
Polycyclic Aromatic Hydrocarbon (PAH)  

Redistribution in Extreme Dust Storms and Processing in Clouds  

by 

Jershon Eagar 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved July 2016 by the 

Graduate Supervisory Committee:  

 

Pierre Herckes, Chair 

Mark Hayes 

Everett Shock 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

August 2016  



i 

ABSTRACT  

   

Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North 

American monsoon season. A haboob classification method based on meteorological and 

air quality measurements is described. There were from 3 to 20 haboob events per year 

over the period from 2005 to 2014. The calculated annual TSP (total suspended 

particulate) dry deposition during haboobs is estimated to contribute 74% of the total 

particulate mass deposited in Tempe, AZ.  

Dry deposition is compared with the aqueous chemistry of Tempe Town Lake. 

Water management and other factors may have a stronger impact on Tempe Town Lake 

chemistry than haboob dry-deposition. Haboobs alter the Polycyclic Aromatic 

Hydrocarbon (PAH) concentrations and distributions in Tempe, AZ. PAH isomer ratios 

suggest PM2.5 (particulate matter with aerodynamic diameters less than or equal to 2.5 

μm) sources consistent with approximate thunderstorm outflow paths.   

The importance of the atmospheric aqueous phase, fogs and clouds, for the 

processing and removal of PAHs is not well known. A multiphase model was developed 

to determine the fate and lifetime of PAHs in fogs and clouds. The model employed 

literature values that describe the partitioning between three phases (aqueous, liquid 

organic, and gas), in situ PAH measurements, and experimental and estimated 

(photo)oxidation rates. At 25 °C, PAHs with two, three and four rings were predicted to 

be primarily gas phase (fraction in the gas phase xg > 90 %) while five- and six-ring 

PAHs partitioned significantly into droplets (xg < 60 %) with aqueous phase fractions of 

1 to 6 % and liquid organic phase fractions of 31 to 91 %. The predicted atmospheric 

lifetimes of PAHs in the presence of fog or cloud droplets (< 5 hours) were significantly 
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shorter than literature predictions of PAH wet and dry deposition lifetimes (1 to 14 days 

and 5 to 15 months respectively) and shorter than or equal to predicted PAH gas phase / 

particle phase atmospheric lifetimes (1 to 300 hours). The aqueous phase cannot be 

neglected as a PAH sink due to the large aqueous volume (vs. organic volume) and the 

relatively fast aqueous reactions.  
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CHAPTER 1 

INTRODUCTION 

1.1 PROPERTIES OF ATMOSPHERIC PARTICULATE MATTER  

The particulate matter (PM) present in the atmosphere is known to be detrimental 

to human health. The aerodynamic diameter of PM determines, to some extent, the 

relative exposure in the lungs (see Figure 1.1). Fine particles are normally defined as PM 

with aerodynamic diameters less than or equal to 2.5 µm (PM2.5) and are small enough to 

access the alveolar recesses of the lungs. PM2.5 can thus deposit and closely interact with 

lung tissue. Coarse particles refer to PM with aerodynamic diameters between 2.5 and 10 

µm. Coarse particles cannot access the alveoli but can access the bronchial tubules. 

Coarse particles may be exhaled or adhere to mucus and thus interact with lung tissue to a 

lesser extent than PM2.5 (Finlayson-Pitts and Pitts, 1999).  

 

The sum of coarse and fine particles is PM10, or PM with aerodynamic diameters 

less than or equal to 10 µm. The total suspended particles (TSP) in the atmosphere 

 

Figure 1.1. Aerodynamic diameters of atmospheric particles and access to respiratory 

system cavities. 
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includes PM10 and PM larger than 10 µm, or PM>10. Since the effect of PM exposure 

varies with diameter, PM is regulated by diameter. 

The Clean Air Act of 1963 provided federal funds for research of air pollution 

control (EPA, 2015). In 1970, modifications to the Clean Air Act required the 

establishment of regulatory standards for air pollutants and soon thereafter, the U.S. 

Environmental Protection Agency (EPA) established the National Ambient Air Quality 

Standards (NAAQS; EPA, 2015). The current NAAQS for PM10 and PM2.5 are shown in 

Table 1.1 (EPA, 2013).  

 

Table 1.1 

Regulation of Particulate Matter and Polycyclic Aromatic Hydrocarbons 

Pollutant Carcinogenic 

Classification 

Regulatory 

Scope 

Regulatory 

Concentration 

Regulatory 

Interval 

Regulation 

PM2.5 - air, ambient 12.0 µg m
–3

 

35 µg m
–3

 

annual
#
 

24-hour 

EPA, NAAQS
†
 

PM10 - air, ambient 150 µg m
–3

 24-hour EPA, NAAQS 

PAH - air, workplace 200 µg m
–3

 8-hour
&

 OSHA, PEL
§
 

BAA B2* water 0.1 µg L
–1

 - EPA, MCL
‡
 

CHY B2 water 0.2 µg L
–1

 - EPA, MCL 

BBF B2 water 0.2 µg L
–1

 - EPA, MCL 

BKF B2 water 0.2 µg L
–1

 - EPA, MCL 

BAP B2 water 0.2 µg L
–1

 - EPA, MCL 

DBA B2 water 0.3 µg L
–1

 - EPA, MCL 

IND B2 water 0.3 µg L
–1

 - EPA, MCL 

Notes: #, arithmetic mean; †, primary standard (EPA, 2013); &, TWA, time-weighted 

average; §, Occupational Safety and Health Administration (OSHA, 2016) permissible 

exposure limit; ‡, MCL, maximum contaminant level; *, EPA WOE (weight of evidence) 

B2: probable carcinogen with sufficient evidence in animals, for both chronic inhalation 

and chronic oral (EPA, 2014a); see the text or the Abbreviations Glossary for 

abbreviations.  
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1.2 POLYCYCLIC AROMATIC HYDROCARBONS 

PAHs (Polycyclic Aromatic Hydrocarbons) are organic molecules with relatively 

high melting points, low solubilities, and low vapor pressures (Ravindra et al., 2008). 

PAHs are generally considered harmful and seven PAHs are classified as B2 carcinogens 

(“probable carcinogens, sufficient evidence in animals”; Table 1.1; EPA, 2014a) for both 

chronic inhalation and chronic oral exposure, namely: benz[a]anthracene (BAA), 

chrysene (CHY), benzo[b]fluoranthene (BBF), benzo[k]fluoranthene (BKF), 

benzo[a]pyrene (BAP), dibenz[a,h]anthracene (DBA), and indeno[1,2,3–c,d]pyrene 

(IND). These seven PAHs are regulated in water (Table 1.1; National Primary Drinking 

Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant 

Levels, 2010). 

Sixteen PAHs are classified as priority pollutants (EPA, 2014b), namely: the 

seven aforementioned PAHs, acenaphthylene (ACY), anthracene (ANT), fluorene (FLU), 

phenanthrene (PHE), fluoranthene (FLT), pyrene (PYR), benzo[e]pyrene (BEP), and 

benzo[g,h,i]perylene (BGP).  

1.3 SOURCES AND FATE OF PM AND PAHS 

The primary sources of PM in the atmosphere include (in order from major to 

minor) salt condensate from sea spray, dust emissions, vehicular and other anthropogenic 

emissions, biological debris, and volcanic activity (Rogge et al., 1993a; Bond et al. 2004; 

Seinfeld and Pandis, 2006). Secondary PM can arise from atmospheric processing of 

gases and organic matter (Seinfeld and Pandis, 2006).  

PAHs often constitute a small fraction of PM mass (e.g., <0.05% of PM2.5 in Los 

Angeles, CA; Rogge et al., 1993b) and may be formed concurrently during primary PM 
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emission. This includes the pyrolysis of organic matter: wildfires, tobacco smoke, 

automobile exhaust, power plant emissions, and cooking operations (Rogge et al., 1993a; 

Zhang and Tao, 2004). PAHs are also released to the atmosphere in the gas phase from 

crude oil and petroleum products; for example, PAHs vaporize from roadway tar sealer 

and are present in gasoline and diesel vapors (Marr et al., 1999; Mahler et al., 2012). 

PAH vapors may adsorb to PM or remain in the gas phase.  

The fate of PM is, ultimately, photodegradation and deposition to the Earth’s 

surface. Some of the PM mass can photodegrade over time, such as the organic carbon, 

which varies by source but is typically less than 30% of the total particulate mass in 

urban areas (Rogge et al., 1993b). The pathway or mechanism of PM reaching the 

surface of the Earth depends on diameter. PM with aerodynamic diameters less than 1 µm 

may coagulate into larger particles and / or act as cloud condensation nuclei by up-taking 

water vapor and growing into droplets (Seinfeld and Pandis, 2006). Such particles can be 

removed from the atmosphere during precipitation. Larger particles, such as PM>2.5, have 

higher settling velocities than PM2.5 and thus may be removed due to gravitational dry 

deposition (Seinfeld and Pandis, 2006).  

Gas phase PAHs may be removed through vapor deposition (adsorption and/or 

absorption) to the Earth’s surface, be scavenged by falling precipitation, or react with 

atmospheric oxidants such as the hydroxyl radical (Lohmann and Lammel, 2004 

Škrdlíková et al., 2011; Keyte et al., 2013). PAHs bound to PM may share the same 

atmospheric fate (i.e., mechanical deposition) or may be removed by surface reactions 

(Bidleman, 1988; Ravindra et al., 2008; Škrdlíková et al., 2011).  
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The photooxidation kinetics of aqueous phase PAH are faster than liquid-organic 

phase PAH (Grossman et al., 2016) and are of a similar magnitude as PAH oxidation in 

the gas phase (Chapter 5). Thus, clouds and fog can be an important chemical sink of 

PAHs. 

1.4 RATIONALE AND OBJECTIVES 

This work focuses on several aspects of PM and PAH. I investigate haboob and 

dust storm climatology, PM, and their impact on deposition (Chapters 2 and 3). I also 

investigate a specific pollutant class (PAH) and its behavior in dust storms (Chapter 4). 

Finally, I look at how clouds process PAHs in Chapter 5.  

There is a need to establish when dust storms occurred in the City of Tempe, 

especially the haboob dust storms, for which there is no catalog since the 1980’s 

(Nickling and Brazel, 1984). The Nation Weather Service (NWS) records dust events but 

does not distinguish between types of dust events. In Chapter 2, a clear methodological 

characterization of haboob events based on meteorological and air pollution observations 

is established. This is then applied to local datasets from 2005-2015 to gather an 

objective and systematic climatology of dust storms and haboob events. Then a model is 

developed and the annual dry deposition is estimated for haboobs and dust storms to 

evaluate the impact of haboobs on dry deposition fluxes of atmospheric PM. The 

predicted deposition is compared with literature data. 

The impact of dust storms on a local, large body of water, Tempe Town Lake, is 

investigated in Chapter 3. A recent literature report suggested dust storm induced 

turbidity in canal water not far from Tempe (Barry et al., 2016). Therefore, the 

coincidence of dust storm deposition and chemistry changes in a long-term dataset of 
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Tempe Town Lake is investigated. A deposition and dilution model is used to predict 

dissolved particle masses while a sedimentation model is used to predict particle settling 

times.  

PAHs are ubiquitous in the Earth’s atmosphere and are present in the air within 

and around the City of Tempe, AZ (Cahill, 2013; Clements et al., 2016). In Chapter 4, the 

behavior of this common class of pollutants, PAHs, is investigated in haboobs. It is 

unknown what affect haboobs have on PAH distribution in Tempe. Haboobs could 

potentially stir-up, transport, and/or remove PAHs bound to PM. During the summer 

months of 2013 and 2014, the season when most haboobs occur in Tempe, PM2.5 was 

sampled and analyzed for changes in the relative abundance of PAHs and for changes in 

PAH isomer ratios. The hypothesis of haboob events altering the PAH concentration and 

distribution in Tempe, AZ is investigated. 

PAHs can travel long distances from their emission sources (Seinfeld and Pandis, 

2006). In such cases the PAHs may have aged, for example, after their deposition to soil 

and prior to resuspension. The PAHs could have undergone atmospheric processing 

during transport, photochemistry, or even biological modifications. The partitioning and 

processing of PAH in the vapor and particulate phases is well studied (e.g., Lohmann and 

Lammel, 2004). However, it is unknown to what extent clouds/fog can process PAHs. To 

determine their impact, the distribution or partitioning of PAHs in a cloud system is 

modeled in Chapter 5. The PAH (photo)oxidation is calculated. This tests the hypothesis 

that clouds/fog are an important atmospheric sink for PAHs. 

Finally, in Chapter 6, the results and observations are summarized. I conclude by 

providing suggestions for future research. 
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CHAPTER 2 

THE CHARACTERIZATION OF HABOOBS AND THE DEPOSITION OF DUST IN 

TEMPE, AZ 

2.1 INTRODUCTION 

During the North American monsoon season Phoenix, Arizona is reported to 

experience 2 to 7 dust storms per year (Raman et al., 2014). Metropolitan Phoenix is a 

semiarid urban area with a population of 4.2 million (U.S. Census Bureau, 2013); the 

region has low annual precipitation ranging from 83 to 240 mm yr
–1

, and high 

temperatures with an average of 61 days per year exceeding 40 °C (U.S. NOAA, 2015). 

The monsoon season is now defined by the National Weather Service (NWS) as June 15 

to September 30 (similar to the ‘hurricane season’; U.S. NWS, 2016); it is characterized 

by a change in the general upper atmosphere circulation and an average dew point greater 

than 12.7 °C. The most intense kind of dust storms Phoenix experiences are fostered by 

monsoon weather through the interaction of atmospheric water and sunlight. In the 

vicinity of Phoenix, thunderstorm clouds build during the day as moisture-laden air aloft 

from the Gulf of Mexico and the Pacific Ocean (Sorooshian et al., 2011) is energized by 

sunlight and rises within the clouds. In the evening, the supply of heated, moist air 

decreases and there is a net downward movement of moisture as precipitation. Over the 

semiarid desert, the falling hydrometeors evaporate significantly before reaching the 

surface which cools surrounding air, causing it to become denser and to displace the dry 

air below. These powerful downdrafts can produce high winds and turbulent convection 

over the landscape. These thunderstorm outflows can result in a particular kind of dust 

storm: an advancing wall of dust hundreds of meters high and tens of kilometers long 
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known as a haboob, from the Arabic habūb ‘blowing furiously / strong wind’ (see 

Figures 2.1 and 2.2; Sutton, 1925; Idso et al., 1972; Idso, 1976).  

 

Haboobs occur in only a few parts of the world, including northern Africa 

(Sutton, 1925; Roberts and Knippertz, 2012), the Arabian Peninsula (Membery, 1985; 

Miller et al., 2008), and northwest India (there known as kālī andhī or andhī ‘darkening, 

blinding storm’; Joseph et al., 1980; Joseph, 1982; Goudie and Middleton, 2000). In the 

US, haboobs have been reported in Arizona and Texas (Warn and Cox, 1951; Idso et al., 

1972; Brazel and Nickling, 1986; Chen and Fryrear, 2002). In Arizona, haboobs can 

substantially decrease visibility to less than 1 km (Nickling and Brazel, 1984). Wherever 

haboobs occur, they are quite intense relative to other types of dust events (Roberts and 

Knippertz, 2012) and have comparatively short lifetimes of 1 to 4 h in any single location 

(Sutton, 1925; Brazel and Nickling, 1986). 

 

Figure 2.1. Conceptual diagram of haboob initiation in Arizona. Note: not all haboobs 

originate south of Tempe and the diagram is not to scale. 
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2.1.1 Impact on Air Quality. 

Haboobs can have a significant impact on the amount of atmospheric particulate 

matter (PM) in the metropolitan Phoenix area (Clements et al., 2014; Lei and Wang, 

2014; Clements et al., 2016). Particulate matter is classified by size fractions; PM10 and 

PM2.5 are particulate matter with aerodynamic diameters of ≤ 10 μm and ≤ 2.5 μm, 

respectively. The size of PM determines the extent of penetration into the respiratory tract 

and therefore the adverse health risk: PM10 can penetrate to the bronchi passages while 

the finer and more hazardous fraction, PM2.5, is able to penetrate fully into the alveolar 

recesses of the lungs (WHO, 2006). Their mass concentrations, c(PM10) and c(PM2.5) 

respectively, both increase during haboobs; peak c(PM10) can be in the thousands of 

 

Figure 2.2. Haboob advancing in Tempe, AZ on August 25, 2015; photo credit: Ariel 

Anbar 
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μg m
–3

 for several hours and c(PM2.5) increases although to a somewhat lesser extent 

(e.g., tens to hundreds of μg m
–3

; Clements et al., 2013; Lei and Wang, 2014). The U.S. 

National Ambient Air Quality Standards (NAAQS) are 12 μg m
–3

 for c(PM2.5) and 150 

μg m
–3

 for c(PM10) over a 24-hour period (U.S. Environmental Protection Agency (EPA), 

2013). High haboob-derived PM concentrations which exceed the EPA standards are 

typically excluded from regulatory decisions regarding NAAQS compliance since they 

are high-wind, natural-events that are “not reasonably controllable or preventable” and 

which overwhelm even stringent dust control measures (U.S. EPA, 2006, 2007; ADEQ, 

2015). 

Besides the impact on air quality, another impact of haboobs is particle 

deposition. In the early 1970’s, rooftop dust deposition in Tempe was reported to be 540 

kg ha
–1

yr
–1

, 12% of which was attributed to 2 haboobs (Péwé et al., 1981). Particle 

deposition in semiarid regions of southern California and Nevada (which do not 

experience haboobs) has been reported to be substantially lower, 20 to 200 kg ha
–1

yr
–1

, 

over the period 1983 to 2000 (Reheis, 2006). The magnitude of annual haboob deposition 

and the impact on urban ecosystems is not well known. As the Phoenix population grows, 

changes in land use could also affect haboobs because the resuspension and transport of 

dust in and around metropolitan Phoenix will likely co-vary with changes in land cover 

and in the urban heat island (Li et al., 2016) which in turn affects local precipitation.  

Identification of haboobs in metropolitan Phoenix from historical data can be challenging 

since meteorological and radar records often are inadequate in temporal and spatial 

resolution to capture these short-lived phenomena (Raman et al., 2014). Reliance upon 

visibility and wind speed data alone can lead to false-positive haboob identifications 
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since these events can occur with several meteorological phenomena. The METAR 

(Meteorological Terminal Air Report) weather condition codes provide dust information 

(e.g., BLDU, blowing dust) but do not distinguish between general dust events and the 

more intense haboobs.  

This work identified and characterized haboobs in Tempe, AZ over the period 

2005 to 2014. Air quality impacts were documented and temporal changes in haboob 

frequency and intensity were investigated. A computational model was used to estimate 

particle deposition in Tempe. This work is of limited spatial scope since it reports the 

development of a systematic classification of haboobs. This work exceeds prior location-

specific libraries of haboob events in that it employs air quality and meteorological data 

in haboob classification.  

2.2 MATERIALS AND METHODS 

2.2.1 Retrieval of meteorological and air quality records. 

Metropolitan Phoenix covers a large area (37,700 km
2
) and as such, there is 

heterogeneity in dust deposition throughout the area (Péwé et al., 1981). To maintain 

consistency a single location near the Arizona State University (ASU) Tempe campus 

(see Figure 2.3), was selected for dust event identification. The weather station at the 

Phoenix Sky Harbor International Airport (KPHX) has weather records back to 1930 and 

was the location used in older dust storm studies (e.g., Brazel and Nickling, 1986). 

KPHX is also proximal to ASU’s Tempe campus as well as to a variety of long-term 

ecological study sites (e.g., Ball and Guevara, 2015; Bateman et al., 2015; Davis et al., 

2015; Giraudeau et al., 2015) for which the deposition predictions of this work could 

augment the existing research. I retrieved KPHX hourly, quality-controlled local 
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climatological data from 2005 to 2014 (U.S. NOAA, 2015). Haboob classifications were 

applied using data from two air quality stations which measure c(PM10) were selected in 

proximity to KPHX, namely, CEPH and TE (see Table 2.1 and Figure 2.3; U.S. EPA, 

2015)  

 

Four additional weather stations in Tempe were used to confirm the presence of 

haboob dust, namely AN014, MAGC, SA31, and SRP01 (MesoWest, 2015). Two 

additional air quality sites were chosen to better distinguish high smog events from dust 

events, namely DIABLO and VEL (see Table 2.1 and Figure 2.3; U.S. EPA, 2015). 

 

Figure 2.3. Map of the southwest U.S. (left) with gray shading indicating metropolitan 

Phoenix, an enlargement of metropolitan Phoenix (middle) with the City of Tempe’s 

boundaries as a black line, and the City of Tempe (right) with an × and dark gray shading 

indicating ASU Tempe campus and nearby meteorological stations and air quality system 

sites. The filled diamond, triangle and square indicate the station locations of KPHX, 

CEPH, and TE respectively. Open circles indicate the locations of “Other Stations” which 

includes MAGC, SA31, SRP01, DIABLO, and VEL. “PHX Airport” is the Sky Harbor 

International Airport. See Table 2.1 for full station names and station abbreviations in the 

legend.  
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2.2.2 Historical haboob identification and categorization. 

Hourly weather and air quality data from KPHX for the years 2005 to 2014 were 

searched for dust event signatures (see flowchart in Figure B1). A dust event was 

Table 2.1 

Summary of Public Data and Sources 

Abbrev-

iation 

Date Range Data Type Station Name Station ID Provider 

KPHX 
2005-Present 

1930-Present 

QCLCD
†
 

Meteorological 

Phoenix Sky Harbor 

International 

Airport 

WBAN 

23183
‡
 

U.S. Weather 

Bureau
¤
 

CEPH 1985-Present 

1965-Present 

c(PM10)
 ^
 

Gases 
Central Phoenix AQS*04-

013-3002 
MCAQ

#,@
 

TE 2012-Present 

2000-Present 

c(PM10), c(PM2.5) 
¢
 

Gases 
Tempe TE AQS 04-

013-4005 
MCAQ 

DIABLO 2014-Present c(PM2.5), Gases Diablo AQS 04-

013-4019 
MCAQ 

VEL 1989-Present 

2003-Present 

Gases 

Nephelometry 

Vehicle Emissions 

Lab 

AQS 04-

013-9998 
ADEQ

£,@
 

AN014 2010-2014 Meteorological Tempe AN014 MCAQ 

SA31 2014-2015 Meteorological Tempe SA31 SA31 MADIS
¶,§

 

SRP01 2013-Present Meteorological SRP SRP01 Salt River 

Project
§
 

MAGC 2005-Present Meteorological 
GateWay 

Community College 
MAGC MFCD

¥,§
 

Notes: †, QCLCD, hourly quality controlled local climatological data; ‡, WBAN, 

Weather-Bureau-Army-Navy; ¤, http://www.ncdc.noaa.gov/qclcd; ^, c(PM10), PM10 

mass concentration; *, AQS, U.S. Environmental Protection Agency Air Quality 

System; #, MCAQ, Maricopa County Air Quality; @, http://aqs.epa.gov/api; ¢, 

c(PM2.5), PM2.5 mass concentration; £ ADEQ, Arizona Department of Environmental 

Quality; ¶, MADIS, Meteorological Assimilation Data Ingest System; §, 

http://mesowest.utah.edu; ¥, MFCD, Maricopa County Flood Control District. Stations 

TE and AN014 are co-located.  
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considered a meteorological condition of reduced visibility (VIS), elevated wind and/or 

gust speed (vWG), and elevated c(PM10). To begin, a preliminary list was generated for 

hours in which any of the following occurred: minimum VIS < 16 km (< 10 mi), 

maximum vWG > 17 m s
–1

 (> 40 mi h
–1

), a 1 h average c(PM10) ≥ 200 µg m
–3

, or the 

occurrence of dust-related METAR weather condition codes (e.g., BLDU, blowing dust; 

DS, dust storm; DU, widespread dust; HZ, haze; TS, thunderstorm; SQ, squall). The 

hours identified were then grouped into events. Events were assumed to be separate when 

the weather and air quality signatures returned or were ‘reset to fair weather conditions’ 

for at least 6 hours. There were 422 events which met the preliminary criteria. Some 

confounding factors which can cause low air visibly were heavy rain, fog, and smog. To 

avoid false-positives, each event was assessed individually for coincident VIS drops, vWG 

spikes, c(PM10) spikes, and appropriate METAR weather condition codes. After 

removing high smog episodes, fog, heavy rain, and thunderstorms without dust, there 

were 266 candidate dust events which remained.  

There is a characteristic meteorological signature which accompanies 

thunderstorm outflows and, therefore, haboobs (Idso et al., 1972). This signature includes 

a rapid increase in humidity and air pressure, a rapid decrease in air temperature, and a 

spike in c(PM10), generally ≥ 200 µg m
–3

 for 1 to 3 h (see Figure B2). The individual dust 

events were inspected for this signature and were categorized as either haboobs or ‘other 

dust’. Non-haboob dust events had longer durations (i.e., 3 to 12 h) of elevated c(PM10) 

without abrupt changes in temperature, humidity, and pressure. Mild haboobs with 

visibility VIS > 11.3 km (> 7 mi) were grouped with the ‘other dust’ since they were 

more difficult to positively identify. Following data review, 96 haboob events with VIS ≤ 
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11.3 km (≤ 7 mi) were identified for the years 2005 to 2014 (see Table B1 for list). 

Photographic evidence for haboob events early in this period was often not available. In 

the latter portion of the 2005-2014 period, social media reports of these events were more 

common and of the 96 haboob events, 43 were confirmed by photographs of advancing 

‘walls’ of dust obtained from the local press, social media, or web camera records.  

2.2.3 Atmospheric Dry deposition model. 

Dry deposition in Tempe was estimated using a model similar to that of Sauret et 

al. (2009). The air sedimentation velocities (vs,air) for 36 particles sizes (aerodynamic 

diameters from 0.1 to 320 µm) were calculated with Equation 2.1, where ρp is the particle 

density (1.7×10
6
 g m

–3
), dp,j is the jth aerodynamic particle diameter, g is the gravitational 

constant, Cf,j is the diameter-specific particle Cunningham factor (i.e., a sliding factor), 

and ηair is the dynamic viscosity of air: 

𝑣s,air,𝑗 = 𝑑p,𝑗
2  𝜌p g 𝐶f,𝑗 (18 𝜂air)⁄   (2.1). 

