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ABSTRACT

Data privacy is emerging as one of the most serious concerns of big data analytics,

particularly with the growing use of personal data and the ever-improving capability

of data analysis. This dissertation first investigates the relation between different

privacy notions, and then puts the main focus on developing economic foundations

for a market model of trading private data.

The first part characterizes differential privacy, identifiability and mutual-

information privacy by their privacy–distortion functions, which is the optimal achiev-

able privacy level as a function of the maximum allowable distortion. The results

show that these notions are fundamentally related and exhibit certain consistency:

(1) The gap between the privacy–distortion functions of identifiability and differential

privacy is upper bounded by a constant determined by the prior. (2) Identifiability

and mutual-information privacy share the same optimal mechanism. (3) The mutual-

information optimal mechanism satisfies differential privacy with a level at most a

constant away from the optimal level.

The second part studies a market model of trading private data, where a data

collector purchases private data from strategic data subjects (individuals) through an

incentive mechanism. The value of ε units of privacy is measured by the minimum

payment such that an individual’s equilibrium strategy is to report data in an ε-

differentially private manner. For the setting with binary private data that represents

individuals’ knowledge about a common underlying state, asymptotically tight lower

and upper bounds on the value of privacy are established as the number of individuals

becomes large, and the payment–accuracy tradeoff for learning the state is obtained.

The lower bound assures the impossibility of using lower payment to buy ε units

of privacy, and the upper bound is given by a designed reward mechanism. When

the individuals’ valuations of privacy are unknown to the data collector, mechanisms
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with possible negative payments (aiming to penalize individuals with “unacceptably”

high privacy valuations) are designed to fulfill the accuracy goal and drive the total

payment to zero. For the setting with binary private data following a general joint

probability distribution with some symmetry, asymptotically optimal mechanisms are

designed in the high data quality regime.
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Chapter 1

INTRODUCTION

From the monetary coupons offered for revealing opinions of a product to the large-

scale trade of personal information by data brokers such as Acxiom Kroft (2014),

the commoditization of private data has been trending up when big data analytics is

playing a more and more critical role in advertising, scientific research, etc. However,

in the wake of a number of recent scandals, such as the Netflix data breach and

the Veterans Affairs data theft, data privacy is emerging as one of the most serious

concerns of big data analytics. This has given rise to a fundamental question: whether

big data and privacy can go hand-by-hand or giving up our privacy is inevitable in

the big-data era.

1.1 Overview

In this dissertation, we first investigate the relation between different privacy no-

tions. The definition of privacy has been at the center of the research on data privacy,

with different notions proposed to capture different perspectives of privacy-sensitive

scenarios. Studying the relation between these privacy notions can deepen our un-

derstanding of privacy. Privacy concerns become prominent with the ever-improving

capability of data analysis. Analyzing personal data results in new discoveries in

science and engineering, but also puts individual’s privacy at potential risks. There-

fore, privacy-preserving data analysis, where the goal is to preserve the accuracy of

data analysis while maintaining individual’s privacy, has become one of the main

challenges of this big data era. The basic idea of privacy-preserving data analysis

is to inject a right amount of randomness in the released information to guaran-
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tee that an individual’s information cannot be inferred. Intuitively, the higher the

randomness is, the better privacy protection individual users get, but the less accu-

rate (useful) the output statistical information is. While randomization seems to be

inevitable, for the privacy-preserving data analysis it is of great interest to quantita-

tively define the notion of privacy. Specifically, we need to understand the amount

of randomness needed to protect privacy while preserving usefulness of the data. To

this end, we consider three different notions: identifiability, differential privacy and

mutual-information privacy, where identifiability is concerned with the posteriors of

recovering the original data from the released data, differential privacy is concerned

with additional disclosures of an individual’s information due to the release of the

data, and mutual information measures the average amount of information about the

original database contained in the released data. While these three different privacy

notions are defined from different perspectives, we put these privacy notions under a

unified privacy–distortion framework and show that they are fundamentally related.

Next, taking a forward-looking view, we envisage a market model for private data

analytics where the data collector uses a reward mechanism to incentivize individuals

to report informative data, and individuals control their own data privacy by reporting

noisy data with the randomization algorithms strategically chosen to maximize their

payoffs. We quantify the privacy disclosure of an individual’s data-reporting strategy

by a local variant of differential privacy Dwork et al. (2006b); Kasiviswanathan et al.

(2011); Dwork and Roth (2014), which measures privacy disclosure by the distin-

guishability between the probability distributions of the reported data for different

contents of the private data. A distinctive merit of our approach is that data subjects

take full control of their own data privacy and the data collector gets informative

data but does not need to bear the responsibility of protecting privacy. One signif-

icant challenge, however, is also rooted in this desired merit: the data collector has
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no direct control or even no information on how individuals would randomize their

private data.

We address this challenge by devising a game-theoretic formulation, which allows

us to predict how individuals behave to reconcile the conflict between rewards and

privacy. To make an individual willing to trade a desired amount of privacy, the data

collector needs to incentivize the individual by making sure that doing so benefits

her most. Therefore, to grasp the intrinsic characteristics of the market and find the

balance point where the data collector and the individuals cut a deal, we focus on

individuals’ strategies in a Nash equilibrium of the reward mechanism. The funda-

mental question—“how much is privacy worth”—can then be cast as: what is the

minimum reward to an individual such that her strategy in a Nash equilibrium is to

report data with certain units of privacy disclosure?

1.2 Summary of Contributions

In Chapter 2, we investigate the relation between three different notions of pri-

vacy: identifiability, differential privacy and mutual-information privacy. Under a

unified privacy–distortion framework, where the distortion is defined to be the ex-

pected Hamming distance between the input and output databases, we establish

some fundamental connections between these three privacy notions. Given a maxi-

mum allowable distortion D, we define the privacy–distortion functions ε∗i (D), ε∗d(D),

and ε∗m(D) to be the smallest (most private/best) identifiability level, differential pri-

vacy level, and mutual information between the input and output, respectively. We

characterize ε∗i (D) and ε∗d(D), and prove that ε∗i (D) − εX ≤ ε∗d(D) ≤ ε∗i (D) for D

within certain range, where εX is a constant determined by the prior distribution of

the original database X, and diminishes to zero when X is uniformly distributed.

Further, we show that ε∗i (D) and ε∗m(D) can be achieved by the same mechanism for

3



D within certain range, i.e., there is a mechanism that simultaneously minimizes the

identifiability level and achieves the best mutual-information privacy. Based on these

two connections, we prove that this mutual-information optimal mechanism satisfies

ε-differential privacy with ε∗d(D) ≤ ε ≤ ε∗d(D) + 2εX . The results in this chapter

indicate a consistency between “worst-case” notions of privacy, identifiability and

differential privacy, and an “average” notion of privacy, mutual-information privacy.

In Chapter 3–Chapter 5, we study a market model of trading private data and

quantify the value of privacy. In Chapter 3, we consider a setting where the private

data of each individual represents her knowledge about an underlying state, which is

the information that the data collector desires to learn. The value of ε units of privacy

is measured by the minimum payment of all nonnegative payment mechanisms, under

which an individual’s best response at a Nash equilibrium is to report the data with a

privacy level of ε. The higher ε is, the less private the reported data is. We establish

asymptotically tight lower and upper bounds on the value of ε units of privacy as the

number of individuals becomes large. The lower bound assures that it is impossible

to use a lower amount of reward to obtain ε units of privacy from an individual.

The upper bound is given by an achievable reward mechanism that we designed, in

which the data collector obtains ε units of privacy from each individual in a Nash

equilibrium, and the expected reward to each individual converges to the lower bound

exponentially fast with the number of individuals. We also provide characterizations

on the strategies of individuals in a Nash equilibrium, which advance our understand-

ing of the behavior of privacy-aware individuals. Based on these fundamental limits,

we further derive lower and upper bounds on the minimum total payment for the

data collector to achieve a given learning accuracy target, and show that the total

payment of the designed mechanism is at most one individual’s payment away from

the minimum.
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Then in Chapter 4, we consider a setting where the individuals’s valuations of pri-

vacy are unknown to the data collector. We consider a model where each individual’s

privacy valuation is characterized by a “cost coefficient”, which can be regarded as

her type. By allowing possible negative payments (which penalize individuals with

“unacceptable” valuations of privacy), we are able to cope with the uncertainty in

the cost coefficients and drive down the data analyst’s cost. We design a family of

payment mechanisms, each of which has a Bayesian Nash equilibrium where the in-

dividuals exhibit a threshold behavior: the individuals with cost coefficients above a

threshold choose not to participate, and the individuals with cost coefficients below

the threshold participate and report data with a guaranteed quality. By choosing

appropriate parameters, we obtain a sequence of mechanisms with the number of in-

dividuals grows large. Each such mechanism fulfills the accuracy goal at a Bayesian

Nash equilibrium, and the corresponding total expected payment goes to zero; i.e.,

this sequence of mechanisms is asymptotically optimal.

In Chapter 5, we consider a more general model for the private data. The data

collector is interested in learning the average of the private data. We design a pay-

ment mechanism such that the quality of the collected data is controllable through a

parameter ε by making sure that each individual’s strategy in a Nash equilibrium is to

participate and symmetrically randomize her data, while guaranteeing ε-differential

privacy. With this design, the data collector can achieve any given accuracy objec-

tive by using the payment mechanism associated with an appropriate ε. The total

expected payment of the designed mechanism at equilibrium is asymptotically optimal

in the high data quality regime.

5



1.3 Related Work

1.3.1 Differential Privacy

Differential privacy, as an emerging analytical foundation for privacy-preserving

data analysis, was developed by a line of work Dwork et al. (2006b); Dwork (2006);

Dwork et al. (2006a), and since then both interactive model (e.g., Dwork et al.

(2006b); Nissim et al. (2007); Ghosh et al. (2009); Roth and Roughgarden (2010);

Hardt and Rothblum (2010); Gupta et al. (2012); Muthukrishnan and Nikolov

(2012)) and non-interactive model (e.g., Blum et al. (2008); Dwork et al. (2009); Ka-

siviswanathan et al. (2010); Ullman and Vadhan (2011); Gupta et al. (2012); Hardt

et al. (2012); Bun et al. (2014)) have been studied in the literature. There is a vast

and growing body of work on differential privacy, which we do not attempt to survey

but refer interested readers to a comprehensive survey by Dwork and Roth (2014).

1.3.2 Other Notions of Privacy

The privacy guarantee of differential privacy does not depend on the prior distribu-

tion of the original database, since it captures the additional disclosure caused by an

information releasing mechanism on top of any given disclosure. With the prior taken

into account, privacy notions based on the posterior have also been proposed. The

seminal work of differential privacy Dwork et al. (2006b) also proposed a semantically

flavored definition of privacy, named semantic security, and showed its equivalence

to differential privacy. This definition measures privacy by the difference between an

adversary’s prior knowledge of the database and the posterior belief given the output

of the mechanism. Differential identifiability Lee and Clifton (2012) and membership

privacy Li et al. (2013) assume that a database entry can be traced back to the iden-

tity of an individual, and the leakage of the information is quantified on whether an
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individual participates in the database or not. Specifically, differential identifiability

is defined to be the posterior probability for any individual to be the only unknown

participant of a database given the entries of all the known participants and the out-

put of the mechanism. This probability cannot be directly translated to a differential

privacy level. Membership privacy is defined based on the difference between the prior

and the posterior probability for an entity to be included in the database. Choos-

ing appropriate prior distribution families makes differential privacy and differential

identifiability instantiations of membership privacy under their database model. In

this dissertation, the notion of identifiability is defined based on the indistinguisha-

bility between the posterior probabilities of neighboring databases given the output

of the mechanism, which measures the hardness of identifying the data content of a

database entry rather than the identity of the individual who contributes the data.

Information-theoretic privacy measures including mutual information, min-

entropy, equivocation, etc, are relatively classical and have a rich history (e.g.,

Agrawal and Aggarwal (2001); Clark et al. (2005); Smith (2009); Zhu and Bettati

(2005); Chatzikokolakis et al. (2007, 2010); Rebollo-Monedero et al. (2010); Alvim

et al. (2012); du Pin Calmon and Fawaz (2012); Makhdoumi and Fawaz (2013); Mir

(2013); Sankar et al. (2013); Sarwate and Sankar (2014)). When mutual information

is used as the privacy notion, the problem of finding the optimal tradeoff between pri-

vacy and distortion can usually be formulated as a rate–distortion problem in the field

of information theory (see Cover and Thomas (2006) for an introduction) Rebollo-

Monedero et al. (2010); du Pin Calmon and Fawaz (2012); Makhdoumi and Fawaz

(2013); Mir (2013); Sankar et al. (2013); Sarwate and Sankar (2014). In this disserta-

tion, we also utilize results from the celebrated rate–distortion theory to characterize

the optimal privacy–distortion tradeoff. However, we are more interested in the rela-

tion between the optimal privacy–distortion tradeoffs with different privacy notions:
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mutual information, differential privacy, and identifiability, and we quantify the im-

pact of the prior explicitly. The work du Pin Calmon and Fawaz (2012); Makhdoumi

and Fawaz (2013) showed that when a mechanism satisfies ε-information privacy (de-

fined based on the difference between the prior of the database and the posterior given

the output), it is 2ε-differentially private, and the mutual information between the

database and the output is upper bounded by ε/ ln 2. But differential privacy alone

does not imply a bound on the mutual information if the possible values and sizes

of the database and the output and the prior can be chosen freely. McGregor et al.

(2010) and De (2012) showed that ε-differential privacy implies upper bounds on the

mutual information in the order of O(εn) and O(εd), respectively, where n is the size

of the database and d is the dimension of the data entry. Alvim et al. (2012) showed

that differential privacy implies a bound on the min-entropy leakage. The above

relations between information-theoretic privacy notions and differential privacy, how-

ever, are not for the optimal privacy with distortion constraint, although they can

contribute to building relations between the optimal tradeoffs. Sarwate and Sankar

(2014) showed that the result in McGregor et al. (2010) indicates a one direction

bound between the optimal differential privacy and the optimal mutual information

given the same distortion constraint. Mir (2013) pointed out that the mechanism

that achieves the optimal rate–distortion also guarantees a certain level of differential

privacy. However, whether this differential privacy level is optimal or how far it is

from optimal was not answered.

1.3.3 Market Approaches for Collecting Private Data

Market approaches for collecting data from privacy-aware individuals have led to

a fruitful line of work Ghosh and Roth (2011); Fleischer and Lyu (2012); Ligett and

Roth (2012); Roth and Schoenebeck (2012); Ghosh and Ligett (2013); Xiao (2013);

8



Chen et al. (2013); Nissim et al. (2014); Ghosh et al. (2014); Wang et al. (2015a,

2016). Our work uniquely studies a data collector/analyst who is not necessarily

trustworthy. This results in the procurement of noisy data instead of true data.

There are two primary flavors of mechanism design for collecting data from

privacy-aware individuals in the literature, depending on the available actions that

the individuals can take. One approach models the scenario where the private data

is verifiable, but the privacy costs to individuals incurred by using their data are un-

known to the data analyst and individuals have the option to lie about their privacy

costs. The goal of the mechanism design is to conduct privacy-preserving analysis on

the private data with the privacy costs of individuals properly compensated. In the

seminal work Ghosh and Roth (2011), an individual’s privacy cost is modeled as a

linear function of ε if her data is used in an ε-differentially private manner. Mecha-

nisms were designed to elicit truthful reporting of the linear coefficients and estimate

some statistic cheaply. Subsequent work Fleischer and Lyu (2012); Ligett and Roth

(2012); Roth and Schoenebeck (2012); Ghosh and Ligett (2013); Nissim et al. (2014)

explores various models for individuals’ valuation of privacy, especially the correlation

between the coefficients and the private bits.

Another line of research Xiao (2013); Chen et al. (2013); Ghosh et al. (2014)

studies the scenario where individuals can lie about their data and will do so if that

benefits them, but the data analyst is still trusted—revealing information to the data

analyst does not incur privacy costs. In the notable work Ghosh et al. (2014), the

designed mechanism incentivizes truthful data reporting (without adding any noise)

from individuals and satisfies joint differential privacy.

The above work falls into the broad area of the interplay between differential

privacy and mechanism design, which was first studied by McSherry and Talwar

(2007). They treat differential privacy as a tool to design approximately truthful
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mechanisms. A comprehensive survey of the development in this area is given by Pai

and Roth (2013).

The local model of differential privacy, which is a generalization of randomized

response Warner (1965) and is formalized in Kasiviswanathan et al. (2011), has been

studied in the literature Dwork et al. (2006b); Dwork (2006); Hsu et al. (2012); Duchi

et al. (2013); Dwork and Roth (2014); Chen et al. (2014); Kairouz et al. (2014);

Wang et al. (2014, 2015b); Bassily and Smith (2015); Shokri (2015). The behavior of

individuals with privacy concerns has been studied in Chen et al. (2014), which inves-

tigates the types of games in which strategic individuals truthfully follow randomized

response, rather than sending some arbitrary bit. The hypothesis testing formula-

tion in this dissertation is similar to a setting in Kairouz et al. (2014), where the

authors find an optimal mechanism that maximizes the statistical discrimination of

the hypotheses subject to local differential privacy constraints. In practice, Google’s

Chrome web browser has implemented the RAPPOR mechanism Erlingsson et al.

(2014); Fanti et al. (2015) to collect users’ data, which guarantees that only limited

privacy of users is leaked by using randomized response in a novel manner. However,

users may still not be willing to report data in the desired way due to the lack of an

incentive mechanism.
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Chapter 2

RELATION BETWEEN DIFFERENT PRIVACY NOTIONS

2.1 Introduction

We investigate the fundamental connections between these three different privacy

notions in the following setting:

• We consider a non-interactive database releasing approach for privacy-preserving

data analysis, where a synthetic database is released to the public. The synthetic

database is a sanitized version of the original database, on which queries and

operations can be carried out as if it was the original database. It is then natural

to assume that the synthetic database and the original database are in the same

“universe” so the entries have the same interpretation. Therefore we focus on

mechanisms that map an input database to an output synthetic database in the

same universe. Specifically, we consider a database consisting of n rows, each of

which takes values from a finite domain D of size m. In this dissertation, the

database is modeled as a discrete random variable X drawn from Dn with prior

distribution pX . A mechanism M takes a database X as input and outputs a

database Y , which is also a random variable with alphabet Dn.

• We define the distortion between the output database and the input database to

be the expected Hamming distance. When the input and output are in the same

universe, the Hamming distance measures the number of rows two databases differ

in, which directly points to the number of rows that need to be modified in order

to guarantee a given privacy level.
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Differential Privacy

- Relative guarantee 
- Pairwise requirements

Identifiability

- Absolute guarantee 
- Pairwise requirements

Mutual-Information Privacy

- Average guarantee 
- Global requirement

Achieved by same optimal mechanism

✏⇤d(D)  ✏  ✏⇤d(D) + 2✏X

This mechanism is   -differentially private with

✏⇤i (D) � ✏X  ✏⇤d(D)  ✏⇤i (D)

✏

Figure 2.1: Relation between identifiability, differential privacy and mutual-

information privacy.

In this dissertation, we use a unified privacy–distortion framework to understand

the relation between the three privacy notions. Given a maximum allowable distor-

tion D, we define the privacy–distortion functions ε∗i (D), ε∗d(D), and ε∗m(D) to be

the smallest identifiability level, differential privacy level, and mutual information

between the input and output, respectively. Then we have the following main results,

which are also summarized in Figure 2.1.

(1) We derive the exact form of the privacy–distortion function ε∗i (D) under the

notion of identifiability, for certain range of the distortion values, by showing

that ε∗i (D) = h−1(D) regardless of the prior distribution, where

h−1(D) = ln
( n
D
− 1
)

+ ln(m− 1).

We further show that for the privacy–distortion function ε∗d(D) under the notion

of differential privacy,

ε∗i (D)− εX ≤ ε∗d(D) ≤ ε∗i (D).

The constant εX is determined by the prior distribution pX only, given by

εX = max
x,x′∈Dn:x∼x′

ln
pX(x)

pX(x′)
,
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where x ∼ x′ denotes that x and x′ differ in exactly one row. When the in-

put database has a uniform distribution, we have that ε∗i = ε∗d, i.e., differential

privacy is equivalent to identifiability. Note that for εX to be finite, the prior

pX needs to have full a support on Dn, i.e., pX(x) > 0 for any x ∈ Dn. When

εX is large, differential privacy provides only weak guarantee on identifiabil-

ity. In other words, when εX is large, it is possible to identify some entries of

the database with non-trivial accuracy even if the differential privacy is satis-

fied. This is because differential privacy provides a relative guarantee about

disclosures, which ensures that limited additional information of an individual

is leaked in the released data in addition to the knowledge that an adversary has

known. Identifiability, on the other hand, requires an absolute guarantee about

disclosures when individuals’ data is being inferred from the output database

assuming that the prior pX and the mechanism are both known to the adversary.

(2) The privacy–distortion functions ε∗i (D) and ε∗m(D) under the notions of identi-

fiability and mutual-information privacy, respectively, can be achieved by the

same mechanism for D within certain range, i.e., there is a mechanism that

simultaneously minimizes the identifiability level and the mutual information

between X and Y . We further prove that this mutual-information optimal

mechanism satisfies ε-differential privacy that is within a constant difference

from the optimal differential privacy level for the given maximum allowable

distortion:

ε∗d(D) ≤ ε ≤ ε∗d(D) + 2εX .

These results indicate certain consistency between identifiability and mutual-

information privacy, and between differential privacy and mutual-information

privacy when the prior pX is uniform, although identifiability and differential
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privacy are defined based on “pairwise” requirements on distinguishability and

are considered to be “worst-case” notions of privacy, while mutual-information

privacy is defined by “global” requirements and is considered to be an “aver-

age” notion of privacy. The value of ε∗m(D) is in bits and thus is not directly

comparable with ε∗i (D) and ε∗d(D), but the fact that identifiability and mutual-

information privacy can be optimized simultaneously in the setting studied in

this dissertation reveals the fundamental connections between these three pri-

vacy notions.

2.2 Model

Consider a database consisting of n rows, each of which corresponds to the data of

a single individual. Each individual’s data contains some sensitive information such

as the individual’s health status. Suppose that each row takes values from a domain

D. Then Dn is the set of all possible values of a database. Two databases, denoted

by x, x′ ∈ Dn, are said to be neighbors if they differ in exactly one row. Let x ∼ x′

denote the neighboring relation. In this dissertation, we assume that the domain D

is a finite set and model a database as a discrete random variable X with alphabet

Dn and probability mass function (pmf) pX . Suppose |D| = m, where m is an integer

and m ≥ 2. A (randomized) mechanism M takes a database x as the input, and

outputs a random variable M(x).

Definition 1 (Mechanism). A mechanism M is specified by an associated mapping

φM : Dn → F , where F is the set of multivariate cdf’s on some range R. Taking

database X as the input, the mechanism M outputs a R-valued random variable Y

with φM(x) as the multivariate conditional cdf of Y given X = x.

In this dissertation, we focus on mechanisms for which the range is the same as the

alphabet of X, i.e., R = Dn. Then the output Y is also a discrete random variable
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with alphabet Dn, which can be interpreted as a synthetic database. Denote the

conditional pmf of Y given X = x defined by the cdf φM(x) as pY |X(· | x). Then a

mechanism in this setting is fully specified by pY |X . When using this mechanism, the

database curator samples from pY |X(· | x) to generate a synthetic database Y . The

form of the mechanism is assumed to be public since it may be of interest to data

analysts.

Throughout this dissertation we use the following basic notation. We denote the

set of real numbers by R, the set of nonnegative real numbers by R+, and the set of

nonnegative integers by N. Let R+
= R+ ∪ {+∞}.

2.2.1 Different Notions of Privacy

In addition to the output database Y , we assume that the adversary also knows

the prior distribution pX , which represents the side information the adversary has,

and the privacy-preserving mechanism M. The three notions of privacy studied in

this dissertation are defined next.

