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ABSTRACT

Mobile Cloud computing has shown its capability to support mobile devices for

provisioning computing, storage and communication resources. A distributed mobile

cloud service system called “POEM” is presented to manage the mobile cloud resource

and compose mobile cloud applications. POEM considers resource management not

only between mobile devices and clouds, but also among mobile devices. It implements

both computation offloading and service composition features. The proposed POEM

solution is demonstrated by using OSGi and XMPP techniques.

Offloading is one major type of collaborations between mobile device and cloud

to achieve less execution time and less energy consumption. Offloading decisions for

mobile cloud collaboration involve many decision factors. One of important decision

factors is the network unavailability. This report presents an offloading decision model

that takes network unavailability into consideration. The application execution time

and energy consumption in both ideal network and network with some unavailability

are analyzed. Based on the presented theoretical model, an application partition

algorithm and a decision module are presented to produce an offloading decision that

is resistant to network unavailability.

Existing offloading models mainly focus on the one-to-one offloading relation. To

address the multi-factor and multi-site offloading mobile cloud application scenarios,

a multi-factor multi-site risk-based offloading model is presented, which abstracts the

offloading impact factors as for offloading benefit and offloading risk. The offloading

decision is made based on a comprehensive offloading risk evaluation. This presented

model is generic and expendable. Four offloading impact factors are presented to show

the construction and operation of the presented offloading model, which can be easily

extended to incorporate more factors to make offloading decision more comprehensive.

The overall offloading benefits and risks are aggregated based on the mobile cloud
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users’ preference.

The offloading topology may change during the whole application life. A set of

algorithms are presented to address the service topology reconfiguration problem in

several mobile cloud representative application scenarios, i.e., they are modeled as

finite horizon scenarios, infinite horizon scenarios, and large state space scenarios to

represent ad hoc, long-term, and large-scale mobile cloud service composition scenar-

ios, respectively.
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Chapter 1

INTRODUCTION

Mobile Cloud Computing (MCC) is the combination of Mobile Computing (MC),

Cloud Computing (CC) and wireless networks to bring rich computational resources

to mobile users, network operators, as well as cloud computing providers. More

comprehensively, MCC can be defined as a rich mobile computing technology that

leverages unified elastic resources of clouds and network technologies toward unre-

stricted functionality, storage, and mobility to serve a multitude of mobile devices

anywhere, anytime through the channel of Ethernet or Internet regardless of hetero-

geneous environments and platforms.

The differences of MCC from MC and CC can be clarified in the following aspects:

1) Involved parties: The mobile devices and clouds are mandatory components for

MCC. MC involves mainly mobile devices, however, clouds are not mandatory. CC

involves mainly clouds, however, the mobile devices are not mandatory. 2) Compu-

tation and storage resource: The mobile devices usually have limited computation

and storage resources, thus MC applications have to consider resource consumption

limitation. The CC has much more resources and the resources can be added or re-

moved dynamically. MCC enables the mobile devices to leverage the cloud resources,

thus MCC like CC can handle resource intensive applications. 3) Network communi-

cation: The MC network communication include ad-hoc and infrastructure networks

as the involved mobile devices can form flexible and complex wireless communica-

tion scenarios. The CC network communication involves data center networking and

software defined networking. MCC network communication bridges the wireless MC

network and the virtualized CC network, which connects mobile devices and servers
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in the clouds. 4) Mobility and availability: The mobility is one of the key properties

for MC. The mobile devices may go outside of the radio area and be offline. CC does

not have mobility property itself, and the clouds are supposed to provide services all

the time. MCC like MC has to consider mobility. For example, the application tries

to offload the computation to the clouds when the connection to cloud is available

and it has to handle the computation when the device goes out of radio area. 5) User

interaction: MC provides the direct user-device interaction by the user-friendly apps

on the mobile devices. CC usually provides the services to the end user indirectly

through the near user devices or softwares, such as smart phones or web browsers.

MCC like MC is close to the end users and bridges the CC to the end users. 6) Tenant

and sharing: Multiple users share the resources by tenants in CC. The mobile devices

do not have tenants and usually not share the hardware resources in MC. For MCC,

the mobile devices connect to one or multiple tenants to consume the shared cloud

resources.

1.1 Mobile Cloud Running System Challenges

In mobile clouds, mobile devices and cloud resources compose a distributed mobile

application running environment, where a mobile application may consume resources

from both local and remote resource providers who provide computing, networking,

sensing, and storage resource provisioning. Mobile devices can serve as either service

consumers or service providers in the mobile cloud, in which the cloud boundaries are

extended into the mobile domain [Huang et al., 2013a][Huang et al., 2011]. Mobile

applications may require a mobile device to interact with other mobile devices and

cloud resource providers to achieve desired computing, storing or sensing features.

An ideal mobile cloud application running system should enable mobile devices to

easily discover and compose mobile cloud resources for its applications. From mobile
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resource providers’ perspectives, they may not even know what applications are using

their resources and who may call their provisioned functions beforehand. In this way,

the mobile application design should not be application-oriented; instead, it should be

functionality-oriented or service-oriented. For example, the video function of a mobile

device should provide general interfaces that can be called by multiple local or remote

functions in the runtime. To achieve this feature, we can consider these Provisioning

Functions (PFs) as the fundamental application components in the mobile cloud,

which can be composed by mobile cloud service requesters in the runtime. As a result,

mobile cloud can significantly reduce the mobile application development overhead

and greatly improve the agility and flexibility to build a personalized mobile cloud

computing system that can be customized for each mobile user.

A simple collaborative vehicular video sensing example is used to illustrate the

above described mobile cloud features in Figure 1.1. Alice is driving on the road and

her smartphone, which is mounted on the front dashboard for navigation, has the

basic video capture PF. Bob is driving after Alice and is running an image processing

PF in his phone and wants to utilize the video clips from the vehicles before him

in order to reconstruct the road situations ahead. Then Bob can consume Alice’s

video PF to reconstruct the view of the road segment. Moreover, Alice and Bob

cab share the captured video clips to their friend Carol who is managing a traffic

monitoring website that posts videos from smartphone users for the public to access

the realtime road traffic information and provides the optimal route suggestions. In

this mobile application scenario, all participants have their basic PFs: (a) Alice:

video capture, (b) Bob: video process and augment, and (c) Carol: video display and

route suggestion. Note that a PF can be called by multiple other PFs for different

application purposes, and they altogether can build several mobile cloud applications.

3



Bob

Carol’s website

Alice

Alice exposes 

video capture PF

Bob consumes Alice video 

capture PF and recognizes 

the vehicles in the video

Carol collects the videos 

from Alice and Bob to 
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Figure 1.1: Example: Collaborative Vehicular Video Sensing.

There are several challenges invoked by the above described application scenario.

The first challenge is that knowing the status of mobile devices, e.g., online/offline and

runtime information (such as battery, computing power, connectivity, etc.), is difficult

due to the mobility of mobile users. The second challenge is that knowing the available

PFs on each mobile device is not a trivial task. Currently, there is no such a common

framework allowing mobile devices for exchanging the available PFs information and

running such a system in a distributed environment. The third challenge is to compose

PFs crossing various hardware and software platforms, which demands a universal

programming and application running environment with little compatibility issues.

A mobile cloud application running system to solve these challenges is presented in

the Chapter 3.
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1.2 Offloading Strategy Challenges

The computation power and device battery are limited due to the device size and

weight. The computation offloading is the most important topic in mobile cloud com-

puting because offloading may not only save mobile device energy but also improve

the application performance. However, offloading is not the final solution. Offloading

introduces cost on bandwidth and energy as well as risk on the application availability.

We should consider the offloading strategies carefully to get the best benefit.

1.2.1 Network Unavailability

The collaboration of mobile device and cloud enlarges the advantages of both

mobile device and cloud. The mobile device can use the unlimited computation and

storage resource of cloud, and meanwhile, the cloud gets more close to end user

through the bridge of mobile device. Mobile cloud application based on mobile cloud

collaboration deploys its components into different places including local smart phone

and virtual machines in cloud. The application initially starts all components on

smart phone locally. When remote cloud resource becomes available, the mobile cloud

application may offload computing-intensive or memory-consuming components to

remote cloud to improve performance or save mobile device energy. One key issue in

offloading process is how to make offloading decisions. Due to the complexity of mobile

and cloud environments, offloading decision involves mobile side parameters such as

CPU and memory, cloud side environment including virtual machine capability and

performance, and the state of network in between, which altogether makes the decision

making problem difficult to tackle. The network state is the most complicated and

important part among three aspects considered.
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Network status has great impact on mobile cloud collaboration. Due to mobility

of mobile users, the network connecting mobile device and cloud changes drastically.

The network connection may be lost when mobile device moves into some area that

is not covered by wireless network. When the connection to cloud is lost, the original

execution routine is interrupted and the application has to wait until the connection

resumes [Flinn, 2012]. The expected benefit of mobile cloud collaboration may not be

obtained due to interruption of execution plan. The collaboration may even lead to

negative impact to execution time or energy consumption in such scenario. Thus, we

need to find offloading solution that is resistant to network unavailability to assure

the less execution time and less energy consumption benefits.

1.2.2 Multi-Objective

In mobile cloud computing, offloading is an important approach to overcome the

resources and functionalities constrains of mobile devices. In a mobile cloud offload-

ing model, applications deploy their components on multiple application processing

nodes such as mobile smart phones and Virtual Machines (VMs) in a cloud. A mo-

bile device can rely on an offloading decision model based on multiple factors such as

offloading computational-intensive, time- or energy-consuming application functions.

Moreover, the offloading model should allow one-to-many (i.e., multi-site) offloading

to improve the flexibility of the construction the running application. Furthermore,

the mobile device should consider risk issues such as privacy preservation and reli-

ability of offloading targets, etc. A general probabilistic framework to model this

multi-factor, multi-site, risk-based mobile cloud application offloading is in need.

To illustrate the mobile cloud multi-factor, multi-site application offloading sce-

narios, we present an illustrative vehicular traffic monitoring example in Figure 1.2.

In this example, a realtime traffic monitoring application running on a mobile device
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A wants to combine video views from other vehicles B, C and D (e.g., through on-

board cameras or smart phones, etc.) to get a panoramic view of a road intersection

that the user will pass. Assume that there are cameras on the vehicles and every ve-

hicle shares its captured videos or pictures to other vehicles through a location-based

social network model (e.g., Waze, Foursquare). In the system, each mobile node has

a dedicated supporting node, e.g., a VM in the cloud, where computation and trust

management operations can be offloaded to VMs. This mobile cloud application fol-

lows the user-centric mobile cloud computing model recently presented in [Huang

et al., 2013b], in which the videos captured by vehicles can be uploaded to their VMs

in cloud for video data processing. During the runtime, the application first retrieves

the views from VMs of vehicles located on the requested road intersection. The ap-

plication processes the collected videos in the cloud to generate a panoramic view at

a given time, and then get back to the user. In this application scenario, multiple

offloading targets such as VMs and vehicles exit; application components (ACs), such

as video clip capturing, processing (locally on the mobile device), and panoramic view

generation can be offloaded to VMs and vehicles for energy saving and reducing the

delay due to video data collection and panoramic view generation.

Many existing mobile cloud offloading models focus on a one-to-one directional

offloading model (e.g., [Cuervo et al., 2010][Kosta et al., 2012][Zhang et al., 2011]):

i.e., offloading from a mobile device to a cloud server (e.g., a VM). Studies in [Ou

et al., 2006] and [Sinha and Kulkarni, 2011] had shown the benefits of using one-to-

many (i.e., multi-site) offloading models to improve the performance of mobile devices,

where a mobile device can offload multiple application functions to multiple comput-

ing nodes. However, existing offloading models only consider one offloading factor

such as computation overhead, networking delay, or energy consumption. Moreover,

they do not consider other important offloading factors such privacy, reliability, etc.
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Figure 1.2: Example: Constructing Panoramic View of a Road Intersection.

One of important focuses of this work is to model the offloading risks that have

not been addressed by previous research. Particularly, we focus on two main sources

of risks in mobile cloud computing: privacy breach and offloading reliability. Mobile

application components can be offloaded to malicious nodes that can potentially com-

promise the application’s privacy, e.g., the offloaded data and functions may contain

private data or expose the purpose of the application. In addition to the privacy-

breach risk, another offloading risk is the reliability of offloading targets. For example,

the surrogates may be unavailable due to unstable communication link or software

crash, etc. In this case, offloading effort has to include offloading recovery strategies.
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Thus, both privacy breach and reliability risks should be considered in the offloading

model in addition to the performance offloading factors described previously.

1.2.3 Offloading Series

Mobile cloud applications usually incorporate resources from mobile devices and

virtual machines in clouds [Huang et al., 2013a]. Prior work of mobile cloud computing

[Kemp et al., 2012][Kosta et al., 2012][Cuervo et al., 2010][Chun et al., 2011] mainly

focuses on a simple one-to-one service offloading scenario: i.e., a mobile device offloads

its services to a cloud.

Nowadays, many mobile cloud applications adopt a multi-site service model [Sinha

and Kulkarni, 2011][Ou et al., 2006][Liu, 2013] to maximize the benefits from multiple

service providers, where the research focuses on how to compose services that have

been already implemented on multiple service providers. We do not differentiate

application functions and services since our model can be applied for both application

function calling models or service oriented architecture. A simple example can be

used to highlight the application scenario: a mobile device calls a video capturing

function from multiple remote mobile devices at a congested road segment, an image

processing function to recognize vehicles on the road segment from the cloud, and

then the requesting mobile device uses its local UI to display the road traffic with

identified lanes and vehicles. Compared to traditional approach that users upload

captured videos to the cloud and the requester downloads the processed videos from

the cloud, the presented application scenario does not require a pre-setup application

scenario to each function. This approach is very flexible in terms of ad hoc application

composition, and it can maximally improve the resource utilization such as the video

capturing function of mobile devices can be shared by multiple users for different

purposes, e.g., congestion monitoring, road events detection , etc.
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Besides the flexibility of the service/function composition using multi-site service

composition, it also introduces benefits in reducing execution time and energy con-

sumption of mobile devices; however, at the same time, it brings more management

issues as well. The multi-site service composition paradigm involves multiple surro-

gate sites in the service composition process, and the application running environment

changes demand a decision model in the service composition decision processes to con-

sider the application running environment changes related to network connectivity,

delay, device resource consumption, energy usage, etc. Moreover, due to the mobility,

the benefits of service composition may not be consistent during the entire application

execution time period. To adapt to the application running environment changes, we

need to study the service reconfiguration strategy by modeling the service composi-

tion as a service-topology mapping (or reconfiguration) problem that is illustrated in

Fig. 1.3. Relying on a cloud service framework, once the mobile application running

environment state changes, a new service-topology reconfiguration is decided, and

then the application components are redistributed to the surrogate sites through the

cloud. In this way, the service composition is adaptive to gain the maximum service

benefits during the entire execution time period.
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Figure 1.3: Service Composition Topology Reconfiguration Motivation.

The previous vehicle-based image capturing and processing example is presented in

Fig. 1.3, where in the crowd vehicle collaborative application scenario, the requestor’s

function O calls an image capturing function f1 from collocated devices A and B at
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time t1 to derive a panoramic view on their location. Vehicle B may move out of

service region at time t2, and then O calls vehicle C to replace B when C moves into

the service location. From t1 to t2 and t2 to t3, the service topology reconfiguration

takes place and it as well improves the system reliability since the task may be

reconfigured to other available surrogate sites providing redundancy in case one of

them fails.

To solve the challenges in Section 1.1 and Section 1.2, I propose a mobile cloud

running system in Chapter 3 and the offloading strategies in Chapter 4. An applica-

tion example of proposed work is described in Chapter 5.
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Chapter 2

RELATED WORK

The recent mobile cloud research can be categorized into three areas: mobile

cloud systems, mobile cloud offloading strategies, and mobile cloud applications such

as vehicular cloud.

2.1 Mobile Cloud System

Most of the research on the mobile cloud computing system solutions fall into

two categories by used technologies: service oriented-based approach or virtualiza-

tion. The following proposed solutions use service oriented-based approach. SCAMPI

[Pitkänen et al., 2012] is an architecture proposed to support distributed task exe-

cution in opportunistic pervasive networks. The key elements of the architecture

include leveraging human social behavior for efficient opportunistic interaction be-

tween a variety of sensors, personal communication devices and resources embedded

in the local environment. The SCAMPI architecture abstracts resources as service

components following a service-oriented model. MAPCloud [Rahimi et al., 2012] is

a hybrid, tiered cloud architecture consisting of local and public clouds, which can

be leveraged to increase both performance and scalability of mobile applications. It

models the mobile application as a workow of tasks and aim to optimally decompose

the set of tasks to execute on the mobile client and 2-tier cloud architecture consider-

ing multiple QoS factors such as power, price, and delay. Cuckoo [Kemp et al., 2012]

is a practical implementation of computation offloading for Android, which simplifies

the development of smartphone applications that benefit from computation offload-

ing and provides a dynamic runtime system, that can, at runtime, decide whether
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a part of an application will be executed locally or remotely. Carmen [Kim et al.,

2012] is a distributed system that manages the mobile connectivity of a set of devices

belonging to a particular individual, called the Mobile Personal Grid (MPG). Carmen

enables the MPG to efficiently collect context from a mobile user and coordinate key

system resources across the MPG and cloud. µCloud [March et al., 2011] focuses

on two main issues in cloud-enabled mobile applications, namely complexity of ap-

plication development and offline usability. µCloud framework models a rich mobile

application as a graph of components distributed onto mobile devices and the cloud.

Scavenger [Kristensen, 2010] is a cyber foraging system supporting easy development

of mobile cyber foraging applications, while still delivering efficient, mobile use of

remote computing resources through the use of a custom built mobile code execution

environment and a new dual-profiling scheduler. Zhang et al. [Zhang et al., 2010b]

propose a model that is based on elastic applications technique, where a single elastic

application is partitioned into multiple components called weblets. A weblet can be

defined as an independent functional unit of an application that can compute, store,

and communicate while keeping its execution location transparent. Huerta-Canepa

et al. [Huerta-Canepa and Lee, 2010] create a virtual cloud computing platform using

mobile phones to overcome the cloud access issue since an access to the cloud plat-

forms is not always guaranteed to be available and/or it is too expensive to access

them. VOLARE [Papakos et al., 2010] is a middleware-based solution that monitors

the resources and context of the device, and dynamically adapts cloud service requests

accordingly, at discovery time or at runtime.

The following proposed solutions use virtualization technology. Thinkair [Kosta

et al., 2012] exploits the concept of smartphone virtualization in the cloud and pro-

vides method-level computation offloading. It focuses on the elasticity and scalability

of the cloud and enhances the power of mobile cloud computing by parallelizing
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method execution using multiple virtual machine images. CloneCloud [Chun et al.,

2011] automatically transforms mobile applications to benefit from the cloud. The

system is a flexible application partitioner and execution runtime that enables unmod-

ified mobile applications running in an application-level virtual machine to seamlessly

offload part of their execution from mobile devices onto device clones operating in a

computational cloud. eXCloud [Ma et al., 2011] is a middleware system with multi-

level mobility support, ranging from as coarse as a VM instance to as fine as a runtime

stack frame, and allows resources to be integrated and used dynamically. In eXCloud,

a Stack-On-Demand (SOD) [Ma et al., 2010] approach is used to support computa-

tion mobility throughout the mobile cloud environment. MAUI [Cuervo et al., 2010]

enables fine-grained energy-aware offload of mobile code to the infrastructure. it sup-

ports fine-grained code offload to maximize energy savings with minimal burden on

the programmer.