Cf,j was calculated as a function of dp,j where λp,air is the particulate mean free path in air 

(an estimated constant value of 0.066 µm). Calculated Cf,j agreed with values given in 

Seinfeld and Pandis (2006) and Sauret et al. (2009):  

𝐶f,𝑗 = 1 +
𝜆p,air

𝑑p,𝑗
(2.514 + 0.8𝑒−0.55 𝑑p,𝑗  𝜆p,air⁄ )  (2.2). 

Diameter specific Reynolds numbers (Rej) were calculated as a function of dp,j where ρair 

is the density of air:  

Re𝑗 = 𝜌air 𝑣s,air,𝑗  𝑑p,𝑗  𝜂air⁄   (2.3). 

For particle sizes where the Rej was > 1, drag was included in the sedimentation velocity 

calculation and vs,air,j from Equation 2.4 was used in deposition calculations (Seinfeld and 

Pandis, 2006):  
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𝑣s,air,𝑗 = 𝑑p,𝑗
8/7

(
4

55.5
g 𝜌p 𝐶f,𝑗)

5/7

 (𝜌air
2/7

 𝜂air
3/7

)⁄   (2.4). 

A static value of ηair is not adequate for metropolitan Phoenix where diurnal temperatures 

differ by an average of 12 °C (22 °F) with a range of 2 to 22 °C (4 to 39 °F; U.S. NOAA, 

2015). 

During thunderstorm outflows, the temperature and pressure both change, causing 

ηair to decrease and therefore vs,air to increase by as much as 5% in 1 to 2 hours (e.g., 2 

August, 2005 in Figure B1). Hourly ηair and ρair were calculated using Mathematica 10 

(Mathematica, 2015a, 2015b) as a function of KPHX dry bulb air temperature and air 

pressure. Values for ηair and ρair varied by time of day and by season, with ηair ranging 

from 0.0171 to 0.0195 g m
–1

s
–1

 and ρair ranging from 1.05 to 1.27 kg m
–3

 (see Figures B1 

and B2).  

The dry deposition flux in air (Jair) was calculated using Equation 2.5, where 

vs,air,i,j is the sedimentation velocity of PM with diameter j during a time interval i, xj is 

the diameter-specific mass fraction, tj is the length of a measurement interval (i.e., 1 h), 

and c(PM10)i is the PM10 mass concentration during the interval:  

𝐽air = ∑ [𝑡𝑖 𝑐(PM10)𝑖 ∙ ∑ [𝑣s,air,𝑖,𝑗  𝑥𝑗]
320µm
𝑗=0.1µm ]n

𝑖=1   (2.5). 

The PM mass distributions were calculated from distributions reported in the literature 

(see Figure 2.4). During non-haboob time periods, xj was the average of 2 distributions 

(Seinfeld and Pandis, 2006; Sauret et al., 2009). Values of xj were scaled so that the 

entire PM10 mass fraction was unity:  

∑ 𝑥𝑗
10µ𝑚
𝑗=0.1µ𝑚 = 1  (2.6). 
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During haboob time periods, I employed a distinct mass distribution based on dust 

storm distributions from the literature (Gillette et al., 1978; Chen and Fryrear, 2002; 

O’Hara et al., 2006; Box et al., 2010). During dust events such as haboobs, much of the 

particulate mass is comprised of PM>10 (PM with dp > 10 µm). The mass ratio of PM10 to 

the total suspended particulates (TSP), or 
PM10

TSP
, has often been reported to be < 0.3 during 

large dust storms (see Table 2.2) meaning that there was more mass of particles with dp > 

10 µm than the mass with dp ≤ 10 µm.  

 

 

Figure 2.4. Composite PM mass distributions for haboob and non-haboob periods. The 

haboob distribution had a 
PM10

TSP
 mass ratio of 0.20. The non-haboob distribution was the 

average of literature mass distributions (Sauret et al., 2009; Seinfeld and Pandis, 2006). 

The haboob and the non-haboob distributions differed only for particle aerodynamic 

diameters > 10 µm. Much of the mass in the haboob distribution was comprised of large 

particles. See the Figures B3 and B4 for a more detailed explanation. 
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Table 2.2 

Dust Storm Mass Distribution Ratios and Deposition 

Location 
PM10

TSP
 
¥
 Jair(TSP)

¢
 , kg ha

–1
 Sample Duration Reference 

USA     

Phoenix  n/a 540 yr
–1

 annual Péwé et al., 1981 

Western Texas 0.06*
,¤
 850 h

–1
 1 haboob Chen and Fryrear, 2002 

Colorado and Kansas 0.28; 0.30
¤
 n/a 2 dust storms Chepil, 1957 

Northwest Texas 0.18 – 0.27* 210 – 790 h
–1

 3 dust storms Gillette et al., 1978 

Pennsylvania  n/a 15.3, storm total 1 dust storm
†
 Miller, 1934 

Southern California and Nevada  n/a 20 – 200 yr
–1

 annual Reheis, 2006 

Europe     

Ukraine n/a 20 – 6940 mo
–1

 4 weeks
§
 Shikula, 1981 

Middle East     

Dead Sea, Israel n/a 255 – 605 yr
–1

 annual Singer et al., 2003 

Negev Desert, Israel n/a 1100 – 2200 yr
–1

 annual Goossens and Offer, 1995 

Northern Africa     

Libya < 0.18 to < 0.77
‡
 366 – 4210 yr

–1
 annual O’Hara et al., 2006 

Western Chad n/a 537 yr
–1

 
@

 annual Maley, 1980 

Northern Nigeria n/a 991 yr
–1

 annual McTainsh, 1980 

Northern Nigeria < 0.67
‡
 > 850 yr

–1
 1 dust season Møberg et al., 1991 

Southwest Niger n/a 1640 – 2120 yr
–1

 annual Drees et al., 1993 

Australia and New Zealand     

Sydney, Australia < 0.85; < 0.87*
,^
 n/a 2 dust storms Box et al., 2010 

South Island, New Zealand n/a > 710 to > 6140 yr
–1

 1 dust season McGowan et al., 1996 

Notes: ¥, 
PM10

TSP
, mass ratio of PM10 to TSP; ¢, Jair(TSP), atmospheric TSP dry deposition flux; *, estimated from histograms; ¤, 

average of 5–20 ft. sampler heights; †, originated in mid-west USA; §, historically, the dust storms during the 4 weeks were 

unusually severe; ‡, PM20 and PM>20 were reported; @, calculated with dust density of 0.85 g cm
–3

; ^, PM>18 not reported. 

1
8
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Some 
PM10

TSP
 ratios are listed as upper bounds in Table 2.2 as a consequence of: 

PM>18 was not reported (Box et al., 2010) or PM20 and PM>20 were reported but not PM10 

and PM>10 (Møberg et al., 1991; O’Hara et al., 2006). The composite haboob mass 

distribution used in this study was identical to the non-haboob distribution for PM10, but 

for PM>10 the haboob xj values were scaled with the mass ratio 
PM10

TSP
 such that Equation 

2.7 obtained:  

∑ 𝑥𝑗
320µm
𝑗>10µm = 1 −

PM10

TSP
  (2.7). 

Thus, the model utilized a particle mass distribution where much of the haboob TSP was 

PM>10 (
PM10

TSP
 = 0.20) while the background (non-haboob) TSP mass was primarily PM10 

(
PM10

TSP
 = 0.78). A more detailed discussion of the literature and composite distributions is 

given in Figures B3 and B4. To avoid overestimation of deposition, the non-haboob mass 

distribution was used for mild haboob events (i.e., VIS > 11.3 km) and for dust events 

lacking a clear meteorological signature of a convective thunderstorm outflow. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Haboob occurrence, characteristics, and frequency. 

Most haboobs with VIS ≤ 11.3 km (≤ 7 mi) in Tempe over the period 2005 to 

2014 occurred in the months of July and August which exhibited median event 

frequencies of 4 and 2.5 respectively (Figure 2.5). This timeframe coincides with the 

North American monsoon season and is in agreement with Brazel and Nickling’s (1984 

and 1986) data for haboobs near Tempe from 1965 to 1980.  
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In Figure 2.5, zero median dust event occurrences are indicated as the absence of 

a bar. In June, the mean annual precipitation was 0.05 mm. The summertime precipitation 

 

Figure 2.5. Monthly mean precipitation (top) and median dust occurrence (bottom) in 

Tempe over the period 2005 to 2014. Haboobs were convective outflow events with 

minimum VIS > 11.3 km (7 mi). ‘Other dust’ comprises events that failed to meet either 

the visibility or the meteorological criteria for haboobs. Precipitation was bimodal where 

rains during the North American monsoon season (July to September) coincided with 

haboobs while winter precipitation coincided with few dust events. 
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pattern and haboob modes are consequences of thunderstorm evolution and convective 

outflows. Haboobs do not necessarily require precipitation to occur, yet are intrinsically 

linked to the summer precipitation near metropolitan Phoenix. Thus, the most intense 

type of dust storm that occurs in Tempe, the haboob, is not only dependent upon 

relatively hot and dry surface conditions, but also requires significant sources of moisture 

from outside the region, such as the Gulf of Mexico and Gulf of California (Sorooshian et 

al., 2011). Haboobs do not coincide with the winter rainy periods since winter storms do 

not have the characteristics necessary to trigger haboob events (e.g., convective outflow, 

surface temperatures, etc.).  

The ‘other dust’ events category included unconfirmed haboobs, mild haboobs 

(e.g., minimum VIS > 11.3 km), and dust caused by other meteorological phenomena 

such as cold fronts. ‘Other dust’ events occurred in most months of the year with a mode 

during the monsoon season due to the contribution of mild haboobs. The winter 

precipitation mode appeared to inhibit dust storms, as indicated by zero median dust 

event occurrences in December and January (see Figure 2.5). This is in agreement with 

Nickling and Brazel’s 1984 data on dust storms in Tempe for the time period 1965 to 

1980.  

The number of haboobs and precipitation varied substantially from year to year 

over the period 2005 to 2014. Haboob occurrences ranged from 3 to 20 yr
–1

 with an 

annual average of 9.6  yr
–1

 (see Figure 2.6). Annual precipitation ranged from 83 to 240 

mm yr
–1

, with an average of 166 mm yr
–1

. Such year to year variation was also reported 

from 1965 to 1980 by Brazel and Nickling when the number of haboobs ranged from 1 to 

19 yr
–1

 (1986). In general, fewer haboobs occurred during 2005 to 2014 in years with 
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greater annual precipitation, in agreement with Brazel (1989) and Holcombe et al. 

(1997). For example, in 2008 and 2010, Tempe received 240 and 230 mm yr
–1

 rain, 

respectively, and experienced 4 and 3 haboobs, respectively. In drier years, for example 

2011 and 2012, Tempe received less rain, 118 and 109 mm yr
–1

, respectively, and 

experienced 20 and 19 haboobs, respectively. However, the relationship between 

precipitation and haboobs in Tempe is complicated by the bimodality of annual 

precipitation and by many other factors unrelated to precipitation (e.g., anthropogenic 

activity and land use changes; Macpherson et al., 2008). During the driest year of this 

study, 2009, Tempe received 83 mm of precipitation and yet, only experienced 7 

haboobs, a below average number. The year 2009 was the only year investigated in this 

study when annual precipitation was below 100 mm. The simplest explanation of 

decreased haboob occurrence during 2009 is that it was a manifestation that summer 

precipitation and haboobs have a mutual source: thunderstorms. However, Goudie (1983) 

observed that global dust storm occurrence increased as precipitation decreased until 

reaching a ‘hyperaridity’ threshold, 100 mm yr
–1

, below which dust storm occurrence 

decreased, which was speculated to be due to prior removal of wind-erodible soil, the 

formation of wind-stable desiccated surfaces, and/or a lack of moisture-associated, dust-

storm-initiating weather patterns (e.g., thunderstorms, frontal passage). Further 

investigation would be required to assess whether this hperaridity threshold applies in 

central AZ. The bimodality of precipitation in Tempe as well as anthropogenic activity 

and land use change very likely also impact the specific relationship between haboob 

occurrence and precipitation.  
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The relationship between precipitation and haboobs in an urban environment is 

likely to be complex. Land use, land cover, and the disruption of stabilized soil surfaces 

are affected by a variety of human factors such as economic downturns (i.e., decreased 

 

Figure 2.6. The annual precipitation (top) and annual occurrence of dust events (bottom) 

in Tempe over the period 2005 to 2014. Haboobs were convective outflow events with 

minimum VIS ≤ 11.3 km. ‘Other dust’ events failed to meet haboob visibility or 

meteorological criteria. There was significant year-to-year variation in precipitation and 

in haboob occurrence: 83 to 240 mm and 3 to 20 haboobs respectively.  
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construction, agricultural, and recreational activities), dust mitigation efforts, and air 

quality regulations (Hyers and Marcus, 1981; Holcombe et al., 1997; Macpherson et al., 

2008; Clements et al., 2014; Upadhyay et al., 2015). Precipitation from a thunderstorm 

may evaporate significantly before reaching the Earth’s surface during the initiation of a 

haboob and may occur far from Tempe; such would not be apparent in the Tempe 

precipitation records. Metropolitan Phoenix is a highly built–environment and the city 

has reservoirs that buffer against drought and canals that distribute water year-round. It 

is, as yet, unclear how much impact diminished precipitation really has on dust 

production in the area.  

The systematic method used in this work provided robust classifications (see 

Figure 2.7) with significant differences between the mean of haboobs and all other dust 

events for maximum vWG (p < 0.001) as well as maximum c(PM10) (p < 0.001). The mean 

vWG of haboobs was larger than 75% of other dust events (see Figure 2.7) and the mean of 

haboob maximum c(PM10), 884 µg m
–3

, was larger than most (99
th

 percentile) of the 

other dust events. All of the dust event peak c(PM10) were larger than the background 

mean c(PM10) of 33 µg m
–3

. The differences in the mean minimum VIS of haboobs and 

other dust are a consequence, in part, of the visibility threshold employed in the 

classification method. Peak c(PM10) in the hundreds or thousands of µg m
–3

 is relatively 

high yet it is sustained for only one or two hours, which may allow one to limit exposure 

to high PM by seeking shelter from the storm. 
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2.3.2 Comparison with literature classification methods. 

The classification method used in this work bears similarity with classifications 

previously applied in other U.S. locations. Hagen and Woodruff (1973) and Orgill and 

Sehmel (1976) identified dust storms from historical records based on 2 criteria: (1) when 

dust was reported and VIS < 11.3 km; or (2) when 11.3 ≤ VIS ≤ 14.5 km and vWG > 5.4 

m s
–1

 (7 mi, 7 to 9 mi and 12 mi h
–1

 respectively). The present work did not employ a 

wind speed requirement to be considered a dust event. Nevertheless, nearly 97% of all 

dust events cataloged here had peak vWG > 5.4 m s
–1

. Notably, the past work of Hagen and 

Woodruff (1973) and Orgill and Sehmel (1976) did not distinguish between types of dust 

storms or report dust statistics specific to Phoenix.  

 

Figure 2.7. Basic characteristics of dust storms in Tempe for the period 2005 to 2014. 

Minimum visibility (left), maximum wind or gust speed (middle), and maximum PM10 

concentration (right) are the major factors that distinguish haboobs events (Hb) from 

other dust events (OD) and background (Bkgd) conditions. In these box plots the 

horizontal lines are mean values, the box boundaries are the 25
th

 and 75
th

 percentiles, the 

whiskers are the 10
th

 and 90
th

 percentiles, and the dots are outliers. Haboobs with VIS ≤ 

11.3 km (7 mi) had much higher PM10 concentrations than ‘other dust’ events. Other dust 

was events that failed to meet the visibility and meteorological criteria for haboobs. The 

background data are the 6-hour extremes and include time periods of smog, fog, rain, and 

fair weather. The small numbers above the columns are the event counts. 
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Lei and Wang (2014) catalogued and characterized dust storms of many kinds 

(including haboobs) throughout the southwestern U.S. for 10 years. Their methodology 

did not specify a visibility threshold but was based on dust storms in the literature and in 

the media that had supporting evidence in meteorological and air quality records. Their 

method could not be used in Tempe to classify haboobs since there has been a dramatic 

increase in public awareness and social media attention only in the last few years. Only 

classifying publicized and reported events in Tempe would have introduced a significant 

bias.  

It is possible to subdivide my haboob category based on intensity using the KPHX 

visibility data. Brazel and Nickling (1984, 1986) classified dust storms by storm type and 

by visibility in specific areas of Arizona, including Tempe. They employed visibility 

thresholds of VIS ≤ 1.6 km (1 mi) as intense and 1.6 < VIS ≤ 11.3 km (1 to 7 mi) as 

moderate. Using their classification system, I identified 25 ‘intense’ haboobs and 71 

‘moderate’ haboobs during the time period 2005 to 2014. Another difference between the 

work of Brazel and Nickling and our current work was that they used 4 meteorological 

categories for dust while the current work used only 2 categories (‘haboob’ and ‘other 

dust’).  

The Australian Meteorological Society visibility threshold for severe dust storms 

is VIS ≤ 0.2 km and the threshold for moderate dust storms is <1 km (about 0.12 and 

0.63 mi, respectively); higher visibility dust events are not considered storms but blowing 

dust episodes (O’Loingsigh et al., 2014). Using this classification system, I identified 1 

‘severe’ haboob and 6 ‘moderate’ haboobs in Tempe during the years 2005 to 2014. 

Indeed the ‘severe’ haboob (5 July, 2011) was quite exceptional in that it was larger than 
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any haboob in the preceding 10 years (2001 to 2011, Raman et al., 2014); this event 

caused power outages for ~ 10,000 customers, delayed airline flights, and received much 

attention even in the national press and social media (e.g., Huffington Post, 2011). I 

included in our catalog haboobs of lesser intensity than a ‘dust storm’ by international 

standards because they are noteworthy and disruptive to the large population in 

metropolitan Phoenix, frequently exceeding the NAAQS 24-hour c(PM10) limit (150 

µg m
–3

; U.S. EPA, 2013). Moreover, these smaller haboob events also have high TSP 

deposition.  

Land use in the area directly surrounding KPHX has changed substantially since 

the systematic categorization of haboobs in Tempe by Brazel and Nickling (1986). Areas 

that had extensive agricultural fields have been replaced with suburban and industrial 

development. An approximate boundary between urban and agricultural areas used to be 

5 to 10 km south of KPHX but that has expanded to 15 to 20 km south of KPHX 

(Jenerette et al., 2001; Li et al., 2014; Maricopa County Assessor’s Office, 2016). A 

direct comparison with the literature to determine whether the number and/or intensity of 

haboobs in metropolitan Phoenix has changed in since the mid-20
th

 century will require 

additional locations beyond just the KPHX station and is thus beyond the scope of this 

paper. Additionally, the nearly one order of magnitude annual variation in haboob 

occurrences and the relatively short temporal coverage of the present work (10 years) 

further prevents a more robust temporal comparison.  

2.3.3 Uncertainties in the dry deposition model and sensitivity analysis. 

The largest uncertainty in the dry deposition in air calculations is the mass 

distribution employed for haboob events since no measurements are available for the 
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Phoenix area. It is known that uncertainty in particle mass distributions affects the 

accuracy of global and local deposition models (Lawrence and Neff, 2009). In the present 

work, the calculated air deposition was found to increase by 700% between 
PM10

TSP
 ratios of 

0.09 and 0.50 (data not shown). The ratio makes a significant difference since large 

particles deposit faster than small particles. There are some studies of dust storm particle 

mass distributions but diameter ranges are sometimes incomplete and the agreement 

between studies is somewhat limited (Chepil, 1957; Gillette et al., 1978; Møberg et al., 

1991; Chen and Fryrear, 2002; Singer et al., 2003; O’Hara et al., 2006; Box et al., 2010). 

I anticipate that dust distributions will differ by location and dust source. Other 

differences are method related. Many different techniques of determining diameter 

specific PM mass distributions have been employed in the literature including: multi-

stage impactor sampling (Box et al., 2010); sedimentation in air (Chen and Fryrear, 

2002); sedimentation in aqueous solution (Møberg et al., 1991); sedimentation in 

chlorinated solvent (Chepil, 1957; Chepil and Woodruff, 1957); mechanical sieving 

(Chen and Fryrear, 2002); measurements with a phase-contrast light microscope (Gillette 

et al., 1978); and laser particle counters (Singer et al., 2003; O’Hara et al., 2006). Each 

method of particle size analysis differs in the range of particle sizes reliably quantified 

and the associated artifacts of analysis.  

My model employed c(PM10) to estimate TSP air deposition. c(PM>10) is seldom 

reported due to the physical constraints of commercially available sampling equipment 

(e.g., standard multistage high-volume samplers). This may be due to the fact that PM>10 

is not regulated as an air quality hazard. Since total suspended particle concentration, 

c(TSP) was not available in Tempe, a synthesized 
PM10

TSP
 mass ratio of 0.20 was used for 
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haboobs; this value is within the range of values reported for other locations (see Table 

2.2). A few studies in Northern Africa (Møberg et al., 1991; O’Hara et al., 2006) 

quantified PM20 and PM>20 from which a 
PM20

TSP
 mass ratio can be determined (Table 2.2). 

For these, the 
PM10

TSP
 mass ratios are estimated as upper bounds since 

PM20

TSP
 > 

PM10

TSP
. Mass 

ratios derived from measurements in Australia are similarly given as upper bounds since 

PM>18 was not measured (Box et al., 2010) and 
PM10

PM>18
 > 

PM10

TSP
.  

It is likely that the 
PM10

TSP
 ratio would be lower for low visibility haboobs than 

moderate visibility haboobs as the amount of large particles, c(PM>10), would be higher. 

Since detailed and event-specific TSP mass distributions were not available, I employed 

0.20 for all haboobs with VIS > 11.3 km (> 7 mi). The calculated dry deposition of the 

‘other dust’ events is likely an underestimate since the non-haboob PM mass spectrum 

was employed, which lacks a large particle (PM>10) mode.  

The measurement of c(PM10) at the CEPH and TE air quality monitoring sites 

varied both in time and in magnitude. This was to be expected since thunderstorm 

outflows are directional and may not arrive at different locations throughout metropolitan 

Phoenix at the same time. In an attempt to minimize these differences, the meteorological 

and air quality sites used were chosen to be the closest to a reference point: the ASU 

Tempe campus (Figure 2.3). The dry deposition in other areas of metropolitan Phoenix 

may differ considerably from the deposition in Tempe.  

PM10 concentration is sometimes reported as 24 h averages instead of 1 h 

averages. Using 24 h c(PM10) data overestimates haboob dry deposition by 86% (data not 

shown). The time resolution of a haboob event (1 – 3 h) is too short to be accurately 
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represented by a 24 h c(PM10) value. Employing the haboob particle mass distribution for 

a full 24 h would erroneously incorporate large particles as a significant fraction of TSP 

both before and after the haboob events. To avoid such artifacts, I employed 1 h c(PM10).  

2.3.4 Atmospheric dry deposition. 

The dry deposition flux in air, Jair for both PM10 and TSP was calculated after 

making simple assumptions about the particle size distributions present in dust storms 

and employing a 
PM10

TSP
 mass ratio of 0.20. The deposition followed trends in haboob 

occurrence (see Figure 2.8). Most of the haboob deposition occurred during the summer 

(86%, July to September). Because Jair(TSP) is strongly associated with haboob events, 

there was a distinct maximum in Jair(TSP) during the summer monsoon period. 
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The PM10 dry deposition flux in air, Jair(PM10), was nearly constant over the 

course of the year and haboobs contributed very little PM10 relative to the background; 

for example, haboob deposition constituted 21% of overall Jair(PM10) in July. The 

 

Figure 2.8. Mean monthly TSP (top) and PM10 (bottom) dry deposition flux (kg ha
–1

) in 

Tempe over the period 2005 to 2014. The haboob contribution to TSP flux is large and 

occurs only during the summer. PM10 flux is a very small fraction of TSP flux and is 

relatively constant throughout the year. Note the two orders of magnitude difference in 

the deposition scales.  
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contribution of other dust (events which failed to meet haboob visibility or 

meteorological criteria) varied somewhat throughout all seasons but was small relative to 

the calculated background and haboob depositions. Haboob Jair(PM10) was much smaller 

than haboob Jair(TSP) (0.1% for July). This was expected since deposition velocity of 

particles varies in approximate proportion with the particle diameter squared (see 

Equation 2.1).  

The year-to-year variation in Jair(PM10) was small but the year-to-year variation in 

Jair(TSP) was much greater due to the effect of haboobs (Figure 2.9). This was expected 

since the number and intensity of haboobs varied from year to year. The year 2011 had 

the highest Jair(TSP), 2950 kg ha
–1

, of which 92% or 2710 kg ha
–1

 occurred during the 20 

haboobs which occurred that year. In contrast, the wettest year, 2010, had the lowest 

Jair(TSP), 259 kg ha
–1

, with 23% or 60 kg ha
–1

 of that being deposited in the 3 haboobs 

that occurred that year. 
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On a mass basis, haboob events accounted for 74% of Jair(TSP) but only 5% of 

Jair(PM10), e.g., Figure 2.10. In contrast, the urban background particle deposition 

accounted for 90% of the total Jair(PM10) but only 24% of the total Jair(TSP). Most of the 

deposition mass (98%) was from particles with dp > 10 µm. About 35% of the total 

 

Figure 2.9. Annual TSP (top) and PM10 (bottom) dry deposition flux (kg ha
–1

) in Tempe 

from 2005 to 2014. The haboob contribution to TSP flux is variable and depends on both 

on the number and magnitude of events.  
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deposition occurred during haboobs with VIS ≤ 1.6 km (1 mi) and 39% from haboobs 

with 1.6 < VIS ≤ 11.3 km (1 to 7 mi; see Figure B5). In other words, more than a third 

(333 kg ha
–1

) of Jair(TSP) was deposited during the most intense quartile of the haboobs 

(n = 25 out of 96).  

 

2.3.5 The comparison of predicted atmospheric deposition with literature. 

The Jair(TSP) calculated in this work (mean: 950 kg ha
–1

yr
–1

) was similar in 

magnitude to deposition fluxes reported in the literature (see Table 2.2). During a 

particular rainy year (355 mm precipitation) in metropolitan Phoenix, Péwé et al. (1981), 

reported a rooftop Jair(TSP) = 540 kg ha
–1

yr
–1

, 12% of which was attributed to 2 haboobs. 