Definition 2 (Identifiability). A mechanism M satisfies ε-identifiability for some

ε ∈ R+
if for any pair of neighboring elements x, x′ ∈ Dn and any y ∈ Dn,

pX|Y (x | y) ≤ eεpX|Y (x′ | y). (2.1)

The notion of identifiability is defined based on the indistinguishability between

any two neighboring databases from a Bayesian view. When a mechanism satisfies ε-

identifiability for a small ε, two close (neighboring) databases cannot be distinguished

from the posterior probabilities after observing the output database, which makes any

individual’s data hard to identify. To see the semantic implications of identifiability,

we consider the following “worst-case” type of adversaries, who are called informed

adversaries Dwork et al. (2006b). An adversary of this type knows n − 1 database
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entries and tries to identify the value of the remaining one. The notation of identifi-

ability is defined based on neighboring databases to reflect this worst-case scenario.

Consider adversaries who know X−i, i.e., all the database entries except Xi. The

requirement (2.1) of ε-identifiability indicates that for any xi, x
′
i ∈ D, any x−i ∈ Dn−1

and any y ∈ Dn,

P{Xi = xi | X−i = x−i, Y = y} ≤ eεP{Xi = x′i | X−i = x−i, Y = y}.

Therefore, when ε-identifiability is satisfied, even for such a worst-case adversary, the

probability of correctly identifying the value of Xi is still no greater than 1
1+(m−1)e−ε ,

which is close to randomly guessing when ε is small. We say that identifiability pro-

vides an absolute guarantee about disclosures since when it is satisfied, the probability

of correctly identifying some individual’s data is limited, and thus no bad disclosure

can occur. This will become more clear when we discuss the relative guarantee pro-

vided by differential privacy.

We remark that in some cases, not all values of ε are achievable for ε-identifiability.

The smallest achievable identifiability level is constrained by the prior pX , since an

adversary can always identify the values of the database entries based on the prior.

When the prior itself is very disclosive, no mechanism can make the database entries

less identifiable. To illustrate, we give the following example.

Example 1. Consider a database X with a single binary entry, i.e., D = {0, 1} and

n = 1. Suppose the prior is given by pX(0) = 0.55 and pX(1) = 0.45. Consider the

mechanism M specified by

pY |X(0 | 0) = pY |X(1 | 1) = 0.6, pY |X(1 | 0) = pY |X(0 | 1) = 0.4.

Then the mechanismM satisfies ε-identifiability for ε ≈ 0.6. Therefore, the probabil-

ity of correctly identifying X is guaranteed to be no greater than 1
1+e−ε

≈ 0.65. The
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smallest identifiability level that can be achieved for this prior is ε = ln(0.55/0.45) ≈

0.2. Now consider another prior that is given by pX(0) = 0.9 and pX(1) = 0.1. Then

the mechanism M satisfies ε-identifiability for ε ≈ 2.6. In this case, no matter what

mechanism is used, guessing that X = 0 yields a probability of correctness that is no

less than 0.9. For an adversary with this prior, which indicates that the adversary

has very good knowledge about the entry, no mechanism can achieve ε-identifiability

for ε < ln(0.9/0.1) ≈ 2.2.

Definition 3 (Differential Privacy Dwork et al. (2006b); Dwork (2006)). A mecha-

nismM satisfies ε-differential privacy for some ε ∈ R+
if for any pair of neighboring

elements x, x′ ∈ Dn and any y ∈ Dn,

pY |X(y | x) ≤ eεpY |X(y | x′). (2.2)

Note that Definition 3 is equivalent to the definition of differential privacy in the

seminal work Dwork et al. (2006b); Dwork (2006) under the model in this dissertation,

although the languages used are slightly different. The differential privacy property

of a mechanism is only determined by the associated mapping represented by pY |X

and does not depend on the prior.

In contrast to identifiability, differential privacy provides a relative guarantee

about disclosures Dwork (2006). For any possible given disclosure about an indi-

vidual, differential privacy ensures that only limited additional risk will be caused by

the mechanism. To illustrate, we give the following example.

Example 2. We still consider the database X and the mechanismM in Example 1.

The mechanism M satisfies ε-differential privacy for ε = ln(0.6/0.4) ≈ 0.4 regardless

of the prior pX . If the prior is given by pX(0) = 0.9 and pX(1) = 0.1, then before

seeing the output Y , the probability of correctly identifying X is 0.9. Suppose that the

adversary observes an output Y = 0. Then the probability of correctly identifying X
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becomes P(X = 0 | Y = 0) ≈ 0.93, which improves by a factor of approximately e0.03.

In this case, a bad disclosure occurs since the adversary is able to identify X with high

probability, but differential privacy is still satisfied as the mechanism M guarantees

that the probability of identification only increases by a bounded multiplicative factor.

Definition 4 (Mutual-Information Privacy). A mechanism M satisfies ε-mutual-

information privacy for some ε ∈ R+
if the mutual information between X and Y

satisfies I(X;Y ) ≤ ε, where

I(X;Y ) =
∑

x,y∈Dn
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
.

The notion of mutual information is an information-theoretic notion of privacy,

which measures the average amount of information about X contained in Y . The

mutual information is minimized and equal to 0 when X and Y are independent, and

it is maximized and equal to H(X) when Y = X.

2.2.2 Distortion

In this dissertation, we measure the usefulness of a mechanism by the distortion

between the input database X and the output Y , where smaller distortion corresponds

to greater usefulness. Consider the (generalized) Hamming distance d : Dn×Dn → N,

where the distance d(x, x′) between any two elements x, x′ ∈ Dn is the number of rows

they differ in. We define the distortion between X and Y to be the expected Hamming

distance

E[d(X, Y )] =
∑
x∈Dn

∑
y∈Dn

pX(x)pY |X(y | x)d(x, y).

The Hamming distance also characterizes the neighboring relation on Dn. Two ele-

ments x, x′ ∈ Dn are neighbors if and only if d(x, x′) = 1.
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2.2.3 Privacy–Distortion Function

A privacy–distortion pair (ε,D) is said to be achievable if there exists a mechanism

M with output Y such that M satisfies ε-privacy level and E[d(X, Y )] ≤ D. The

privacy–distortion function ε∗ : R+ → R+
is defined by

ε∗(D) = inf{ε : (ε,D) is achievable},

which is the smallest privacy level given the distortion constraint E[d(X, Y )] ≤ D.

We are only interested in the range [0, n] for D since this is the meaningful range for

distortion. The privacy–distortion function depends on the prior pX , which reflects the

impact of the prior on the privacy–distortion tradeoff. To characterize the privacy–

distortion function, we also consider the distortion–privacy function D∗ : R+ → R+

defined by

D∗(ε) = inf{D : (ε,D) is achievable},

which is the smallest achievable distortion given privacy level ε.

In this dissertation we consider three different notions of privacy: identifiabil-

ity, differential privacy and mutual-information privacy, so we denote the privacy–

distortion functions under these three notions by ε∗i , ε
∗
d and ε∗m, respectively.

2.3 Identifiability versus Differential Privacy

In this section, we establish a fundamental connection between identifiability and

differential privacy. We characterize their privacy–distortion functions through study-

ing the distortion–privacy functions. Given privacy level εi and εd, the minimum

distortion level is the solution to the following optimization problems.

The Privacy–Distortion Problem under Identifiability (PD-I):

min
pX|Y , pY

∑
x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y)
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subject to pX|Y (x | y) ≤ eεipX|Y (x′ | y),

∀x, x′ ∈ Dn : x ∼ x′, y ∈ Dn,
(2.3)

∑
x∈Dn

pX|Y (x | y) = 1, ∀y ∈ Dn, (2.4)

pX|Y (x | y) ≥ 0, ∀x, y ∈ Dn, (2.5)∑
y∈Dn

pX|Y (x | y)pY (y) = pX(x),

∀x ∈ Dn,
(2.6)

pY (y) ≥ 0, ∀y ∈ Dn. (2.7)

The Privacy–Distortion Problem under Differential Privacy (PD-DP):

min
pY |X

∑
x∈Dn

∑
y∈Dn

pX(x)pY |X(y | x)d(x, y)

subject to pY |X(y | x) ≤ eεdpY |X(y | x′),

∀x, x′ ∈ Dn : x ∼ x′, y ∈ Dn,
(2.8)

∑
y∈Dn

pY |X(y | x) = 1, ∀x ∈ Dn, (2.9)

pY |X(y | x) ≥ 0, ∀x, y ∈ Dn. (2.10)

Note that to obtain the distortion–privacy functions, we need to find a mechanism

pY |X to minimize the distortion subject to privacy constraints. However, for identifia-

bility, since it is defined based on pX|Y , we change the optimization variable from pY |X

to (pX|Y , pY ) in PD-I, and the constraints (2.4)–(2.7) ensure that PD-I is equivalent

to the original distortion–privacy problem.

For convenience, we first define two constants εX and ε̃X that are determined by

the prior pX . Let

εX = max
x,x′∈Dn:x∼x′

ln
pX(x)

pX(x′)
, (2.11)
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Figure 2.2: The privacy–distortion functions ε∗i under identifiability and ε∗d under

differential privacy satisfy ε∗i (D)− εX ≤ ε∗d(D) ≤ ε∗i (D) for D within certain range.

which is the maximum prior probability difference between two neighboring databases.

For εX to be finite, the prior distribution pX needs to have full support on Dn, i.e.,

pX(x) > 0 for any x ∈ Dn. To define ε̃X , note that the prior pX puts constraints on

the posterior probabilities, as given by the constraint (2.6) in PD-I. We say {pX|Y (x |

y), x, y ∈ Dn} is feasible if there exists a pmf pY such that it is the marginal pmf of Y .

Let ε̃X be the smallest ε such that the following posterior probabilities are feasible:

pX|Y (x | y) =
e−εd(x,y)(

1 + (m− 1)e−ε
)n , x, y ∈ Dn.

We will see that the pX|Y in the above form plays an important role in solving PD-I.

For any pX , ε̃X is finite since when ε → +∞, the pmf pY = pX is the marginal pmf

of Y . Finally we define the function

h−1(D) = ln
( n
D
− 1
)

+ ln(m− 1).

Recall that ε∗i (D) and ε∗d(D) denote the minimum identifiability level and mini-

mum differential privacy level for a maximum allowable distortion D. The connection

between the privacy–distortion functions ε∗i and ε∗d is established in the following the-

orem. See Figure 2.2 for an illustration.
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Theorem 1. For identifiability, the privacy–distortion function ε∗i of a database X

with εX < +∞ satisfies
ε∗i (D) = h−1(D), 0 ≤ D ≤ h(ε̃X),

ε∗i (D) ≥ max{h−1(D), εX}, h(ε̃X) < D ≤ n.

(2.12)

For differential privacy, the privacy–distortion function ε∗d of a database X satisfies

the following bounds for any D with 0 ≤ D ≤ n:

max{h−1(D)− εX , 0} ≤ ε∗d(D) ≤ max{h−1(D), 0}. (2.13)

From the theorem above, we can see that 0 ≤ ε∗i (D)− ε∗d(D) ≤ εX when 0 ≤ D ≤

h(ε̃X). The lemmas needed in the proof of this theorem can be found in Appendix A.

Here we give a sketch of the proof, which consists of the following key steps:

• The first key step is to show that both PD-I and PD-DP, through (respective)

relaxations as shown in Figure 2.3, boil down to the same optimization problem.

Relaxed Privacy–Distortion (R-PD):

min
pX|Y , pY

∑
x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y)

subject to pX|Y (x | y) ≤ eεpX|Y (x′ | y),

∀x, x′ ∈ Dn : x ∼ x′, y ∈ Dn,
(2.14)

∑
x∈Dn

pX|Y (x | y) = 1, ∀y ∈ Dn, (2.15)

pX|Y (x | y) ≥ 0, ∀x, y ∈ Dn, (2.16)∑
y∈Dn

pY (y) = 1, (2.17)

pY (y) ≥ 0, ∀y ∈ Dn. (2.18)

Relaxing the constraint (2.6) in PD-I to the constraint (2.17) gives R-PD. Now

consider PD-DP. For any neighboring x, x′ ∈ Dn, pX(x) ≤ eεXpX(x′) according
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PD-I
(Identifiability)

PD-DP
(Differential Privacy)

R-PD
(Relaxed)

Relaxation on (2.8)Relaxation on (2.6)

Figure 2.3: Both PD-I and PD-DP boil down to R-PD through different relaxations.

to the definition of εX , and a necessary condition for the constraint (2.8) to be

satisfied is

pX(x)pY |X(y | x) ≤ eεd+εXpX(x′)pY |X(y | x′). (2.19)

Therefore, replacing constraint (2.8) with (2.19) and letting ε = εd + εX , we

obtain R-PD. So R-PD can be regarded as a relaxation of both PD-I and PD-

DP.

• To solve R-PD, it suffices to solve the following optimization problem for any

fixed y ∈ Dn:

min
pX|Y

∑
x∈Dn

pX|Y (x | y)d(x, y)

subject to pX|Y (x | y) ≤ eεpX|Y (x′ | y),

∀x, x′ ∈ Dn : x ∼ x′,∑
x∈Dn

pX|Y (x | y) = 1,

pX|Y (x | y) ≥ 0, ∀x ∈ Dn.

Intuitively, to minimize the objective function, which is the average distortion

between X and y, we should assign larger probability to pX|Y (x | y) with smaller

d(x, y), and smaller probability to pX|Y (x | y) with larger d(x, y). For the x such
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that x = y, we should assign the largest value to pX|Y (x | y) since d(x, y) = 0,

and as x goes far way from y, we should assign smaller and smaller values to

pX|Y (x | y). However, the privacy constraint limits the decreasing rate we can

use as x goes far away from y due to the neighboring relations. In Lemma 7,

we prove that the optimal solution is given by

pX|Y (x | y) =
e−εd(x,y)(

1 + (m− 1)e−ε
)n , x, y ∈ Dn, (2.20)

where the probability pX|Y (x | y) decreases with rate eε as d(x, y) increases.

This is the fastest possible decreasing rate with the privacy constraint, so this

solution gives the smallest distortion.

• By Lemma 7, the minimum distortion of R-PD is D∗relaxed(ε) = h(ε), which gives

lower bounds on the distortion–privacy functions under identifiability and under

differential privacy. By the connection between distortion–privacy function and

privacy–distortion function, Lemma 8 shows that ε∗i (D) ≥ h−1(D) and ε∗d(D) ≥

h−1(D)− εX for any D with 0 ≤ D ≤ n. Lemma 9 shows another lower bound

on ε∗i , combining which with the lower bound in Lemma 8 gives the lower bound

in Theorem 1.

• Next we design achievable mechanisms to prove the upper bounds in Theorem 1.

Notice that when the posterior probabilities given by the solution pX|Y in (2.20)

is feasible, the mechanism that corresponds to this pX|Y satisfies ε-identifiability.

Therefore, the lower bound for identifiability is achievable in this case. Consider

the mechanism E εi specified by

pY |X(y | x) =
pY (y)e−εd(x,y)

pX(x)
(
1 + (m− 1)e−ε

)n , x, y ∈ Dn, (2.21)

where ε ≥ ε̃X and pY is the corresponding pmf of Y . The mechanism E εi corre-

sponds to the posterior distributions given by pX|Y in (2.20). Lemma 10 shows
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that the mechanism E εi guarantees an identifiability level of ε with distortion

h(ε) when ε ≥ ε̃X , which yields the equality in (2.12) when combining with the

lower bound above.

• For differential privacy, consider the mechanism E εd specified by the conditional

probabilities

pY |X(y | x) =
e−εd(x,y)(

1 + (m− 1)e−ε
)n , x, y ∈ Dn, (2.22)

where ε ≥ 0. Note that in contrast with the mechanism E εi , the mechanism E εd
itself has the same form as the solution pX|Y in (2.20). Lemma 11 shows that

the mechanism E εd satisfies ε-differential privacy with distortion h(ε), which pro-

vides the upper bound in (2.13). We remark that the mechanism E εd has the

same form as an exponential mechanism with score function q = −d McSherry

and Talwar (2007), where the score function has a sensitivity ∆q = 1. In gen-

eral, an exponential mechanism with parameter ε is 2ε∆q-differentially private.

However, the mechanism E εd is ε-differentially private without the factor 2 since

the normalizing term in the denominator of (2.22) does not depend on x.

Illustration. We demonstrate the characterizations of the privacy–distortion func-

tions in Theorem 1 using prior distributions based on a databaset constructed for

Netflix Prize. The dataset consists of movie ratings from users, with each rating on

a scale from 1 to 5 (integer) stars. We view the ratings of a movie from active users

as a database and generate ratings uniformly at random for missing entries. We first

calculate the corresponding εX , assuming that entries of a database are drawn i.i.d.

from a distribution. The constant εX bounds the gap between the upper and lower

bounds on ε∗d(D), and also bounds ε∗i (D) − ε∗d(D). In Figure 2.4a, we show the his-

togram of εX for 887 most reviewed movies (databases). Next, we pick a database
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Figure 2.4: Illustration of the characterizations of the privacy–distortion functions

in Theorem 1. (a) Histogram of εX for 887 databases. (b) The privacy–distortion

function under identifiability is given by ε∗i (D) = h−1(D) for 0 ≤ D ≤ h(ε̃X), where

h(ε̃X) = 0.73n. The privacy–distortion function under differential privacy, ε∗d(D), lies

between ε∗i (D) = h−1(D) and h−1(D)− εX , where εX = 0.33.

whose prior distribution of each entry is given by

pXi(1) = 0.2533, pXi(2) = 0.1821, pXi(3) = 0.1821,

pXi(4) = 0.1873, pXi(5) = 0.1953.

For this prior, we have εX = 0.33 and ε̃X = 0.41. In Figure 2.4b, we draw the privacy–

distortion function ε∗i (D) = h−1(D) under identifiability for 0 ≤ D ≤ h(ε̃X), where

the value h(ε̃X) = 0.73n is displayed in the figure. The curve ε∗i (D) = h−1(D) gives

an upper bound on the privacy–distortion function ε∗d(D) under differential privacy.

We also draw the curve max{h−1(D)− εX , 0}, which is a lower bound on ε∗d(D).
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2.4 Identifiability, Differential Privacy versus Mutual-Information Privacy

In this section, we first discuss the relation between identifiability and mutual-

information privacy. Then we further establish a connection between differential

privacy and mutual-information privacy based on this relation between identifiability

and mutual-information privacy and the relation between identifiability and differen-

tial privacy derived in the last section.

Theorem 2. For any D with 0 ≤ D ≤ h(ε̃X), the identifiability optimal mechanism

E εi with ε = h−1(D) is also mutual-information optimal.

By this theorem, the privacy–distortion functions ε∗i (D) and ε∗m(D) under the no-

tions of identifiability and mutual-information privacy, respectively, can be achieved

by the same mechanism for D within certain range. This theorem indicates a con-

sistency between identifiability and mutual-information privacy under the privacy–

distortion framework since they can be optimized simultaneously.

Recall that given a maximum allowable distortion D, the privacy–distortion func-

tion ε∗m(D) under mutual-information privacy for an input database X with prior pX

is given by the optimal value of the following convex optimization problem.

The Privacy and Distortion Problem under Mutual-Information Privacy

(PD-MIP):

min
pY |X

I(X;Y )

subject to
∑
x∈Dn

∑
y∈Dn

pX(x)pY |X(y | x)d(x, y) ≤ D, (2.23)

∑
y∈Dn

pY |X(y | x) = 1, ∀x ∈ Dn, (2.24)

pY |X(y | x) ≥ 0, ∀x, y ∈ Dn. (2.25)
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Note that this formulation has the same form as the formulation in the cele-

brated rate–distortion theory (e.g., see Cover and Thomas (2006)), and thus the

privacy–distortion function under mutual-information privacy is identical to the rate–

distortion function in this setting. Studies on the rate–distortion function Blahut

(1972); Cover and Thomas (2006) have revealed the structure of an optimal solution

of PD-MIP using Karush-Kuhn-Tucker (KKT) conditions Boyd and Vandenberghe

(2004). We utilize these results to prove Theorem 2.

Proof of Theorem 2. By the KKT conditions for PD-MIP, the mutual information is

minimized by

pY |X(y | x) =
pY (y)e−λd(x,y)∑

y′∈Dn pY (y′)e−λd(x,y′)
, x, y ∈ Dn,

if there exists a pmf pY of Y and λ ≥ 0 such that

∑
x∈Dn

pX(x)e−λd(x,y)∑
y′∈Dn pY (y′)e−λd(x,y′)

= 1, if pY (y) > 0, (2.26)

∑
x∈Dn

pX(x)e−λd(x,y)∑
y′∈Dn pY (y′)e−λd(x,y′)

≤ 1, if pY (y) = 0, (2.27)

λ

(∑
x∈Dn

∑
y∈Dn

pX(x)pY (y)e−λd(x,y)∑
y′∈Dn pY (y′)e−λd(x,y′)

d(x, y)−D
)

= 0, (2.28)

where λ is the Lagrange multiplier for the distortion constraint (2.23). This optimal

solution has an exponential form. Recall that the identifiability optimal mechanism

E εi in (2.21) also has an exponential form. In what follows we prove that for properly

chosen λ, the conditions (2.26)–(2.28) are satisfied under E εi .

For any 0 ≤ D ≤ h(ε̃X), consider the mechanism E εi with ε = h−1(D). Let λ = ε.

Recall that under E εi ,

pY |X(y | x) =
pY (y)e−εd(x,y)

pX(x)
(
1 + (m− 1)e−ε

)n , x, y ∈ Dn.
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Since pY |X satisfies that ∑
y′∈Dn

pY |X(y′ | x) = 1,

we have ∑
y′∈Dn

pY (y′)e−εd(x,y
′) = pX(x)

(
1 + (m− 1)e−ε

)n
.

Then for any y ∈ Dn,

∑
x∈Dn

pX(x)e−εd(x,y)∑
y′∈Dn pY (y′)e−εd(x,y′)

=
∑
x∈Dn

pX(x)e−εd(x,y)

pX(x)
(
1 + (m− 1)e−ε

)n
= 1,

which indicates that (2.26) and (2.27) are satisfied. We can verify that

∑
x∈Dn

∑
y∈Dn

pX(x)pY (y)e−εd(x,y)∑
y′∈Dn pY (y′)e−εd(x,y′)

d(x, y)

=
∑
y∈Dn

pY (y)
∑
x∈Dn

pX(x)e−εd(x,y)d(x, y)

pX(x)
(
1 + (m− 1)e−ε

)n
= h(ε)

= D,

which indicates that (2.28) is satisfied. Therefore, the mechanism E εi with ε = h−1(D)

gives an optimal solution of PD-MIP, which completes the proof.

Next, we establish a connection between differential privacy and mutual-

information privacy based on Theorem 2 and Theorem 1.

Corollary 1. For any D with 0 ≤ D ≤ h(ε̃X), the mutual-information optimal

mechanism E εi with ε = h−1(D) is εd-differentially private with ε∗d(D) ≤ εd ≤ ε∗d(D) +

2εX .
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It has been pointed out in Mir (2013) that a mechanism that achieves the opti-

mal rate–distortion also guarantees a certain level of differential privacy. However,

whether this differential privacy level is optimal or how far it is from optimal was not

answered. Our result in Corollary 1 further shows that the gap between the differen-

tial privacy level of the mutual-information optimal mechanism E εi and the optimal

differential privacy level is no greater than 2εX , which is a constant determined by the

prior pX . Therefore, given a distortion constraint, optimizing for mutual information

leads to a differentially private mechanism whose privacy level is close to the optimal

differential privacy level. When the prior is uniform, this mutual-information opti-

mal mechanism achieves exactly the optimal differential privacy level. Similar to the

relation between identifiability and mutual-information privacy, differential privacy

and mutual-information privacy also show a consistency for uniform prior under the

privacy–distortion framework, although differential privacy is usually considered to

be a “worst-case” notion of privacy and mutual-information is usually considered to

be an “average” notion of privacy.

Proof of Corollary 1. By Theorem 2, the mechanism E εi with ε = h−1(D) is mutual-

information optimal. According to its form, we can verify that E εi with ε = h−1(D)

is εd-differentially private with εd = h−1(D) + εX . Since ε∗d(D) is the minimum

differential privacy level with distortion constraint given by D, we have εd ≥ ε∗d(D).

By Theorem 1, h−1(D) ≤ ε∗d(D) + εX . Thus εd ≤ ε∗d(D) + 2εX , which completes the

proof.

