the work function shown 

experimentally. Our work function is defined as the energy required to excite an electron 

from the fermi energy up to the vacuum level of our simulation, rather than from the 

fermi level to the zero energy definition in experimental work. While the two values are 

equal at absolute zero, experimentally the fermi level is easier to realize because of 

thermodynamic effects, while the opposite is true for DFT since thermodynamic effects 

are not considered.  

Finally, this work commonly relates strain dependent energy states of structures with 

bonding and anti-bonding behavior within the structure. Based upon the Heitler-London’s 

exchange energy model, the different energy shifts with strain are associated with this 

bonding or anti-bonding behavior.
15

 The energies of the bonding and anti-bonding states 

are given by the following two equations. 

 
𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 = 2𝐸0 +

𝑒2

𝑅
+

𝐾 + 𝐻

1 + 𝑆2
 (I.14) 

 
𝐸𝑎𝑛𝑡𝑖𝑏𝑜𝑛𝑑𝑖𝑛𝑔 = 2𝐸0 +

𝑒2

𝑅
+

𝐾 − 𝐻

1 − 𝑆2
 (I.15) 

E0 is the energy for an isolated atom, K represents the classical Coulomb energy 

between the electron-electron and electron-ion interactions, the exchange integral term is 

H, and S is the overlap integral of the orbitals between different atomic sites. For systems 



12 
 

with s-orbital bonding (which occurs a few times in this work), S is usually much smaller 

than 1 (and thus S
2
<<1), making H the likely dominant term in determining the linear 

anti-bonding or bonding energy shifts with strain. The exchange H is given by (I.16).  

 
𝐻 = ∬ 𝜓𝑎

∗(𝑟1)𝜓𝑏
∗ (𝑟2) (

1

𝑟12
−

1

𝑟2𝑎
−

1

𝑟1𝑏
 ) × 𝜓𝑏(𝑟1)𝜓𝑎(𝑟2)𝑑𝑟1𝑑𝑟2 (I.16) 

In the equation above, the first inverted distance term 𝑟12 represents the non-classical 

electron-electron interaction, whereas the following r2a and r1b terms represent the 

electron-ion interactions. Depending on the localization of the electron orbitals, the 

movement of the ions through strain can have a different energy shift from the difference 

in these distance terms. Alternative models have been proposed that more specifically 

target nanostructures, such as the Huang et al. work.
16

 This concludes the summary of the 

most common electronic properties analyzed multiple times in the following chapters. 
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Chapter II. GRAPHENE NANORIBBONS 

A. Engineering the Work Function 

DFT is particularly useful for the study of semiconductors, especially those that are 

crystalline with relatively small unit cells. Thus, when experimental studies confirmed 

the existence of graphene, a single layer of graphite,
17

 the DFT research of graphene 

expanded significantly, with new simulations of graphene and ways to manipulate the 

material for more useful properties than the standard experimentally generated sheet. 

Ideas such as adding strain, partial or complete passivation layers, or terminating the 

edges of the graphene with passivation to create nanoribbons were all intensively 

studied.
3-4 

This work focused specifically on the passivation type and strain of armchair 

graphene nanoribbons (AGNR) as shown in the following published work.
18

  

Graphene is a single atomic layer carbon sheet in a honeycomb lattice.  Due to its 

exceptionally high crystalline quality, graphene demonstrates a unique linear dispersion 

relation and the charge carriers behave as massless fermions.
18

 Experiments on graphene 

have shown the charge mobility exceeded 15,000 cm
2
/(Vs) even under ambient 

conditions.
19 

Graphene has been considered as a promising material for many advanced 

applications in future electronics.
18, 19

 Engineering of the structure and electronic 

properties of graphene is essential for these applications.  Recently, tunability of the work 

function has drawn particular attention.
20-31 

For example, in an electronic device using 

graphene as an active channel layer, the work function of graphene determines the band 

alignment
21

 and directly affects the charge injection between graphene and metallic 

contact.
22, 23

 Graphene is also considered as transparent electrode
21, 24

 and cathode 
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materials
25

 in optoelectronic devices. The work function will be critical for maximized 

energy conversion efficiency. Its atomically thin nature makes vertically standing 

graphene a promising candidate as a field emitter.
26

 A lower work function can 

dramatically enhance the emitting current.
26

 Different approaches have been investigated 

to modulate the work function, such as employing an external electric field,
27

 chemical
21

 

and metal doping,
22, 28

 substrate orientation,
20, 29

 and a self-assembled monolayer.
30 

As a practical issue, strain is almost inevitable in fabricated graphene structures, 

manifesting as the formation of ridges and buckling.
32, 33 

Graphene possesses superior 

mechanical stability. It can sustain a tensile strain up to 30% demonstrated by Kim et 

al.
34

  A number of studies have investigated the effect of strain on the electronic 

properties of graphene and graphene nanoribbons,
35-42

 such as the band gap and mobility. 

To advance graphene based technology, it is essential to examine how strain affects the 

work function of graphene and graphene nanoribbons. In addition, functional group 

decoration/passivation is another factor that can be practically involved in the preparation 

process of graphene. In fact, an extensive effort has been made to employ functional 

species for tailoring the properties of graphene.
41, 43-49

 The combined effect of strain and 

decoration/passivation on the work function of graphene is also of great interest to 

investigate. 

In the present work, first principles density-functional theory
13

 calculations were 

conducted to investigate the work function of edge passivated armchair graphene 

nanoribbons (AGNRs) modulated by external uniaxial strains and surface species 

decoration. Two groups of edge passivation (H and O) and three types of surfaces species 

(H, F, and OH) have been studied. It has been demonstrated that the strain can effectively 
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tune the work function of graphene nanoribbons by primarily shifting the Fermi level. 

Sufficient strain on edge-O passivated AGNRs yields a structural or direct-indirect band 

gap transition, which can produce a significant change in the work function. Furthermore, 

it was found that the work function varies with the type and coverage of surface function 

group. Surface dipoles here have less effect on the work function compared with the 

surface states introduced by the functional group.  

First principles density-functional theory
13

 calculations were carried out using Vienna 

ab-initio Simulation Package.
50, 51

 The local density approximation (LDA)
13

 was applied. 

The generalized gradient approximation (GGA)
52

 was also used to check the work 

function of graphene, using both PW-91, and PBE potentials. It was found that the work 

function predicted by LDA and GGA is 4.48 eV and 4.49 eV, respectively. Both values 

are in good agreement with other theoretical
22, 35

 and experimental
53

 studies.  The pseudo-

potential plane wave approach was employed. The kinetic energy cutoff of the plane 

wave basis was set to be 450.0 eV. Core electrons of atoms were described using 

Vanderbilt ultra-soft pseudo-potentials, with ENMAX value of 287 eV.
54

 The reciprocal 

space was sampled using 4 × 1 × 1 Monkhorst-Pack grid
55

 centered at the Γ point. A total 

of 21 K-points were included in the band structure calculations along Γ (0, 0, 0) to X (0.5, 

0, 0). The Gaussian smearing method was used to describe partial occupancies of orbitals, 

with width of the smearing set at 0.05 eV.  The total energy in the self-consistent scheme 

was converged to within 0.01 meV. Atoms were fully relaxed until force and stress 

components are less than 0.02 eV/Å and 1.0 kbar, respectively. The initial lattice constant 

along the armchair direction (i.e. x-axis) in a ribbon was set to 4.22 Å, taken from the 2D 

graphene sheet. The lattice constant of all AGNRs was fully optimized through the 
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technique of energy minimization. The vacuum distance between the ribbon and its 

replicas is about 30 Å (y direction) and 16 Å (z direction) to eliminate interaction 

between ribbon replicas due to periodic boundary conditions.  

 
Figure II.1 The images of AGNRs with edge carbon atoms passivated by (a) H and (b) O. The dashed rectangles 
indicate unit cells. The width of a ribbon is closely related to the number of carbon atoms in the y-direction. The 
images show the AGNRs with a width of 14 C atoms.  

This work first studied the effect of uniaxial strain on the electronic properties such as 

the band structure, work function, and core level shift of the AGNRs. Two types of edge 

passivation, H and O, were studied, as shown in Figure II.1. The width of an AGNR is 

measured as the distance between two carbon atoms on both edges, which is related to the 

number of C atoms along the zigzag direction (i.e. the y direction in Figure II.1 (a)). It is 

known that, due to quantum confinement effects, AGNRs can be classified into three 

families according to the width of the AGNR in which the number of C atoms in the 

zigzag direction falling in the categories of 3n, 3n+1, and 3n+2, where n is a positive 

integer.
56, 57

 In this work, three widths of AGNRs were chosen, 13.4 Å, 14.6 Å, and 15.8 

Å, corresponding to the number of C atoms of 12, 13, and 14, respectively, in the zigzag 

direction.  Shown in Figures II.1(a) and (b) are AGNRs with a width of 14 C atoms. This 

work also investigated AGNRs with widths of 12 and 13 C atoms, representing the other 

two families. 
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The structures of the ribbons were fully optimized through energy minimization. 

Based on the relaxed structure with an optimized lattice constant, uniaxial strain within 

the range of ±16% was applied by scaling the lattice constant. The positive values of 

strain refer to uniaxial tensile strain, while negative values correspond to compression. 

Note that the y and z coordinates of the ribbon are further relaxed at a given strain. 

The work function of an AGNR is defined as the energy difference between the 

vacuum and Fermi levels,  

 𝜙 = 𝑉𝑣𝑎𝑐𝑢𝑢𝑚 − 𝐸𝑓𝑒𝑟𝑚𝑖 (II.1) 

In numerical calculations, the Fermi level is determined by integrating the density of 

states from the lowest energy level to an energy level (i.e. Fermi energy) which gives a 

total number of electrons in the unit cell. Specifically, in this work, the Fermi level of the 

semiconducting AGNRs was set to be the middle of the band gap. The vacuum 

potential 𝑉𝑣𝑎𝑐𝑢𝑢𝑚 is read from the plot of planar-average electrostatic potential energy 

along the z direction (i.e. pick the value in the middle of vacuum from the plot).  All 

electronic energies of a ribbon in this study are referenced to its vacuum potential energy. 

The work function of the AGNRs was studied as a function of uniaxial strain. Both 

edge-H and edge-O passivation were investigated for AGNRs with different widths. As 

an example, the strain dependence of the work function in the AGNRs with a width of 14 

C atoms is plotted in Figure II.2. It was found that the work function increases with 

tensile strain and decreases with compressive strain. This observation is similar to the 

result obtained with a strained 2D graphene sheet.
50 
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Figure II.2 The work function of the AGNRs with a width of 14 C atoms as a function of uniaxial strain. The vertical 

lines indicate the strains at which the structural/electronic transitions occur.
 

Since the work function is determined by two energy levels, 𝐸𝑓𝑒𝑟𝑚𝑖 and 𝑉𝑣𝑎𝑐𝑢𝑢𝑚, it is 

worth examining the strain dependence of these two terms. Figure II.3 (a) shows the 

Fermi and vacuum levels as a function of strain for the edge-H passivated AGNR. It 

shows that the strain has a dominating effect in shifting the Fermi level while only having 

a minimal effect on the vacuum potential energy. For example, the change of the Fermi 

energy within the strain range considered in this study is 1.59 eV, while the variation of 

the vacuum level is only 0.13 eV, which suggests that the variation of the work function 

is mainly contributed by the shift of the Fermi level.  

 
Figure II.3 (a) the variation of Fermi and vacuum levels with strain; (b) the normalized core level shift relative to the 

Fermi energy and vacuum level under strain for the edge-H passivated AGNR with a width of 14 C atoms. 
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As shown above, the variation of the work function is also correlated to the core level 

shift of carbon atoms in the AGNR.  To see this, the work function is rewritten as the 

following formula
58, 59

 by inserting the average electrostatic potential energy at carbon 

ionic cores 𝑉𝑐𝑜𝑟𝑒, 

 𝜙 = (𝑉𝑐𝑜𝑟𝑒 − 𝐸𝐹𝑒𝑟𝑚𝑖) − (𝑉𝑐𝑜𝑟𝑒 − 𝑉𝑣𝑎𝑐𝑢𝑢𝑚) (II.2) 

The first term is used for determining the core level shift in a solid film. The second 

term corresponds to the core level shift relative to the vacuum level.  

Both terms in Equation II.2 can be referenced to their values of the relaxed AGNR 

and plotted in Figure II.3 (b), where  

 Δ(𝑉𝑐𝑜𝑟𝑒 − 𝐸𝐹𝑒𝑟𝑚𝑖) = (𝑉𝑐𝑜𝑟𝑒 − 𝐸𝐹𝑒𝑟𝑚𝑖)𝜀 − (𝑉𝑐𝑜𝑟𝑒 − 𝐸𝐹𝑒𝑟𝑚𝑖)0 (II.3) 

 Δ(𝑉𝑐𝑜𝑟𝑒 − 𝑉𝑣𝑎𝑐𝑢𝑢𝑚) = (𝑉𝑐𝑜𝑟𝑒 − 𝑉𝑣𝑎𝑐𝑢𝑢𝑚)𝜀 − (𝑉𝑐𝑜𝑟𝑒 − 𝑉𝑣𝑎𝑐𝑢𝑢𝑚)0 (II.4) 

The referenced core level shift relative to the vacuum level in Equation 4 decreases 

with tensile strain, and increases with compressive strain. Its variation with strain is 

nearly linear. The change of this shift with strain is mainly due to the electrostatic 

potential variation with the modulated distance between ionic cores and valence 

electrons.
60

 When the ribbon is under a tensile strain, the valence electrons are further 

apart from the ionic cores, so the electrostatic potential contributed by valence electrons 

to the ionic cores is reduced. This causes the potential energy of the ionic cores to 

decrease. 

The core level shift relative to the Fermi energy in Equation 3, however, demonstrates 

a different behavior with strain, shown in Figure II.3 (b). From the curve, it is observable 

that this shift is reduced significantly to a smaller value in the compressed strain while 

the tensile strain barely affects the value. Here, the change in the electrostatic potential 
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due to the variation of the distance between the ionic cores and valence electrons may 

have been dominated by the shift of the Fermi energy in the compressed AGNR.  In the 

expanded AGNR, this variation may have been nearly canceled by the shift of the Fermi 

energy.  

In addition, this work studied the AGNRs with different widths, such as 12 and 13 

carbon atoms in the zigzag direction. The general trends presented in Figure II.2 and 

Figure II.3 are also valid for those widths. The distinct trend of core level shift relative to 

the Fermi energy under tensile and compressive strain make the traditional electron 

spectroscopy tools such as X-ray photoelectron spectroscopy valuable for characterizing 

the strain in graphene.
61, 62

 This is attractive practically since the strain can be easily 

introduced into the monolayer graphene structures during preparation processes. 

In Figure II.2, it is also found that the work function of the edge-O passivated 

AGNRs is higher than that of the edge-H passivated nanoribbons under a moderate strain. 

At a strain larger than ~ 4%, the difference in the work function between these two types 

of edge passivation increases, while this difference starts to reduce under a compressive 

strain (~ -12%). As shown below, the deviation of the work function trend under large 

compressive/tensile strains is correlated to structural/electronic transition of the edge-O 

passivated AGNRs.  

It is interesting to observe electronic and structural transitions in the edge-O 

passivated AGNRs under large uniaxial tensile and compressive strain, respectively. 

When a large tensile strain is applied, the band gap of the AGNRs shrinks to zero.
41

 For 

example, the ribbon with a width of 14 C atoms demonstrates a zero-gap at +8% strain. In 

order to closely examine the gap variation with strain, the band structures of the edge-O 
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passivated AGNR under different values of strain are presented in Figure II.4. Under 

+4% strain, the band gap experiences a transition from direct to indirect. With increasing 

tensile strain, the indirect gap decreases to zero at +8% strain. Beyond +8% strain, no gap 

exists. This electronic evolution with strain is mainly due to edge defects produced by 

tensile strain.
41

 The direct-indirect gap transition is also related to the significantly higher 

work function of the edge-O AGNR at large tensile strain (see Figure II.2).  

 
Figure II.4 The band structure of the edge-O passivated AGNR with a width of 14 C atoms under different values of 

uniaxial strain. The energies are referenced to the vacuum level. The band gap experiences a transition from direct to 

indirect at +4% strain, and shrinks to zero at +8% strain and beyond. A structural transformation occurs at -12% strain, 

producing a largely deviated band structure.  

On the other hand, the band structure of the AGNR under -12% strain is largely 

deviated from the relaxed one. It was found that a structural transformation occurs at this 

strain and larger compression. To illustrate the structure transition, the geometries of the 

relaxed and -12% strained AGNRs are shown in Figures II.5 (a) and (b).  The pentagon 

formed by the edge O and four neighboring C in Figure II.5 (a) transfers to a heptagon 

under -12% strain in Figure II.5 (b). And the hexagon formed by six C atoms (labeled 2, 

4, 6, 1’, 3’, and 5’ in Figure II.5 (a)) transforms to a quadrilateral in Figure II.5 (b). 

Besides these rearrangements near the edges of the ribbon, the bond lengths of horizontal 

carbon pairs (i.e. C3-C4, C5-C6, C9-C10, C11-C12, C13-C14, C15-C16, etc.) are distinct 

in the relaxed and -12% strained AGNRs. For example, in the relaxed ribbon, the pairs of 
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C3-C4, C9-C10, and C13-C14 form the C-C bond with bond lengths ~1.4 Å, while pairs 

of C5-C6, C11-C12, and C15-C16 do not form bonds with C-C distances ~2.7 Å. 

However, it is opposite in the -12% strained ribbon, where the latter pairs all form C-C 

bonds while the former pairs are apart, shown in Figure II.5 (b). The detailed bond 

lengths of these two structures are listed in Table II.I. A similar structure transformation 

was also found at the -12% strain in the edge-O passivated ribbon with widths of 12 and 

13 C atoms.  

 
Figure II.5 The structures of the (a) relaxed and (b) -12% strained AGNRs with a width of 14 C atoms in two adjacent 
simulation cells. Note that a structural transformation occurs at -12% strain. The horizontal C-C pairs, such as C3-C4, 
C5-C6, C9-C10, C11-C12, and C13-C14, have totally different bond distances when compared with the relaxed ribbon. 
Edge defects such as carbon quadrilaterals form in the -12% strained ribbon. 
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Table II.I The selected bond lengths in the relaxed and -12% strained AGNRs with a width of 14 C atoms. The number 

notation of atoms is indicated in Figure II.5.  