2.2 Offloading Strategies

The mobile cloud computing systems partition the applications to distribute ex-

ecution and/or data to multiple nodes. There are several state-of-the-art partition

algorithms. Yang et al. [Yang et al., 2013] studied the partitioning problem for mo-

bile data stream applications, where the optimization is placed on achieving high

throughput of processing the streaming data rather than minimizing the makespan

of executions as in other applications. They designed a genetic algorithm for optimal

computation partition. Abebe et al. [Abebe and Ryan, 2011] proposed a type of

adaptation granularity which combines the efficiency of coarse level approaches with

the efficacy of fine-grained adaptation. An approach for achieving this level of gran-

ularity through the dynamic decomposition of runtime class graphs was presented.

Abebe et al. [Abebe and Ryan, 2012] presented a distributed approach to application
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representation in which each device maintains a graph consisting only of components

in its memory space, while maintaining abstraction elements for components in re-

mote devices. An extension to an existing application graph partitioning heuristic is

proposed to utilize this representation approach. Giurgiu et al. [Giurgiu et al., 2012]

developed a system that dynamically adapts the application partition decisions. The

system works by continuously profiling an applications performance and dynamically

updating its distributed deployment to accommodate changes in the network band-

width, devices CPU utilization, and data loads. Sinha et al. [Sinha and Kulkarni,

2011] described algorithmic approaches for performing fine-grained, multi-site offload-

ing. This allows portions of an application to be offloaded in a data-centric manner,

even if that data exists at multiple sites. Kovachev [Kovachev, 2012] presented Mobile

Augmentation Cloud Services (MACS) middleware which enables adaptive extension

of Android application execution from a mobile client into the cloud. MACS uses a

dynamic partitioning scheme, and lightweight as extra profiling. Resource monitoring

is performed for adaptive partitioning decision during runtime Ra et al. [Ra et al.,

2012] experimentally and analytically investigate the design considerations - which

segments of the application are most efficient to be hosted on the low power pro-

cessor, and how to select an appropriate low power processor. Linear programming

was applied. Smit et al. [Smit et al., 2012] described an approach to partitioning a

software application into components that can be run in the public cloud and com-

ponents that should remain in the private data center. Static code analysis is used

to automatically establish a partitioning based on low-effort input from the devel-

oper. Niu et al. [Niu et al., 2014] took the bandwidth as a variable to improve

static partitioning and avoid high costs of dynamic partitioning. They proposed the

Branch-and-Bound based Application Partitioning (BBAP) algorithm and Min-Cut

based Greedy Application Partitioning (MCGAP) algorithm based on application
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Object Relation Graphs (ORGs) by combining static analysis and dynamic profil-

ing. Verbelen et al. [Verbelen et al., 2013] designed graph partitioning algorithms

that allocate software components to machines in the cloud while minimizing the

required bandwidth. Their algorithms are not restricted to balanced partitions and

take into account infrastructure heterogeneity. Besides the above work, [Chen et al.,

2015][Chakareski, 2013][Corradi et al., 2014][Gerla, 2012][Hsu et al., 2014] discussed

the mobile cloud system in specific areas.

2.3 Vehicular Cloud

Vehicular cloud, as an typical example of mobile cloud, earns more and more at-

tention. The recent research on vehicular cloud falls into three categories according

to cloud service layers: communication, resource scheduling, and application. The

vehicular communication is usually based on current communication techniques, such

as 3 G or 4 G cellular communication devices, Wi-Fi, WiMAx, Wireless Access in Ve-

hicular Environment (WAVE) [Jiang and Delgrossi, 2008], or Dedicated Short Range

Communication (DSRC) [Xu et al., 2003]. Based on these techniques, the Vehicular-

to-Vehicular (V2V) communication [Yang et al., 2004] and Vehicle-to-Infrastructure

(V2I) are established.

Since the storage size becomes smaller and the price goes cheaper, the storage in

the vehicle on-board computer has much storage space. The vehicles with additional

storage capability can provide its storage space as a service. Meanwhile, the compute

power becomes stronger, which leads to compute as service [Olariu et al., 2013]. Arif

et al. [Arif et al., 2012] envision a vehicular cloud involving cars in the long-term

parking lot of a typical international airport. The patrons of such a parking lot are

typically on travel for several days, providing a pool of cars that can serve as the basis

for a datacenter at the airport. The authors provide closed forms for the probability
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distribution of the parking lot occupancy as a function of time, for the expected

number of cars in the parking lot and its variance, and for the limiting behavior of

these parameters as time increases.

Eltoweissy et al. [Eltoweissy et al., 2010] proposed a novel and more compre-

hensive vision namely, that advances in vehicular networks, embedded devices, and

cloud computing will enable the formation of autonomous clouds of vehicular com-

puting, communication, sensing, power and physical resources. Hence, the authors

coin the term, Autonomous Vehicular Clouds (AVCs). A key features distinguishing

AVCs from conventional cloud computing is that mobile AVC resources can be pooled

dynamically to serve authorized users and to enable autonomy in real-time service

sharing and management on terrestrial, aerial, or aquatic pathways or theatres of

operations. NAVOPT [Kim and Gerla, 2011] is a vehicular routing strategy assisted

by the on board navigator as well as the navigation server. The on board navigator

equipped with area map and GPS monitor, reports its own position to the server via

wireless connection (WiFi or 3G), in turns, it acquires from the Server a minimum

cost path (i.e. path with shortest travel time) under the current traffic conditions.

Under NAVOPT, the Server uses a Flow Deviation (FD) algorithm to compute opti-

mal vehicle routes by load balancing vehicle traffic over alternate routes. Alazawi et

al. [Alazawi et al., 2011] leverage Intelligent Transportation Systems (ITS) including

Vehicular Ad hoc Networks (VANETs), mobile and Cloud computing technologies

to propose an intelligent disaster management system. The system is intelligent be-

cause it is able to gather information from multiple sources and locations, including

from the point of incident, and is able to make effective strategies and decisions, and

propagate the information to vehicles and other nodes in real-time.
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Chapter 3

MOBILE CLOUD APPLICATION FRAMEWORK

A new mobile cloud application running system is presented in this chapter, which

is called POEM (Personal On-demand execution Environment for Mobile cloud com-

puting), as shown in Figure 3.1. POEM incorporates both Provisioning Function

(PF) offloading and PF composition features. POEM treats each mobile device as a

PF provider. In addition, POEM is designed based on the mobile cloud framework,

where a dedicated VM is assigned to each mobile device providing computing and

storage support. Moreover, PFs can be offloaded/migrated from a mobile device to

its assigned VM. The VM can not only run mobile devices’ PFs (i.e., as shadows), but

also can run extended PFs that mobile devices may not have the capacity to execute.

Thus, we also call the VM in the POEM framework as Extended Semi-Shadow Image

(ESSI) [Huang et al., 2011]. In addition to offloading PF to ESSI, a mobile device

can also offload PFs to friends’ mobile devices, which makes computation close to

the source data and reduces the communication cost in some circumstances. Thus,

both mobile devices and ESSI can act as surrogates. Collectively, the PFs provided

by a mobile device X and its corresponding ESSIX is denoted as {PF}X . POEM

regards both mobile devices and their dedicated ESSIs as PF providers. As a re-

sult, the mobile user’s applications can be composed by PFs from local PFs (may be

offloaded/migrated to its dedicated ESSI) and/or remote PFs (may run on remote

mobile devices or their dedicated ESSIs). PF composition makes it easy to implement

personalized application by composing the modularized PF. The PF offloading keeps

data location and migrates computation, while the PF composition keeps computa-

tion location and migrates data.
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To demonstrate the proposed POEM solutions, a pilot POEM system is imple-

mented based on OSGi [OSGi-Alliance, 2012] and XMPP [Saint-Andre, 2011] tech-

niques. In summary, the contributions of the POEM system is highlighted as follows:

• Versatile and personalized application offloading, migration, and composition:

POEM maintains available mobile cloud resource and allows users choosing a

mobile cloud application by using different approaches (offloading, migration,

and composition) based on the available system resources and their personalized

application requirements.

• Social mobile cloud computing: POEM solution enables mobile cloud appli-

cation to utilize social network power, i.e., in addition to the discovered PFs

through the mobile cloud system, mobile user can establish mobile cloud ap-

plications through their trusted social connections. In this way, POEM appli-

cations not only can use the resource in cloud by offloading resource intensive

components to ESSI but also can use services provided from their social con-

nections.

• On-demand and adaptability: POEM monitors connectivity of mobile devices

through the XMPP service model, and provides real-time PFs availability in-

formation and history service profiles of mobile devices. For non-hardware-

dependent PFs, the dedicated ESSI can represent its associated mobile device,

which provides a flexible and agile application running environment for POEM

applications.

• Reduced code intrusion: POEM does not restrict application structure; addi-

tionally, it does not require programmers’ specific instruction during the appli-

cation composition phase. POEM applications gain flexibility and code reuse

due to the introduced OSGi modularization.
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Figure 3.1: Overview of POEM system.

The chapter is organized as follows. Section 3.1 describes systems, application

model and execution model. Section 3.2 discusses POEM architecture and design

details. Section 3.3 discusses selected POEM implementation issues. Section 3.4

presents evaluation results including macro-benchmarks and micro-benchmarks.

3.1 System and Models

The POEM system is distributed framework. Each mobile devices or the VM in

the cloud runs POEM framework instances to join the POEM system. The mobile

users’ applications, which consists of multiple PFs, run on top of the POEM frame-

work. A PF is a piece of modularized code, which can be exposed as a service or

migrated to other POEM frameworks. A PF may consume the services provided by

other PFs locally or remotely. In short, the POEM framework is a container for PFs

that work together to fulfill application tasks by service composition and offloading.
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The POEM system is based on OSGi framework [OSGi-Alliance, 2012] that is a

general purpose, secure, and managed Java framework that supports the deployment

of extensible and downloadable applications. Due to the popularity of Java, OSGi

framework is compatible with major operating systems for both desktop and mobile

device systems. The framework is stacked in layers: from bottom-up, module layer,

life cycle layer, and service layer. The framework defines a unit of modularization,

called a bundle, i.e., “PF” in the POEM. In the later descriptions, we do not differ-

entiate the terms bundle and PF. In POEM, a PF is comprised of Java classes and

other resources, and is deployed as a Java ARchive (JAR) file. PF sits on the top

of stacked layers and interacts with them through PF context. Module layer and life

cycle layer handle PF installation and activation. PF can be installed/uninstalled

and started/stopped. Service layer has a service registry and handles service publi-

cation and discovery. A service is a normal Java object that is registered under one

or more Java interfaces with the service registry. PFs can register services, search for

them, or receive notifications when services’ states change. When PF is installed, the

framework must cache the PF JAR file. A SERVICE RANKING property may be

specified when a service is being registered. The service with the highest ranking is

returned when the framework receives service query. Before the service is consumed,

it may become a stale reference. Service tracker is usually used for service consumer

to prevent stale reference by obtaining reference when consumption happens. Besides

local service activities, a distribution provider can export service to another frame-

work by creating end point or import service from another framework by creating

proxy for service composition, and then registering the proxy as an imported service.

The rest of this section presents application and execution model of the proposed

POEM system.
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3.1.1 Application Model

The POEM models a mobile cloud application as a set of PFs. The PF may

provide class definitions and host services that implements PFs. POEM does not dif-

ferentiate PFs on mobile devices and PFs on their ESSIs as the PFs may be migrated

from mobile side to cloud side or vice versa without any modification. The uniform

PF format make PFs reusable and reduces develops’ workload by avoiding developing

separate PFs for specific platform. The application may use services provided by local

or remote PFs. The application can migrate PFs between mobile devices and ESSIs

without disrupting the other active PFs.

POEM achieves social feature through an implemented XMPP [Saint-Andre, 2011]

system within the MobiCloud system [Huang et al., 2010]. The availability informa-

tion of the system resources and mobile devices is maintained through a decentralized

client-server architecture, where every mobile cloud entity needs an address called a

JabberID (JID). JID is presented in the form of user@domain/resource, where ‘do-

main’ represents the XMPP service provider, ‘user’ represents virtual identity in the

domain, and ‘resource’ identifies connection to an XMPP server. Three basic sta-

tus services are achieved through XMPP: message, presence, and info/query (i/q).

POEM’s service discovery protocol provides two discovery methods: one enables dis-

covering information about an entity; and the other enables to discover the items

associated with an entity. In POEM, each entity, i.e., a mobile device or an ESSI,

runs an OSGi framework, which is identified uniquely by its JID. One POEM entity

discovers services hosted by his/her friends through XMPP service discovery proto-

col and XMPP publish-subscribe protocol. Mobile applications offload PFs to ESSIs

through XMPP file transfer protocol, and the data exchange with remote application

in POEM is through XMPP i/q communication.
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Reviewing the motivation example in Figure 1.1, two application models can be

summarized:

• First, the PFs can work together through service binding. One PF can expose

the service that is supposed to be consumed by other PFs. The service binding

composes the simple services from each PF to build a complex or complete

application. The service binding is a simple but powerful method to build a

complex application. PFs exchange data to feed the service and get the result.

The PFs themselves do not have to know when or where input data will come,

but simply accept requests and process them. Although the service binding can

handle complex application tasks, but it may not be efficient. In some scenarios,

the data amount is quite large while the data processing is quite fast so that

data exchange cost is high.

• The second application model is service offloading, which alleviates the cost in

large data exchange. In the motivation example, Bob needs the video clips from

Alice to run the image processing and filter out the vehicles. If service binding

is applied, the images are sent from Alice to Bob and then Bob runs the image

processing. The transferred image may be large or the transmission may be too

frequent, which imposes cost on the data exchange. If image process is easy and

the output is simply the vehicle profile in the image, then Bob may offload the

image process PF to Alice to avoid the large amount of data transmission. In

this way, the computation is migrated to the data location rather than service

binding that feeds data to the computation. Another scenario where offloading

may results in benefit is to migrate the resource intensive tasks from mobile

devices to their ESSI. Both mobile devices and VMs in the clouds can be the

surrogate containers to host the offloaded computation. Offloading is not always
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Figure 3.2: POEM Functionalities.

the best methods in any circumstances. Since the offloading itself has some cost

and the devices acting as surrogates may run out of resources, offloading may

lead to more cost or cannot run.

3.1.2 Execution Model

According to previous application models, there are three fundamental execution

functionalities in the POEM system, as shown in Figure 3.2. There are two POEM
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frameworks running on two devices or machines. Each POEM framework has an

identity so that they can form friendship relation, and the PFs on the framework can

benefit from this friendship relation in the service discovery procedure. The items a

to e represent PFs. Each subfigure describes one functionality:

• The Figure 3.2a describes how one PF discovers remote available PFs. PF b

hosts a service and it publishes the service through the local POEM manager

for remote PF to discover. Then PF a can discover the published service on

remote side with local POEM manager’s help. One prerequisite for a to discover

and use service of b is that they are mutual friends, in other words they in each

other’s trusted list. PF a does not know that PF b is running on remote side

because POEM manager pretends that b is running locally. Thus, a programmer

does not need special treatments in coding when developing PF a.

• The Figure 3.2b presents how an application recruit a service provided by a re-

mote PF. The PF c sends method invocation parameters, which are transferred

by the POEM on local side and then on remote side, to the destination PF d.

Then, the service result returns along the reverse route from d back to c. PF

c also regards it is calling a local target d due to POEM transparent transfer,

and d also thinks local c is calling it.

• The Figure 3.2c presents how one PF migrates to remote entity. A POEM PF

initializes the migration process. There are two types of migrations: pull and

push. In pull migration, the POEM PF on the right side sends request to left

side POEM PF, and then the left side POEM manager fetches and transfers

the target PF e to the right side. In push migration, the POEM PF on the

left side transfers PF e to the remote side. The left side keeps the PF e active

during transfer to provide the failsafe when the transferring is not successful.
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The PF e code is copied to the right side POEM framework while keeping the

left side PF e running to accept requests. While the right side PF e initializes

completely and is ready for serving, the right side POEM framework advertises

its e function with higher rank property, which will attract the new requests to

the right side. The left side PF e will finish its current task and become idle.

In case the right side POEM framework becomes offline, the left side idle PF

can take over the new requests.

Service discovery in Figure 3.2a should be done before service binding in Fig-

ure 3.2b. When the PF needs some services that it does not have, it queries the OSGi

framework to look up the desired service locally. If there is not, the POEM manager

captures the query and search in its remote service registry. If there is matching

remote service, the POEM manager triggers the service binding process. In this way,

the combination of functionalities in Figure 3.2a and Figure 3.2b achieves the service

composition application model.

Similarly, the service offloading application model can be achieved by combining

Figure 3.2a, Figure 3.2c and Figure 3.2b. First, the service discovery is applied to

see if the desired service is already available on the target framework or device. If it

already exists, no offloading is necessary. If there is no such service on the destination

POEM framework, the migration process can start. After the migration, the service

runs on the target POEM framework. Once the service is migrated and active for

accepting requests, the POEM manager on the target framework publishes the new

service to its friend POEM framework instances. The computation is routed to the

target POEM framework along with the service requests.
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3.2 POEM Design

Figure 3.3 illustrates the overall design of the POEM system. The POEM Man-

ager monitors local services, tracks service state change, maintains local PF repository

and responds to remote service queries. Its Networking component maintains XMPP

connections to XMPP peers that provides the communication and signaling infras-

tructure among mobile devices and their ESSIs. The Identity and Trust component

identifies the POEM framework instance. It uses a JID as representative and registers

the POEM framework instance to the XMPP server so that the POEM framework

instance joins the XMPP network and can talk to other POEM framework instances.

Besides, it also manages the friendship between POEM framework instances so that

the trust relationship is constructed for secure surrogate. The Publish and Discovery

component is responsible for publishing and broadcasting the local PF services. It

is also responsible for replying the service queries and help the local PF to query

the services on the remote POEM frameworks. The Composition component creates

local proxy for remote service provider that responds to service request by trans-

ferring the request to the remote PF, and then getting the result to the local PFs.

Based on a systematic decision model, POEM initiates the migration operations for

PF offloading. The offloading action is accomplished by three components: Context,

Decision and Migration. The Context component monitors the device resources and

application running status to provide the environment and application profile and

history to the Decision component to calculate the offloading decisions. The Decision

component is a pluggable component, which is flexible to be replaced to upgrade

the framework intellect. Although the POEM framework provides a default Decision

component implementation, the proper offloading decision algorithms are suggested

to be implemented for various scenarios due to the environment and task complexity.
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Figure 3.3: POEM Design and Components.

The Migration component fulfills the offloading decisions once the Decision compo-

nent issues the offloading command. In the following sections, we describe details of

each component within the POEM framework.

3.2.1 Distributed POEM Service Platform

POEM’s networking and signaling system is deployed based on XMPP approaches.

The communication between POEM entities (i.e., mobile devices and ESSIs) is full

duplex compared to half duplex HTTP approach deployed by many web-based ser-

vice frameworks. In a distributed execution environment, any entity can be both a

client and a server at the same time, which is different from web-based service mod-

els where clients and servers are explicitly defined. Moreover, POEM inherits the

XMPP trust and identity management framework, where every POEM entity is au-

thenticated when joining the system and data transferred are also protected through

cryptographic approaches. As a result, the PF offloading and PF compositions can

utilize the XMPP trust management framework with fine-grained access control ca-

pabilities. Furthermore, POEM entities need to provide their presence information
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to indicate its availability information in real-time, which is as well used to indi-

cate their service status. Finally, POEM must provide the support for secure file

transfer, service discovery, and service composition, in which the XMPP provides the

fundamental support to realize these features.

Identity and Trust Management

In the POEM framework, each POEM entity has a POEM manager that manages

the local/remote PFs and it is uniquely identified by a unique JID when the user

registered in the system. A user’s JID could be shared among POEM entities, and

it must be included in messages to identify the source/destination of the messages.