This compares with the relatively wet year (2010) in this study, with 232 mm rain and 

Jair(TSP) = 259 kg ha
–1

yr
–1

, 23% being deposited in 3 haboobs. Excluding haboob 

 

Figure 2.10. Mean annual dry deposition (kg ha
–1

yr
–1

) in Tempe for the period 2005 to 

2014. The TSP deposition (left) and the PM10 deposition (right) for haboobs, other dust 

and background time periods. The numbers are the deposition quantities in kg ha
–1

yr
–1

. 

The area of the small PM10 pie chart is scaled proportionally to the TSP deposition pie 

chart for comparison.  
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deposition, the Jair(TSP) of the sum of background and other blowing dust ranged from 

199 to 299 kg ha
–1

yr
–1

 with a mean of 244 kg ha
–1

yr
–1

. Smaller Jair(TSP) of 20 to 200 

kg ha
–1

yr
–1

 has been reported in Southern California and Nevada, where haboobs did not 

occur (Reheis, 2006). There was only 1 year where Jair(TSP) was calculated to be higher 

than deposition reported in some locations of northern Africa: 2011 with Jair(TSP) = 2950 

kg ha
–1

yr
–1

. In 2011, there were 20 haboobs – the highest in the present work. The 

estimated 2950 kg ha
–1

yr
–1

 was less than the deposition of 6940 kg ha
–1

 reported in a 

series of dust storms over a period of 4 weeks in the Ukraine (Shikula, 1981), less than 

the 6140 kg ha
–1

yr
–1

 reported in New Zealand (McGowan et al., 1996), and less than the 

deposition of 4210 kg ha
–1

yr
–1

 reported in Waddan, Libya (O’Hara et al., 2006). A single 

haboob in western Texas (Chen and Fryrear, 2002) was reported to deposit 850 kg ha
–1

h
–1

 

which was higher than any single haboob identified in the present study, the highest 

being 362 kg ha
–1

h
–1

 during the 30 June, 2013 haboob (maximum c(PM10) = 5250  

µg m
–3

; minimum VIS = 1.2 km (0.75 mi); maximum vWG = 21 m s
–1

 (47 mi h
–1

)). The 

deposition values calculated within this study were consistent with literature data in arid 

environments.  

2.4 CONCLUSIONS 

I cataloged the occurrence of haboobs over the time period 2005 to 2014 using a 

method based on meteorological and air quality measurements. The major factors that 

distinguish haboobs events from other dust events and background conditions were event 

minimum visibility, maximum wind or gust speed, and maximum PM10 concentration.  

There were between 3 and 20 haboob events yr
–1

 with a somewhat lower number of 

haboob events occurring in years with higher annual precipitation. The relationship 
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between precipitation and haboob occurrence is complex due to the bimodality of 

seasonal precipitation as well as the mutual source of haboobs and monsoon 

precipitation. There was a strong seasonal pattern in haboob occurrence with the vast 

majority of haboobs occurring during the North American monsoon season (i.e., June to 

September) and no events occurring in the winter.  

The calculated PM dry deposition in Tempe compares well with literature 

deposition reported for other arid environments when haboob deposition is included in 

the model. Annual Jair(TSP) ranged from a low of 259 kg ha
–1

 in 2010 to a high of 2950 

kg ha
–1

 in 2011. The contribution of large particles (PM>10) is greater than the 

contribution of PM10 to deposition: the average annual Jair(TSP) was 950 kg ha
–1

yr
–1

 

while Jair(PM10) was 17 kg ha
–1

yr
–1

. My haboob mass distribution was compiled from 

literature studies, many of which provided only partial information across the range of 

particle sizes in the deposition model. Thus, there is a need to measure the TSP mass 

distribution in metropolitan Phoenix.  

This study characterized haboobs at a single location in metropolitan Phoenix in 

an effort to minimize the spatial-temporal heterogeneity of haboobs. There is a need to 

investigate the spatial differences in haboobs throughout metropolitan Phoenix and in 

surrounding areas. There may also be a need to investigate meteorological and air quality 

characteristics in the desert to the south where measurements are currently limited. 
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CHAPTER 3 

THE EFFECT OF HABOOB DEPOSITION ON TEMPE TOWN LAKE CHEMISTRY 

3.1 INTRODUCTION 

The Central Arizona – Phoenix (CAP) area experiences intense dust events, 

known as haboobs (Idso et al., 1972; Nickling and Brazel, 1984; Chapter 2). The summer 

monsoon season fosters thunderstorm development which sometimes produces haboob 

events (Brazel and Nickling, 1986; Chapter 2). These dust storms dramatically reduce 

visibility due to high levels of particulate matter (PM) suspended in the air (Figure 3.1; 

Lei and Wang, 2014). CAP also experiences blowing-dust episodes that are generally less 

intense than haboobs; in most cases, these are caused by high winds associated with cold-

front passage (Brazel and Nickling, 1986). Every year, haboobs and blowing-dust 

episodes have been estimated to deposit 706 and 14 kg ha
–1

 of particles, respectively (or 

74% and 1.4% of the total annual deposition) near Tempe Town Lake (Chapter 2).  
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3.1.1 Tempe Town Lake. 

Tempe Town Lake is a man-made lake in downtown Tempe, AZ (Figures 3.1 and 

3.2). Construction of the lake started in 1997 and was completed in 1999 (City of Tempe, 

2016). It has an average depth of 3.8 m (range 2.1 to 5.8 m) and a water capacity of about 

3.7 ×10
6
 m

3
 (City of Tempe, 2016). The lake is situated in the dry bed of the Salt River 

and the river banks are contained by concrete levees. During the period of this study, the 

water was contained between two inflatable dams that could be lowered as needed during 

high river flows (> 10 000 cfs ≈ 283 m
3
 s

–1
; City of Tempe, 2015). In spring 2016, the 

 

Figure 3.1. Haboob approaching Tempe Town Lake and ASU (Arizona State University) 

from the south in Tempe, AZ on August 25, 2015; photo credit: Ariel Anbar. The haboob 

shown here is over 1100 m tall and tens of km wide. 
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downstream dam was replaced with a steel gate dam. In 1999, Tempe Town Lake was 

filled with Colorado River water from the Central Arizona Project. Since that time, the 

dams have been opened/lowered and the lake emptied/refilled at various times to 

accommodate high river flows from the Verde and Salt rivers and to accommodate dam 

release events. The lake can also receive storm water from Indian Bend Wash (Figure 

3.2) and from urban storm drains.  

 

Tempe Town Lake is generally somewhat alkaline with pH ranging from 7.5 to 

9.5 (McLean, 2007; City of Tempe, 2015; Hartnett, unpublished). High pH values are due 

to a combination of CO2 drawdown by algae and the fact that the underlying rock is 

predominantly granite (i.e., silicate) which has inherently low carbonate buffering 

  

Figure 3.2. Map of Tempe Town Lake in the City of Tempe, AZ. Notes: ×, Tempe Town 

Lake in dark blue; VR, Verde River; SR, Salt River; IBW, Indian Bend Wash; river beds 

that are normally dry are in faded blue; the triangle shape, SVWTP is the Santan Vista 

Water Treatment Plant; open circles indicate stream flow gauges; ♦ KPHX, the weather 

station at the (PHX) Phoenix Sky Harbor International Airport. 
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capacity. Changes in dissolved ions have been correlated with hydrological inputs from 

upstream, including those that occur during rain events (McLean, 2007; Hartnett et al., in 

prep.) but currently, it is unclear if or how dust storms impact the chemistry of Tempe 

Town Lake.  

The influence of dust storms on surface water turbidity has been recently 

demonstrated in canal water collected ~30 km to the south-east of Tempe Town Lake 

(Barry et al., 2016). These authors found the turbidity of water entering the Santan Vista 

Water Treatment Plant (SVWTP) was elevated from Feb to Apr 2011 and from Feb to 

Apr 2012, a time when haboobs do not generally occur but general blowing dust events 

do occur (Chapter 2). During the same time frame, PM10 (air-borne particles with 

aerodynamic diameters less than 10 µm) in the vicinity of the water treatment plant 

increased several times. This observation of increased PM10 is consistent with wintertime 

cold-front blowing-dust episodes that also occur near Tempe Town Lake (see Chapter 2). 

However, the turbidity of CAP canal water did not appear to increase during monsoon 

season dust storms (haboobs; e.g., Barry et al., 2016).  

Tempe Town Lake occasionally receives input from the Verde and Salt Rivers, 

which are the source of the canal water feeding the Santan Vista Water Treatment Plant. 

While the water sources for these two systems are sometimes related, they are 

functionally distinct and spatially separated. The canals and the urban lake have 

significant differences in residence time, water flow, biological activity, and human 

impacts. Therefore, a separate analysis must be done to see what impact, if any, dust 

storms have on the surface water chemistry of Tempe Town Lake.  
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This chapter investigates temporal correlations between dust deposition event 

occurrence and water quality in a long-term biogeochemical dataset for Tempe Town 

Lake. Two models are used to estimate particle dissolution, dilution, and settling in 

Tempe Town Lake. 

3.2 METHODS 

The deposition of atmospheric particles in Tempe Town Lake is modeled under 

two end-member scenarios: (1) the complete, instantaneous dissolution of particles and 

(2) no dissolution of particles. This dual approach is employed since the timescales of 

dissolution and the extent to which particles can dissolve in the lake are unknown.  

3.2.1 Deposition and dissolution in Tempe Town Lake. 

The mass of a dissolved chemical species, m(t) [mg] in Tempe Town Lake 

introduced via atmospheric deposition, dissolving immediately, and its subsequent 

dilution as water flows through the lake – that is, ignoring biogeochemical reactions, 

arrival of new solute from source waters (i.e., rin = 0), and solute precipitation – may be 

described via Equation 3.1 where rdep and rout are the rates at which the mass of the 

chemical species enter the lake by dry deposition of air-borne particles and leave by 

discharge, respectively:  

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑟𝑑𝑒𝑝 − 𝑟𝑜𝑢𝑡   (3.1). 

rout is a function of m(t), the rate of flow leaving Qout [L h
–1

], and the lake volume V [L]. 

Thus, the rate of a dissolved species being discharged from Tempe Town Lake is:  

𝑟𝑜𝑢𝑡 = 𝑄𝑜𝑢𝑡
𝑚(𝑡)

𝑉
   (3.2). 

rdep is a product of lake surface area (A = 89 ha) and the dry deposition flux in air Jair [kg 

ha
–1

 h
–1

]:  
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 𝑟𝑑𝑒𝑝 = 𝐽air ∙ 𝐴 ∙ 106mg kg−1   (3.3). 

Therefore, the concentration in the lake during hour i of a dissolved chemical species 

arising from dry deposition is:  

𝑐(𝑡𝑖) =
𝑟𝑑𝑒𝑝,𝑖

𝑄𝑜𝑢𝑡,𝑖
+ (𝑐(𝑡𝑖−1) −

𝑟𝑑𝑒𝑝,𝑖

𝑄𝑜𝑢𝑡,𝑖
) 𝑒(−𝑡 𝑄𝑜𝑢𝑡,𝑖 / 𝑉)  for Qout > 0  (3.4), 

𝑐(𝑡𝑖) =
𝑟𝑑𝑒𝑝,𝑖

𝑉
𝑡 + 𝑐(𝑡𝑖−1)  for Qout = 0. 

 

The lake residence time tR [h] was calculated with Equation 3.5:  

𝑡𝑅 =
𝑉

𝑄𝑜𝑢𝑡
  (3.5). 

 

3.2.2. Particle settling in Tempe Town Lake. 

In contrast to the scenario of complete particle dissolution (Equations 3.1 – 3.4), a 

scenario of purely settling particles in Tempe Town Lake (i.e., no dissolution and Qout 

= 0) was calculated using Equation 3.6 (adapted from Seinfeld and Pandis, 2006). In this 

equation, vs,water,j is the water settling velocity of the j
th

 particle diameter (dp,j), g is the 

gravitational acceleration at Tempe Town Lake [9.79 m s
–2

] (Mathematica, 2015c), ρp is 

the particle density [1.7×10
3
 kg m

–3
] (Sauret et al., 2009), ρwater is the lake water density 

at 30 °C [995.6 kg m
–3

] (Mathematica, 2015d), and ηwater is the dynamic viscosity of lake 

water at 30 °C [0.000797 kg m
–1

 s
–1

] (Mathematica, 2015e):  

𝑣s,water,𝑗 = 𝑑p,𝑗
2  g (𝜌p − 𝜌water) (18 𝜂water)⁄   (3.6). 

Water temperatures of 30 °C are typical during the summertime in Tempe Town 

Lake (City of Tempe, 2015). As a comparison, the particle settling velocity was also 

calculated at 10 °C, representative of wintertime water temperatures (see Appendix C).  
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The mean-free path λp,water,j of a particle in the lake due to Brownian movement 

was derived from the diffusion coefficient and mean thermal speed resulting in Equation 

3.7 (adapted from Seinfeld and Pandis, 2006) where kB is the Boltzmann constant [1.38× 

10
–23

 kg m
2
 s

–2
 K

–1
] and T [K] is the absolute lake temperature:  

𝜆p,water,𝑗 =
1

6 𝜂water
√𝜌p 𝑘B 𝑇 𝑑p,𝑗  / 3   (3.7). 

The diameter-specific depth hp,j of a particle in the lake was calculated as:  

ℎp,𝑗 = 𝑣s,water,𝑗𝑡 ± 𝜆p,water,𝑗  (3.8). 

 

3.2.3 Retrieval of public data. 

Long-term biogeochemical measurements have been made in Tempe Town Lake 

(Hartnett, unpublished; McClean, 2007; City of Tempe, 2015), the Verde River, and the 

Salt River. To test my hypothesis, I employ the dates and times of haboob and blowing 

dust events determined in my prior work (see Chapter 2) as well as several CAP-LTER 

(Central Arizona – Phoenix Long-Term Ecological Research) long-term data sets 

(Marusenko et al., 2011), some of which has been published and tested for other 

hypotheses (Hartnett et al., in prep.; Hartnett, unpublished; McClean, 2007).  

Weekly measurements of pH, temperature, water clarity, and dissolved oxygen 

were retrieved from the City of Tempe (2015). Dissolved organic carbon (DOC), trace 

metals, and conductivity measurements reported in Hartnett et al. (in prep.) were also 

compared with modeled deposition. Stream flow measurements (15-minute resolution) 

were obtained from the U.S. National Water Information System (2016) for gauges 

09512162 (Indian Bend Wash at Curry Rd.) and 09512165 (Salt River at Priest Dr.) as 

well as from the Flood Control District of Maricopa County (2016) for gauges 4573 
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(Price Drain at Loop 202), 4548 (Salt River at Val Vista Dr.), 4583 (Salt River below 

Granite Reef), and 4603 (Indian Bend Wash near McKellips Rd). Hourly precipitation 

records for KPHX (the Phoenix Sky-Harbor International Airport weather station) were 

retrieved from the quality-controlled local climatological database provided by the U.S. 

National Centers for Environmental Information (2016). 

3.3 RESULTS AND DISCUSSION 

There were 96 haboobs and 170 blowing dust events near Tempe Town Lake 

from 2005 to 2014 (Chapter 2). These events were compared with the long-term CAP-

LTER biogeochemical data (City of Tempe, 2015; Hartnett et al., in prep.; Hartnett, 

unpublished). I hypothesized that dust deposition was altering Tempe Town Lake 

chemistry. To test the hypothesis, I employed the two endmember models. 

3.3.1 Atmospheric dry deposition into Tempe Town Lake.  

The impact of particulate flux into Tempe Town Lake in the first endmember 

model (particles fully dissolving in the lake and their dilution by flow through the lake) 

was investigated. Between 0.01 and 50 mg L
–1

 dissolved PM arising solely from 

atmospheric dry deposition is predicted to be present in the lake (Figure 3.3). The large 

range in dissolved particulate mass is a result of extreme dust events when deposition is 

high as well as solute dilution during heavy precipitation events. 
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Tempe Town Lake receives a large amount of runoff (e.g., > 3 m
3
 s

–1
) only 

infrequently: the immediate area receives ≥ 10 mm rain on fewer than six days per year 

(U.S. National Centers for Environmental Information, 2016). The lake is designed to 

function as a river channel when receiving flood waters and has reached release rates of 

up to 1161 m
3
 s

–1
 (Feb 12, 2005; U.S. National Water Information System, 2016) which 

equates to a flow velocity of about 1.7 m s
–1

 and a lake residence time of about 44 

minutes. However, the discharge flow is generally < 1 m
3
 s

–1
 and sometimes zero (67% 

and 21% of the hourly discharge rates respectively; Figure 3.3) resulting > 42 day to 

indefinite instantaneous residence times.  

 

 

 

Figure 3.3. Time series plot of lake discharge flow (grey line) and the predicted dissolved 

particle mass concentration (black line) in Tempe Town Lake. During large flow events, 

the dissolved PM concentration decreases due to dilution. During large deposition events, 

such as haboobs, the dissolved PM concentration increases.  
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3.3.2 Particle settling in Tempe Town Lake. 

In the second end-member scenario where particles settle within the lake 

according to Stoke’s Law without dissolving, much of the particle mass settles relatively 

quickly during haboobs. The predicted summertime settling times of particles at 30 °C is 

shown in Figure 3.4. Much of the particles deposited during haboob events are larger than 

10 µm in aerodynamic diameter (Chapter 2) and consequently 69% of particles settle to 

the bottom of the lake in 1 hour or less (Figure 3.4).  

 

 

Figure 3.4. The predicted settling of a non-haboob distribution (left) and a haboob 

distribution (right) of particles within Tempe Town Lake in a non-dissolution, no-flow 

scenario, at 30 °C. The shaded bars indicate the percent of overall particle mass contained 

in three depth layers or on the lake bottom. In less than 24 hours, 60% of the mass in a 

non-haboob particle distribution will settle below 1 m depth. In 1 minute, 63% of the 

mass in a haboob particle distribution settles 10 cm or more and during 1 hour, 69% 

reaches the lake bottom.  
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The comparative calculation at wintertime lake water temperatures (10 °C) 

yielded similar results (Figure C1). Even if the lake is polymictic with daily mixing 

timescales, the Stokes sedimentation would occur faster for most particles, that is 

particles with dp > 2.5 µm. Nevertheless, the water-borne particles with dp < 2.5 µm can 

remain in the upper 10 cm of the lake for 12 hours or more if settling alone is considered. 

The mean free path of particles (dp = 0.1 to 320 µm) due to Brownian motion is on the 

order of tens of nanometers at the temperature range of the lake (8.4 to 33 °C). Thus, 

particle movement in the lake is likely dominated by gravitational sedimentation, barring 

high-flow resuspension.  

3.3.3 Large deposition events which coincide with lake chemistry changes. 

During the ten year time period investigated (2005 to 2014), there were some 

deposition events which coincided with changes in Tempe Town Lake chemistry (Table 

3.1). Specifically, water clarity, DOC, and conductivity exhibited changes that might 

have been associated with haboobs (Figures 3.5 – 3.7; Hartnett et al., in prep.). One of the 

changes was after a moderate haboob on June 26, 2012. The DOC measurement taken 

approximately 9 h after the haboob event was 7.3 mgC L
–1

 (53%) larger than the previous 

measurement (Table 3.1; Figure 3.5, blue rectangle). As a comparison, the lake had a 

relatively consistent DOC concentration of 5.8±1.0 mgC L
–1

 (n=16) during the prior two 

months.  
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On the week of June 22 – 30, 2012, no water was discharged from the lake (Qout = 

0) and there was no water flowing immediately upstream (Salt River, Indian Bend Wash). 

Similarly, Price Drain at Loop 202 had minimal flow during the week (≤ 0.25 m
3
 s

–1
) and 

no flow the evening of the haboob. The data for canal flow into the lake was not 

publically available but was insufficient to cause an outflow. This precludes the dilution 

of deposited particles by lake flow. Furthermore, there was no precipitation reported 

locally during June 22 – 30, 2012 (at KPHX). 

Table 3.1 

Haboob Events Which Coincide with Changes in Tempe Town Lake Chemistry  

Date Dissolved PM Δ 

[mg L
–1

] 

Parameter Absolute Δ Relative Δ 

 [%] 

7/11/2011 9.2 ±0.1 Clarity -9.4 
†
 28% 

7/25/2011 6.9 ±0.2 Clarity -9.8 38% 

8/29/2011 11.4 ±0.1 Clarity -13 54% 

6/27/2012 1.6 ±0.1 DOC 7.3 ±0.2 
‡
 53% 

7/22/2012 1.5 ±0.1 DOC 1.1 ±0.2 15% 

9/4/2012 2.7 ±0.1 DOC 0.75 ±0.23 11% 

8/23/2013 1.8 ±0.7 Conductivity 9* 1% 

9/6/2013 1.4 ±0.9 Conductivity 10 1% 

9/6/2013 1.4 ±0.9 DOC 0.63 ±0.36 12% 

7/8/2014 3.1 ±0.8 DOC 0.13 ±0.03 3% 

7/28/2014 3.8±0.7 Clarity -3.1 8% 

Notes: negative absolute changes are decreases in measurements; †, inches of clarity; ‡, 

DOC (dissolved organic carbon) in mgC L
–1

; *, units are µS cm
–1

; the dissolved PM 

changes are predictions while the absolute changes in clarity, DOC, and conductivity 

are observations.  
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The organic carbon content of haboob dust (specifically, air-borne total suspended 

particulate matter or TSP) is unknown for the Tempe area. The sources of the particles 

carried by haboobs into Tempe have not been recently characterized but likely include a 

combination of desert particles, agricultural soils, and urban particles. Péwé et al. (1981) 

collected Tempe haboob dust in the 1970’s and performed mineralogical characterization. 

Their samples were primarily comprised of minerals: 55-60% SiO2, 11-14% Al2O3, and 

4-5% iron oxides with 8-12% mass loss upon ignition – which is related to organic matter 

and carbonate content. Recently studies reported the organic carbon content of soils 

throughout the Phoenix area as 0.07–3.7% (mean 1.2%; McCrackin et al., 2008) of which 

an average of 31% was black carbon (which is generally insoluble in water; Hamilton and 

 

Figure 3.5. Dissolved organic carbon (black circle symbols), predicted particle 

dissolution (black line), and lake discharge (grey line) in Tempe Town Lake for summer 

2012. Haboob events are indicated by vertical lines. The blue, green, and red shapes 

highlight a discussion in the main text. 
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Hartnett, 2013). Higher organic carbon contents have been reported in road-side soils 

throughout the Phoenix area: approximately 0.4 to 5% (median 1.4%; calculated as 

organic matter 50% carbon by mass; Marusenko et al., 2011). A study of the PM 

generated in the resuspension of soil samples from the Phoenix-area reported 1.3% 

organic carbon in PM10 from desert samples and 2% organic carbon in PM10 from 

agricultural samples (Upadhyay et al., 2015).  

Fine particles in the lake, for example dp < 2.5 µm arising from atmospheric PM2.5 

may be richer in organic carbon content as the fine particles are often anthropogenic in 

origin (Chapter 1). Nevertheless, the mass arising from dp < 2.5 µm particles during a 

haboob is estimated as 5% of the TSP (Chapter 2). For the purposes of this Chapter, I 

employed a soluble organic carbon content of 1% in PM depositing in Tempe Town 

Lake.  

The haboob on June 26, 2012 deposited a peak of about 42 kg ha
–1

 h
–1

 and a 3-

hour cumulative deposition of 62 kg ha
–1

. Using Equation 3.4 and assuming complete 

mixing, this equates to 1.6 mg L
–1

 new mass and 0.016mgC L
–1

 new soluble organic 

carbon added to Tempe Town Lake (Figure 3.5 and Table 3.1). This is substantially less 

than the observed increase in DOC of 7.3 mgC L
–1

. If complete mixing is not assumed, 

e.g., if particles completely dissolve in the top 10 cm of the lake but do not diffuse below 

10 cm, the haboob deposition on June 26, 2012 could have temporarily increased surface 

DOC concentrations by 0.65 mgC L
–1

 (top 10 cm), which is nonetheless an order of 

magnitude smaller than the observed increase. Thus, haboob dust deposition on June 26, 

2012 was likely insufficient to wholly cause the 7.3 mgC L
–1

 increase in Tempe Town 
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Lake DOC observed 9 hours later. The increase may have been caused by biological or 

other processes in the lake.  

Haboob deposition coincided with two more DOC increases in the summer of 

2012 (Table 3.1). The endmember dissolution model predicts 1.5 mg L
–1

 new PM mass 

on July 22 and 2.7 mg L
–1

 on August 4, 2012 (see green and red highlights in Figure 3.5). 

This would equate to 0.015 and 0.027 mgC L
–1

 new dissolved organic carbon which is 

less than the observed 1.1 and 0.75 mgC L
–1

 DOC increases. If lake heterogeneity is 

assumed (i.e., mixing is confined to the upper 10 cm of the lake), then haboob deposition 

could have caused 0.61 and 1.1 mgC L
–1

 increases in DOC on the two respective days, 

which is of the same order of magnitude as the observed DOC increases (Table 3.1).  

In the summer of 2013, two haboob events (highlighted in magenta and yellow in 

Figure 3.6) on August 20 and September 5 coincided with 9 and 10 µS cm
–1

 increases in 

conductivity on August 23 and September 6 (1% increases each; Table 3.1). The 

corresponding endmember model masses added to the lake are 1.8 and 1.4 mg L
–1

 (Figure 

3.6). The dissolution of ionic compounds originating from deposited PM would 

contribute to increasing water conductivity and may be responsible for these small (1%) 

increases. However, larger deposition events with predicted PM added masses > 10 

mg L
–1

 did not coincide with increases in lake conductivity.  
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Several large deposition events occurred in the summer of 2011 and added a 

predicted 9.2, 6.9, and 11.4 mg L
–1

 dissolved PM mass to the lake (Table 3.1). These 

coincided with 28 to 54% decreases in Tempe Town Lake clarity on July 11, July 25, and 

August 29, as highlighted in Figure 3.7 in cyan, purple and orange, respectively. 

However, not every deposition event was accompanied by a decrease in water clarity, for 

example August 8, 2011 in Figure 3.7.  