 

Recently tailoring the properties of graphene by surface functional groups has 

attracted a tremendous interest.
41, 43-49

  Here the effects of three types of surfaces species 

(H, F, and OH) on structural and electron properties of AGNRs are investigated. The 

starting ribbon is a geometrically relaxed edge-H passivated AGNR with a width of 14 C 

atoms, as shown in Figure II.6 (a). Based on this ribbon, different surface species, such as 

H, F, and OH, is decorated on the ribbon surface on either one side or both sides. The 

number of the decorating surface species varies as 2, 4, 6 and 8, with each addition of one 

surface atom corresponding to an increment of 3.57% surface coverage (i.e. 1/28, 28 is 

the number of carbon atoms in the unit cell). For example, Figure II.6 (b) and (c) show 

the geometrically relaxed ribbons with four and eight H atoms (represented by 4H and 

8H) decorated on one side of the ribbon, respectively. It is clear that the ribbons were 

bent for these cases due to the lattice distortion by the surface decorated species on the 

same side.
43

 The bent geometry compromises the local stress induced by the lattice 

distortion. Figure II.6 (d) shows the relaxed structure of eight H atoms on both sides of 

Bond

Length for 

relaxed AGNR 

(Å)

Length for -12% 

strained AGNR 

(Å)

Difference 

(Å)

C3-C4 1.42 2.30 0.88

C3'-C4 2.68 1.31 -1.37

C5-C6 2.73 1.29 -1.44

C5'-C6 1.37 2.31 0.95

C1-C2 2.47 2.20 -0.27

C1'-C2 1.63 1.40 -0.23

C1-C3 1.39 1.47 0.09

C3-C5 1.40 1.35 -0.05

C1-O7 1.50 1.35 -0.15

C2-O7 1.50 1.35 -0.15
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the ribbon (4 H on each side). The ribbon is not bent and nearly planar. For other species, 

F and OH, the relaxed ribbons are similar to those shown in Figure II.6 (b) - (d).   

 
Figure II.6 The AGNRs surface decorated by H atoms. (a) no H atoms on the surface; (b) 4 H atoms on one side; (c) 8 

H atoms on one side; (d) 8 H atoms on both sides (4 H each side). Each addition of one H corresponds to an increment 

of 3.57% surface coverage. The top and bottom rows represent different views indicated by the coordinate axes. 

For all AGNRs with different surface species, their structures were fully relaxed 

through energy minimization. The lattice constant of the AGNRs were also optimized so 

that the force and stress components on each atom were converged to within 0.02 eV/Å 

and 1.0 kbar, respectively. The optimized lattice constants were reported in Figure II.7 

(a). It shows that the edge-O passivated ribbon without surface species has the shortest 
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lattice constant of 4.10 Å. For the edge-H passivated ribbon, the lattice constant increases 

to 4.25 Å. The lattice constant slightly increases with the number of surface H species 

decorated on the ribbon, to 4.30 Å with eight surface H atoms. A similar effect was also 

found in the surface species F and OH. In addition, for the same number of surface 

species, there is no significant difference in the lattice constant between the cases of one-

side and two-side decoration.   

 
Figure II.7 (a) The relaxed lattice constant and (b) the bending curvature of the AGNRs with different surface 

functional species. 

As shown in Figure II.6 (b) and (c), the relaxed ribbons are bent if the species were 

decorated on one side of the ribbon. Increasing the density of the surface species will 

increase the ribbon bending curvature (defined as 1/R, where R is the radius of the 

bending ribbon). The bending curvature of the AGNRs as a function of surface species 

coverage is plotted in Figure II.7 (b). It is clear that the curvature increases rapidly with 

increasing number of surface species. For example, the curvature of the ribbon with 4H 

and 8H surface species are 0.038 Å
-1

 and 0.203 Å
-1

, respectively, which have 

corresponding curvature radii of 26.12 Å and 4.92 Å, respectively. In addition, the 

AGNRs with widths of 12 and 13 C atoms in the zigzag direction were explored. Our 
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calculations showed that there is no distinct difference in the predicted curvature for the 

AGNRs with different widths. Our calculated bending structures and curvatures of 

AGNRs were consistent with that of first-principles molecular dynamics simulation 

conducted by Yu and Liu.
43

   

 
Figure II.8 The band structure and the corresponding density of states of the AGNRs with different surface functional 

species decorated on one side of the ribbon surface. The starting ribbon is the edge-H passivated AGNR with a width of 

14 C atoms in which no surface species were decorated. The notation “surface 2H” denotes two H atoms are decorated 

on the ribbon surface. 

Electronic properties were investigated for the AGNRs with different surface species. 

As an example, band structures and the corresponding density of states (DOS) for the 

AGNRs with one-side surface species decoration are plotted in Figure II.8. As a 
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reference, the band structure and DOS for the starting ribbon (i.e. the edge-H passivated 

ribbon without surface species) is also presented in Figure II.8 (a). All energies are 

referenced to the vacuum level. The Fermi level is represented by the horizontal dashed 

line. It was known that the edge-H passivated AGNR is a semiconductor, shown in 

Figure II.8 (a). However, introduction of the surface species, such as H, F and OH, bring 

surface states near the Fermi level. Increasing the coverage density of the surface species, 

the band structures and DOS are deviated farther from that of the starting ribbon. For 

example, Figures II.8 (b), (f) and (j) display the band structures and DOS for 2H, 2F, and 

2OH surface species, respectively. Two surface states were brought in near the Fermi 

level. However, the energy bands and DOS in which energies are far away from the 

Fermi level are similar to that of Figure II.8 (a). When the number of surface species 

increases from two to four, more surface states appear near the Fermi level, and the DOS 

is further modified, as shown in Figures II.8 (c), (g), and (k). Continuing to increase the 

number of the surface species to six and eight significantly altered the band structure and 

DOS.  

This work also studied the band structures and DOS for the AGNRs with surface 

species decorated on both sides of the ribbon. It is interesting to note that the band 

structures and DOS are very similar to those of one-side decoration. For example, the 

band structure and DOS for the AGNR with each side decorated by one H atom is very 

close to the one in Figure II.8 (b).  

The calculated work function of the AGNRs is reported as a function of the number 

of surface species in Figure II.9. Generally, different surface species affect the work 

function in a different manner. For example, adding surface H to the ribbon decreases its 
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work function, while adding surface F or OH increases the work function. Therefore, the 

surface species can be classified into two groups, one increasing the work function (such 

as F and OH), and the other reducing it (such as H).  

 
Figure II.9 The work function of the AGNRs with different surface functional species. 

The work function shift by the surface decoration could come from two sources:  (i) 

molecular dipoles formed between the decorated species and the ribbon surface; (ii) 

charge rearrangements induced by the chemical bond formation between the decorated 

species and the ribbon surface.
63-65

 This study argued that the work function shift here is 

primarily due to the latter. This can be seen from the surface states introduced near the 

Fermi level in the band structures (Figure II.8). These surface states come from the 

transition of carbon atoms from sp
2
 to sp

3
 hybridization.

47
 F and OH with a higher 

electronegativity could introduce deeper states while H with a lower electronegativity 

could introduce shallower states. For example, the surface bands introduced by 2F and 

2OH surface species are in the range of -4.5 ~ -5.5 eV, and -4.2 ~ -5.0 eV, respectively 

(see Figures II.8 (f) and (j)). However, the surface band introduced by 2H species is in 

the range of -3.9 ~ -4.2 eV, which is much shallower, shown in Figure II.8 (b).  
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The contribution of the molecular dipole from surface decoration can be evaluated 

from the work function difference between one side and two side decoration. In one side 

decoration, the molecular dipole will introduce an additional potential change to the 

vacuum level,
63, 66

 while in the two-side decoration, molecular dipoles on the two faces 

will tend to cancel each other. From Figure II.9, it is found that work function difference 

between one side and two side decorations is small, which suggests the introduced 

surface dipole plays a minor role here. The molecular dipole C+-F-/C+-OH enhances the 

potential barrier to the vacuum level.
63, 66

 For the H group, however, the molecular dipole 

C--H+ reduces this potential barrier. Another possible factor contributing to the work 

function difference between one side and two side decoration is the deviation in the 

ribbon geometries, which indicates the existence of the different local strain at these two 

cases.  For example, for the 8H surface species, the two-side decoration yields a nearly 

planar ribbon, while the one-side decoration produces a largely bent structure, shown in 

Figures II.6 (d) and (c).  

In summary, using first principles density-functional theory calculations, it was found 

that (1) the work function of AGNRs increases with tensile strain, and decreases with 

compressive strain, regardless of the type of edge passivation O and H; (2) the core level 

shift relative to the Fermi energy decreases with compressive strain, while tensile strain 

only affect it slightly; (3) the edge-O passivated AGNRs experiences a direct-to-indirect 

band gap transition under sufficient tensile strain and a structural transformation occurs 

with a large compressive strain; (4) F and OH surface decoration increases the work 

function while H decoration decreases the work function of AGNRs; (5) one-side and 
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two-side surface species decoration brings only relatively small difference in the work 

function, given the same number of surface species.   

As a final note, the topic of proper credit for work should be revisited here. This work 

is a collaboration between Xihong Peng, Fu Tang, and Andrew Copple. The author of 

this dissertation mainly focused on L13 AGNRs with main focus on band gap and work 

function with strain and passivation species changes.  

 

B. AGNR Additional And Future Work 

In addition to this work, studies were made on the edge effects of Sulfur and Fluorine 

passivation on L13 AGNRs. While the results were very similar to Oxygen and Hydroxyl 

group passivation, respectively, the band gap vs strain pattern is displayed below. The 

only noteworthy differences to be found were the unique relaxed lattice parameters 

(4.18Å and 4.32Å, respectively), and the critical strain for direct-indirect band gap for 

Sulfur (+15.5%). 

 
Figure II.10 The L13 S and F passivated AGNR band gaps are shown. While their strain behavior is very similar to 

previously studied O and OH passivated AGNRs, they do exhibit different relaxed lattice constants, meaning that there 

are still unique traits specific to these passivation methods.  
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In addition, future work on this system should include larger nanoribbon widths to 

show reduction of edge effects on the system, as well as strains that are not along the axis 

of the ribbon, or are not uniform in behavior. In addition, more extensive study could be 

done with chiral and defect-filled ribbons, especially with the greater ribbon widths.  

 



32 
 

Chapter III. PHOSPHORENE NANOSHEETS AND NANORIBBONS 

A. Phosphorene, a New 2D Material  

Two dimensional (2D) layered crystal materials have attracted extensive research 

efforts in recent years, such as graphene
17, 71

 and molybdenum disulfide,
72

 for their 

potential applications in future electronics. Most recently, researchers have successfully 

fabricated new 2D few-layer black phosphorus
67-70

 and found that this material is 

chemically inert and has great transport properties. It was reported that it has a carrier 

mobility up to 1000 cm
2
/V·s

4
 and an on/off ratio up to 10

67,
 
68

 was achieved for the 

phosphorene transistors at room temperature. In addition, this material shows a finite 

direct band gap at the center of Brillouin zone
67, 68, 73-75

 (in contrast to the vanishing gap 

in graphene), which creates potential for additional applications in optoelectronics.  

Tailoring electronic properties of semiconductor nanostructures has been critical for 

their applications. Strain has long been used to tune electronic properties of 

semiconductors.
76, 77

 As a practical issue, strain is almost inevitable in fabricated 

monolayer nanostructures, manifesting as the formation of ridges and buckling.
32, 33

  But 

a more interesting case comes from intentionally introduced and controlled strains. 

Methods for introducing strain include lattice mismatch, functional wrapping,
78, 79

 

material doping,
80, 81

 and direct mechanical application.
82

 It was found that nanostructures 

maintain integrity under a much higher strain than their bulk counterpart,
83, 84

 which 

dramatically expands the strength of applicable strain to nanostructures. In particular, 2D 

layered materials, such as graphene and MoS2, possess superior mechanical flexibility 

and can sustain a spectacularly large strain ( 25%).
85-87

 This work calculated the stress-

strain relation in phosphorene and found that it can withstand a tensile strain up to 30%. 
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Compared to other 2D materials such as graphene, phosphorene demonstrates superior 

flexibility with an order of magnitude smaller Young’s modulus.
88

 This is especially 

useful in practical large-magnitude-strain engineering of this material.  

  As already demonstrated by several research groups, strain shows remarkable effects 

in modifying the electronic properties of phosphorene. For example, Rodin et al.,
73

 using 

density functional theory and tight-binding models, predicted an anisotropic dispersion 

relation with a direct band gap for phosphorene. They analyzed the localized orbital 

composition of the band edge states and suggested a semiconductor-to-metal transition 

with compression. Liu et al.
68

 briefly reported the sensitive dependence of the band gap 

on in-layer stress and a critical compressive strain of 3% to trigger the direct-to-indirect 

band gap transition. Fei and Yang
89

 theoretically predicted that the preferred conducting 

direction in phosphorene can be rotated by 90 degrees with an appropriate biaxial or 

uniaxial strain based on the anisotropic behavior of the material.
68, 73, 90

 

However, a full picture of detailed and systematic analysis of the strain effect on the 

band structure is still missing. For example, what is the elastic limit for phosphorene? 

Where is the conduction/valence band edge located when the band gap becomes indirect? 

Is there any additional critical strain to trigger the band gap transition? What is the 

mechanism/origination for this direct-indirect band gap transition? In present work, these 

questions are answered by providing tension-strain relation and a full analysis of strain 

effects on the band structure of phosphorene. By revealing the evolution of band structure 

with strain, it is clear to see the shift of the band edges and gap transitions. Several 

critical strains have been identified to trigger the direct-indirect transition. In addition, 

with sufficient large tensile (+11.3%) or compressive (-10.2%) strain, the indirect band 
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gap was found to become direct again. Five strain zones with distinct band structure were 

identified. This detailed analysis on the direct-indirect band gap transition is crucial for 

optical applications of phosphorene. For example, our group predicted a similar direct-

indirect band gap transition in GaAs nanowires with uniaxial strains
91, 92

 and the gap 

transition was observed in a recent experiment
93

 in which the luminescence of GaAs 

nanowires can be switched on and off under the influence of a uniaxial stress.  

In this work, the mechanism for the gap transition is discussed in detail by examining 

the bond nature of near-band-edge electronic orbitals. This mechanism has been applied 

successfully in many other semiconductor nanostructures.
18, 91, 92, 94-100

 Effective masses 

of charge carriers (thus carrier mobility) were also found to be drastically tuned by strain.     

The first principles DFT
101

 calculations were carried out using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional
101

 along with the projector-augmented 

potentials
102, 103

 for the self-consistent total energy calculations and geometry 

optimization. Both standard DFT with generalized gradient approximation (GGA) and 

hybrid functional
104, 105

 methods were adopted to investigate the strain effect on the 

electronic properties of phosphorene. In the hybrid HSE06 method,
104, 105

 the exchange-

correlation functional uses a mixing parameter to incorporate Hartree-Fock (HF) exact 

exchange functional and the PBE functional. In this study, the fraction of the HF 

exchange was set to be the default value  = 0.25. Both methods of the DFT-PBE and 

HSE06 give consistent results of the strain effects on the electronic band structures, 

including the direct-indirect band gap transition and the gap variation trends with strain.  

The calculations were performed using VASP.
50, 51

 The kinetic energy cutoff for the 

plane wave basis set was chosen to be 350 eV. The reciprocal space was meshed at 14  
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10  1 using the Monkhorst-Pack method. The energy convergence criteria for electronic 

and ionic iterations were set to be 10
-5

 eV and 10
-4

 eV, respectively. Such parameter 

settings ensure the calculations were converged within 5 meV in total energy per atom. 

To simulate a monolayer of phosphorene, a unit cell with periodic boundary condition 

was used. A vacuum space of at least 16 Å was applied to minimize the interaction 

between layers. In band structure calculations, 21 points were collected along each high 

symmetry line in reciprocal space.   

Unlike a flat structure of graphene, the single layer black phosphorus has a puckered 

honeycomb structure with each phosphorus atom covalently bonded with three adjacent 

atoms (see Figure III.1). The initial structure of phosphorene was obtained from black 

phosphorus.
106

 Our calculated lattice constants for bulk black phosphorus are a = 3.308 

Å, b = 4.536 Å, and c = 11.099 Å, and are in good agreement with experimental values
106

 

and other theoretical calculations.
68, 90

 The relaxed lattice constants for a monolayer of 

phosphorene are a = 3.298 Å, and b = 4.627 Å.  
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Figure III.1. Snapshots of 2D phosphorene and its band structure. The dashed rectangle in (b) indicates a unit cell. The 

energy in the band structure is referenced to vacuum level. 

Starting with the relaxed phosphorene, strain within the range of ±12% was applied in 

either the x (zigzag) or y (armchair) direction to explore its effects on the band structure. 

The applied strain is defined as 휀𝑥 =
𝑎𝑥−𝑎𝑥0

𝑎𝑥0
, 휀𝑦 =

𝑎𝑦−𝑎𝑦0

𝑎𝑦0
, where 𝑎𝑥 (𝑎𝑦) and 𝑎𝑥0 (𝑎𝑦0) 

are the lattice constants along the 𝑥 (𝑦) direction for the strained and relaxed structures, 

respectively. The positive values of strain refer to expansion, while negative corresponds 

to compression. With each axial strain applied, the lattice constant in the transverse 

direction was fully relaxed through the technique of energy minimization to ensure the 

force in the transverse direction is a minimum.  