2.5 Conclusions

In this chapter, we investigated the relation between three different notions of

privacy: identifiability, differential privacy and mutual-information privacy, where

identifiability guarantees indistinguishability between posterior probabilities, differ-
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ential privacy guarantees limited additional disclosures, and mutual information is an

information-theoretic notion. Under a unified privacy–distortion framework, where

the distortion is defined to be the expected Hamming distance between the input and

output databases, we established some fundamental connections between these three

privacy notions. Given a maximum allowable distortion D within certain range, the

smallest identifiability level ε∗i (D) and the smallest differential privacy level ε∗d(D) are

proved to satisfy ε∗i (D) − εX ≤ ε∗d(D) ≤ ε∗i (D), where εX is a constant determined

by the prior of the original database, and diminishes to zero when the prior is uni-

form. Next, we showed that there is a mechanism that simultaneously minimizes the

identifiability level and the mutual information given the same maximum allowable

distortion within certain range. We further showed that this mechanism satisfies

ε-differential privacy with ε∗d(D) ≤ ε ≤ ε∗d(D) + 2εX .

Our findings in this study reveal some fundamental connections between the three

notions of privacy. With these three notions of privacy being defined, many interest-

ing issues deserve further attention. The connections we have established in this work

are based on the distortion measure of Hamming distance, which is closely tied with

the neighboring relations, and we assume that the output synthetic database and the

original database are in the same universe. It would be of great interest to study the

connections of these privacy notions under other common distortion measures and

other output formats. We remark that our results for Hamming distance can be used

to prove lower bounds on the distortion of a differentially private mechanism when

the distortion is measured by the distortion at the worst-case query in a query class

Wang et al. (2015b). Some other interesting directions are as follows. In some cases,

the prior pX is imperfect. Then for privacy notions depending on the prior such as

identifiability and mutual-information privacy, it is natural to ask how we can pro-

tect privacy with robustness over the prior distribution. Identifiability and differential
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privacy impose requirements on neighboring databases to protect an individual’s pri-

vacy. Then are there any practical scenarios that we would desire to generalize this

“pairwise” privacy to “group” privacy? The connections between membership pri-

vacy and these three notions of privacy also need to be explored, since membership

privacy has been proposed as a unifying framework for privacy definitions.
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Chapter 3

MARKET MODEL OF TRADING PRIVATE DATA

3.1 Introduction

We consider a game-theoretic model of collecting private data in hypothesis test-

ing, where the data collector is interested in learning information from a population

of N individuals. An illustration of our model is shown in Figure 3.1. The informa-

tion is represented by a binary random variable W , which is called the state. Each

individual i possesses a binary signal Si, which is her private data, representing her

knowledge about the state W . Conditional on the state W , the signals are indepen-

dently generated such that the probability for each signal Si to be the same as W is

θ, where 0.5 < θ < 1. To protect her privacy, an individual reports only a privacy-

preserving version of her signal, denoted by Xi, or chooses to not participate after

considering both the payment from the data collector and the loss of privacy. The

data collector needs to decide the amount of payment and the payment mechanism

to get informative reports, i.e., not completely random data. Intuitively, the higher

the payment is, the more informative the reported data should be. We will answer

the following fundamental questions in this dissertation: What is the minimum pay-

ment needed from the data collector to obtain reported data with a privacy level ε?

Which payment mechanism can be used to collect private data with minimum cost?

This setting without accounting for data privacy has garnered much attention in the

literature (see, e.g., Miller et al. (2009); Acemoglu et al. (2011); Le et al. (2014)),

including the application of estimating the underlying value of a new technology by

eliciting opinions from individuals.
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Figure 3.1: Information structure of the model. The data collector is interested

in the state W , which is a binary random variable. Each individual i possesses a

binary signal Si, which is her private data. Conditional on W , S1, S2, . . . , SN are i.i.d.

Individual i’s reported data is Xi, which is generated based on Si using a randomized

strategy.

Intuitively, the data collector can purchase more informative data (so higher pri-

vacy) by offering higher payment. However, the strategic behavior of the privacy-

aware individuals makes this more complicated. Due to privacy concerns, an individ-

ual’s action/strategy is the conditional distributions of the reported data given the

realizations of the signal. But the actions of the individuals are not observable to the

data collector. Instead, what the data collector receives is the reported data, gener-

ated randomly according to the individuals’ strategies, so the payments can only be

designed based on the reported data. This differs our problem from the conventional

mechanism design.

Furthermore, the privacy-aware individuals weigh the privacy loss against the

payment to choose the best quantity of privacy to trade. To make an individual

willing to trade ε level of privacy, the data collector needs to make sure doing this

benefits the individual most. We reiterate that the data collector has access only to

the reported data instead of the individuals’ actions. Note that only compensating the
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privacy cost incurred is not sufficient. The payment mechanism needs to ensure that ε

is the best privacy level such that when an individual uses a less-private strategy, the

decrease in her payment is faster than the decrease in her privacy cost, and similarly,

when an individual uses a more-private strategy, the increase in her payment is slower

than the increase in her privacy cost. In other words, with a game-theoretic approach,

we consider an individual’s best response in a Nash equilibrium, and the value of data

privacy is measured by the minimum payment that makes this equilibrium strategy

have a privacy level of ε, which represents the monetary value of data privacy in a

market for private data.

Summary of Results

It is assumed that individuals use the celebrated notion of differential privacy

Dwork et al. (2006b); Dwork (2006) to evaluate their data privacy. When an indi-

vidual i uses an ε-differentially private randomization strategy to generate Xi, the

privacy loss incurred is ε, and the individual’s cost of privacy loss is a function of

ε, whose form is assumed to be publicly known. The value of ε units of privacy is

measured by the minimum payment of all nonnegative payment mechanisms under

which an individual’s best response in a Nash equilibrium is to report the data with a

privacy level of ε, where nonnegativity ensures that individuals would not be charged

for reporting data. Denote this value by V (ε). Our contributions are summarized as

follows:

1. We establish a lower bound on V (ε). First we characterize the strategies of indi-

viduals at a Nash equilibrium to prove that from a payment perspective, it suffices

to focus on nonnegative payment mechanisms under which the best response of

an individual in a Nash equilibrium is a symmetric randomized response with a

privacy level of ε. This strategy generates the reported data by flipping the signal
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with probability 1
eε+1

: for convenience, this is called the ε-strategy. Next we prove

that the expected payments resulting from any Nash equilibrium of any payment

mechanism can be “replicated” by a genie-aided payment mechanism, where the

payments are determined with the aid of a genie who knows the underlying state

W . This makes the analysis of the Nash equilibria more tractable by decoupling

the individuals. The lower bound is then given by necessary conditions for ε to

be the best privacy level in the genie-aided mechanism. We remark that although

the genie-aided mechanism that achieves the lower bound is not implementable, it

can be well-approximated, when the number of individuals is large, by the feasible

payment mechanism that we design to prove the upper bound.

2. We observe that the equilibrium strategies exhibit some interesting characteristics:

the strategy of an individual in a Nash equilibrium is either a symmetric random-

ized response, which treats the realizations of the private signal symmetrically, or

a non-informative strategy, where the reported data is independent of the signal.

This characterization holds regardless of the prior distribution of the state, and

it also holds for more general probability models of the signals. This character-

ization advances our understanding of the behavior of privacy-aware individuals.

It is worth pointing out that finding an equilibrium strategy of a privacy-aware

individual under some payment mechanism involves non-convex optimization.

3. We prove an upper bound on V (ε) by designing a payment mechanism R(N,ε), in

which the strategy profile consisting of ε-strategies constitutes a Nash equilibrium.

The expected payment to each individual at this equilibrium gives an upper bound

on V (ε). This upper bound converges to the lower bound exponentially fast as the

number of individuals N becomes large, which indicates that the lower and upper

bounds are asymptotically tight.
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4. The above fundamental bounds on the value of privacy can be further used to study

the payment–accuracy problem, where the data collector aims to minimize the total

payment while achieving an accuracy target in learning the state W . Given an

accuracy target τ , which can be regarded as the maximum allowable error, let F (τ)

denote the minimum total payment for achieving τ . We obtain lower and upper

bounds on F (τ) based on the lower and upper bounds on the value of privacy.

The upper bound is given by the designed mechanism R(N,ε) with properly chosen

parameters, which shows that the total payment of the designed mechanism is at

most one individual’s payment away from the minimum.

3.2 Model

We consider a single-bit learning problem with privacy-aware individuals as shown

in Figure 3.1. Recall that the data collector is interested in learning the state W ,

which is a binary random variable. For example, the state W can describe the under-

lying value of some new technology. Let PW denote the prior PMF of W . We assume

that PW (1) > 0, PW (0) > 0, and the prior is common knowledge.

Individuals and Strategies. Consider a population of N individuals and denote

the set of individuals by N = {1, 2, . . . , N}. Denote all individuals other than some

given individual i by “−i.” Each individual i possesses a bit Si, which is her private

data, reflecting her knowledge about the state W . For example, the signal Si can

represent individual i’s opinion towards the new technology. We call Si individual i’s

signal. Let S = (S1, S2, · · · , SN). Conditional on either value of the state W , the

signals S1, S2, . . . , SN are i.i.d. with the conditional distributions below, where the

parameter θ with 0.5 < θ < 1 is called the quality of signals since larger value of θ
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means that each signal is equal to the state with higher probability:

P(Si = 1 | W = 1) = θ, P(Si = 0 | W = 1) = 1− θ,

P(Si = 0 | W = 0) = θ, P(Si = 1 | W = 0) = 1− θ.

Let Xi denote the data reported by individual i and let X = (X1, X2, . . . , XN).

The acceptable values for reported data are 0, 1, and “nonparticipation.” So Xi takes

values in the set X = {0, 1,⊥}, where ⊥ indicates that individual i declines to partic-

ipate. A strategy of individual i for data reporting is a mapping σi : {0, 1} → D(X ),

where D(X ) is the set of probability distributions on X . Let σ = (σ1, σ2, . . . , σN).

The strategy σi prescribes a distribution to Xi for each possible value of Si, which

defines the conditional distribution of Xi given Si. Since we will discuss different

strategies of individual i, we let Pσi(Xi = xi | Si = si) with xi ∈ X and si ∈ {0, 1} de-

note the conditional probabilities defined by strategy σi. If a strategy σi satisfies that

Pσi(Xi = 1 | Si = 1) = Pσi(Xi = 0 | Si = 0) and Pσi(Xi = ⊥ | Si = 1) = Pσi(Xi = ⊥ |

Si = 0) = 0, we say σi is a symmetric randomized response. If a strategy σi makes Xi

and Si independent, we say σi is non-informative; otherwise we say σi is informative.

Mechanism. The data collector uses a payment mechanism R : XN → RN to de-

termine the amount of payment to each individual, where Ri(x) is the payment to

individual i when the reported data is X = x. We are interested in payment mecha-

nisms in which the payment to each individual is nonnegative, i.e., Ri(x) ≥ 0 for any

individual i and any x ∈ XN , which we call nonnegative mechanisms. This constraint

is motivated by the fact that in many practical applications such as surveys, the data

collector has no means to charge users and can only use payments to incentivize user

participation.

38



Privacy Cost. We quantify the privacy loss incurred when a strategy is in use by

the level of (local) differential privacy of the strategy (Dwork et al. (2006b); Dwork

(2006); Kasiviswanathan et al. (2011); Dwork and Roth (2014)), defined as follows.

Definition 5. The level of (local) differential privacy, or simply the privacy level, of

a strategy σi, denoted by ζ(σi), is defined to be

ζ(σi) = max

{
ln

(
Pσi(Xi ∈ E | Si = si)

Pσi(Xi ∈ E | Si = 1− si)

)
: E ⊆ {0, 1,⊥}, si ∈ {0, 1}

}
,

where we follow the convention that 0/0 = 1, and the strategy σi is said to be ζ(σi)-

differentially private.

The level of differential privacy quantifies the indistinguishablity between the con-

ditional distributions of the reported data given different values of the signal, therefore

measuring how disclosive the strategy is. The privacy loss causes a cost to an individ-

ual. We assume that when using strategies with the same privacy level, individuals

experience the same cost of privacy. Thus, we model each individual’s cost of privacy

by a function g of the privacy level. We call g the cost function and the cost the

privacy cost. Our results can be extended to the case where the cost functions are

heterogeneous (see the discussion in Section 3.3.3). We assume that the form of g is

publicly known (Ghosh and Roth Ghosh and Roth (2011) and subsequent work study

the scenario that cost functions are private and design truthful mechanisms to elicit

them).

We say the cost function g is proper if it satisfies the following three conditions:

g(ξ) ≥ 0, ∀ξ ≥ 0, (3.1)

g(0) = 0, (3.2)

g is non-decreasing, (3.3)
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where (3.1) follows from the fact that a privacy cost is nonnegative, (3.2) indicates

that the privacy cost is 0 when the reported data is independent of the private data,

and (3.3) means that the privacy cost will not decrease when the privacy loss becomes

larger. In this dissertation, we will focus on a proper cost function that is convex,

continuously differentiable, and g(ξ) = 0 only for ξ = 0. With a little abuse of

notation, we also use g(σi) to denote g(ζ(σi)), which is the privacy cost to individual i

when the strategy σi is used.

Nash Equilibrium. The utility of each individual is the difference between her

payment and her privacy cost. We assume that the individuals are risk neutral, i.e.,

they are interested in maximizing their expected utility. We focus on Nash equilibria

of a payment mechanism, where each individual has no incentive to unilaterally change

her strategy given other individuals’ strategies. Formally, a Nash equilibrium in our

model is defined as follows.

Definition 6. A strategy profile σ is a Nash equilibrium in a payment mechanism

R if for any individual i and any strategy σ′i,

Eσ[Ri(X)− g(σi)] ≥ E(σ′i,σ−i)
[Ri(X)− g(σ′i)],

where the expectation is over the reported data X, and the subscripts σ and (σ′i,σ−i)

indicate that X is generated by the strategy profile σ and (σ′i,σ−i), respectively.

3.3 The Value of Data Privacy

We say that the data collector obtains ε units of privacy from an individual i in

a payment mechanism if individual i’s best response in a Nash equilibrium of the

mechanism is to report data with a privacy level of ε. Let R(i; ε) denote the set

of nonnegative payment mechanisms in which the data collector obtains ε units of
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privacy from individual i. Then we measure the value of ε units of privacy by the

minimum payment to individual i of all mechanisms inR(i; ε). Note that this measure

does not depend on the specific identity of i due to the symmetry across individuals.

For any mechanismR ∈ R(i; ε), let σ(R;ε) denote the corresponding Nash equilibrium.

Then, formally, the value of ε units of privacy is measured by

V (ε) = inf
R∈R(i;ε)

Eσ(R;ε) [Ri(X)]. (3.4)

In this chapter, we first derive a lower bound on V (ε) by characterizing the Nash

equilibria and replicating payment mechanisms in R(i; ε) by genie-aided mechanisms.

We then design a payment mechanism in R(i; ε), and consequently the equilibrium

payment to individual i in this mechanism serves as an upper bound of V (ε). The

gap between the lower and upper bounds diminishes to zero exponentially fast as the

number of individuals N becomes large, which indicates that the lower and upper

bounds are asymptotically tight.

3.3.1 Lower Bound

We present a lower bound on V (ε) in Theorem 3 below. For convenience, we define

VLB(ε) = g′(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
, (3.5)

where g′ is the derivative of the privacy cost function of an individual and θ is the

quality of signals.

Theorem 3. The value of ε units of privacy measured in (3.4) is lower bounded

as V (ε) ≥ VLB(ε). Specifically, for any nonnegative payment mechanism R, if the

strategy of an individual i in a Nash equilibrium has a privacy level of ε, then the

expected payment to individual i at this equilibrium is lower bounded by VLB(ε).
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We remark that the lower bound in Theorem 3 can be achieved by a hypothetical

payment mechanism in which a genie who knows the realization of the underlying

state W guides the data collector on how much to pay each individual. Intuitively,

the knowledge of the state W provides more information about the system, which

helps the data collector to obtain privacy with less payment. While it may sound like

a chicken-and-egg problem as the data collector’s sole purpose of paying individuals

for their private data is to learn the state W , it will become clear that the philosophy

applies and the data collector should utilize the best estimate of W in the payment

mechanism to minimize the payment. The insight we gain from this mechanism sheds

light on the asymptotically tight upper bound on the value of privacy in Section 3.3.2.

This genie-aided payment mechanism, denoted by R̂(ε), determines the payment

to each individual i based on her own reported data Xi and the state W as follows:

R̂
(ε)
i (Xi,W ) =

g′(ε)(eε + 1)2

2eε
ÂXi,W , (3.6)

where

Â1,1 =
1

(2θ − 1)PW (1)
, Â0,0 =

1

(2θ − 1)PW (0)
,

Â0,1 = Â1,0 = 0.

In this payment mechanism, it can be proved that the following symmetric randomized

response of individual i, which is ε-differentially private and is denoted by σ
(ε)
i , is the

best response:

P
σ
(ε)
i

(Xi = 1 | Si = 1) = P
σ
(ε)
i

(Xi = 0 | Si = 0) =
eε

eε + 1
,

P
σ
(ε)
i

(Xi = 1 | Si = 0) = P
σ
(ε)
i

(Xi = 0 | Si = 1) =
1

eε + 1
,

P
σ
(ε)
i

(Xi = ⊥ | Si = 1) = P
σ
(ε)
i

(Xi = ⊥ | Si = 0) = 0.

(3.7)

For convenience, we will refer to this strategy as the ε-strategy. The expected payment

to individual i at this strategy equals to the lower bound in Theorem 3.
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Next we sketch the proof of Theorem 3. We first give three lemmas that form

the basis of the proof, and then present the proof based on that. The proofs of the

lemmas are presented in Appendix B–D.

Characterization of Nash Equilibria

We first characterize individuals’ behavior in a Nash equilibrium. In general, an

ε-differentially private strategy has uncountably many possible forms. However, pro-

vided that the strategy is part of a Nash equilibrium (i.e., a best response of an

individual), the following lemma substantially reduces the space of possibilities. We

remark that a similar phenomenon for privacy-aware individuals has been observed

in Chen et al. (2014) in a different setting.

Lemma 1. In any nonnegative payment mechanism, the strategy of an individual in

a Nash equilibrium is either a symmetric randomized response, or a non-informative

strategy.

We remark that Lemma 1 holds for more general probability models of the signals.

The proof carries over as long as the support of the joint distribution of the signals

is the entire domain {0, 1}N .

By Lemma 1, if an individual’s strategy in a Nash equilibrium has a privacy level of

ε, where ε > 0, this equilibrium strategy is either the ε-strategy or the (−ε)-strategy.

The following lemma says that from the payment perspective, it suffices to further

focus on the case that it is the ε-strategy.

Lemma 2. For any nonnegative payment mechanism R in which the strategy profile

(σ
(−ε)
i ,σ−i) with some ε > 0 is a Nash equilibrium, there exists another nonnegative

payment mechanism R′ in which (σ
(ε)
i ,σ−i) is a Nash equilibrium, and the expected

payment to each individual at these two equilibria of the two mechanisms are the same.
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This lemma is proved by considering the payment mechanism R′ that is con-

structed by applying R on the reported data after modifying Xi to 1−Xi.

Genie-Aided Payment Mechanism

A genie-aided payment mechanism R̂ : XN × {0, 1} → RN determines the payment

to an individual based on not only the reported data X but also the underlying

state W . Compared with a standard payment mechanism, a genie-aided mechanism

is hypothetical since the data collector has access to the underlying state, as if she

were aided by a genie. Unless otherwise stated, we consider those nonnegative genie-

aided payment mechanisms where R̂i(X,W ), the payment to individual i, depends

on only her own reported data Xi and the underlying state W . Therefore, we will

write R̂i(Xi,W ) to represent R̂i(X,W ) for conciseness. The following lemma shows

that the expected payments resulting from any Nash equilibrium of any payment

mechanism can be replicated by a genie-aided payment mechanism with the same

Nash equilibrium. Thus we can restrict our attention to genie-aided mechanisms to

obtain a lower bound on the value of privacy.

Lemma 3. For any nonnegative payment mechanism R and any Nash equilibrium σ

of it, there exists a nonnegative genie-aided mechanism R̂, such that σ is also a Nash

equilibrium of R̂ and the expected payment to each individual at this equilibrium is

the same under R and R̂.

This lemma is proved by constructing the following genie-aided payment mech-

anism R̂ according to the desired equilibrium σ: for any individual i and any

xi ∈ X , w ∈ {0, 1},

R̂i(xi, w) = Ri(xi;w) ..= Eσ[Ri(X) | Xi = xi,W = w].
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Our intuition is as follows. A genie-aided mechanism can use the state W to generate

an incentive to individual i instead of using the reported data X−i of others. The

above genie-aided payment mechanism R̂ is constructed such that no matter what

strategy individual i uses, her expected utility is the same under R and R̂. Since an

individual calculates her best response according to the expected utility, her equilib-

rium behavior and expected payment are the same under R̂ and R. We remark that

the Nash equilibria of a genie-aided mechanism are much easier to analyze since the

individuals are decoupled in the payments and thus an individual’s strategy does not

have an influence on other individuals’ utility.

Let R̂(i; ε) denote the set of nonnegative genie-aided payment mechanisms in

which the ε-strategy is an individual i’s strategy in a Nash equilibrium, and let σ
(ε)
i

denote the ε-strategy. Consider

V̂ (ε) = inf
R̂∈R̂(i;ε)

E
σ
(ε)
i

[
R̂i(Xi,W )

]
,

which is a definition similar to the value of ε units of privacy, V (ε), measured in

(3.4). Then V̂ (ε) ≤ V (ε) for the following reasons. Consider any R ∈ R(i; ε), i.e.,

any nonnegative payment mechanism R in which individual i’s strategy in a Nash

equilibrium has a privacy level of ε. With Lemma 1 and 2, we can assume without

loss of generality that this equilibrium strategy is the ε-strategy. Then by Lemma 3,

we can map R to a R̂ ∈ R̂(i; ε), such that

Eσ(R;ε) [Ri(X)] = E
σ
(ε)
i

[
R̂i(Xi,W )

]
.

Therefore, the infimum over R̂(i; ε) is no greater than the infimum over R(i; ε), i.e.,

V̂ (ε) ≤ V (ε).
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Proof of Theorem 3

With Lemma 1, 2 and 3, we can prove the lower bound in Theorem 3 by focusing

on the genie-aided mechanisms in R̂(i; ε). Then there is no need to consider the

strategies of individuals other than individual i since a genie-aided mechanism pays

individual i only according to Xi and W . A necessary condition for the ε-strategy to

be a best response of individual i is that ε yields no worse expected payment than

other privacy levels. We utilize this necessary condition to obtain a lower bound on

the expected payment to individual i, which gives a lower bound on V̂ (ε) and further

proves the lower bound in Theorem 3.

Proof of Theorem 3. By Lemma 1, 2 and 3, it suffices to focus on nonnegative genie-

aided payment mechanisms in which the ε-strategy is an individual i’s strategy in a

Nash equilibrium, i.e., mechanisms in R̂(i; ε). Consider any R̂ ∈ R̂(i; ε) and denote

the ε-strategy by σ
(ε)
i . Consider the ξ-strategy of individual i with any ξ ≥ 0 and

denote it by σ
(ξ)
i . Then the expected utility of individual i at the strategy σ

(ξ)
i can

be written as

E
σ
(ξ)
i

[
R̂i(Xi,W )

]
− g(σ

(ξ)
i )

=
∑
xi,si,w

P
σ
(ξ)
i

(Xi = xi | Si = si)P(Si = si,W = w)R̂i(xi, w)

− g(ξ),

= K1
eξ

eξ + 1
+K0

1

eξ + 1
+K − g(ξ),

where

K1 = {R̂i(1, 1)PW (1)θ + R̂i(1, 0)PW (0)(1− θ)}

− {R̂i(0, 1)PW (1)θ + R̂i(0, 0)PW (0)(1− θ)},

K0 = {R̂i(1, 1)PW (1)(1− θ) + R̂i(1, 0)PW (0)θ}
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− {R̂i(0, 1)PW (1)(1− θ) + R̂i(0, 0)PW (0)θ},

K = R̂i(0, 1)PW (1) + R̂i(0, 0)PW (0).