Many factors can contribute to changes in water clarity in surface water, such as 

high-flow resuspension of settled particles. The decreased clarity on July 5, 2011 may 

have been affected by the modest lake release (attributed to flow through the lake) of 5.3 

 

Figure 3.6. Conductivity (black circle symbols), predicted particle dry deposition (black 

line), and lake discharge (grey line) in Tempe Town Lake for summer 2013. Haboob 

events are indicated by vertical lines. The magenta and yellow shapes highlight a 

discussion in the main text.  
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m
3
 s

–1
 which occurred on the same day and which totaled 7% of the lake volume during a 

24-hour period (see purple highlight in Figure 3.7). The associated lake residence time at 

peak outflow was calculated to be 8 days.  

 

Despite the findings of Barry et al. (2016) that wintertime dust events sometimes 

affected canal water turbidity, the present work reports inconclusive findings of dust-

storm alteration of Tempe Town Lake clarity during all seasons of the year. A few large-

deposition haboob events, such as during the summer of 2011, may have affected water 

clarity in the lake. However, consistent effects were not apparent during the 96 haboobs 

and 170 blowing dust events over the ten years I investigated. 

 

Figure 3.7. Water clarity (black circle symbols), predicted particle dry deposition (black 

line), and lake discharge (grey line) in Tempe Town Lake for summer 2011. Haboob 

events are indicated by vertical lines. The cyan, purple and orange shapes highlight a 

discussion in the main text.  
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The application of the two endmember models of either complete dissolution or 

non-dissolution provides a preliminary view of dust deposition impacts on the lake. 

Dissolution would need to occur on timescales of tens of seconds to avoid substantial 

particle sedimentation to the lake bottom. If dissolution were indeed rapid enough, 

haboobs could be responsible for some of the changes in biogeochemical measurements. 

A much more complex model would be required to more precisely predict the dissolved 

mass originating from atmospheric dry deposition in the lake. The timescale of 

dissolution is unknown and will depend on the particle sizes, particle surface 

morphology, and particle composition.  

3.4 SUMMARY 

The deposition of haboobs was compared in time with changes in Tempe Town 

Lake chemistry. An endmember model was developed for particle dissolution and 

dilution in the lake and a second endmember model was developed for predicting particle 

settling times. During the time frame investigated, 2005 to 2014, there was no clear 

evidence of haboob deposition events producing a discernable signal in Tempe Town 

Lake chemistry. The dissolution endmember model predicts lower increases in DOC than 

observed meaning that dust deposition does not fully account for the DOC increases that 

coincide with some haboobs. A few deposition events did coincide with changes in lake 

conductivity and water clarity. Dust storms may have well impacted the lake but not in a 

consistently discernable manner. 

The particle settling endmember model predicted sedimentation times of non-

dissolving particles on the order of minutes and hours. During a haboob, 69% of the 

particle mass is predicted to settle to the bottom of the lake in 1 hour or less. Since 



55 

particle dissolution timeframes were not known, an endmember dissolution approach was 

employed. A more complex model of dissolution would be required to predict real 

dissolution timescales in Tempe Town Lake. Future research is warranted to identify 

haboob redistribution and haboob biochemical impact on other systems, such as soil, in 

the CAP urban ecosystem. 
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CHAPTER 4 

PAH IN HABOOB PARTICULATE MATTER 

4.1 INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the atmosphere from 

pristine to urban environments (Xie et al., 2007; Nizetto et al., 2008; Mancilla et al., 

2016). PAH are considered semivolatile species, with most occurring both in the gas and 

in the particle phase. The partitioning between the phases is dependent on temperature, 

vapor pressure of the PAH under consideration, and the particulate matter population 

present (Fernandez et al., 2002; Eiguren-Fernandez et al., 2004; Delgado-Saborit et al., 

2013). Typically smaller PAH, like naphthalene (NAP), are predominately in the gas 

phase while higher molecular weight PAH such as benzo[a]pyrene (BAP) are 

predominately associated with the particle phase.  

PAHs have been extensively studied in air pollution studies because of health 

concerns despite overall low concentrations in the pg m
–3

 range in urban areas and 

accounting for only a small fraction of total organic carbon (< 0.2%, Rogge et al., 

1993b). Several PAH are known or suspected to cause cancer (ATSDR, 1995; Ravindra 

et al., 2008). A subset of 16 PAHs is categorized as priority pollutants by the 

Environmental Protection Agency (EPA, 2014b).  

PAH have various sources, which are usually grouped as either petrogenic (from 

petroleum) or pyrogenic (products of incomplete combustion). PAH are present in crude 

oil and thus are released in oil spills, vaporize from roadway tar sealer and are present in 

gasoline and diesel vapors (Marr et al., 1999; Mahler et al., 2012). PAH are also formed 

during pyrolysis of organic matter: wildfires, tobacco smoke, automobile exhaust, power 
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plant emissions, and cooking operations (Rogge et al., 1993a; Zhang and Tao, 2004). 

Many sources have distinct relative abundances of specific PAH isomers (Figure 4.1) 

which lead to the use of ratios as diagnostic tools to characterize the sources of PAH. For 

example, following a review of 38 source studies, Yunker et al. (2002) employed an IND 

(indeno[1,2,3–cd]pyrene) and BGP (benzo[g,h,i]perylene) isomer ratio, 
IND

IND + BGP
, of 0.0 

to 0.2 for petroleum sources, 0.2 to 0.5 for petroleum combustion, and 0.5 to 1.0 for 

grass, wood, and coal combustion.  

 

In the Phoenix area, PAHs have been reported in particulate matter (PM) at 

concentrations c(PAH) of 20 to 1460 pg m
–3

 (Cahill, 2013), the majority of which was in 

PM2.5 or PM with aerodynamic diameters of less than 2.5 µm. It has also been reported 

that PAHs in soils in the Phoenix area are related to automobile emissions (Marusenko et 

al., 2011). 

A haboob is a type of severe dust storm which occurs in the Phoenix area during 

the summer monsoon seasons (Nickling and Brazel, 1984; Brazel and Nickling, 1986; 

Chapter 2). When thunderstorms mature in the early afternoon, falling hydrometeors cool 

the air which produces a dense air mass that descends rapidly to the surface of the earth. 

a.  b.  

 

BGP 

 

BAA 

 

CHY 

 

IND 

Figure 4.1. A few examples of PAH isomers employed in tracer ratios. Panel a. shows 

C18H12 isomers BAA (benz[a]anthracene) and CHY (chrysene); panel b. shows C22H12 

isomers IND (indeno[1,2,3–cd]pyrene) and BGP (benzo[g,h,i]perylene).  
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The displacement of air causes an outflow: a turbulent, directional movement of air and 

dust (Sutton, 1925; Idso et al., 1972; Idso, 1976). Visibility is reduced due to increases in 

PM>2.5 (PM larger than an aerodynamic diameter of 2.5 µm) and, to a lesser extent, 

increases in PM2.5 (Lei and Wang, 2014). In these haboob events the total particle mass 

concentrations increase for one to three hours in both the PM2.5 and PM10 fractions: for 

example, on July 3, 2014, the PM2.5 increased by 37 µg m
–3

 (a factor of 4.2×) and PM10 

increased by 2006 µg m
–3

 (a factor of 61×; Figure A2). While most of the haboob PM is 

likely soil derived, it might also contain urban particles which generally have higher 

amounts of atmospheric pollutants (such as metals or organic pollutants) than rural PM. 

To the best of my knowledge, no detailed chemical characterization of haboob PM has 

ever been reported. Hence, it is unknown how anthropogenic pollutant concentrations 

change in haboob storms, especially whether or not their concentrations increase. It is 

further unknown if any changes are persistent after a haboob event or merely transient, 

like the sharp increases in particulate mass (Lei and Wang, 2014). 

In this chapter, the impact of haboobs on atmospheric concentrations of a specific 

class of pollutants, PAH, is investigated. Concentrations of PAH have been monitored 

before, during, and after haboob dust storms. Their variability is discussed relative to 

total particle mass concentrations. Diagnostic ratios are applied to investigate if the 

sources of haboobs change in dust storms and how atmospheric PAH relate to soil PAH 

in the Phoenix region. 

4.2 METHODOLOGY 

The concentrations of PAH were determined in PM2.5 for nine days during June 

30 to July 9, 2014. There was one haboob and one ‘other dust’ event that occurred during 
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this time (Chapter 2). A national holiday (July 4
th

) was on a Friday, creating for many 

residents what is sometimes called a three-day weekend. Barbeque and firework use were 

abundant.  

Ambient aerosols were collected on the roof of the Life Sciences building on the 

Arizona State University Tempe Campus via high volume (HiVol) samplers (Tisch 

Environmental, Village of Cleves, OH) equipped with a TE 231 impactor stage (Tisch 

Environmental, Village of Cleves, OH), allowing the for collection of PM2.5. OM samples 

were collected onto pre-fired (600 °C, baked overnight) quartz fiber filters (QM-A, 

Whatman, Pittsburgh, PA). Filters were handled at all times with solvent-washed metal 

tweezers. Samples were collected for 24-hours, unless a dust storm occurred, for which 3- 

to 6-hour samples were collected. The filters were stored at –20 °C until the time of 

extraction. Field blanks were collected by loading filters onto the HiVol stages.  

Extractions were performed with triply cleaned glassware and metalware. The 

cleaning procedure included: first washing with soap and tap water, then with deionized 

water, and finally with ultrapure deionized water (18.2 MΩ cm; Milli-Q, Millipore, 

Billerica, MA). After air drying, all were rinsed with 2–propanol (Optima grade, Fisher 

Scientific, Rochester, NY), air dried again, then wrapped in new aluminum foil. Glass 

beakers and glass bottles were pre-fired at 450 °C for 12-hours as a last cleaning step.  

A deuterated internal PAH standard consisted of 250 µg mL
–1

 of the following in 

dichloromethane (Optima grade, Fisher Scientific, Rochester, NY): benzene–d6, 

naphthalene–d8, acenaphthene–d10, phenanthrene–d10, pyrene–d10, chrysene–d12, 

perylene–d12, benzo[e]pyrene–d12, dibenz[a,h]anthracene–d14, and coronene–d12 (SPEX 
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CertiPrep). Authentic PAH standards were prepared from a commercial mixture (76-Big-

Mix, SPEX CertiPrep). 

The PM2.5 samples and field blanks were divided into pieces with a metal razor 

blade (cleaned as above) and placed into glass jars with lids (cleaned as above), spiked 

with 20 µL deuterated internal standard mixture, and ultrasonically extracted with three 

sequential 25 mL aliquots of dichloromethane. The three 25 mL extraction aliquots were 

combined and reduced to 2 mL volume under a gentle stream of nitrogen gas (ultra-high 

purity; Praxair, Phoenix, AZ), dried with anhydrous sodium sulfate (Sigma Aldrich), 

filtered through 25 mm diameter pre-fired quartz fiber filters (QM-A, Whatman, 

Pittsburgh, PA), reduced to 100 µL volume under the aforementioned nitrogen gas, and 

transferred via gas tight syringe to 2 mL capped amber vials (PTFE/silicon septa; Restek, 

Bellefonte, PA) with a glass insert (Restek, Bellefonte, PA). Following extraction, 

samples were stored at –20 °C until the time of analysis.  

Samples, standards, and blanks were analyzed by GC/MS (Agilent 6890/5973 

inert, Agilent Technologies, Santa Clara, CA), operating in splitless mode at 300 °C and 

2 μL injections. Separation was achieved with an Agilent HP-5MS column (0.25 mm × 

30 m × 0.25 μm) and the following temperature program: holding 65 °C for 10 minutes, 

then ramping 10 °C per minute to 300 °C and finally holding 300 °C for 20 minutes. The 

MS source was operated at 230 °C and 70 eV EI with a 5 minute solvent delay. Ions 50 to 

550 m/z (mass [Da] / charge ratio) were monitored in scan mode.  

As a means of comparison with the samples collected on ASU Tempe Campus, 

PM2.5 air concentration data for the closest monitoring site: 04-013-4005 (TE) were 

retrieved from the EPA Air Quality System (AQS; EPA, 2015). The ASU sampling site is 
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about 850 m north of AQS TE. Quality controlled meteorological data in the vicinity of 

ASU was retrieved from NOAA (2015) for the Phoenix Sky-Harbor Airport (KPHX). 

PAH soil concentrations at 60 sites throughout the region surrounding ASU were 

retrieved from CAP-LTER (Central Arizona – Phoenix Long-Term Ecological Research) 

data catalog (Hall and Marusenko, 2009).  

4.3 RESUTLTS AND DISCUSSION 

4.3.1 PAH concentrations. 

PAH concentrations in Tempe (AZ) PM2.5 ranged from 1 – 1140 pg m
–3

 (Table 

4.1). For Tempe, the concentrations were separated into background and haboob time 

periods. The background time periods were samples when there was no dust storm. The 

summertime typical Tempe background PM2.5 PAH concentrations c(PAH) were on the 

same order of magnitude as those reported in urban areas in southern California 

throughout all seasons of the year (Eiguren-Fernandez et al., 2004; Table 4.1) but less 

than those reported during the winter at a roadside in Birmingham, United Kingdom 

(Delgado-Saborit et al., 2013). The PM2.5 c(PAH) in urban locations throughout the 

greater Houston area, Texas during all seasons of the year ranged from the same order of 

magnitude to an order of magnitude higher than Tempe (Fraser et al., 2002). The higher 

c(PAH) in PM2.5 in some areas of Houston and in Birmingham is likely due to seasonal 

effects where c(PAH) is higher during the wintertime. Cahill (2013) measured up to a 

factor of 84× higher c(PAH) in PM during the wintertime relative to the summertime, 

which is attributed to wintertime low wind speeds and boundary layer temperature 

inversions (Sorooshian et al., 2011). In the case of Birmingham, the sampling location 

was roadside, which further increased c(PAH) relative to Tempe (not roadside).  
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Table 4.1 

A Comparison of PAH PM2.5 Concentrations during a Haboob, Non-Dust, and Background Time Periods in Tempe with 

Literature Measurements  

PAH* 2014-07-03 

haboob
#
 

2014-07-08 

dust event 

Background 

mean (range)
§
 

Houston, 

Texas
†
 

Southern 

California
‡
 

Birmingham, 

United Kingdom
♦
 

PHE 339 92 69 (8 – 103) 60 – 370 1 – 37 840 

ANT  133 22 22 (5 – 55) 20 – 380 0.2 – 3 250 

FTH  265 134 75 (9 – 118) 40 – 550 5 – 48 1400 

ACP  497 11 23 (5 – 35)    

PYR  1139 141 127 (38 – 188) 60 – 670 6 – 70 1350 

BAA  394 26 34 (21 – 79) 10 – 1290 6 – 41 440 

CHY + TRI 53 48 22 (6 – 61) 20 – 1340
◊
 8 – 57

◊
 850

◊
 

BKF  148 76 57 (9 – 163) <10 – 870 6 – 53 560 

BJF  25 6 7 (1 – 14)    

BEP  147 40 23 (3 – 48)   260 

BAP  953 102 76 (31 – 144) <20 – 870 9 – 100 180 

PYL  35 7 8 (1 – 14)    

IND 81 21 22 (7 – 44) <40 – 960 12 – 100 430 

BGP  124 47 23 (6 – 44) <10 – 1260 23 – 193 440 

DBA 235 47 28 (7 – 58) <10 – 900 2 – 12 240 

COR  200 55 56 (29 – 132)   350 

Notes: *, concentrations are in pg m
–3

; #, two sequential samples were taken during the haboob; §, background was the non-

dust time periods from June 30 – July 9, 2014; †, Fraser et al., 2002; ‡, Eiguren-Fernandez et al., 2004; ♦, Delgado-Saborit et 

al., 2013; ◊, only chrysene was reported; PHE, phenanthrene; ANT, anthracene; FTH, fluoranthene; ACP, acephenanthrylene; 

PYR, pyrene; BAA, benzo[a]anthracene; CHY, chrysene; TRI, triphenylene; BKF, benzo[k]fluoranthene; BJF, 

benzo[j]fluoranthene; BEP, benzo[e]pyrene; BAP, benzo[a]pyrene; PYL, perylene; IND, indeno[1,2,3-cd]pyrene; BGP, 

benzo[g,h,i]perylene; DBA, dibenz[a,h]anthracene; COR, coronene.  

6
2
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4.3.2 Haboob-related PM2.5 and PAH changes. 

Examination of PM2.5 during the 2012 to 2014 monsoon seasons revealed that 

PM2.5 increased briefly during haboobs (n = 31) by a factor of 0.2× to 23.5× (mean = 

5.1×) of that of the background PM2.5 during the previous 24 hours (Table 4.2). 

 

There was also an increase in 16 PAHs’ c(PAH) in PM2.5 during the haboob on 

July 3, 2014 (Figure 4.2, Table 4.1). The increases varied by PAH and ranged from a 

factor of 0.6× for CHY to 23.6× for ACP (mean = 6.5×) greater than the background 

c(PAH) during the previous 72 hours (Figure 4.2). All the PAHs were influenced by a 

haboob more than by background holiday activities (July 4
th

 through 6
th

; Figure 4.2).  

Table 4.2 

A Comparison of the July 3, 2014 Haboob and the July 8, 2014 Dust Event with the 

Haboob Mean Characteristics for 2012 to 2014  

Date 2014-07-03 2014-07-08 Haboob Mean 

Classification* haboob other dust (haboob) 

Maximum PM2.5 [µg m
–3

]
 #
 46.0 43.3 46.8 

Relative PM2.5 increase [×] 4.2 5.2 5.1 

Minimum Visibility [km]
&

 1.6 14.5 5.1 

Maximum Gust [m s
–1

]
&

 25 14 16.9 

Maximum PM10 [µg m
–3

]
#
 1059 424 789 

Wind Direction [degrees]
&

 160 – 170 100 – 110 Not determined 

Notes: *, classification in Chapter 2; #, at site AQS TE (04-013-4005); &, at KPHX.  
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The relative increase in PM2.5 during the July 3, 2014 haboob was a factor of 4.2× 

which is below the average, 5.1× but above the median, 3.4× for 2012 to 2014 monsoon 

season PM2.5 data. The maximum PM2.5 of 46 µg m
–3

 on July 3, 2014 is typical for the 

three monsoon seasons where the mean of the maxima is PM2.5 46.8 µg m
–3

. Thus, this 

particular haboob may be representative of typical haboobs in terms of PM2.5 increases. 

However, the visibility of 1.6 km (1 mi) was lower, the peak gust speed of 25 m s
–1

 (56 

mph) was higher, and the peak PM10 of 1059 µg m
–3

 (PM with aerodynamic diameters 

< 10 µm; station AQS TE) was higher than the average for haboob extrema (5.1 km, 16.9 

 

Figure 4.2. The increase of PAH concentrations in PM2.5 during a haboob (Hb) but not 

during an ‘other dust’ (OD) event. The sums of 3-, 4-, 5-, and 6-,7-ring PAHs are in red, 

black, blue, and green rectangles respectively. The duration of the sampling can be seen 

in the horizontal width of the PAH markers. AQS TE (04-013-4005) PM2.5 is in gray. 

The red and blue star denotes the increase in PM2.5 due to holiday fireworks. Note the 

difference in scales of PAHs and PM2.5.  
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m s
–1

, and 789 µg m
–3

 respectively; Chapter 2) meaning that it was a relatively ‘stronger’ 

haboob than average.  

The c(PAH) did not appear to increase during a dust event that occurred on July 8, 

2014 despite the increase in PM2.5 by a factor of 5.2 (Figure 4.2, Table 4.1). There were a 

few differences between the events. The July 3
rd

 haboob had gust speeds up to 25 m s
–1

 

while the dust event on July 8
th

 had lower gust speeds: maximum of 14 m s
–1

 (Table 4.2). 

The dust event on the 8
th

 may have been a weak haboob when it reached ASU: there was 

a weak thunderstorm outflow weather signature. However, due to the uncertainties 

associated with the classification of weak haboobs, it was categorized as “other dust” in 

Chapter 2.  

Thunderstorm outflows are known to be heterogeneous throughout the area (Péwé 

et al., 1981) and do not all originate from the same direction. Indeed, the wind direction 

reported nearby ASU (KPHX) was about 165 compass degrees (originating from the 

SSE) during the July 3
rd

 haboob and was about 100 degrees (nearly east) on the 8
th

 (U.S. 

National Oceanic and Atmospheric Administration, 2015). To the SSE of ASU is an 

urban region extending 16 km or more whereas to the ENE (i.e., a bit north of 100 

degrees), there are agricultural fields and open desert 5 to 10 km away. PAH emission is 

often the result of anthropogenic activities and c(PAH) are generally higher in urban 

areas than rural areas. The difference between the dust storms was further investigated 

through the use of diagnostic ratios to see if the relative differences in c(PAH) might be 

reflected in the observation of different PAH profiles.  
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4.3.3 PAH diagnostic ratios in PM2.5 and soils. 

Several PAH isomer ratios were calculated (Table 4.3) for the haboob, the other 

dust event, and the background samples. These were compared to the soil PAH 

diagnostic ratios reported in Marusenko et al. (2011). The PAHs in PM2.5 during the 

haboob and during background time periods had generally higher ratios of 
BAA

BAA + CHY
 than 

soils throughout the Phoenix area while the other dust event had a signature similar to the 

soils (Figure 4.3). The background PAHs at ASU are probably largely anthropogenic in 

origin, to which the haboob PAH isomer ratios bore similarity. This agrees with the wind 

direction data suggesting an influx of anthropogenic PAHs from SSE of ASU rather than 

resuspension of soil PAHs while the July 8
th

 other dust event was an influx resuspended 

soil PM2.5 originating from the east or ENE of ASU.  

The 
IND

IND + BGP
 ratio during most of the background time periods in Tempe was 

between 0.2 and 0.5 (Figure 4.3), which is indicative of automobile emissions (Yunker et 

al., 2002); the exceptions were three sampling periods when the 
IND

IND + BGP
 ratio was > 0.5, 

suggesting PAH originating from combustion of other fuels (i.e., not gasoline or diesel 

fuels) such as barbeques. One of the three sampling periods with a 
IND

IND + BGP
 ratio > 0.5 

was during the daytime hours of the July 4
th

 holiday, when barbeque use is higher. The 

other two exceptions occurred on the Tuesday after the holiday weekend and on the 

Monday prior to the holiday weekend and bear no apparent significance.  

The literature 
IND

IND + BGP
 ratios at urban locations where vehicular emissions may 

be a dominant source of PAH in PM2.5 (Table 4.3) were of similar magnitude to most of 

the background time periods in Tempe.  



67 

 

 

Table 4.3 

A Comparison of PAH PM2.5 ratios during a Haboob, Non-Dust, and Background Time Periods in Tempe with Literature 

Measurements 

Parameter 2014-07-03 

haboob 

2014-07-08 

dust event 

Background  

mean (range)
§
 

Houston, 

Texas
†
 

Southern 

California
‡
 

Birmingham, 

United Kingdom
♦
 

Relative increase factor 0.6 – 23.6 -0.6
&

 – 2.4 n/a* n/a n/a n/a 

BAA / (BAA + CHY) 0.70 0.35 0.63 (0.34 – 0.80) 0.22 – 0.49 0.38 – 0.53 0.34 

IND / (IND + BGP) 0.38 0.31 0.49 (0.28 – 0.76) 0.29 – 0.55 0.31 – 0.45 0.49 

ANT / (ANT + PHE) 0.28 0.20 0.26 (0.08 – 0.43) 0.18 – 0.51 0.03 – 0.58 0.23 

FTH / (FTH + PYR) 0.19 0.49 0.36 (0.20 – 0.51) 0.40 – 0.53 0.26 – 0.45 0.51 

Notes: §, background was the non-dust time periods from June 30 – July 9, 2014; †, Fraser et al., 2002; ‡, Eiguren-Fernandez 

et al., 2004; ♦, Delgado-Saborit et al., 2013; &, the negative number is a relative decrease; *, n/a is not applicable; PHE, 

phenanthrene; ANT, anthracene; FTH, fluoranthene; PYR, pyrene; BAA, benzo[a]anthracene; CHY, chrysene; IND, 

indeno[1,2,3-cd]pyrene; BGP, benzo[g,h,i]perylene.  

6
7
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The magnitude of the background and haboob 
BAA

BAA + CHY
 ratios further would 

suggest a pyrogenic PAH origin, which is consistent with an anthropogenic PAH influx. 

The PAH isomer ratios of somewhat more volatile PAHs, 
ANT

ANT + PHE
 and 

FTH

FTH + PYR
 , are 

likely less applicable to PM2.5 in the Phoenix area during the summer when temperatures 

exceed 40 °C for approximately 61 days per year (NOAA, 2015). Nevertheless, the 

FTH

FTH + PYR
 ratio differentiates most of the urban background PM2.5 samples from the soil 

samples (Figure 4.4). One of the two haboob samples bears similarity with soil 
FTH

FTH + PYR
 

 

Figure 4.3. PAH diagnostic ratios of haboob, background, other dust data (brown, grey, 

and tan circles respectively) during the time period of June 30 to July 9, 2014. Soil data 

(black circles) is as reported in Marusenko et al. (2011) and Hall and Marusenko (2009). 

See text for abbreviations.  
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ratios while the other does not. It is possible that the source of the haboob dust was not 

constant throughout the period of the haboob, which could be manifested in a PAH 

isomer ratio difference. The 
ANT

ANT + PHE
 isomer ratio does not appear to differentiate PM2.5 

from soils and would suggest a pyrogenic origin for nearly all the PM2.5 and soil samples 

(Figure 4.4).  

 

The diagnostic ratios of the summertime background samples in Tempe (Table 4.3) 

compared well with urban literature ratios in southern California (year-round; Eiguren-

Fernandez et al., 2004), the Houston area (year-round; Fraser et al., 2002), and 

 

Figure 4.4. PAH isomer ratios of haboob, background, other dust data (brown, grey, and 

tan circles respectively) from June 30 to July 9, 2014. Soil data (black circles) is as 

reported in Marusenko et al. (2011) and Hall and Marusenko (2009). See text for PAH 

abbreviations.  



70 

Birmingham (wintertime; Delgado-Saborit et al., 2013). The background diagnostic 

ratios were generally indicative of the combustion of petroleum fuels (gasoline and 

diesel) while fewer samples were indicative of other fuels or mixed fuel pyrolysis.  

4.4 SUMMARY 

The concentrations of PAHs have been determined in PM2.5 samples in Tempe 

(AZ) during the summer of 2014. The background (i.e., non-dust storm) PAH 

concentrations and diagnostic ratios observed in Tempe are consistent with summertime 

literature observations of similar urban/suburban environments.  