Generally, a compression applied in an axial direction results in an expansion in the 

transverse direction. The applied axial strains in the 𝑥 (𝑦) direction and the transverse 

strain response in the 𝑦 (𝑥) direction are reported in Figure III.2 (a). The Poisson’s ratio, 

𝜈 = −
𝑑𝜀𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒

𝑑𝜀𝑎𝑥𝑖𝑎𝑙
, was found to be 0.7 and 0.2 for the axial strain applied in the zigzag 

and armchair directions, respectively. These significantly different Poisson’s ratios 

further indicate the anisotropic nature of phosphorene. Figure III.2 (b) presents the 

change in the total energy of phosphorene as a function of the applied axial strain. The 

deeper energy surface for x suggests that strain is more difficult to apply in the zigzag 

than the armchair direction.   

To estimate the elastic limit of phosphorene, this work calculated the stress (force per 

unit length)
107

 of phosphorene as a function of tensile strain, using the method described 

in the references.
108, 109

 This method of calculating stress-strain relation was originally 

introduced for three dimensional crystals. In a 2D monolayer phosphorene, the stress 
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calculated from the Hellmann-Feynman theorem was modified to be the force per unit 

length.
107

 The tensile strain is applied in either the zigzag or armchair direction. Our 

calculated stress-strain relation is presented in Figure III.2 (c). It shows that phosphorene 

can sustain a stress up to 10 N/m and 4 N/m in the zigzag and armchair directions, 

respectively. The corresponding tensile strain limits are 27% and 30% along the zigzag 

and armchair axes, respectively. This predicted elastic strain limit is close to that found in 

other 2D materials such as graphene and MoS2,
85-87

 suggesting that phosphorene is highly 

flexible and may have potential applications in flexible displays.  

 
Figure III.2. (a) The applied axial strains in the x and y axes and their transverse strain response in the y and x 

directions, respectively. (b) The change in the total energy as a function of the applied strain. (c) The stress as a 

function of tensile load for phosphorene. Phosphorene can withstand a critical tensile strain up to 30% in the armchair 

direction. The different behaviors along the x and y directions in (a)-(c) indicate the anisotropic nature of phosphorene. 

Our DFT predicted band gap for 2D phosphorene is 0.91 eV, which is in agreement 

with other theoretical work.
68, 75

 It is well known that DFT underestimates the band gap 

of semiconductors, and the advanced GW method can provide improved predictions. The 

GW gap for phosphorene calculated by Yang’s group
75

 is about 2.0 eV. However, the 

present work is mainly focused on the strain effect on the band structure and the 

advanced hybrid functional method HSE06 gives results of the strain effects on the 

electronic band structures consistent with that of the DFT-PBE method. In addition, 

previous studies
95

 on Si nanoclusters showed that the energy gap calculated by DFT 
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obeys a similar strain-dependency as the optical gap predicted by the advanced 

configuration interaction method and the quasi-particle gap. Therefore, it is expected that 

DFT can correctly predict the general trends of strain effect on the band structure and 

near-gap states in phosphorene.  

By comparing the band structure of phosphorene at different values of axial strains, 

this study found that strain has a remarkable effect on the band structure along two 

particular K directions,  to X (0.5, 0, 0) and  to Y (0, 0.5, 0), respectively. For 

simplification, this work only plotted the band structure along these two directions in 

Figures III.3 and III.4.  

 
Figure III.3. The strain x (applied in the zigzag direction) manipulated direct-indirect band gap transition in 2D 

phosphorene. Positive strain indicates expansion while negative corresponds to compression. All energies are 

referenced to vacuum level. Starting from the relaxed structure, the band gap experiences a direct-indirect-direct 

transition with both tensile and compressive strain. The direct/indirect nature of the band gap is the result of the 

competition among the energies of near-band-edge states A – F. The dashed lines are guide for eye for the energy shifts 

of states B, D, E, F. 

Figure III.3 presents the effect of strain x (applied in the zigzag direction) on the 

band structure. Figure III.3 (f) is for the relaxed phosphorene with a direct band gap at . 

With an increase of tensile strain, the band gap becomes indirect, then transitions back to 

direct. For example, at x = +9%, it shows an indirect band gap with the conduction band 

minimum (CBM) shifted from  to K1 (0, 0.3, 0) while the valence band maximum 

(VBM) remains at . At x = +12%, it gives a direct gap with both the CBM and VBM at 
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K1 (0, 0.3, 0). Similarly, with an increase in compression, the gap first transitions to 

indirect and then back to direct. For instance, at x = -8%, the gap is indirect with the 

CBM remains at  while the VBM shifted to K2 (0.15, 0, 0). When x = -12%, it shows a 

direct gap with both the CBM and VBM at .  

Figure III.3 clearly demonstrates that the direct/indirect nature of the band gap is the 

result of the competition of the energies of several near-band-edge states. With an 

increase in tensile strain, the energy of the conduction band (CB) at K1 (0, 0.3, 0), 

labeled as state D in Figure III.3 (g), reduces rapidly and becomes equal to that of state C 

(CB at , i.e. the original CBM) when x = +8%. With the strain higher than +8%, state D 

has a lower energy than C, thus D becomes the CBM. Similar behavior occurs with the 

valence band (VB). The energy of state B at K1 (0, 0.3, 0) increases faster than A (VB at 

, i.e. the original VBM). At x = +12%, B has a higher energy than A, and thus 

represents the VBM.  

On the side of compression, the CBM is always located at  (state C). However, the 

VBM demonstrates an interesting transition. First, at x = -2%, the VB at K2 (0.15, 0, 0), 

labeled as state E in Figure III.3 (c), shows an equal energy with A (i.e. VB at ). With 

increased compression, the energy of state E is higher than that of A, indicating a direct-

to-indirect gap transition. At x = -12%, the energy of a sub-VB (the pink band) state F at 

 has a higher energy than E and becomes the VBM, showing a direct band gap at .  
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Figure III.4. The strain y (applied in the armchair direction) manipulated direct-indirect band gap transition in 

phosphorene. All energies are referenced to vacuum level. The band gap shows a direct-indirect transition with 

expansion/compression. The direct/indirect nature of the gap results from the energy competition of near-band-edge 

states A, B, C, and G. The dashed lines are a guide for viewing the energy shifts of states B and G. 

Figure III.4 shows the effect of strain y (applied in the armchair direction) on the 

band structure of phosphorene. It demonstrates that both expansion and compression can 

convert the band gap to indirect. For instance, at y = +8% and +12%, the gap is indirect 

with the VBM at  while the CBM shifted from  to X. At the side of negative strain, the 

gap is indirect at y = -12% with the VBM at K1 (0, 0.3, 0). It is clear that two VB states 

A and B compete for the VBM and two CB states C and G (CB at X) exchange 

dominance for the CBM. The energy shift of states B and G with strain are more 

prominent than their competing states A and C, respectively.  
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Figure III.5. The band gap of 2D phosphorene as a function of strain x applied in the zigzag (left) and y  in the 

armchair (right) directions, respectively. Five (three) strain zones were identified for x (y) based on its distinct band 

structures. Zones I, II, III, IV, and V in (a) are corresponding to the direct (d), indirect (in), direct, indirect, and direct 

gap, respectively. The critical strain for the gap transition are -10.2%, -2%, +8%, and +11.3%. The gap closes up at x = 

-13%. Zones VI, VII, and VIII in (b) present the indirect, direct, and indirect gap, respectively and the critical strains of 

the zone borders are y  = -9% and +6.8%.  

The band gap is defined as the energy difference between the CBM and VBM. From 

Figures III.3 and III.4, the gap strongly depends on strain. In Figure III.5, the gap is 

plotted as a function of both strains x and y.  

For the strain applied along the zigzag direction in Figure III.5 (a), the band gap is 

initially increased with tensile strain from a value of 0.91 eV for the relaxed structure and 

reaches the maximal value of 0.99 eV at +4% strain, then drops rapidly with further 

increased expansion. At x = +12%, the band gap is reduced to 0.22 eV. To see if the gap 

reduces to zero with further increased tensile strain, this work explored even larger strain 

+13% up to +16% with a 1% increment. The gap was not found to close.  It reaches a 

minimal value of 0.06 eV at +14% strain, and then opens up again for larger strain.  

On the side of negative strain x, the gap reduces, mainly resulting from the 

downward shift of the CBM (see Figure III.3). At x = -12%, the gap sharply drops to 

0.04 eV from the value of 0.55 eV at -10% strain. This is due to the fact that the VBM 
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was replaced by a newly raised sub-valence band (state F). To explore if the band gap 

reduces to zero with a larger compression, this work explored -13% strain and found that 

the DFT gap indeed closed up.  

In Figure III.5 (a), five strain zones were identified based on their distinct band 

structure.  Zone I is for a direct band gap within the strain range -12% to -10.2%, in 

which the CBM is represented by state C and the VBM is given by state F. Zone II 

corresponds to an indirect band gap from -10.2% to -2%, where the VBM is state E.  

Zone III is a direct gap at  from -2% to +8%. Zone IV is an indirect gap from +8% to 

+11.3%, where the CBM is at (0, 0.3, 0). Zone V shows a direct band gap with both the 

CBM and VBM at (0, 0.3, 0). The critical strains of -10.2%, -2%, +8% and +11.3% are 

the zone boundaries that are determined in the next section.  

Figure III.5 (b) presents the band gap as a function of strain applied in the armchair 

direction.  The reduced gap value with compression mainly results from the downward 

shift of the CBM and upward change of the VBM (see Figure III.4). The drop of the gap 

value at +12% is a consequence of the CBM being replaced by the CB at X (state G). 

Three unique strain zones are characterized. Zone VI is for an indirect band gap from -

12% to -9% where the VBM is located at (0, 0.3, 0). Zone VII is for direct band gap at  

from -9% to +6.8%. Zone VIII shows an indirect band gap in the strain range +6.8% to 

+12%, in which the CBM is at X.  

Since DFT at the GGA level is known to underestimate the band gap of 

semiconductors, it is important to test the robustness of the calculated strain effects on the 

band structures of phosphorene. This work used the advanced hybrid functional HSE06 

to calculate the band structures of phosphorene under different values of axial strain in 
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the zigzag direction and the results are presented in Figure III.6. Comparing the HSE06 

predicted band structures in Figure III.6 (a)-(e) with that of the DFT in Figure III.3, one 

can conclude that both methods give consistent results of the strain effects on the band 

structures. For example, the direct band gap of the material without strain (0%) converts 

to indirect under +9% strain and then becomes direct again with +12% strain. On the side 

of compression, the gap is indirect and direct under -8% and -12% strains, respectively. 

This work also used the HSE06 method to calculate the band structures of phosphorene 

under different values of strain in the armchair direction and found that they are in great 

agreement with those obtained from the standard DFT.   

 
Figure III.5. (a) - (e) The hybrid functional HSE06 predicted band structures of 2D phosphorene with different values 

of strain x in the zigzag direction. Starting with the relaxed structure, the band gap experiences a direct-indirect-direct 

transition with both tensile and compressive strain, which is in great agreement with that predicted by the standard 

DFT. (f)-(g) the band gaps predicted by the standard DFT and HSE06 for both strains x and y. Although DFT 

underestimates the band gap, its calculated gap-strain variation trend is consistent with that of HSE. 

The band gaps predicted by the DFT and HSE06 as a function of strains x and y are 

presented in Figure III.6 (f) and (g). It is clear that the HSE06 has a better prediction on 

the band gap value. The HSE06 calculated band gap for the relax phosphorene is 1.61 eV, 

which is 0.7 eV higher than the DFT gap. However, both methods of the DFT and HSE06 

calculated the same gap variation trends with strain. Therefore, it is observable that DFT 

correctly predicts the general trends of strain effects on the band structure and near-gap 
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states in phosphorene, including the direct-indirect band gap transition and the gap 

variation trends with strain.  

To determine the critical strain in which the direct-indirect band gap transition occurs, 

the energies of the near-band-edge states A-G were plotted (labeled in Figures III.3 and 

III.4) as a function of strain in Figure III.7. As seen from Figures III.3 and III.4, these are 

the states which compete for the CBM and VBM, thus their energies determine the 

direct/indirect nature of the gap.  In Figure III.7, the energies of the states display a nearly 

linear function with strain. For instance, the energy of state B increases with a positive 

strain x while decreases with a negative strain x. In contrast, states D and F show 

opposite trends. The energy of state E remains unaffected by strain. This linear shift of 

energy is not unique to phosphorene. It is also observed in other semiconducting 

nanostructures.
18, 91, 92, 94-100, 110-113

 

 
Figure III.6. The energies of the near-edge states A - G as a function of strain applied in the zigzag (left) and armchair 

(right) direction, respectively. The critical strains for the direct-indirect gap transition are determined by the energy 

crossover of competing states. In (a), the energy crossover of the competing VB states A, E, and F occurs at x = -2%, -

10.2%, and +11.3% strains. The energies of the competing CB states C and D are equal at x = +8% strain. In (b), the 

energies of the VB states A and B crosses at y = -9%, and two CB states C and G meets at y = +6.8%. Strain zones I-

VIII are also labeled.    

In Figure III.7, the conduction states were represented by hollow-dashed lines while 

valence states are given by solid lines. In Figure III.7 (a), state C represents the CBM 

-12 -8 -4 0 4 8 12
-7

-6

-5

-4

-3

VIVIIIIII

(a)

Strain 
x
 (%)

 

 

E
n

er
g

y
 (

eV
)

 C   D 

 A   B

 E   F

-12 -8 -4 0 4 8 12
-7

-6

-5

-4

-3

VIIIVIIVI

 

(b)

Strain 
y
 (%)

 

 

E
n

er
g

y
 (

eV
)

 C  G

 A  B



45 
 

from -12% strain up to +8%, at which the energy of state D equals state C energy. From 

+8% to +12% strain, D has a lower energy than C, thus D represents the CBM. The 

energy crossover of these two states gives the critical strain +8% for the direct-indirect 

band gap transition.  

For the valence bands, the two states A and B compete for the VBM at the positive 

strain, while three states A, E and F battle at compression. State A represents the VBM 

for positive strain up to +11.3%, where C catches up and becomes the VBM. For the 

negative strain, the energy of A was first exceeded by E at -2% strain and E becomes the 

VBM in the strain range from -2% to -10.2%. At -10.2% strain, F catches up and 

represents the VBM for compression higher than -10.2%.  

In the case of strain y in Figure III.7 (b), the energy crossover of two conduction 

states C and G occurs at +6.8% strain and that of two valence states A and B at -9%. In 

order to understand the different trends of states A-G in Figure III.7, their electronic 

orbitals, including charge distribution and wavefunction, were explored. The 

wavefunction character was examined by projecting the wavefunction onto s-, p-, and d-

orbitals at each ionic site. It was found that states A and E are pz-orbitals; B is py; C is 

dominated by pz (86%) mixed with py; State D is dominated by py (56%) with a mixture 

of s-orbital; F is px; and  G is dominated by px (59%) mixed with s-orbital. Their electron 

density contour plots and wavefunction character are presented in Figure III.8.  

A general mechanism
92

 was developed to explain the different energy shifts with 

strain based on the Heitler-London’s exchange energy model (also mentioned in the 

introduction).
114

 The different energy shifts with strain were found to be closely related to 

the bonding/anti-bonding nature of the orbitals.
92

 In the Heitler-London model, the 
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energies of the bonding and antibonding states are given by the equations I.14 and I.15. 

Based upon the reasoning provided in the introduction, the exchange integral term H may 

be playing a dominant role in determining the different energy variation behaviors with 

strain in the bonding and antibonding situation. The exchange H is given by I.16 where 

the exchange H is contributed from either non-classical electron-electron (i.e. 
1

𝑟12
, 

positive) or electron-ion interaction (i.e.−
1

𝑟2𝑎
−

1

𝑟1𝑏
, negative). For s-orbitals or any mixed 

orbitals in which electron density are not extremely localized, the contribution of the 

electron-ion interaction is dominated by the electron-electron interaction in the exchange 

H. As the atomic distance increases (corresponding to a positive tensile strain), the 

energy contributed from the electron-ion interaction increases more rapidly compared to 

the energy reduction of the electron-electron contribution (see equation (I.16)), which 

results in an increased value for H. An increased H value causes the bonding energy 

𝐸𝑏𝑜𝑛𝑑𝑖𝑛𝑔 to increase and the antibonding energy 𝐸𝑎𝑛𝑡𝑖𝑏𝑜𝑛𝑑𝑖𝑛𝑔 to decrease based in 

equations I.14 and I.15. These trends are represented by the schematic in Figure III.8 (h). 

For the case of non-bonding, in which the wavefunction overlap is minimal, the energy is 

expected to be insensitive to strain.  
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Figure III.7. (a)-(g) The electron density contour plots and schematic of the wave function character (i.e. the projected 

major orbital and sign of phase factor) of the near-band-edge states A - G in 2D phosphorene. Their dominant orbitals 

and bond status (in the horizontal axis) were listed at the bottom of each state. (h) Schematic of energy response to 

axial strain for three typical cases of bonding, non-bonding, and anti-bonding. 

The bond nature of the electron density contour plots and wavefunction character in 

Figure III.8 is examined next. State A in Figure III.8 (a) suggests non-bonding in the x-

direction and an anti-bonding character in the y-direction based on its sign of phase factor 

along the y direction. B is bonding in the x-direction while displaying anti-bonding in the 

y-direction. State C, which is dominated by pz-orbital, illustrates a bonding nature in the 

x-direction while non-bonding in the y-direction. States D, E and F demonstrate anti-

bonding, non-bonding and anti-bonding, respectively, in the x axis. State G is anti-

bonding in the y-direction. State D is a mixture of py and s-orbitals. Since the overlap of 

the py orbital in the x direction is small, the s-orbital is plotted in Figure III.8 (d) to 
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determine its bonding/anti-bonding status in the x direction. The same case is applied to 

State G in Figure III.8 (g).  