The security features such as data privacy, integrity, user authentications, etc., can

be easily incorporated by establishing a centralized trust authority, e.g., certificate

authority or Kerberos-based key management, authentication, and authorization. We

must note that using XMPP the social network-based trust can be easily established

through friend lists (a.k.a., contact list). Using this feature, POEM entities can first

request desired PF(s) to their friends before sending the discovery message to all other

POEM users.

POEM Service Discovery and Publishing

POEM service discovery is designed based on XMPP service discovery protocol [Hilde-

brand et al., 2008] and XMPP publish-subscribe extension [Millard et al., 2010]. A

PF may reside on a mobile device or its corresponding ESSI. The ESSI takes the

responsibility to represent the mobile user for any PF related operations and the mo-

bile device POEM Manager can frequently update its available PFs information to

the ESSI. In this way, the main POEM service discovery, migration, and composition

operations will not be flooded to end mobile devices. The ESSI POEM Manager also
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maintains the mobile device availability information and provides its reachability in-

formation to its trusted POEM peers. When the ESSI POEM Manager receives the

service discovery message, it replies with its available PFs with the available remote

service interfaces.

POEM Manager also monitors local service changes and notifies its friends. This

is done through a publishing procedure. POEM Manager first registers a publish

node (i.e., a virtual node in the XMPP server) under its JID. Thus, when local

service status changes, POEM Manager can post the notice on its publish node and

its friends get notified and update their PFs availability database.

POEM Service Composition

When POEM discovers service provided by remote POEM entities, it tries to create

a proxy for that service so that remote PF can be used locally. POEM uses Java

dynamic proxy technique to create proxy. Dynamic proxy requires that the target

interface’s Class instance must exist. To have remote service interface’s Class instance

in local OSGi framework instance, POEM fetches PF JAR file corresponding to the

target service from remote POEM framework. POEM Manager installs the PF, and

then the target Class instance is available and proxy generation is done.

POEM uses JavaScript Object Notation (JSON) over XMPP for service compo-

sition because JSON is lightweight and has abundant expression ability. The service

proxy generated by POEM Manager captures local service requests that are then

converted into JSON requests. Then the JSON request is sent to XMPP channel

to the destination. The destination POEM Manager receives the JSON request and

translates it to method invocation on service provider’s object. It then returns the

result in form of JSON back to the source POEM Manager. Then the JSON response

is decoded and returned to calling object.
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3.2.2 PF Offloading

When application decides to offload a service provider object and migrate it to

cloud, POEM Manager chooses to send the object’s byte code to cloud and start

the object from byte code. How to choose POEM PFs to be migration is based

on several conditions described as follows: First, thread migration solution is not

adopted because some objects that exist in the same thread have to run on mobile

device, such as user interfaces and sensors. Second, an application usually wants to

migrate only the compute intensive operations rather than the whole thread. Third,

object state is not maintained because the insight private details of the object to be

migrated cannot be fetched due to Java security management. Our recent practice

suggests that service implementation should be stateless, so that the object states

will not bother POEM like REpresentational State Transfer (REST) does [Fielding

and Taylor, 2002].

Migration

The service provider object offloading process follows a three-step approach: First,

the target PF JAR file is transferred to ESSI and started. Then, a proxy object is

created to intercept and capture service request to remote target service. Finally, the

PF containing target service provider object is stopped.

The migration happens according to the migration decision module command.

POEM constructs the migration decision module as plug-in framework. The previous

work [Wu et al., 2013][Wu and Huang, 2014][Wu and Huang, 2015] on decisions can

be applied. User can develop his own migration decision strategy plug-ins and in-

stall the strategy bundle into POEM, which not only provides the flexibility for user

customized migration strategy but also scales the POEM intelligence.
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PF Isolation

The migrated PFs are running in the surrogate POEM framework for providing service

for its origination. These PFs may interact with the POEM framework and interrupt

the PFs that belong to surrogate host. The PF isolation is required to protect the

surrogate POEM framework and cease the potential attack from the migrated PF.

The POEM manager initializes a separate PF container for each friend who wants

to offload his PF. The PF container is duplication of the surrogate host POEM

framework. The only difference is that this nested PF container is empty and dedicate

for the corresponding friend. The friend identity is stored and managed by identity

manager. The surrogate host defines the accepted PF policies that are enforced by

policy manager.

Connection Failsafe

The connection between mobile device and cloud is usually not stable as mobile device

moves. When the connection is lost, POEM Manager restarts the PF that has been

stopped in offloading process. The recovery process has the following two steps: First,

the target PF is started. Then, the proxy service is unregistered and the proxy object

is destroyed. The first step prepares for receiving service request. The second step

destroys proxy, which makes the target service provider object be the first in the

ranking order to receive service request.

Offloading Decision

POEM has two types of offloading decisions. The default type is “the POEM decides

when to migrate component”, and the other is “the user decides right migration

moment”. To enable PF migrations, POEM publishes local migration service API.

Once this API is called, POEM executes migration process. POEM design leverages
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the plug-in concept. The offloading decision module can be plugged in to enable the

different offloading strategies to be applied onto POEM framework. More offloading

strategies are in Chapter 4.

3.3 POEM Implementation

As Figure 3.2 shows, the key component is the POEM manager bundle which

accomplishes the service discovery and publish, service composition and service of-

floading features. This section describes the implementation details of the POEM

Manager OSGi bundle as well as other implementation issues including the seamless

offloading procedure.

3.3.1 POEM Manager OSGi Bundle Implementation

POEM Manager consists of several objects as shown in Figure 3.4. They are

categorized as three sets - XMPP connection and related listeners, PF context and

related listeners, and proxy and migration management. The three object sets rep-

resent three POEM functional sets: XMPP connection set represents remote POEM

framework; PF context set represents local POEM framework; and proxy and migra-

tion management represent core POEM logic and operation that connect the other

two parts.

XMPP connection object maintains three XMPP managers that manage service

discovery, publish-subscribe, and file transfer separately. Besides, it also maintains

a roster that publishes local presence and a publish node that local service change

notification is posted on. There is a set of listeners registered with XMPP connection.

They are noticed when corresponding events occur. Roster listener tracks friends’

presence and update proxy pool accordingly. Item event listeners, one listener for

one friend, wait for friends’ service change notice and update proxy pool accordingly.
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Connection listener monitors connection status and executes robustness strategy. File

transfer listener handles file transferring. Packet listeners handle iq packets defined

in POEM name space between POEM PFs. Service discovery provider responses to

remote service discovery by querying PF context.

PF context object set includes PF context and Service listener. PF context handles

interaction to POEM framework or OSGi framework. Since POEM manager sits on

top of OSGi container, it has to interact with OSGi framework. The PF context is the

bridge that connects the POEM manager and the OSGi container. Service listener

monitors local service change that is then published to the remote nodes maintained

by XMPP connection.

The proxy and migration management objects include Proxy management, Mi-

gration management and PF repository. Proxy management contains a database and

a proxy pool. It memorizes remote service status and local proxy status in database,

and provides proxy generation and recycling methods. Migration management im-

plements migration service registered by POEM Manager. PF repository provides

JAR file source for file transfer request. The OSGi framework already has a bundle

repository for all the installed bundles. POEM reuses the OSGi framework bundle

repository and only caches the remote bundles. When exporting the local service to

remote POEM instance, the Migration management fetches the bundle JAR file from

the OSGi framework bundle repository. When importing the service from remote

POEM instance, the Migration management gets the bundle JAR file from XMPP

connection object and installs the bundle. The POEM framework does not have to

maintain the bundle repository itself.
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Service Publish and Discovery

Roster listener and item event listener monitors remote service notice and update

local proxies. Roster listener is noticed when remote POEM Manager goes online or

offline. If remote POEM Manager goes online, it tries to discover all the available

remote services. If remote POEM Manager goes offline, it tries to recycle local proxies.

Item event listener, instead of being noticed by presence and trying to actively discover

service, is noticed when remote POEM Manager posts service status change. Service

listener is responsible for publishing the service change.

Service Composition

After roster listener or item event listener discovers the remote service, it fetches the

corresponding JAR files from remote framework. After it gets JAR file, it installs

them but does not start them. Then proxy management create proxies according to

discovered service name. The proxy is constructed by Java dynamic proxy technique

[Eckel, 2006] that requires class information provided by installed JAR file and service

name provided by service discovery or publish-subscribe notice.

When local PF consumes remote service, proxy intercepts the request. Then proxy

wraps the request into JSON object and inserts the JSON object into XMPP iq packet

that is sent to remote POEM Manager. When remote packet listener receives the iq

request packet, it parses the JSON object and calls the local service and reply to

requestor POEM Manager in the same way. The requestor proxy collects the iq

response, parse it and return to local requestor.

POEM on Android

For mobile device side, POEM is implemented on Android devices. Android uses a

different byte code format from normal Java byte code. Normal Java JAR file can be
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recognized by Android after DEX and AAPT operations [Chen et al., 2011]. Android

SDK provides the necessary tools. DEX tool collects class information and generate

classes.dex file. AAPT tool injects classes.dex file into the original JAR file. After

these two steps, the JAR file can be recognized by Android.

3.3.2 Seamless Offloading

POEM Manager registers a service with an Java interface that contains a method

to do service migration. Service migration involves two framework instances that

are source framework and destination framework. The offloading process can be

illustrated using the following application scenario. The source is device 1 and the

destination is an ESSI. The migration method is called on device 1. Service name

and destination XMPP identity are passed to the migration method. The migration

process consists of five steps as follow. First, a migration notice is sent by device 1 to

the ESSI. Along with the migration notice, the PF JAR file that owns the indicated

service is transferred from device 1 to the ESSI. Second, POEM Manager in the

ESSI starts the PF. When PF is running, services including the indicated service are

registered. Third, POEM Manager in the ESSI is notified with service changes in last

step. it unregister existing proxy under the same service name. Then it publishes the

new services to the ESSI’s publish node. At this point, both sides have the running

PF that provides services to local PFs. Fourth, POEM Manager on device 1 is notified

due to the publishing in last step. it creates the proxy for the published services with

a higher ranking. Then it stops the local PF. At this point, the PFs on device 1 are

consuming services provided by the ESSI. The sequence diagram of migration process

is shown in Figure 3.5.

Besides device 1 and the ESSI, a third framework instance on device 2 is using the

service being migrated. When POEM Manager in the ESSI signals the new service,
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POEM Manager on device 2 creates proxy for the new service with a higher ranking

as device 1 does. When POEM Manager in the ESSI signals the service recycling,

POEM Manager on device 2 recycles the proxy for that service. Other PFs on device

2 are not disturbed during the process.

3.4 Evaluation

This section describes POEM performance evaluation through both macro-benchmarks

and micro-benchmarks. Then migration evaluation is then followed.

3.4.1 Methodology

The POEM Manager is implemented on Felix [Gédéon, 2010] OSGi implementa-

tion version 4.0.3. Mobile application that contains a Felix OSGi framework instance

that hosts POEM Manager runs on Android Motorola phone A855. The phone’s

parameters are 600MHz CPU and 256M memory. The Android version is 2.2.3. The

virtual machine is with 1GHZ CPU and 512M memory, which runs Ubuntu 11.10.

Four applications are used to evaluate the POEM performance. They are Fi-

bonacci sequence generator, N-Queens puzzle, nested loop and permutation genera-

tor. The Fibonacci application generates Fibonacci sequence in a recursive manner.

Its time complexity is O(2n) and its stack usage is high due to recursive algorithm.

The N-Queens application calculates all solutions for input chessboard size. Its time

complexity is O(n2) and its stack usage is also high due to recursive algorithm. The

nested loop application contains a six layer loop which leads to time complexity O(n6).

The permutation application’s time complexity is O(n!) and uses little memory. Ex-

periment result is obtained by running the application 50 times for every scenario

and averaged. Between two consecutive executions there is a pause of 1 second.
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The experiments are run under two scenarios:

• Phone: Applications are run only in phone.

• WiFi: Phone is connected to the ESSI through WiFi.

The WiFi connection has averaged latency of 70 ms, download bandwidth of 7 Mbps,

and upload bandwidth of 0.9 Mbps. Ping is used to report the average latency from

the phone to the ESSI, and Xtremelabs Speedtest, downloaded from Android market,

is used to measure download and upload bandwidth.

3.4.2 Macro-benchmarks

For typical input parameter values, four applications are run on phone and in

the ESSI separately. The application running time is recorded in Table 3.1. By

subtracting time on phone and in the ESSI, the max speed up is put in the last

column of the table. However, the max speed up is seldom achieved due to cost of

communication and proxy. This cost changes little while offloading benefit changes

much, so there should be some point when the benefit of offloading surpasses its cost

giving application net gain.

Fibonacci application takes a sequence index number and calculates the corre-

sponding number in the Fibonacci sequence. Figure 3.6a shows execution time of

Fibonacci application. The intersection of execution time on phone and WiFi offload-

ing is the Boundary input value (BIV) [Kosta et al., 2012] that shows the offloading

benefit starting point. N-Queens application takes chess board size and calculates all

solutions and return solution number. Figure 3.6b shows execution time of N-Queens

application. The execution time on phone rises dramatically as the chessboard size

increases one scale. Offloading offers benefit after chess size is larger than 10. Nested

loop application takes loop times and execute loop without memory operation. The
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(a) Execution time of Fibonacci application.
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(b) Execution time of N-Queens application.
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(c) Execution time of nested loop application.
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(d) Execution time of Permutation application.

Figure 3.6: Execution Time of Four Test Applications.

41



Table 3.1: Max Speed Up with Offloading

Case Input
Phone Cloud Max speed

(ms) (ms) up (ms)

Fibonacci

26 59.25 2 57.25

27 99.5 3.05 96.45

28 156.75 5 151.75

29 251 7.65 243.35

30 408.25 12 396.25

N-Queens

8 11 1.1 9.9

9 39.75 3.05 36.7

10 222.75 12.2 210.55

11 1593.5 64.4 1529.1

12 9630.25 377.2 9253.05

Nested loop

14 157 15.05 141.95

15 332 21.55 310.45

16 276.75 28.6 248.15

17 392.5 39.85 352.65

18 560.25 54.35 505.9

Permutation

5 1.25 0.25 1

6 1 0.25 0.75

7 6.5 0.4 6.1

8 49.25 2.05 47.2

9 1124.75 12.1 1114.65
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(a) invocation time of Fibonacci application.
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(b) invocation time of N-Queens application.
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(c) invocation time of nested loop application.
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(d) invocation time of Permutation application.

Figure 3.7: Service Invocation Time of Four Test Applications.

43



execution time on phone is convex, which means it is less than exponential increase

compared to the above two applications that requires both computing and storage.

The execution time of offloading increases slowly. The Permutation application takes

a max number N and returns count of prime number within the range (1,N). The

prime number searching algorithm used is Permutation algorithm. The execution

time increases on phone, however the execution time for offloading approach almost

remains same.

The offloading line of four applications is increasing slowly compared to phone line.

As the phone line starts from a low point, which indicates the application runs fast

when input is small, the offloading line and phone line intersects finally. Comparing

offloading line and the ESSI execution time column in Table 3.1, the slow increase is

reasonable due to execution time increase slowing in the ESSI as well. Besides, the

starting point of offloading line is higher than phone line, so there must be cost for

remote method invocation.

3.4.3 Micro-benchmarks

This experiment measures service invocation time. This time is measured on

phone where is service consumer side. The remote service consuming time consists of

three parts: marshaling time of both consumer and provider sides, network transfer

time and actual execution time. The result is shown in Figure 3.7.

Figure 3.7 shows time against different input parameters. From the table, the

actual execution time is similar to the execution in the ESSI of column the ESSI

in table 3.1. At the beginning, execution time is nearly zero. The execution time

increases along with input parameter value increases. Figure 3.7 shows that mar-

shaling time is relatively small compared to network delay. Figure 3.7 also shows

that the main cost for remote method invocation is network delay around BIV point.
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Table 3.2: Service Migration Time

Cases migration time (ms)

Fibonacci 272

N-Queens 335

Nested loop 290

Permutation 304

And marshaling time and network time against different input parameters are ap-

proximately identical. The marshaling and network cost decides the start points of

offloading line in Figures 3.6a-3.6d. And execution time decides the trend of those

offloading line. If the network delay or the marshaling is reduced in some situation,

the offloading line will drop and then BIV point will go to left, which means the range

of benefit increase and application components are supposed to be offloaded to the

ESSI. In another perspective, if component’s ratio of computation cost to network

cost increases, it is better to offload that component to the ESSI.

Besides service invocation time, the proxy generation time is also measured. The

proxy generation time indicates POEM initialization time, which is paid once at

starting POEM Manager.

3.4.4 PF Migration

This experiment measures PF migration time. PF migration time period starts

when service migration command is issued and ends when proxy for migrated service

is available. The result is in table 3.2 which shows that the migration time is nearly

same for the tested four applications. This is reasonable because the migration time is

mainly the time of transferring PF bundles on the network and these four PF bundle

sizes are similar.
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Chapter 4

MOBILE CLOUD OFFLOADING STRATEGIES

Based on the POEM framework in the Chapter 3, various offloading strategies

have been developed to make the intelligent offloading decisions in the various context

and environment according to Section 3.2.2. This chapter discusses various offloading

strategies of different offloading modes and in different environment assumptions.

Offloading can happen between one mobile device and one VM, or between several

mobile devices and several VMs. In addition to the offloading topology, offloading can

happen once or multiple times in a series. The most simple offloading mode is one

time one-to-one offloading. This type usually happens between the mobile device and

its corresponding VM. One-to-one offloading is simple due to its explicit surrogate

target VM, while many-to-many offloading may lead to better performance due to its

best choice of surrogate target. For long time application running, the environment

or the context may change during the application life time, thus the offloading may

happen multiple times to adjust the offloading topology to give best outcome all the

time.

The offloading is not a zero-cost business. To achieve a complete offloading pro-

cess, the mobile application first has to contact the surrogate target to initiate the

offloading process. The offloading process includes the code migration, the service mi-

gration and the service composition procedures. These procedures consume network

bandwidth, CPU cycles, storage and mobile device energy as well. Due the offloading

cost, the offloading does not always provide benefit for the mobile applications.

The common objectives of offloading are reduce computation time and save energy

on the mobile devices. For the computation intensive application, offloading may
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be a good candidate solution, because the network and energy are saved and the

computation is offloaded to the powerful surrogate. In the other hand, offloading

may not be a good idea for the communication intensive applications.

The following sections will discuss the benefit and cost for several offloading topol-

ogy in different circumstances. Section 4.1 starts with the simple one time one-to-one

offloading and then applies the network varation to the model. Section 4.2 presents

the many-to-many topology and multiple offloading objectives. Section 4.3 presents

multiple offloading series in time horizon.

4.1 Simple Offloading Model and Network Unavailability Impact

The offloading relies on the network connecting the mobile device to the VM. If

the network is not stable, which is very usual in the mobile scenario, the offloading

decision may have very different results, thus the network condition has to be taken

into consideration. To address the problem of offloading decision making in network

with some unavailability, an offloading decision module that produces offloading de-

cision that is resistant to network unavailability is presented in this section. The

unstable network is modeled as an alternating renewal process that provides statistic

information of connection duration. The proposed offloading decision module mon-

itors network connection states and durations that are recorded in a history buffer.

Then it calculates application partition that is aimed to give benefit in network with

low availability. And it finally validates the partition and outputs the offloading de-

cision. The offloading decision module contains two key components. The first is

for partitioning application components into smart phone and cloud sides based on

unstable network assumption. The second is for validating the application partition

by comparing the possible unavailability of the partition and the observed network

unavailability. The proposed offloading decision module can be put into mobile cloud
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application to provide application offloading decisions with the consideration of net-

work unavailability.