It can be seen that K1, K0 and K do not depend on ξ. Let this expected utility

define a function f of ξ; i.e.,

f(ξ) = K1
eξ

eξ + 1
+K0

1

eξ + 1
− g(ξ) +K.

Then since the ε-strategy is individual i’s strategy in a Nash equilibrium, the level ε

maximizes f(ξ). Since

f ′(ξ) = (K1 −K0)
eξ

(eξ + 1)2
− g′(ξ),

and f ′(ε) = 0, we must have

K1 −K0 = g′(ε)
(eε + 1)2

eε
. (3.8)

Now we calculate the expected payment to individual i at the ε-strategy:

E
σ
(ε)
i

[
R̂i(Xi,W )

]
= −(K1 −K0)

1

eε + 1
+ (K1 +K).

By definition,

K1 +K = R̂i(1, 1)PW (1)θ + R̂i(1, 0)PW (0)(1− θ)

+ R̂i(0, 1)PW (1)(1− θ) + R̂i(0, 0)PW (0)θ,

and

K1 −K0 =
(
R̂i(1, 1)− R̂i(0, 1)

)
PW (1)(2θ − 1)

+
(
R̂i(0, 0)− R̂i(1, 0)

)
PW (0)(2θ − 1).

Therefore,

K1 +K =
θ

2θ − 1
(K1 −K0)
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+ R̂i(1, 0)PW (0) + R̂i(0, 1)PW (1)

≥ θ

2θ − 1
(K1 −K0)

= g′(ε)
(eε + 1)2

eε
θ

2θ − 1
,

where we have used the nonnegativity of R̂. Then the expected payment to individ-

ual i is bounded as follows:

E
σ
(ε)
i

[
R̂i(Xi,W )

]
= −(K1 −K0)

1

eε + 1
+ (K1 +K)

≥ g′(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
, (3.9)

which proves the lower bound.

Now beyond the proof, we take a moment to check when this lower bound can be

achieved. To achieve the lower bound, we need the equality in (3.9) to hold and the

equation (3.8) to be satisfied, which is equivalent to the following conditions:

R̂i(1, 0) = 0, (3.10)

R̂i(0, 1) = 0, (3.11)

(2θ − 1)
(
R̂i(1, 1)PW (1) + R̂i(0, 0)PW (0)

)
= g′(ε)

(eε + 1)2

eε
. (3.12)

It is easy to check that the genie-aided payment mechanism R̂(ε) defined in (3.6) is

in R̂(i; ε) and satisfies (3.10)–(3.12), and therefore achieves the lower bound. Can

this lower bound can be achieved by a standard nonnegative payment mechanism?

Consider any payment mechanism R ∈ R(i; ε). Following similar arguments, we can

prove that to achieve the lower bound, R needs to satisfy the following conditions:
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Ri(1; 0) = 0, (3.13)

Ri(0; 1) = 0, (3.14)

(2θ − 1)
(
Ri(1; 1)PW (1) +Ri(0; 0)PW (0)

)
= g′(ε)

(eε + 1)2

eε
, (3.15)

where recall that Ri(xi;w) = Eσ(R,ε) [Ri(X) | Xi = xi,W = w] for xi, w ∈ {0, 1}. It

can be proved that if R satisfies (3.13) and (3.14), then Ri(x) = 0 for any x ∈ XN ,

which contradicts (3.15). Therefore, no standard nonnegative payment mechanism

can achieve the lower bound. However, as will be shown in the next section, we can

design a class of standard nonnegative payment mechanisms such that the expected

payment approaches the lower bound as the number of individuals increases. The

design follows the insights indicated by the genie-aided mechanism R̂(ε): to minimize

the payment, the data collector should utilize the best estimate of W in the payment

mechanism based on the noisy reported data.

3.3.2 Upper Bound

We present an upper bound on V (ε) in Theorem 4 below. For convenience, define

d =
1

2
ln

(eε + 1)2

4(θeε + 1− θ)((1− θ)eε + θ)
, (3.16)

where θ is the quality of signal. Note that d > 0 for any ε > 0. Recall that VLB(ε) is

the lower bound in Theorem 3.

Theorem 4. The value of ε units of privacy measured in (3.4) is upper bounded as

V (ε) ≤ VLB(ε) + O(e−Nd), where the O(·) is for N → ∞. Specifically, there exists

a nonnegative payment mechanism R(N,ε) in which the strategy profile σ(ε) consisting
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of ε-strategies is a Nash equilibrium, and the expected payment to each individual i at

this equilibrium is upper bounded by VLB(ε) +O(e−Nd).

Comparing this upper bound with the lower bound VLB(ε) in Theorem 3 we can

see that the gap between the lower and upper bounds is just the term O(e−Nd), which

diminishes to zero exponentially fast as N goes to infinity.

We present the payment mechanism R(N,ε) in the following section. We will show

that under R(N,ε), the strategy profile σ(ε) consisting of ε-strategies is a Nash equi-

librium. Therefore, R(N,ε) is a member of R(i; ε), and the payment to individual i at

σ(ε) gives an upper bound on the value of privacy.

The design of R(N,ε) is enlightened by the hypothetical payment mechanism R̂(ε)

defined in (3.6). But without direct access to the state W , the mechanismR(N,ε) relies

on the reported data from an individual i’s peers, i.e., individuals other than individ-

ual i, to obtain an estimate of W . We borrow the idea of the peer-prediction method

Miller et al. (2009), which rewards more for the agreement between an individual

and her peers to encourage truthful reporting. However, unlike the peer-prediction

method, the individuals here have privacy concerns and they will weigh the privacy

cost against the payment to choose the best privacy level. We modify the payments in

R̂(ε) to ensure that the ε-strategy is still a best response of each individual in R(N,ε),

given that other individuals also follow the ε-strategy, which yields the desired Nash

equilibrium σ(ε).

The equilibrium payment to each individual inR(N,ε) converges to the lower bound

in Theorem 3 as the number of individuals N goes to infinity. The intuition behind

is that as the number of individuals N goes to infinity, the majority of the reported

data from other individuals converges to the underlying state W , and thus R(N,ε)

works similar as the genie-aided mechanism R̂(ε), whose equilibrium payment to each

individual equals to the lower bound in Theorem 3.
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A Payment Mechanism R(N,ε)

The payment mechanism R(N,ε) is designed for purchasing private data from N

privacy-aware individuals, parameterized by a privacy parameter ε, where N ≥ 2

and ε > 0.

1. Each individual reports her data (which can be the decision of not participating).

2. The data collector counts the number of participants n.

3. For non-participating individuals, the payment is zero.

4. If there is only one participant, pay zero to this participant. Otherwise, for each

participating individual i, the data collector computes the variable

M−i =


1 if

∑
j : Xj 6=⊥,j 6=i

Xj ≥
⌊n− 1

2

⌋
+ 1,

0 otherwise,

which is the majority of the other participants’ reported data. Then the data

collector pays individual i the following amount of payment according to her

reported data Xi and M−i:

R
(N,ε)
i (X) =

g′(ε)(eε + 1)2

2eε
AXi,M−i ,

where the parameters A1,1, A0,0, A0,1, A1,0 are defined in Section 3.3.2.

Payment Parameterization

Let

α = θ
eε

eε + 1
+ (1− θ) 1

eε + 1
.

The physical meaning of α can be seen by considering the strategy profile σ(ε), where

given the state W , the reported data X1, X2, . . . , XN are i.i.d. with

P
σ
(ε)
i

(Xi = 1 | W = 1) = P
σ
(ε)
i

(Xi = 0 | W = 0) = α.
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Given that the number of participants is n with n ≥ 2, define the following quantities.

Consider a random variable that follows the binomial distribution with parameters

n−1 and α. Let β(n) denote the probability that this random variable is greater than

or equal to bn−1
2
c+ 1. Let

γ(n) =


1−

(
n− 1
n−1
2

)
α
n−1
2 (1− α)

n−1
2 if n− 1 is even,

1 if n− 1 is odd.

(3.17)

To see the physical meaning of β(n) and γ(n), still consider σ(ε), where the number of

participants is n = N . Then for an individual i,

Pσ(ε)(M−i = 1 | W = 1) = β(N),

Pσ(ε)(M−i = 1 | W = 0) = γ(N) − β(N).

With the introduced notation, the parameters A1,1, A0,0, A0,1, A1,0 used in the

payment mechanism R(N,ε) are defined as follows:

A1,1 =
PW (1)(1− β(n)) + PW (0)(1− (γ(n) − β(n)))

(2β(n) − γ(n))(2θ − 1)PW (1)PW (0)
,

A0,0 =
PW (1)β(n) + PW (0)(γ(n) − β(n))

(2β(n) − γ(n))(2θ − 1)PW (1)PW (0)
,

A0,1 = 0,

A1,0 = 0.

It is easy to verify that these parameters are nonnegative. ThusR(N,ε) is a nonnegative

payment mechanism. The proof of the equilibrium properties of R(N,ε) in Theorem 4

is given below.
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Proof of Theorem 4

Proof. It suffices to prove that the strategy profile σ(ε) is a Nash equilibrium in R(N,ε)

and the expected payment to each individual i at this equilibrium satisfies that

Eσ(ε)

[
R

(N,ε)
i (X)

]
≤ VLB(ε) +O(e−Nd),

where recall that

VLB(ε) =
g′(ε)(eε + 1)

eε

(
θ

2θ − 1
(eε + 1)− 1

)
.

For conciseness, we suppress the explicit dependence on N and ε, and write R and σ

to represent R(N,ε) and σ(ε), respectively, in the remainder of this proof.

We first prove that the strategy profile σ is a Nash equilibrium in R; i.e., for any

individual i, the ε-strategy is a best response of individual i when other individuals

follow σ−i. Following the notation in the proof of Lemma 1, for any individual i we

consider any strategy σ′i of individual i and let

p1 = Pσ′i(Xi = 1 | Si = 1), q1 = Pσ′i(Xi = 0 | Si = 1),

p0 = Pσ′i(Xi = 1 | Si = 0), q0 = Pσ′i(Xi = 0 | Si = 0).

Then by the proof of Lemma 1, the best response satisfies either p1 = p0, q1 = q0,

or p1 = q0, p0 = q1, p1 + q1 = 1, depending on the form of the utility function

Ui(p1, p0, q1, q0), which is the expected utility of individual i at the strategy σ′i when

other individuals follow σ−i. Thus, we derive the form of Ui(p1, p0, q1, q0) next. Recall

that we let Ri(xi;w) denote E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w] for xi, w ∈ {0, 1}.

Then

Ui(p1, p0, q1, q0)

= E(σ′i,σ−i)
[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)),
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with

K1 = {Ri(1; 1)PW (1)θ +Ri(1; 0)PW (0)(1− θ)},

K0 = {Ri(1; 1)PW (1)(1− θ) +Ri(1; 0)PW (0)θ},

L1 = {Ri(0; 1)PW (1)θ +Ri(0; 0)PW (0)(1− θ)},

L0 = {Ri(0; 1)PW (1)(1− θ) +Ri(0; 0)PW (0)θ}.

In the designed mechanism R, the payment to individual i only depends on Xi

and M−i. Thus we can write

Ri(Xi;M−i) = Ri(X).

Then the value of Ri(xi;w) is calculated as follows:

Ri(1; 1) = E(σ′i,σ−i)
[Ri(X) | Xi = 1,W = 1]

= β(N)Ri(1; 1) + (1− β(N))Ri(1; 0),

Ri(1; 0) = E(σ′i,σ−i)
[Ri(X) | Xi = 1,W = 0]

= (γ(N) − β(N))Ri(1; 1) + (1− (γ(N) − β(N)))Ri(1; 0),

Ri(0; 1) = E(σ′i,σ−i)
[Ri(X) | Xi = 0,W = 1]

= (1− β(N))Ri(0; 0) + β(N)Ri(0; 1),

Ri(0; 0) = E(σ′i,σ−i)
[Ri(X) | Xi = 0,W = 0]

= (1− (γ(N) − β(N)))Ri(0; 0) + (γ(N) − β(N))Ri(0; 1),

and it can be verified that K1, K0, L1 and L0 are all positive. Therefore, by the proof

of Lemma 1, the possibility for the best response to be p1 = p0, q1 = q0, 0 < p1+q1 < 1

can be eliminated and the best response strategy must be in one of the following three

forms:

p1 = p0 = q1 = q0 = 0, (3.18)
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p1 = p0, q1 = q0, p1 + q1 = 1, (3.19)

p1 = q0, p0 = q1, p1 + q1 = 1. (3.20)

The strategy in (3.18) is to always not participate, which yields an utility of zero.

For strategies in the form of (3.19) or (3.20), we can write the expected utility as a

function of p1 and p0 as follows:

U i(p1, p0) = K1p1 +K0p0 +K − g(ζ(p1, p0)),

where K1 = K1−L1, K0 = K0−L0, K = L1+L0, and with a little abuse of notation,

ζ(p1, p0) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣}.
Inserting the value of Ri(Xi;M−i) gives

K1 =
g′(ε)(eε + 1)2

2eε
, K0 = −g

′(ε)(eε + 1)2

2eε
.

Then a strategy in the form of (3.19) yields an utility of K > 0. A strategy in the

form of (3.20) can be written as

p1 = q0 =
eξ

eξ + 1
, p0 = q1 =

1

eξ + 1
.

Then the expected utility can be further written as a function f of ξ as follows:

f(ξ) = K1
eξ

eξ + 1
+K0

1

eξ + 1
− g(|ξ|) +K.

Therefore, to prove that the ε-strategy is a best response of individual i, it suffices to

prove that ε maximizes f(ξ) and f(ε) ≥ K. For any ξ < 0, it is easy to see that

K1
eξ

eξ + 1
+K0

1

eξ + 1
< 0 < K1

e−ξ

e−ξ + 1
+K0

1

e−ξ + 1
.

Thus f(ξ) achieves its maximum value at some ξ ≥ 0. For any ξ ≥ 0,

f ′(ξ) = (K1 −K0)
eξ

(eξ + 1)2
− g′(ξ),
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f ′′(ξ) = −(K1 −K0)
eξ(eξ − 1)

(eξ + 1)3
− g′′(ξ) ≤ 0,

where the second inequality is due to the convexity of the cost function g. Therefore,

h is concave. Since f ′(ε) = 0, ε maximizes f(ξ). The optimal value is

f(ε) = g′(ε)
eε − e−ε

2
− g(ε) +K.

By the convexity of g,

g(ε) ≤ g′(ε)ε ≤ g′(ε)
eε − e−ε

2
.

Thus f(ε) ≥ K, which completes the proof for the ε-strategy to be a best response of

individual i.

Next we calculate the expected payment to individual i at σ, which can be written

as

Eσ[Ri(X)] = −(K1 −K0)
1

eε + 1
+K1 +K.

By definitions,

K1 +K

=
g′(ε)(eε + 1)2

2eε
1

(2β(N) − γ(N))(2θ − 1)

·
(

2
(
β(N)

)2
+ (4θ − 2− 2γ(N))β(N)

+ 2(1− θ)γ(N) + β(N)(1− β(N))
PW (1)

PW (0)

+ (γ(N) − β(N))(1− (γ(N) − β(N)))
PW (0)

PW (1)

)
=:

g′(ε)(eε + 1)2

2eε
h(β(N)).

Then

Eσ[Ri(X)] =
g′(ε)(eε + 1)

eε

(
1

2
h(β(N))(eε + 1)− 1

)
= VLB(ε) +

g′(ε)(eε + 1)2

2eε

(
h(β(N))− 2θ

2θ − 1

)
.
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To derive an upper bound on the expected payment, we first analyze the function h.

Rearranging terms gives

h(β(N)) =
1

2θ − 1

1

2β(N) − γ(N)

·
(

(2− t)
(
β(N)

)2
+

(
4θ − 2− 2γ(N) +

PW (1)

PW (0)

+ (2γ(N) − 1)
PW (0)

PW (1)

)
β(N)

+ 2(1− θ)γ(N) + γ(N)(1− γ(N))
PW (0)

PW (1)

)
,

where

t =
(PW (1))2 + (PW (0))2

PW (1)PW (0)
≥ 2.

Taking derivative yields

h′(β(N)) =
1

2θ − 1

1

(2β(N) − γ(N))2

·
(

2(2− t)
(
β(N) − γ(N)

2

)2
−
(
γ(N)

)2
− γ(N)t

2
(2− γ(N))− 2γ(N)(1− γ(N))

)
.

Therefore, h′(β(N)) ≤ 0 and h is a non-increasing function.

Next we derive a lower bound on β(N). Let Y1, Y2, . . . , YN−1 be i.i.d. Bernoulli

random variables with parameter α. Then by the definition of β(N):

β(N) = P

(
N−1∑
l=1

Yl ≥
⌊
N − 1

2

⌋
+ 1

)

= γ(N) − P

(
N−1∑
l=1

(1− Yl) ≥ N − 1−
⌈
N − 1

2

⌉
+ 1

)

≥ γ(N) − P

(
N−1∑
l=1

(1− Yl) ≥
N − 1

2

)
.

By the Chernoff bound Srikant and Ying (2014),

P

(
N−1∑
l=1

(1− Yl) ≥
N − 1

2

)
≤ e−(N−1)

1
2
ln 1

4α(1−α) = e−(N−1)d,
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where d = 1
2

ln 1
4α(1−α) > 0 is the parameter defined in (3.16). Thus,

β(N) ≥ γ(N) − e−(N−1)d.

By the monotonicity of h,

h(β(N))− 2θ

2θ − 1

≤ h
(
γ(N) − e−(N−1)d

)
− 2θ

2θ − 1

=
1

2θ − 1

1

γ(N) − 2e−(N−1)d

·
(

(2− t)e−2(N−1)d +

(
2(1− γ(N)) + 2γ(N)t

− PW (1)

PW (0)
− (2γ(N) − 1)

PW (0)

PW (1)

)
e−(N−1)d

+ γ(N)PW (1)

PW (0)
+
(
γ(N)

)2PW (0)

PW (1)
−
(
γ(N)

)2
t

)

≤ 1

2θ − 1

1

γ(N) − 2e−(N−1)d

·
(

(2− t)e−2(N−1)d + (2(1− γ(N)) + t)e−(N−1)d

+ γ(N)(1− γ(N))
PW (1)

PW (0)

)
.

Notice that

1− γ(N) =


(
N − 1
N−1
2

)
α
N−1

2 (1− α)
N−1

2 if N − 1 is even,

0 if N − 1 is odd.

Then when N − 1 is odd, γ(N) = 1, and when N − 1 is even,

1− γ(N) =

(
N − 1
N−1
2

)
α
N−1

2 (1− α)
N−1

2

= e−(N−1)d ·
(
N − 1
N−1
2

)
2−(N−1),
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where

lim
N→∞

(
N − 1
N−1
2

)
2−(N−1) = 0.

Thus 1− γ(N) = O(e−Nd) as N →∞.

Therefore,

Eσ[Ri(X)]

≤ VLB(ε) +
g′(ε)(eε + 1)2

2eε

(
h
(
γ(N) − e−(N−1)d

)
− 2θ

2θ − 1

)
≤ VLB(ε) +

g′(ε)(eε + 1)2

2eε
1

2θ − 1

1

γ(N) − 2e−(N−1)d

·
(

(2− t)e−2(N−1)d + (2(1− γ(N)) + t)e−(N−1)d +O(e−Nd)
)

= VLB(ε) +O(e−Nd),

as N →∞, which completes the proof.

3.3.3 Extension to Heterogeneous Cost Functions

Our results on the value of privacy are also valid in the scenario where individuals’

privacy cost functions are heterogeneous and known. In this case, the value of ε units

of privacy is still measured by the minimum payment of all nonnegative payment

mechanisms under which an individual’s best response in a Nash equilibrium is to

report the data with a privacy level of ε. However, with heterogeneous cost functions,

this value differs from individual to individual. Following similar notation, we let

Vi(ε) denote the value of ε units of privacy to individual i, and let gi denote the

cost function of individual i. Then the following lower and upper bounds, which are

almost identical to those in Theorem 3 and 4 except the heterogeneous cost function

gi(ε), hold

g′i(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
≤ Vi(ε)
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≤ g′i(ε)
eε + 1

eε

(
θ

2θ − 1
(eε + 1)− 1

)
+O(e−Nd).

The lower bound above can be derived directly from the proof of Theorem 3, since the

proof does not depend on whether the cost functions are homogeneous or not. The

upper bound above is given by a payment mechanism that works similar to R(N,ε),

with the g′ in R
(N,ε)
i replaced by g′i. In this mechanism, the strategy profile σ(ε) is

still a Nash equilibrium, and the expected payment to individual i at this equilibrium

can still be upper bounded as in Theorem 4 but again with g′ replaced by g′i.

3.4 Payment vs. Accuracy

In this section, we apply the fundamental bounds on the value of privacy to

the payment–accuracy problem, where the data collector aims to minimize the total

payment while achieving an accuracy target in learning the state. The solution of this

problem can be used to guide the design of review systems. For example, to evaluate

the underlying value of a new product, a review system can utilize the results in

this section to design a payment mechanism for eliciting informative feedback from

testers.

3.4.1 Payment–Accuracy Problem

The data collector learns the state W from the reported data X1, X2, . . . , XN ,

which is collected through some payment mechanism, by performing hypothesis test-

ing between the following two hypotheses:

H0 : W = 0,

H1 : W = 1.

The conditional distributions of the reported data given the hypotheses are specified

by the strategy profile in a Nash equilibrium of the payment mechanism. According
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to Lemma 1, we can write an equilibrium strategy profile in the form of (σ
(εi)
i ) =

(σ
(ε1)
1 , σ

(ε2)
2 , . . . , σ

(εN )
N ) with εi ∈ R\{0}∪{⊥⊥}, where recall that σ

(εi)
i is the εi-strategy.

For ease of notation, a non-informative strategy is also called an ε-strategy but with

ε = ⊥⊥. Let R(ε1, ε2, . . . , εN) denote the set of nonnegative payment mechanisms in

which (σ
(εi)
i ) is a Nash equilibrium.

We consider an information-theoretic approach based on the Chernoff information

Cover and Thomas (2006) to measure the accuracy that can be achieved in hypothesis

testing. For each individual i, let D(εi) denote the Chernoff information between the

conditional distributions of Xi given W = 1 and W = 0. The larger D(εi) is, the more

possible that the two hypotheses can be distinguished. In later discussions we will

see that the Chernoff information is closely related to the best achievable probability

of error.

The data collector aims to minimize the total payment while achieving an accuracy

target. The design choices include the number of individuals N , the parameters

ε1, ε2, . . . , εN , and the payment mechanism R in which the strategy profile (σ
(εi)
i ) is a

Nash equilibrium. Then we formulate the mechanism design problem as the following

optimization problem, which we call the payment–accuracy problem:

min
N∈N, εi∈R\{0}∪{⊥⊥},∀i
R∈R(ε1,ε2,...,εN )

N∑
i=1

E
(σ

(εi)
i )

[Ri(X)]

subject to e−
∑N
i=1D(εi) ≤ τ,

where the accuracy target is represented by τ , which is related to the maximum

allowable error. We focus on the range τ ∈ (0, 1) for nontriviality. Let F (τ) denote

the optimal payment in this problem, i.e., the infimum of the total payment while

satisfying the accuracy target τ .
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3.4.2 Bounds on the Payment–Accuracy Problem

We present bounds on F (τ) in Theorem 5 below. For convenience, we define

ε̃ = inf

{
arg max

{
D(ε)

VLB(ε)
: ε > 0

}}
, Ñ =

⌈
ln(1/τ)

D(ε̃)

⌉
, (3.21)

where recall that VLB(ε) is the lower bound in Theorem 3.

Theorem 5. The optimal payment F (τ) in the payment–accuracy problem for a

given accuracy target τ ∈ (0, 1) is bounded as: (Ñ − 1)VLB(ε̃) ≤ F (τ) ≤ ÑVLB(ε̃) +

O(τ ln(1/τ)), where the O(·) is for τ → 0.