The bond nature of these seven states combined with the schematic in Figure III.8 (h) 

can be used to explain their energy variation in Figure III.7. For example, D is anti-

bonding in the x direction and expected to decrease with tensile strain from Figure III.8 

(h). This is in agreement with the curve of D in Figure III.7 (a). B is bonding in the x 

while anti-bonding in the y direction. According to Figure III.8 (h), its energy is expected 

to increase with x while decrease with y, which is consistent with Figure III.7. Other 

curves in Figure III.7 can be explained in the same manner.  

 

The effective masses of the electron and hole can be readily calculated according to 

the formula 𝑚∗ = ℏ2 (
𝑑2𝐸

𝑑𝑘2)
−1

  (equation I.13) from the band structure. For relaxed 

phosphorene, the effective mass of the electron is predicted to be 1.24 me in the zigzag 

and 0.16 me in the armchair direction. The effective mass of the hole is 4.92 me in the 

zigzag and 0.15 me in the armchair direction. These calculated effective masses are in 

agreement with other theoretical work.
89, 90

 The significantly smaller effective masses in 

the armchair direction suggest that charge carriers prefer transport in that direction.  

The effective masses of the electron and hole as a function of both strains x and y 

are presented in Figure III.9. The effective masses of the electron and hole can be 

dramatically tuned by strain. In addition, it was found that the sudden jump (drop) in the 

effective masses occurs around the strain zone boundaries (i.e. critical strains) for the 

direct-indirect band gap transition. For example, in Figure III.9 (a), the effective mass of 

the electron in the zigzag direction is an order of magnitude bigger than that along the 
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armchair direction in Zones I, II, and III. At the zone boundary of III and IV, the effective 

mass in the zigzag direction drops sharply while in the armchair direction jumps 

suddenly. This sharp transition suggests the zigzag direction is favored for electron 

transport.
89

 Figure III.9 (b) shows that the hole prefers transport in the armchair direction 

in Zones II-V. However, in Zone I, it favors the zigzag direction.  

 
Figure III.8. Effective masses of the electron (left) and hole (right) as a function of strain x (top) and y (bottom). Five 

(three) strain zones for x (y) are also labeled. The sharp shift in effective masses occurs around the zone boundaries 

for the direct-indirect gap transition.   

For the case of strain applied in the y direction, Figure III.9 (c) suggests the armchair 

direction is favored for the electron transport in Zones VI and VII, while the situation 

becomes opposite in Zone VIII. For the hole in Figure III.9 (d), the effective mass in the 

armchair direction is insensitive to strain, while in the zigzag direction it experiences a 
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dramatic shift. The much smaller value of effective mass in the armchair direction 

indicates the hole predominately prefers transport in the armchair direction in Zone VII 

and VIII. However, the sharp reduction of the effective mass in the zigzag direction at 

Zone VI makes this axis competitive with the armchair direction for the hole transport.  

The effective mass presented in Figure III.9 is a direct consequence of the strain 

effect on the band structure in Figures III.3 and III.4. In particular, the sharp change in 

the effective masses results from the direct-indirect band gap transition. For example, to 

understand the sudden shift of the effective mass at x = +8% in Figure III.9(a), please 

refer to the band structure of Figure III.3(h) along  to Y. Compared to +4% strain in 

Figure III.3(g), the downward shift of state D at +8% strain largely reduces the band 

dispersion at state C, thus increasing the effective mass of the electron dramatically at x 

= +8%. When x is bigger than +8%, the CBM is shifted away from C to D, thus the 

effective mass of the electron was calculated from D, which has a much smaller effective 

mass resulting from the more dispersive band structure. Another sharp shift in the 

effective mass of the hole occurs at x = -12% in Figure III.9 (b), which is a direct 

consequence of Figure III.3 (a). At x = -12%, the energy of sub VB state F exceeds E 

and becomes the VBM. The effective mass along the x direction is now calculated based 

on this new state F instead of E. Similarly for the case of y strain, the striking transition 

of the effective mass of the electron from +4% to +8% strain in Figure III.9(c) results 

from the +6.8% critical strain. 

Using ab initio calculations, this work provided a detailed analysis of strain effects on 

the electronic band structure of 2D phosphorene. This work observed that (1) 

phosphorene can withstand a tensile stress and strain up to 10 N/m and 30%, respectively. 
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(2) The band gap of 2D phosphorene has direct-indirect-direct transitions with axial 

strain. (3) Five strain zones with distinct electronic band structure were identified and the 

critical strains for the zone boundaries were determined. (4) Although the DFT method is 

known to underestimate the band gap of semiconductors, it was proven to correctly 

predict the strain effect on the electronic properties with verification via the hybrid 

functional method. (5) The origin of the gap transition was revealed and a general 

mechanism was developed to explain the near-band-edge energy shifts according to the 

bond nature of their electronic orbitals. (6) In relaxed phosphorene, effective masses of 

the electron and hole in the armchair direction are an order of magnitude smaller than that 

of the zigzag direction suggesting that the armchair direction is favored for carrier 

transport. (7) Effective masses can be dramatically tuned by strain.  (8) The sharp 

jump/drop in the effective masses occurs at the zone boundaries of direct-indirect gap 

transition.  

Phosphorene has demonstrated superior mechanical flexibility and can hold a large 

tensile strain of 30%, which opens doors for applications in flexible displays. Having a 

direct band gap is essential for materials in optical applications. This work shows that a 

moderate -2% stain in the zigzag direction can trigger the direct-to-indirect band gap 

transition. Predicted strain Zones II, IV, VI, and VIII should be avoided for optical 

applications, due to the indirect band gap in the material within these strain zones. Carrier 

mobility is an essential parameter to determine performance of electronics and it is 

inversely dependent on the effective masses. This work demonstrated that strain can 

dramatically tune the effective masses, thus can be used to modify carrier mobility of 

phosphorene in electronics applications.  
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This work was a collaboration of Xihong Peng, Qun Wei, and Andrew Copple. The 

author of this dissertation was mostly responsible for the verification of strain effects on 

the band gap in the armchair and zigzag directions. 

 

B. Edge Effects On Phosphorene Nanoribbons 

Recently fabricated two dimension (2D) few-layer black phosphorus
68, 

 has drawn 

immediate attention to the society of material science.
15, 75, 88-89, 115-122

 This material is 

chemically inert and has promising transport properties. It has carrier mobility up to 1000 

cm
2
/V·s and an on/off ratio up to 10

4
 was achieved for the phosphorene transistors at 

room temperature.
67, 68

 In addition, this material shows a finite direct band gap at the  

point of the Brillouin zone
15, 67-68, 73-75

 (in contrast to the vanishing gap in 2D graphene 

sheet), which creates potential for additional applications in optoelectronics.  

Tailoring electronic properties of semiconductors has been critical for applications in 

electronics. A series of strategies were explored to engineer the band gap of phosphorene, 

for example, by utilizing multilayer structures,
68, 75

applying mechanical strains,
15, 89

 

forming nanoribbons 
116, 118-120

 or nanotubes.
116

 For the phosphorene nanoribbons 

(PNRs), their electronic properties are dependent on the crystal orientation of the ribbons. 

For example, two typical crystal directions were generally explored, namely the 

armchair-PNRs (APNRs) and the zigzag-PNRs (ZPNRs). Tran and Yang
118

 reported that 

the PNRs with the edge phosphorus atoms passivated using H are direct-gap 

semiconductors and their band gaps are a strong function of the ribbon width due to the 

quantum confinement effect. However, Guo et al.
116

 found that the pristine ZPNRs are 

metals regardless of the ribbon width, while the pristine APNRs are semiconductors with 
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indirect band gaps. These distinct conclusions imply that the edges of the ribbons play a 

critical role on their electronic properties. Therefore, it is important to systematically 

study the edge effects on the PNRs, in particular, with several common chemical groups, 

such as -OH, -O, -S. In this work, we present detailed systematic analysis of the edge 

effects on the electronic band structure and density of states (DOS) of both APNRs and 

ZPNRs for a series of ribbon widths up to 3.5 nm. Our results suggest that the APNRs are 

semiconductors with either direct or indirect band gap depending on the edge 

functionalization groups, and the ZPNRs demonstrate either semiconductor or metallic 

behavior with different edge passivation. 

The theoretical calculations were carried out using first principles density functional 

theory (DFT).
13

 The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional
101

 

and the projector-augmented wave (PAW) potentials 
102, 103

 were employed. The 

calculations were performed using the Vienna Ab-initio Simulation Package (VASP).
50, 51

  

The kinetic energy cutoff for the plane wave basis set was chosen to be 500 eV. The 

energy convergence criteria for electronic and ionic iterations were set to be 10
-5

 eV and 

10
-4

 eV, respectively. The reciprocal space was meshed at 14  1  1 for the ZPNRs and 

1  10  1 for the APNRs using Monkhorst Pack meshes centered at  point. 21 K-points 

were included in band structure calculations from  to X for the ZPNRs and from  to Y 

for the APNRs. To simulate a ribbon, a unit cell with periodic boundary condition was 

used. A vacuum space of at least 20 Å was included in the unit cell to minimize the 

interaction between the system and its replicas resulting from the periodic boundary 

condition.   
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Figure III.10 Images of the APNRs and ZPNRs with different edge functionalization groups. (a) 9L-APNR with edge 

P atoms saturated using H (F or Cl), and hydroxyl group, double-bonded O, and bridge-bonded S (Se) atoms, 

respectively. (b) 12L-ZPNR with edge functionalized by H (F or Cl), double bonded O, S, and bridge-bonded Se atoms, 

respectively. The dashed rectangles indicate the unit cells. 

The initial structures of monolayer phosphorene were obtained from bulk black 

phosphorus.
107

 The 2D phosphorene has a puckered honeycomb structure with each 

phosphorus atom covalently bonded with three adjacent atoms. Our calculated lattice 

constants for bulk black phosphorus are a = 3.307 Å, b = 4.547Å, and c = 11.210 Å, and 

are in good agreement with experimental values
107

 and other theoretical calculations.
68, 90

 

The relaxed lattice constants for monolayer phosphorene are a = 3.295 Å and b = 4.618 

Å.  
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The APNRs and ZPNRs with different ribbon widths up to 35 Å were truncated from 

monolayer phosphorene along the y- and x-directions, respectively, as shown in Figure 

III.10. The width of a ribbon nL is referring to the number n of P atoms in the direction 

perpendicular to the ribbon direction (see Figure III.10). As an example, Figure III.10 

demonstrates the snapshots of 9L-APNRs and 12L-ZPNRs. The edges of the PNRs were 

treated in eight different scenarios: no passivation (pristine) or bonded with H, F, Cl, OH, 

O, S or Se chemical species.  

Table III.I The bond lengths b1-b6 and bond angles 𝜶-𝜽 at the edges of the PNRs with different edge chemical groups. 

The bond lengths and angles were denoted in Figure III.10. As a reference, the corresponding bond lengths/angles in 

monolayer phosphorene were also listed. 

 

We explored the structural configuration at the edges for the PNRs. For example, six 

bond lengths labeled as b1 – b6  and four bond angles indicated as , ,  and  in Figure 

III.10 were calculated and reported in Table III.I. There is negligible change in the bond 

length b1 (between the two P atoms near the edge of the 9L-APNR) for all eight different 

edge groups, indicating that the distinct edge functionalization groups only affect the 

9L-APNR 12L-ZPNR

system b1 (Å) b2 (Å) b3 (Å) b4 (Å) (°) () () b5 (Å) b6 (Å) ()

monolayer 2.22 2.26 n/a n/a 95.9 104.1 n/a 2.22 n/a 104.1

pristine 2.23 2.07 n/a n/a 111.1 119.1 n/a 2.14 n/a n/a

H 2.22 2.25 1.44 n/a 95.7 103.2 93.1 2.23 1.44 99.3

F 2.23 2.25 1.63 n/a 94.9 98.3 98.3 2.22 1.64 106.0

Cl 2.24 2.26 2.08 n/a 92.7 95.9 101.1 2.23 2.08 107.3

OH 2.23 2.24 1.68 n/a 94.9 99.0 100.1 2.22 1.68 110.7

O 2.27 2.25 1.49 n/a 99.5 106.7 109.2 2.25 1.50 116.4

S 2.23 2.25 2.11 2.10 97.0 105.0 99.5 2.28 2.00 106.3

Se 2.23 2.24 2.28 2.38 95.3 102.9 100.0 2.29 2.39 89.3
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geometry on the very edge of the ribbons. The P-P bond b2 on the very edge for the 

pristine case experiences a considerable reduction from 2.26 Å (of the 2D phosphorene) 

to 2.07 Å, due to its edge dangling-bond reconstruction. The variation in the bond length 

b3 between the P atoms and the edge species is expected: larger edge chemical species 

yields a longer bond length.  The bond b3 is sufficiently large for the edge S (Se) case, 

such that two S (Se) atoms in the neighbored simulation cell form a bond, labeled as b4 in 

Figure III.10 (a). The bond angles  and  both increase largely for the pristine case due 

to the reconstruction of the edge P-P bond.  

For the ZPNRs, the bond lengths b5 and b6 show similar variations with the edge 

functionalization groups as the b2 and b3 in the APNRs, respectively. The significantly 

reduced bond angle  in the Se case from 104.1° (of the 2D phosphorene) to 89.3° results 

from the special bridge-bonding configuration as shown in Figure III.10 (b). We also 

checked this bridge-bonding arrangement for both O and S edges and found that these 

two species prefer to bond to one P atom rather than the bridge-bond to two P atoms, as 

shown in Figure III.10 (b). This gives much shorter bond length b6, 1.50 Å and 2.00 Å 

for the O and S cases, respectively, comparing to 2.39 Å in the Se edge.  
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Figure III.11 Band structures of the APNRs and ZPNRs with different edge chemical groups. Top is for the 9L-

APNRs and bottom for the 12L-ZPNR. The Fermi level is aligned at zero. The states brought by the edge P, O, S, and 

Se atoms within the band gap are indicated in blue color. 

The band structures of the PNRs with the eight different edge functionlization groups 

were calculated. As an example, Figure III.11 presents the band structures of the 9L-

APNRs and 12L-ZPNRs. Since the edge groups F and Cl show similar effects on the 

band structure, we only plot the F-edge case for the APNR and the Cl case for the ZPNR 

in Figure III.11. It is clear that the APNR is a semiconductor. The band gap is defined as 

the energy difference between the conduction band minimum (CMB) and valence band 

maximum (VBM).  For the pristine and O-edge cases, the APNR shows an indirect band 

gap, while other functionalization groups demonstrate a direct band gap. For the pristine 

and O-edge cases, the CBM, which is contributed from the edge P and O atoms, 

respectively (see below Figure III.12), is not located at the  point, while the VBM is at 

, which gives an indirect gap. However, for the cases with the edge H, OH, F(Cl), both 

the CBM and VBM are contributed by the non-edge P atoms (i.e. intrinsic states) in the 
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ribbon and located at , which gives a direct band gap. A slightly different situation 

occurs for the APNRs with the edge S (Se) atoms, in which the conduction bands are 

mainly contributed by the edge S (Se), while the CBM is still located at  and results in a 

direct band gap.  

 
Figure III.12 The electron density contour plots of near-Fermi-level states A-M. The vertical and horizontal arrows 

indicate the armchair and zigzag ribbon directions (periodic boundary), respectively. 

On the other hand, the ZPNR shows a dissimilar behavior. The ribbon demonstrates 

either semiconductor or metallic behavior as shown in Figure III.11 (h)-(n), in 

dependence on the edge functionalization groups. The edge chemical groups can be 

classified into two distinct families. Family 1 includes the H, OH, F and Cl edges and 

Family 2 consists of the pristine, O, S and Se cases. For Family 1 edges, the ZPNRs are 

semiconductors with a direct band gap at . Their CBM and VBM are the intrinsic states 

from the non-edge P atoms in the ribbon (see below Figure III.12). However, for Family 
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2 edges, the ribbon shows metallic behavior. The electronic states contributed by the edge 

atoms are located around the Fermi level and close up the band gap.   

 
Figure III.13 The total, s- and p-orbital projected density of states. The DOS of the 9L-APNR with the edge 

functionalized by (a) S and (b) O atoms. The DOS of the 12L-ZPNR with the edge saturated by (c) Cl and (d) bridge 

bonded Se atoms. The Fermi level is aligned at zero. 

The DOS of the studied PNRs was also calculated. As an example, Figure III.12 

presents the total, s- and p-orbital projected DOS of the 9L-APNRs and 12L-ZPNRs. The 

DOS of the 9L-APNR with the edge S (O) passivation in Figure III.13 suggests that the 

ribbons are semiconductors, in which the conduction band (CB) was mainly contributed 
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by the p-orbitals of the edge P and S (O) atoms while the VBM is located at the p-orbitals 

of the P atoms in the ribbons. For the 12L-ZPNR with the edge Cl in Figure III.13 (c), the 

band gap of the ribbon is determined by the intrinsic states of P and the Cl states being far 

away from the band gap. In the metallic 12L-ZPNR with the bridge-bonded Se in Figure 

III.12 (d), the p-orbitals of the Se and P atoms form bonds which close up the gap.  

The near-band-edge states A – M (labeled in Figure III.11) were explored and their 

electron density contour plots are presented in Figure III.13. States A and B are the VBM 

and CBM of the 9L-APNR with the edge H atoms. The wave function of states A and B 

are primarily located in the phosphorus atoms within the ribbon and the edge P and H 

atoms have little contribution. It was found that State A and B also represent the VBM 

and CBM of the 9L-APNR with other edges in Family 1 (i.e. F, Cl and OH). State C is 

the CBM of the pristine 9L-APNR. From the electron density contour plot in Figure 

III.12 (c), it is clear that the charge is primarily located at the edge P atoms. State D is the 

CBM of the 9L-APNR with the edge O and the charge is distributed mainly on the edge P 

and O atoms. Similar edge states within the band gap were also found for the S and Se 

cases.  

In the 12L-ZPNRs, the electronic states E and G are denoted as the VBM and CBM 

with the edge H atoms and they are intrinsic states contributed by the non-edge P atoms. 

It was found that the VBM and CBM with other Family 1 edges are the same State E and 

G, respectively. However, for the pristine, S, Se and O cases (Family 2), the charges of 

states J, K, L and M are primarily located on the edge P and chemical groups.  