In summary, the contributions of presented research are highlighted as follow:

• mobile cloud collaboration model considering network unavailability: The pro-

posed scheme models the application execution time considering unstable net-

work situation. The unstable network is modeled as an alternating renewal pro-

cess. Then application execution time and energy consumption are analyzed in

both ideal network and unstable network.

• application partition algorithm: The proposed algorithm utilizes application

information to find the application partition that can achieve both less execu-

tion time and less energy consumption when network availability is low. The

algorithm works in a heuristic manner.

• bayesian decision approach: The partition given by above partition algorithm is

validated by comparing tolerated unavailability of given partition and observed

network unavailability. Since the network states estimated based on history

observation are not fully trusted. The final offloading decision is made by a

bayesian decision approach to mitigate the possible error.

• offloading decision module: The proposed solution provides a module that can

be plugged into mobile cloud applications to enable decision making in unsta-

ble network scenario. The offloading decision module consists of four parts:

observation buffer, application partition component, network state predictor

and partition validation component.
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Figure 4.1: Application Graph Example.

4.1.1 System and Models

Mobile cloud consists of mobile devices and cloud. There is usually one to one

mapping between mobile devices and VMs in cloud [Huang, 2011]. The mobile cloud

application is constructed as a set of components or bundles. Some components can

run on either mobile device or VM, while the other components, such as user interface

and sensors, have to run on mobile devices. The major offloading objectives are saving

application execution time and energy consumption on mobile device.

Application Model and Ideal Network Model

The application is presented as a directed acyclic graph G = {B,E} where every

vertex is a bundle and every edge is data exchange between bundles [Giurgiu et al.,

2009]. Each bundle has an attribute indicating whether it can be offloaded. The un-

movable bundles are marked as local which means these bundles cannot be offloaded

due to application requirements. Let m be the total count of bundles in the appli-

cation, then the initial bundle set is B = {bi | i ∈ [1, 2, . . . ,m]} and the edge set is

E = {eij | i, j ∈ [1, 2, . . . ,m]} where eij represents directed data transfer from bi to bj.

Let n be the count of movable bundles and n ≤ m. A configuration c [Giurgiu et al.,
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2009] is defined as a tuple of partitions from the initial bundle set, < Bphone, Bcloud >,

where Bphone = {bi | i ∈ [1, 2, . . . , k]} has k bundles and Bcloud = {bi | i ∈ [1, 2, . . . , s]}

has s bundles. And they satisfy Bphone ∩ Bcloud = ∅ and Bphone ∪ Bcloud = B. The

bundles that are marked as local are initially put in the set Bphone and cannot be

moved. An example is shown in Figure 4.1 where unmovable bundles are marked as

grey and dot line indicates configuration. The bundles on the left side are Bphone and

the bundles on the right side are Bcloud.

Execution Time For a given task, bundle bi has an attribute ti indicating its

computation time on smart phone. And edge eij is associated with an attribute dij

indicating the transferred date size from bundle i to bundle j. These value can be

measured or estimated from collected application and device data. Total time of

running task only on smart phone is

tphone =
∑
bi∈B

ti (4.1)

where data exchanges between bundles are not counted as they happen locally and

cost little time compared to time of data exchange over network. For a particular

configuration c, offloading rate p [Ou et al., 2008] is defined as the proportion of

offloaded task to all task in terms of computation time. Then, task proportion is

the same as time proportion due to the same processing capability on the same

mobile device p(c) = (
∑

bi∈Bcloud

ti)/tphone, and p(c) satisfies 0 ≤ p(c) ≤ 1. Then, the

computation time on smart phone is

tphonecomputation(c) =
∑

bi∈Bphone

ti = (
∑
bi∈B

−
∑

bi∈Bcloud

)ti

= (1− p(c))tphone

(4.2)

Assume the cloud is q times faster than smart phone, thus the time consumption in

cloud is q times less than the time spent on mobile device [Xian et al., 2007], which
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is tcloudi = ti/q. The computation time in cloud is

tcloudcomputation(c) =
∑

bi∈Bcloud

tcloudi =
1

q

∑
bi∈Bcloud

ti

=
p(c)

q
tphone

(4.3)

Thus the total computation time is:

tcomputation(c) = tphonecomputation(c) + tcloudcomputation(c)

= (1− (1− 1

q
)p(c))tphone

(4.4)

A typical offloading process works as follows. Initially, the application starts

on smart phone and all components run locally. Then, the application may offload

some components to remote virtual machine. These offloaded bundles run in cloud re-

motely. However they need to communicate with the bundles resident on smart phone.

Thus they have to exchange data through network. Assume network bandwidth is w,

then the network delay is the sum of delays in both data transfer directions:

tnetwork(c) =
∑

bi∈Bphone

bj∈Bcloud

dij
w

+
∑

bi∈Bcloud
bj∈Bphone

dij
w (4.5)

In an ideal network environment, the total execution time for a given configuration c

is the sum of computation time and network delay.

t(c) = tcomputation(c) + tnetwork(c) (4.6)

The offloading benefit of execution time comes from the trade of tcomputation and

tnetwork. The computation part saves execution time because the cloud processing

capability is powerful than mobile device. However, the offloading has to pay network

delay, which counteracts the computation time saving. For computation intensive

applications whose computation time saving is much larger than network delay, the

offloading benefit is obviously seen.
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Energy Consumption Two hardware modules of mobile device are involved in the

energy consumption estimation: CPU and Radio Frequency (RF) module. The other

modules, like display, audio, GPS etc., are not considered because the components

that interact with theses modules have to run on mobile device locally. Both energy

consumption on CPU and RF module can be further separated into dynamic part and

static part [Wang et al., 2013]. When hardware module is in idle state, the energy

consumption is corresponding to static part. When hardware module is in active

state, more energy is consumed, which is corresponding to dynamic part. Assume

the power of CPU in idle state is Ksta
CPU and the power of CPU in active state is

Ksta
CPU +Kdyn

CPU . The energy consumption of CPU is:

PCPU(c) = Ksta
CPU t(c) +Kdyn

CPU t
phone
computation(c) (4.7)

Similarly, let Ksta
RF and Kdyn

RF be the power of RF module in idle and active state

separately. The energy consumption on radio frequency module is:

PRF (c) = Ksta
RF t(c) +Kdyn

RF tnetwork(c) (4.8)

Thus, the total energy consumption is:

P (c) = PCPU(c) + PRF (c) (4.9)

If offloading is not applied, only CPU consumes energy and its active period is the

whole execution time. The total energy consumption of running tasks only on smart

phone is:

Pphone = (Ksta
CPU +Kdyn

CPU)tphone (4.10)

The offloading influences energy consumption of mobile device in two aspects. First,

the mobile device may save energy because mobile device does not pay for the energy

consumption corresponding to the tasks that are offloaded and completed in cloud.
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Figure 4.2: Network Unavailability Model.

Second, the data exchange between application components are now fulfilled by net-

working instead of local procedure invocation, which leads to energy cost for sending

and receiving packets. Similarly to time benefit of offloading, the computation in-

tensive application may obtain obvious energy benefit when computation tasks are

offloaded to save large CPU energy consumption and network energy consumption is

small.

Model and Impact of Network Unavailability

The connection between mobile device and cloud is usually not stable due to mobility

of devices. When mobile device moves out of wireless coverage, it loses connection to

cloud. The mobile device continues to make attempts to reconnect to cloud when the

network is unavailable. When it gets into coverage again, the connection resumes. As

mobile device moves, the connection state changes as on, off, on, off . . . , which can

be modeled as an alternating renewal process.

Figure 4.2 shows how network availability changes along with time coordinate.

Solid line represents network is available, while dash line represents network is un-

available. Two network states alternate with each other. One on duration and one

off duration form a cycle. The on state duration is denoted as ξ and the off state

duration is denoted as η. {ξi, i = 1, 2, . . .} is independent and identically distributed

(i.i.d.), and so is {ηi, i = 1, 2, . . .}. And ξi and ηj are independent for any i 6= j, but

ξi and ηi can be dependent [Pham-Gia and Turkkan, 1999]. The cycle duration is

denoted as χ and χi = ξi + ηi where i = 1, 2, . . .. The proportion of on duration in

any individual cycle is a random variable denoted as ρ = ξ/χ.
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Execution Time When the network is unavailable, the application has to wait

because phone cannot send input to cloud and cannot retrieve output from cloud

either. The application resume the execution after the network becomes available

again. The total execution time is prolonged according to the proportion of ρ:

t′(c) =
t(c)

ρ
(4.11)

The offloading gives time benefit when t′(c) < tphone(c). In ideal network environ-

ment, ρ = 1 and t′(c) = t(c). t′(c) raises to infinity when ρ decreases from 1 to 0. At

some point, the benefit disappears finally. We define this point as critical value of ρ

for time benefit:

ρ′time(c) =
t(c)

tphone
(4.12)

And the time benefit is:

∆t(c) = tphone(c)− t′(c) (4.13)

when ρ > ρ′time(c).

Energy Consumption During time period t′(c), the computation time t′computation(c)

and network time t′network(c) are the same with tcomputation(c) and tnetwork(c) in ideal

network environment because computation and data transfer only work properly when

network is available as ideal network. The CPU active time period is the same as that

in ideal network model because the given task is the same. However, the CPU idle

time period is the whole execution time that is different from that in ideal network

model. Thus, the energy consumption for CPU is:

P ′CPU(c) = Ksta
CPU t

′(c) +Kdyn
CPU t

phone
computation(c) (4.14)

The RF module is active even when the network is unavailable because it continues

scanning the available network to resume the connection. Thus, the active time period
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for RF module is t′(c)− tcomputation(c). The energy consumption for RF is:

P ′RF (c) = Ksta
RF t

′(c) +Kdyn
RF (t′(c)− tcomputation(c)) (4.15)

Thus, the total energy consumption is:

P ′(c) = P ′CPU(c) + P ′RF (c) (4.16)

The offloading gives energy benefit if P ′(c) < Pphone. As ρ decreases, both P ′CPU(c)

and P ′RF (c) increase. Similarly, the critical value of ρ for energy is defined as the point

where energy benefit disappears:

ρ′energy(c) = (Ksta
CPU +Ksta

RF +Kdyn
RF )t(c)/(Pphone

−Kdyn
CPU t

phone
computation(c) +Kdyn

RF tcomputation(c))

(4.17)

And the offloading energy benefit is:

∆P (c) = Pphone(c)− P ′(c) (4.18)

when ρ > ρ′energy(c).

Problem Formulation When network availability ρ is greater than the larger one

of ρ′time(c) and ρ′energy(c), both time and energy benefit are obtained. We define the

critical value of ρ is:

ρ′(c) = max{ρ′time(c), ρ′energy(c)} (4.19)

The offloading problem with network unavailability consideration is to find the ap-

plication partition c to minimize ρ′(c):

min ρ′(c) (4.20)

while both time and energy benefit exist:

ρ > ρ′(c) (4.21)
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where ρ is the current network availability estimated based on observations. The c

satisfying (4.21) may not exists when ρ is too low. In this situation, the application

should not offload any components to cloud. The solution given by (4.20) is the

best partition that tolerates the network unavailability, and it may give benefit when

current network availability ρ goes worse.

4.1.2 Algorithm and Solution

The bundle computation time ti’s form a vector t of m dimensions. The data size

dij’s form a square matrix Dm×m. If there is no edge from bi to bj, then dij is set to

0.

The configuration c can be represented as a vector x of m dimensions where xi

indicates whether bi should be offloaded. xi = 1 means bi should be offloaded to

remote cloud, and xi=0 means bi should be kept on smart phone locally. For bi that

cannot be offloaded, xi is set to 0 initially and does not change. Vector x has m

elements in which n elements are variables and the others are 0s. For simplicity, all

0s are put at the end of x.

Let 1 be a column vector whose elements are all 1s, then tphone = tT1. Offloading

rate p(c) is now p(x) = tTx/tT1. And tnetwork(c) is tnetwork(x) = ((1 − x)TDx +

xTD(1− x))/w. Thus t(c) is finally function of x, which is t(x).

The objective of offloading decision is to find configuration x satisfying (4.20).

This is a 0-1 Integer Programming (IP) problem.

Application Partition

The solution space for configuration x is 2n, which means it costs a lot of time to

search the optimal solution. To find proper x within acceptable time, we propose an

ABC (Artificial Bee Colony) [Karaboga and Akay, 2009] based algorithm. The colony
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consists of three types of bees: employed bees, onlooker bees and scout bees. The bee

that goes to food source visited by it before is named employed bee. The bee that

waits on the dance area for making a selection of food source is called onlooker bee.

And the bee that carries random search for discovering new food source is named

scout bee. The food source is a possible solution x, and every bee can memorize one

food source. It is assumed that there is only one employed bee for each food source.

The memory of employed bees is considered as the consensus of the whole colony,

and the food sources found by onlooker bees or scout bees merge into employed bees’

memory in algorithm. Assume the number of employed bees is N and the number

of onlooker bees is M (M > N). And let MCN be Maximum Cycle Number. The

algorithm overview is shown in Algorithm 1.

Algorithm 1 Application partition algorithm overview.

1: Initialize employed bees

2: cycle← 1

3: repeat

4: Produce new solution for employed bees

5: Apply greedy selection process for employed bees

6: Determine probabilities, and assign M onlooker bees to N employed bees

accordingly

7: Produce new solution for onlooker bees

8: Apply greedy selection process for onlooker bees

9: Determine abandon solution, if exists, and replace it with scout bee

10: Memorize the best solution so far

11: cycle← cycle+ 1

12: until cycle = MCN

57



At the first step, the algorithm generates a random initial population X (cycle =

0) of N solutions where the population size is the same as number of employed

bees. Based on this initial generation, the algorithm starts to evolve the generation

in cycles. The evolution repeats until the cycle number reaches limit MCN . The

algorithm outputs the best solution, denoted as xbest, ever found in all cycles.

In the cycle, three types of bees work in sequence. The details of three type bees’

actions are shown in Algorithm 2. Employed bees produce new solutions by two local

search methods:

Flip employed bee randomly flips one element in the vector x.

Swap employed bee randomly flips two elements of different values in the vector x,

which is equivalent to swapping two different elements in that vector.

Each employed bee evaluates the fitness of its original solution x, new found xflip and

xswap by (4.19). Then, each employed bee memorizes the best one of these three food

sources and forgets the others.

Onlooker bees watch employed bee dancing, and plan the preferred food source.

Onlooker bees record critical values of all food sources and calculate the probability

for ith food source as below:

pi =
1/ρ′(xi)

N∑
j=1

(1/ρ′(xj))

(4.22)

Intentionally, the lower food source’s critical value is, the more likely onlooker bee

would like to go. The onlooker bees chooses the food source y randomly according to

its probability. Since M > N , several onlooker bees may follow the same employed

bee and choose the same food source. Then each onlooker bee applies the same local

search methods used by employed bees previously to explore new neighbour solutions,

and picks the best one of the three. After all onlooker bees update their solution,
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each employed bee compares its solution with its followers’ solutions, and picks the

best one as its new solution.

In our algorithm, only one scout bee is used. This scout bee randomly generates

vector z and compares z to the worst solution of employed bees. If this random

generated z is better than the worst solution of employed bees, the corresponding

employed bee memorizes this new solution and forgets the old one.

Bayesian Decision

To complete the last step of decision, ρ has to be estimated from the observations

{ξi, i = 1, 2, . . . , n} and {ηi, i = 1, 2, . . . , n}, and then compared with ρ′(c) according

to (4.21). We assume there is a module named Predictor that fulfills this last step.

In our implementation, the Predictor calculates the average value of ρ and outputs

the comparison of this average value and ρ′(c). However, this implementation is only

a simple one, and it can be replaced with other advanced implementation. Thus, the

Predictor module can be treated as a black box [Wolski et al., 2008].

Although the observations are known, the distribution of ρ is unknown in most

scenarios. Thus, to estimate ρ analytically is not practical. Besides, the network

is always dynamic, which is not fully understood yet. Therefore, to predict future

network state based on historical observation is usually done empirically. From this

perspective, the comparison result from black box Predictor cannot be fully trusted.

Thus, we use another module named Bayesian Decision to mitigate the errors of

Predictor and to make the final decision for (4.21).

For simplicity, let T be ρ′(c). And we assume ωoffload denotes the comparison

result ρ > ρ′(c), and ωlocal denotes ρ ≤ ρ′(c). The Bayesian risk of decision to

offload is the expected cost as a function of the posterior distribution associated with
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Algorithm 2 Application partition algorithm details.

1: Initialize employed bees randomly xi: the ith employed bee
2: cycle← 1
3: repeat
4: for each employed bee xi do
5: Apply Flip local search and find xflip
6: Apply Swap local search and find xswap
7: if ρ′(xi) > min{ρ′(xi), ρ′(xflip), ρ′(xswap)} then
8: xi ← arg min{ρ′(xi), ρ′(xflip), ρ′(xswap)}
9: end if

10: end for
11: Determine probabilities (pi) by (4.22)
12: Mi ← piM : number of onlooker bees sent to the ith food source
13: yij ← xi (j = 1, 2, . . . ,Mi): the jth onlooker bee of the ith food source
14: for each onlooker bee yij do
15: Apply Flip local search and find yflip
16: Apply Swap local search and find yswap
17: if ρ′(yij) > min{ρ′(yij), ρ′(yflip), ρ′(yswap)} then
18: yij ← arg min{ρ′(yij), ρ′(yflip), ρ′(yswap)}
19: end if
20: end for
21: for each employed bee xi do
22: if ρ′(xi) > min

j=1,2,...,Mi

{ρ′(yij)} then

23: xi ← arg min
j=1,2,...,Mi

{ρ′(yij)}
24: end if
25: end for
26: Generate scout bee z randomly
27: if max

i=1,2,...,N
{ρ′(xi)} > ρ′(z) then

28: arg max
i=1,2,...,N

{ρ′(xi)} ← z

29: end if
30: if ρ′(xbest) > min

i=1,2,...,N
{ρ′(xi)} then

31: xbest ← arg min
i=1,2,...,N

{ρ′(xi)}
32: end if
33: cycle← cycle+ 1
34: until cycle = MCN
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offloading:

Roffload =

∫ T

0

Coffload(ρ)f(ρ|ωoffload)dρ

= Coffload(ρ) |ρ=
∫ T
0 f(ρ|ωoffload)dρ

(4.23)

where loss function Coffload(ρ) can be either time expense (4.11) or energy expense

(4.16) according to user preference. And f(ρ|ωoffload) is the probability of observing

a network availability value ρ given the Predictor ’s output ωoffload. When ρ is greater

than T , offloading does not pay penalty, thus the integral range is [0, T ]. Similarly,

the risk of decision to execute locally is:

Rlocal =

∫ 1

T

Clocalf(ρ|ωlocal)dρ

= Clocal

∫ 1

T

f(ρ|ωlocal)dρ
(4.24)

where loss function Clocal is constant value calculated by either (4.1) or (4.10) ac-

cording to the same user preference used for (4.23). We may pay penalty in both

offloading or local execution scenarios, which is the risk behind the above two equa-

tions. When offloading is applied, the execution time or energy consumption may

exceed the cost of local execution according to (4.11) and (4.16). Similarly, if local

execution is chosen, the benefit may be lost when (4.21) is satisfied.

To calculate (4.23), the posterior Probability Distribution Function (PDF) f(ρ|ωoffload)

can be calculated by Bayes theorem:

f(ρ|ωoffload) =
f(ωoffload|ρ)f(ρ)

f(ωoffload)
(4.25)

where f(ρ) is the prior PDF of availability ρ, f(ωoffload|ρ) is the conditional PDF

of event ωoffload given a availability ρ. f(ρ|ωlocal) is calculated in the same way for

(4.24).