The PM2.5 concentrations and PAH in PM2.5 concentrations during a haboob 

storm were found to be higher than antecedent background concentrations by a factor of 

4.2× and 6.5× respectively. However, PAH concentrations did not increase during an 

‘other dust’ event a few days later when PM2.5 concentrations increased by a factor of 

5.2×. The haboob PM2.5 PAH diagnostic ratios were compared to those in and were found 

to be different than those in soils of the Phoenix area yet similar to urban background 

PM2.5 while the other dust event was similar to soil diagnostic ratios. An inspection of 

wind direction and PAH isomer ratios in PM2.5 relative to soil suggests an urban / 

anthropogenic PAH source to the SSE of ASU during the July 3, 2014 haboob while the 

July 8, 2014 other dust event may have originated from rural/agricultural areas to the 

ENE of ASU. The data suggests that the quantity of PAH in PM2.5 during haboobs and 

other dust events depends on the direction of the storm path and therefore the PM source.  
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CHAPTER 5 

THE IMPACT OF PARTITIONING AND OXIDATIVE PROCESSING OF PAH IN 

FOGS AND CLOUDS ON ATMOSPHERIC LIFETIMES OF PAH 

5.1 INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the atmosphere. They 

are formed during the incomplete pyrolysis of organic matter and emitted by vehicles, 

cigarette smoke, wildfires, fireplaces, smoked foods, and coal power plants (Rogge et al., 

1993a; Zhang and Tao, 2009). Many PAHs are classified as suspected human 

carcinogens and one (benzo[a]pyrene) is a known human carcinogen (U.S. EPA, 2014a). 

The most often studied and most abundant PAHs are fluorene (FLU), acenaphthylene 

(ACY), anthracene (ANT), fluoranthene (FLT), pyrene (PYR), benzo[a]anthracene 

(BAA), benzo[e]pyrene (BEP), benzo[a]pyrene (BAP), perylene (PRL), 

dibenz[a,h]anthracene (DBA), and benzo[g,h,i]perylene (BGP) with typical atmospheric 

concentrations of 0.002 to 25 ng m
–3

 while the smallest PAH, naphthalene (NAP), has 

typical atmospheric concentrations of 20 to 500 ng m
–3

 (total of gas and particle phases; 

Fraser et al., 2002; Eiguren-Fernandez et al., 2004; Delgado-Saborit et al., 2013). 

PAHs have relatively high boiling points (218 to 525 °C or higher) but 

nevertheless demonstrate semi-volatile behavior with nanograms per meter cubed 

quantities of gas phase PAHs in the atmosphere (e.g., phenanthrene, PHE 0.15 ng m
–3

; 

Delgado-Saborit et al., 2013). Observational studies have shown the partitioning of PAHs 

in the absence of fogs and clouds (i.e., distribution between the gas and particulate 

phases) to be dependent upon temperature and the molecular weight of the PAH 

(Fernandez et al., 2002; Eiguren-Fernandez et al., 2004; Delgado-Saborit et al., 2013). 
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For example, Delgado-Saborit et al. (2013) reported PAHs with molecular weights of 

< 202 Da to be > 80% in the gas phase while PAHs > 250 Da were 30% or less in the gas 

phase. When fogs and clouds are present, PAHs are found in the aqueous phase (e.g., 

BAP 2 × 10
–7

 g L
–1

; Herckes et al., 2002) despite the very low water solubilities of PAHs 

(1.4 × 10
–7

 to 3.2 × 10
–2

 g L
–1

; Pearlman et al., 1984). Capel et al. (1991) proposed three 

mechanisms to account for PAH presence in fog water: dissolved organic compounds that 

act as co-solvents for PAHs, organic compounds acting as surfactants at the droplet 

surface or in colloids, and PAHs bound to scavenged particles. They found that filtering 

fog water isolated most PAHs (Leuenberger et al., 1988; Capel et al., 1991) which lead 

Capel et al. (1991) to conclude that scavenged particles were the largest reservoir of 

PAHs in fog. Nonetheless, Capel et al. (1990) found that the surface tension in fog water 

is lower than in pure water, which is a manifestation of surfactant (surface film) and/or 

co-solvent behavior. Valsaraj demonstrated PAH adsorption to water surfaces (Valsaraj, 

2004; Valsaraj, 2009) and to surfactant-like organic matter on water surfaces (Donaldson 

and Valsaraj, 2010; Chen et al., 2011).  

There have been few atmospheric PAH multiphase (i.e., > two phases) studies. 

Lei and Wania (2004) employed partition ratios to predict PAH distribution in clouds. 

Ehrenhauser et al. (2012) compared the observed PAH distribution in fog with simple 

predictions using partition ratios. While the phase distribution and reactions within a 

three-phase system are not well known for PAHs, partition ratios have been measured 

and estimated for octanol-water systems (Wang et al., 1986; Hansch et al., 1995; de 

Maagd et al., 1998), octanol-air systems (Alaee et al., 1996; Harner and Bidleman, 

1998a; Bamford et al., 1999; Odabasi et al., 2006; Ma et al., 2010), and water-air 
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systems, i.e., Henry’s law constants (ten Hulscher et al., 1992; Reza and Trejo, 2004; 

Sander 2015). (Photo)chemical degradation rate constants of many PAHs in the various 

phases have been measured or calculated (Calvert et al., 2002) and the products of PAH 

oxidation reactions have been reported in the gas (Helmig et al., 1992; Helmig and 

Harger, 1994; Lane et al., 1996; Mihele et al., 2002; Wang et al., 2007; Lee and Lane, 

2010), aqueous (Sigman et al., 1996; Mallakin et al., 2000; Kong and Ferry, 2003; Woo 

et al., 2009; Sanches et al., 2011) and organic phases (Jang and McDow, 1997; Fioressi 

and Arce, 2005). To the best of the authors’ knowledge, only one study has published 

PAH photochemical degradation rate constants in organic / aqueous liquid mixtures 

(Grossman et al., 2016) and this was limited to ANT and PYR. The conclusion of their 

study was that ANT and PYR processing in the aqueous phase is faster than in a liquid 

organic phase and thus chemical reactions in the aqueous phase should be considered in 

identifying chemical sinks of PAHs, in addition to deposition processes. Previously, PAH 

processing in the atmospheric aqueous phase was considered to be negligible (Lohmann 

and Lammel, 2004) due to the very low solubility of PAHs. Gas phase PAH reactions and 

heterogeneous reactions on particulate matter surfaces are considered the main sink of 

PAHs where atmospheric lifetimes range from 1 to 300 hr (Keyte et al., 2013). It has 

been suggested that dry deposition is the main physical (i.e., non-chemical) loss process 

of PAHs and therefore their atmospheric lifetime is constrained by the particle lifetime 

(Bidleman, 1988; Škrdlíková et al., 2011). Removal by wet deposition (rain) is 

considered to be at least ten times less efficient than dry deposition (Škrdlíková et al., 

2011).  
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During droplet nucleation and scavenging processes, it is unknown what fraction 

of PAHs bound to PM (particulate matter) will dissolve into the atmospheric aqueous 

phase. Open questions remain as to the role of surface films on PAH uptake by fog and 

cloud droplets and whether PAHs incorporate into or onto atmospherically representative 

droplets. This is in part due to analytical constraints of sample size and PAH detection 

limits. Many studies of PAH uptake from the gas phase by surface films on water have 

employed planar or cylindrical surfaces which do not have the same surface area to 

volume ratios as cloud droplets (Moza et al., 1999; Chen et al., 2006; Chen et al., 2011). 

A few studies of PAH uptake from the gas phase have employed 92 µm droplets (Raja 

and Valsaraj, 2006) or modeled 1000 µm droplets (Ma et al., 2013) which were greater 

than the 5 to 20 µm droplets found in fogs and clouds (Zak, 1994). Other studies have 

employed concentrations of PAHs far exceeding those found in typical fogs and clouds 

(Kahan and Donaldson, 2007; Chen et al., 2011; Styler et al., 2011). Measurements on 

relatively planar surfaces or on surfaces with very high PAH loading may overestimate 

the coverage of drops by surface films.  

The atmospheric oxidation of PAHs to oxy–PAHs (PAHs with one or more 

oxygen atoms in carboxyl groups and/or as heteroatoms in the ring) increases their 

solubility (Delgado-Saborit et al., 2013). This conversion affects the phase distribution of 

PAHs and therefore their atmospheric lifetimes. In addition, it has been shown that 

oxidation may increase PAH toxicity (Straub et al., 1977; McConkey et al., 1997). Oxy–

PAHs are further oxidized to smaller products. PAH removal must be considered not only 

in terms of phase distribution in multiple atmospheric phases but also in terms of PAH 

reactivity and the physical distribution of first- and higher-generation products. 
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Predicting PAH lifetimes and fate in the atmosphere without considering all aspects of 

their distribution and reaction in fogs and clouds might substantially overestimate their 

lifetime.  

5.2 DATA REVIEW 

5.2.1 Partition ratios to describe the distribution between gas, aqueous and 

organic phases. 

Three constants describe the equilibrium partitioning between the gas, organic 

and aqueous phases, respectively. The dimensionless 1–octanol water partition ratio, KOW 

(Equation 5.1), describes the equilibrium distribution of PAH concentrations between 

water and octanol ([PAH]aq and [PAH]org, respectively). 1-octanol is assumed in the 

present study as a proxy of a liquid organic (org) phase in atmospheric particulate matter; 

KOW and can be considered a measure of hydrophobicity.  

𝐾OW =
[PAH]org

[PAH]aq
 (5.1). 

The dimensionless octanol-air partition ratio KOA describes the partitioning between the 

PAH concentrations in 1–octanol and air [PAH]g: 

𝐾OA =
[PAH]org

[PAH]g
 (5.2). 

The Henry's law constant H [mol L
–1

 atm
–1

] describes gas-aqueous partitioning as a 

function of pPAH [atm], the partial pressure of PAHs in the gas phase: 

𝐻 =
[PAH]aq

𝑝PAH
 (5.3). 

Literature values for PAH KOW and KOA are summarized in Table D1.  

Values for H were calculated with the law for ideal gases, KOW, and KOA where R is the 

universal gas constant [0.08206 L atm mol
–1

 K
–1

], and T is the absolute temperature [K]:  
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𝐻∗ =
𝐾OA

𝐾OW𝑅𝑇
 (5.4). 

The asterisk superscript is included in Equation 5.4 to distinguish H measured in or 

estimated to represent a pure-water / gas system from a system from H* calculated from 

KOW and KOA. The H* together with available literature H are summarized in Table D1.  

When literature partition ratios were unavailable they were estimated with U.S. 

EPA’s EPISuite, which is a collection of software for the prediction of chemical release 

potential in the environment. The EPISuite KOW estimation methodology is based on 

dividing a molecule into fragments followed the summation of fragment coefficients with 

correction factors for intramolecular effects. EPISuite estimates KOA through a 

rearrangement of Equation 5.4 using KOW and literature H. When unavailable, EPISuite 

estimates H from the sums of bond contributions and correction factors.  

There is an internal inconsistency between the three partitioning ratios H, KOW, 

and KOA which has been attributed to octanol and water being mutually partially soluble 

(Ma et al., 2010). KOW is measured in octanol that is ‘wet’ or saturated with water and in 

water that is saturated with octanol. H is measured in an ideal aqueous solution and KOA 

is measured in ‘dry’ or anhydrous octanol. The exceptions to this internal inconsistency 

are the EPISuite estimated KOA values since EPISuite employs Equation 5.5, a 

rearrangement of Equation 5.4, to determine them:  

𝐾OA = 𝐾OW 𝑅 𝑇 𝐻 (5.5). 

Since the aim of the current work is to predict the distribution of PAHs when all 

three phases are present, it was desirable to employ constants that were measured in 

octanol-saturated water and water-saturated octanol. KOW met this requirement and was 

selected as an independent parameter in Equation 5.4. Of the remaining two partition 
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ratios, neither was consistent with KOW. Nevertheless, KOA was selected as an 

independent variable since it was assumed that H was more uncertain due to the low 

water solubilities of PAHs. Therefore, the dependent variable was H*. The H* likely 

have a bias which systematically produces high values relative to H due to the ‘wet 

octanol’ and ‘dry octanol’ mismatch between KOW and KOA respectively. However, this 

‘bias’ would actually not be a bias in the gas/aq ratio for atmospheric systems since there 

all three phases are present and therefore the organic phase is not dry and the aqueous 

phase is not organic-compound-free. The magnitude of the ‘bias’ has been quantified in 

terms of KOW (calculated based on H and KOA) and is reported to be negligible for NAP 

(two-rings) but for IND (six-rings), KOW is an order of magnitude lower than a theoretical 

partition ratio based on immiscible octanol and water (Ma et al., 2010). Indeed, the 

H*calculated with Equation 5.4 were approximately within an order of magnitude of 

literature and EPISuite values (Table D1 and Figure D1).  

As expected, PAH H* were generally greater than PAH literature H (Figure D1) 

since the water phase in KOW is octanol-saturated, which increases PAH solubility, 

decreases KOW and increases H*. For example, at 25 °C the calculated H* of PHE was 

52±29 M atm
–1

which was about a factor of two higher than a literature value for H, 21±4 

M atm
–1

 (Alaee et al., 1996). Here, the uncertainty in the H* of PHE was estimated as the 

propagation of KOW and KOA uncertainties: log10
−1(4.57 ± 0.08) (de Maagd et al., 1998) 

and log10
−1(7.68 ± 0.33) (Odabasi et al., 2006) respectively and the uncertainty in H was 

estimated as the standard error of prediction from the data given in Alaee et al. (1996).  

The agreement between H* and H of within an order of magnitude was 

considered adequate for PAHs since there are notable (half an order of magnitude) 
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uncertainties in H, KOW and KOA as well as the previously mentioned bias due to the ‘wet 

octanol’ and ‘dry octanol’ mismatch. Many EPISuite H values fell on the 1:1 line with 

H* (Figure D1) since EPISuite uses Equation 5.5 to estimate KOA where no literature 

value exists.  

5.2.2 Chemical loss processes of PAHs: kinetic constants. 

Literature rate constants k were are listed for oxidation reaction of gas-phase 

PAHs (Table D2) with various oxidants, which included the hydroxyl radical 𝑘(•OH, g), 

ozone 𝑘(O3, g), atomic oxygen 𝑘(O(³P), g), and nitrate radical 𝑘(•NO3, g). 

Measurements of the gas-phase oxidation kinetics for PAHs with four or more rings 

(BAA, CHY, BAP etc.) and most oxy–PAHs were largely absent from the literature due 

to their lower volatility (Calvert et al., 2002). Some of the missing gas-phase rate 

constants were estimated with EPISuite.  

Two pseudo first-order photooxidation rate constants were used for the condensed 

phase: the photooxidation rate in bulk water k(aq) and in liquid organic phase k(org). 

Aqueous phase oxidizing agents are known to include singlet oxygen (O2(
1
Δg)) and 

•
OH, 

both of which can be formed from the reaction of ground-state dissolved oxygen O2(aq) 

with photo-excited PAHs; thus aqueous PAHs photodegrade in a self-catalyzing process 

when O2(aq) is present (Pierlot and Aubry, 1997; Miller and Olejnik, 2001; Kong and 

Ferry, 2003; Clark et al., 2007). When liquid organic phases are in contact with water, 

O2(
1
Δg) is an important PAH oxidant; however, in anhydrous liquid organic phases, PAH 

removal is slower and/or occurs by a different reaction pathway (Plata et al., 2008).  

There are few literature PAH k(org) measured in a liquid organic phase (Table 

D2): ANT and PYR in 1–octanol (Grossman et al., 2016), ANT and PYR in methanol 
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(Grossman et al., 2016), and BAA, CHY, BAP, and BEP in toluene (Plata et al., 2008). 

Analogous photooxidation rates of PAHs have been reported on the waxy epidermidis of 

spruce needles (Niu et al., 2003). The k(org) in 1–octanol, methanol, and toluene were 

within an order of magnitude of k(needle epidermidis) for ANT, PYR, BAA, CHY, BAP 

and BEP (Figure D2). Grossman et al. (2016) reported a systematic decrease in k(org) for 

decreasing solvent polarity, which is seen in Figure D2 where k(1–octanol) is five to 

seven times smaller than k(methanol). Irradiation intensity also affects k(org) as 

evidenced in Figure D2 where k(1–octanol) is about five to seven times smaller than 

k(toluene) notwithstanding toluene being less polar than 1–octanol. The intensity 

employed by Plata et al. (2008) was close to 888 W m
–2

 while Grossman et al. (2016) 

employed about 17 W m
–2

 and Niu et al. (2003) reported a mean irradiation intensity of 

620±50 W m
–2

. Ten PAH k(org) were calculated as a function of the linear regression of 

k(toluene) vs. k(needle epidermidis) (see 1 / 7.2 line in Figure D2). For NAP, ACP, BAU, 

BBU, and RET neither a literature rate constant nor an estimated rate constant was 

available. Therefore, the photooxidation in the liquid organic phase for those five PAHs 

was not included in the model.  

The product identities and the product yields of the oxidation of PAHs were 

derived from experimental studies in the literature. The major products of PAH 

(photo)oxidation are monocyclic aromatics and non-aromatic organic compounds (Moza 

et al., 1999; Mallakin et al., 2000; Kong and Ferry, 2003; Woo et al., 2009). The scope of 

the current work is limited to polycyclic aromatic products, i.e., oxy–PAHs, which are 

minor products of PAH photo(oxidation) and which have relative molar yields (Ym) of a 

few percent or less. Literature Ym were consistently < 3% for reactions with three of the 
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gas-phase oxidants and the condensed phases: 𝑌m(•OH, g); 𝑌m(O3, g); 𝑌m(O(3P), g); 

𝑌m(aq); and 𝑌m(org) (Table D3). With the exception of 𝑌m(•NO3, g), an estimate of 1% 

was used for products with the native-ring backbone intact while 0.1% was used for ring-

rearranged / ring-opened products for reactions without literature Ym. Literature 𝑌m(•NO3,

g) of PAH oxidation to oxy–PAH products was only available for PHE → oPHE2 (33 ± 

9%) and was more than an order of magnitude higher than other Ym. It is probable that 

•
NO3 reacts with PAHs in a way that suppresses somewhat the fragmentation of PAHs 

into monocyclic and acyclic compounds thus increasing the production of oxy–PAHs. 

Since it was unclear whether all 𝑌m(•NO3, g) would be close to 33%, the missing 

𝑌m(•NO3, g) values were not estimated.  

Some literature Ym were based on irradiation spectra that were not 

atmospherically representative, that is, the setup did not include filters to correct the UV 

irradiation intensity spectrum to be representative of sunlight at the surface of the Earth 

(e.g., UV lamps without air mass filters; Woo et al., 2009; Sanches et al., 2011). In those 

instances, the same products were assumed while the yield was not. Probable products 

and estimated conversion quantities are indicated by parentheses in Table D3. Molecular 

structures of PAHs and their oxidation products (oxy–PAHs) are given in Figure D3.  

5.3 MODEL DESCRIPTION 

A box model was applied to calculate PAH equilibrium partitioning and 

processing in three phases: gas, aqueous, and liquid organic (Figure 5.1). The model was 

initialized with gas phase concentrations of oxidants (Table 5.1); these concentrations 

were held constant throughout the simulations and reflect typical oxidant levels for 

remote daytime conditions (
•
OH, O

3
P, O3) and nighttime (

•
NO3). For simplicity, both 
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•
NO3 and 

•
OH chemistry were simulated simultaneously; they do not affect each other in 

the model. The model was initialized with 21 PAHs at environmentally relevant 

concentrations (Table 5.1).  

 

PAH concentrations decreased over the course of the simulations due to oxidative 

loss. Of the 21 PAHs, 15 are known to form oxy–PAH products commonly reported in 

fog, cloud, gas or aerosol samples. Initial concentrations of oxy–PAHs were zero and 

increased as a function of loss of the 15 PAHs. The model did not include PAH loss by 

dry or wet deposition.  

 

 

Figure 5.1. Schematic of the PAH multiphase (gas, aqueous, liquid organic) 

(photo)oxidation model. 
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An aqueous phase volume fraction (𝜙aq) of 3×10
–7

 was used and is equivalent to a 

liquid water content (LWC) of 0.3 g m
–3

, consistent with observations of dense fogs and 

Table 5.1 

Initialization of the Box Model 

Parameter Abbreviation / Symbol Initial Values 

aqueous phase volume 

fraction 
𝜙aq 3 ×10

–7
 vol/vol 

liquid organic phase 

volume fraction 
𝜙org 3 ×10

–12
 vol/vol 

hydroxyl radical 
•
OH 3 ×10

6
 molecules cm

–3
 

ozone O3 30 ppb 

atomic oxygen O(³P) 200 molecules cm
–3

 

nitrate radical 
•
NO3 1 ×10

9
 molecules cm

–3
 

nitrogen dioxide NO2 8 ×10
13

 molecules cm
–3

 

naphthalene NAP 100 (20 – 500) ng m
–3

 

acenaphthylene ACY 4.1 (1 – 17) ng m
–3

 

acenaphthene ACE 4.1 (1 – 17) ng m
–3

 

9H–fluorene FLU 8.7 (3 – 25) ng m
–3

 

phenanthrene PHE 13 (7 – 23) ng m
–3

 

anthracene ANT 0.5 (0.1 – 2.5) ng m
–3

 

fluoranthene FLT 0.4 (0.09 – 2) ng m
–3

 

pyrene PYR 2.3 (0.4 – 13) ng m
–3

 

acephenanthrylene ACP 0.4 (0.09 – 2) ng m
–3

 

11H–benzo[a]fluorene BAU 0.06 (0.01 – 0.4) ng m
–3

 

11H–benzo[b]fluorene BBU 0.06 (0.01 – 0.4) ng m
–3

 

benzo[a]anthracene BAA 0.12 (0.04 – 0.35) ng m
–3

 

chrysene CHY 0.23 (0.13 – 0.42) ng m
–3

 

retene RET 0.08 (0.02 – 0.35) ng m
–3

 

benzo[b]fluoranthene BBF 0.04 (0.012 – 0.16) ng m
–3

 

benzo[k]fluoranthene BKF 0.03 (0.006 – 0.1) ng m
–3

 

benzo[a]pyrene BAP 0.04 (0.01 – 0.2) ng m
–3

 

benzo[e]pyrene BEP 0.03 (0.003 – 0.26) ng m
–3

 

indeno[1,2,3–cd]pyrene IND 0.05 (0.013 – 0.2) ng m
–3

 

dibenz[a,h]anthracene DBA 0.01 (0.002 – 0.1) ng m
–3

 

benzo[g,h,i]perylene BGP 0.08 (0.02 – 0.32) ng m
–3

 

Notes: PAH concentrations are an overview from the literature of the totals of all three 

phases and are representative of total PAH levels (gas + particulate) in urban areas; 

ranges are in parenthesis (Eiguren-Fernandez et al., 2004; Albinet et al., 2007; Delgado-

Saborit et al., 2013). The concentrations of all oxidants were held constant.  
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clouds (Raja et al., 2008; Ervens et al., 2013). A liquid organic phase volume fraction 

(𝜙org) of 3×10
–12

 was calculated with Equation D1 and corresponds to 5 mgC L
–1

 water-

insoluble organic carbon (OC; assuming a liquid organic phase of 70% C by mass and a 

density of 0.7 g cm
–3

, i.e., a ratio of organic matter to organic carbon (OM/OC) of 1.4). 

These volume fractions were comparable to the liquid water and particle volume fractions 

employed by Lei and Wania (2004) (𝜙aq = 3×10
–7

 and 𝜙PM = 1×10
–12

 respectively) in a 

cloud PAH model. The incorporation of 𝜙aq and 𝜙org into Equations 5.1, 5.2 and 5.4 

permitted the derivation of Equations D2 – D10, where PAH concentrations are in terms 

of total air volume.  

The model included monodispersed 10 µm diameter water droplets with constant 

𝜙aq and 𝜙org. pH and temperature were held constant with pH = 6 and T = 25 °C, 

respectively. During each time step (1 s), the PAHs and oxy–PAHs concentrations 

changed due to chemical reactions. Following that, the new equilibrium concentrations of 

PAHs and oxy–PAHs between all three phases were calculated using Equations D4 – D7 

before the next time step. Simulations were performed over three hours. The assumption 

of equilibrium has been used in many models (Lei and Wania, 2004 and references 

therein; Lohmann and Lammel, 2004; Lammel et al., 2009) even though equilibrium may 

not always exist.  

5.4 MODEL RESULTS AND DISCUSSION 

5.4.1 Predicted phase partitioning.  

PAHs with two to four rings such as NAP and CHY were predicted to be 

primarily in the gas phase (x
g
 > 93%) at 25 °C while DBA (five rings), IND (six rings), 

and BGP (six rings) were predicted to have a significant fraction in droplets (x
g
 < 11%) 
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with aqueous phase fractions x
aq

 of 2 to 5% and liquid organic phase fractions x
org

 of and 

85 to 91% (Figure 5.2).  

All of the monocarbonyl oxy–PAHs were predicted to be predominantly gas 

phase (x
g
 > 82%) while the dicarbonyl oxy–PAHs were principally in droplets (x

g
 < 32%; 

x
aq

 32 to 97%; x
org

 < 0.1 to x
org

 = 68%) with the exception of oANT (x
g
 = 76%). The oxy–

PAHs with the greatest x
aq

 was the dicarbonyl oPHE2 with x
aq

 = 97%. The PAHs were 

predicted to be mostly absent from the aqueous phase, where the five-ring PAH BBF had 

the greatest x
aq

 = 6%.  