To understand why Family 2 structures bring edge states within the band gap while 

Family 1 edges do not, we examined the characteristics of the electronic orbitals of the 
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near-gap states. Family 1 edge species form a saturated bond with the P atoms and the 

energy associated with this saturated bond is far below the Fermi level. For example, the 

energy associated with the P-F bond in the 9L-APNR is 4.12 eV below the Fermi energy 

and that of the P-O bond in the case of edge OH group is 2.09 eV below the Fermi level. 

However, in Family 2 cases, the P atoms do not form a saturated bond with the edge 

species. Moreover, these unsaturated bonds are particularly weak due to their special 

electronic orbital orientations. For instance, the edge reconstructed P-P bond in the 

pristine ribbon is nearly in the ribbon plane (i. e. the xy-plane). However, the p-orbitals of 

the two P atoms are along the z-direction (i.e. pz-orbital). And the pz-orbitals form a 

relatively weak P-P bond in the xy-plane due to a minimal overlap of the wavefunction. 

A similar situation was found for the O, S and Se cases. For example, in Figure III.13 (d) 

the pz-orbitals of the edge O and P atoms cause a weak P-O bond in the ribbon plane (i.e. 

the xy-plane). These weak unsaturated bonds bring the edge states within the band gap 

for Family 2 cases. It is interesting to note that the bridge-bonded Se atoms in the ZPNR 

appear to form a saturated bond with two P atoms. However, their pz-orbitals make these 

P-Se-P bonds in the ribbon plane relatively weak, and such weak bonds brings edge states 

within the band gap to close the gap.  
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Figure III.14 The band gap of the (a) APNRs and (b) ZPNRs as a function of ribbon width. Family 1 edges are plotted 

using solid lines while Family 2 edges are denoted with dashed lines. 

The band gap of the APNRs and semiconducting ZPNRs with the ribbon width up to 

35 Å were calculated and presented in Figure III.14. For the APNRs in Figure III.14 (a), 

the band gap of Family 1 cases increases rapidly with reducing width of the ribbon. Note 

from the above discussion, the band gap of Family 1 is determined by the intrinsic 

electronic states of phosphorus atoms. The scaling of the band gap with the ribbon width 

d obeys the usual 1/d
2
 relation according to quantum confinement, which is consistent 

with literature.
118

 Given the same ribbon width, the band gap of Family 2 ribbons is 

generally smaller than that of Family 1. This is because Family 2 cases bring edge states 

within the band gap, thus largely reducing the gap. The significantly smaller band gap of 

the 3L-APNR with the edge O results from a structural distortion of this ultra-narrow 

ribbon. For the ZPNRs in Figure III.14(b), the four Family 1 ribbons have very similar 

behavior, and the gap scaled as 1/d, in agreement with Tran and Yang’s prediction.
118

 

Family 2 ZPNRs show metallic behavior, thus the gap is zero.  

In summary, we employed first principles DFT calculations to study electronic 

properties of the phosphorene nanoribbons with the edge functionalization using different 

chemical groups. It was found that the APNRs are semiconductors for all edge groups 
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considered in this work. However, the ZPNRs demonstrate either semiconducting or 

metallic behavior.  The CBM and VBM of the APNRs and ZPNRs with the edge H, F, 

Cl, and OH groups (Family 1 edges) are contributed by the intrinsic electronic states of 

non-edge phosphorus atoms, and the edge species have negligible contribution to the 

wavefunctions of the CBM and VBM. Therefore, the ribbons in this family are 

semiconductors with a direct band gap. However, the APNRs and ZPNRs in the pristine, 

O, S and Se cases (Family 2 edges) display edge states within the band gap, which cause 

a reduced band gap in the APNRs and metallic behavior in the ZPNRs. These edge states 

in Family 2 ribbons originate from their weak unsaturated bond with the P atoms.  

This work was a collaboration between Xihong Peng, Andrew Copple, and Qun Wei. 

The author of this dissertation was mostly responsible for some verification of strain 

effects on the band gap APNRs and ZPNRs, as well as observing any significant 

structural changes to the PNRs with strain.  

Chemical Scissors Effect and Future Work. While working on these studies, 

passivation of the armchair phosphorene nanoribbons with certain edge elements (most 

notably H) created a splitting effect in the relaxation phase of calculations. Upon further 

study of this phenomenon, it became apparent that the chemical addition of certain 

elements could be intentionally used to cut sheets of phosphorene along the armchair 

direction, producing ZPNRs.
123

 This work was also confirmed in these studies. Future 

studies of PNRs could include few-layer PNRs, defects, larger supercells for greater 

relaxation of the system, as well as substrate interface behavior or non-uniform strain 

application. However, some of these studies might be easier to complete outside of DFT. 

The next material presented in this work begins with the study of III-V nanowires. 
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Chapter IV. III-V NANOWIRES 

A. Size And Strain Engineering Band Gap 

Experimental studies have shown that while GaAs naturally exists in the Zinc-Blende 

structure, when creating nanowires of sufficiently small size, the wurtzite structure can 

also be observed.
9, 124, 125

 This particular part of the study is focused on the unique 

behavior of wurtzite GaAs nanowires, as well as their Zinc-Blende and InAs 

counterparts. The research from both GaAs nanowire publications is presented below
91, 92

 

and results for InAs were similar and thus unreported.  

One dimensional nanostructures, such as nanowires, of group III-V semiconductors 

have drawn extensive research interests in recent years. They are expected to play 

important roles as functional components
126

 in future nanoscale field effect transistors,
127

 

high efficiency photo detectors,
1, 2

 light emitting diodes,
128

 photovoltaic cells,
129

 medicine 

sensors,
130

 etc. In particular, GaAs has been considered as a promising channel material 

for the high speed NMOS beyond Si based technology. GaAs has two different crystal 

structures zinc blende (ZB) and wurtzite (WZ) phases. In bulk GaAs, ZB phase is 

energetically more favorable than WZ. In nanoscale, however, WZ phase was observed 

more often experimentally. Theoretical work,
124

 including ab-initio calculations, has 

shown that at small size WZ structure is energetically more favorable,
9, 124, 125

 and the 

interface energy may also facilitate the growth of WZ structure.
131

 Recent experiments 

have shown it is possible to grow GaAs nanowires in ZB,
132

 WZ,
133

  and mixed crystal 

phases.
134

  

While bulk GaAs (both ZB and WZ) has a direct band gap, GaAs nanowires may 

demonstrate an indirect gap when the diameter of nanowire is sufficiently small.
135, 136
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This band gap transition could fundamentally alter the electronic properties of nanowires. 

In addition to size, strain has become a routine factor to engineer band gaps of 

semiconductors in the field of microelectronics. Researchers have theoretically 

demonstrated the modulated band gap by external strains in a variety of systems such as 

pure Si
11

 and Ge
10

 and Si/Ge Core-shell nanowires.
97

 It would be very interesting to 

investigate strain effects on the band structure of WZ GaAs nanowires and examine if the 

direct-indirect band gap transition can be engineered for applications. 

The ab-initio density functional theory (DFT)
13

 calculations were carried out using 

VASP code
50, 51

. The DFT local density approximation and the projector-augmented 

wave potentials
102, 103

 were used along with plane wave basis sets. The kinetic energy 

cutoff for the plane wave basis set was chosen to be 300.0 eV. The energy convergence 

criteria for electronic and ionic iterations are 10
-4

 eV and 0.03 eV/Å, respectively. The 

GaAs nanowires were generated along the [0001] direction (i.e. z-axis) from bulk WZ 

GaAs with different diameters in the wire cross section (see Figure IV.1). The dangling 

bonds on the wire surface are saturated by hydrogen atoms. The Ga 3d, 4s, 4p, As 4s, 4p 

and H 1s electrons are treated as valence electrons. The reciprocal space of a nanowire is 

sampled at 116 using Monkhorst Pack meshes. In band structure calculations, a total of 

21 k-points were included along the K vector direction Γ (0, 0, 0) to X (0, 0, 0.5). The 

initial axial lattice constant in GaAs nanowires is set to be 6.5083 Å, taken from the 

relaxed lattice constant c of bulk WZ GaAs. In addition to the axial lattice constant, the 

lateral length of the simulation cell is chosen so that the distance between the wire and its 

replica (due to periodic boundary conditions) is more than 15 Å to minimize the 

interactions between the wire and its replica. The axial lattice constant in a WZ GaAs 
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wire is optimized through the technique of total energy minimization. Once the optimized 

geometry of a wire is obtained, we applied uniaxial tensile/compressive (i.e. 

positive/negative) strain to the wire by scaling the axial lattice constant of the wire. For a 

wire under each strain, the lateral x and y coordinates are further optimized through 

energy minimization. The band gap of a nanowire is defined by the energy difference 

between the conduction band minimum (CBM) and the valence band maximum (VBM). 

 
Figure IV.1 Images of simulated GaAs wurtzite nanowires. The diameter and composition of each wire in a unit cell is 

given at the bottom. The dashed rectangle in (e) indicates a unit cell. 

Four different sizes of WZ GaAs nanowires in the [0001] direction with a hexagonal 

cross section were studied and the corresponding diameters are 6.4 Å, 14.3 Å, 22.2 Å and 

30.1 Å, as shown in Figure IV.1. It was found that the optimized axial lattice constant of 

the nanowires are the same as its bulk lattice constant (c=6.5083 Å), except for the 

smallest wire. For the smallest wire, the lattice constant is 6.4933 Å, implying a very 

slight contraction of 0.23% compared to the bulk value.  

It is known that bulk WZ GaAs has a direct band gap
124, 137

 with both VBM and CBM 

located at . However, our calculated band structures of thin WZ GaAs nanowires 

demonstrate an indirect band gap, shown in Figure IV.2 (a)-(c). VBM of the three smaller 

nanowires are all at  and CBM are located at the CB valley along the -X direction. 
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This CB valley could be related to M-L valleys of bulk WZ GaAs.
124

 For the larger 

nanowire with a diameter of 30.1 Å, the band structure demonstrates a direct band gap 

with both VBM and CBM located at , shown in Figure IV.2 (d). The indirect-direct 

band gap transition in the WZ GaAs nanowires occurs in the size range 22 ~ 30 Å. From 

Figure IV.2, one also can find that the band gap of the nanowires increases with the 

reduction of the wire diameter, which is mainly due to quantum confinement effects. 

 
Figure IV.2 Band structures of geometrically optimized wurtzite GaAs nanowires with various diameters. Energies are 

referenced to vacuum level. There is a conduction band valley away from Γ in all nanowires. 

To further estimate the size of the nanowire in which the indirect-to-direct-gap 

transition occurs, we plotted energies of three states, namely VBM, conduction band 

(CB) at  and CB at the valley, as a function of the diameter of the wires, presented in 

Figure IV.3 (a). It’s shown that the energy of VBM (EVBM) increases while both energies 

of CB at  (ECB-) and at the valley (ECB-v) reduce with increasing size of the nanowires. 

For the three smaller wires, the energy of CB at the valley (ECB-v) is lower than the 

energy of CB at  (ECB-), indicating an indirect band gap. However, for the largest wire, 

ECB- becomes lower, therefore having a direct band gap. The indirect-to-direct-gap 
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transition size was estimated to be ~28 Å, from the crossover of ECB- and ECB-v in Figure 

IV.3 (a). This critical lateral size to trigger the direct-indirect band gap transition in WZ 

GaAs nanowires is smaller than that of the ZB nanowires (~40 Å) reported by Persson 

and Xu, using tight-binding calculations.
135

    

 
Figure IV.3 The calculated energies for the valence band (VB) at Γ (i.e. VBM), conduction band (CB) at Γ and the CB 

valley, as a function of (a) the size of the nanowires and (b) the uniaxial strain. (c) The two competitive states (A and 

B) for CB at Γ and their energy trends with strain. The nanowires are along the z-direction. 

Effects of uniaxial strain on the band structures of WZ GaAs nanowires were further 

studied. It was found that the band gap can be significantly tuned by uniaxial strain. For 

the thin nanowires with an indirect band gap, a suitable uniaxial strain can tune the gap 

into a direct band gap. Taking an example of the nanowire with a diameter of 14.3 Å, the 

effect of uniaxial strain on the band structures were presented in Figure IV.3. Without 

strain, the wire has an indirect band gap with CBM located at the valley in Figure IV.3 

(c). The indirect/direct band gap nature is determined by the values of ECB- and ECB-v. 

With a tensile uniaxial strain, both ECB- and ECB-v decrease. However, the downward 

shift of ECB- is larger than that of ECB-v, as shown in Figure IV.4 (d)-(f). For example, 

when a tensile strain of 6% was applied to the wire, ECB- is lower than ECB-v, suggesting 

a direct band gap. On the other hand, when a compressive strain was applied, ECB- 

experiences a downward shift while ECB-v increases, as shown in Figure IV.4 (a) and (b). 
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The band gap becomes direct when ECB- is lower than ECB-v, for example, with a -4% 

strain.   

 
Figure IV.4 Band Structure of wurtzite GaAs nanowire with a diameter of 14.3 Å under uniaxial strain. Positive and 

negative values of strain refer to tensile and compressive strain, respectively. Energies are referenced to vacuum level. 

Indirect-to-direct band gap transition occurs when expansion beyond 4% and compression larger than 2%. 𝑬𝑪𝑩−𝚪 and 

𝑬𝑪𝑩−𝐕 are energies of the conduction band at Γ and at the valley, respectively. 

This indirect-to-direct band gap transition manipulated by strain was also observed 

for the nanowire with a diameter of 22.2 Å. However, the critical strain to trigger the 

band gap transition for the 22.2 Å nanowire is smaller than that of the 14.3 Å wire. To 

illustrate this, three energies EVBM, ECB- and ECB-v are plotted as a function of strain for 

these two nanowires and presented in Figure IV.3 (b). Generally for both wires, ECB-v 

changes linearly with strain, decreasing with tensile strain while increasing with 

compression. However, ECB- has its maximized value at 0% strain and drops with both 

tensile and compressive strain. The crossover of these two energies ECB- and ECB-v is the 

critical strain for the indirect-to-direct band gap transition. It is clear, from Figure IV.3 

(b), the critical strains are roughly -2.2% and +5.2% for the nanowire with a diameter of 

14.3 Å. For the larger wire with a diameter of 22.2 Å, the critical strain to trigger the 

indirect-direct gap transition is approximately -0.8% and +2.8%. For the thinnest 
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nanowire with a diameter of 6.4 Å, no indirect-to-direct band gap transition was found 

within the uniaxial strain of ±6% considered in this work.  

As shown in Figure IV.3 (b), the nearly linear shift of ECB-v and EVBM with strain was 

also observed in other semiconducting nanostructures.
10, 11, 84, 94, 95, 138

 More interesting in 

Figure IV.3 (b) is the ECB- shift with strain, which is maximized at 0% strain and drops 

at both tensile and compressive uniaxial strains, demonstrating a non-linear behavior. To 

understand this unique behavior which essentially determines the band gap transition, we 

further explored the detailed wavefunction and electron density of the state CB at  with 

different values of strain. We found that CB at  does not correspond to the same state 

under different strains. It is a result of a competition between two conduction band states 

(A and B). To illustrate this, we take the wire with a diameter of 14.3Å as an example 

(note that the following general conclusions are also valid for the larger wire with a 

diameter of 22.2 Å). Figure IV.3 (c) displays the electron density contour plots of these 

two competitive states A and B and their energy shifts with strain. Both energy shifts of 

states A and B show a linear behavior with strain, in which the energy of state A 

increases with tensile strain while state B demonstrates an opposite trend. It’s clear that, 

without strain and under negative strain, the energy of state A is lower than that of state 

B, thus state A represents the conduction band at . However, with a tensile strain, state 

A has a higher energy than B; therefore state B is the conduction band.  

To further understand the two distinct linear trends of state A and B in Figure IV.4 

(c), their wavefunctions were projected onto s, p, and d orbitals and it was found that both 

states are dominated by the s-orbital (>90%). However, the bonds along the z-direction 

show distinct bonding and anti-bonding characteristics for state A and B, respectively 
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(see the electron contour plots). For state A, compressive uniaxial strain along the z-

direction makes these bonding lengths shorter and makes the electron cloud more 

effectively shared by nuclei, thus decreasing the electron-nuclei Coulomb potential 

energy.
95

 In contrast, tensile uniaxial strain moves electron cloud farther away from the 

nuclei and increases the Coulomb potential energy. This explains the linear relation of the 

energy of state A with strain in Figure IV.3 (c). For state B, the anti-bonding 

characteristics makes the Coulomb energy between the electron and the nuclei less 

sensitive to uniaxial strain.
95

 However, the anti-bonding characteristics suggests that the 

nodal surfaces of the positive and negative values of the wavefunction are perpendicular 

to the z-direction and a compressive uniaxial strain reduces the distance between the 

nodal surfaces, therefore kinetic energy associated with the electron transportation 

between atoms increases.
138-140

 In contrast, a tensile strain increases the nodal surfaces 

thus reducing the associated kinetic energy.  

In summary, thin wurtzite GaAs nanowires along the [0001] direction with a diameter 

up to 30 Å were studied using DFT calculations. It was found that (1) the band gap of the 

GaAs nanowire increases when the size of the nanowire decreases due to the quantum 

confinement; (2) the band gap of the WZ GaAs nanowires experiences a transition from 

direct to indirect when the diameter of the nanowire is smaller than 28 Å; (3) uniaxial 

strain can significantly tune the band structure of the nanowires; (4) the indirect band gap 

of the ultrathin nanowire can be tuned to a direct band gap with an appropriate 

tensile/compressive uniaxial strain; (5) thinner nanowires require a larger critical strain to 

trigger the indirect-to-direct band gap transition.  
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This work was a collaboration between Xihong Peng and Andrew Copple. The author 

of this dissertation was responsible for the majority of the simulation work present in this 

section B of chapter IV. After the success with the first study on III-V nanowires, 

additional work expanded into zinc-blende nanowires and applied strain in directions that 

were not uniaxial. 