We maintain a histogram for f(ρ). The value range [0, 1] is divided into many

slots, each of which is indexed by a ρ value, and each of which is corresponding to a
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bin in histogram. When a particular ρ value is observed, it falls into one bin. The

bins accumulate the observation count. To calculate f(ωoffload|ρ) and f(ωlocal|ρ), We

maintain two counters for each bin in the histogram. One counter is for counting

event ωoffload and the other is for counting ωlocal. The events ωoffload and ωlocal are

counted according to their corresponding bin indexed by availability ρ. There are

another two global counters that count the events ωoffload and ωlocal no matter what

availability value ρ is associated. These two counters are used to calculate f(ωoffload)

and f(ωlocal).

For example, assume the histogram has ten bins, which means the range [0, 1] is

divided into ten slots. The first bin is corresponding to range [0, 0.1]; the second bin

is corresponding to range [0.1, 0.2], and so forth. When we observe an availability

value ρ = 0.47, we add 1 to the fifth bin [0.4, 0.5]. Assume the corresponding event

of this observation is ωlocal, we add 1 to the counter of ωlocal associated with the fifth

bin, and add 1 to the global counter of ωlocal as well.

Offloading Decision Module

Based on the above discussions, the offloading decision module is depicted in Fig-

ure 4.3. The offloading decision module maintains a buffer that stores network states

duration sequences. The buffer is constructed as a table that has two columns ξ and

η. Every row is an observation of cycle of alternating renewal process. The rows are

sorted with the latest observation on the top and oldest observation at bottom. When

the table is full, the oldest tuples are removed from the bottom. When application

information is provided, Application Partition executes the algorithm in Algorithm 1

and Algorithm 2 and outputs threshold T and configuration c. Predictor reads buffer

and T , then gives availability prediction. Then Bayesian Decision finally makes the

decision. The final output of the offloading decision module is either a configuration
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Figure 4.3: Offloading Decision Module for Unstable Network Scenario.

or a flag indicating local execution.

4.1.3 Simulation and Analysis

In this section, we evaluate ABC based partition algorithm including algorithm

tuning and impact of different mobile application and cloud. We evaluate our model

and algorithms in MATLAB.

We generate two hundred random application graphs as base evaluation data set.

The default parameter settings are shown in Table 4.1. We use a set of typical

energy parameters K for a phone according to [Wang et al., 2013]. The cloud-phone

processing ability ratio q varies in large range from previous work [Wolski et al.,

2008][Xian et al., 2007]. We pick a medium value from the possible range as default

value and evaluate its impact to algorithm in section 4.1.3. We evaluate the algorithm

in three aspects: bee colony, different applications and cloud-phone relation.
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Table 4.1: Default Parameter Setting for Offloading Decision Evaluation Under
Unstable Network Scenario.

Parameter Default value

Application
m 10

n 8

Cloud [Wolski et al., 2008][Xian et al., 2007] q 30

Phone [Wang et al., 2013]

Ksta
CPU 2.5

Kdyn
CPU 5

Ksta
RF 1.25

Kdyn
RF 1.25

Algorithm
N 3

M 5

Bee Colony and Algorithm Tuning

This experiment is based on two hundred random application graphs (t and D).

These application graphs are randomly generated, and at least one configuration of

each graph is guaranteed to obtain both time and energy benefit in ideal network

environment. We evaluate the proposed algorithm performance of difference bee

colony size. The results are shown in Figure 4.4. The x-axis represents how many

iterations that the algorithm needs to reach the xbest, and y-axis represents how many

cases reach the solution of corresponding iterations. From the figure, we may draw

following guides for algorithm tuning:

• Increasing onlooker bee number, algorithm shows the better convergent rate.

For the same employed bee number (N), the more onlooker bees there are, the

less iterations are required to reach the optimal solution obviously in all three

situations (N = 2, 3, 4).
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(a) N = 2,M = 2
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(b) N = 2,M = 3
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(c) N = 2,M = 4
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(d) N = 3,M = 3
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(e) N = 3,M = 5
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(f) N = 3,M = 7
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(g) N = 4,M = 4
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(h) N = 4,M = 7
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(i) N = 4,M = 10

Figure 4.4: Partition Performance of Different Bee Colonies.
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• Increasing employed bee number improves convergent rate, but the improve-

ment is not obvious compared to increasing onlooker bee number. For the

same onlooker bees of M = 3 (Figure 4.4b, Figure 4.4d), M = 4 (Figure 4.4c,

Figure 4.4g) and M = 7 (Figure 4.4f, Figure 4.4h), the cases that have more

employed bees have slightly performance improvement, which is not as obvi-

ous as the improvement given by increasing onlooker bees. For M = 4 figures,

more than 0.05 cases reach the optimal solution at iteration number 7 in Fig-

ure 4.4c while there are only 0.05 cases reach solution at iteration number 7,

which means more cases reach solution in less than 7 iterations, in Figure 4.4g.

Similar phenomena is found for M = 3 and M = 7 figures.

• For the same total bee number of employed bees and onlooker bees, the algo-

rithm prefers more onlooker bees slightly. For the same total bees of N+M = 6

(Figure 4.4c, Figure 4.4d) and N + M = 8 (Figure 4.4e, Figure 4.4g), we can

see that the overall performance are almost the same. But the iterations to

get optimal solutions in the cases that have more onlooker bees are slightly

concentrated on some iteration numbers. For N +M = 6, the iterations in Fig-

ure 4.4c are concentrated demonstrated by higher summit at iteration 4, while

it is diversely distributed from 1 to 8 in Figure 4.4d. Similar situation occurs

for N +M = 8.

Application Impact

To evaluate the algorithm performance for difference applications, three experiments

are done for component number, unmovable component proportion and computation-

communication ratio separately. The experiment result for difference component

number is shown in Figure 4.5. For the same bee colony, the iterations to find the
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solution increases along with the component number. For the large applications

that have many components, the algorithm may use large bee colony to assure small

iterations.

We evaluate the impact of unmoveable component proportion of application in

the second experiment and the result is shown in Figure 4.6. From the figure, we find

that more iterations are required to get the solution when the movable component

number increases. The trend is very like that in Figure 4.5, which implies that the un-

moveable component number does not play much role in the algorithm performance.

This is because the algorithm always consider the movable components and ignore

the unmovable component when generating new solutions in each cycle. The total

component size increase in Figure 4.5 leads to the increase of movable component

number, which is like what this experiment does in Figure 4.6. Besides, we also found

in this experiment that higher movable proportion results in the robust solution that

can work under low network availability ρ′(c) situations. This is because the high

movable proportion provides more candidate partition options so that more robust

solution may be achieved.

We generate another two sets of application graph data of different computation

load. The data set used in previous experiments are used as reference data set. Then

we adjust the computation task to half and double of the reference data set in the

application graph generation process. The network task remains the same, thus the

computation-communication ratio is adjusted to half and double in new data sets. The

experiment results for these three data set are shown in Figure 4.7. From the figure,

we can see that the iterations, distributed at 2,3,4,5 and 6, are almost the same, which

implies the computation proportion of the given task does not influence the algorithm

performance. This is because the computation proportion in the task influence the

time benefit and energy benefit in the same direction. In the experiment, we also find
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(a) m = 8
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(b) m = 10
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(c) m = 12

Figure 4.5: Partition Performance of Different Component Numbers.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e 
pr

op
or

tio
n

(a) n = 7
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(b) n = 8
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(c) n = 9

Figure 4.6: Partition Performance of Different Unmovable Component Proportions.

that the computation proportion impacts the ρ′(c), because the more computation

proportion leads to more offloading benefit and the possible solution is more resistent

to network unavailability.

Cloud Impact

We evaluate the algorithm performance under different cloud speedup ratios shown

in Figure 4.8. The figure shows that the iteration number does not depend on the

cloud processing capability. The cloud processing capability influences the execution

time considered in algorithm, which is similar to the computation proportion impact.

And similarly, the higher cloud processing capability results in more robust partition

configuration.
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(a) half computation task
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(b) reference computation task
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(c) double computation task

Figure 4.7: Partition Performance of Different Computation Tasks.
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(a) q = 5
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(b) q = 10
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(c) q = 20

Figure 4.8: Partition Performance of Different Cloud Speedup Ratios.

4.2 Multiple Surrogates and Multiple Objectives

The presented multi-factor multi-site risk-based offloading model abstracts the of-

floading impact factors into two categories: offloading benefit and offloading risk. The

final offloading decision is made based on the aggregated and normalized benefit and

risk evaluations. This presented model is generic and expendable in that the number

of factors that are considered in the offloading decision processes varies. Specifically,

we present four offloading impact factors to show how the model works, and it can

cover more factors to make offloading decision more comprehensive. The offloading

benefits include delay reduction and energy saving, and offloading risks factors in-

clude privacy breach and reliability of the offloading targeting nodes. The overall
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offloading benefits and risks are aggregated based on the mobile cloud users’ prefer-

ence. Finally, we design an ant-based algorithm [Taillard and Gambardella, 1997] to

compute the optimal application partition strategy. A reference implementation is

also presented following the approach description. In summary, the contributions of

presented research are highlighted as follows:

• Multi-site offloading : The proposed offloading approach picks one or multiple

surrogates from a set of candidate sites (here we use node and site interchange-

ably), i.e., there could be multiple offloading destinations, where both cloud

VMs and mobile nodes can serve as a destination. The consideration of mul-

tiple surrogates results in a more flexible offloading model for running mobile

cloud applications.

• Risk-based multi-factor decision: The proposed approach takes two risk factors

into offloading decision making process. The privacy risk and reliability risks

have not been studied in previous work, where they are common issues in mo-

bile cloud computing application scenarios. The offloading decision is made by

comparing the aggregated risk and potential offloading benefit. The proposed

decision approach is not limited to only two types of risk or benefits. The so-

lution can be easily extended to many factors as long as the factors result in

either benefits or risks.

• Application offloading and composition: The proposed approach can be used

to model both application offloading and composition. In the above presented

example, the vehicles provide their video capturing function as an application

component (or function). This video capturing function can be composed with

other application components to composite a new mobile cloud application for

the requester.
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Figure 4.9: Offloading Decision Module Architecture for Multi-objective Scenario.

4.2.1 System and Models

In our system model, each Application Component (AC) provisioning node is

considered as an application site that runs one or multiple ACs based on the Java

framework [Wu et al., 2015]. The offloading decision module shown in Figure 4.9. It

has two tiers: monitoring and decision making, which are connected by a data pool.

The monitoring tier includes event manager, profiling manager, and profiling plugins.

Event manager monitors the events that trigger the offloading decision making pro-

cess. When an event is received, the event manager triggers the profiling manager to

distribute ‘output data’ commands to all profiling plugins. The profiling plugins are

used to monitor and cache environment data. When they receive ‘output data’ com-

mands, they flush the collected data to data pool and trigger the aggregation engine
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to preprocess data. The decision making tier includes several components, i.e., aggre-

gation engine, aggregation plugin, decision engine, and decision plugin. Aggregation

engine and decision engine control the work flow, while aggregation plugin and deci-

sion plugin actually do the processing work. The aggregation engine picks data from

the data pool and outputs the aggregated data back to the pool; then the decision

engine runs the decision making process by first reading from the data pool and then

outputting a final decision. In the decision making process, the decision engine may

call aggregation engine to aggregate data. This module is one of components that

compose the complete application. It usually runs on the original site, however, this

module may be offloaded as well to cloud or other mobile devices.

The proposed offloading decision module can work in an online manner. The

modules involved in online processing include the event manager and profiling plu-

gins. The online processing is implemented based on event driven. There are two

event sources: significant profiling data change and a regular timer. The profiling

plugin daemons monitor changes of resource provisioning or environment situation

fluctuations, and then send trigger events to the event manager ; the timer sends out

the trigger event periodically.

Application Partition

The parties involved in the offloading process include the ACs and the surrogates.

The offloading solution is actually a mapping from ACs to surrogates.

Application graph The modern mobile application is usually guided by compo-

nent oriented design. Components provide functionality via interfaces and may, con-

versely, consume functionality provided by other components [Wu et al., 2013]. The

application can be presented as a graph Gapp = (C,E) where the vertex is compo-
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Figure 4.10: Component-surrogate Mapping.

nent and the edge is interaction between components or the data transfer or data

dependency between components.

To be extensible, the application graph is not limited to present only one appli-

cation. The application graph can be extended to a big graph that contains several

applications and even the connections between applications.

Surrogate network In a multi-site service composition scenario, some computa-

tion workload is offloaded from original mobile device and distributed onto the picked

surrogate sites from candidate sites. The original site and its candidate sites form

an egocentric network Gsur = (S, L), where the node is site and the link is network

connection between sites.
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Component-surrogate mapping The service composition mapping is a mapping

from application graph Gapp to a surrogate network Gsur, where vertexes are mapped

to nodes and the edges are mapped to links correspondingly, as shown in Fig. 4.10. Let

matrix X present this mapping, whose element xij is set to either 1 when component

i is assigned to site j or 0, otherwise. Matrix X has following properties:

1. Let m be the component number m = |C| and n be the candidate site number

n = |S|. Then, X is Xm×n. The relation of m and n is not strict, which means

m > n, m < n and m = n are all valid.

2. The mapping is as well not strict, which means several components may be

mapped to the same surrogate site and some surrogate site may not host any

components. However, each component in the application is assigned to exact

one site, thus, there is one and only one 1 in each row of X:
n∑
j=1

xij = 1 for

every row i.

3. In a mobile application, some components have to be assigned to particular

sites due to application requirements. For example, human machine interaction

components and sensor components have to be put on the original mobile device

because they use mobile device hardware that is not available on surrogate sites.

This requirement enforces that positions of some 1’s in some rows of X are

predefined and cannot be moved. These rows are put at the bottom of the X.

Except these rows, the rest of X is the effective matrix Xm̃×n, which corresponds

to the movable components.

Based on X, four more mappings can be defined for easy expression in following

sections. Mapping fC→S implements the similar function as X, which maps compo-

nent i to site j: fC→S(i) = j, ∀xij = 1, xij ∈ X. Mapping fS→C is the reverse mapping
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of fC→S, which given site j outputs a set of components {i1, i2, . . . , ik} coded as a vec-

tor i. Besides, mappings can also be defined between E and L. Mapping fE→L maps

edge e = (i1, i2) to link l = (fC→S(i1), fC→S(i2)). And similarly to fS→C , mapping

fL→E maps a link to a vector of edges.

Offloading Benefits

Based on a certain risk, two primary offloading goals are considered: one is to reduce

the overall application execution time and the other is to save energy on mobile device.

Execution Time According to [Wang et al., 2013], at any time, the computation

load for every component and the volume of data exchange for every edge in applica-

tion graph is known based on a given task or is predictable based on the application

behavior and user historical behavior. The workload is distributed on the application

graph, which makes Gapp into a weighted graph. The computation load is presented

as a weight value on each vertex: the component c is labeled with computation load

wc and vector w is computation load of all vertexes. The data exchange amount is

presented as a weight value on an edge: the edge e = (c1, c2) from c1 to c2 is labeled

with data transfer load fc1c2 and matrix Fm×m is data exchange load of all edges.

The diagonal of F are all 0’s because the component’s interaction with itself does not

count for inter-component data exchange load; and fe = 0 if e ∈ E is false.

Meanwhile, the surrogates’ capability is measurable, so the egocentric network

Gsur is transformed into a weighted graph as well. The available computation capa-

bility on a candidate site s is labeled as a vertex weight us and vector u is weights

of all sites. The network throughput on link l = (s1, s2) from s1 to s2 is labeled as

link weight ds1s2 and matrix Dn×n is weights of all links. The diagonal of D are large

values because data exchange in the same site can be considered negligible.
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In this article, we define the operator .∗ as array inner multiplication that mul-

tiplies arrays or matrices in element-by-element way, which is different from matrix

multiplication. Let ũ be the vector that satisfies u. ∗ ũ = 1 where 1 is the vector

whose elements are all 1’s. Then the upper bound of total time spent for computation

load is sum of workload on every site over its processing capability:

tc = wTXũ. (4.26)

Similarly, let D̃n×n be the matrix that satisfies D.∗D̃ = 1n×n where 1n×n is the matrix

whose elements are all 1. The transformation XTFX redistributes the communication

load of Fm×m into a n×n matrix where element positions are corresponding to D̃n×n.

The upper bound of total time spent on networks for data exchange load is the sum

of workload on every link over its throughput:

tn = tr(XTFXD̃T ), (4.27)

where the tr() function calculates matrix trace tr(An×n) =
n∑
i=1

aii. So the upper bound

of total time is the sum of the computation time and the communication time:

t = tc + tn. (4.28)

Energy Consumption Energy consumption on mobile devices can be categorized

according to hardware modules. The major categories are CPU, radio module includ-

ing Wi-Fi and Cellular, display, audio device, GPS module and vibration motor [Shin

et al., 2013][Yoon et al., 2012][Zhang et al., 2010a][Jung et al., 2012]. The components

that involve modules except CPU and radio are hardware dependent components that

have to run on the original mobile device and that are not considered for offloading.

Both CPU and radio power can be modeled as a linear model that consists of two
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parts: dynamic consumption when hardware module is active and base consumption

[Wang et al., 2013][McCullough et al., 2011]. The dynamic part of CPU power is

proportional to utilized processing capability according to [Jung et al., 2012][Zhang

et al., 2010a][Mittal et al., 2012][Shin et al., 2013]:

PCPU = 1TX(u. ∗ cCPU), (4.29)

where cCPU is the coefficient vector for all sites; and the coefficients of non-mobile

sites in cCPU are 0’s. Let’s code E as e, then the dynamic part of radio module power

is proportional to the outgoing packet rate [Jung et al., 2012][Zhang et al., 2010a]:

D′ = D. ∗ (1n×n − I). ∗ (cradio1T ), (4.30)

P radio =
∑

∀l∈fE→L(e)

d′l, (4.31)

where cradio is coefficient vector for all sites, I is identity matrix and d′l is the element

of D′ corresponding to link l. The coefficients of non-mobile sites in cradio are 0’s. Let

PCPU
idle be the static part of CPU power and P radio

base be static power of radio module.

Then the total power is the sum of the above four parts:

P = PCPU + PCPU
idle + P radio + P radio

base . (4.32)

Offloading Risks

The offloading process is always involved with some risks. Risk (re) is defined as a

product of probability (pe) of an occurring event (e) and its potential impact (qe)

or consequence re = peqe [Saripalli and Walters, 2010]. Two major types of events

in mobile cloud offloading process are: information leakage and surrogate reliability,

and these events are assumed to be independent.
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Privacy and Trust Information leakage may happen in transportation process in

network and/or in computation process on sites. Let’s code C as c and E as e, then

combine fC→S(c) and fE→L(e) as a vector v of elements that may leak information.

Corresponding to this vector, two state vectors s and s′ are defined of one unique

surrogate network state. Vector s records what elements leak information and vector

s′ records links on which data is exposed. Both s and s′ are constructed initially as

all 0’s and then adjusted according to:

• For s, if vi leaks information, then si = 1.

• For s′, two situations are considered. First, if a link vi ∈ fE→L(e) leaks infor-

mation, then s′i = 1. Second, if a site is compromised, then all data transferred

on incident links are exposed. Let vi ∈ fE→L(e) and vi = (vj, vk), and either vj

or vk leaks information, then s′i = 1.

Let function p1(vi) be the probability of leakage occurring for element vi. The

implementation of this probability is discussed in section 4.2.3. The probability of

state s is the probability product of all independent leakage events:

p1s =
∏
∀si=1

p1(vi)
∏
∀si=0

(1− p1(vi)). (4.33)

The amount of exposed data is considered as the information leakage consequence.