In log-log space, the phase ‘boundaries’ seen in the KOW - KOA parameter space 

corresponded to log10 𝐾OA = 11.52, log10 𝐾OA = log10 𝐾OW + 6.52, and log10𝐾OW = 5. Their 

magnitudes are a consequence of the ratio of the aqueous and liquid organic phase 

volumes in Equations D2 and D3. The five- and higher-ring PAHs and the four- and 

higher-ring oxy–PAHs approached or passed the liquid organic phase ‘boundary’ with 

x
org

 > 9%, DBA having the highest x
org

 = 91%.  
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Figure 5.2. Predicted PAH and oxy–PAH phase fractions at 25 °C. The calculated 

fractions in the aqueous, liquid organic, and gas phases are in blue, yellow, and greyscale 

respectively. PAH literature and EPISuite KOW and KOA values are indicated as red circle 

symbols, monocarbonyl oxy–PAHs as dark-red, and dicarbonyl oxy–PAHs as black 

circle symbols. Error bars show literature reported error (95% CI, Odabasi et al., 2006) or 

5% if an error was not reported.  
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The oxy–PAHs are less hydrophobic than PAHs and indeed many of the oxy–

PAHs were predicted to partition into the aqueous phase more than their PAH 

counterparts. This difference was expected since the presence of oxygen atoms in oxy–

PAHs increases intermolecular attractions and water solubility, as evidenced by their 

smaller KOW (Table D1). The dicarbonyl oxy–PAHs were predicted to have a greater 

aqueous phase fraction than monocarbonyl oxy–PAHs (Figure 5.2) with x
aq

 ranging from 

24 to 97% and 0.2 to 11% respectively. The number of rings in PAHs and oxy–PAHs had 

less of an effect on x
g
 and x

aq
 than the number of carbonyl groups. 

The species which were predicted to be primarily gas phase (i.e., x
g
 > 0.5) were 

the two-, three-, and four-ring PAHs (e.g., NAP and CHY) and the monocarbonyl oxy–

PAHs (dark-red circle symbols in Figure 5.2).  

To the best of the authors’ knowledge, the only reported study of PAH and/or 

oxy–PAH fractionation between the gas and fog droplet phases is Ehrenhauser et al. 

(2012). They demonstrated the deviation of observed aqueous/gas partitioning (analogous 

to H*) from literature H for PHE, ANT, PYR, ACE, FLU, and BAP. These PAHs have 

greater x
fog

 (the sum of x
aq

 and x
org

) at 2 to 7 °C than theoretical x
aq

 in a pure water / gas 

system at 25 °C. While temperature undoubtedly influenced x
fog

, the role of organic 

compounds in droplets also influenced x
fog

 and is considered in greater detail later in the 

discussion.  

Ehrenhauser et al. (2012) did not tabulate observed x
fog

 and therefore a direct 

comparison with the predicted x
fog 

of the present work cannot be made at this time. 

However, an indirect approach can be employed to compare this work with literature 

observations. In the absence of fogs and clouds, PAHs and oxy–PAHs are known to 
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fractionate between the gas and condensed phases (Eiguren-Fernandez et al., 2004; Alam 

et al., 2013). The predicted partitioning of PAHs and oxy–PAHs where the aqueous 

volume is 15% as large as the liquid organic volume (i.e., 𝜙aq = 4.5×10
–13

) shown in 

Figure D4 is representative of hygroscopic particles at ambient relative humidity 

(Lohmann and Lammel, 2004). Under those conditions the partitioning of PAHs in the 

gas and liquid organic phases is predicted to be nearly the same in Figures 5.2 and D4.  

Thus notwithstanding the differences in the gas / particulate system as compared to the 

gas – droplet system, some similarities are seen in Table 5.2 for PAHs x
g
: as the PAH 

molar mass and KOA increase, x
fog

 increases.  

The difference between Figures 5.2 and D4 demonstrates a lesser fraction of some 

oxy–PAHs (especially the two- and three-ring dicarbonyls) that would be gas phase when 

fogs or clouds are present relative to when fogs or clouds are absent. Hence, there is a 

water-enhanced decrease in the gas phase fraction of some oxy–PAHs. An enhanced 

uptake from the gas phase of various hydrocarbons with oxygen groups at air / water 

surfaces was reported by Goss (1994). They demonstrated that the enhanced uptake of 

compounds capable of strong intermolecular attractions with water (i.e., hydrogen 

bonding) was not well described by KOW values alone but was well described by vapor 

pressure that has been corrected for hydrogen binding in the solvent. In the current 

model, the use of both KOA and KOW indirectly provides information on both vapor 

pressure and aqueous-intermolecular attractions (including hydrogen bonding). The vapor 

pressure of oxy–PAHs is inversely proportional with H in Equation 5.3 and therefore is 

inversely proportional to KOA/(KOWRT) by Equation 5.4. KOW is a description of the 
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difference in strength of octanol-solute and water-solute intermolecular attractions and 

repulsions, which includes hydrogen-bonding differences.  

5.4.2 Chemical removal of PAHs and formation of oxy–PAHs. 

In order to compare chemical loss rates in each phase, the gas phase rate constants 

𝑘(g) were multiplied by the oxidant concentrations to obtain pseudo first order rate 

constants, i.e., loss rates 𝑘′(g) [s
–1

]. Many rate constants were missing which confounded 

a direct comparison of all kinetic processes. For example, 𝑘′(O3, g) were only available 

for five PAHs. Of the processes for which rate constants were available, 𝑘′(•NO3, g) and 

𝑘′(O(³P), g) were three to five orders of magnitude smaller than 𝑘′(•OH, g) and 𝑘′(O3, g) 

as seen in Figure 5.3a. The 𝑘′(O3, g) were smaller by three orders of magnitude than 

𝑘′(•OH, g) except for ACY, which is likely due to the ease of O3 reacting with the double 

bond in the five-membered ring of ACY (Calvert et al., 2002).  

To determine the importance of the different reactions for each PAH, the loss 

rates were weighted by their fractions in each phase (x
g
, x

org
, x

aq
) and compared in 

Figure 5.3b. In general, 𝑥g𝑘′(•OH, g) was largest of the volume-weighted rates of all 

phases for two-, three-, and four-ring PAHs since they are primarily gas phase (x
g
 > 0.92) 

at 25 °C. The 𝑥g𝑘′(•OH, g) of BBF, BBK, BAP, and BEP were the same order of 

magnitude as 𝑥org𝑘(org) since x
g
 < 0.6 at 25 °C. For IND, DBA, and BGP, 𝑥org𝑘(org) in 

the liquid organic phase kinetics exceeded 𝑥g𝑘′(g) due to their very low gas phase 

fractions (𝑥g 0.08 to 0.10; Table 5.2 and Figure 5.3b). For ANT, PYR, BAA, and BAP 

the 𝑘(aq) > 𝑘′(•OH, g) while the volume-weighted rates 𝑥aq𝑘(aq) < 𝑥g𝑘′(•OH, g).  
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PAH lifetimes were calculated using  

𝜏[s] =
1

∑(𝑘′)
   (5.6). 

At 25 °C, chemical lifetimes in fogs and clouds 𝜏𝑟𝑥𝑛
fog

 were 0.3 to 4.7 hours 

(Table 5.2). This is shorter than or comparable to lifetimes due to chemical loss in the 

 

Figure 5.3. A comparison of pseudo-first order rate constants (a) and a comparison of 

pseudo-first order rate constants weighted by phase fractions x
phase

 (b). Gas phase rate 

constants included oxidation by hydroxyl radical (
•
OH), ozone (O3), nitrate radical 

(
•
NO3), and excited oxygen (O(

3
P)). Pseudo-first order photooxidation rates are given for 

the aqueous (aq) and liquid organic (org) phases. The temperature is 25 °C for all rate 

constants. See Glossary of Abbreviations and Terms for PAH abbreviations.  
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absence of an aqueous phase. The chemical lifetime in the gas and particulate phases 

𝜏𝑟𝑥𝑛
g,PM

 is estimated to range from 1 to 300 hours (Table 5.2; Keyte et al., 2013). 𝜏𝑟𝑥𝑛
fog

 is 

also shorter than physical loss processes: The lifetime of PAHs due to dry deposition 

𝜏𝑑𝑟𝑦𝑑𝑒𝑝 is estimated to be 1 to 14 days and wet deposition 𝜏𝑤𝑒𝑡𝑑𝑒𝑝 is 5 to 15 months 

(Bidleman, 1988; Škrdlíková et al., 2011). These lifetimes exceed the typical lifetime of 

aerosol particles in the atmosphere, 𝜏𝑑𝑒𝑝
PM , which are generally estimated as about one 

week.  
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Table 5.2 

PAHs and oxy–PAHs Chemical Lifetimes 𝜏 and Fractions in the Gas Phase  

PAH 𝜏 (hours; fog 

model; 25 °C) 
a
 

𝜏 (hours; no 

fog) 
b
 

x
g
 (fog model; 

25 °C) 
c
 

x
g
 (no fog; –0.5 

to 4 °C) 
d
 

x
g
 (no fog; 13 

to 20 °C) 
e
 

x
g
 (no fog; 7 to 26 °C) 

f
 

NAP 2.5 13 > 0.99  0.98 > 0.99 

ACY 0.29 1 > 0.99 0.97 > 0.99  

ACE 0.56 5 > 0.99 0.96 0.99 > 0.99 

FLU 4.0 21 > 0.99 0.92 > 0.99 > 0.99 

PHE 1.8 9 > 0.99 0.95 0.97 > 0.99 

ANT 4.3 2 > 0.99 0.93 0.98 0.98 to > 0.99 

FLT 3.1 14 to 25 > 0.99 0.87 0.76 < 0.01 to 0.99 

PYR 1.1 5 to 6 > 0.99 0.91 0.72 < 0.01 to 0.99 

ACP 3.5  > 0.99    

BAU 1.2  > 0.99    

BBU 1.2  0.99    

BAA 1.1 3 to 11 0.94 0.87 0.13 < 0.01 to 0.91 

CHY 1.7 9 to 27 0.93 0.77 0.15 < 0.01 to 0.95 

RET 1.3  > 0.99    

BBF 4.3 34 to > 330 0.57 0.30 0.03 < 0.01 

BKF 1.7 8 to 21 0.57 0.11 0.04 < 0.01 

BAP 0.92 2 to 5 0.46 0.16 0.10 < 0.01 

BEP 2.0 10 to 15 0.59 0.11   

IND 4.7 6 to 9 0.10 0.08 0.03 < 0.01 

DBA 2.9 34 to > 330 0.08 0.14 0.25 < 0.01 

BGP 4.6 5 0.08 0.06 0.08 < 0.01 

Notes: a, chemical lifetimes predicted in this study; b, gas / particle chemical lifetimes predicted by Keyte et al. (no fog 

present; 2013); c, fraction in the gas phase when a fog or cloud is present, predicted in this study; d, Alam et al., 2013; e, Liu et 

al., 2010; f, the range between six sites’ annual averages (Eiguren-Fernandez et al., 2004).  

9
1
 



92 

The final amounts of oxy–PAH products were influenced by a variety of factors, 

including PAH Ym and chemical loss processes of oxy–PAHs. After three hours, 28% of 

the original carbon mass in PAHs was predicted to remain as carbon in PAHs and 0.93% 

as carbon in oxy–PAHs. The other 71% of the original carbon mass was not speciated in 

this work but would include monocyclic aromatics and non-aromatic organic compounds 

(Moza et al., 1999; Mallakin et al., 2000; Kong and Ferry, 2003; Woo et al., 2009).  

5.4.3 Uncertainty in partitioning in the model predictions and variability in 

real fogs and clouds. 

The main uncertainties in predicting PAH and oxy–PAH phase partitioning were 

the uncertainties in partition ratios. The lack of experimental KOW for sixteen of the 

twenty five oxy–PAHs and experimental KOA and H for all of the oxy–PAHs required 

estimates to be used. These uncertainties may well be on the same order of magnitude as 

variabilities in field measurements. 

5.4.4 The influence of salts and co-solvents. 

It is known that small-molecule (e.g., methanol, ethanol, and propanol) co-

solvents can enhance PAH solubility (Fan and Jafvert, 1997; Yap et al., 2012). In fog in 

very polluted regions or in deliquesced aerosol water (i.e., low LWC), high 

concentrations of dissolved salts and organics can cause deviations from Henry’s law. 

The salt effects on solubility are generally smaller than temperature effects over 

atmospherically relevant ranges. For example, Whitehouse (1984) reported 1 to 15% 

salting out PHE, ANT, and BAP for a salinity increase from 0 to 4‰ and a 24% salting-

in effect for BAA over the same salinities; however, there was a 50 to 70% decrease in 

solubility when temperature decreased from 25 to 8 °C. Typically, fog water salinity is 
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about two orders of magnitude lower (0.07‰; Collett et al., 2008) than applied in the 

previous study. Shahpoury et al. (2015) found that ionic compounds had little impact on 

the scavenging of PAHs by rain when the salinity in rain increased from approximately 

0.002 to 0.03‰. Therefore, under the fairly dilute conditions simulated in this work, it 

can be expected that ionic ‘salting in’ or ‘salting out’ effects are minor.  

5.4.5 Influence of temperature on partitioning. 

The temperature of this model was 25 °C, while typical fog and cloud 

observations in recent literature range from 0 to 19 °C (Capel et al., 1990; Erel et al., 

1993; Herckes et al., 2002; Reyes-Rodríguez, et al., 2009; Ervens et al., 2013). The use 

of 25 °C was constrained by the availability of partition ratios and rate constants. Very 

few temperature-dependent partition ratios and rate constants have been published for 

PAHs and oxy–PAHs (Harner and Bidleman, 1998a; Frerichs et al., 1990; Lei et al., 

2000; Odabasi et al., 2006).  

Generally, the vapor pressure increase is greater than the solubility increase which 

results in lower H*and KOA at lower temperatures. The increase in water solubility is 

greater than the solubility increase in 1–octanol which results in lower KOW as 

temperature increases. Therefore, KOA, KOW, and H* increase with temperature. H*is 

most affected by changes in temperature followed by KOA and then KOW. The change in 

KOA and KOW is seen in Figure D5a resulting in higher x
g
 at 25 °C than at 1 °C (x

g
 = 0.94 

and x
g
 ~ 0.4 respectively). BAA was the only PAH of this study with temperature-

dependent KOA and KOW partition ratios available (Lei et al., 2000; Odabasi et al., 2006). 

Assuming other PAHs have similar temperature dependencies, the x
g
 at 25 °C are 0.2 to 

0.6 greater than x
g
 at 1 °C (Figure D5b) for PAHs whose KOA are near the gas phase 
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boundary at 25 °C (i.e., log KOA ~ 10 to 12), including BAA, CHY, BBF, BKF, BAP, and 

BEP. Extrapolation of the oxy–PAH KOA, KOW, and x
g
 changes as a function of 

temperature were not attempted in Figure D5b since oxy–PAHs have additional (and 

stronger) intermolecular interactions that PAHs do not have, such as hydrogen bonding 

and dipole – dipole interactions.  

My model calculations likely overestimated x
g
 for some PAHs in the presence of 

fogs and clouds as temperatures are typically lower than 25 °C and therefore under 

typical cloud/fog conditions the condensed phase may represent an even larger sink for 

PAHs as demonstrated by my analysis.  

5.4.6 Heterogeneous surface reactions. 

Heterogeneous reactions of PAHs adsorbed at the air / water interface have been 

reported for several PAHs (Valsaraj, 2004; Chen et al., 2006; Raja and Valsaraj, 2006; 

Kahan and Donaldson, 2007; Donaldson and Valsaraj, 2010; Styler et al., 2011). 

However, this work did not include heterogeneous PAH reactions at the air / water 

interface since it was assumed that the dissolution of PAHs in a liquid organic phase was 

lower in energy than the deposition of PAHs onto a water surface. A consideration of 

organic surface films on droplets is given later in the discussion. This work further did 

not include heterogeneous reactions of PAHs adsorbed at a water / solid interface, such as 

what might occur at the surface of a hygroscopic sub-micrometer particle entrained in the 

interior of a droplet. A comparison of CHY kinetic rate constants measured in water with 

those measured in a solution of smectite clay in water revealed little difference: Kong and 

Ferry (2003) reported 𝑘(smectite, aq) = 4.3 × 10
–5

 s
–1

 while Zepp and Schlotzhauer 

(1979) reported 𝑘(aq) = 4.4 × 10
–5

 s
–1

 and Fasnacht and Blough (2002) reported 𝑘(aq) = 
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9 × 10
–5

 s
–1

. These are of similar magnitude as 𝑘(org) = 6.8 × 10
–5

 s
–1

 (Plata et al., 2008), 

𝑘(aq, 10% methanol) = 1.4× 10
–5

 s
–1

 (Kong and Ferry, 2003), and less than an order of 

magnitude smaller than CHY 𝑘′(•OH, g) = 1.0 × 10
–4

 s
–1

 (Calvert et al., 2002 with [
•
OH] 

= 3 × 10
6
 molecules cm

−3
).  

5.4.7 Coverage of the droplet surface by an organic film. 

The geometry of the organic phase was not specified in this model other than each 

phase was in contact with the other two, i.e., no complete organic film on the drop 

surface (Figure 5.1). Many researchers have concluded that PAHs adsorb to water 

surfaces as hydrophobic surface layers (Moza et al., 1999; Valsaraj, 2004; Chen et al., 

2006; Raja and Valsaraj, 2006; Kahan and Donaldson, 2007; Chen et al., 2011; Styler et 

al., 2011). Gill et al. (1983) estimated it would require 300 mg L
–1

 organic matter for the 

entire surface of fog drops with diameters 1 to 10 µm to be coated with an organic 

monolayer film. Depending on the compound, this equates to 180 to 250 mgC L
–1

 which 

is greater than the TOC reported in typical fog and clouds (0.1 to 40 mgC L
–1

; Erel et al., 

1993; Herckes et al., 2002; Raja et al., 2008; Reyes-Rodríguez, et al., 2009; Ehrenhauser 

et al., 2012; Ervens et al., 2013; Herckes et al., 2013; Herckes et al., 2015).  

To more precisely estimate surface coverage, the dimensionless PAH surface film 

coverage 𝜃PAH was calculated in this work (Equation 5.7) from the total PAH surface 

area, 𝐴PAH[m2 mair
−3], of the carbon backbone plane (i.e., the PAHs lying flat on the water 

surface; Chen et al., 2011) and the total fog droplet surface area, 𝐴fog[m2 mair
−3]. Equations 

D11 – D14 were used to find 𝐴PAH and 𝐴fog. Similarly, the liquid organic surface film 

coverage 𝜃org (Equation 5.8) was calculated from the cross-sectional area of an alkyl 

chain following Equation D15: 
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𝜃PAH = 𝐴PAH/𝐴fog   (5.7). 

𝜃org = 𝐴org/𝐴fog   (5.8). 

This work predicted (Equation 5.7) very small 𝜃PAH; for example, 𝜃NAP =  

1 × 10
–3

, 𝜃PYR = 3 × 10
–5

, 𝜃BAP = 5 × 10
–7

, and 𝜃DBA = 1 × 10
–7

. Even if all TOC (5 

mgC L
–1

) was completely water immiscible and had the molecular dimensions of  

1–octanol, the coverage of the droplet would be  𝜃org < 1.3% for 10 µm droplets 

(Equation 5.8). Thus, under all circumstances, the surface of a typical fog or cloud 

droplet would be too large to be wholly covered with an organic monolayer.  

5.5 SUMMARY 

The phase distribution of PAHs and oxy–PAHs was predicted using a multiphase 

box model that includes gas, aqueous and organic phases. At 25 °C, PAHs with two, 

three and four rings were predicted to be primarily in the gas phase (x
g
 > 92%) while 

five- and six-ring PAHs partitioned significantly into droplets (x
fog

 > 40%). At lower 

temperatures, such as those typical of fogs and clouds, the fraction of PAHs in the 

aqueous phase is expected to be even higher.  

The oxidation of PAHs in the multiphase system was predicted to result in 

significantly shorter lifetimes (< 5 hours) than dry and wet deposition processes (1 – 14 

days, 5 – 15 months, respectively) and shorter or comparable lifetimes of PAHs relative 

to oxidation in the gas / particulate system (1 to 300 hours). At 25 °C, gas-phase 
•
OH was 

the predicted to be an important but not always dominant process of removal of PAHs; 

the 𝑘(aq) of ANT, RYR, BAA, and BAP were > 𝑘′(•OH, g). Even though PAHs are not 

very soluble, the aqueous phase cannot be neglected as their sink due to the large aqueous 

volume (vs. organic volume) and the relatively fast aqueous reactions. The fraction 
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weighted loss rates 𝑥g𝑘′(•OH, g) for BBF, BKF, BAP, BEP were the same order of 

magnitude as 𝑥org𝑘(org) but for IND, DBA, BGP, 𝑥org𝑘(org) > 𝑥g𝑘′(•OH, g). 

The surface of typical fog and cloud droplets (d = 10 µm, TOC < 50 mgC L
–1

) 

was predicted to be too large to be completely covered by a liquid organic surface film. 

Consequently, a multiphase geometry where each phase is in contact with the others was 

employed.  

The most sensitive parameters that may require more studies include temperature 

dependent KOW and KOA values; many in this model were estimates from the EPISuite 

and/or reported only at 25 °C. As an example, BAA is expected have x
g
 = 0.94 at 25 °C 

and x
g
 ~ 0.4 at 1 °C. Additionally, liquid-organic and aqueous-phase photooxidation rate 

constants were unavailable for many of the PAHs and most of the oxy–PAHs.  

Despite their low water solubilities, PAHs process faster when clouds and fog are present 

than in cloudless conditions. 
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CHAPTER 6 

SUMMARY 

The chapters in this thesis report the investigation and findings of four areas of 

research. In Chapter 2, a robust methodological characterization of haboob events based 

on meteorological and air pollution observations was established and employed for the 

creation of a library of haboob events, which was necessary for the calculation of dry 

deposition of air-borne particles.  

Between 3 and 20 haboob events occur per year and a somewhat lower number of 

haboob events occur in years with higher precipitation. The relationship between 

precipitation and haboob occurrence is complex due to the bimodality of seasonal 

precipitation as well as the mutual source of haboobs and monsoon precipitation.  

The dry deposition flux predicted for Tempe, AZ ranged from a low of 259  

kg ha
–1

 in 2010 to a high of 2950 kg ha
–1

 in 2011. The calculated flux is comparable to 

deposition in other parts of the world. The haboob library and the dry deposition flux are 

further employed in Chapters 3 and 4.  

Chapter 3 reports the calculation of particle dissolution and settling in Tempe 

Town Lake, which was necessary for the prediction of haboob - induced increases in 

DOC in Tempe Town Lake. Haboob deposition could be responsible for some of the 

small changes in the lake, such as DOC, conductivity, and water clarity. The coincidence 

of haboobs and lake biogeochemical changes was not consistent for every haboob.  

Larger changes in lake biogeochemistry (e.g., change by factors of one to seven 

times) in many, but not all, cases coincided with rain and streamflow into the lake 
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In Chapter 4, I report the sampling and analysis of PAHs in haboob PM2.5. I 

investigated haboob-induced changes in PAH concentrations and elucidated sources 

through PAH isomer ratio comparisons. I found that haboobs do alter the PAH 

concentrations and distributions in Tempe, AZ. PAH isomer ratios suggest PM2.5 sources 

consistent with approximate thunderstorm outflow paths. The increase in PAHs during 

haboobs appears to be proportional to PM2.5 increases and is likely a consequence of 

transporting PAH-laden PM2.5 from surrounding areas.  

Field observations have not been able to establish to what extent clouds/fog can 

process PAHs relative to cloudless conditions. I describe in Chapter 5 the calculation of 

PAH phase distribution in clouds and fog, which is necessary to predict the processing 

and lifetimes of PAH present in clouds and fog. With my model I show that PAH 

processing in clouds and fog results in shorter PAH lifetimes than the lifetimes in 

cloudless atmospheric conditions. Notwithstanding the low water solubilities of PAHs, 

the atmospheric aqueous phase cannot be ignored in the analysis of PAH fate in the 

atmosphere.  

6.1 OUTLOOK  

This thesis describes advancements in research and understanding of haboobs and 

PAH processing. Future research can build off these findings. The robust method of 

single-site haboob identification (Chapter 2) can be employed in other areas surrounding 

Tempe, AZ as part of the Central Arizona – Phoenix Long-Term Ecological Research 

(CAP-LTER). Furthermore, the haboob library and deposition database can be employed 

in future CAP-LTER studies.  
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The calculation of dry deposition flux (Chapter 2) employs a particle size 

distribution that is based on literature studies and reasonable assumptions. In future 

research, the actual mass distribution and the air-concentration of TSP in Tempe could be 

monitored to for more precise prediction of haboob deposition. This would require 

alternative sampling techniques not currently employed by the EPA air quality 

monitoring system. These could include: optical particle counters, Micro-Orifice Uniform 

Deposit Impactor (MOUDI) samplers, and deposition traps. Commercial optical particle 

counters boast the ability to estimate the mass of particles with a wide range of diameters 

(e.g., 0.1 – 1000 μm) but cannot adequately be used to measure particle air-

concentrations. An automated TSP sampling device with hourly temporal resolution 

capable of quantifying the concentrations of particles with diameters from < 0.1 to > 500 

μm is not commercially available at the present. MOUDI samplers and deposition traps 

can be somewhat labor intensive sampling techniques, may not be amenable to sub-

hourly and hourly sampling frequencies (the temporal resolution of haboob events) due to 

sample-size constraints, and can only partially sample the six orders of magnitude range 

of particle diameters of interest (0.01 – 1000 μm) without producing significant biases.  

The advancement of broad-range TSP sampling technologies may not have been 

of commercial interest in the past since PM10 and PM2.5 but not PM>10 are regulated by 

the EPA. The short atmospheric lifetimes of PM>10 and its aerodynamic exclusion from 

the recesses of the lungs may have limited past interest in regulating it or routinely 

sampling it. The development of broader-range TSP samplers may well be of interest to 

federal funding agencies due to current concerns of extreme weather events as well as 

concerns for local and global climate changes.  
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In Chapter 3, haboob deposition consequences on Tempe Town Lake 

biogeochemistry are predicted in two scenarios: complete particle dissolution and the 

complete lack of particle dissolution. The timescales of particle dissolution and lake 

mixing are not known at the present. Theoretical and observational studies could 

elucidate their actual timescales. However, such efforts may not be warranted since 

haboobs are not consistently coincident with changes in lake DOC, conductivity, and 

clarity. Furthermore, the coincident changes which were identified are not as large as 

many of the extreme-flow event induced changes. Research efforts would, perhaps, be 

better employed within other components of the urban ecological system of Tempe, such 

as soils. Funding agencies may desire to prioritize funding to efforts which elucidate 

phenomena with greater impact on public health and the environment.  

There are measurements that have already been performed of other 

biogeochemical parameters in Tempe Town Lake not considered in Chapter 3, such as 

daily trace metals data and 2D fluorescence. These databases could be published and 

compared with the haboob library and deposition database.  