  

B. Exploring the Direct-Indirect Band Gap Transition  

Tailoring electronic properties of semiconductor nanostructures has been critical for 

nanoscale applications.
1, 2, 91, 127-130, 141, 142

 Among various tailoring methods, size and 

surface passivation/functionalization are most commonly adopted. Recently, mechanical 

strain
10, 11, 82, 100

 was also found to have great potential to tune electronic properties of 

nanoscale semiconductors and is receiving an increased attention. Adventitious strain is 

almost unavoidable experimentally, but a more interesting case comes from intentionally 

introduced and controlled strains. One of the most prominent examples is the greatly 

enhanced mobility in the strained Si nanochannel.
143, 144

  

Recently, it was demonstrated that band gaps of semiconductor nanostructures can be 

modulated effectively under moderate strain.
10, 11, 84, 91, 100, 138, 145, 146

 The approaches 

introducing strain include lattice mismatch, functional wrapping,
78, 79

 material doping,
80, 

81
 and direct mechanical application.

82
 It was also found that nanostructures maintain 

integrity under a much higher strain than their bulk counterpart,
83, 84

 which dramatically 

expands the strength of applicable strain to nanostructures.   

One dimensional (1D) nanostructures, such as nanowires, of group III-V 

semiconductors have drawn extensive research interests in recent years. They are 
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expected to play important roles as functional components in future nanoscale 

transistors,
127

 optical devices,
1, 128

 photovoltaic cells,
129

 biosensors,
130

 etc. In particular, 

GaAs has been considered as a promising channel material for high speed NMOS beyond 

Si based technology.  

GaAs has two different crystal structures – zinc blende (ZB) and wurtzite (WZ). In 

bulk, ZB phase is energetically more favorable than WZ phase. In nanoscale, however, 

WZ phase was observed more often experimentally. Theoretical and experimental work 

has shown that at small size both WZ and ZB structures can be formed.
9, 124, 131-134, 147

  

While bulk GaAs (both ZB and WZ) has a direct band gap, a GaAs nanowire may 

demonstrate an indirect gap if its diameter is sufficiently small.
92, 135, 136

 This band gap 

transition could fundamentally alter the electronic properties of GaAs nanowires, and 

thereby affects the function of the material. Recently, Copple and Peng
1
 found that by 

applying uniaxial strain, WZ GaAs nanowires experience an interesting direct-indirect 

band gap transition. Strain is demonstrated as an alternative approach for band 

engineering to fit a particular application purpose. 

To demonstrate a full potential of strain engineering, in this work, we have extended 

our study to both WZ and ZB nanowires and explore a variety of strain scenarios.  We 

found that whether a strain can trigger the direct-indirect band gap transition in GaAs 

nanowires depends strongly on the type of applied strain. In addition, the origination of 

the direct-indirect band gap transition was discussed through a detailed examination of 

the near-gap band states. Depending on the symmetry and bonding/antibonding nature of 

specific electronic orbitals, the associated energy can respond very differently to an 

applied strain, essentially resulting in the observed direct-indirect band gap transition. 
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The first principles density functional theory (DFT)
13

 calculations were carried out 

using Vienna Ab-initio Simulation Package (VASP).
50, 51

 The DFT local density 

approximation and the projector-augmented wave potentials
102, 103

 were used along with 

plane wave basis sets. The kinetic energy cutoff for the plane wave basis set was chosen 

to be 300.0 eV. The energy convergence criteria for electronic and ionic iterations were 

set to be 10
-4

 eV and 0.03 eV/Å, respectively. The Ga 3d, 4s, 4p, As 4s, 4p and H 1s 

electrons were treated as valence electrons. The reciprocal space of a nanowire was 

sampled at 1  1  6 using Monkhorst-Pack meshes. In band structure calculations, a total 

of 21 K-points were included along the K vector path from Γ (0, 0, 0) to X (0, 0, 0.5). 

 
Figure IV.5 Images of the studied WZ and ZB GaAs nanowires. The diameter and composition of each wire in a unit 

cell are given on top. Dashed rectangles in the side views indicate the unit cell. The red, blue, and white dots represent 

Ga, As, and H atoms, respectively. 

The 1D WZ GaAs nanowire was generated along the [0001] direction (i.e. the z-axis) 

from the bulk WZ GaAs. The diameter of the WZ nanowire is 22.2 Å, constituted by 54 

Ga and 54 As atoms (see Figure IV.5) in the unit cell. The ZB GaAs nanowire were 

obtained along the [111] direction from the bulk ZB phase GaAs. The diameter of the ZB 

nanowire is 17.0 Å, formed by 37 Ga and 37 As atoms in the unit cell. The dangling 

bonds on the surface of the nanowires were saturated by hydrogen atoms to maintain the 

tetrahedral network of Ga/As atoms.  

Ga As         H

(a) Wurtzite nanowire
D = 22.2 Å

(Ga54As54H36)

(cross-section view)

x

y

z

y

(side view)

x

y

(cross-section view)
z

y

(side view)

(b) Zinc blende nanowire
D = 17.0 Å

(Ga37As37H42)
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The initial axial lattice constant in the WZ and ZB nanowires were set to be 6.51 Å 

and 9.72 Å, respectively, which were taken from the relaxed lattice constant of the bulk 

WZ and ZB GaAs, respectively. In addition to the axial lattice constant, the lateral length 

of the simulation cell was chosen so that the distance between the wire and its replica 

(due to periodic boundary conditions) is more than 14 Å to minimize the interactions 

between the nanowire and its replica. The axial lattice constant in the GaAs wires was 

optimized through the technique of total energy minimization. The optimized lattice 

constants in the WZ and ZB nanowires are 6.51 Å and 9.67 Å, respectively.  

Once the optimized geometry of a nanowire was obtained, a series of different types 

of strain were applied to the nanowire. The studied strain includes uniaxial strain, radial 

strain, strain along a specific crystalline direction, and shear stain, as shown in Figure 

IV.6.  
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Figure IV.6 Schematics of the studied strains (a) uniaxial strain along the axial direction (i.e. the z-axis), (b) radial 

strain in the cross section, (c) strain along the zigzag direction (i.e. the x-axis), (d) strain along the armchair direction 

(i.e. the y-axis), and shear strain in (e) the zigzag and (f) the armchair directions. 

The uniaxial strain was applied by rescaling the axial lattice constant of the wire in 

the z-direction. For example, a +2% tensile strain was applied by rescaling the axial 

lattice constant to 102% of its optimized value; while a -2% compressive strain was to 

scale the lattice constant to 98% of its optimized value. Under each given uniaxial strain, 

the coordinates of the atoms in the nanowires were fully relaxed via the technique of total 

energy minimization.  

In the case of radial strain, strain was isotropically applied to the cross section (i.e. 

xy-plane) of the wires. For each applied radial strain, the axial lattice constant and z-

coordinates of the wire were fully relaxed to reach the total energy minimum.  

We also applied strain along a particular crystalline direction in the cross section of 

the nanowires. Two particular directions were chosen, namely the zigzag (i.e. x-axis) and 

the armchair (i.e. y-axis), shown in Figure IV.6. In these two cases, strain was only 

(b) Radial strain

x

y

(c) Strain in the zigzag direction

x

y

(d) Strain in the armchair direction

z

y

(a) Uniaxial strain

x

y

x

y

(e) Shear strain in zigzag

x

y

(f) Shear strain in armchair
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applied to the x (or y) coordinates of the atoms, while all other coordinates including the 

axial lattice constant were fully relaxed.  

The definition of shear strain at nanoscale is not unique. In this work, simple shear 

strain is mathematically defined as  

 
tan 𝜃 =

𝑑

𝑙
 (IV.1) 

where l is the original length of a given line, d is the amount of deformation 

perpendicular to that given line, and θ is the angle the sheared line makes with its original 

orientation. For example, in our study of shear strain in the zigzag-direction (see Figure 

IV.6 (e)), l is taken as the y coordinate of the atoms and d is the displacement of the 

atoms along the x-direction. Similarly, we also applied shear strain to the y-direction. For 

each strain, the coordinates which held the strain were kept fixed while all other 

coordinates including the lattice constant were optimized through total energy 

minimization.  

Note that the strain extremes considered in this work are beyond the elastic limit in 

bulk GaAs. However the nucleation of defects such as dislocations may become 

energetically unfavorable, especially in the small size nanowires. As shown in a recent 

experimental work done by Wang et al.
148

, the GaAs nanowires can hold a significantly 

higher strain than 1%. To obtain a practical feeling for applying strain, we estimated the 

stress which might be required. For example, to apply +2% tensile uniaxial strain to the 

WZ GaAs nanowire, a calculated stress of 2.5 GPa may be required. 

The band gap of a semiconductor is defined as the energy difference between the 

conduction band minimum (CBM) and the valence band maximum (VBM). If CBM and 

VBM are vertically aligned at the same K-point in its band structure, the band gap is 
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direct, otherwise it is called indirect. It is known that bulk WZ and ZB GaAs have a 

direct band gap
124, 137

 with both VBM and CBM located at .  

 
Figure IV.7 Band structures of the geometry-optimized WZ and ZB GaAs nanowires. Both demonstrate an indirect 

band gap. Energies are referenced at the vacuum level. 

However, our calculated band structures of the 1D WZ and ZB GaAs nanowires 

demonstrate an indirect band gap, as shown in Figure IV.7. VBM of both nanowires are 

located at , however CBM  is not at . For the WZ nanowire, CBM is located at the 

conduction band valley near X, while for the ZB nanowire, CBM is located at X. 

Previous work reported a similar indirect band gap for small sized GaAs nanowires. 

Copple and Peng
92

 reported that, for the WZ GaAs nanowires, the critical nanowire size 

for the direct-indirect band gap transition is ~ 28 Å, estimated from DFT calculations. 

WZ nanowires with a diameter smaller than this critical size demonstrate an indirect band 

gap while wires larger than the critical size show a direct band gap.
91

 In the case of ZB 

GaAs nanowires, the critical size for the band gap transition was ~ 40 Å, reported by 

Persson and Xu using tight-binding calculations.
135

 The diameters of our studied WZ and 

ZB GaAs nanowires in this work are 22.2 Å and 17.0 Å, respectively, which are both 

11
-7

-6

-5

-4

-3

-2

X 

E
n
e
rg

y
 (

e
V

)
 

E
g
 

(a)  WZ GaAs nanowire  

 

21
-7

-6

-5

-4

-3

-2

E
n

er
g

y
 (

eV
)

(b)  ZB GaAs nanowire  

 

E
g
 

X 



80 
 

smaller than their threshold size. The indirect band gap predicted in our work is 

consistent with literature.  

The calculated band gap for the WZ and ZB GaAs nanowires are 1.603 eV and 2.008 

eV, respectively. It is well known that DFT underestimates band gap of semiconductors, 

and advanced GW methods
149-151

 can provide improved predictions in the band gap. 

However, for the size of the nanowires investigated in the present work, GW is not 

applicable due to its extremely high demand on computing resources. The present work is 

mainly focused on the variation of electronic properties such as energy levels with strain. 

Previous studies
95

 on Si nanoclusters showed that the energy gap calculated by DFT 

obeys a similar strain-dependency as the optical gap predicted by advanced configuration 

interaction (CI) method and the quasi-particle gap (defined as the difference of ionization 

potential and electron affinity). In addition, DFT gap predicts a similar size-dependency 

as the optical gap obtained using GW and quantum Monte Carlo methods.
152, 153

 

Therefore, we expect that our reported general trends with strain variation for the 

electronic band structure and near-gap band states in the GaAs nanowires are correct. In 

the following we will present the effects of various strains on the band structure and the 

near-gap band states in the WZ and ZB GaAs nanowires.  

(a) Uniaxial strain. The effect of the uniaxial strain on the band structure of the WZ 

and ZB GaAs nanowire is plotted in Figure IV.8. As mentioned before, without strain the 

WZ nanowire demonstrates an indirect band gap with CBM located at the conduction 

band valley near X (labeled as ECB-v in Figure IV.8 (c)). With uniaxial compression of -

2% or -4%, CBM is shifted to , demonstrating a direct band gap as shown in Figure 

IV.8 (a) and (b). When the nanowire is under +4% uniaxial tensile strain, it also shows a 
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direct band gap at . In the case of the ZB nanowire, CBM is located at X for the relaxed 

wire. Tensile uniaxial strain as large as +4.5% can convert the gap to be direct.  

From Figure IV.8, it was also observed that the value of the band gap can be tuned by 

the strain. For example, the gap shrinks under both positive and negative strains in the 

WZ nanowire. The DFT predicted gap for the relaxed WZ nanowire is 1.603 eV. And the 

gap shrinks to 1.133 eV and 1.308 eV for -4% and +4% strain, respectively.  

 
Figure IV.8 The effect of the uniaxial strain on the band structure of (a)-(e) the WZ GaAs nanowire and (f)-(j) the ZB 

nanowire. Positive and negative values of strain refer to the tensile and compressive uniaxial strains, respectively. 

Energies are referenced at the vacuum level. A direct band gap was found at +4%, -2%, and -4% in the WZ nanowire, 

and at +4.5% for the ZB nanowire. For the relaxed WZ and ZB wires, labels 𝑬𝑪𝑩−𝚪, 𝑬𝑪𝑩−𝑽, and 𝑬𝑪𝑩−𝑿 represent the 

energies of the conduction bands at Γ, at the conduction band valley, and at X, respectively. 

As can be seen from Figure IV.8, the direct/indirect band gap in the WZ nanowire is 

the result of the energy competition of the two conduction band (CB) states ECB-  and 

ECB-v. The nanowire yields a direct band gap if ECB-  is lower than ECB-v, otherwise it has 
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an indirect band gap. For the ZB nanowire, the direct/indirect band gap is determined by 

the energy competition of ECB-  and ECB-X.  

In order to determine the critical strain in which the direct-indirect band gap transition 

occurs, we plotted the energies of the two competing CB states ECB-  and ECB-v as a 

function of strain. As an example, Figure IV.9 (a) shows the plots for the WZ nanowire. 

The energy of the VBM at  EVBM is also plotted in Figure IV.9 (a) for comparison. 

Examination of the curves of two conduction bands ECB- and ECB-v in Figure IV.9 (a) 

reveals two crossovers. One is estimated to be ~ +2.8% and the other -0.8%, indicated by 

the dashed vertical lines, which are the critical strain for the direct-indirect band gap 

transition in the WZ nanowire. The WZ GaAs nanowire transitions to a direct band gap 

with a positive strain higher than +2.8% or a negative strain lower than -0.8%. 

 
Figure IV.9 (a) The calculated energies for the VBM (𝑬𝑽𝑩𝑴), the conduction bands at Γ (𝑬𝑪𝑩−𝚪), and the valley 

(𝑬𝑪𝑩−𝑽) as a function of the uniaxial strain in the WZ GaAs nanowire. The direct-indirect band gap transition occurs at 

about +2.8% and -0.8%, indicated by the dashed vertical lines. The VBM is the result of competition between the two 

states A and B, and the conduction band at Γ is the result of competition between states C and D. (b) The energy 

variation with strain for states A-D is plotted. All energies are referenced at the vacuum level. 

It was also found that, in Figure IV.9 (a), the energy variation with strain displays a 

different trend for a different band state. ECB-v shows a linear behavior – the energy 

decreases with a positive strain while increasing with a negative strain. However, the 
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other two states ECB- and EVBM demonstrate a non-linear relationship with strain. The 

energy of the VBM increases with a negative strain while it remains flat with a positive 

strain. ECB- drops at both negative and positive strains.  

In order to understand the non-linear behavior, the electronic states EVBM, ECB- and 

ECB-v at each strain were examined. It was found that the CB at the valley (ECB-v) 

corresponds to the same electronic state at different strain, which yields the linear curve 

of ECB-v. However, the VBM (or the CB at ) does not correspond to the same electronic 

state at different strain. For example, two states – A and B – compete for the VBM. To 

better understand this, the energies of states A and B as a function of strain is plotted in 

Figure IV.9 (b). These two curves experience a crossover. With a negative strain, the 

energy of state A is higher than that of B, thus state A represents the VBM. When 

applying a positive strain, the energy of state B is higher than that of A, therefore state B 

represents the VBM. The curve of EVBM in Figure IV.9 (a) is the result of the energy 

competition between states A and B.   

Similarly, the curve of ECB- in Figure IV.9 (a) is the result of the energy competition 

between states C and D. The energies of states C and D as a function of strain were also 

plotted in Figure IV.9 (b), and they also demonstrate a crossover. Under a negative strain, 

state C has a lower energy compared to state D, thus state C represents the CB at . 

However, with a tensile strain, state C has a higher energy than state D, therefore state D 

is the CB at .  

It was clear that the energies of the states A-D and ECB-v are nearly linearly shifted 

with the uniaxial strain in Figure IV.9. For states A, D and ECB-v, their energies decrease 

with a positive tensile strain while increasing with a negative compression. In contrast, 
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state C shows an opposite trend – energy increases with a positive strain and decreases 

with a negative compression. State B is relatively independent on the uniaxial strain and 

its energy remains flat with strain. This linear shift of energy levels with strain is not 

unique to the studied GaAs nanowires. It is also observed in other semiconducting 

nanostructures.
10, 11, 84, 94, 95, 138

  

In order to understand the linear trends for states A-D and ECB-v in Figure IV.9, their 

electronic states, such as electron charge distribution and wavefunction, were examined. 

The wavefunction character was examined by projecting the wavefunction onto s-, p-, 

and d-orbitals at each ionic site. It was found that state A is dominated by pz-orbitals at 

the sites of Ga and As; state B is dominated by partial px- and partial py-orbitals, and 

states C, D and ECB-v are all dominated by s-orbitals. Figure IV.10 presents their electron 

density contour plots and schematics of the wavefunction character.  