The impact of state s′ is data sum of all unique leakage events:

q1s′ =
∑
∀s′i=1

{fẽ}, (4.34)

where fẽ are values picked from F corresponding to edges in ẽ = fL→E(vi); and {fẽ}

is set of data loss in all unique leakage events.
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All valid s(s′) vectors form a state space H and
∑
s∈H

p1s = 1. The risk can be

computed based on the expected data loss:

r1 =
∑

s(s′)∈H

p1sq1s′ . (4.35)

Reliability The surrogates may be unavailable due to device mobility or failures in

network or on sites. Similarly, vector v is defined of elements that may be unavail-

able and state vectors s and s′ are defined as well [Jereb, 1998][Levendovszky et al.,

2002][Booker et al., 2008]. Vector s records what elements are unavailable and vector

s′ records nodes on which workload is lost. The s and s′ are initialized as all 0’s and

the following steps are executed:

• For s, if vi is unavailable, then si = 1.

• For s′, two situations are considered. First, if a site vi ∈ fC→S(c) is unavailable,

then s′i = 1. Second, if a link fails, then the node that accepts the data on

that link will fail due to lack of input. Let vi ∈ fE→L(e) and vi = (vj, vk) is

unavailable, then s′k = 1.

Let function p2(vi) be probability of unavailability occurring for element vi. The

implementation of this probability is discussed in section 4.2.3. The probability of

state s is probability product of all independent unavailability events:

p2s =
∏
∀si=1

p2(vi)
∏
∀si=0

(1− p2(vi)). (4.36)

The loss of computation is considered as the consequence of the unavailability of

surrogates. The impact of state s′ is sum of computation loss in all unique unavail-

ability events:

q2s′ =
∑
∀s′i=1

{wc̃}, (4.37)
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Figure 4.11: Time Benefit Member Functions.

where wc̃ are values picked from w corresponding to components in c̃ = fS→C(vi);

and {wc̃} is a set of computation loss of all unavailability events.

The expected computation loss or risk r2 is calculated in the same way with (4.35):

r2 =
∑

s(s′)∈H

p2sq2s′ . (4.38)

User Preference

The benefit originates from several sources. However, we only use time and energy

benefits to simplify the presentation of multi-factor measurement. The sources of

benefits are usually presented in different format and thus they cannot be simply

processed together. We classify benefits from each source into several levels, such

as none, low, medium, and high, so that each type of benefits can be processed

together. To obtain the overall offloading benefit, user preference is used to aggregate

time benefit and energy benefit. A user usually does not specify distinct preference

between time benefit and energy benefit. Here we use a fuzzy-based approach [Ni

et al., 2010], where the overall benefit can be calculated by fuzzy inference in three

steps: fuzzification, inference and defuzzification.
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Table 4.2: Benefit Inference Rules

Weight Time benefit Energy benefit Final benefit

· · · · · · · · · · · ·

0.85 low medium medium

· · · · · · · · · · · ·

1. The time benefit is firstly normalized by t% = (torig − t)/torig where torig is

execution time when no offloading is done, which is equivalent to mapping all

components to only original device in X. The membership degree of t% to a

specific benefit level is determined by membership function. For example, the

membership degrees of t% = 0.28 are: mftimenone(0.28) = 0.0983 (none), where

mftimenone is member function of time benefit for level ‘none’, and similarly 0.9193

(low), 0.0120 (medium), and 0 (high) according to membership functions shown

in Figure 4.11. Similarly, the energy benefit is fuzzified as well.

2. The firing degree of a rule is calculated based on the chosen conjunction oper-

ation and membership degrees of both time and energy benefit. For example,

the chosen operation is product t-norm Tp(a, b, . . .) = ab . . ., and the member-

ship degree of energy benefit for ‘medium’ is 0.5642. Then, the firing degree is

calculated by Tp(0.9193, 0.5642) = 0.9193× 0.5642 = 0.5187 for the rule shown

in Table 4.2.

The final benefit of a rule is estimated based on the conjunction of its member

function, its firing degree, and its weight. For instance, the final benefit for the

rule in Table 4.2 is: Tp(0.5187, 0.85,mffinalmedium) = 0.5187 × 0.85 × mffinalmedium =

0.4409 × mffinalmedium where mffinalmedium is member function of the final benefit for

‘medium’.
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The preference given by a rational user is expected to be monotonic to both

time and energy benefit. The final benefit increases when both benefits increase

or when either benefit increases and the other stays. And similarly, the final

benefit decreases when both benefit decrease or when either benefit decreases

and the other stays. However, the final benefit is not decided when one increases

while the other decreases.

3. The aggregation of final benefit is calculated based on the chosen disjunction

operation and all outputs of rules. For example, the chosen operation is mini-

mum t-norm Tmin(a, b, . . .) = {a, b, . . .}. Then, the final benefit result function

is rf(x) = Tmin(. . . , 0.4409×mffinalmedium, . . .). The final benefit value is the center

of rf(x):

b =

∫
rf(x)xdx∫
rf(x)dx

. (4.39)

Similarly to benefit aggregation, fuzzy inference is also applied to aggregate of-

floading risks and the final risk is denoted as r. Both b and r are within range [0, 1].

4.2.2 Decision Solution

The final benefit aggregated by user preference depends on mapping matrix X

and the final risk. Thus b and r in previous section are actually b(X) and r(X).

The offloading problem is to find mapping X to maximize the aggregate benefit,

and meanwhile, the constraint is satisfied that the aggregate risk is smaller than the

benefit:

max b(X), (4.40)

s.t. b(X) > r(X). (4.41)

The offloading decision considers trade off of benefit and risk. The offloading is

allowed only when the offloading motivation or benefit overwhelms the offloading risk.
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To solve the above problem, we design an ant-algorithm [Taillard and Gam-

bardella, 1997] based approach in Algorithm 3.

Algorithm 3 Algorithm: overview.

1: Initialization

2: repeat

3: Solution construction

4: Local search

5: Pheromone update

6: until stopping criteria is reached

The previous problem can be represented by graph G = (Θ,Λ) where Θ = {C, S}.

Edges connect components to sites. An ant at component vertex chooses site vertex

as next vertex to go and leaves pheromone on the trail.

The algorithm maintains a counter γ and a pheromone matrix τ . At the beginning,

γ is set to 0, and τij is set to 1 where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, three steps

are executed in a loop until the result is reached. γ increases by 1 each round in

loop. τ is used to guide the transition in solution construction step, and is updated

in pheromone update step. Two stopping criteria are: the counter reaches γmax, and

the result stagnates. When either criterion is met, the algorithm stops.

Solution Construction

The solution construction is shown in Algorithm 4. The ant goes from component i

to site j with the probability:

pij(γ) =
τij(γ)∑

1≤k≤n
τik(γ)

. (4.42)

A The ant algorithm is based on the following philosophy: high pheromone accumu-

lated on the edge indicates this assignment is a potential good assignment; the ant
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Algorithm 4 Algorithm: solution construction.

1: Set X according to predefined assignment, and put unmovable component index

into set I

2: while |I| ≤ m do

3: Choose i uniformly at random, where 1 ≤ i ≤ m and i /∈ I

4: Choose j randomly with probability in (4.42), where 1 ≤ j ≤ n

5: xij ← 1

6: I ← I ∪ {i}

7: end while

chooses a potential good edge intentionally. However, the ant does not give up the

choices of other edges.

Improvement Procedure

The neighborhood X ′ is obtained by changing one assignment in the solution X.

The improvement procedure searches the neighborhood area and finds the valid local

optimal solution as shown in Algorithm 5. The local search improves X through

iterations. The parameter α controls the iteration times. The high α means the local

search algorithm will try to explore more neighbors. The value range of α is [1,m].

Pheromone Update

The elements of pheromone matrix are updated as:

τij(γ + 1) = τij(γ) + ∆τij(γ), (4.43)
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Algorithm 5 Algorithm: local search.

1: I ← ∅

2: for 1 to α do

3: Choose i uniformly at random, where 1 ≤ i ≤ m and i /∈ I

4: J ← ∅

5: while |J | ≤ n do

6: Choose j uniformly at random, where 1 ≤ j ≤ n and j /∈ J

7: X ′ ← X, and change assignment from i to j in X ′

8: if b(X) < b(X ′) and b(X ′) > r(X ′) then

9: X ← X ′

10: end if

11: J ← J ∪ {j}

12: end while

13: I ← I ∪ {i}

14: end for

where

∆τij(γ) =



ηλγ if xij = 1 in current Xγ

η∗ if xij = 1 in best Xbest

ηλγ + η∗ if xij = 1 in Xγ and Xbest

0 otherwise

. (4.44)

Two parameters η and η∗ control the search scheduling. η is set to 1 at the

beginning and varies in the run, while η∗ is fixed in the whole process. In two cases,

pheromone updates in another way that is different from (4.44):
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1. When the best result ever found Xbest has been improved by current solution

Xγ, the η is reset to 1 and all τij are reset to 1. The resetting remove historical

information and intensify the search around new direction Xbest.

2. When current solution Xγ reaches Xbest, which means the focus on Xbest is to

too high, η is increased by 1 and all τij are reset to new η to diversify the search.

The risk constraint in the problem is treated by parameter λ. When the solution

X does not obey risk constraints, the positive feedback on pheromone is removed by

paying penalty:

λγ =


0 if b(Xγ) < r(Xγ)

1 otherwise

. (4.45)

4.2.3 Implementations and Evaluations

This section discusses the implementation issues and presents the evaluation re-

sults. We evaluate our ant based algorithm by simulation in MATLAB. We first

generate 50 test cases randomly, and then evaluate performance impact of algorithm

parameter η∗ and α. The η∗ indicates the pheromone amount accumulated on links

of best solution ever found, and α is the repeat times for neighbor exploring. These

two parameters control the convergence speeds in global and local search, thus they

are used to tune algorithm performance.

Risk estimation in practice

In the previous section 4.2.1 on offloading risks, there are several parameters that

need estimation in practice. The parameter estimation can be done in many ways.

As an example, these parameters can be estimated by subjective inference or training

fed by time series of observation.
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Trust estimation To estimate the probability of sites and links, subjective trust

average can be used in practice. The trust rating of a site or a link is given by survey

of clients that involved in the transaction with the site or link. The value of rating is

an integer in the rating space [0, k]. For example, like what we usually used in rating

mobile application in market, the rating space may be [0, 5] stars and the rating of a

site may be two stars. To normalize the rating to the range [0, 1], the trust rating is

scaled proportional to the ranting range. For example, if a site is rated as two stars

and the rating range is five stars, the normalized rating is 2/5 = 0.4. Assume the

normalized ratings are {r0, r2, . . . , rk} and the count of each rating is (x0, x2, . . . , xk)

in the sample from survey, then the sample size is n =
∑k

i=0 xi and the average rating

is r̂ =
∑k

i=0 rixi/n. Once the average trust is obtained, the function p1(v) in equation

(4.33) is the complementary of the average trust p1(v) = 1− r̂(v).

Availability estimation The site and network availability can be estimated from

time series observation. The network availability can be detected from operating

system, while the site availability can be detected by heartbeat packet. Assume

the availability of either site or network may be on or off state. The observation of

states along with time is a series of on, off, on, off . . . , which is an alternating renewal

process [Wu et al., 2013]. Figure 4.2 shows how availability changes along with time

coordinate. Solid line represents on state duration, while dash line represents off

state duration. Two states alternate with each other. One on duration and one

off duration form a cycle. The on state duration is denoted as ξ and the off state

duration is denoted as η. {ξi, i = 1, 2, . . .} is independent and identically distributed

(i.i.d.), and so is {ηi, i = 1, 2, . . .}. And ξi and ηj are independent for any i 6= j, but

ξi and ηi can be dependent [Pham-Gia and Turkkan, 1999]. The cycle duration is

denoted as χ and χi = ξi+ηi where i = 1, 2, . . .. The proportion of on duration in any
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individual cycle is a random variable denoted as ρ = ξ/χ. Then p2(vi) in equation

(4.36) is p2(v) = 1− E(ρ).

Evaluation of ant-based decision making algorithm

We generate 50 test cases for evaluation. In each case, parameters for time, energy,

privacy and reliability factors are generated. For time factor, one application graph

and one surrogate graph are generated. The application component number is set

to 5 and the candidate surrogate site number is set to 3. The workload w and site

processing ability u are generated uniformly at random in range [1, 100] and [1, 10]

separately. The data exchange amount F and network throughput D are uniformly

random distributed in range [1, 10] and [1, 100] separately. This parameters are set

in order to meet the assumption that the application is computation intensive as the

average time spent on computation is much greater than data exchange. For energy

factor, the coefficients of mobile devices are similar to [Wang et al., 2013]. The

CPU coefficients of dynamic and static parts are random in range [4, 6] and [1, 1.5]

separately. The RF coefficients of dynamic and static parts are random in range [2, 3]

and [1, 1.5] separately. For privacy and reliability factors, the event probabilities are

random in range [0, 0.2]. These events are assumed to happen in low probability in

real situations.

Algorithm tuning by η∗ In the proposed algorithm, there are two parameters η∗

and α for performance tuning. The parameter η∗ indicates the search direction in

the whole solution space. In every iteration of searching, the best solution ever found

is always assigned more pheromone, which guides the ant to go to that direction in

high probability in following iterations. The performance impact of η∗ is shown in

Figure 4.12. The figure shows the algorithm performance when α values are fixed at
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1, 3 and 5. In the figure, the y axis represents the average case number and the x axis

represents the iteration sequence number when the solution X is found. Every point

(x, y) in the figure represents x cases reach their final solutions in the yth iteration.

The lines in the figure represent the case numbers distributed in iteration number

range [1, 50]. Since the total case number is 50, the area below each line should be

50.

In all three situations of α = 1, 3, 5, the line η∗ = 5 is higher than η∗ = 3 and the

line η∗ = 3 is higher than η∗ = 1 in iteration range [1, 20]. And meanwhile, the line

η∗ = 5 is lower than η∗ = 3 and the line η∗ = 3 is lower than η∗ = 1 in iteration range

[25, 50]. When η∗ raises, more cases that are solved originally in higher iteration

numbers [25, 50] will be solved in less iterations, which leads to the case number

increases in range [1, 20]. When η∗ increases, more pheromone will accumulate on

the links that belong to the best solution Xbest. This accumulated pheromone guides

the ant to pick those links more often than other links, so that the ant goes to the

direction of the Xbest. The higher η∗ is, the better sense of direction the ant has,

which avoid ant’s heading in random direction and save iterations. By comparing

figures of the same α values, we also find that the more cases reach solutions in small

iteration from line η∗ = 1 to line η∗ = 3 than from line η∗ = 3 to line η∗ = 5. This

is obvious in range [1, 10]: the incremental case number between line η∗ = 1 and line

η∗ = 3 is larger than that between line η∗ = 3 and line η∗ = 5. The incremental case

number decreases when the η∗ increases, which will finally lead to the limit situation

when increasing η∗ does not make iteration number smaller. When η∗ is too high,

the algorithm will always search around the point Xbest in solution space and often

hit it again. When algorithm hits the Xbest again, the relative high value of η∗ is

decreased by the way of increasing η in case 2 of pheromone update step in algorithm

to guarantee the search diversity.
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Figure 4.12: Performance Tuning.

Algorithm tuning by α While parameter η∗ guides the global search, the pa-

rameter α controls the local search. The performance impact of α is also shown in

Figure 4.12. The figure shows three situations: η∗ = 1, η∗ = 3 and η∗ = 5. In all

three situations, three α values are evaluated and compared. In Figure 4.12a,4.12b

and 4.12c, the case number from line α = 1 to α = 3 and from line α = 3 to α = 5

increases in range [1, 12] and decreases in range [23, 50], which means some cases that

are solved originally in high iteration numbers are solved in less iterations. This is

obvious in iteration range [1, 12] where the line α = 3 is above α = 1. Similar phe-

nomenon is also seen in Figure 4.12d,4.12e,4.12f and Figure 4.12g,4.12h,4.12i. When

α increases, the algorithm searches the near solution around the picked X. The near

solution is the solution that has only one different assignment of component to site.

Since the component number is limited, the largest α value is bounded by component

number. The higher the α is, the more neighbors the algorithm explores in each it-
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eration. The more neighbors the algorithm explores in each iteration, the earlier the

algorithm finds the best solution in the dedicated area, which leads to improvement

of performance from iteration number aspect. However, this improvement is bounded

by two reasons. First, the α value is bounded to component number. Second, the

local search costs more time when we increase local search quality. Although the

iteration number is decreased, the time spent for each iteration is increased because

high α requires more attempts to explore neighbors.

4.3 Offloading Series in Long Time Horizon

The previous sections and many existing approaches (e.g., [Giurgiu et al., 2009]

[Wolski et al., 2008][Xian et al., 2007] [Kemp et al., 2012]) only focus on solving

the one-time service composition topology configuration without considering a se-

quence of service composition due to the application running environment changes

(e.g., due to the mobility of nodes). When considering multiple service composition

decisions, one decision may impact other service mapping decisions at an up-coming

service mapping. This demands that the topology reconfiguration decision must not

only consider the current environment state but also predicate future environment

changes, and thus, the service-topology reconfiguration issue can be modeled as a

decision process issue. To address the above described issues, we model the service

composition topology reconfiguration as a five-element tuple system and we present

three algorithms to solve these decision process problems for three mobile cloud appli-

cation scenarios: (1) finite horizon process: the application execution time is restricted

by a certain time period, (2) infinite horizon process: there is no clear boundary of

the application execution time, and (3) large-state situation: the large numbers of

many-to-many service mappings demand a parallel computing framework to compute

the service mapping decision.
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The contributions of this research work are highlighted as follows:

• Service composition topology reconfiguration process model. We propose a the-

oretical model that describes the service composition topology reconfiguration

process. The proposed model deals with a series of decisions rather than one-

time decision. Particularly, the mobile device energy is used as the aggregated

metric, considering network reliability, delay, CPU usage, etc., to model the

service composition objective and reconfiguration reward.

• Service composition topology reconfiguration algorithms. Based on the proposed

model, three algorithms are proposed to derive the service remapping decisions

for three different service mapping scenarios: finite horizon, infinite horizon,

and large-state space that represent ad hoc, long-term, and large-scale mobile

cloud service composition scenarios, respectively.

4.3.1 System and Model

The offloading as a service and service composition in mobile cloud computing

achieve three essential tasks. First, the mobile application components, which can be

offloaded, are partitioned into several groups. Second, the surrogate sites are picked

from candidate sites that are usually virtual machines in cloud. Third, the component

groups in the first task are mapped to surrogate sites in the second task, and then

computation is offloaded. The service composition is not a one-time process. Instead,

the mapping in the third task should be dynamically changed to adapt the system

and environment changes, especially in mobile cloud computing where mobility adds

the environment variation.
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Figure 4.13: Continuous Service Composition System.

Service composition system

The Service composition system consists of three parts shown in Fig. 4.13, which can

be emulated as human decision processes. The Monitor represents the human’s eyes

watching both the mobile applications and infrastructure, and notifying the Service

composition topology reconfiguration their states’s changes. The Service composition

topology reconfiguration is the human’s brain thinking about how to put application

components onto which surrogate sites. The Service composition executor represents

the human’s hands that enforce the component-surrogate mapping and make sure a

mobile device and its surrogates work together properly. These three interdependent

modules can be deployed in a cloud computation platform to provide offloading-as-a-

service, which exposes http REST API for mobile applications and the infrastructure

to interact with. The infrastructure registers itself to the service and push the state

information to the Monitor The mobile application as well registers itself to the

service and receives the execution command from the Service composition executor.
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Besides the Service composition system, the Mobile application and Infrastructure

are involved in the service composition process, and they form a loop where the Mobile

application and the Infrastructure share a part of the loop in parallel. The Service

composition system initiates the service composition operations that stimulates the

Mobile application and the Infrastructure. The Mobile application and the Infrastruc-

ture integrate the service composition impacts and the variances form the outside,

such as user inputs to the application and the device load variance, and feedback to

the Service composition system. Then, the Service composition system based on the

feedback makes the service composition operation.