In Chapter 4, the observed changes in urban air quality in terms of PAHs in PM2.5 

during haboobs are reported. This bolsters other research efforts currently underway for 

other chemical species in PM2.5 as well as the results already reported in Aurelie 

Marcotte's PhD thesis (2015). Chapter 4 contributes greatly to the understanding of 

haboob redistribution of one of the EPA priority compounds.  

In Chapter 5, the lifetimes of PAHs in clouds and fog are calculated to be shorter 

than when clouds and fog are absent. This has historically been challenging to observe in 

the field due to limitations of sample size and detection limits. Herckes et al. (2016) 
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reported that fogs have lower liquid water content than in past decades in the central 

valley of California, the location of many literature fog studies, which has further limited 

sample sizes. While PAHs are a priority pollutant and while clouds and fog are an 

important part of the atmosphere, it seems at the present that very little field research of 

fog and cloud chemistry is being funded by the National Science Foundation. Therefore, 

Chapter 5 is a significant contribution to the understanding of PAH processing in the 

atmosphere but may not be readily validated in the field in the near future.  

To conclude, I mention lightheartedly that clouds remain somewhat of a “gray” 

area in the atmosphere (in terms of understood processes and climatic impact) and that 

“sky is the limit” in atmospheric biogeochemical research (although that may sound 

somewhat insulting and narrow sighted to oceanic, crustal, and space scientists).  
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APPENDIX A  

THE CHARACTERIZATION OF HABOOBS IN TEMPE, AZ  
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Figure A1. Haboob identification and categorization flowchart. Notes: †, KPHX is the 

Phoenix Sky Harbor Airport weather station; ¤, U.S. EPA Air Quality System sites 04-

013-3002 and 04-013-4005 (CEPH and TE respectively); ‡, weather conditions: BLDU 

blowing dust, DU widespread dust, DS dust storm, HZ haze, TS thunderstorm, SQ squall; 
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*, weather appeared to reset to clear, storm-free conditions ≥ 6 hours; @, parallel graphs: 

wind and gust speeds, wind direction, temperature, relative humidity, pressure, visibility, 

precipitation, and PM10 with a time frame from 24 hours before to 24 hours after the 

event; §, a temperature and visibility decrease coinciding with an increase in pressure, 

humidity, PM10, and wind speed; [], high wind signature or haboobs with visibility 

> 11.3 km (7 mi); ¶, low visibility due to heavy rain, drizzle, mist, fog, or hail; ^, 

relatively low or zero wind speeds and generally elevated pollutant concentrations (PM10, 

PM2.5, O3, SO2, CO, NO2). 
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Figure A2. Example of the 3 July, 2014 haboob meteorological and air quality signature (filled circles) compared with the 

measurements on the 4 preceding days (open circles). The arrival of the convective thunderstorm outflow boundary at KPHX 

is seen as an abrupt decrease in temperature and visibility, coinciding with abrupt increases in relative humidity, air pressure, 
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and wind speed. The thin lines connecting the filled circles are intended to help guide the eye. The shaded grey areas indicate 

the region of the 10
th

 to 90
th

 percentile of the measurements on the 4 days before the haboob. The filled and open diamonds are 

gust speeds of the haboob day and preceding 4 days respectively. Note the scale break in the PM10 plot.  
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Table A1 

List of haboobs in Tempe during the time period 2005 to 2014. 

Date time started Date time ended Maximum 

KPHX wind 

or gust speed 

(mi h–1) † 

Minimum 

KPHX 

visibility 

(mi) † 

Maximum 

CEPH @ 

PM10 

(µg m–3) 

KPHX METAR weather condition 

code ‡,§ 

Estimated 

PM10 dry 

deposition 

(kg ha–1) 

Estimated 

TSP dry 

deposition 

(kg ha–1) 

Ident-

ification 

2005-05-27 20:00 2005-05-27 23:00 36 3 594 BLDU 0.05 42.4 * 

2005-07-17 17:51 2005-07-18 02:00 46 5 296 BLDU 0.05 27.9 * 

2005-07-18 22:00 2005-07-19 00:00 77 1.25 482 +TSRA BLDU SQ 0.04 37.5 * 

2005-07-22 21:00 2005-07-23 04:51 43 3 319 +RA BLDU 0.03 19.1 * 

2005-07-23 18:00 2005-07-24 00:51 47 3 316 BLDU SQ; TS; -RA 0.03 18.9 # 

2005-08-02 20:00 2005-08-03 02:51 52 1.75 504 -RA BLDU SQ; +TSRA; TSRA BR 0.04 30.2 * 

2005-08-31 18:00 2005-08-31 20:00 32 6 402 TS BLDU; -TSRA 0.03 23.9 * 

2006-05-16 16:00 2006-05-16 18:51 30 6 198 BLDU 0.02 12.0 * 

2006-06-06 18:00 2006-06-07 01:00 38 0.75 720 HZ BLDU 0.09 43.4 #, ♦ 

2006-06-24 20:00 2006-06-25 06:00 10 5 549 BLDU 0.12 61.9 * 

2006-06-25 16:51 2006-06-25 23:00 54 0.75 343 HZ 0.06 20.9 * 

2006-06-30 19:00 2006-06-30 21:12 48 6 299 HZ BLDU; TS 0.02 17.8 * 

2006-07-16 21:00 2006-07-17 00:00 25 5 274 TS; BLDU 0.03 16.5 * 

2006-07-18 18:00 2006-07-18 22:00 29 2.5 378 BLDU 0.06 44.9 * 

2006-07-21 16:00 2006-07-22 02:00 52 6 541 TS HZ; TS BLDU; -TSRA 0.09 55.4 * 

2006-08-11 22:00 2006-08-12 03:51 41 1 113 +TSRA BR 0.01 6.8 * 

2006-08-21 18:00 2006-08-22 08:51 49 0.75 333 TS HZ; TS BLDU; TSRA 0.04 20.1 * 

2007-04-28 15:00 2007-04-28 16:51 51 0.75 732 HZ; BLDU 0.07 78.8 #, ♦ 

2007-05-08 17:00 2007-05-08 20:00 32 6 152 HZ BLDU 0.02 9.2 # 

2007-07-06 18:00 2007-07-07 02:00 39 7 265 BLDU 0.06 16.3 * 

2007-07-16 20:00 2007-07-17 00:51 43 1.25 773 HZ BLDU; -TSRA BLDU 0.06 46.0 * 

2007-07-18 21:00 2007-07-19 01:00 25 6 736 BLDU 0.07 65.8 * 

2007-07-19 22:00 2007-07-20 01:00 55 0.25 3154 BLDU; -RA BLDU; TS BLDU 0.29 303.7 # 
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Table A1  (continued)  

Date time started Date time ended Maximum 

KPHX wind 

or gust speed 

(mi h–1) † 

Minimum 

KPHX 

visibility 

(mi) † 

Maximum 

CEPH @ 

PM10 

(µg m–3) 

KPHX METAR weather condition 

code ‡,§ 

Estimated 

PM10 dry 

deposition 

(kg ha–1) 

Estimated 

TSP dry 

deposition 

(kg ha–1) 

Ident-

ification 

2007-07-20 23:00 2007-07-21 04:51 15 7 306 VCTS 0.03 18.5 * 

2007-08-13 23:00 2007-08-14 03:51 59 3 2422 VCTS BLDU; -RA BLDU; TS 

BLDU; -TSRA SQ 

0.25 265.9 * 

2007-08-16 17:00 2007-08-16 23:00 38 5 196 BLDU; HZ BLDU SQ 0.03 11.9 * 

2007-08-23 20:00 2007-08-24 01:00 20 2.5 802 BLDU 0.11 67.8 * 

2007-08-24 20:00 2007-08-25 08:51 20 5 127 BLDU; VCTS +RA 0.04 8.0 # 

2007-08-28 23:30 2007-08-29 02:00 13 5 426 HZ BLDU 0.06 45.7 # 

2007-09-05 20:00 2007-09-05 23:00 34 3 475 BLDU 0.05 28.5 * 

2008-08-07 20:00 2008-08-08 00:51 53 1.5 532 TS; -TSRA BLDU; +TSRA 0.04 31.7 * 

2008-08-14 18:00 2008-08-14 21:51 46 6 118 -TSRA BLDU 0.01 7.1 * 

2008-08-28 19:49 2008-08-29 02:51 75 0.25 NA TS; +RA SQ; +RA FG SQ; +RA BR NA NA # 

2008-09-11 18:00 2008-09-11 20:00 51 1.5 1066 HZ BLDU SQ; HZ BLDU 0.06 63.5 * 

2009-07-15 21:00 2009-07-15 22:23 40 7 152 SQ; TS 0.01 9.0 * 

2009-07-17 18:00 2009-07-18 06:00 40 2.5 849 BLDU 0.24 153.6 * 

2009-07-18 18:00 2009-07-19 04:00 29 0.25 165 DS; BLDU 0.06 10.6 * 

2009-07-20 18:00 2009-07-20 20:51 55 6 324 TS BLDU; TS 0.03 19.3 * 

2009-08-12 21:00 2009-08-13 10:51 28 1 1477 BLDU; +TSRA 0.15 107.4 * 

2009-08-21 20:49 2009-08-22 06:51 44 5 289 BLDU 0.05 30.4 * 

2009-09-03 20:00 2009-09-03 22:00 37 1.5 1481 BLDU; -TSRA 0.09 88.0 * 

2010-07-20 01:51 2010-07-20 04:51 25 5 199 TS HZ 0.02 12.0 * 

2010-08-17 17:00 2010-08-17 22:51 43 4 206 -RA 0.02 12.3 * 

2010-10-02 17:51 2010-10-02 21:00 43 3 592  0.05 35.4 * 

2011-07-03 00:00 2011-07-03 11:00 30 2 1771 BLDU 0.26 174.5 #,& 

2011-07-03 17:00 2011-07-03 22:00 36 6 844 HZ BLDU; -TSRA 0.09 50.7 #,& 

2011-07-05 19:00 2011-07-06 00:00 53 0.12 3578 +DS; -RA +DS; -RA BLDU 0.30 305.4 #,&, ♦, ◊ 
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Table A1 (continued)  

Date time started Date time ended Maximum 

KPHX wind 

or gust speed 

(mi h–1) † 

Minimum 

KPHX 

visibility 

(mi) † 

Maximum 

CEPH @ 

PM10 

(µg m–3) 

KPHX METAR weather condition 

code ‡,§ 

Estimated 

PM10 dry 

deposition 

(kg ha–1) 

Estimated 

TSP dry 

deposition 

(kg ha–1) 

Ident-

ification 

2011-07-09 20:00 2011-07-10 00:51 41 2 553  0.06 63.2 * 

2011-07-10 15:51 2011-07-10 18:00 66 2.5 296 VCTS; -TSRA BLDU 0.02 17.6 # 

2011-07-17 22:00 2011-07-18 00:00 20 7 537  0.04 32.0 * 

2011-07-18 16:00 2011-07-18 23:00 37 1 2056 HZ BLDU 0.26 248.2 *,& 

2011-07-20 22:00 2011-07-21 01:51 26 2.5 2050 BLDU 0.14 122.2 * 

2011-07-31 19:51 2011-07-31 23:51 33 7 175 -TSRA 0.02 10.5 #, ♦ 

2011-08-03 02:41 2011-08-03 06:00 25 1.25 1977 HZ 0.13 117.8 *,& 

2011-08-07 21:00 2011-08-08 00:00 14 6 890 HZ 0.08 75.7 * 

2011-08-18 18:00 2011-08-18 21:00 39 0.5 4373 DS; BLDU 0.26 284.0 #,&, ♦ 

2011-08-25 00:00 2011-08-25 11:00 33 1.75 2822 HZ 0.38 284.7 *,& 

2011-08-27 18:00 2011-08-28 00:51 32 1 1972 BLDU; HZ 0.25 252.3 *,& 

2011-09-02 01:00 2011-09-02 13:00 34 0.75 4392 BLDU; -RA BLDU; DU; -RA 0.37 305.2 *,& 

2011-09-09 20:00 2011-09-09 23:00 15 3 875 HZ 0.09 89.5 * 

2011-09-10 19:00 2011-09-10 22:00 41 4 283 TS 0.03 17.1 * 

2011-09-11 16:51 2011-09-12 01:00 25 1 980  0.16 116.3 #,& 

2011-09-12 16:00 2011-09-12 23:00 32 6 928  0.11 83.6 #,& 

2011-09-27 18:00 2011-09-27 22:00 30 2.5 563 BLDU 0.07 57.0 * 

2012-05-09 16:00 2012-05-09 19:51 54 0.5 425 BLDU; TS DS; -TSRA 0.04 19.6 #, ♦ 

2012-06-16 17:00 2012-06-17 00:00 32 0.75 990 BLDU 0.10 60.28 #,& 

2012-06-26 20:00 2012-06-26 23:00 34 5 846  0.06 61.8 #, ♦ 

2012-06-27 18:00 2012-06-28 00:51 44 1 4811 BLDU 0.31 296.6 #,&, ♦ 

2012-07-11 22:00 2012-07-12 02:51 47 1.75 1412 +TSRA 0.13 121.7 #,& 

2012-07-15 16:31 2012-07-15 20:51 33 1.25 867 TS; BLDU 0.11 101.1 # 

2012-07-21 17:00 2012-07-21 20:51 51 1 912 BLDU SQ; -TSRA 0.07 63.2 #, ♦ 
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Table A1 (continued)  

Date time started Date time ended Maximum 

KPHX wind 

or gust speed 

(mi h–1) † 

Minimum 

KPHX 

visibility 

(mi) † 

Maximum 

CEPH @ 

PM10 

(µg m–3) 

KPHX METAR weather condition 

code ‡,§ 

Estimated 

PM10 dry 

deposition 

(kg ha–1) 

Estimated 

TSP dry 

deposition 

(kg ha–1) 

Ident-

ification 

2012-07-22 16:00 2012-07-22 18:00 30 2.5 188  0.02 10.93 # 

2012-07-23 16:00 2012-07-23 17:51 24 1 876  0.03 27.8 #, ♦ 

2012-07-28 18:00 2012-07-28 21:51 40 6 78 HZ; RA 0.01 9.7 # 

2012-07-29 16:55 2012-07-30 03:51 45 2.5 369 VCBLDU; BLDU; -TSRA 0.02 12.6 # 

2012-08-11 17:00 2012-08-11 19:00 26 0.75 1224 BLDU 0.11 109.3 #,& 

2012-08-13 21:00 2012-08-14 02:51 30 6 604 VCBLDU; TS 0.06 30.4 * 

2012-08-14 22:00 2012-08-15 13:00 36 2.5 916 TS BLDU; -TSRA; HZ 0.17 58.0 #,& 

2012-08-19 22:51 2012-08-20 01:00 26 7 468  0.05 48.3 * 

2012-09-02 20:00 2012-09-03 04:00 23 2 NA BLDU 0.15 92.8 # 

2012-09-03 21:00 2012-09-04 03:49 22 7 NA TS 0.03 18.2 * 

2012-09-06 17:00 2012-09-06 20:00 29 0.75 624 BLDU 0.08 81.4 #,&, ♦ 

2012-09-10 20:00 2012-09-11 16:51 33 6 338 -RA 0.05 22.9 * 

2013-06-30 22:00 2013-07-01 01:00 47 0.75 5251  0.34 362.1 #,& 

2013-07-02 03:00 2013-07-02 07:00 39 5 719 -RA 0.07 50.0 #,& 

2013-07-12 13:00 2013-07-12 15:51 22 5 250  0.02 15.8 # 

2013-08-18 18:00 2013-08-18 23:00 37 6 128  0.02 7.9 # 

2013-08-20 19:00 2013-08-20 23:51 36 3 429 HZ; BLDU 0.08 70.9 # 

2013-08-26 18:00 2013-08-26 22:00 55 0.25 1697 BLDU; TSRA BLDU 0.11 86.6 # 

2013-09-05 21:00 2013-09-06 01:00 11 3 390  0.07 52.1 # 

2014-07-03 19:00 2014-07-03 21:51 56 1 2039 DS SQ; -TSRA BLDU 0.11 120.7 #,& 

2014-07-13 16:26 2014-07-14 01:51 56 4 301 TSRA 0.03 20.8 # 

2014-07-25 17:00 2014-07-26 00:00 46 1.5 840 BLDU 0.15 133.8 #,& 

2014-07-26 22:00 2014-07-27 05:00 34 4 396  0.07 45.8 # 

2014-08-17 18:00 2014-08-18 03:51 37 7 89 -TSRA 0.03 4.5 * 

2014-09-06 18:00 2014-09-06 21:00 38 1.25 1663  0.10 88.6 #,& 

1
3
0
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Table A1 (continued) 

Notes: †, wind / gust speeds and visibility are listed in the units reported by U.S. NOAA in hourly QCLCD (quality controlled 

local climatological data) which are miles per hour and miles respectively; ‡, KPHX is the Phoenix Sky-Harbor Airport 

weather station; @, U.S. EPA Air Quality System site 04-013-3002; §, BLDU blowing dust, BR mist, DU widespread dust, DS 

dust storm, FG fog, HZ haze, RA rain, SQ squall, TS thunderstorm, TSRA thunderstorm with rain, VC in the vicinity; *, 

haboob identified by meteorological and air quality signature but no photograph was available; #, haboob identified by 

meteorological signature, air quality signature, and photograph; & haboob documented by ADEQ (2015); ♦, Lei and Wang, 

2014; ◊, Raman et al., 2014.  

 

1
3
1
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APPENDIX B  

THE DEPOSITION OF HABOOBS IN TEMPE, ARIZONA  
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Figure B1. Calculated dynamic air viscosity (ηair) at KPHX as a function of dry bulb 

temperature and station pressure during the time period 2005 to 2014 (right) and during 

Aug 1 – 6, 2005 (left). Calculations were performed using Mathematica 10 

(Mathematica, 2015a). Values of ηair had annual and diurnal cycles with maxima in the 

evening and minima in the morning. ηair ranged from 0.0171 to 0.0195 g m
–1

s
–1

. The star 

in the right plot indicates the ηair decrease associated with a haboob. Hourly markers are 

omitted from the left figure for clarity. 
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Figure B2. Calculated air density (ρair) at KPHX as a function of dry bulb temperature 

and station pressure during the time period 2005 to 2014 (right) and during Aug 1 – 6, 

2005 (left). Calculations were performed using Mathematica 10 (Mathematica, 2015b). 

Values for ρair had annual and diurnal cycles with maxima in the morning and minima in 

the evening. ρair ranged from 1.05 to 1.27 kg m
–3

. The star in the right plot indicates the 

ρair increase associated with a haboob. Hourly markers are omitted from the left figure for 

clarity.  
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Figure B3. The composite non-haboob PM mass distribution was the average of literature 

mass distributions (Seinfeld and Pandis, 2006; Sauret et al., 2009). The non-haboob 

distribution had a 
PM10

TSP
 mass ratio of 0.78 and a 

PM2.5

PM10
 mass ratio of 0.24. 
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Figure B4. The composite haboob TSP mass distribution was reasonably based on 

several dust storm distributions in the literature. The composite haboob PM mass 

distribution was identical to the non-haboob composite distribution for diameters 

< 10 µm and therefore 
PM2.5

PM10
 was the same as well. The haboob composite 

PM10

TSP
 mass ratio 

was 0.20 and its distribution had a large mode around 100 µm. A 
PM10

TSP
 mass ratio of 0.06 

was estimated from histograms in Chen and Fryrear (2002) using the average of 5 to 20 

foot sampler heights. The error bars in the figure above are the standard deviation of the 

estimated ratios. The mass distributions were estimated from 3 dust storms reported in 

Gillette et al. (Figure 4 and Table 3 therein; 1978) resulting in 
PM10

TSP
 mass ratio estimates 

of 0.18, 0.19, and 0.27. In Box et al. (2010), 
PM10

TSP
 mass ratios of < 0.85 and < 0.87 were 

estimated from histograms for two dust storms. These mass ratios are upper bounds since 

PM>18 was not reported due to physical constraints of their sampling equipment.   
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Figure B5. Mean annual dry deposition (kg ha
–1

yr
–1

) in Tempe for the time period 2005 

to 2014. The TSP deposition (left) and the PM10 deposition (right) for haboobs, other dust 

and background time periods. The numbers are the deposition quantities in kg ha
–1

yr
–1

. 

The small PM10 chart is scaled proportionally to the TSP deposition for comparison. Low 

visibility haboobs with VIS ≤ 1.6 km (1 mi) account for one-fourth of the haboobs and 

deposit 35 % of the total TSP while moderate visibility haboobs with 1.6 < VIS ≤ 11.3 km 

(1 to 7 mi) account for three-fourths of the haboobs and comprise 39% of TSP deposition. 

‘Other Dust’ is dust events that failed to meet the visibility and meteorological criteria for 

haboobs. The background includes smog, fog, rain, and fair weather.  
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APPENDIX C  

TEMPE TOWN LAKE CHEMISTRY  
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Figure C1. The predicted settling of a non-haboob distribution (left) and a haboob 

distribution (right) of particles within Tempe Town Lake in a non-dissolution, no-flow 

scenario, at 10 °C. The shaded bars indicate the percent of overall particle mass contained 

in three depth layers or on the lake bottom. In less than 24 hours, 50% of the mass in a 

non-haboob particle distribution will settle below 1 m depth. In 1 minute, 53% of the 

mass in a haboob particle distribution settles 10 cm or more and during 1 hour, 63% 

reaches the lake bottom. The values for ηwater and ρwater employed in the calculations were 

0.001306 kg m
–1

 s
–1

 and 999.7 kg m
–3

 respectively (Mathematica, 2015b, 2015c).  
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APPENDIX D  

DISTRIBUTION OF PAHS IN CLOUDS AND FOG  

  



141 

Table D1 

Summary of PAH Partition Ratios at 25 °C  

Name of PAH / Oxy–PAH  Abbreviation 

Molar 

Mass [Da] 

Reference 

log KOW 

Reference 

log KOA 

Reference H 

[M atm
–1

] H* [M atm
–1

] 

     PAH       

naphthalene NAP 128.17 3.33 
a
 5.19

 j
 2.4 

m
 3.0 

acenaphthylene ACY 152.19 3.94 
b
 6.34 

k
 8.0 

n
 10 

acenaphthene ACE 154.21 3.92 
c
 6.52 

k
 5.5 

n
 16 

9H–fluorene FLU 166.22 4.18 
b
 6.90 

k
 10 

n
 21 

phenanthrene PHE 178.23 4.57 
a
 7.68 

k
 21 

m
 53 

anthracene ANT 178.23 4.68 
a
 7.71 

k
 18 

m
 44 

fluoranthene FLT 202.25 5.23 
a
 8.76 

k
 52 

n
 140 

pyrene PYR 202.25 4.88 
b
 8.80 

l
 59 

n
 350 

acephenanthrylene ACP 202.25 (4.93) 
d
 (8.40) 

j
 (120) 

o
 120 

11H–benzo[a]fluorene BAU 216.27 5.68 
e
 (8.36) 

j
 38 

n
 38 

11H–benzo[b]fluorene BBU 216.27 5.77 
e
 (9.57) 

j
 (61) 

o
 260 

benzo[a]anthracene BAA 228.29 5.91 
a
 10.28 

k
 83 

n
 970 

chrysene CHY 228.29 5.81 
a
 10.30 

k
 190 

n
 1.3×10

3
 

retene RET 234.33 (6.53) 
d
 (8.70) 

j
 (9.0) 

o
 6.0 

benzo[b]fluoranthene BBF 252.31 5.78 
f
 11.34 

k
 1.5×10

3
 
p
 1.5×10

4
 

benzo[k]fluoranthene BKF 252.31 6.11 
a
 11.37 

k
 1.7×10

3
 
p
 7.4×10

3
 

benzo[a]pyrene BAP 252.31 6.13 
a
 11.56 

k
 2.2×10

3
 
p
 1.1×10

4
 

benzo[e]pyrene BEP 252.31 6.44 
f
 (11.35) 

j
 (1.2×10

3
) 

o
 3.3×10

3
 

indeno[1,2,3–cd]pyrene IND 276.33 6.30 
g
 12.43 

k
 2.8×10

3
 
p
 2.2×10

4
 

dibenz[a,h]anthracene DBA 278.35 6.75 
h
 12.59 

k
 (2.0×10

3
) 

o
 2.8×10

4
 

benzo[g,h,i]perylene BGP 276.33 6.22 
a
 12.55 

k
 3.0×10

4
 
p
 8.5×10

4
 

1
4
1
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Table D1 (continued)  

Name of PAH / Oxy–PAH  Abbreviation 

Molar 

Mass [Da] 

Reference 

log KOW 

Reference 

log KOA 

Reference H 

[M atm
–1

] H* [M atm
–1

] 

     Oxy–PAH       

1,4–naphthoquinone oNAP 158.16 1.71 
b
 (8.80) 

j
 (5.1×10

5
) 

o
 5.1×10

5
 

2H–chromen–2–one 
q
 oCOU 146.14 1.39 

b
 (6.78) 

j
 (1.4×10

4
) 

o
 1.0×10

4
 

4H–chromen–4–one 
r
 oCRM 146.15 1.38 

b
 (5.86) 

j
 (1.2×10

3
) 

o
 1.2×10

3
 

1H–phenalen–1–one 
s
 oPNE 180.21 (3.39) 

d
 (8.77) 

j
 (9.7×10

3
) 

o
 9.7×10

3
 

9H–fluoren–9–one oFLU 180.21 3.58 
b
 (8.14) 

j
 (1.5×10

3
) 

o
 1.5×10

3
 

acenaphthenequinone oACE 182.18 1.95 
b
 (8.80) 

j
 (2.9×10

5
) 

o
 2.9×10

5
 

9(10H)–anthrone 
t
 oATR 194.23 3.66 

b
 (8.15) 

j
 (1.3×10

3
) 

o
 1.3×10

3
 

9H–xanthen–9–one 
u
 oXAN 196.21 3.39 

b
 (8.49) 

j
 (5.2×10

3
) 

o
 5.2×10

3
 

6H–benzo[c]chromen–6–one 
v
 oDBP 196.21 (1.99) 

d
 (5.73) 

j
 (224) 

o
 224 

phenanthrene–1,4–dione oPHE1 208.22 (2.84) 
d
 (10.95) 

j
 (5.2×10

6
) 

o
 5.2×10

6
 

phenanthrene–9,10–dione oPHE2 208.22 2.52 
b
 (9.48) 

j
 (3.7×10

5
) 

o
 3.7×10

5
 

9,10–anthraquinone oANT 208.22 3.39 
i
 (9.41) 

j
 (3.1×10

5
) 

 o
 4.3×10

4
 

7H–benzo[de]anthracen–7–one 
w
 oBTR 230.27 (4.73) 

d
 (10.38) 

j
 (1.5×10

4
) 

o
 1.8×10

4
 

11H–benzo[a]fluoren–11–one oBAU 230.27 (4.73) 
d
 (10.30) 

j
 (1.5×10

4
) 

o
 1.5×10

4
 

11H–benzo[b]fluoren–11–one oBBU 230.27 (4.73) 
d
 (10.30) 

j
 (1.5×10

4
) 

o
 1.5×10

4
 

pyrene–1,6–dione oPYR1 232.24 (3.60) 
d
 (12.69) 

j
 (5.0×10

7
) 

o
 5.0×10

7
 

pyrene–1,8–dione oPYR2 232.24 (3.60) 
d
 (12.69) 

j
 (5.0×10

7
) 

o
 5.0×10

7
 

aceanthrylene–1,2–dione 
x
 oAAN 232.24 (4.15) 

d
 (12.01) 

j
 (3.0×10

6
) 

o
 3.0×10

6
 

benz[a]anthracene–7,12–dione oBAA 258.27 (4.52) 
d
 (12.30) 

j
 (3.2×10

6
) 

o
 2.4×10

6
 

chrysene–1,4–dione oCHY 258.27 (4.01) 
d
 (13.12) 

j
 (5.3×10

7
) 

o
 5.3×10

7
 

benzo[a]pyrene–1,6–dione oBAP1 282.29 (4.94) 
d
 (14.22) 

j
 (7.7×10

7
) 

o
 7.8×10

7
 

benzo[a]pyrene–3,6–dione oBAP2 282.29 (4.94) 
d
 (14.22) 

j
 (7.7×10

7
) 

o
 7.8×10

7
 

benzo[a]pyrene–4,5–dione oBAP3 282.29 (5.32) 
d
 (14.19) 

j
 (3.1×10

7
) 

o
 3.1×10

7
 

benzo[a]pyrene–6,12–dione oBAP4 282.29 (3.80) 
d
 (13.31) 

j
 (1.3×10

8
) 

o
 1.3×10

8
 

benzo[e]pyrene–4,5–dione oBEP 282.29 (5.32) 
d
 (14.19) 

j
 (3.1×10

7
) 

o
 3.1×10

7
 

1
4
2
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Table D1 (continued)  

Notes: Estimated values from US EPA EPISuite are in parenthesis. a. de Maagd et al., 1998; b. Hansch et al., 1995; c. 