The upper bound in Theorem 5 is given by the designed mechanism R(N,ε) with

parameters chosen as ε = ε̃ and N = Ñ . Note that ε̃ can be proved to have a well-

defined finite value independent of τ . By the lower and upper bounds on the value

of privacy, the payment to each individual in R(Ñ,ε̃) is roughly equal to the lower

bound VLB(ε̃). Then Theorem 5 indicates that the total payment of the designed

mechanism R(Ñ,ε̃) is at most one individual’s payment away from the minimum, with

the diminishing term O(τ ln(1/τ)) omitted. Figure 3.2 shows an illustration of the

lower and upper bounds.

Theorem 5 is proved by Lemma 4 and Lemma 5 below, where the lower bound is

given by the lower bound on the value of privacy, and the upper bound is given by

R(Ñ,ε̃).

Lower Bound

First, notice that it suffices to limit the choice of each εi to (0,+∞) in the payment–

accuracy problem, since when εi = ⊥⊥, D(εi) = 0, and when εi < 0, D(εi) = D(|εi|)

and there exists another nonnegative payment mechanism with the same payment

property and a Nash equilibrium at (σ
(|εi|)
i ) by Lemma 2.
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← Ñ = 72
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Figure 3.2: Illustration of the lower and upper bounds in Theorem 5 on the minimum

total payment for achieving an accuracy target τ , where the upper bound is given

by the designed mechanism R(Ñ,ε̃). In this example, the prior PMF of the state is

PW (1) = 0.7, PW (0) = 0.3. The quality of signals is θ = 0.8. The cost function is

g(ε) = ε. The range of τ shown in the figure is 0.001–0.4.

Now we use the lower bound on the value of privacy to prove the lower bound on

F (τ). By Theorem 3,

inf
R∈R(ε1,ε2,...,εN )

N∑
i=1

E
(σ

(εi)
i )

[Ri(X)] ≥
N∑
i=1

VLB(εi).

Therefore, the optimal payment F (τ) is lower bounded by the optimal value of the

following optimization problem (P1):

min
N∈N, εi∈(0,+∞),∀i

N∑
i=1

VLB(εi)

subject to e−
∑N
i=1D(εi) ≤ τ.

(P1)

Lemma 4. Any feasible solution (N, ε1, ε2, . . . , εN) of (P1) satisfies

N∑
i=1

VLB(εi) ≥ (Ñ − 1)VLB(ε̃),

where ε̃ and Ñ are defined in (3.21).
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Lemma 4 states that the total expected payment of the data collector is at least

(Ñ − 1)VLB(ε̃). Note that the value given by the genie-aided payment mechanism

R̂(ε̃) for Ñ individuals is ÑVLB(ε̃), which is at most one VLB(ε̃) away from the op-

timal value of (P1). We can think of VLB(ε) as the price for ε units of privacy and

D(ε) as the quality that the data collector gets from ε units of privacy due to its

contribution to the accuracy. Then the intuition for (Ñ , ε̃, . . . , ε̃) to be a near-optimal

choice is that the privacy level ε̃ gives the best quality/price ratio and Ñ is the fewest

number of individuals to meet the accuracy target. The proof of Lemma 4 is pre-

sented is Appendix E. With this lemma, the lower bound on F (τ) in Theorem 5 is

straightforward.

Upper Bound

Lemma 5. Choose the parameters in the payment mechanism R(N,ε) defined in Sec-

tion 3.3.2 to be ε = ε̃ and N = Ñ , where ε̃ and Ñ are defined in (3.21). Then in the

Nash equilibrium σ(ε̃) of R(Ñ,ε̃), the accuracy target τ can be achieved, and the total

expected payment is upper bounded as

Eσ(ε̃)

[
Ñ∑
i=1

R
(Ñ,ε̃)
i (X)

]
≤ ÑVLB(ε̃) +O(τ ln(1/τ)).

This lemma follows from Theorem 4 and we omit the proof here. Since the pay-

ment mechanism R(N,ε) together with ε = ε̃ and N = Ñ is a feasible solution of the

payment–accuracy problem, the upper bound in this lemma gives the upper bound

on F (τ) in Theorem 5.
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3.5 Discussions on the Accuracy Metric

When we study the relation between payment and accuracy, the accuracy can also

be measured by the best achievable probability of error, defined as

pe = inf
ψ

P
(σ

(εi)
i )

(ψ(X) 6= W ),

where ψ(x) is a decision function, with ψ(x) = 0 implying that H0 is accepted

and ψ(x) = 1 implying that H1 is accepted. However, pe is difficult to deal with

analytically since its exact form in terms of ε1, ε2, . . . , εN is intractable.

We measure the accuracy based on the Chernoff information, which is an

information-theoretic metric closely related to pe. It can be proved by the Bhat-

tacharyya bound Kailath (1967) that at the strategy profile (σ
(εi)
i ),

pe ≤ e−
∑N
i=1D(εi). (3.22)

Therefore, if we want to guarantee that pe ≤ pmax
e for some maximum allowable

probability of error pmax
e , we can choose τ = pmax

e in the payment–accuracy problem.

In fact, the metric based on the Chernoff information is very close to the metric pe,

since the upper bound (3.22) is tight in exponent when all the εi are the same, i.e.,

when the reported data is i.i.d. given the hypothesis.

3.6 Conclusions

In this chapter, we studied “the value of privacy” under a game-theoretic model,

where a data collector pays strategic individuals to buy their private data for a learn-

ing purpose. The individuals do not consider the data collector to be trustworthy,

and thus experience a cost of privacy loss during data reporting. The value of ε units

of privacy is measured by the minimum payment of all nonnegative payment mech-

anisms under which an individual’s best response in a Nash equilibrium is to report
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the data with a privacy level of ε. We derived asymptotically tight lower and upper

bounds on the value of privacy as the number of individuals becomes large, where

the upper bound was given by a designed payment mechanism R(N,ε). We further

applied these fundamental limits to find the minimum total payment for the data

collector to achieve certain learning accuracy target, and derived lower and upper

bounds on the minimum payment. The total payment of the designed mechanism

R(N,ε) with properly chosen parameters is at most one individual’s payment away

from the minimum.
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Chapter 4

TRADING PRIVATE DATA WITH UNKNOWN VALUATIONS OF PRIVACY:

THE EFFECT OF NEGATIVE PAYMENTS

4.1 Introduction

It is natural to expect that different individuals may have different valuations of

privacy and their valuations are unknown to the data analyst. Specifically, we study

a model where the privacy cost of an individual is a function of her privacy loss. The

privacy loss is determined by the individual’s data reporting strategy, and the cost

function represents the individual’s personal valuation of privacy. The exact forms of

the privacy cost functions are unknown to the data analyst, which complicates the

mechanism design problem. We elaborate further on this in the following. When

the cost functions are known to the data analyst, as shown in Chapter 3, she can

tune the mechanism such that all the individuals are willing to participate in the

market in an equilibrium and the surplus payment is minimal. However, when the

cost functions are unknown, the data analyst may need to set the payment high to

ensure the participation of an individual in case the individual has high valuation of

privacy, but it is also possible that the individual has a low valuation and then the

high payment is not a cost-effective choice.

Impact of negative payments

As noted above, because different individuals may have different valuations of

privacy, it can be costly for the data analyst to set a payment mechanism which

guarantees nonnegative payment to each individual and every data report. With
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this observation, we consider payment mechanisms where the expected payment of

each individual is nonnegative, but the realizations of the payments can be negative.

In practice, this can model the scenario where there are repeated data collection

(e.g., to learn the ratings of different movies). In some rounds the payments received

by the individual may be negative, but in the long run, the total payment will be

nonnegative. This is in contrast with the approach that enforces all the realizations

of the payments to be nonnegative (which is called a nonnegative mechanism). The

constraint of nonnegativity is appealing in practice since paying individuals is more

convenient than charging individuals, but it will surely incur higher cost of the data

analyst and makes the data analysis more difficult. To see this, let us consider a

nonnegative mechanism and an individual whose valuation of privacy is very high.

Then participating and reporting only noise to the data analyst is a better strategy for

this individual than opting out since she may still receive some nonnegative payment

without incurring any privacy cost. Therefore, the data analyst’s payment does not

buy her any useful information from this data subject, and moreover, the data analyst

has to work with these unusable reports during data analysis. To address these

difficulties, we utilize negative payments to “filter out” individuals with high privacy

costs, i.e., we design the mechanism such that their expected utility is negative if they

report only noise. This saves the data analyst’s payments on poor quality data and

simplifies the data analysis. We will see that we can actually drive the total cost to

zero for the data analyst as the population size becomes large.

To implement negative payments in practice, the data analyst can set up an online

payment system using virtual currency or credits. Instead of paying real money to an

individual every time she reports a data, virtual currency or credits can be added to or

reduced from the user’s account. An individual can be paid a weekly or monthly with

real dollars. Since the expected payment is nonnegative, the real-dollar payment over
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a long time period is nonnegative with a high probability. We remark that negative

payments may not be feasible in many scenarios. The focus of this chapter is to reveal

the fundamental benefit of negative payments to the data analyst when feasible.

With the above formulation, the interaction between the data analyst and indi-

viduals is clear: an individual acts upon the payment mechanism and her privacy cost

function; the data analyst designs the payment mechanism to incentivize the individ-

uals such that they are willing to report data with small enough perturbation that

allows the data analyst to achieve the desired learning accuracy. In this formulation,

we aim to answer the following questions: (1) How will the individuals behave to

reconcile the conflict between privacy and rewards? (2) How should the data analyst

design the mechanism such that she can achieve her learning goal cost-effectively?

Summary of Results

We consider the following model for private data, which is the same as the model

considered in Chapter 3. A data analyst is interested in learning, from a population

of N individuals, an underlying state represented by a binary random variable W . As

illustrated in Figure 4.1, each individual i possesses a binary signal Si, which is her

private data, reflecting her knowledge about the state W . Conditional on the state

W , the signals are independently generated such that the probability for each Si to

be the same as W is θ, where 0.5 < θ < 1. At the beginning of the data procurement,

the data analyst announces a payment mechanism, which determines the amounts of

payments according to the reported bits X1, X2, . . . , XN of individuals.

The model for privacy cost considered in this chapter is different from those in

previous chapters. Recall that the privacy cost of an individual is a function of her

privacy loss. We measure the privacy loss of an individual’s data reporting strategy

by the level of (local) differential privacy Dwork et al. (2006b); Dwork (2006) of

69



S1 S2

X2X1 …

…

W

Individual i

Signals

Reported
Data

State

Si

Xi…

…

C1 CiC2Types

Figure 4.1: Information structure of the model with unknown valuations of privacy.

The data analyst is interested in the state W , which is a binary random variable.

Each individual i has a private binary signal Si and a type Ci that characterizes her

valuation of privacy. Conditional on W , S1, S2, . . . , SN are i.i.d. Individual i reports

data Xi, which is generated based on Si and Ci using a randomized strategy.

the strategy. Then the privacy cost function of individual i is characterized by her

type Ci: when individual i reports data with a (local) differential privacy level of ε

after observing her type Ci = ci, her privacy loss is ε and the corresponding privacy

cost is ciε. The type of an individual is also called her cost coefficient due to this

linear form. We assume that an individual’s type is independent from her private

data, which is applicable to the scenario where an individual’s valuation of privacy

is intrinsic and thus is not affected by the specific private data she has. The cost

coefficients are also illustrated in Figure 4.1. We remark that both settings where an

individual’s valuation of privacy is independent and correlated with her private data

have been studied in the “trustworthy data analyst” model in the literature. In this

chapter, we assume that the prior distribution of the state, signals and types is public

information. However, the data analyst does not know the private signal and the

type of an individual. An individual’s utility is the difference between the payment

she receives and her privacy cost.

70



The data analyst learns the state by performing hypothesis testing. The goal

of the mechanism design is to elicit data with certain amount of information in a

Bayesian Nash equilibrium to fulfill an accuracy goal with minimized total payment.

Our main result is on constructing a family of payment mechanisms parameterized

by the population size, the prior, and (cth, ε). These mechanisms provide answers to

the proposed questions from the following perspectives.

• Behavior of individuals with privacy concerns. We show that the individuals

exhibit a threshold behavior in a Bayesian Nash equilibrium of the proposed

mechanisms: the individuals with cost coefficients above a threshold cth choose

not to participate, and the individuals with cost coefficients below cth partic-

ipate and report data with a privacy level no smaller than ε. Since a larger

privacy level means that the data is less perturbed, the data analyst can incen-

tivize the participants to limit the perturbation to a desired extent by choosing

an appropriate ε. By this result, we can also see that this family of mecha-

nisms resolve the otherwise nuisance that individuals with high privacy costs

may participate and report only noise: they are “filtered out”, and the “left”

participants all report data with quality guarantee.

• Tradeoff between learning accuracy and cost. We show that as the population

size grows to infinity, the data analyst can learn the underlying state with

arbitrarily small probability of error, with the total expected payment at the

Bayesian Nash equilibrium going to zero. That is to say, if the data analyst can

recruit a large number of individuals, she can choose appropriate parameters

to fulfill her learning goal and in the meanwhile drive her cost to zero at a

Bayesian Nash equilibrium. Since the total equilibrium expected payment of

any mechanism is nonnegative due to individual rationality, this implies that the
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designed mechanism with properly chosen parameters asymptotically minimizes

the cost for achieving any accuracy goal.

4.2 Model

We study the setting in which the data analyst is interested in learning an un-

derlying state W , represented by a binary random variable. Consider a set N =

{1, 2, . . . , N} of individuals. Each individual i possesses a binary signal Si, which

is her private data, and reports data Xi, which takes values in X = {0, 1,⊥},

with ⊥ meaning “to opt out.” The data analyst announces a payment mechanism

R : XN → RN , which takes the reported data X = (X1, . . . , XN) as input and pro-

duces R(X), where Ri(X) is the payment to individual i. The model is illustrated

in Figure 3.1. The payment mechanism induces a game among the individuals. The

elements of the game are as follows.

• Players. The players in this game are the individuals, who are self-interested,

rational and risk-neutral. Following conventional game theory notation, we let “−i”

denote all the individuals other than some given individual i.

• Prior Distributions. The state W follows a probability distribution given by the

PMF PW . We assume that PW (1) > 0 and PW (0) > 0. The individuals’ signals

S = (S1, S2, . . . , SN) reflect their knowledge about the state W . Conditional on

the state W , the signals S1, S2, . . . , SN are independently generated according to the

following conditional distributions:

P(Si = 1 | W = 1) = θ, P(Si = 0 | W = 1) = 1− θ,

P(Si = 0 | W = 0) = θ, P(Si = 1 | W = 0) = 1− θ,

where the parameter θ with 0.5 < θ < 1 is called the quality of signals. We refer to

these conditional distributions as the signal structure of the model.
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• Types and Strategies. An individual i’s type Ci, also called her cost coefficient,

characterizes her valuation of privacy. The meaning of Ci will become clear after we

introduce the privacy cost function. Roughly, an individual with larger Ci experiences

more privacy cost for the same privacy loss. A data reporting strategy for individual i

is a plan on what to report according to her signal Si and her type Ci. Thus it

is a mapping σi : {0, 1} × (0,+∞) → D(X ), where D(X ) is the set of probability

distributions on X = {0, 1,⊥}, prescribing a distribution to the reported data Xi

for each possible value pair of Si and Ci. Therefore, the strategy corresponds to the

set of conditional distributions of Xi given Si and Ci. Since we will discuss different

strategies of individual i, we denote these conditional probabilities by

Pσi(Xi = xi | Si = si, Ci = ci), xi ∈ {0, 1,⊥}, si ∈ {0, 1}, ci ∈ (0,+∞).

Let σ = (σ1, σ2, . . . , σN), which is called a strategy profile. A strategy profile is said

to be homogeneous if all the strategies in the profile are the same.

• Utility Functions. The utility of each individual is the difference between the

payment she receives and her privacy cost. An individual experiences a cost due to

the privacy loss during data reporting. Recall that we model the privacy cost of an

individual as consisting of two components: privacy loss and a privacy cost function,

where the privacy loss depends on her data reporting strategy and the privacy cost

function represents her valuation of privacy. For an individual i, conditional on her

type Ci = ci, we measure individual i’s privacy loss for reporting data with strategy

σi by the privacy level defined as follows:

ζ(ci, σi) = max

{
ln

Pσi(Xi ∈ E | Si = si, Ci = ci)

Pσi(Xi ∈ E | Si = 1− si, Ci = ci)
: E ⊆ {0, 1,⊥}, si ∈ {0, 1}

}
,

where we follow the convention that 0/0 = 1. This measure of privacy loss is in the

same vein as the local model of differential privacy Kasiviswanathan et al. (2011);
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Dwork and Roth (2014), which views each individual’s data as a database of size

1 and quantifies the privacy guarantee of her local randomizer by the differential

privacy level. The difference here is that the strategy σi has another input Ci, since an

individual can choose the way of perturbing her data according to her cost coefficient.

Our measure of privacy loss is the differential privacy level of the strategy σi when

Ci is given.

Then we model individual i’s cost incurred by this privacy loss as a linear function

with Ci as the coefficient, i.e., the cost can be written as

g(Ci, σi) = Ci · ζ(Ci, σi).

We call g the privacy cost function.

We assume that the coefficients C1, C2, . . . , CN are i.i.d. positive random variables

with CDF FC , and they are independent of W and S. The randomness of these

coefficients captures the data analyst’s uncertainty of individuals’ valuations of pri-

vacy. The independence assumption is applicable to the scenario where individuals’

valuations of privacy are intrinsic and thus are not affected by the specific private

data they have. We further assume that FC is a continuous function and FC(c) > 0

for any c > 0, which means that it is possible for individuals to have an arbitrarily

low valuation of privacy.

Mechanism design

The data analyst cannot force an individual to report data with a specific strategy.

However, the data analyst can design the payment mechanism to impact individuals’

strategies to drive the individuals to act in a desired way since the individuals are

rational, i.e., they will choose the strategies that benefit them most. We consider the

Bayesian Nash equilibria in a payment mechanism, viewing Ci as individual i’s type.
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Definition 7. A strategy profile σ is a Bayesian Nash equilibrium of a payment

mechanism R if for any individual i, any ci > 0 and any strategy σ′i,

Eσ[Ri(X)− g(Ci, σi) | Ci = ci] ≥ E(σ′i,σ−i)
[Ri(X)− g(Ci, σ

′
i) | Ci = ci],

where the subscript σ and (σ′i, σ−i) indicate that the distribution of X is determined

by the strategy profile σ and (σ′i, σ−i), respectively.

The data analyst is interested in learning the state W from the reported data X,

so she performs hypothesis testing between the following two hypotheses:

H0 : W = 0,

H1 : W = 1.

The learning accuracy is measured by the probability of error, denoted by pe. An

accuracy goal can be written as pe ≤ pmax
e for some pmax

e .

Then the data analyst aims to design a payment mechanism such that her accuracy

goal can be fulfilled at a Bayesian Nash equilibrium and the corresponding total

expected payment is minimized. It is easy to see that the equilibrium total expected

payment is nonnegative in any mechanism due to the nonnegativity of privacy cost

functions and individual rationality. In this mechanism design problem, the joint

distribution P of the state W , the signal S and the cost coefficients, which can be

represented by (PW , θ, FC), is common knowledge. The data analyst announces the

form of the payment mechanism and then the individuals report data simultaneously.

The reported data X is public. Each individual i’s signal and type, Si and Ci, are

not observable to other individuals or the data analyst. No one has access to the

state W .
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4.3 Asymptotically Optimal Mechanisms

Theorem 6. To achieve any accuracy goal of the data analyst, the total expected

payment needed at an equilibrium is o(1). Specifically, there exists a sequence of

mechanisms, each of which is designed for a different population size N , such that

the accuracy goal can be fulfilled at a Bayesian Nash equilibrium of every mechanism

in the sequence, and the total expected payment goes to zero as the population size N

goes to infinity; i.e., this sequence of mechanisms is asymptotically optimal.

In the remainder of this section, we present the design of a family of payment

mechanisms, parameterized by the population size N , the prior P , a cost coefficient

threshold parameter cth and a data quality parameter ε. The asymptotically optimal

sequence of mechanisms in Theorem 6 is given by a sequence of mechanisms within

this family with properly chosen parameters. In particular, cth is a threshold on cost

coefficients such that an individual is expected to participate if her coefficient does

not exceed the threshold; and ε is the target quality which is the level noise expected

in the reported data. The formula for calculating cth and ε will be presented in (4.5)–

(4.11). Theorem 6 is a high level description of Theorem 8, which will be proved in

the remainder of this chapter.

Payment Mechanism R(N,P,cth,ε)

1. Each individual reports her data (which can also be “to opt out”).

2. Compute the number of participants n.

3. For non-participating individuals, the payment is zero.

4. If there is only one participant, the data analyst pays zero to this participant.
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Otherwise, for each participating individual i, compute

M−i =


1 if

∑
j : Xj 6=⊥,j 6=i

Xj ≥
⌊n− 1

2

⌋
+ 1,

0 otherwise,

which is the majority of other participants’ reported data. Then the data ana-

lyst pays individual i according to Xi and M−i as follows:

R
(N,P,cth,ε)
i (X) = AXi,M−i

cth(eε + 1)2

2eε
+BM−i

(
cth(eε + 1)

eε
+ cthε

)
,

where A1,1, A0,1, A1,0, A0,0, B1, B0 are given below.

Next we define the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 used in the mechanism

R(N,P,cth,ε) through a series of calculations. In a nutshell, A1,1 and A0,0 determine the

reward part of the payment to an individual when her reported data matches the

majority of others; similarly, A0,1 and A1,0 determine the penalty part of the payment

to an individual when her reported data does not match the majority of others. They

incentivize the individuals to report data that reveals certain amount of information

about their private signals. The coefficients B1 and B0 offset the payments for the

cases that the majority of others’ reports is 1 and 0, respectively, to discourage the

individuals with cost coefficients above threshold parameter cth from participating.

We remark that when an individual’s reported data does not match with the majority

of others, these coefficients make sure that the payment to this individual is negative.

The definition of the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 involves some inter-

mediate quantities, the physical meanings of which will be given after we characterize

a Bayesian Nash equilibrium of the mechanism in Section 4.4. Given a cth ∈ (0,+∞)

and ε ∈ (0,+∞), for each ci ∈ (0, cth), we consider the following equation with

variable ξ:

cth(eε + 1)2

eε
eξ

(eξ + 1)2
− ci = 0.
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It can be proved that this equation has a unique solution in (0,+∞). Let this solution

define a function ξ(ci). Specifically,

ξ(ci) = ln

(
1

1
2
−
√

1
4
− ci

cth

eε

(eε+1)2

− 1

)
. (4.1)

Let

µ =

∫ cth

0

eξ(ci)

eξ(ci) + 1
dFC|Ci≤cth(ci),

and

α = θµ+ (1− θ)(1− µ), (4.2)

where FC|Ci≤cth is the conditional distribution of Ci given Ci ≤ cth.

Given that the number of participants is n with n ≥ 2, we define the following

quantities. Consider a random variable that follows the binomial distribution with

parameters n− 1 and α. Let β(n) denote the probability that this random variable is

greater than or equal to bn−1
2
c+ 1. For convenience, we define the following quantity

to deal with technical details:

γ(n) =


1−

(
n− 1
n−1
2

)
α
n−1
2 (1− α)

n−1
2 if n− 1 is even,

1 if n− 1 is odd.

Let P≥1 = 1− (1− FC(cth))N−1, where recall that FC is the CDF of Ci. We define

A1,1 =
PW (1)θ(1− β(n)) + PW (0)(1− θ)(1− (γ(n) − β(n)))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n)) ,

A0,1 = −PW (1)(1− θ)(1− β(n)) + PW (0)θ(1− (γ(n) − β(n)))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n)) ,

A1,0 = −PW (1)θβ(n) + PW (0)(1− θ)(γ(n) − β(n))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n)) ,

A0,0 =
PW (1)(1− θ)β(n) + PW (0)θ(γ(n) − β(n))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n)) ,

B1 = −PW (1)(1− β(n))− PW (0)(1− (γ(n) − β(n)))

2P≥1PW (1)PW (0)(2β(n) − γ(n)) ,

B0 =
PW (1)β(n) − PW (0)(γ(n) − β(n))

2P≥1PW (1)PW (0)(2β(n) − γ(n)) .
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4.4 Bayesian Nash Equilibrium

In this section, we first characterize the individuals’ behavior at a Bayesian Nash

equilibrium of the designed mechanism. The equilibrium behavior affects the quality

of the reported data and the payments. Then we leverage the properties of the

Bayesian Nash equilibrium to explain the physical meanings of the quantities defined

during the construction of the mechanism in Section 4.3.