 
Figure IV.10 (a)-(e) The electron-density contour plots and (f)-(j) schematics of the wavefunction character (i.e. the 

projected major orbitals and signs of the phase factor) of near-gap states in the WZ GaAs. State A is dominated by 

bonding pz orbitals at the sites of Ga and As. State B is dominated by partial px and partial py orbitals. States C, D, and 

the CB at the valley are all dominated by s orbitals. The red, blue, and white dots represent Ga, As, and H atoms, 

respectively. To emphasize the wavefunction character on the sites of Ga and As, H atoms were not shown in (f)-(j). 

The atoms inside the rectangle in (j) are those inside the rectangles in (e). 

Although states C and D are dominated by s-orbitals, the phase factor of their 

wavefunctions shows a distinct difference. In state C, the four atomic layers of atoms 

(As, Ga, As, Ga) which are perpendicular to the z-axis demonstrate a phase order of +, -, 
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-, +, as shown in Figure IV.10 (h). However, in state D, that phase order is +, -, +, -. 

Therefore, the Ga-As bonds along the z-direction (formed by the middle two atomic 

layers) shows a bonding character in state C, while displaying an antibonding character in 

state D (also see their electron density contour plots).  

As speculated in literature,
95, 138-140

 such different energy trends with respect to strain 

may be due to the different strain response from involved energy components. Here 

through the exchange energy model (Heitler–London),
114

 we further demonstrated that 

this different energy response to strain can be originated from the bonding and 

antibonding nature of orbitals. Although this model was originally developed for the 

hydrogen molecule, it may still give us useful physical insight as long as the exchange 

integral is mainly considered from the nearest neighbored atoms.  

In this model of hydrogen molecule, the energies of its bonding and antibonding 

states are given by the equations I.14 and I.15 from the introduction to the dissertation. 

Therefore, the exchange integral term H may be playing a dominant role in determining 

the different energy variation behaviors with strain in the bonding and antibonding 

situation. From equation I.16, the exchange term H is contributed from either non-

classical electron-electron (i.e. 
1

𝑟12
, positive) or electron-ion interaction (i.e. −

1

𝑟2𝑎
−

1

𝑟1𝑏
, 

negative). For s-orbitals, the contribution of the electron-ion interaction is dominated 

over the electron-electron interaction in the exchange term H. As the atomic distance 

increases (corresponds to a positive strain), the energy contributed from the electron-ion 

interaction is increased more rapidly compared to the energy reduction of the electron-

electron contribution (see equation I.16), which results in an increased value for H. And 

an increased H value causes the bonding energy bondingE  to increase and the antibonding 

http://en.wikipedia.org/wiki/Walter_Heitler
http://en.wikipedia.org/wiki/Fritz_London
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energy gantibondinE to decrease based on equations I.14 and I.15. This could be the reason 

for the different trends for states C (bonding s-orbital) and D (antibonding s-orbital) in 

Figure IV.9 (b).  

However, the situation becomes different when the orbital is not an s-orbital. For 

example, bonding p-orbitals demonstrate a different energy trend with strain, compared 

to bonding s-orbitals. As mentioned before, state A is dominated by pz-orbitals. The 

phase order of the pz-orbitals in the middle two atomic layers which are perpendicular to 

the z-direction are + and -, respectively, as shown in Figure IV.10 (f). This phase order 

yields a strong bonding character of the pz-orbitals in the z-direction (also see their 

electron density contour plots). A positive tensile strain causes the energy of the bonding 

pz-orbital of state A to decrease, opposite to that of the bonding s-orbital of state C. This 

might be due to the spindle shape of the p-orbitals in which the electron density is quite 

high in the region between atoms. In this case, the contribution of the non-classical 

electron-electron interaction in the exchange integral in equation I.16 is dominating 

compared to the electron-ion interaction. As the atomic distance increases (corresponds to 

a positive strain), the energy contribution of the electron-electron interaction is decreased 

more significantly compared to the increase of the electron-ion contribution, which gives 

a reduced value for H. And the decreased H value results in an energy reduction of the 

bonding state from equation I.14. This explains the energy trends for state A in Figure IV. 

9 (b).  

In the case of state B, the wavefunction is dominated by partial px- and py-orbitals. 

The phase order of the py-orbitals in the middle two atomic layers are + and -, 

respectively, as shown in Figure IV.10 (g), which yields an antibonding character in the 
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z-direction (also see the electron density contour plots). However, the spindle shape of 

px- and py-orbitals creates a concentration of electrons in the xy-plane. The wavefunction 

overlapping in the z-direction is expected to be small and gives a non-bonding nature in 

the z-direction. Applying the uniaxial strain in the z-direction does not affect the 

electronic orbital of state B much, and its energy is insensitive to the uniaxial strain, 

which explains the flat curve of state B in Figure IV.9 (b).   

For the conduction band at the valley (ECB-v), it is clear that some Ga-As bonds along 

the z-direction show a bonding character while others display an antibonding character 

from its phase factor in Figure IV.10 (j). However, the electron contour plot in Figure 

IV.10 (e) reveals that the electron cloud is mostly concentrated on the center atoms. 

Therefore its bonding/antibonding character should be determined by the center atoms. 

From the phase factor of the center atoms inside the dashed rectangle in Figure IV.10 (j), 

it shows an antibonding character. Thus, the energy variation trends with strain for this 

state should follow the same trends as state D which is also dominated by antibonding s-

orbitals. This conclusion is consistent with our data for ECB-v in Figure IV.9 (a).  

Similar analysis was also applied to the ZB nanowire, and the critical uniaxial strain 

of the band gap transition was found to be +3%.The energy variation trends with strain 

for the near-gap states in the ZB nanowire follow the above general conclusions for the 

WZ nanowire.   

(b) Radial strain. Radial strain was applied to the cross section of the WZ and ZB 

GaAs nanowires. At each given radial strain, the z-coordinates of the atoms and the axial 

lattice constant of the nanowires are fully relaxed to reach the total energy minimum. The 

effect of the radial strain on the band structure of the WZ and ZB GaAs nanowire is 
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presented in Figure IV.11. When looking at the WZ nanowire, the direct band gap only 

occurs for the positive radial strain at +2% and +4%. Within the strain range studied in 

this work, no band gap transition occurs for the negative strain. In contrast, for the ZB 

wire, only a negative strain at -4% can have a direct band gap.   

 
Figure IV.11 The effect of the radial strain on the band structure of (a)-(e) the WZ GaAs nanowire and (f)-(j) the ZB 

nanowire. A direct band gap was found at +2% and +4% in the WZ nanowire and at -4% for the ZB nanowire. 

To estimate the critical radial strain needed to trigger the band gap transition, the 

energies of three near-gap states, ECB- , ECB- v and EVBM, are plotted as a function of the 

radial strain. As an example, Figure IV.12 (a) shows the curves for the WZ GaAs 
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nanowire. From the crossover of the two conduction bands, the critical strain for the 

direct-indirect gap transition was estimated to be ~+0.4%.  

 
Figure IV.12 (a) The calculated 𝑬𝑽𝑩𝑴, 𝑬𝑪𝑩−𝚪, and 𝑬𝑪𝑩−𝑽 as a function of the radial strain in the WZ GaAs nanowire. 

The direct-indirect band gap transition occurs at about +0.4% radial expansion. (b) The energies of two competing 

states A and B for the VBM as a function of strain. 

Further examination of three near-gap states at different values of radial strain, it was 

found that the VBM is the result of energy competition of two states A and B, while each 

conduction band (ECB-  or ECB- v) corresponds to the same electronic state at different 

values of radial strain. State A/B is the same state discussed in the previous section. And 

ECB-  is the previous state C. The energy variation of states A and B as a function of 

radial strain is presented in Figure IV.12 (b). The energy of state A is more sensitive to 

the radial strain, compared to that of B. The energy shifts for states A and B in the range 

of ±4% radial strain are 0.719 eV and 0.155 eV, respectively. 

Similar to the case of the uniaxial strain, the energy of state B is insensitive to the 

radial strain due to its unique electronic structure which is dominated by partial px- and 

py-orbitals. It is more interesting to note that the energy variation of state A in Figure 
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IV.12 (b) is opposite that of the uniaxial strain in Figure IV.9 (b). This could result from 

the Poisson’s effect. When a positive radial strain (i.e. expansion) is applied to the 

nanowire, the axial lattice constant of the nanowire shrinks, which is correlated to the 

case of a negative uniaxial compression. For example, when +2% (+4%) radial expansion 

is applied to the WZ nanowire, the resulting axial lattice constant shrinks to 99.1% 

(98.2%) of its original value. This corresponds to the case of -0.9% (-1.8%) uniaxial 

strain. When -2% (-4%) radial compression is applied, the resulting axial lattice constant 

expands to 101.2% (102.3%) of its original value, which is correlated to the situation of 

+1.2% (+2.3%) uniaxial strain. This fact yields the opposite energy trends for state A 

with the radial and uniaxial strains. This situation was also applied to the two conduction 

bands (ECB-  or ECB- v), in which their general energy variation trends in Figure IV.12 (a) 

are opposite to their counterparts in Figure IV.9, respectively (note ECB-  in Figure IV.12 

(a) corresponds to state C). Similar analysis was applied to the ZB nanowire and the 

critical radial strain for the direct-indirect band gap transition was found to be -1.4%.   

(c) Strain along a specific crystal direction in the cross system. We applied a strain 

along a particular crystal direction in the cross section of the GaAs nanowires. Two 

specific crystal directions are chosen in this study, namely the zigzag and armchair 

directions, which correspond to the x- and y-axis, respectively. It was found that applying 

strain in different directions results in different effects on the electronic band structure. 

For example, applying strain in the armchair direction is easier to trigger the direct-

indirect band gap transition than that of the zigzag direction, in terms of the strain energy.  

The effect of the strain in the zigzag direction on the band structure of the WZ and 

ZB GaAs nanowire is plotted in Figure IV.13. Similar to the radial strain, a compressive 
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strain in the zigzag direction doesn’t trigger the gap transition in the WZ wire. A 

sufficiently big expansion, such as +4%, can convert the indirect gap to direct. For the ZB 

wire, only a negative strain (-4%) can trigger the gap transition in the range of strain that 

we examined.   

 
Figure IV.13 The effect of the strain along the zigzag direction on the band structure of (a)-(e) the WZ GaAs nanowire 

and (f)-(j) the ZB GaAs nanowire. A direct band gap was found at +4% strain in the WZ wire and at -4% in the ZB 

wire. 

The critical strain in the zigzag direction needed to trigger the direct-indirect gap 

transition is estimated through the energy crossover of the two competing conduction 

bands. As an example, Figure IV.14 (a) displays their energy variation with strain for the 

WZ nanowire. The energy crossover of the two conduction bands occurs at +3%. Unlike 
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the cases of the previous uniaxial and radial strains, the zigzag strain shows a less 

profound effect on tuning the energies of conduction bands. For example, in the range of 

strain studied in this work, the energy shifts for the conduction band at  are 0.412 eV, 

0.579 eV and 0.216 eV for the uniaxial, radial and zigzag strains, respectively. And the 

energy shifts of the conduction band at the valley are 0.515 eV, 0.368 eV and 0.224 eV, 

for the uniaxial, radial and zigzag strains, respectively.  

 
Figure IV.14 (a) The calculated 𝑬𝑽𝑩𝑴, 𝑬𝑪𝑩−𝚪, and 𝑬𝑪𝑩−𝑽 as a function of strain along the zigzag direction in the WZ 

GaAs nanowire. The direct-indirect band gap transition occurs at about +3% expansion in the zigzag direction. (b) The 

electron-density contour plot for state E. (d) The sign of the wavefunction phase factor in state E, which is dominated 

by px orbitals. The atoms inside the rectangle in (d) are those inside the rectangle in (c).  

The VBM in Figure IV.14 (a) is the result of competition of two states A and E. State 

A is still the same state shown in Figure IV.10. The strain effect on the energies of A and 

E is plotted in Figure IV.14 (b). It shows state E experiences an energy increase with a 

negative zigzag strain. The electron density contour plot of state E is presented in Figure 

IV.14 (c). Examination of the wavefunction of state E reveals it is dominated by px-

orbitals. The sign of the wavefunction phase factor shown in Figure IV.14 (d) suggests 

that state E has a bonding px character in the x-direction. According to the above 

discussion on the bonding pz-orbital of state A, a negative compressive strain in the z-

direction gives an increased energy for state A. Similarly here, a negative stain in the x-
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direction results in an energy increase for state E, which is consistent with our data in 

Figure IV.14 (b).  

The energy trend of state A with the zigzag strain is very similar to the case of the 

radial strain, which is not surprising because these two types of strains both are applied in 

the cross section of the nanowire. A positive strain applied radially or in the zigzag 

direction results in a shrink of the axial lattice constant of the nanowire, due to the 

Poisson’s effect.  For example, applying -4%, -2%, +2%, or +4% strain in the zigzag 

direction yields the axial lattice constant of the WZ wire to be 100.72%, 100.42%, 

99.89%, or 99.45% of its original value, respectively. In addition, the energy trends for 

the two conduction bands with the zigzag strain are also similar to their counterparts with 

the radial strain.  

For the strain applied in the armchair direction, it was found that it requires a lower 

value of critical strain to trigger the direct-indirect band gap transition in these GaAs 

nanowires. From the energy crossover of the two competing conduction bands, the 

critical strain for the direct-indirect gap transition is estimated to be +1% and -2.2% for 

the WZ and ZB nanowires, respectively (see Figure IV.15 (a)). Similar to the case of the 

zigzag strain, the energy shifts with strain for the three near-gap states in Figure IV.15 (a) 

are relatively small, compared to the previous uniaxial and radial strains. For example, 

the energy shifts of the conduction band at the valley are 0.515 eV, 0.368 eV, and 0.180 

eV, for the uniaxial, radial and armchair strains, respectively.  
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Figure IV.15 (a) The calculated 𝑬𝑽𝑩𝑴, 𝑬𝑪𝑩−𝚪, and 𝑬𝑪𝑩−𝑽 as a function of strain along the armchair direction in the 

WZ GaAs nanowire. The direct-indirect band gap transition occurs at about +1% expansion. (b) The energies of two 

competing states A and F for the VBM as a function of strain. (c) The electron-density contour plot for state F. (d) The 

sign of the wavefunction phase factor for state F, which is dominated by py orbitals. 

In Figure IV.15 (a), the VBM was found to be contributed by two competing states, 

namely states A and F. Their energies as a function of the armchair strain are plotted in 

Figure IV.15 (b). The electron charge distribution and wavefunction character of state F 

is presented in Figure IV.15 (c) and IV.15 (d). The projection of the wavefunction reveals 

that state F is dominated by py-orbitals. The sign of the phase factor suggests that state F 

shows strong bonding in the y-direction. This unique wavefunction character yields its 

energy trends with strain in Figure IV.15 (b) (see the above explanation for states E and 

A). State A is still the same state presented in Figure IV.10, therefore the energy variation 

trend of state A in Figure IV.15 (b) is similar to that of the zigzag strain in Figure IV.14 

(b).  

(d) Shear strain along the zigzag or armchair direction. Shear strains along the 

zigzag and armchair directions were applied to the WZ GaAs nanowire. It was found that 

no direct-indirect band gap transition occurs with the strain range studied (up to +4%) in 

this work. The effect of shear strain in the zigzag direction on the band structure of the 

WZ GaAs nanowire is presented in Figure IV.16 (a)-(c). No negative shear strain is 
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studied because a negative shear strain causes the same effect as the positive shear strain 

due to the symmetry of the nanowire and the definition of shear strain in equation IV.1.  

 
Figure IV.16 (a)-(c) The effect of shear strain along the zigzag direction on the band structure of the WZ GaAs 

nanowire. No direct-indirect band gap transition occurs within the strain range studied in this work. (d) The 

calculated 𝑬𝑽𝑩𝑴, 𝑬𝑪𝑩−𝚪, and 𝑬𝑪𝑩−𝑽 as a function of shear strain along the zigzag direction. (e) The strain energies to 

the WZ GaAs nanowire as a function of the strain value for all types of strains. 

It is clear that the shear strain plays a negligible effect on tuning the electronic band 

structure of the WZ GaAs nanowire. This conclusion is further demonstrated in Figure 

IV.16 (d), in which the energies are plotted as a function of shear strain. Within the strain 

range, the energy shifts are 0.120 eV, 0.123 eV and 0.112 eV for EVBM, ECB-  and ECB- v, 

respectively. These energy shifts are much smaller compared to those of all other strain 

types discussed above. There is no energy crossover for the two curves of ECB-  and ECB- 

v in Figure IV.16 (d), suggesting no direct-indirect band gap transition. Each state of 

EVBM, ECB-  and ECB- v corresponds to the same electronic orbitals at different values of 

shear strain.  

Similar behavior is also found in the case of the shear strain along the armchair 

direction. It was found that the shear strain in the armchair direction demonstrates an 

even smaller effect on turning the band structure. The energy shifts with strain for EVBM, 

ECB-  and ECB- v are 0.110 eV, 0.109 eV and 0.097 eV, respectively. 
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The negligible effect of the shear strains on the band structure might be resulting from 

the much smaller strain energy introduced by the shear strains to the GaAs nanowire. The 

strain energy is defined as the difference in the total energy between the strained and the 

relaxed nanowire. As an example, the strain energy as a function of the value of strain is 

presented in Figure IV.16 (e) for the WZ GaAs nanowire. Clearly, the shear strain energy 

is negligible compared to other strain types. The shear strain energy is less than 0.045 eV 

under +4% shear strain either along the zigzag or the armchair direction. The strain 

energy introduced by the radial strain is the largest given the same value of strain  

among all strain types studied in this work. This is because in the radial strain, two 

dimensions (both x and y) are strained. The strain energies of the rest of the three strains, 

namely the uniaxial strain and strain in the zigzag and armchair directions, are close 

given the same value of strain . This is due to the fact that in these three types of strains, 

only one dimension is under strain.  

Table IV.I The critical strain value and strain energy to trigger the direct-indirect band gap transition in the WZ and 

ZB GaAs nanowires. No band gap transition was found for the shear strains. 