The Mobile application is the objective of the Service composition system. The

Infrastructure consists of the three players that involved in the service composition

process: the Mobile device, the Surrogate sites and the Network between them. The

following sub subsections model the Mobile application, the Surrogate sites and the

service composition mapping between them.

Model statement

Several factors involved in the service composition topology reconfiguration are mod-

eled as follow.

Decision points Decision points are the moments when the service composition

topology reconfiguration decisions are made. At these moments in Fig. 4.13, the

Monitor triggers the Service composition topology reconfiguration for generating a

service composition topology. The moments are decided by the Monitor that is

always observing the Infrastructure and the Mobile application states. The Monitor

can triggers decisions periodically according to a predefined period ∆t.
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The decision points are a sequence that starts from the time when the application

starts to the time when the application ends: T = {0, 1, 2, . . . , N − 1}. In some

scenarios, the application termination time is not expectable, the sequence is an

infinite sequence: T = {0, 1, 2, . . . }.

Measures The Monitor measures the Infrastructure states. The node computa-

tion capability and link throughput are labeled on the surrogate network, which

transformed Gsur into a weighted graph. The available computation capability on a

candidate site s is labeled as a node weight us and vector u is weights of all sites. The

network throughput on link l = (s1, s2) from s1 to s2 is labeled as link weight ds1s2

and matrix Dn×n is weights of all links. The diagonal of D are large values because

the delay in the same site can be considered negligible.

The above measures may be continuous variables. They are manipulated by nor-

malization and quantization to make them into discrete states. A relative large value

is picked and the observation is scaled to be in [0, 1]. Quantization precision decides

the size of state space. The state space is denoted as S.

Service composition topology The service composition topology is the effective

component surrogate mapping Xm̃×n. Each mapping is corresponding to an action

that enforces the mapping. The size of service composition topology space is nm̃ since

each component has n choices and there are m̃ components that choose their choices

independently. Let A be the corresponding action space from which the Service

composition system in Fig. 4.13 acts - picking and enforcing the mappings. The

output of the Service composition topology reconfiguration is a service composition

topology. If the outputted service composition topology is different from the old one,

reconfiguration is needed. The ‘reconfiguration’ means the components in the old
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service composition topology should be moved properly to satisfy the new service

composition topology, which is fulfilled by the Service composition executor.

Observation learning The Service composition topology reconfiguration in Fig. 4.13

counts the historical states and actions, and estimates the state transition proba-

bility p(j | i, a) where i, j ∈ S and a ∈ A. The transition probability satisfies∑
j∈S

p(j | i, a) = 1. This probability is updated at decision points. The Service com-

position topology reconfiguration maintains a buffer that keeps the count for valid

observed states and the count of historical actions. At each decision point, it gets the

current state j from the Monitor and, the last state i and the last topology decision

a from its buffer. Then it calculates the state transition probability for every pair

of states with every action. This transition probability that comes from the recent

history is used to predict the probability of transition for the near future ∆t period

assuming the transition probability stays steady in short time period.

Service composition objective One of the major service composition goals in

mobile cloud computing is to lengthen the battery life on mobile devices. We use

energy consumption as the offloading objective in the equation 4.32 in this decision

scenario.

When a topology is picked at a decision point, a reward value is calculated to

indicate how good the decision is. The reward of choosing action a at state i depends

not only state i and action a but also the next state j. The reward is:

r(i, a) =
∑
j∈S

r(i, a, j)p(j | i, a), (4.46)

where the reward of transition from state i to state j with action a is the expected
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delta power between two states i and j with the same action a, and

r(i, a, j) = P (j, a)− P (i, a). (4.47)

Model formulation The service composition topology reconfiguration process is

modeled as a five element tuple:

{T, S,A, p(· | i, a), r(i, a)}. (4.48)

This is a Markov decision process [Liu, 2004].

4.3.2 Design and Algorithm

Based on the proposed service composition topology reconfiguration system and

model, this section formulates the topology reconfiguration policy problem in both

finite horizon scenario and infinite horizon scenario. The solutions in both scenarios

are presented. Besides, the MapReduce based algorithms are discussed for large state

count situations that are common in real world.

Topology reconfiguration policy

The service composition reconfiguration policy is a function π that maps states to

actions π : S → A. The function π can be stored in memory as an array whose index

is the state and whose content of each element is the corresponding action. Let Yt

and ∆t be the system state and the picked action at decision point t: ∆t = π(Yt).

The sequence L(π) = {Y0,∆0, Y1,∆1, . . . } is a stochastic process depending on π.

Let Rt(π) = r(Yt,∆t), then the sequence {R0(π), R1(π), . . . } is a reward process

depending on π.

Finite decision points At any decision point, the current period reward could be

used as decision goal, which, however, is shortsighted because the maximum current
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period reward does not guarantee that the sum of rewards in all periods is the maxi-

mum. To make proper decision on service composition topology, the total rewards of

N periods should be considered as the goal:

VN(Y0, π) =
N−1∑
t=0

βtRt(π) =
N−1∑
t=0

βtr(Yt,∆t), (4.49)

where β is the confidence index. As the N periods’ rewards are estimated future

rewards, the degree of confidence on the reward sequence Rt(π) is decreasing along

with t goes far from now. The confidence index presents this decreasing confidence

trend. The service composition topology reconfiguration problem is to find the policy

π that maximizes VN(Y0, π).

Let ut be the reward sum from decision point t to N . There is backward recursive

relation between t+ 1 and t:

ut(it, at) = r(it, at) + β
∑
j∈S

p(j | it, at)ut+1(j) (4.50)

=
∑
j∈S

p(j | it, at)(r(it, at, j) + βut+1(j)), (4.51)

where it ∈ S is the state at time t. The equation (4.50) shows the reward sum from

time t to N is consist of the current period reward and the β scaled reward sum from

time t+ 1 to N .

Let the superscript notation ∗ present the maximum value of the corresponding

variable. To get the maximum rewards, the backward recursive relation formulation

is:

u∗t (it) = max
at∈A

{
r(it, at) + β

∑
j∈S

p(j | it, at)u∗t+1(j)

}
. (4.52)

The Algorithm 6 shows the algorithm to calculate the policy π. The main body

of the algorithm repeats the equation (4.52) by N times. In the algorithm, the

line 5 and the line 6 could share the intermediate result of equation (4.50), which
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Algorithm 6 Finite horizon backward induction.
1: t← N

2: u∗t (it)← 0,∀it ∈ S

3: while t > 0 do

4: t← t− 1

5: u∗t (it)← max
a∈A

{
r(it, a) + β

∑
j∈S

p(j | it, a)u∗t+1(j)

}
,∀it ∈ S

6: π∗t (it)← arg max
a∈A

{
r(it, a) + β

∑
j∈S

p(j | it, a)u∗t+1(j)

}
,∀it ∈ S

7: end while

means r(it, a) +
∑
j∈S

p(j | it, a)u∗t+1(j), ∀it ∈ S is calculated only once but used in both

operations.

The algorithm requires storage for two arrays indexed by state: v and f. The (i)

element of the array v is u∗(i) where i ∈ S. The (i) element of the array f is an action

π∗(i) ∈ A that is the optimal action corresponding to state i ∈ S. The array f hosts

one instance of π. The length of both v and f is |S|.

At the end of the algorithm, v contains the discounted sum of the rewards to

be earned on average from the corresponding initial state i: V ∗N(i) = v(i) = u∗0(i)

where i ∈ S. The policy is π = {π∗0, π∗1, . . . , π∗N−1} for N decision points. The array

f contains π∗0 when the algorithm ends. The action π∗0(Y0) = f(Y0) is the action that

should be performed at the current decision point.

Infinite decision points The previous discussion of the finite horizon scenario can

be extended to the infinite horizon scenario. The objective function for the infinite

horizon scenario can be achieved by pushing N to ∞ in the equation (4.49):

V (Y0, π) = lim
N→∞

VN(Y0, π). (4.53)
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Similarly, the problem is to find the policy π that maximizes the total rewards

V (Y0, π). In the infinite horizon scenario, the recursive relation (4.50) is general-

ized by removing iteration subscript:

u(i, a) = r(i, a) + β
∑
j∈S

p(j | i, a)u(j). (4.54)

Similarly, the recursive relation (4.52) changes to:

u∗(i) = max
a∈A

{
r(i, a) + β

∑
j∈S

p(j | i, a)u∗(j)

}
, (4.55)

which means the u∗(i) converges to the maximum total rewards.

The Algorithm 7 shows the algorithm to calculate the policy π. Compared to

Algorithm 6, the iteration termination condition is changed to comparing the vector

norm and tolerance. The ε indicates the tolerance for the converging state. In the

line 6, the ‖ · ‖ is vector norm that could be any type of Lp: L1, L2, or L∞ norm. In

addition, a local improvement loop is added inside the main iteration. The sequence

{m} is consist of non-negative integers that are used in each iteration as improvement

depth. The {m} could be generated in many ways. For example, it may be constant:

mn = m, or it may get more precise along with the iteration sequence number:

mn = n. When the algorithm ends, the policy is πn+1 that is stored in the array f.

Two column vector r(π) and a matrix P (π) are defined to simplify expressions in

the algorithm. The (i) element of vector r(π) is r(i, π(i)) where i ∈ S. The size of

r(π) is |S|. The (i, j) element of matrix P (π) is p(j | i, π(i)) where i, j ∈ S. The size

of P (π) is |S| × |S|. In the algorithm, the line 13 ∼ 15 repeat the same operations

as the line 3 ∼ 5. The line 8 is the vector version of equation (4.54). The line 5

and 15 are the vector version of equation (4.55). The line 3 and the line 5 share the

intermediate computation result. Similarly, the line 13 and the line 15 also share the

intermediate computation result.
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Algorithm 7 Infinite horizon induction.
1: n← 0

2: vn ← 0

3: πn+1 ← arg max
π∈Π

{r(π) + βP (π)vn}

4: k ← 0

5: ukn ← max
π∈Π
{r(π) + βP (π)vn} . Equation (4.55)

6: while ‖ukn − vn‖ < ε do

7: while k < mn do . Equation (4.54)

8: uk+1
n ← r(πn+1) + βP (πn+1)ukn

9: k ← k + 1

10: end while

11: vn+1 ← umn
n

12: n← n+ 1

13: πn+1 ← arg max
π∈Π

{r(π) + βP (π)vn}

14: k ← 0

15: ukn ← max
π∈Π
{r(π) + βP (π)vn} . Equation (4.55)

16: end while

Large state space

To make more accurate and agile decision, the real world measures are usually lead to

large state space in section 4.3.1. The large state space size results in long responding

time. To mitigate the responding time in large state space situation, MapReduce

could be used. This section discusses the conversion from the Algorithm 6 and the

Algorithm 7 to MapReduce algorithms.

The Algorithm 8 and Algorithm 9 show the MapReduce algorithms for the finite

horizon scenario. The input to mapper function, which is also the output of reducer
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Algorithm 8 Finite horizon Mapper.

1: function map(i, Q)

2: Emit (i, Q) . Pass state i

3: for all j ∈ S do

4: for all a ∈ A do

5: Emit (j, < i,Q, a >)

6: end for

7: end for

8: end function

function, is the state id i and an object Q that encapsulates the state information.

Besides encoded state information, two components Q.v and Q.f corresponding to

the arrays v and f are also included in the state object. Moreover, a component Q.p

corresponding to the state transition probability is included in the state object as

well. The state object is passed from the mapper to the reducer for calculating the

equation 4.51. This is accomplished by emitting the state data structure itself, with

the state id as a key in the line 2 in the mapper. In the reducer line 3, the node data

structure is distinguished from other values.

The mapper function associates the current state with all backward states. The

reducer function aggregates the reward sum of all forward states according to the

equation (4.51), which is categorized by action. Then it picks the maximum reward

sum and the corresponding action as the current reward sum and action according to

the equation (4.52).

It is apparent that the algorithm in Algorithm 6 is an iterative algorithm, where

each iteration corresponds to a MapReduce job. The actual checking of the termina-

tion condition must occur outside of MapReduce. Typically, execution of an iterative

MapReduce algorithm requires a non-MapReduce “driver” program, which submits
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Algorithm 9 Finite horizon Reducer.

1: function reduce(i, [< j,Q, a >])

2: for all x ∈ [< j,Q, a >] do

3: if Is(x) then . Recover state i

4: Q← x

5: end if

6: end for

7: set← new HashSet

8: for all x ∈ [< j,Q, a >] do

9: if IsNot(x) then . Equation (4.51)

10: set(a)← set(a) +Q.p(j, a)(r(Q, a, x.Q) + βx.Q.v)

11: end if

12: end for

13: for all x ∈ set do

14: if Q.v < set(a) then . Equation (4.52)

15: Q.v ← set(a)

16: Q.f ← a

17: end if

18: end for

19: Emit (i, Q)

20: end function
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a MapReduce job to iterate the algorithm, checks to see if a termination condition

has been met, and if not, repeats [Lin and Dyer, 2010].

As presented in the section 4.3.2, the infinite horizon algorithm is obtained by ex-

tending the finite algorithm, the MapReduce based algorithm for the infinite horizon

scenario can be obtained by extending the MapReduce based finite horizon algorithms.

The mapper function could be used without modification in the infinite horizon al-

gorithms. The improvement loop in the infinite horizon algorithm can be achieved

by repeating the line 8 ∼ 12 m + n times. Besides the modification on the reduce

function, the modification on driver is required. The iteration termination condition

in the driver is changed from fix number to the comparison of norm and coverage

tolerance.

4.3.3 Evaluation

This section discusses the proposed models and presents the evaluations of the

proposed algorithms including finite horizon, infinite horizon and MapReduce based

algorithms.

Evaluation cases and default parameter setting

We generate 200 test cases of the proposed model in section 4.3.1. To make the

mobile device profile based on solid ground, we pick up the mobile device profiling

parameters obtained in previous work [Zhang et al., 2010a]. The maximum dynamic

power consumption values in each mobile CPU and RF components, cCPU and cradio

, are normally distributed with mean of 4.34 and 710, and variation of 1.46 and

48, respectively. The static power consumption values in each mobile CPU and RF

components, PCPU
idle and P radio

base , are normally distributed with mean of 121.46 and 20,

and variation of 9.20 and 4.86, respectively. In our experiments, the CPU utility
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Table 4.3: Default Parameter Setting for Offloading Topology Reconfiguration Eval-
uation.

Parameter Default value

application and cloud

m̃ 8

n 5

|S| 100

finite horizon
N 3

β 0.7

infinite horizon

Lp L2

mn n

ε 1

large state space |S| 1000

is uniformly distributed from 40% to 90%. The network throughput is uniformly

distributed from 10% to 40% after normalization.

Besides the mobile device and cloud profiling, we use the default algorithm pa-

rameter values shown in Table 4.3. These values may be changed in the experiments

to show their impact on the algorithms. We used MATLAB to evaluate the finite

scenario and the infinite horizon scenario algorithms. The application graphs were

randomly generated with the above parameters in MATLAB. The algorithms were

implemented according to the Algorithm 6 and Algorithm 7 in MATLAB. For large

state scenario algorithm evaluation, we used a Hadoop cluster. The algorithm was

implemented according to the Algorithm 8 and Algorithm 9 in Java.

Experiments on finite horizon

We first evaluate the norm of the reward sum trend along with the variance of forecast

decision point number N . Since the reward sum range of test cases vary, we normalize
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Figure 4.14: Reward Sum vs. N in the Finite Horizon Scenario.
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Figure 4.15: Reward Sum vs. β in the Finite Horizon Scenario.

the reward sum against the maximum reward sum in the evaluation. The experiment

result is shown in Fig. 4.14. The trend in the figure shows the reward sum approaches

the maximum reward sum along with the N increases. The approaching trend follows

a monotonically increasing trend. When the reward sum approximate the stable value

(N is greater than 8), we can claim the N is large enough to be considered as infinite

horizon scenario.

We then evaluate the norm of the reward sum trend along with the variance of

confidence index β. The experiment result is shown in Fig. 4.15. In the figure,

the reward sum is normalized against the values of default confidence index. The

reward sum increases monotonically along with the confidence index increase. The
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Figure 4.16: N and β Correlation in the Finite Horizon Scenario.

higher the confidence index increases, the more reward values are added to the total

considered reward, which leads to the higher norm value of reward norm. The reward

sum increases sharply when the confidence index approximates to 1, which leads to

linear proportional relation between reward sum and the forecast period N or infinite

horizon reward sum calculation failure. When the confidence index is small, the

reward sum is steady because the reward sum is mainly consists of rewards in several

near future forecast periods.

To illustrate the correlation of N and β, we put the reward trends of different

confidence indexes in Fig. 4.16. In the figure, when the confidence index is small

(β = 0.5), the reward sum converges after a short period (N = 4). When β = 0.7,

the value for reward sum to converge (N = 8) is as twice as for β = 0.5. The higher

the confidence index is, the larger the decision point number is to make the expected

reward sum to converge. Since the N values for converge is related to the iteration

times in the infinite scenario, we can infer that the smaller the confidence index is

the less the iteration is required in the infinite horizon scenario.
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Figure 4.17: Reward Sum of Different Norms.
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Figure 4.18: Iteration Cycles of Different {mn} Sequences.

Experiments on infinite horizon

In the infinite horizon algorithm, several types of norm could be used. We experiment

L1, L2 and L∞ for the algorithm and show the results in Fig. 4.17. In the figure,

the y-axis is the reward sum normalized against the maximum reward sum in the

experiment. The figure shows the results of three types of norms are almost the

same. The difference is about 2% of the all reward sum, which could be ignored. The

result demonstrates the algorithm does not depend on the norm types.

We evaluate the impact of different {mn} sequences on the iteration cycles in the

infinite horizon algorithm and show the results in Fig. 4.18. Three {mn} sequences are

used in the experiments: mn = 1, mn = 2 and mn = n. We find that almost half cases

benefit from the improvement procedure of line 8 in Algorithm 7 where the control
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Figure 4.19: Reward sum vs. N in the finite horizon scenario.

case m = 0 is without improvement. The inside improvement loop uses the current

states’ information to estimate the reward sum before all states’ information are

updated by the outside main loop. Although the estimation based by current states’

information may not be accurate, the trend is more or less captured by this estimation

so that the outside main loop iteration cycles can be saved. The total computation

performance benefit produced by the improvement procedure varies depending on the

tradeoff of main loop saving and improvement loop cost. In the figure, we also find

that the three strategies’ performance are almost the same, which means the benefit

of improvement loop does not depend much on the constants loop cycles. From the

Fig. 4.14, we can see that the reward sum converge quickly along with the iteration

cycles, so the reward sum after improvement loop changes dramatically compared to

small tolerance value no matter how many loop cycles there are.

The main loop of infinite horizon algorithm terminates in condition controlled by

the reward sum tolerance. We experiment different tolerance and their corresponding

main loop iteration cycles and show the results in Fig. 4.19. In the figure, the x-axis is

the ε range from 1 times ε to 50 times ε, and the y-axis is the iteration cycle number

that is normalized against the cycle number of default ε situation. Obviously, the

higher the tolerance is, the quicker the iteration ends. The large tolerance means
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Figure 4.20: Reward sum of different ε.

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

state space

no
rm

al
iz

ed
 ti

m
e

 

 

Hadoop
normal

Figure 4.21: Execution time on Hadoop.

the more reward sum values fall into the area that is considered converged values,

so the less iteration may let the reward sum trend go into that area and terminate

the iteration cycle. We also illustrate the reward sum of different ε in Fig. 4.20. In

the figure, similar to Fig. 4.19, the x-axis is the ε range from 1 times ε to 50 times

ε, and the y-axis is the reward sum that is normalized against the cycle number of

default ε situation. We can see that the reward sum decreases when the tolerance

increases, which demonstrates that the coverage area is enlarged by large tolerance.