Theorem 7. The mechanism R(N,P,cth,ε) yields a Bayesian Nash equilibrium σ, in

which each individual i’s strategy σi is described as follows:

• If ci > cth,

Pσi(Xi = ⊥ | Si = si, Ci = ci) = 1, for any si ∈ {0, 1};

i.e., if individual i’s cost coefficient is larger than the parameter cth, individual i

declines to participate regardless of her signal.

• If ci ≤ cth,

Pσi(Xi = 1 | Si = 1, Ci = ci) = Pσi(Xi = 0 | Si = 0, Ci = ci) =
eξ(ci)

eξ(ci) + 1
,

Pσi(Xi = 0 | Si = 1, Ci = ci) = Pσi(Xi = 1 | Si = 0, Ci = ci) =
1

eξ(ci) + 1
,

where ξ(ci) is defined in (4.1); i.e., if individual i’s cost coefficient is no larger

than the parameter cth, individual i flips her signal with a probability depending

on her cost coefficient to generate her reported data.

This theorem presents our results on the threshold behavior of individuals and

the quality guarantee of the reported data. We sketch the proof of Theorem 7 below.

A complete proof is given in Appendix F.

79



Proof Sketch. We write R to represent the mechanism R(N,P,cth,ε) for conciseness in

this proof. Consider any individual i and any strategy σ′i. Given Ci = ci, let

p1 = Pσ′i(Xi = 1 | Ci = ci, Si = 1), p0 = Pσ′i(Xi = 1 | Ci = ci, Si = 0),

q1 = Pσ′i(Xi = 0 | Ci = ci, Si = 1), q0 = Pσ′i(Xi = 0 | Ci = ci, Si = 0).

Then the differential privacy level of σ′i at ci can be written as

ζ(p1, p0, q1, q0) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣, ∣∣∣∣ln q1q0
∣∣∣∣, ∣∣∣∣ln 1− q1

1− q0

∣∣∣∣,∣∣∣∣ln 1− p1 − q1
1− p0 − q0

∣∣∣∣, ∣∣∣∣ln p1 + q1
p0 + q0

∣∣∣∣}.
By the design of the mechanism, when other individuals follow σ−i, the expected

utility of individual i can be written as

U(p1, p0, q1, q0)

, E(σ′i,σ−i)
[Ri(X)− g(Ci, σ

′
i) | Ci = ci]

= K1p1 +K0p0 + L1q1 + L0q0 − ciζ(p1, p0, q1, q0),

where

K1 = L0 =
1

2

(
cth(eε + 1)

eε
+ cthε

)
,

K0 = L1 =
1

2

(
cth(eε + 1)

eε
+ cthε−

cth(eε + 1)2

eε

)
.

Now we find the best response of individual i, i.e., an optimal solution of the

optimization problem below, by three steps:

max
p1,p0,q1,q0

U(p1, p0, q1, q0)

subject to 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1,

0 ≤ p1 + q1 ≤ 1,
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0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1,

0 ≤ p0 + q0 ≤ 1.

Step 1: First, by the symmetry that K1 = L0 and K0 = L1, we can focus on an

optimal solution (p∗1, p
∗
0, q
∗
1, q
∗
0) such that p∗1 = q∗0 and p∗0 = q∗1, since for any feasible

solution (p1, p0, q1, q0), the solution (p′1, p
′
0, q
′
1, q
′
0) given by p′1 = q′0 = p1+q0

2
, p′0 =

q′1 = p0+q1
2

yields U(p′1, p
′
0, q
′
1, q
′
0) ≥ U(p1, p0, q1, q0). Further, an optimal solution

(p∗1, p
∗
0, q
∗
1, q
∗
0) such that p∗1 = q∗0 and p∗0 = q∗1 must satisfy that p∗1 ≥ q∗1, since otherwise

by swapping p∗1 and p∗0 with q∗1 and q∗0, respectively, the utility is increased, which

contradicts with the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0).

Step 2: Next, for any such an optimal solution, i.e., (p∗1, p
∗
0, q
∗
1, q
∗
0) with p∗1 = q∗0

and p∗0 = q∗1, we can prove that one of the following two holds: p∗1 = q∗0 = p∗0 = q∗1 = 0

or p∗1 + q∗1 = p∗0 + q∗0 = 1, p∗1 > q∗1.

Step 3: According to Step 1 and Step 2, we can find an optimal solution among

those feasible solutions, say (p1, p0, q1, q0), with p1 = q0 and p0 = q1, and satisfy either

p1 = q0 = p0 = q1 = 0, or (4.3)

p1 + q1 = p0 + q0 = 1, p1 > q1. (4.4)

Consider any feasible solution (p1, p0, q1, q0) with p1 = q0 and p0 = q1 and satisfies

(4.4), which can be written as

p1 = q0 =
eεi

eεi + 1
, p0 = q1 =

1

eεi + 1
,

for some εi > 0. Then

U(p1, p0, q1, q0) = −cth(eε + 1)2

eε
1

eεi + 1
− ciεi +

cth(eε + 1)

eε
+ cthε.

Consider a function h : (0,+∞)→ R defined as

h(εi) = −cth(eε + 1)2

eε
1

eεi + 1
− ciεi.
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Then h is a strictly concave function, and thus ε∗i that satisfies

h′(ε∗i ) =
cth(eε + 1)2

eε
eε
∗
i

(eε
∗
i + 1)2

− ci = 0,

i.e., ε∗i = ξ(ci) defined in (4.1), maximizes h(·), and hence maximizes the utility.

Therefore, among those feasible solutions that satisfy (4.4), the solution (p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0)

with

p̃∗1 = q̃∗0 =
eξ(ci)

eξ(ci) + 1
, p̃∗0 = q̃∗1 =

1

eξ(ci) + 1

maximizes the utility. This implies that an optimal solution is either (0, 0, 0, 0)

or (p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0). Next, we can prove that if ci > cth, we have ξ(ci) < ε and

U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) < 0 = U(0, 0, 0, 0), so (0, 0, 0, 0) is an optimal solution. For the

other case that ci ≤ cth, we can prove that U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) ≥ 0 = U(0, 0, 0, 0), so

(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) is an optimal solution.

In summary, by the three steps above, a best response of individual i is the strategy

σi described in the theorem, which completes the proof that σ is a Bayesian Nash

equilibrium of the mechanism R(N,P,cth,ε).

The following corollary describes the quality of the reported data and the expected

payment to each participant at the Bayesian Nash equilibrium in Theorem 7.

Corollary 1. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equilibrium

σ given in Theorem 7.

• For each participating individual i,

Pσi(Xi = 1 | Si = 1, individual i participates)

= Pσi(Xi = 0 | Si = 0, individual i participates)

= µ

≥ eε

eε + 1
.
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• The expected payment to each participating individual i is bounded as

Eσ[R
(N,P,cth,ε)
i (X) | individual i participates] ≤ cth(1 + e−ε + ε).

Proof. The proof for these two results is intuitive once we have Theorem 7. In the

equilibrium σ, the event {individual i participates} is equivalent to the event {Ci ≤

cth}. Thus

Pσi(Xi = 1 | Si = 1, individual i participates) = Pσi(Xi = 1 | Si = 1, Ci ≤ cth)

=

∫ cth

0

eξ(ci)

eξ(ci) + 1
dFC|Ci≤cth(ci)

= µ.

By the definition of ξ(ci) in (4.1), ξ(ci) ≥ ε when ci ≤ cth. Hence

Pσi(Xi = 1 | Si = 1, individual i participates) ≥ eε

eε + 1
.

Since for any ci ≤ cth, Pσi(Xi = 0 | Ci = ci, Si = 0) = Pσi(Xi = 1 | Ci = ci, Si = 1),

we have

Pσi(Xi = 0 | Si = 0, individual i participates)

= Pσi(Xi = 1 | Si = 1, individual i participates).

By the calculations in the proof of Theorem 7, the expected payment of individual i

given Ci = ci with ci ≤ cth satisfies

Eσ[R
(N,P,cth,ε)
i (X) | Ci = ci] = −cth(eε + 1)2

eε
1

eξ(ci) + 1
+
cth(eε + 1)

eε
+ cthε

≤ cth(1 + e−ε + ε).

Hence

Eσ[R
(N,P,cth,ε)
i (X) | individual i participates]
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=

∫ cth

0

Eσ[Ri(X) | Ci = ci] dFC|Ci≤cth(ci)

≤ cth(1 + e−ε + ε).

Theorem 7 and Corollary 1 show how individuals with high privacy costs are

“filtered out” in the equilibrium by negative payments. In other words, they will

decide not to participate because the expected payment is negative, which is a result

of possible negative payments in the proposed mechanism. The “left” individuals,

i.e., participants, all report data with quality guarantee. The roles of the parameters

cth and ε in the designed mechanism R(N,P,cth,ε) are as follows: The parameter cth

works as a threshold on the cost coefficients for participation; The parameter ε gives

a guarantee on the probability that a participant’s reported data is the same as the

signal, which measures the quality of the reported data. We remark that in this

equilibrium, each individual’s exact cost coefficient is not revealed to other.

The physical meanings of the quantities ξ(ci), µ, α, β(n), γ(n) and P≥1 defined

during the construction of the mechanism in Section 4.3 can be well explained at

the Bayesian Nash equilibrium given in Theorem 7. The quantity ξ(ci) shows up in

Theorem 7, characterizing the strategy σi of individual i when ci ≤ cth. It is the

differential privacy level of σi given Ci = ci when ci ≤ cth. Now let us condition on

the event that individual i participates, which, by Theorem 7, is equivalent to the

event Ci ≤ cth. The quantity µ shows up in Corollary 1, and it is the probability

that individual i truthfully reports her signal, given whatever the signal is. Then the

quantity α is the probability that the reported data Xi is consistent with the state W ,

given whatever the state is. Conditional on the event that there are n−1 participants

among the individuals other than individual i, where n ≥ 2, the quantities βn and

1 − (γn − βn) are the probabilities that the majority of these participants’ reported
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data agrees with the state, given that the state is 1 and 0, respectively. Finally, the

quantity P≥1 is the probability that at least one individual among the individuals

other than individual i participates.

4.5 Accuracy and Payment

In this section, we show that the data analyst can achieve any accuracy goal in

the Bayesian Nash equilibrium with proper choice of parameters N, cth and ε. The

cost of the data analyst, which is the total expected payment at the equilibrium, goes

to zero as the number of individuals goes to infinity. Since the privacy cost of an

individual is always nonnegative, the total expected payment at an equilibrium of

any mechanism is nonnegative due to individual rationality. Therefore, the designed

mechanism asymptotically minimizes the cost for the data analyst to achieve any

accuracy goal.

Recall that with the purchased data X, the data analyst learns the state W by

performing hypothesis testing between the following two hypotheses:

H0 : W = 0,

H1 : W = 1.

An accuracy goal can be written as pe ≤ pmax
e for some pmax

e , where pe is the proba-

bility of error for hypothesis testing. We consider the decision function of maximum

likelihood and choose the values for N, cth, ε as follows. First pick any ε such that

ε ∈ (0,+∞). (4.5)

Let

D(ε) =
1

2
ln

(eε + 1)2

4(θeε + 1− θ)((1− θ)eε + θ)
, (4.6)
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ne(ε) =
− ln(1

2
pmax
e )

D(ε)
, (4.7)

ρ(ε) =
1

ne(ε)pmax
e

+ 2 +

√
1

(ne(ε))2(pmax
e )2

+
2

ne(ε)pmax
e

. (4.8)

Then pick any integer N such that

N > ρ(ε)ne(ε). (4.9)

For the selected N , let

pth(N, ε) =
ρ(ε)ne(ε)

N
, (4.10)

which is roughly the participation percentage, and

cth(N, ε) = inf{c : FC(c) = pth(N, ε)}. (4.11)

Recall that we assume FC to be a continuous function, so the set {c : FC(c) =

pth(N, ε)} is nonempty and thus cth(N, ε) ≥ 0 is finite. An example of this pro-

cedure of parameter selection (4.5)–(4.11) (and the resulted upper bound on total

expected payment) is shown in Figure 4.2.

The choices in (4.5)–(4.11) first fix the quality that the data analyst expects to

obtain from each participant and the types of individuals the data analyst would like

to collect data from, and the accuracy goal can be met when the population size is

large enough to make sure that there are enough participants.

Theorem 8. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equilibrium

σ given in Theorem 7. Given an accuracy goal pe ≤ pmax
e , let the parameter tuple

(N, cth, ε) be chosen according to (4.5)–(4.11) and the data analyst performs hypothesis

testing using the maximum likelihood approach.

• The decision function ψ has the following form:

ψ(X) =


1 if

∑
i 1{Xi=1} ≥

∑
i 1{Xi=0},

0 otherwise;

(4.12)
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Figure 4.2: Illustration of the upper bound in Theorem 8 on the total expected

payment of the designed mechanism. In this example, the quality of signals is θ = 0.8,

the maximum allowable probability of error is pmax
e = 0.05, and the CDF FC is a

log-normal distribution. Pick ε = 2, and then D(ε), ne(ε) and ρ(ε) are calculated

according to (4.6)–(4.8). We consider the population size N within the range 200–

600, which satisfies (4.9). As shown in the figure, tripling the population size from

200 to 600 drives the cost down by more than 99%.

• The probability of error, pe, meets the accuracy goal pe ≤ pmax
e ;

• The total expected payment is bounded as

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

]
≤ cth(ε,N)ρ(ε)ne(ε) · (1 + e−ε + ε). (4.13)

Since ρ(ε) and ne(ε) are constants for given ε, and cth(ε,N) goes to 0 as N →∞,

this total expected payment goes to zero, with the accuracy goal met, as N →∞.

This theorem shows that the approach of choosing parameters according to (4.5)–

(4.11) for the designed family of mechanisms not only meets the accuracy goal of the

data analyst but is also cost-effective. The intuition is that as N becomes large, the

requirement on the participation percentage becomes lower, which allows the mech-

anism to collect data from individuals with lower privacy costs and thus drives down
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the data analyst’s cost. Fix an ε ∈ (0,+∞) and consider a sequence of mechanisms,

each of which is designed for a different population size N that satisfies (4.9) and has

parameter cth chosen according to (4.11). Then this sequence of mechanisms gives

the asymptotically optimal sequence in Theorem 6.

Figure 4.2 shows an illustration of the upper bound on the total expected payment

in (4.13). In this example, tripling the population size from 200 to 600 drives the cost

down by more than 99%. The rate at which the total expected payment converges to

0 depends on the distribution FC . An interesting question is which distribution can

better characterize individuals’ valuations of privacy in real world. We will evaluation

the convergence rates for different FC ’s in our full report.

To prove Theorem 8, we need the following lemma.

Lemma 6. For an accuracy goal pe ≤ pmax
e , let the parameter tuple (N, cth, ε) be

chosen according to (4.5)–(4.11). Then for any fixed ε ∈ (0,+∞),

lim
N→+∞

cth(ε,N) = 0. (4.14)

Proof. Recall that we assume that FC is a continuous function and for any c > 0,

FC(c) > 0. For any δ > 0, let N0 = ρ(ε)ne(ε)
FC(δ)

, where FC(δ) > 0 due to our assumption.

Then for any N ≥ N0, any c such that FC(c) = ρ(ε)ne(ε)
N

satisfies that c ≤ δ, since

a CDF is a non-decreasing function. Thus, we have cth(ε,N) = inf{c : FC(c) =

ρ(ε)ne(ε)
N
} ≤ δ, which implies that limN→+∞ cth(ε,N) = 0.

We sketch the proof of Theorem 8 below. A complete proof is given in Appendix G.

Proof Sketch of Theorem 8. Let the parameter tuple (N, cth, ε) be chosen according

to (4.5)–(4.11). Then cth is a function of N and ε. We write ne, ρ, pth, cth to rep-

resent ne(ε), ρ(ε), pth(N, ε), cth(N, ε) and keep their dependence on N, ε in mind for

conciseness in this proof.
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Theorem 7 describes the form of σ, which determines the distribution of each Xi

given Si and Ci. For any realization X = x, since ψ uses maximum likelihood,

ψ(x) =


1 if Pσ(X = x | W = 1) ≥ Pσ(X = x | W = 0),

0 otherwise.

(4.15)

The probabilities Pσ(X = x | W = 1) and Pσ(X = x | W = 0) can be calculated

according to the form of σ. Then the condition Pσ(X = x | W = 1) ≥ Pσ(X = x |

W = 0) can be proved to be equivalent to the condition that the number of 1’s is

larger than or equal to the number of 0’s in x, and the form of ψ in (4.12) is derived.

Next we calculate the probability of error, pe. Let

k =

√
2

pmax
e

, d =
√
Npth(1− pth).

Then we split pe into two parts as follows

pe = Pσ(ψ(X) 6= W )

= Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ ≥ kd, ψ(X) 6= W

)

+ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)
.

Since the random variables 1{Xi 6=⊥} = 1{Ci≤cth} are i.i.d. with mean pth and variance

d2

N
, the first term can be bounded by Chebyshev’s inequality as

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ ≥ kd, ψ(X) 6= W

)
≤ pmax

e

2
.

For the second term of pe, we have

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)

≤ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

∣∣∣∣ W = 1

)
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+ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

∣∣∣∣ W = 0

)

=
∑

x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0),

where

B =
{
x ∈ XN :

∣∣|A(x)| −Npth
∣∣ < kd

}
,

R1 =
{
x ∈ XN : ψ(x) 6= 1

}
, R0 =

{
x ∈ XN : ψ(x) 6= 0

}
,

and |A(x)| is the number of participants, i.e., the cardinality of the set A(x) = {i ∈

N : xi 6= ⊥}. Then B ∩ R1 consists of the reported data such that the number of

participants departs from Npth by at most kd and the maximum likelihood decision

rejects W = 1. Similar explanation applies to B ∩ R0. By the choice of ne, ρ, pth

and N , such number of participants is large enough to make sure that with maximum

likelihood decision, the sum of the two types of error satisfies

∑
x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0) ≤ e−neD(ε) =
pmax
e

2
.

This gives an upper bound on the second term of pe; i.e.,

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)
≤ pmax

e

2
.

Therefore, pe ≤ pmax
e .

Finally, we bound the total expected payment. Let J be the number of partici-

pants. By Corollary 1,

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

∣∣∣∣ J
]
≤ Jcth(1 + e−ε + ε).

By Theorem 7, J =
∑N

i=1 1{Ci≤cth}. Then Eσ[J ] = Npth = ρne. Therefore,

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

]
= Eσ

[
Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

∣∣∣∣ J
]]
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≤ Eσ[J ]cth(1 + e−ε + ε)

= ρnecth(1 + e−ε + ε).

The parameters ρ and ne do not depend on the choice of N . However, by Lemma 6,

limN→+∞ cth = 0. Therefore, the total expected payment goes to zero as the chosen

N goes to infinity.

4.6 Conclusions

We considered incentive mechanisms for collecting private data from strategic,

privacy-aware individuals, whose valuations of privacy are unknown. The data analyst

is interested in learning an underlying state from the private data of individuals

with minimum overall payment. We considered a model where a data analyst is not

necessarily trustworthy, and data subjects are endowed with the ability to control their

own privacy, which frees the data analyst from the responsibility of privacy protection.

We designed a family of payment mechanisms for the data analyst, which utilize

negative payments to prevent individuals with high privacy valuations from reporting

only noise and cut down the cost of the data analyst. In each designed mechanism,

the individuals exhibit a threshold behavior at a Bayesian Nash equilibrium: only

those with cost coefficients below some threshold participate, and they report data

with certain quality guarantee, where the threshold and the quality guarantee are

both parameters of the mechanism. With appropriate choices of parameters, the

data analyst can fulfill any accuracy goal with diminishing cost at the equilibrium as

the number of individuals grows to infinity.
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Chapter 5

TRADING PRIVATE DATA WITH GENERAL PRIOR DISTRIBUTION

5.1 Introduction

We consider the following model, which is illustrated in Figure 5.1. There are N

individuals and each individual i has a private bit Si, e.g., her rating of a movie, which

is either “good” or “bad” like in the rotten tomatoes website. The joint probability

distribution of S1, S2, . . . , SN is common knowledge. The data collector is interested in

learning the proportion of 1’s in the private bits, which can be viewed as the popularity

of a movie. The data collector uses a payment mechanism to determine the amount

of payment to each individual based on their reported data X1, X2, . . . , XN . When an

individual i uses an ε-differentially private randomization algorithm to generate her

reported data Xi, the privacy loss incurred is ε, and her cost of privacy is a function

of ε. The form of this function is also publicly known.

We study this problem with a game-theoretic approach, where we assume the

individuals are strategic and hence the quality of data an individual reports is de-

termined by her best response that takes into account both the payment and the

privacy loss. A primary goal of the data collector is to design a payment mecha-

nism in which an individual’s best response (or the Nash equilibrium of the game)

has the desired level of quality. To design such a payment mechanism, we borrow

ideas from the peer prediction method Miller et al. (2009), which makes use of the

correlation among private data (which is called signals in their context) to induce

truthful reporting from individuals who have no privacy concern. We should caution

that different from the peer prediction method, the privacy concern of individuals in
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Reported
Data

Private
Data
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�i

X1 Xi XN

SNSiS1

Figure 5.1: Information structure of the model with general prior distribution. Each

individual i has a private bit Si and reports Xi, which is generated based on Si using

a randomized strategy.

this study fundamentally changes the structure of the game and gives the following

distinctive features to our problem. First, since the notion of differential privacy is

adopted, the privacy loss of an individual i is determined by both the strategy for

Si = 1 and that for Si = 0. Therefore, when choosing the randomization strategy, an

individual needs to perform joint optimization over the two possibilities and make a

contingent plan. Second, the mechanism in this dissertation is not intended to elicit

truthful data reporting. The data collector is satisfied with the data quality as long

as the accuracy objective can be achieved. In fact, truthful reporting may even not

be preferred since it would otherwise cost the data collector unnecessary additional

payments. Consequently, when we build this study upon the peer prediction method,

the prediction should be made on the randomized data instead of the original data.

Taking these features into consideration, we design a payment mechanism in which

the randomized response strategy Warner (1965) that generates the reported data by

flipping the private bit with probability 1
eε+1

, where ε > 0, proves to be an equilib-

rium. This equilibrium strategy is ε-differentially private, so the collected data itself

is privacy preserving. By adjusting the corresponding parameter in the mechanism,

the data collector can control the privacy level ε and thus control the data quality to
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achieve any given accuracy objective. In contrast to most of the existing work, which

considers a trusted data collector and thus focuses on designing truthful mechanisms,

our designed mechanism addresses individuals’ privacy concern where the data col-

lector may not be trusted, and is the first one that considers quality control in such

a scenario to suit the principle’s accuracy objective.

5.2 Model

In this chapter, the model for private data is more general than Chapter 3. We

still let Si denote player i’s private bit, and let S = (S1, S2, · · · , SN). The joint

probability distribution of S1, S2, · · · , SN is common knowledge. We assume that

this distribution is symmetric over players; i.e., for any binary sequence s ∈ {0, 1}N

and any of its permutations s′, P(S = s) = P(S = s′). Other notation is the same

as that in Chapter 3.

The data collector is interested in learning the proportion of 1’s in S1, S2, . . . , SN ,

i.e., S̄ = 1
N

∑N
i=1 Si. Let µ̂ be an estimate of S̄ from the reported data X1, X2, . . . , XN .

Then we measure the accuracy of µ̂ by the following definition, which has been used

in the literature (e.g., Ghosh and Roth (2011), where a fixed number 1
3

is used instead

of δ).

Definition 8. An estimate µ̂ of S̄ is (α, δ)-accurate if |S̄ − µ̂| ≤ α holds with

probability at least 1− δ.

5.3 A Payment Mechanism for Quality Control

We wish to design mechanisms such that the quality of the collected data in

equilibrium is controllable. Then the data collector can achieve her accuracy objective

by adjusting parameters in the mechanism. In this section, we present our design

of the payment mechanism. Consider the following payment mechanism R(N,ε) for
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collecting privacy-preserving data from N players, parameterized by a data quality

parameter ε, where N ≥ 2 and ε > 0.