 
In the previous sections, we reported the values of critical strains to trigger the direct-

indirect band gap transition. Based on the information in Figure IV.16 (e), one can 

GaAs phase Strain type critical strain  (%) critical strain energy (eV)

Uniaxial +2.8, -0.8 0.65, 0.08

Radial +0.4 0.05

WZ In zig-zag +3 0.64

In armchair +1 0.10

Shear in zig-zag N/A N/A

Shear in armchair N/A N/A

Uniaxial +3.0 0.41

ZB Radial -1.4 0.28

In zig-zag -3.2 0.42

In armchair -2.2 0.23
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calculate the critical strain energies for the gap transition. The critical strain value and 

strain energy are listed in Table IV.I. It requires the smallest strain energy as 0.05 eV 

through applying the radial strain to convert the indirect band gap of the WZ GaAs 

nanowire to a direct gap. Slightly higher strain energy is needed to realize the gap 

transition by applying either a uniaxial compression with 0.08 eV strain energy or an 

expansion along the armchair direction with 0.10 eV strain energy. It demands the 

highest strain energy as large as 0.64 eV to trigger the band gap transition through 

applying strain in the zigzag direction.  

For the ZB nanowire, it was found it requires less strain energy to convert the gap to 

direct by applying radial or strain in the armchair direction with the strain energy of 0.28 

eV and 0.23 eV, respectively, compared to that of the uniaxial and zigzag strains. 

In summary, the origination of the direct-indirect band gap transition in the strained 

1D WZ and ZB GaAs nanowires were explored using first principles DFT calculations. It 

was found that (1) the WZ and ZB GaAs nanowires with a diameter of ~20 Å have an 

indirect gap, opposite that of their bulk counterparts; (2) the band structure of the 

nanowires can be significantly tuned by applying an external strain; (3) the indirect band 

gap of the nanowires can be tuned into a direct gap with an appropriate strain; (4) 

different types of strain show a different order to trigger the direct-indirect band gap 

transition in terms of the strain energy. It requires the smallest strain energy to convert 

the indirect band gap of the WZ nanowire to be direct by applying a radial strain while it 

needs the largest strain energy through applying strain in the zigzag direction; (5) the 

origination of the band gap transition in each type of strain was detailed discussed by 

examining the energy response of their near-gap band states with respect to strain. The 
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wavefunction character of the near-gap states and their energy response trends with 

various strains were summarized in Table IV.II.  

Table IV.II. Wavefunction character for the near-gap states and schematics representing their energy variation trends 

with various strains. 

 

This work was a collaboration between Xihong Peng and Andrew Copple. The author 

of this dissertation was responsible for most of the simulations and all but the competitive 

state arguments within subsection (c). 

(e) Future Work. Future work within the field of III-V nanowires might include 

applying non-uniform uniaxial strain to the nanowires, as well as simulating larger 

State Dominating Charater Schematic  of energy  trend with strain

orbital Uniaxial Radial   in x   in y

A pz bonding in z-direction

B px/py nonbonding in z-direction

C s bonding in z-direction

D s antibonding in z-direction

CB at 

valley
s antibonding in z-direction

E px bonding in x-direction

F py bonding in y-direction

E



E



E



E



E



E



E



E



E



E



E



E



E



E



E



E



E
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nanowires and altering the edge passivation of the material with different elements or 

groups.  
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Chapter V. CORE/SHELL NANOWIRES 

A. Introduction 

The ability to manipulate certain electronic properties of semiconductor 

nanostructures has produced great development in semiconductor applications. Size, 

surface passivation, and external strain have all been heavily implemented on 

semiconductor nanowires in the past.
11, 91, 92, 100, 113

 However, recent work
154, 155

 has 

shown that core/shell GaAs-InAs structures are experimentally confirmed. In addition to 

this, a molecular dynamics study
156

 on a large number of core/shell wurtzite and zinc-

blende semiconductor nanowires suggested that a core/shell ratio of about 0.5 on 

GaAs/InAs wurtzite nanowires would create type II semiconductor behavior. In the 

interest of confirming this and studying additional properties from strain and quantum 

confinement, this study examined both GaAs core/InAs shell nanowires, and InAs 

core/GaAs shell wurtzite (WZ) nanowires.  

B. Methodology 

First principles density functional theory (DFT)
13 

calculations were carried out using 

Vienna Ab-initio Simulation Package (VASP).
50-51

 The DFT local density approximation 

(LDA) and the projector-augmented wave potentials
102, 103 

were used along with plane 

wave basis sets. The kinetic energy cutoff for the plane wave basis set was chosen to be 

300.0 eV. The energy convergence criteria for electronic and ionic iterations were set to 

be 10
-4

 eV and 0.03 eV/Å, respectively. The Ga 3d, 4s, 4p, In 4d, 5s, 5p, As 4s, 4p, and H 

1s electrons were treated as valence electrons. The reciprocal space of a nanowire was 
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sampled at 1×1×6 using Monkhorst-Pack meshes. In band structure calculations, a total 

of 21 K-points were included along the K-vector path from Γ(0, 0, 0) to 𝑋(0, 0, 0.5). 

The WZ core shell nanowires were generated along the [0001] direction from the 

bulk shell material (InAs bulk WZ or GaAs bulk WZ), as seen in Figure V.1. The 

diameter of the WZ shell is about 30Å in diameter, and the core inside is about 12Å. The 

shell material has 72 of each Ga or In atom, and 72 As atoms. The core material consists 

of 24 In or Ga atoms, with 24 As atoms. The dangling bonds on the sides of the nanowire 

are fully passivated by 48 Hydrogen atoms.  The Hydrogen atoms maintain to good 

approximation the tetrahedral bonding in the bulk wurtzite structures of InAs and GaAs.  

 
Figure V.1 Images of the studied WZ core/shell III-V nanowires. The diameter of each wire in a unit cell is shown on 

top. Solid rectangles in the side views indicate the unit cell, and the circle divides the core and shell of the wire in the 

cross-sectional view. The white, teal, tan, and purple dots represent H, As, In, and Ga, respectively. 

A vacuum space greater than 15Å was used in all simulations to reduce interactions 

between nanowires resulting from to the periodic boundary conditions used in VASP 

calculations. The axial lattice constant in both core/shell nanowires is optimized through 

total energy minimization. The optimized lattice constant of the GaAs core/InAs shell 

nanowire is 6.82Å, and the constant for the InAs-GaAs nanowire is 6.59Å. Most of the 

structural data is presented in Table V.I below. 
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Table V.I A list of the studied GaAs/InAs pure and core-shell nanowires. All structures have wurtzite crystal structure. 

NGa, NIn, NAs, and NH are the number of atoms of Ga, In, As, and H, respectively. 

 
After relaxing the system and studying the effects of intrinsic strain, external strain 

was applied to the nanowires along the uniaxial direction. In this study, positive strain 

indicates tensile (stretching) strain, while compressive strain is denoted by a negative 

strain value. When each new strain of the nanowire is generated (by displacing atoms in 

the axial direction accordingly, and expanding the periodic boundary condition in the 

axial direction), the atoms are allowed to relax again within the new boundary conditions.  

The strain presented in this work exceeds the bulk limits of GaAs and InAs. However, 

it has been shown in previous studies
148, 157, 158 

that nanowires can greatly exceed the 

strain capacity of their bulk equivalents.  

C. Results and discussion 

 
Figure V.2 Illustrated above are the classic type I and type II band structure alignments of heterostructure 

semiconductors. In type I, only one of the two materials directly influences the band gap, while in type II materials, 

both materials contribute directly to the band gap, and the band gap is typically smaller than both individual materials. 
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The band gap of a semiconductor is defined as the energy required to excite an 

electron from the valence band edge (VBE) to the conduction band edge (CBE). In a 

composite material, however, the edges of the band structure can be contributed from one 

or more materials within the semiconductor heterostructure. As seen in Figure V.2, a type 

I semiconductor only has one of the composite materials contribute both edges of the 

band structure, whereas in a type II semiconductor, two different materials within the 

composite structure contribute to the VBM and CBM. It is for this reason that type II 

semiconductors are sought out for solar cell applications, to give a greater amount of time 

before electrons and holes recombine by creating physical distance between the two parts 

of an excitation. In a type III semiconductor, the band gap is “broken” by the alignment 

of the composite material band gaps, which overlap in such a way to make the material 

more metallic than semiconductor in behavior. This is obviously not beneficial to 

semiconductor applications. This work intends to reveal the nature of the semiconductor 

interfaces between core/shell nanowires of InAs and GaAs. 

Table V.II The band gaps and effective masses of all nanowires studied for this work. The band gap of the first 

core/shell nanowire closely matches the pure InAs 21Å nanowire, while the GaAs/InAs nanowire closely matches the 

band gap of the pure InAs 30Å nanowire. 

 
Figure V.3 A cartoon side view of a core shell nanowire exhibiting intrinsic strain. Due to a lattice mismatch, the blue 

core creates tensile strain on the red shell, while the red shell causes compressive strain on the blue core. This matches 

with the first core/shell InAs/GaAs nanowire presented, and is opposite the GaAs/InAs nanowire. 

The InAs core/GaAs shell nanowire is examined first. Intrinsic strain was present 

within the wire, as illustrated in cartoon Figure V.3. With a relaxed lattice constant of 

6.59Å, and intrinsic strain on the core of -5.72% and on the shell of 1.23%, the structure 
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is comparable in size to a pure GaAs nanowire (6.51Å). These results are shown in Table 

V.I, where the difference between all nanowire sizes illustrates what pure nanowire the 

core/shell nanowires most closely mimic structurally. The band gap of the material was 

direct and about 1.00 eV and the effective mass of both the electron and hole are about 

0.98me, or 0.98 times the mass of an electron. Most of the electronic properties of both 

the core/shell nanowires and their related homogenous nanowire equivalents can be 

found in Table V.II above. In checking for type I or type II behavior in a simulation, the 

best verification comes from band gap comparisons with pure structures similar to the 

materials within the heterostructure. If the material exhibits behavior that matches well 

with pure InAs or GaAs, the core/shell nanowire demonstrates type I band alignment. If 

the band gap is significantly underestimated for most pure material comparisons, it is 

more probable that the material is type II. In the calculations, the band gap actually 

closely matches with that of an InAs nanowire of about 21Å in diameter, although the 

InAs core diameter is only 12Å. This still suggests that the core/shell nanowire has type I 

behavior. The most likely explanation for this matchup with a larger pure InAs nanowire 

is finite quantum well interaction, where it is observed that the electron cloud state exists 

to some degree beyond the initial finite barrier. To confirm the type I behavior, this study 

examines the electron cloud states of the core/shell nanowire at the VBE and CBE, 

illustrated in Figure V.4 below. In addition to checking where the electrons are present, it 

also gives insight into the nature of the state at the edge, allowing for predictions of strain 

behavior later in the study. With the confirmation present in Figure V.4, while physically 

the structure contains a quantum confined 12Å core of InAs behaving as part of a type I 

semiconductor, the quantum confinement better matches the next size of pure InAs 
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nanowires, the 21Å nanowire. At this point, the lack of type II behavior pushed this study 

to move to the next core/shell nanowire for examination. 

 
Figure V.4 The electron clouds of the pure nanowire and InAs core/GaAs shell nanowires are presented for their CBE 

and VBE. The CBE and VBE of the InAs 12Å nanowire seems to match most closely with the core/shell CBE and 

VBE. Shown also are the pure 30Å nanowires for easy differentiation between their states and the core/shell nanowire 

states. 

The next material studied was a reverse of the previous core/shell structure; the GaAs 

core/InAs shell nanowire. This nanowire had a relaxed lattice constant of 6.82Å, and thus 

an intrinsic strain on the core/shell of 4.76%/-2.43%, showing that the material 

unsurprisingly favored the shell material lattice constant. The direct band gap of this 

core/shell nanowire was about 0.59eV, closest to the band gap of the 30Å InAs nanowire, 

as seen in Table V.II. The effective mass also seemed to be in good agreement with a 30Å 

InAs nanowire, with less than 0.05me difference from the pure InAs wire. However, upon 

examination of the electron cloud contour plots from the VBE and CBE, the verdict 

becomes less clear. Rather than observing normal type I behavior in Figure V.5, this 

study suggests that the merging of the electron cloud densities in the core/shell edge 

states could suggest a new type of mixing band alignment behavior, in addition to the 

typical three types I, II, and III mentioned in previous texts. The merging of the electron 
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cloud states at the edges of the band structure imply that both the GaAs and InAs 

contribute significantly to at least the CBE, if not the VBE as well. While it is difficult to 

discern the contributing material to the electron cloud density of the VBE, it seems clear 

that the CBE exhibits behavior from both the GaAs and InAs materials. Further study 

should be done to examine the potential applications of such a material, as well as 

confirm the existence of it experimentally. 

 
Figure V.5 The electron clouds of the pure nanowire and GaAs core/InAs shell nanowires are presented to the left. The 

CBE core/shell state seems to be a union of the pure GaAs and InAs nanowires, while the similarity between states in 

the VBE of the pure GaAs and InAs nanowires makes it difficult to detect which state or if both states are contributing 

to the core shell state.  

After examining the relaxed states of both core/shell nanowires, external strain was 

added to the system, to see if more exotic behavior could be found. The goal of this 

applied strain was to examine the tunability of the band gap, and see what states arise 

from the additional strain, and to see if direct/indirect transitions occurred within the 

material. It would also be of interest in future studies to see if adding external strain to the 

structure changes the band alignment type present within the semiconductor. Figure V.6 

shows the band gap with strain of the two nanowires, showing at least one different VBE 
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and CBE state for each wire within the ±4% strain applied to both nanowires. No direct-

indirect band gap transition was observed in this range of strain. However, significant 

changes in the linear behavior of the VBE and CBE with strain which coincided with 

significant changes in the effective mass of the electron and hole, suggested several 

competing states in both the VBE and CBE. The band structures of the core/shells with 

strain are shown in Figure V.6 to illustrate these significant shifts in effective mass and 

dominant states of the VBE and CBE.  

 
Figure V.6 These figures display the band gap values (a) and energy levels of the CBE and VBE of each core/shell 

nanowire (b) & (c). The InAs/GaAs nanowire displays greater band gap tunability, a result mostly from the larger shift 

in CBE behavior. 

The dominant states of both core/shells shift with strain, as seen in Figure V.7 below. 

For the InAs core/GaAs shell, both the CBE and VBE shift to new electronic states with 

sufficient positive (tensile, <4%) strain. For the GaAs core/InAs shell, only the CBE state 

clearly shifts dominance at about -4.4% strain. While it appears that sufficiently larger 

compressive strain would also shift the VBE state of the nanowire, this study did not 

examine larger than -4.4% strain. Similarly, positive strain for this core/shell nanowire, 

and negative strain for the InAs core/GaAs shell wire did not seem to have trends 

suggesting a third state competing for dominance of the VBE and CBE. 
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Figure V.7 The figures above show the dominant state of the CBE and VBE of each core/shell nanowire by energy. 

The solid line states are the dominant states without applied strain, and the dashed line states are the states that either 

gain dominance within the applied strain, or are most likely (in the case of VB in GaAs/InAs) to retain dominance near 

the strains applied. 

For the core/shell states of both nanowires, we will refer to the relaxed electron and 

hole states as CA and VA, respectively, and the states that become dominant with strain 

will be labelled the CB and VB. For the InAs core/GaAs shell nanowire, the unstrained 

system clearly shows type I behavior with both electron and hole edge states dominated 

by the core, as present in Figure V.4 (d). However, the strained electron state CB appears 

to be everywhere on the structure, suggesting neither a core or shell behavior alone. 

Similarly, the VB state seems to ignore the core/shell boundaries, instead creating a band 

of density across the (010) crystal direction. Both states are non-bonding in the z-

direction, which means that the relaxation in the xy plane from applied stress in the z-

direction seems to be the largest cause of change in dominance with strain. Based upon 

the relationship with strain (lower energy with greater compression in the xy plane), it is 

suggested that there is normal bonding in the xy plane direction for the CB and VB states 

of this core/shell. 

For the CB state of the GaAs core/InAs shell nanowire, the only state to gain 

dominance with applied strain has a very similar state to the CA of the InAs core/GaAs 

shell nanowire. This state is almost entirely contained within the GaAs core of the 
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nanowire, the first state of any of the states to be dominant in only the GaAs material of 

the core/shell nanowires studied. The shift in dominance of this CBE has more to do with 

the increase in energy of the CA state, than with significant change in energy of the CB 

state. The CA state appears to have an anti-bonding relationship in the z-direction of this 

material, creating the large dependence in energy with strain of this state. 

D. Conclusion 

In summary, the InAs/GaAs core/shell nanowire was found to have type I behavior 

with finite quantum confinement effects manipulating the band gap. The band gap was 

found to be about 0.98eV on the relaxed nanowire, most closely matching the 21Å pure 

InAs nanowire, as seen in Table V.II. It is hypothesized that the same crystal structure 

and sharing of As atoms between the two composite materials allows for this behavior.  

Additional strain to this nanowire yielded a tunability of about 0.45-0.98eV, and several 

different dominant states were shown to occupy the VBE and CBE at different values of 

strain. For the GaAs/InAs core/shell nanowire, it was found that type I-like behavior 

existed, with closer study suggesting a new type of mixing band alignment behavior 

instead. The band gap matched very closely with a pure 30Å InAs nanowire, at a value of 

about 0.59eV. The effective masses were also a great match to the pure InAs nanowire. 

The electron cloud densities of the edge states most clearly showed the possibility of this 

new mixing type behavior. With additional strain, the band gap of this nanowire was seen 

to fluctuate between the range of 0.59eV and about 0.76eV. Future studies for this work 

might include a third ring of III-V material around some type I materials to compare 

more readily to experimental nanowires that need different passivation methods. 

Additionally, non-uniform uniaxial strain could be considered, and different nanowire 
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sizes and different core/shell ratios, as well as different edge passivation should be 

considered. Defects within the nanowire, larger supercells along the uniaxial direction, 

surface defects, and band bending studies could also be simulated for these core/shell 

structures and single material nanowires.  
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