Additionally, the reward sum decreases proportional to the tolerance variance, which

is expected because the converge area is enlarged by turbulence proportionally.
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Figure 4.22: Execution time on different Hadoop configuration.

Experiments on large state space

We evaluate the MapReduce algorithm on Hadoop platform. The default Hadoop

cluster configuration is 1 master node and 6 slave nodes. We experiment four state

spaces of different sizes: 100, 200, 500 and 1000 for the finite horizon scenario. The

result is shown in Fig. 4.21. The infinite horizon scenario experiment shows the

similar results as Fig. 4.21. In the figure, the x-axis is the space size and the y-

axis is the execution time normalized to the maximum time in the experiment. We

can see in the figure that the execution time of both normal and Hadoop algorithm

increase dramatically along with state space size increases. However, the execution

time increase speed is slow than that of normal execution. Besides, two execution

time lines intersect at around a point corresponding to the state space size of 300.

Since the Hadoop spends some time on job management and coordination between

servers, the execution of MapReduce version of algorithm does not have advantage

when the state space size is small. The exact boundary point when the MapReduce

execution starts to have advantage depends not only on the state space size but also

the Hadoop configuration and running environment, so we should be careful to pick

the proper execution method on real deployment.
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The MapReduce algorithm performance is related to the reducer number. We

have conducted experiments of the algorithm under Hadoop configurations with dif-

ferent reducer numbers. The normalized execution time is shown in Fig. 4.22. When

the reducer’s number increases, the execution time decreases because more parallel

computation are applied.

Evaluation summary and discussions

Compared the evaluation results of the finite horizon to the infinite horizon scenarios,

we summarize the findings as follows, which direct our future work: (1) The reward

sum goes steady when the horizon window N goes infinite, which shows the process of

quantitative change to qualitative change. (2) The larger confidence indicator β leads

to longer converge window according to Fig. 4.16. (3) For the infinite horizon scenario,

the proposed algorithm is flexible so that distance norms do not have a major impact

on the system performance. (4) The improvement local search enhances the algorithm

performance. (5) The converge tolerance ε controls the algorithm iteration cycle

number, which is carefully chosen to balance the computation load and the calculation

accuracy. Finally, (6) for the large state scenario, the MapReduce algorithm can

achieve significant performance improvement beyond the normal algorithm.

In the presented evaluation, we tried to cover various aspects for mobile cloud

service composition to provide an optimal decision making. However, there are some

improvements could be done in the future work to enhance the proposed solution.

In the current implementation, we assign a periodical time interval to run the deci-

sion making algorithms. The decision time point strategy can be more adaptive and

intelligent, such as adaptive decision points according to the system status. Thus,

a feedback model is needed to incorporate situation awareness into the considera-

tions. Moreover, the service composition objective should include network reliability
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and risk into the consideration. Furthermore, the transition among the presented

three algorithms in the mobile cloud service composition decision model needs fur-

ther study.
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Chapter 5

MIDAS: VEHICULAR CLOUD

This project demonstrates the synergistic use of a cyber-physical infrastructure

consisting of smart-phone devices; cloud computing, wireless communication, and in-

telligent transportation systems to manage vehicles in the complex urban network

through the use of traffic controls, route advisories and road pricing to jointly op-

timize drivers mobility and the sustainability goals of reducing energy usage and

improving air quality. The system developed, MIDAS-CPS, proactively Manages the

Interacting traffic Demand And the available transportation Supply. A key element

of MIDAS-CPS is the data collection and display device PICT that collects each par-

ticipating drivers vehicle Position, forward Images from the vehicles dashboard, and

Communication Time stamps, and then displays visualizations of predicted queues

ahead, relevant road prices, and route advisories.

Given the increasing congestion in most of the urban areas, and the rising costs of

constructing traffic control facilities and implementing highway hardware, MIDAS-

CPS could revolutionize the way traffic is managed on the urban network since all

computing is done via clouds and the drivers instantly get in-vehicle advisories with

graphical visualizations of predicted conditions. It is anticipated this would lead to

improved road safety and lesser drive stress, besides the designed benefits on the

environment, energy consumption, congestion mitigation, and driver mobility. This

multidisciplinary project is at the cutting edge in several areas: real-time image

processing, real-time traffic prediction and supply/demand management, and cloud

computing.
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The MIDAS project consists of three research groups: mobile cloud group, image

processing group, and intelligent traffic group. The mobile cloud group is responsible

for the mobile cloud communication, resources scheduling, and applications.

5.1 Remote Image Capture Based on POEM

The POEM framework is used in the MIDAS project. The motivation example in

Figure 1.1 is one of the scenarios that MIDAS system works. This section describes

POEM evaluation using the motivation scenario application in Figure 1.1.

5.1.1 Methodology

In the motivation example, Both Alice and Bob provide the image capture service,

and Bob and Carol consume the image from the remote service. There are two types

of interactions in the motivation example:

• Interaction between phone and VM: Bob would like to know the traffic density

of the road ahead. The vehicle density is a float number indicating how many

vehicles in a road segment. A simple way to calculate the vehicle density in the

motivation example is first filtering the objects in the image and then counting

the vehicles simply. As summarized in the section 3.1.1, we can implement this

type of interaction either by service composition in Figure 5.1a, which transfers

the image data from Alice to Bob while keeps the PF location at the Bob vehicle,

or by computation offloading in Figure 5.1b, which migrates the image process

bundle from Bob to Alice, runs the image processing at the Alice vehicle and

transfers only small amount of output data from Alice to Bob.

• Interaction between phone and phone: Carol would like to know the traffic

density as well. Both Alice and Bob can provide the image capture service.

Similarly, Carol may request the image directly sent from phone to the him
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Figure 5.1: Interaction Between Phone and VM.
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and he can calculate the vehicle density, as service composition; or the phones

on the vehicles may calculate the vehicle density that is sent to Carol, as ser-

vice offloading. The difference between this type interaction and Figure 5.1 is

replacing the VM to phone.

We use Android phone to represent Alice and Bob, and use a Ubuntu VM to represent

Carol. Thus our evaluation includes four cases: service composition between phone

and VM, computation offloading between phone and VM, service composition between

phone and phone, and computation offloading between phone and phone.

The POEM Manager is implemented on Felix [Gédéon, 2010] OSGi implementa-

tion version 4.0.3. Mobile application that contains a Felix OSGi framework instance

that hosts POEM Manager runs on Android Motorola phone A855. The phone’s

parameters are 600MHz CPU and 256M memory. The Android version is 2.2.3. The

virtual machine is with 1GHZ CPU and 512M memory, which runs Ubuntu 11.10.

The phone and the cloud server are connected by a router that is also wifi access

point for the phone. The WiFi connection has averaged latency of 70 ms, download

bandwidth of 7 Mbps, and upload bandwidth of 0.9 Mbps. Ping is used to report the

average latency from the phone to the ESSI, and Xtremelabs Speedtest, downloaded

from Android market, is used to measure download and upload bandwidth.

The image process part is implemented based on OpenCV [Bradski and Kaehler,

2008] library. We used the bilateral filter as the example PF for image processing.

Bilateral filter can reduce unwanted noise very well while keeping edges fairly sharp.

One of the parameters to the bilateral filter is the filter size that is the diameter of

each pixel neighborhood that is used during filtering. We use 10 as the default filter

size. We run the application against different filter size. The test image size is around

45 KB and it is with 800× 600 pixels.
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Experiment result is obtained by running the application 50 times for every sce-

nario and averaged. Between two consecutive executions there is a pause of 1 second.

5.1.2 Interaction Between Phone and VM

We evaluated the interaction between phone and VM through four cases. The

execution time was measured in all cases. First, we measured the time cost for each

sub steps in the service composition procedure. Then, we measured the overall time

cost for different filter size. Last, we adjusted the network configuration to see how

the execution changes.

Service composition

This experiment measures service invocation time. This time is measured on both

phone and on VM. On the phone side, the service invocation time consists of three

parts: image capture time, image process time, and phone marshalling time. The

image capture time is the camera operation time decided by the camera hardware,

which is around 422 milliseconds. The image fetching time on phone is the time for

the Android system to fetch the image and pass it to the POEM bundle, which is

about 196 milliseconds. The phone marshalling time is spent on coding the image

and preparing the image for transmission, which is around 488 milliseconds.

On the VM side, the service consumption time consists of two parts: cloud mar-

shalling time and image processing time. After the VM receives the data, it has

to decode it and construct the image, which is cloud marshalling time. The im-

age processing time is the time to calculate the Bilateral filter, which is around 47

milliseconds for the default configuration.

Besides the time spent on phone and on VM, the data exchange on network

also costs time. It is a bit more than 4 seconds, which is dominant in the whole
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Figure 5.2: Execution Time of Each Step of Service Composition.

service composition process. Adding time for all the steps, the total time for service

composition is around 7 seconds. The result is shown in Figure 5.2.

Computation offloading

The computation offloading consists of two phases. First, the bundle is migrated to

the phone. The second phase is the same as service composition, where the cloud can

call the service on the phone. The first phase happens only once, then the second

phase service composition may happen multiple times. Thus, the bundle migration

time does not contribute much in the long run.

This experiment measures PF migration time of the first phase. PF migration

time period starts when service migration command is issued and ends when proxy

for migrated service is available. The PF migration time for the image processing

bundle is about 5 seconds. The migration time is mainly the time of transferring PF

bundles on the network, which is determined by the bundle size. Different bundles

may need different time.

Adjust computation

We measure the total time cost of two indicators in this scenario as shown in Fig-

ure 5.3. The ‘service composition’ series indicates the time cost of remote service
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Figure 5.3: Execution Time vs. Computation Input Parameter for Service Compo-
sition and Computation Offloading.

composition, which means the image is transferred from phone to the VM and all

the computation happens on the VM locally. The Figure 5.3 shows the ‘service com-

position’ series is almost a horizontal line. The time spend for the image process in

the VM, which grow from 5 milliseconds to 183 milliseconds while the filter size is

from 2 to 20. The ‘computation offloading’ series shows the time cost for migrating

the image processing to the phone where the data is located to save image transfer

time cost. Compared to the ‘service composition’ series, the ‘computation offloading’

series grows drastically, and the image processing time on the phone grows from 509

milliseconds to 17, 847 milliseconds on average along with the filter size increases from

2 to 20. Since the VM in the cloud is much more powerful than the smartphone, the

image processing time cost on the same filter size parameter is much less than the

time spent for phone local execution.

The ‘service composition’ time consists of two parts: the cloud image processing

time which is almost constant and the rest which is constant along with the input

parameter grows. The ‘computation offloading’ time also consists of two parts: the

phone image processing time which is growing drastically and the rest which is con-

stant along with the input parameter grows. Comparing the components of the two
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Figure 5.4: Execution Time Components of Computation Offloading vs. Computa-
tion Input Parameter.

series, they both contains the image processing part where the difference is one on

phone and the other on VM. The cloud image processing time can be simply ignored

compared to the phone image processing time. Figure 5.4 shows the components of

the offloading execution time. The image processing time increases drastically since

the phone processor power is limited and the input parameter drives the execution

time increase. The time spent on network keeps constant because the data amount

transferred over network maintains same. The time spent on other miscellaneous op-

erations remains constant since the operations are same, mainly including the camera

operations. The constant part of the two series are different: ‘service composition’

series transfers the image which is large amount of data, while ‘computation offload-

ing’ series transfers the small amount of data that can be ignored compared to the

image data size.

The intersection of execution time on phone and WiFi offloading is the Boundary

input value (BIV) [Kosta et al., 2012] that shows the offloading benefit starting point.

The Figure 5.3 shows the filter size 6 is the BIV for the interaction between phone

and VM. If the application inputs filter size greater than 6, the service composition

is the better choice; while the computation offloading is better for the other cases.
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Adjust network

To study the network impact on the system, we configured the WiFi router to the

low bandwidth to mimic the real scenario on the road. The Figure 5.5 shows the exe-

cution time of service composition and computation offloading under various network

configurations. We chose 7k bps and 1k bps network bandwidth configurations in the

testing. The results showed that both service composition and computation offload-

ing time increase. The incremental amount of service composition is larger than the

incremental amount of computation offloading time. The network status change has

larger impact on the service composition than on the computation offloading, since

the service composition transfers the image data to the cloud and the transferred data

amount is larger than the data amount transferred by computation offloading.

When the network bandwidth decreases, the BIV increases from 6 in default net-

work configuration to 12 in 7k bps bandwidth network configuration, and to 20 in 1k

kps bandwidth network configuration. This observation suggests that computation

offloading is preferred in more circumstances when the network status goes worse.

5.1.3 Interaction Between Phone and Phone

We evaluated the interaction between phone and phone in the similar way as we

did for interaction between phone and VM. We measured the service composition

time and computation offloading time against input filter size under various network

configurations, shown in Figure 5.6. Since the two phones are the same in the exper-

iment, so the image processing time on the both phones are the same. The service

composition transfers larger amount data than the computation offloading, thus the

service composition costs more time. When the network bandwidth decreases, the

incremental service composition time is larger, which is similar to the observation in
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Figure 5.5: Execution Time vs. Computation Input Parameter for Service Compo-
sition and Computation Offloading Under Various Network Configurations.

the interaction of phone and VM experiments. In the experiments, the computation

offloading is always better than the service composition since the it transfers less data

and the service composition does get any image processing time benefit as VM does.

5.2 MIDAS Applications

The mobile cloud group developed several applications for MIDAS project, in-

cluding data collection and visualization, and real time data streaming.

5.2.1 Data Collection and Visualization in Google Map

Each PICT device collects the vehicle Global Positioning System (GPS) location

information as well as the velocity and acceleration information. The collected vehicle

information is sent to the cloud who assembles all information and provides visual-

ization in the Google Map. In the Figure 5.7, each red dot represents a vehicle which

runs on the I-10 highway in Phoenix metropolitan, Arizona.
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Figure 5.7: MIDAS Application: Data Collection and Visualization on Google Map.
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Figure 5.8: MIDAS Application: Real Time Data Streaming from PICT Devices.

5.2.2 Real Time Data Streaming from PICT Devices

Besides location information, PICT devices would like to share their video streams

captured by their cameras. The image processing function can be applied to the video

streams. Figure 5.8 shows the video streams collected in the cloud as well as the line

detection results.

5.2.3 Real Time Video Stream Processing System

The cloud accepts the video streams from the PICT devices, then the cloud process

the video stream to fetch the information like lanes, vehicles and signposts. The

stream processing module or the image processing module should be pluggable, which

means the analysis module can be replaced or added to adjust the system intelligence.

The system architecture is shown in Figure 5.8.

The system consists of four layers. From the stream source to stream sink, they

are: input layer, front-end streaming layer, pluggable analysis layer and sink broad-

casting layer. The input layer accepts streams from PICT devices or generates streams

from historical video files. The source streaming servers and sink streaming servers
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Figure 5.9: MIDAS Application: Real Time Video Stream Processing.

are media server clusters to host the video streams. The output of both streaming

servers are video streams. The pluggable analysis modules consumes the streams

from the source streaming servers and push the process results to the sink streaming

servers. The monitor site fetches the streams from the source and sink streaming

servers to see the system status and processing results.
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Chapter 6

CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation by summarizing the contributions of the

work and highlighting the future directions.

6.1 Conclusion

In this dissertation, I proposed a novel application running platform, called POEM,for

mobile cloud computing that allows mobile users to offload and compose mobile cloud

application with little management overhead. The implementation is based on OSGi

platform and XMPP protocols. The proposed service platform handles service migra-

tion, service discovery and service composition seamlessly in a transparent fashion.

The evaluation showed the proposed service platform is flexible and efficient.

Three offloading strategies were proposed to solve the offloading decision making

problem in various scenarios. The first strategy solves the devision making in un-

stable network environment. The proposed solution modeled unstable network as an

alternating renewal process. The execution time and energy consumption are ana-

lyzed in this unstable network scenario. The offloading problem is formulated as an

optimization problem to find an application partition configuration that can provide

offloading benefit when low network availability is low. A bee colony based algorithm

was proposed to calculate the application partition resistant to network unavailability.

And a bayesian decision approach was proposed to validate the partition and output

the final offloading decision. The simulation results demonstrated good performance

of proposed solution.
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The second strategy solves multiple objective offloading decision making problem.

The proposed a multi-factor multi-site risk-based offloading model abstracts the of-

floading impact factors as for offloading benefit and offloading risk. The offloading

decision is made based on a comprehensive offloading risk evaluation. This proposed

model is generic and expendable. Four offloading impact factors are presented to

show the construction and operation of the presented offloading model, which can be

easily extended to incorporate more factors to make offloading decision more compre-

hensive. The overall offloading benefits and risks are aggregated based on the mobile

cloud users’ preference. An ant-based algorithm is proposed to calculate the assign-

ment from application components to surrogate sites. The performance evaluation

presents the practicality of the presented solution.

The third strategy solves the offloading decision making for a series. The pro-

posed a service composition topology reconfiguration model for multi-site service

composition application abstracts the service composition topology reconfiguration

as five-element tuple. The proposed model deals with a series of decision points

rather than one-time decision. It also defined the surrogate site states and topology

reconfiguration actions. Moreover, it uses the mobile device energy as an example to

illustrate the service composition objective and the reconfiguration rewards. Based

on the proposed model, we proposed three algorithms to solve the reconfiguration

problem. Each algorithm is suit for one application scenario: (a) the finite horizon

algorithm assumes the prior knowledge of application execution time; (b) the infinite

algorithm generalizes the assume of finite algorithm to the infinity, which eliminates

the restriction of the prior knowledge assumption; and (c) the third algorithm is

motivated by the real world multi-site service composition applications that involves

many aspect leading to large state space. The evaluation results demonstrated the

applicability and good properties of all three algorithms.
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6.2 Future Work

Mobile cloud is still in its early stages of development and an active area of ex-

ploration. Below we present some promising research directions:

• Augmented reality with mobile cloud assistant: The mobile devices enables un-

limited applications in the life. The augmented reality is one of the hottest

topic in both academy and industry. The augmented reality requires lots of

information and computation, which may not be available on the mobile device

itself. Thus the cloud is necessary to aggregate the information, compute the

augmented environment, and send to the mobile devices. Some augmentation

functions that are computation intensive may be offloaded to the cloud and

personalization may be applied to the computation. The offloading in such

augmented reality scenario needs further study to make proper offloading deci-

sion.

• Personal assistant: Besides the augmented reality in the daily life, the personal

assistant is another hot topic. The personal assistant on mobile device needs

high intelligence to interact with human. This type of intelligence at present is

only available through large scale machine learning system in the cloud. Thus,

the personal assistant on the mobile device has to contact the cloud for the

interaction with human. In addition to the information retrieval, the cloud

that acts like the central brain may offload some tasks to the mobile devices to

act directly to assist human life, which is exactly like the experiments in the

Chapter 5.

• Scale offloading/composition in mobile cloud: The current computation offload-

ing/composition exists in the small group of resources, such as the resources ac-
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quired by particular user. However, scalability creates benefit. Large group of

offloading/composition introduces problems not only in the resource scheduling

and management, but also the privacy and security, on-time system response,

and risk management as well. The

• Internet of Things with mobile cloud: The emerging of IoT brings challenges

for the mobile cloud. Since many devices carry computation unit, which may

be mobile or stationary, the collaboration and management of these devices and

cloud become challenging. The ad-hoc mobile cloud resources are dynamic. The

devices may join to leave at any time. More research is in need to manage this

type of dynamic cloud.
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