The payment mechanism R(N,ε)

1. Each player reports her data (which can also be the decision of not participat-

ing).

2. For non-participating players, the payment is zero.

3. If there is only one participant, pay zero to this participant. Otherwise, for each

participating player i, arbitrarily choose another participating player j and pay

player i according to Xi and Xj as follows:

R
(N,ε)
i (X) =

g′(ε)(eε + 1)2

2eε
AXi,Xj , (5.1)

where parameters A1,1, A0,0, A0,1, A1,0 are calculated in the next section.

After the collection of data, the data collector estimates S̄ = 1
N

∑N
i=1 Si by

µ̂ =
eε + 1

eε − 1

(
1

n

∑
i : Xi 6=⊥

Xi

)
− 1

eε − 1
, (5.2)

where n is the number of participants.

5.3.1 Payment Parameterization

Recall that we assume that the joint distribution of S1, S2, . . . , SN is symmetric

over players. As a consequence, the private bits of the players have the same marginal

distribution. Denote this marginal distribution as follows:

P1 = P(Si = 1), P0 = P(Si = 0). (5.3)

Due to symmetry, the marginal distribution of any two private bits Si and Sj with

i 6= j does not depend on the specific identities i and j either. Denote the marginal
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distribution of Si and Sj with i 6= j as follows:

P1,1 = P(Si = 1, Sj = 1), P0,0 = P(Si = 0, Sj = 0),

P0,1 = P(Si = 0, Sj = 1) = P1,0 = P(Si = 1, Sj = 0).

(5.4)

We further define a constant D as follows:

D = P(Sj = 1, Si = 1)P(Sj = 0, Si = 0)

− P(Sj = 0, Si = 1)P(Sj = 1, Si = 0)

= P1,1P0,0 − P0,1P1,0,

(5.5)

which can be verified to equal to the covariance of Si and Sj. We assume that D 6= 0,

which is equivalent to the case that Si and Sj are not independent for any two distinct

players i and j (See Appendix H for the proof of the equivalence).

The parameters A1,1, A0,0, A0,1, A1,0 used in the payment mechanism R(N,ε) are

defined as follows:

• If D > 0,

A1,1 =
(eε + 1)2

e2ε − 1

1

D

(
1

eε + 1
P1 +

eε

eε + 1
P0

)
, (5.6)

A0,0 =
(eε + 1)2

e2ε − 1

1

D

(
eε

eε + 1
P1 +

1

eε + 1
P0

)
, (5.7)

A0,1 = 0, (5.8)

A1,0 = 0. (5.9)

• If D < 0,

A1,1 = 0, (5.10)

A0,0 = 0, (5.11)

A0,1 = −(eε + 1)2

e2ε − 1

1

D

(
1

eε + 1
P1 +

eε

eε + 1
P0

)
, (5.12)

A1,0 = −(eε + 1)2

e2ε − 1

1

D

(
eε

eε + 1
P1 +

1

eε + 1
P0

)
. (5.13)
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From the above definition of these parameters we can see the intuition behind the

design of mechanism R(N,ε). When the private bits of two players are positively cor-

related (D > 0), they tend to be the same. Thus, the mechanism rewards agreement

on the reported data to encourage informative data reporting. Similarly, when the

private bits of two players are negatively correlated (D < 0), they tend to be dif-

ferent, and thus correspondingly, the mechanism rewards disagreement to encourage

informative data reporting. However, the more informative the reported data is, the

more privacy cost a player will experience. This tension will make each player choose

a compromise, which is telling truth to some extent.

5.3.2 Nash Equilibrium

Theorem 9. The strategy profile, consisting of the following strategy of player i that

is denoted by σ∗i , is a Nash equilibrium under the payment mechanism R(N,ε):

Pσ∗i (Xi = 1 | Si = 1) = Pσ∗i (Xi = 0 | Si = 0) =
eε

eε + 1
,

Pσ∗i (Xi = 0 | Si = 1) = Pσ∗i (Xi = 1 | Si = 0) =
1

eε + 1
,

Pσ∗i (Xi =⊥ | Si = 1) = Pσ∗i (Xi =⊥ | Si = 0) = 0,

(5.14)

i.e., each player generates her reported data by flipping the private bit with probability

1
eε+1

.

Proof. See Appendix I.

By Theorem 9, the parameter ε of the payment mechanismR(N,ε) plays two roles in

the equilibrium σ∗. On one hand, the strategy each player uses to randomize her data

is ε-differentially private. Therefore, the parameter ε controls how much privacy each

player is willing to trade for payment. On the other hand, the parameter ε describes

the quality of the reported data of each player i, since ε controls the probability that
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the reported data is the same as the true private data as follows:

Pσ∗i (Xi = Si) =
eε

eε + 1
. (5.15)

Therefore, the larger ε is, the more privacy each player is willing to sell, and the

higher data quality the data collector obtains. With the payment mechanism R(N,ε),

the data collector is not only able to know how the data has been randomized, but

also able to control the quality of the collected data.

5.3.3 Estimation Accuracy

In this section, we discuss how the data collector should choose the parameter ε

to achieve the accuracy objective of estimating S̄.

Theorem 10. For any α, δ with α > 0 and 0 < δ < 1, if

ε ≥ ln

(
2 +

1

Nα2δ

)
, (5.16)

then in the equilibrium σ∗ of the payment mechanism R(N,ε), the estimate µ̂ given in

(5.2) is (α, δ)-accurate.

Proof. See Appendix J.

Since the parameter ε of the payment mechanism R(N,ε) describes the quality of

the collected data in the equilibrium σ∗, intuitively, the data collector can achieve

higher accuracy objective by increasing ε. Theorem 10 confirms this intuition. For an

accuracy objective (α, δ), the smaller α and δ are, the higher accuracy is required to

achieve according to the definition of accuracy in Definition 8. However, no matter

how high the accuracy objective is, by Theorem 10, the data collector can always

achieve it by choosing large enough ε, i.e., good enough data quality.
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5.3.4 Asymptotic Optimality in the High Quality Regime

From the principal’s perspective, the strategy profile σ∗ given in Theorem 9 is

very attractive. When players follow σ∗, the quality of the collected data can be con-

trolled by a single parameter ε, and S̄ can be estimated by the simple estimator µ̂. In

this section, we focus on nonnegative payment mechanisms in which σ∗ forms a Nash

equilibrium. We study the optimality of the proposed mechanism in terms of the total

expected payment needed to collect data with a given quality level ε. We first derive

an lower bound on the total expected payment of a nonnegative payment mechanism

in which σ∗ is an equilibrium. Then we compare the expected payment of the pro-

posed mechanism with this lower bound and show that the proposed mechanism is

asymptotically optimal in the high quality regime, i.e., as ε goes to infinity.

Proposition 1. For any nonnegative payment mechanism R in which σ∗ is a Nash

equilibrium, the total expected payment at σ∗ is lower bounded, given as follows:

Eσ∗
[

N∑
i=1

Ri(X)

]
≥ Ng′(ε)(eε + 1). (5.17)

Proof. See Appendix K.

Therefore, to have an equilibrium at σ∗, a nonnegative payment mechanism needs

to pay at least Ng′(ε)(eε + 1) to the players. In the asymptotic regime that ε goes to

infinity, this lower bound is on the order of O(g′(ε)eε). In the equilibrium σ∗ of the

payment mechanism R(N,ε), the total expected payment is given by

Eσ∗
[

N∑
i=1

R
(N,ε)
i (X)

]

= Ng′(ε)(eε + 1) (5.18)

+
Ng′(ε)(eε + 1)2

2eε
(eε + 1)2

e2ε − 1

1

|D| (5.19)
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·
(

e2ε

(eε + 1)2
P0,1 +

eε

(eε + 1)2
(P 2

1 + P 2
0 ) (5.20)

+
1

(eε + 1)2
(P1P1,1 + P0P0,0)

)
, (5.21)

which can be obtained from the proof of Theorem 9.

In the asymptotic regime that ε goes to infinity, the total expected payment of

mechanismR(N,ε) is dominated by the first term, which is identical to the lower bound

Ng′(ε)(eε+1), so the mechanism is asymptotically optimal in the high-quality regime.

5.4 Conclusions

In this chapter we showed how to design the payment mechanism to achieve quality

control when collecting data from privacy-sensitive individuals. We considered a

model in which individuals do not trust the data collector and take into account a

privacy cost that depends on the level of the (local) differential privacy of the data

reporting strategy. Due to privacy concerns, an individual may be only willing to

report a noisy version of the private data, which degrades the quality of the collected

data. Our proposed mechanism incentives individuals to use a randomized response

strategy with a desired noise level in the Nash equilibrium. This strategy generates

the reported data by flipping the private data with probability 1
eε+1

, where ε > 0

is a parameter of the mechanism. Therefore, the quality of the collected data is

controllable by adjusting ε. With properly selected parameters, any accuracy goal can

be fulfilled at the Nash equilibrium, and the total expected payment of the designed

mechanism is asymptotically optimal in the high quality regime. Note that the model

of the private data in this work is a very general one. Considering some specific but

well motivated structure for the model of the private data, such as the model we

considered in Chapter 3 and 4, to find better mechanisms is an exciting direction for

future work.
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Chapter 6

CONCLUSIONS

In this dissertation, data privacy was studied from two perspectives: the relation

between different privacy notions (Chapter 2) and the economic foundations for a

market model of trading private data (Chapter 3–Chapter 5).

Chapter 2 investigated the relation between three different notions of privacy:

identifiability, differential privacy and mutual-information privacy, where identifiabil-

ity guarantees indistinguishability between posterior probabilities, differential privacy

guarantees limited additional disclosures, and mutual information is an information-

theoretic notion. Under a unified privacy–distortion framework, where the distor-

tion is defined to be the expected Hamming distance between the input and output

databases, we established some fundamental connections between these three privacy

notions. Given a maximum allowable distortion D within certain range, the smallest

identifiability level ε∗i (D) and the smallest differential privacy level ε∗d(D) are proved

to satisfy ε∗i (D) − εX ≤ ε∗d(D) ≤ ε∗i (D), where εX is a constant determined by the

prior of the original database, and diminishes to zero when the prior is uniform. Next,

we showed that there is a mechanism that simultaneously minimizes the identifiabil-

ity level and the mutual information given the same maximum allowable distortion

within certain range. We further showed that this mechanism satisfies ε-differential

privacy with ε∗d(D) ≤ ε ≤ ε∗d(D) + 2εX .

Our findings in this part reveal some fundamental connections between the three

notions of privacy. With these three notions of privacy being defined, many interest-

ing issues deserve further attention. The connections we have established in this work

are based on the distortion measure of Hamming distance, which is closely tied with
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the neighboring relations, and we assume that the output synthetic database and the

original database are in the same universe. It would be of great interest to study the

connections of these privacy notions under other common distortion measures and

other output formats. We remark that our results for Hamming distance can be used

to prove lower bounds on the distortion of a differentially private mechanism when

the distortion is measured by the distortion at the worst-case query in a query class

Wang et al. (2015b). Some other interesting directions are as follows. In some cases,

the prior pX is imperfect. Then for privacy notions depending on the prior such as

identifiability and mutual-information privacy, it is natural to ask how we can pro-

tect privacy with robustness over the prior distribution. Identifiability and differential

privacy impose requirements on neighboring databases to protect an individual’s pri-

vacy. Then are there any practical scenarios that we would desire to generalize this

“pairwise” privacy to “group” privacy? The connections between membership pri-

vacy and these three notions of privacy also need to be explored, since membership

privacy has been proposed as a unifying framework for privacy definitions.

Starting from Chapter 3, we studied a market for trading private data, where

a data collector purchases private data from strategic data subjects (individuals)

through an incentive mechanism. The data subjects do not consider the data collector

to be trustworthy, and thus experience a cost incurred by the privacy loss during data

reporting. The data subjects are endowed with the ability to control their own privacy,

which also frees the data collector from the responsibility of privacy protection.

Chapter 3 studied “the value of privacy” under a setting where the private data

of individuals is binary data and represents their knowledge about a common under-

lying state. The value of ε units of privacy is measured by the minimum payment

of all nonnegative payment mechanisms under which an individual’s best response

in a Nash equilibrium is to report the data with a privacy level of ε. We derived
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asymptotically tight lower and upper bounds on the value of privacy as the num-

ber of individuals becomes large, where the upper bound was given by a designed

payment mechanism R(N,ε). We further applied these fundamental limits to find the

minimum total payment for the data collector to achieve certain accuracy target for

learning the underlying state, and derived lower and upper bounds on the minimum

payment. The total payment of the designed mechanism R(N,ε) with properly chosen

parameters is at most one individual’s payment away from the minimum.

Chapter 4 considered a setting where the individuals’s valuations of privacy are

unknown to the data collector/analyst. The data analyst is interested in learning

the underlying state from the reported data with minimum overall payment. We

designed a family of payment mechanisms for the data analyst, which utilize negative

payments to prevent individuals with high privacy valuations from reporting only

noise and cut down the cost of the data analyst. In each designed mechanism, the

individuals exhibit a threshold behavior at a Bayesian Nash equilibrium: only those

with cost coefficients below some threshold participate, and they report data with

certain quality guarantee, where the threshold and the quality guarantee are both

parameters of the mechanism. With appropriate choices of parameters, the data

analyst can fulfill any accuracy goal with diminishing cost at the equilibrium as the

number of individuals grows to infinity.

Chapter 5 showed how to design the payment mechanism to achieve quality control

when individuals’ binary private data follows a general joint probability distribution

with some symmetry. The data collector is interested in learning the average of the

private data. Our proposed mechanism incentives individuals to use a randomized

response strategy with a desired noise level in the Nash equilibrium. This strategy

generates the reported data by flipping the private data with probability 1
eε+1

, where

ε > 0 is a parameter of the mechanism. Therefore, the quality of the collected data is
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controllable by adjusting ε. With properly selected parameters, any accuracy goal can

be fulfilled at the Nash equilibrium, and the total expected payment of the designed

mechanism is asymptotically optimal in the high quality regime.

Our study from the economic perspective suggested a market-based model to

address the privacy concerns in data collection for big data analytics. Under this

market model, many interesting directions can be further explored. We just list a

few of them below. We can consider more general but still structured models for

private data. We have considered the structure where the private data is binary and

is correlated through a common underlying state, which is also binary. We have also

considered a general distribution for the private data where the distribution is sym-

metric over individuals. To broaden the range of applications, it would be of great

interest to study models with larger alphabets for the private data and the underly-

ing state, or with a more complicated correlation structure among the private data.

The learning goal of the data collector should also be set accordingly. For example,

people’s opinions can have impacts on each other and form certain dynamics (see,

e.g., Acemoglu and Ozdaglar (2010)) in reality. Models that capture the structure of

the dynamics would be very appealing. We can also consider a market where there

are multiple rounds of interactions between the data collector and the data subjects.

For example, in a crowdsourcing scenario, a worker (data subject) may be interested

in participating in multiple tasks released by the same crowdsourcer (data collector).

The multi-round setting provides an opportunity of learning for the data collector.

Some characteristics of the data subjects may be learnable during the process and

provide useful information. The data collector may adjust the design of the payment

mechanism after seeing the results from previous rounds. Another direction worth

further investigations goes back to the privacy notions. We have studied the rela-

tions between three different privacy notions: identifiability, differential privacy and
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mutual-information privacy. We used local differential privacy as the privacy mea-

sure in the market model. However, other privacy notions also deserve comprehensive

investigations in a market model. Using different notions of privacy will change the

structure of incentives, thereby resulting in new fundamental tradeoffs. To tackle

different privacy notions in a market model, we may leverage the relations we have

established. This is by no means a complete list of the problems worth studying. In-

corporating privacy protection into big data analytics is a complicated problem that

needs persistent efforts from various aspects.
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Lemma 7. The minimum distortion D∗relaxed(ε) of the relaxed optimization problem
R-PD satisfies

D∗relaxed(ε) = h(ε), (A.1)

where
h(ε) =

n

1 + eε

m−1
.

Proof. We first prove the following claim, which gives a lower bound on the minimum
distortion D∗relaxed(ε).

Claim. Any feasible solution {pX|Y (x | y), x, y ∈ Dn} of R-PD satisfies∑
x∈Dn

pX|Y (x | y)d(x, y) ≥ h(ε).

Proof of the Claim. Consider any feasible {pX|Y (x | y), x, y ∈ Dn}. For any y ∈ Dn
and any integer l with 0 ≤ l ≤ n, let Nl(y) be the set of elements with distance l to
y, i.e.,

Nl(y) = {v ∈ Dn : d(v, y) = l}. (A.2)

Denote Pl = P{X ∈ Nl(y) | Y = y}. Then

∑
x∈Dn

pX|Y (x | y)d(x, y) =
n∑
l=0

lPl.

We first derive a lower bound on Pn. For any u ∈ Nl−1(y), N1(u)∩Nl(y) consists
of the neighbors of u that are in Nl(y). By the constraint (2.14), for any v ∈ N1(u)∩
Nl(y),

pX|Y (u | y) ≤ eεpX|Y (v | y). (A.3)

Each u ∈ Nl−1(y) has n− (l− 1) rows that are the same with the corresponding rows
of y. Each neighbor of u in Nl(y) can be obtained by changing one of these n− (l−1)
rows to a different element in D, which is left with m−1 choices. Therefore, each u ∈
Nl−1(y) has (n−l+1)(m−1) neighbors inNl(y). By similar arguments, each v ∈ Nl(y)
has l neighbors in Nl−1(y). Taking summation of (A.3) over u ∈ Nl−1(y), v ∈ Nl(y)
with u ∼ v yields ∑

u∈Nl−1(y)

(n− l + 1)(m− 1)pX|Y (u | y)

≤ eε
∑

u∈Nl−1(y)

∑
v∈N1(u)∩Nl(y)

pX|Y (v | y).

Thus

(n− l + 1)(m− 1)Pl−1

≤ eε
∑

v∈Nl(y)

∑
u∈N1(v)∩Nl−1(y)

pX|Y (v | y) (A.4)
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= eεlPl. (A.5)

Recall that Nl , |Nl(x)| =
(
n
l

)
(m− 1)l. Then by (A.5) we obtain that, for any l with

1 ≤ l ≤ n,
Pl−1
Nl−1

≤ Pl
Nl

eε.

As a consequence, for any l with 0 ≤ l ≤ n,

Pl ≤
Nl

Nn

e(n−l)εPn. (A.6)

Since
∑n

l=0 Pl = 1, taking summation over l in (A.6) yields

1 ≤ Pn
1

Nne−nε

n∑
l=0

Nle
−lε

= Pn

(
1 + (m− 1)e−ε

)n
Nne−nε

,

i.e.,

Pn ≥
Nne

−nε(
1 + (m− 1)e−ε

)n .
This lower bound on Pn gives the following lower bound:

n∑
l=0

lPl ≥
n∑
l=0

l

(
Pl + a

Nle
−lε∑n−1

k=0 Nke−kε

)
+

nNne
−nε(

1 + (m− 1)e−ε
)n ,

where a = Pn − Nne−nε(
1+(m−1)e−ε

)n .

Consider the following optimization problem:

min
n−1∑
l=0

lQl

subject to Ql ≥ 0, l = 0, 1, . . . , n− 1,

Ql−1

Nl−1
≤ Ql

Nl

eε, l = 1, 2, . . . , n− 1,

n−1∑
l=0

Ql = 1− Nne
−nε(

1 + (m− 1)e−ε
)n .

Suppose the optimal solution of this problem is {Q∗0, Q∗1, . . . , Q∗n−1}. Then

n−1∑
l=0

l

(
Pl + a

Nle
−lε∑n−1

k=0 Nke−kε

)
≥

n−1∑
l=0

lQ∗l
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as
{
Pl + a Nle

−lε∑n−1
k=0 Nke

−kε , l = 0, 1, . . . , n− 1
}

is a feasible solution. Therefore,

n∑
l=0

lPl ≥
n−1∑
l=0

lQ∗l +
nNne

−nε(
1 + (m− 1)e−ε

)n .
Similar to {Pl, l = 0, . . . , n}, {Q∗l , l = 0, . . . , n− 1} satisfies

Q∗l ≤
Nl

Nn−1
e(n−1−l)εQ∗n−1. (A.7)

Since
∑n−1

l=0 Q
∗
l = 1− Nne−nε(

1+(m−1)e−ε
)n , taking summation over l in (A.7) yields

Q∗n−1 ≥
Nn−1e

−(n−1)ε(
1 + (m− 1)e−ε

)n .
Using similar arguments we have

n−1∑
l=0

lQ∗l ≥
n−2∑
l=0

lC∗l +
(n− 1)Nn−1e

−(n−1)ε(
1 + (m− 1)e−ε

)n ,

where {C∗l , l = 0, . . . , n− 2} is the optimal solution of

min
n−2∑
l=0

lCl

subject to Cl ≥ 0, l = 0, 1, . . . , n− 2,

Cl−1
Nl−1

≤ Cl
Nl

eε, l = 1, 2, . . . , n− 2,

n−2∑
l=0

Cl = 1− Nn−1e
−(n−1)ε(

1 + (m− 1)e−ε
)n − Nne

−nε(
1 + (m− 1)e−ε

)n .
Continue this procedure we obtain

n∑
l=0

lPl ≥
n∑
l=0

lNle
−(n−l)ε(

1 + (m− 1)e−ε
)n =

n

1 + eε

m−1
= h(ε).

Therefore, for any feasible {pX|Y (x | y), x, y ∈ Dn},

∑
x∈Dn

pX|Y (x | y)d(x, y) =
n∑
l=0

lPl ≥ h(ε),

which completes the proof of the claim.
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By this claim, any feasible solution satisfies∑
x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y) ≥ h(ε).

Therefore
D∗relaxed(ε) ≥ h(ε). (A.8)

Next we prove the following claim, which gives an upper bound on the minimum
distortion D∗relaxed(ε).

Claim. Consider

pX|Y (x | y) =
e−εd(x,y)(

1 + (m− 1)e−ε
)n , x, y ∈ Dn,

and any {pY (y), y ∈ Dn} with∑
y∈Dn

pY (y) = 1, pY (y) ≥ 0, ∀y ∈ Dn.

Then {pX|Y (x | y), x, y ∈ Dn} and {pY (y), y ∈ Dn} form a feasible solution of R-PD,
and ∑

x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y) = h(ε).

Proof of the Claim. Obviously the considered {pX|Y (x | y), x, y ∈ Dn} and
{pY (y), y ∈ Dn} satisfy constraints (2.16)–(2.18). Therefore to prove the feasibil-
ity, we are left with constraint (2.14) and (2.15). We first verify constraint (2.14).
Consider any pair of neighboring elements x, x′ ∈ Dn and any y ∈ Dn. Then by the
triangle inequality,

d(x, y) ≤ d(x′, y)− d(x′, x) = d(x′, y)− 1.

Therefore,

pX|Y (x | y) =
e−εd(x,y)(

1 + (m− 1)e−ε
)n

≤ e−ε(d(x
′,y)−1)(

1 + (m− 1)e−ε
)n

= eεpX|Y (x′ | y).

Next we verify constraint (2.15). For any y ∈ Dn and any integer l with 0 ≤ l ≤ n,
let Nl(x) be the set of elements with distance l to y as defined in (A.2). Then it is
easy to see that Nl , |Nl(y)| =

(
n
l

)
(m− 1)l, and for any y ∈ Dn,

Dn =
n⋃
l=0

Nl(y).
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Therefore, for any y ∈ Dn,∑
x∈Dn

pX|Y (x | y)

=
∑
x∈Dn

e−εd(x,y)(
1 + (m− 1)e−ε

)n
=

1(
1 + (m− 1)e−ε

)n n∑
l=0

∑
x∈Nl(y)

e−εd(x,y)

=
1(

1 + (m− 1)e−ε
)n n∑

l=0

(
n

l

)
(m− 1)le−εl

= 1.