Banerjee et al., 1980; d. EPISuite KOWWIN v1.68 estimate; e. Wang et al., 1986; f. De Voogt et al., 1990; g. Sahu and 

Pandit, 2003; h. Sangster, 1989; i, Pratesi et al., 1979; j. EPISuite KOAWIN v1.10 estimate; k. Odabasi et al., 2006; l. Harner 

and Bidleman, 1998a; m. calculated from Alaee et al., 1996; n. Bamford et al., 1999; o. EPISuite HENRYWIN v3.20, Bond 

Method; p. ten Hulscher et al., 1992. Trivial names: q. coumarin; r. chromone; s. perinaphthenone; t. anthrone; u. xanthone; v. 

dibenzopyranone; w. benzanthrone; x. aceanthraquinone.  

1
4
3
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Figure D1. Comparison of ideal Henry’s law constants H and calculated Henry’s law 

constants H* at 25 °C. The H*values calculated with Equation 5.4 were approximately 

within an order of magnitude (gray area) of the literature H (solid square) and EPISuite H 

(open square) values. PAH H* were generally higher than H, i.e., above the 1:1 line, 

since Equation 5.4 employs constants measured in octanol saturated water which 
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increases PAH solubility. Many EPISuite values fall on the 1:1 line with calculated 

values since EPISuite uses Equation 5.5 to estimate KOA where no literature value exists.  
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Figure D2. Comparison of the liquid organic phase rates and the 1 / 7.2 relationship for 

estimating solvent rates based on spruce needle rates. The photooxidation rate in toluene 

(circle symbols; Plata et al., 2008), methanol and 1–octanol (square and diamond 

symbols respectively; Grossman et al., 2016) solvents differs from the photooxidation 

rate in spruce needles (Niu et al., 2003) by less than one order of magnitude (shaded grey 

area indicates the boundary of 1:1 and 1:10).  
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Table D2 

Summary of Kinetic Rate Constants at 25 °C 

 Gas phase [cm
3
 molecule

–1
 s

–1
] Liquid phase [s

–1
] 

Name 𝑘(•OH, g) 𝑘(O3, g) 𝑘(O(³P), g) 𝑘(•NO3, g) 𝑘(org) 𝑘(aq) 

PAH       

NAP 2.2 ±0.7 ×10
–11

 
a
 < 2 ×10

–19
 
b,f

 1.1 ×10
–12

 
b
 3.6 ×10

–28
 
i
  2.7 ×10

–6
 
q
 

ACY 1.09 ×10
–10

 
b,c

 ~ 5.5 ×10
–16

 
b,g

  (4.6 ×10
–27

) 
g,j

 (5.2 ×10
–5

) 
p
  

ACE 1.0 ×10
–10

 
b,c

 < 5 ×10
–19

 
b,g

  (3.8 ×10
–28

) 
g,j

 (3.1 ×10
–5

) 
p
 3 ×10

–5
 
r
 

FLU 1.4 ×10
–11

 
b
 < 2 ×10

–19
 
b
  (4.9 ×10

–28
) 

k
 (3.4 ×10

–5
) 

p
 9 ×10

–7
 
r
 

PHE 3.1 ±0.9 ×10
–11

 
a
 4 ×10

–19
 
b,h

 1.4 ×10
–12

 
b
 (2.5 ×10

–27
) 

h,l
 (1.8 ×10

–5
) 

p
 9 ×10

–6
 
r
 

ANT 1.3 ±0.4 ×10
–11

 
a
    2.3 ±1.6 ×10

–5
 
s
 2.3 ±2 ×10

–4
 
s
 

FLT ~1.8 ×10
–11

 
b
   5.1×10

–28
 
m

 (5.4 ×10
–5

) 
p
 5 ×10

–6
 
r
 

PYR 5.0 ×10
–11

 
d
   1.6×10

–27
 
m

 4.1 ±2.0 ×10
–5

 
s
 1.8 ±0.4 ×10

–4
 
s
 

ACP (1.61 ×10
–11

) 
e
      

BAU (4.66 ×10
–11

) 
e
      

BBU (4.66 ×10
–11

) 
e
      

BAA (5.3 ×10
–11

) 
b
    6.4 ±0.2 ×10

–5
 
o
 3.3 ×10

–4
 
q
 

CHY (3.4 ×10
–11

) 
b
    6.8 ±0.2 ×10

–5
 
o
 4.3 ×10

–5
 
t
 

RET (4.17 ×10
–11

) 
e
      

BBF (1.86 ×10
–11

) 
e
    (3.0 ×10

–5
) 

p
 3 ×10

–5
 
r
 

BKF (5.36 ×10
–11

) 
e
    (3.2 ×10

–5
) 

p
 3 ×10

–5
 
r
 

BAP (9.0 ×10
–11

) 
b
    3.6 ±0.4 ×10

–5
 
o
 2.1 ×10

–3
 
r
 

BEP (4.0 ×10
–11

) 
b
    5.3 ±0.1 ×10

–5
 
o
  

IND (6.45 ×10
–11

) 
e
    (3.1 ×10

–5
) 

p
  

DBA (4.6 ×10
–11

) 
b
    (8.8 ×10

–5
) 

p
  

BGP (8.69 ×10
–11

) 
e
    (3.0 ×10

–5
) 

p
  

1
4
7
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Table D2 (continued) 

 Gas phase [cm
3
 molecule

–1
 s

–1
] Liquid phase [s

–1
] 

Name 𝑘(•OH, g) 𝑘(O3, g) 𝑘(O(³P), g) 𝑘(•NO3, g) 𝑘(org) 𝑘(aq) 

Oxy–PAH       

oNAP 3.0 ×10
–12

 
b
 < 2×10

–19
 
b
  (< 1.2×10

–29
) 

b,n
   

oCOU (1.32 ×10
–11

) 
e
 (2.10×10

–17
) 

e
     

oCRM (3.09 ×10
–11

) 
e
 (8.75×10

–18
) 

e
     

oPNE (2.39 ×10
–11

) 
e
 (2.10×10

–17
) 

e
     

oFLU (6.18 ×10
–12

) 
e
      

oACE (8.30 ×10
–12

) 
e
      

oATR (9.77 ×10
–12

) 
e
      

oXAN (8.97 ×10
–12

) 
e
      

oDBP (5.58 ×10
–12

) 
e
      

oPHE1 (1.06 ×10
–11

) 
e
 (1.75×10

–18
) 

e
     

oPHE2 (6.18 ×10
–12

) 
e
      

oANT (1.50 ×10
–12

) 
e
      

oBTR (1.80 ×10
–11

) 
e
      

oBAU (1.80 ×10
–11

) 
e
      

oBBU (1.80 ×10
–11

) 
e
      

oPYR1 (2.99 ×10
–11

) 
e
 (4.20×10

–17
) 

e
     

oPYR2 (2.99 ×10
–11

) 
e
 (4.20×10

–17
) 

e
     

oAAN (1.54 ×10
–11

) 
e
      

oBAA (9.05 ×10
–12

) 
e
      

oCHY (7.25 ×10
–12

) 
e
 (1.75×10

–18
) 

e
     

oBAP1 (2.31 ×10
–11

) 
e
 (2.10×10

–17
) 

e
     

oBAP2 (2.31 ×10
–11

) 
e
 (2.10×10

–17
) 

e
     

oBAP3 (1.92 ×10
–11

) 
e
      

oBAP4 (3.99 ×10
–11

) 
e
 (2.52×10

–16
) 

e
     

oBEP (1.92 ×10
–11

) 
e
      

1
4
8
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Table D2 (continued) 

Notes: Estimated and calculated values are in parenthesis. a. Atkinson, 1989; b. calculated rates in Calvert et al., 2002 with 

[
•
OH] = 3 × 10

6
 molecules cm

–3
, [O3] = 30 ppb, and [O(³P)] = 200 molecules cm

–3
; c. Atkinson and Aschmann, 1987; d. 

Atkinson et al., 1987; e. EPISuite AOPWIN v1.92 estimate; f. Atkinson et al., 1984; g. Atkinson and Aschmann, 1988; h. 

Kwok et al., 1994; i. Atkinson, 1991; j. calculated with [NO2] = < 1.2 × 10
15

 molecules cm
−3

; k. calculated rate in Kwok et al., 

1997 with [NO2] = < 7.2 × 10
13

 molecules cm
−3

; l. calculated rate in Kwok et al., 1994 with [NO2] = < 4.8 × 10
13

 

molecules cm
−3

; m. Atkinson et al., 1990; n. calculated rate given in Calvert et al., 2002 with [NO2] = 8 × 10
13

 

molecules cm
−3

; o. Plata et al., 2008; p. estimated from Niu et al., 2003; q. Zepp and Schlotzhauer, 1979; r. Fasnacht and 

Blough, 2002; s. Grossman et al., 2016; t. Kong and Ferry, 2003. See Table D1 for abbreviations.  

  

1
4
9
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Table D3 

Molar oxy–PAH Yields in Gas, Aqueous, and Liquid Organic Phases 

Reactant Molar Conversion, Ym [Percent]  

Product Ym(
•
OH, g) Ym(O3, g) Ym(O(³P), g) Ym(aq) Ym(org) Product Comments 

   NAP 

oNAP
 a, b

 

(oCOU)
 c
 

(oCRM) 

(1%) 

(0.1%) 

(0.05%) 

(1%) 

(0.1%) 

(0.05%) 

(1%) 

(0.1%) 

(0.05%) 

(1%) 

(0.1%) 

(0.05%) 

(1%) 

(0.1%) 

(0.05%) 

Experimental gas phase 
•
OH product 

a, b
 

Experimental aqueous non–AR
d
 product 

c
  

Probable product and probable Ym
e
 

   ACY 

oACE
 f
 

(oACE) 

(1%) 

(1%) 

(1%) 

(1%) 

(1%) 

(1%) 

0.3–2%
f
 

(1%) 

(1%) 

(1%) 

Experimental aqueous product and Ym
f
  

Probable product and probable Ym
e
 

FLU 

oFLU
 g

 (1%) (1%) (1%) (1%) (1%) Experimental gas phase 
•
OH product

 g
 

   PHE 

oPHE1
 i
  

oPHE2
 h, i, j

  

oFLU 
h, i, j

  

oDBP
 h, i, j

 

1.36±0.03
i
 

3±3%
h
; 0.98±0.01%

i
 

0.33±0.02%
i
 

(0.05%) 

(1%) 

2±1%
h
 

(0.05%) 

(0.05%) 

(1%) 

(1%) 

(0.05%) 

(0.05%) 

(1%) 

(1%) 

(0.05%) 

(0.05%) 

(1%) 

(1%) 

(0.05%) 

(0.05%) 

Experimental gas phase 
•
OH product and Ym

i
  

Experimental gas phase product 
h, i, j

 and Ym
h, i

 

Experimental gas phase
 i, j

 
•
OH product and Ym

h
  

Experimental gas phase 
•
OH product 

h, i, j
 

   ANT 

oANT
 k, l

 

(oATR) 
c, l

 

(oXAN) 

(1%) 

(0.05%) 

(0.05%) 

(1%) 

(0.05%) 

(0.05%) 

(1%) 

(0.05%) 

(0.05%) 

0.15±0.02%
k
 

(0.05%) 

(0.05%) 

(1%) 

(0.05%) 

(0.05%) 

Experimental aqueous product 
k, l

 and Ym
k
  

Experimental aqueous non–AR
d
 product 

c, l
  

Probable product and probable Ym
e
 

   FLT 

(oPNE) (0.1%) (1%) (1%) (0.1%) (0.1%) Probable product and probable Ym
e
 

   PYR 

(oPYR1)  

(oPYR2) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

(0.5%) 

Probable product and probable Ym
e
  

Probable product and probable Ym
e
 

 

1
5
0
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Table D3 (continued) 

Reactant Molar Conversion, Ym [Percent]  

Product Ym(•OH, g) Ym(O3, g) Ym(O(³P), g) Ym(aq) Ym(org) Product Comments 

   ACP 

(oAAN) (0.1%) (0.1%) (0.1%) (0.1%) (0.1%) Probable product and probable Ym
e
 

   BAU 

(oBAU) (1%) (1%) (1%) (1%) (1%) Probable product and probable Ym
e
 

   BBU 

(oBBU) (1%) (1%) (1%) (1%) (1%) Probable product and probable Ym
e
 

   BAA 

oBAA
 m

 

(oCOU)
 c
 

(1%) 

(0.1%) 

(1%) 

(0.1%) 

(1%) 

(0.1%) 

(1%) 

(0.1%) 

(1%) 

(0.1%) 

Experimental toluene irradiation product 
m
  

Experimental aqueous non–AR
d
 product 

c
 

   CHY 

oCHY
 n
 (1%) (1%) (1%) < 1%

 n
 (1%) Experimental aqueous product and Ym

n
 

   BAP 

oBTR
o
  

oBAP1
o
  

oBAP2
 o
  

oBAP3
o,l

  

oBAP4
o
 

(0.1%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.1%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.1%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.1%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.1%) 

(0.25%) 

(0.25%) 

(0.25%) 

(0.25%) 

Experimental gas phase O3 product
 o
  

Experimental gas phase O3 product 
o
  

Experimental gas phase O3 product 
o
  

Experimental gas phase O3 product 
o
  

Experimental gas phase O3 product 
o
 

   BEP 

oBEP
 p
 (1%) (1%) (1%) (1%) (1%) Experimental acetonitrile irradiation product

 p
 

Notes: Parentheses indicate probable products and estimated conversion quantities. For products that did not have a literature 

molar yield, 1% was used for products with native-ring backbone intact while 0.1% was used for ring-rearranged / ring-opened 

products. The remaining percentage of products has been reported to be monocyclic and acyclic compounds.  

1
5
1
 



152 

Table D3 (continued) 

a. Lane et al., 1996; b. Mihele et al., 2002; c. Woo et al., 2009; d. the molar yield, Ym, was not used for literature that did not 

employ filters to correct the UV irradiation intensity spectrum to be representative of sunlight at the surface of the Earth (AR); 

e. reaction not in literature, probable product and probable Ym; f. calculated from product formed over the total parent lost 

Sigman et al., 1996; g. Helmig et al., 1992; h. Wang et al., 2007; i. Lee and Lane, 2010; j. Helmig and Harger, 1994; k. 

Mallakin et al., 2000; l. Sanches et al., 2011; m. Jang and McDow, 1997; n. Kong and Ferry, 2003; o. Letzel et al., 1999; p. 

Fioressi and Arce, 2005. See Table D1 for the full compound names.  

 

1
5
2
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NAP 

→ 
 

oNAP 

 
oCOU  

oCRM 

 

 

 
ACE, ACY 

→ 
 

oACE 

   

 
FLU 

→ 
 

oFLU 

   

 
PHE 

→ 
 

oPHE1 
 

oPHE2 

 
oFLU 

 
oDBP 

 
ANT 

→ 
 

oANT 

 
oATR 

 
oXAN 

 

 
FLT 

→ 
 

oPNE 

   

 
PRY 

→ 

 
oPYR1 

 
oPYR2 

  

 
ACP 

→ 
 

oAAN 

   

Figure D3a. Molecular structures of PAHs and their oxidation products (oxy–PAHs).  
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BAU 

→ 
 

oBAU 

   

 
BBU 

→ 
 

oBBU 

   

 
BAA 

→ 
 

oBAA 

 
oCOU 

  

 
CHY 

→ 
 

oCHY 

   

 
BEP 

→ 

 
oBEP 

   

 
BAP 

→ 
 

oBTR  
oBAP1 

 
oBAP2 

 
oBAP3 

 → 

 
oBAP4 

   

Figure D3b. Molecular structures of PAHs and their oxidation products (oxy–PAHs).  
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EQUATIONS D1 – D15 

Calculation of liquid organic phase volume fraction. 

For fog with LWC = 0.3 g m
–3

, with a TOC of 5 mgC L
–1

 liquid organic phase 

that is 70% carbon by mass, a liquid organic mass density 𝜌org = 0.7 g cm
–3

, and a drop 

mass density 𝜌aq = 1 g cm
–3

, the liquid organic phase volume fraction (𝜙org) is 3 × 10
–12

 

org/air:  

𝜙org =
TOC[mgC Laq

−1]LWC[gaq mair
−3 ](10−3Laq cmaq

−3)(10−3gorg mgorg
−1 )

0.7[mgC mgorg
−1 ]𝜌org[gorg cmorg

−3 ]𝜌aq[gaq cmaq
−3](106cmorg

3  morg
−3 )

 (D1). 

Calculation of PAH and oxy–PAH fractions and concentrations in terms of 

total air volume.  

The concentrations of PAHs and oxy–PAHs in Equations 5.1, 5.2, and 5.4 of the 

main text are in terms of phase volumes, which are different for each phase. In lieu of 

converting between volume dimensions in every time step, the following equations were 

developed. The aqueous phase concentration [PAH]aq [mol Laq
−1] was converted to c

aq
 

[mol mair
−3], the concentration in terms of total air volume in Equation D2 where 𝜙aq is 

the aqueous phase volume fraction: 

𝑐aq[mol mair
−3] = 𝜙aq[PAH]aq    (D2). 

The [PAH]org [mol Lorg
−1 ] were similarly converted to c

org
 [mol mair

−3] using Equation D3:  

𝑐org[mol mair
−3] = 𝜙org[PAH]org    (D3). 

The total concentration 𝑐𝑖
total[mol mair

−3] of a species was calculated (Equation D4) at the 

end of each time step, i-1 (i.e., after reaction during the time step) to become the new 

concentration of the next time step, i.  

𝑐𝑖
total[mol mair

−3] = 𝑐𝑖−1
g

+ 𝑐𝑖−1
aq

+ 𝑐𝑖−1
org

    (D4). 
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The species was then re-equilibrated between phases using Equations D5 – D7:  

𝑐𝑖
g[mol mair

−3] = 𝑐𝑖
total 𝐾OW

𝐾OW+(𝐾OA𝜙aq)+(𝐾OW𝐾OA𝜙org)
    (D5), 

𝑐𝑖
aq[mol mair

−3] = 𝑐𝑖
total 𝐾OA𝜙aq

𝐾OW+(𝐾OA𝜙aq)+(𝐾OW𝐾OA𝜙org)
    (D6), 

𝑐𝑖
org[mol mair

−3] = 𝑐𝑖
total 𝐾OW𝐾OA𝜙org

𝐾OW+(𝐾OA𝜙aq)+(𝐾OW𝐾OA𝜙org)
    (D7). 

The phase fractions were then calculated with Equations D8 – D10. Following that, the 

reaction of the species was calculated during the new time step, i.  

𝑥𝑖
g[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] = 𝑐𝑖

g
𝑐𝑖

total⁄     (D8). 

𝑥𝑖
aq[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] = 𝑐𝑖

aq
𝑐𝑖

total⁄     (D9). 

𝑥𝑖
org[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] = 𝑐𝑖

org
𝑐𝑖

total⁄     (D10). 

The calculation of droplet surface film coverage by PAHs and alkyl chain 

hydrocarbons.  

To determine whether the droplets should be modeled with a liquid organic 

surface film, the fractional surface coverage (𝜃) of a hypothetical film was calculated 

with Equations 5.6, 5.7, D11 and D14. The total surface area of PAHs 𝐴PAH[m2 mair
−3] 

assuming they lie flat on the air / water interface (Chen et al., 2011) was determined with 

Equation D11 where 𝑚PAH[ng mair
−3] is the mass concentration of PAHs, NA is 

Avogadro’s number [6.022 × 1023𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 mol−1], and 𝑀PAH[g mol−1] is the molar 

mass:  

𝐴PAH[m2 mair
−3] =

𝑚PAH𝐴′PAH𝑁A

𝑀PAH(1018nm2 m−2)(109ng g−1)
  (D11). 
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𝐴′PAH[nm2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1] is the single molecule surface area and corresponded to 

0.5000 nm
2
 for NAP, 0.7229 nm

2
 for PYR, 0.8813 nm

2
 for BAP, and 0.9899 nm

2
 for 

DBA (Chemicalize.org, 2016a,b,c,d).  

The total surface area 𝐴fog[m2 mair
−3] of fog droplets was determined to be 0.18 m

2
 mair

–3
 

with Equations D12 – D14 using LWC [0.3 g mair
−3  ], 𝜌drop [1g cm−3], drop volume 

V
drop[μm3], and drop diameter d

drop
 [10μm]:  

𝐴fog[m2 mair
−3] =

LWC 𝐴drop

𝜌drop 𝑉drop (D12), 

𝐴drop

𝑉drop =
6

𝑑drop   (D13), 

𝐴fog[m2 mair
−3] =

6 LWC

𝜌drop 𝑑drop
 
(10−6m3 cm−3)

(10−6m µm−1)
  (D14). 

A short alkyl chain Van der Waals cross-sectional area 𝐴′org ≈ 0.23 nm
2
 (e.g., C7 

alkyl chain of 1–octanol cross-sectional area = 0.2282 nm
2
; Chemicalize.org, 2015). The 

total liquid organic surface area 𝐴org[m2 mair
−3] was determined using as a liquid organic 

the molar mass of 1–octanol M
org

 = M
1–octanol

 [130.23gorg mol−1], TOC [5mgC Laq
−1] 

existing entirely as a water-immiscible liquid organic phase, LWC[0.3gaq mair
−3 ], drop 

mass density  𝜌aq[1gaq cmaq
−3], and the percent C content of 1–octanol 

𝑥C[0.7378mgC mgorg
−1 ]:  

𝐴org[m2 mair
−3] =

TOC  LWC  𝐴′org 𝑁A

𝑥C 𝜌aq 𝑀org

(10−18m2 nm−2)

(103mgorg gorg
−1 )(103cmaq Laq

−3)
  (D15).  
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Figure D4. Phase fractions of PAH in a system of air and un-deliquesced liquid organic 

aerosols. The volume of aqueous phase is 15% as much as the immiscible liquid-organic 

phase, that is 𝜙aq = 4.5 ×10
–13

. Here, the approximate aqueous phase boundary occurs 

below log KOW = 1. All the PAHs and oxy–PAHs would partition between the gas and 

liquid organic phases according to the magnitude of their KOA. The calculated fraction in 

the aqueous, liquid organic, and gas phases are in blue, yellow, and greyscale 

respectively. PAH literature and EPISuite KOW and KOA values are indicated as circle 

symbols, those of monocarbonyl oxy–PAHs as triangle symbols, and dicarbonyl oxy–

PAHs as square symbols. Error bars are literature reported error (95% CI, Odabasi et al., 

2006) or 5% if no error was reported.  
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Figure D5. The temperature dependence of KOW and KOA for BAA (panel a) and its 

influence on x
g
; the extrapolated temperature dependence of KOW and KOA for seven 

PAHs (panel b). The temperature dependent KOA was known for BAA, CHY, BBF, BKF 

and BAP (Odabasi et al., 2006) and temperature dependent KOW was known for BAA 

(Lei et al., 2000). KOA changes for BBU and BEP were estimated from the relative KOA 

changes for BAA and BAP respectively. The relative changes in KOW for BBU, CHY, 

BBF, BKF, BAP, and BEP were estimated from BAA. The calculated fraction in the 

aqueous, liquid organic, and gas phases are in blue, yellow, and greyscale respectively. 

PAH literature and EPISuite KOW and KOA values are indicated as circle symbols, those 

of monocarbonyl oxy–PAHs as triangle symbols, and dicarbonyl oxy– PAHs as square 

symbols. Error bars are literature reported error (95% CI, Odabasi et al., 2006) or 5% if 

no error was reported. As temperature decreases, the partition ratios change which alters 

the partitioning of PAHs with log KOA 10 to 12 at 25 °C. As an example, BAA is 

expected have x
g
 = 0.94 at 25 °C and x

g
 ~ 0.4 at 1 °C. 