With feasibility verified, we can proceed to calculate the distortion. Let gε =
1 + (m− 1)e−ε. Then ∑

x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y)

=
1

(gε)n

∑
y∈Dn

pY (y)
n∑
l=0

∑
x∈Nl(y)

e−εd(x,y)d(x, y)

=
1

(gε)n

∑
y∈Dn

pY (y)
n∑
l=0

(
n

l

)
(m− 1)le−εll

=
n(m− 1)e−ε

(
1 + (m− 1)e−ε

)n−1
(gε)n

∑
y∈Dn

pY (y)

=
n

1 + eε

m−1

= h(ε),

which completes the proof of the claim.
By this claim, there exists a feasible solution such that∑

x∈Dn

∑
y∈Dn

pY (y)pX|Y (x | y)d(x, y) = h(ε),

which implies
D∗relaxed(ε) ≤ h(ε).

Combining this upper bound with the lower bound (A.8) gives

D∗relaxed(ε) = h(ε).
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Lemma 8. The optimal value D∗relaxed(ε) = h(ε) of R-PD implies the following lower
bounds for any D with 0 ≤ D ≤ n:

ε∗i (D) ≥ h−1(D), (A.9)

ε∗d(D) ≥ max{h−1(D)− εX , 0}. (A.10)

Proof. First we derive the lower bound on ε∗i (D). Let δ be an arbitrary positive
number. For any D with 0 ≤ D ≤ n, let εD,δ = ε∗i (D) + δ. Then by the definition of
ε∗i , we have that (εD,δ, D) is achievable under identifiability. Therefore

D ≥ D∗i (εD,δ) ≥ D∗relaxed(εD,δ) = h(εD,δ),

where D∗i (·) is the optimal value of PD-I. Since h is a decreasing function, this implies
that εD,δ ≥ h−1(D). Therefore

ε∗i (D) ≥ h−1(D)− δ.

Letting δ → 0 yields
ε∗i (D) ≥ h−1(D).

Next we derive the lower bound on ε∗d(D) using arguments similar to those in the
proof of the lower bound on ε∗i (D). Let δ be an arbitrary positive number. For any
D with 0 ≤ D ≤ n, let εD,δ = ε∗d(D) + δ. Then by the definition of ε∗d, we have that
(εD,δ, D) is achievable under differential privacy. Therefore

D ≥ D∗d(εD,δ) ≥ D∗relaxed(εD,δ + εX) = h(εD,δ + εX),

where D∗d(·) is the optimal value of PD-DP. Since h is a decreasing function, this
implies that εD,δ + εX ≥ h−1(D). Therefore

ε∗d(D) ≥ h−1(D)− εX − δ.

Letting δ → 0 yields
ε∗d(D) ≥ h−1(D)− εX .

Since the privacy level is nonnegative, we obtain the lower bound in (A.10).

Lemma 9. The privacy–distortion function ε∗i of a database X is bounded from below
as

ε∗i (D) ≥ εX

for any D with 0 ≤ D ≤ n, where εX is the constant defined in (2.11).

Proof. Suppose by contradiction that there exists a D with 0 ≤ D ≤ n such that
ε∗i (D) < εX . Let δ be an arbitrary positive number with 0 < δ < εX − ε∗i (D), and let
ε = ε∗i (D) + δ. Then ε < εX and (ε,D) is achievable under identifiability. Consider
the mechanism that achieves (ε,D). Then by the requirement of identifiability, for
any neighboring x, x′ ∈ Dn and any y ∈ Dn,

pX|Y (x | y) ≤ eεpX|Y (x′ | y). (A.11)
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Let pY (·) be the pmf of the output Y . Then pY (y) ≥ 0 for any y ∈ Dn. Therefore,
multiplying both sides of (A.11) by pY (y) and taking summation over y ∈ Dn yield∑

y∈Dn
pX|Y (x | y)pY (y) ≤

∑
y∈Dn

eεpX|Y (x′ | y)pY (y),

which implies
pX(x) ≤ eεpX(x′).

Then there do not exist neighboring x, x′ ∈ Dn with pX(x) = eεXpX(x′) since ε < εX ,
which contradicts with the definition of εX in (2.11).

Lemma 10. For ε ≥ ε̃X , the mechanism E εi defined in (2.21) satisfies ε-identifiability,
and the distortion of E εi is given by E[d(X, Y )] = h(ε).

Proof. Consider any ε ≥ ε̃X . Then under the mechanism E εi , the posterior probability
for any x, y ∈ Dn is given by

pX|Y (x | y) =
pY |X(y | x)pX(x)

pY (y)
=

e−εd(x,y)(
1 + (m− 1)e−ε

)n .
As shown in the proof of Lemma 7, this {pX|Y (x | y), x, y ∈ Dn} and the corresponding
{pY (y), y ∈ Dn} form an optimal solution of the relaxed optimization problem R-PD.
Following the same arguments as in the proof of Lemma 7 we can conclude that E εi
satisfies ε-identifiability, and the distortion of E εi is given by E[d(X, Y )] = h(ε).

Lemma 11. The mechanism E εd defined in (2.22) satisfies ε-differential privacy, and
the distortion of E εd is given by E[d(X, Y )] = h(ε).

Proof. Under mechanism E εd, {pY |X(y | x), x, y ∈ Dn} has the same form as the
posteriors under mechanism E εi . Therefore still by similar arguments as in the proof
of Lemma 7, E εd satisfies ε-differential privacy, and the distortion of E εd is given by
E[d(X, Y )] = h(ε).
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PROOF OF LEMMA 1
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Proof. Consider any nonnegative payment mechanism R and a Nash equilibrium of
it, denoted by σ. For an individual i, consider any strategy σ′i of individual i and let

p1 = Pσ′i(Xi = 1 | Si = 1), q1 = Pσ′i(Xi = 0 | Si = 1),

p0 = Pσ′i(Xi = 1 | Si = 0), q0 = Pσ′i(Xi = 0 | Si = 0).

When other individuals follow σ−i, the expected utility of individual i at the strategy
σ′i is a function of (p1, p0, q1, q0), denoted by Ui(p1, p0, q1, q0). We derive the form of
this function below. The expected payment to individual i can be written as

E(σ′i,σ−i)
[Ri(X)]

=
∑
xi,s

{
Pσ′i(Xi = xi, Si = si,S−i = s−i)

· E(σ′i,σ−i)
[Ri(X) | Xi = xi, Si = si,S−i = s−i]

}
=
∑
xi,s

{
Pσ′i(Xi = xi | Si = si)P(Si = si,S−i = s−i)

· E(σ′i,σ−i)
[Ri(X) | Xi = xi,S−i = s−i]

}
,

where we have used the fact that Xi is independent from S−i given Si, and X−i is
independent from Si givenXi and S−i. The term E(σ′i,σ−i)

[Ri(X) | Xi = xi,S−i = s−i]
does not depend on the strategy of individual i since

E(σ′i,σ−i)
[Ri(X) | Xi = xi,S−i = s−i]

= E(σ′i,σ−i)
[Ri(xi,X−i) | Xi = xi,S−i = s−i]

= Eσ−i [Ri(xi,X−i) | S−i = s−i],

where the last equality follow from the conditional independence between Xi and X−i
given S−i. Then

E(σ′i,σ−i)
[Ri(X)]

=
∑
xi,si

{
Pσ′i(Xi = xi | Si = si)

·
∑
s−i

(
P(S = s)Eσ−i [Ri(xi,X−i) | S−i = s−i]

)}
= K1p1 +K0p0 + L1q1 + L0q0,

where

Ksi =
∑
s−i

(
P(Si = si,S−i = s−i)

· Eσ−i [Ri(1,X−i) | S−i = s−i]
)
, si ∈ {0, 1},
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are the expected payment received by individual i when she reports 1, weighted by
P(Si = 1) and P(Si = 0) when her private signal is 1 and 0, respectively, and

Lsi =
∑
s−i

(
P(Si = si,S−i = s−i)

· Eσ−i [Ri(0,X−i) | S−i = s−i]
)
, si ∈ {0, 1},

are the expected payment received by individual i when she reports 0, weighted by
P(Si = 1) and P(Si = 0) when her private signal is 1 and 0, respectively. Note that
K1, K0, L1 and L0 do not depend on p1, p0, q1, and q0. The privacy level of the
reported data at strategy σ′i is

ζ(σ′i) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣, ∣∣∣∣ln q1q0
∣∣∣∣, ∣∣∣∣ln 1− q1

1− q0

∣∣∣∣,∣∣∣∣ln 1− p1 − q1
1− p0 − q0

∣∣∣∣, ∣∣∣∣ln p1 + q1
p0 + q0

∣∣∣∣}.
With a little abuse of notation, we regard ζ(σ′i) as a function ζ(p1, p0, q1, q0). The
expected utility of individual i can thus be written as

Ui(p1, p0, q1, q0)

= E(σ′i,σ−i)
[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)).

Next we discuss the best response of individual i for different cases of the values
of K1, K0, L1 and L0. Since R is a nonnegative payment mechanism, these values
are all nonnegative. Notice that for any si ∈ {0, 1}, s−i ∈ {0, 1}N−1, P(Si = si,S−i =
s−i) > 0. Therefore, K1 and K0 are either both equal to zero or both positive. The
same argument also applies to L1 and L0. (1) When all of K1, K0, L1 and L0 are zero,
a best response of individual i should minimize the privacy cost. Thus the strategy
of individual i in a Nash equilibrium is to report Xi that is independent of Si so the
privacy cost is zero. (2) When K1 and K0 are positive but L1 and L0 are zero, the
best response of individual i is to always report Xi = 1. (3) Similarly, when K1 and
K0 are zero but L1 and L0 are positive, the best response of individual i is to always
report Xi = 0. We can see that the strategy of individual i in a Nash equilibrium is
non-informative in all the three cases above. (4) In the remainder of this proof, we
focus on the case that all of K1, K0, L1 and L0 are positive.

If a best response of individual i is to always not participate, then it is a non-
informative strategy. Otherwise, a best response of individual i is specified by an
optimal solution of the following optimization problem:

max
p1,p0,q1,q0

Ui(p1, p0, q1, q0)

subject to 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1,

0 ≤ p1 + q1 ≤ 1,

0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1,

0 ≤ p0 + q0 ≤ 1,

p1 + q1 + p0 + q0 > 0.

(P)
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First, we prove that an optimal solution (p∗1, p
∗
0, q
∗
1, q
∗
0) of (P) must satisfy that

p∗1 + q∗1 = p∗0 + q∗0. Suppose not. Without loss of generality we assume that p∗1 + q∗1 <
p∗0 + q∗0. We will find another solution (p′1, p

∗
0, q
′
1, q
∗
0) that yields better utility, which

contradicts the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0).

Since we assume that p∗1 + q∗1 < p∗0 + q∗0, then at least one of the following
two inequality holds: p∗1 < p∗0, q

∗
1 < q∗0. Still without loss of generality we as-

sume that p∗1 < p∗0. Then if q∗1 < q∗0, let p′1 = p∗0 and q′1 = q∗0. Since K1

and L1 are positive, (p′1, p
∗
0, q
′
1, q
∗
0) yields higher payment. It is easy to verify that

ζ(p′1, p
∗
0, q
′
1, q
∗
0) < ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus (p′1, p

∗
0, q
′
1, q
∗
0) yields better utility. For the

other case that q∗1 ≥ q∗0, let p′1 = p∗0 + q∗0 − q∗1 and q′1 = q∗1. Then p∗1 < p′1 ≤ p∗0. Since
K1 is positive, (p′1, p

∗
0, q
′
1, q
∗
0) yields higher payment. To check the privacy cost, notice

that

ζ(p∗1, p
∗
0, q
∗
1, q
∗
0) = max

{
ln
p∗0
p∗1
, ln

1− p∗1
1− p∗0

, ln
q∗1
q∗0
, ln

1− q∗0
1− q∗1

,

ln
1− p∗1 − q∗1
1− p∗0 − q∗0

, ln
p∗0 + q∗0
p∗1 + q∗1

}
,

and

ζ(p′1, p
∗
0, q
′
1, q
∗
0) = max

{
ln
p∗0
p′1
, ln

1− p′1
1− p∗0

, ln
q′1
q∗0
, ln

1− q∗0
1− q′1

}
.

Since p′1 > p∗1 and q′1 = q∗1, ζ(p′1, p
∗
0, q
′
1, q
∗
0) ≤ ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus (p′1, p

∗
0, q
′
1, q
∗
0) yields

better utility. Therefore, by contradiction, we must have p∗1 + q∗1 = p∗0 + q∗0.
Next, we prove that an optimal solution (p∗1, p

∗
0, q
∗
1, q
∗
0) must satisfy that p∗1 + q∗1 =

p∗0 + q∗0 = 1. Still, suppose not. Then we will find another solution (p′1, p
′
0, q
′
1, q
′
0) that

yields better utility. Let

p′1 =
p∗1

p∗1 + q∗1
, q′1 =

q∗1
p∗1 + q∗1

,

p′0 =
p∗0

p∗0 + q∗0
, q′0 =

q∗0
p∗0 + q∗0

.

We have seen that p∗1+q∗1 = p∗0+q∗0. By the last constraint of (P), p∗1+q∗1 = p∗0+q∗0 > 0.
Since we assume that p∗1 + q∗1 and p∗0 + q∗0 are not equal to 1, they must be less than
1. Since K1, K0, L1 and L0 are positive, (p′1, p

′
0, q
′
1, q
′
0) yields higher payment. It is

easy to verify that ζ(p′1, p
′
0, q
′
1, q
′
0) ≤ ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus (p′1, p

′
0, q
′
1, q
′
0) yields better

utility, which contradicts the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0).

By the results above, to find an optimal solution of (P), we can focus on feasible
(p1, p0, q1, q0) such that q1 = 1− p1 and q0 = 1− p0. Let

U i(p1, p0) = K1p1 +K0p0 +K − g(ζ(p1, p0)),

where K1 = K1−L1, K0 = K0−L0, K = L1+L0, and with a little abuse of notation,

ζ(p1, p0) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣}.
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Then (p∗1, p
∗
0, q
∗
1, q
∗
0) is an optimal solution of (P) if and only if (p∗1, p

∗
0) is an optimal

solution of the following optimization problem P’:

max
0≤p1≤1,0≤p0≤1

U i(p1, p0) (P’)

Let (p∗1, p
∗
0) be an optimal solution of (P’). The strategy specified by (p∗1, p

∗
0, 1 −

p∗1, 1− p∗0) is a symmetric randomized response if p∗1 + p∗0 = 1, and is non-informative
if p∗1 = p∗0. Thus it suffices to prove that if p∗1 + p∗0 6= 1, then p∗1 = p∗0. We divide the
case that p∗1 + p∗0 6= 1 into two cases: p∗1 + p∗0 > 1 and p∗1 + p∗0 < 1, and prove that
p∗1 = p∗0 in both cases.
Case 1: p∗1 + p∗0 > 1. Suppose, for contradiction, p∗1 6= p∗0.

If p∗1 = 1, then

max

{∣∣∣∣ln p∗1p∗0
∣∣∣∣, ∣∣∣∣ln 1− p∗1

1− p∗0

∣∣∣∣} = +∞.

Consider p1 = 1 and p0 = 1. Then by the convention

max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣} = 0.

Since U i(p
∗
1, p
∗
0) ≥ U i(p1, p0), then K1 +K0p

∗
0 − g(+∞) ≥ K1 +K0 − g(0). Thus

g(+∞) ≤ −K0(1− p∗0) < +∞. (B.1)

Since g(+∞) ≥ 0, this also indicates that K0 ≤ 0. Next consider p1 = 1 and p0 = 0.
Then

max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣} = +∞.

Since U i(p
∗
1, p
∗
0) ≥ U i(p1, p0), then K1+K0p

∗
0−g(+∞) ≥ K1−g(+∞). Thus K0 ≥ 0,

where we have used the fact that g(+∞) < +∞. Combining the above arguments we
have K0 = 0. However, by (B.1), this indicates that g(+∞) = 0, which contradicts
the assumption that g(ξ) = 0 only for ξ = 0. Therefore, p∗1 6= 1. Following similar
arguments we have p∗0 6= 1, either.

If p∗1 > p∗0, then noticing that p∗1 + p∗0 > 1 we have

max

{∣∣∣∣ln p∗1p∗0
∣∣∣∣, ∣∣∣∣ln 1− p∗1

1− p∗0

∣∣∣∣} = ln
1− p∗0
1− p∗1

.

Consider

p1 =

1−p∗0
1−p∗1

1−p∗0
1−p∗1

+ 1
, p0 =

1
1−p∗0
1−p∗1

+ 1
.

Then

max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣} = ln
1− p∗0
1− p∗1

.
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Since U i(p
∗
1, p
∗
0) ≥ U i(p1, p0), then

K1p
∗
1 +K0p

∗
0 − g

(
ln

1− p∗0
1− p∗1

)
+K

≥ K1p1 +K0p0 − g
(

ln
1− p∗0
1− p∗1

)
+K.

Thus, inserting p1 and p0 we obtain

K1(1− p∗1) +K0(1− p∗0) ≥ 0,

where we have used the condition p∗1 + p∗0 > 1. Next still consider p1 = p0 = 1. Since
U i(p

∗
1, p
∗
0) ≥ U i(p1, p0), then

K1p
∗
1 +K0p

∗
0 − g

(
ln

1− p∗0
1− p∗1

)
≥ K1 +K0 − g(0).

Thus

−g
(

ln
1− p∗0
1− p∗1

)
≥ K1(1− p∗1) +K0(1− p∗0) ≥ 0.

which indicates that ln
1−p∗0
1−p∗1

= 0. Thus p∗1 = p∗0, which contradicts the assumption.

If p∗1 < p∗0, then noticing that p∗1 + p∗0 > 1 we have

max

{∣∣∣∣ln p∗1p∗0
∣∣∣∣, ∣∣∣∣ln 1− p∗1

1− p∗0

∣∣∣∣} = ln
1− p∗1
1− p∗0

.

We use similar arguments to obtain contradiction. Consider

p1 =
1

1−p∗1
1−p∗0

+ 1
, p0 =

1−p∗1
1−p∗0

1−p∗1
1−p∗0

+ 1
.

Then since U i(p
∗
1, p
∗
0) ≥ U i(p1, p0), we have K1(1 − p∗1) + K0(1 − p∗0) ≥ 0. Next still

consider p1 = p0 = 1. Then since U i(p
∗
1, p
∗
0) ≥ U i(p1, p0), we have

−g
(

ln
1− p∗1
1− p∗0

)
≥ K1(1− p∗1) +K0(1− p∗0) ≥ 0.

which again indicates that ln
1−p∗1
1−p∗0

= 0. So p∗1 = p∗0, which contradicts the assumption.

In summary, for the case that p∗1 + p∗0 > 1, p∗1 = p∗0.
Case 2: p∗1 + p∗0 < 1. Suppose, for contradiction, p∗1 6= p∗0. Then we obtain contradic-
tions by similar arguments as used in Case 1.
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First, by comparing U i(p
∗
1, p
∗
0) with U i(0, 0) and U i(0, 1) we can prove that p∗1 6=

0, p∗0 6= 0. If p∗1 > p∗0, then by comparing U i(p
∗
1, p
∗
0) with the expected utility at

p1 =

p∗1
p∗0

p∗1
p∗0

+ 1
, p0 =

1
p∗1
p∗0

+ 1
,

we have K1p
∗
1 +K0p

∗
0 ≤ 0. By comparing U i(p

∗
1, p
∗
0) with U i(0, 0), we have

g

(
ln

1− p∗1
1− p∗0

)
≤ K1p

∗
1 +K0p

∗
0 ≤ 0.

Therefore, p∗1 = p∗0, which contradicts the assumption. If p∗1 < p∗0, then by comparing
U i(p

∗
1, p
∗
0) with the expected utility at

p1 =
1

p∗0
p∗1

+ 1
, p0 =

p∗0
p∗1

p∗0
p∗1

+ 1
,

we have K1p
∗
1 +K0p

∗
0 ≤ 0. By comparing U i(p

∗
1, p
∗
0) with U i(0, 0), we have

g

(
ln

1− p∗1
1− p∗0

)
≤ K1p

∗
1 +K0p

∗
0 ≤ 0.

Therefore, p∗1 = p∗0, which contradicts the assumption. In summary, for the case that
p∗1 + p∗0 < 1, we also have p∗1 = p∗0 by similar arguments as used in Case 1. This
completes the proof.
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Proof. For any nonnegative payment mechanism R in which the strategy profile

(σ
(−ε)
i ,σ−i) is a Nash equilibrium, consider the payment mechanism R′ defined by

R′(xi,x−i) = R(1− xi,x−i).

We first prove that (σ
(ε)
i ,σ−i) is a Nash equilibrium in R′. For an individual i,

consider any strategy σ′i of individual i and let

p1 = Pσ′i(Xi = 1 | Si = 1), q1 = Pσ′i(Xi = 0 | Si = 1),

p0 = Pσ′i(Xi = 1 | Si = 0), q0 = Pσ′i(Xi = 0 | Si = 0).

We say (p1, p0, q1, q0) is feasible if it satisfies that

0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1, 0 ≤ p1 + q1 ≤ 1,

0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1, 0 ≤ p0 + q0 ≤ 1.

Then following the notation in the proof of Lemma 1, in the mechanism R′ and R, we
denote the expected utility of individual i at σ′i when other individuals follow σ−i by
U ′i(p1, p0, q1, q0) and Ui(p1, p0, q1, q0), respectively, and they can be written as follows:

U ′i(p1, p0, q1, q0) = K ′1,ip1 +K ′0,ip0 + L′1,iq1 + L′0,iq0

− g(ζ(p1, p0, q1, q0)),

Ui(p1, p0, q1, q0) = K1,ip1 +K0,ip0 + L1,iq1 + L0,iq0
− g(ζ(p1, p0, q1, q0)).

We derive the relations between K ′1,i, K
′
0,i, L

′
1,i, L

′
0,i and K1,i, K0,i, L1,i, L0,i. By

definition,

K ′1,i =
∑
x−i

R′i(1,x−i)Pσ−i(X−i = x−i, Si = 1)

=
∑
x−i

Ri(0,x−i)Pσ−i(X−i = x−i, Si = 1)

= L1,i.

Similarly, K ′0,i = L0,i, L
′
1,i = K1,i and L′0,i = K0,i. Since (σ

(−ε)
i ,σ−i) is a Nash

equilibrium in R, for any feasible (p1, p0, q1, q0),

Ui

(
1

eε + 1
,

eε

eε + 1
,

eε

eε + 1
,

1

eε + 1

)
≥ Ui(p1, p0, q1, q0).

Therefore, for any feasible (p1, p0, q1, q0),

U ′i

(
eε

eε + 1
,

1

eε + 1
,

1

eε + 1
,

eε

eε + 1

)
≥ U ′i(p1, p0, q1, q0),
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where we have used the symmetry property of the cost function g. This implies that

σ
(ε)
i is a best response of individual i in R′ when other individuals follow σ−i. Now

consider any individual j with j 6= i and any strategy σ′j. Let

p1 = Pσ′j(Xj = 1 | Sj = 1), q1 = Pσ′j(Xj = 0 | Sj = 1),

p0 = Pσ′j(Xj = 1 | Sj = 0), q0 = Pσ′j(Xj = 0 | Sj = 0).

Let σ
(ε)
−j = (σ

(ε)
i ,σ−i,j) and σ

(−ε)
−j = (σ

(−ε)
i ,σ−i,j). Then similarly, in the mechanism R′

and R, we denote the expected utility of individual j at σ′j when other individuals

follow σ
(ε)
−j and σ

(−ε)
−j by U ′j(p1, p0, q1, q0) and Uj(p1, p0, q1, q0), respectively, and they

can be written as follows:

U ′j(p1, p0, q1, q0) = K ′1,jp1 +K ′0,jp0 + L′1,jq1 + L′0,jq0

− g(ζ(p1, p0, q1, q0)),

Uj(p1, p0, q1, q0) = K1,jp1 +K0,jp0 + L1,jq1 + L0,jq0
− g(ζ(p1, p0, q1, q0)).

We derive the relations between K ′1,j, K
′
0,j, L

′
1,j, L

′
0,j and K1,j, K0,j, L1,j, L0,j. By

definition,

K ′1,j =
∑
x−i,j

∑
xi

R′i(xi, 1,x−i,j)

·
∑
si

P
σ
(ε)
i

(Xi = xi | Si = si)

· Pσ−i,j(X−i,j = x−i,j, Si = si, Sj = 1)

=
∑
x−i,j

∑
xi

Ri(1− xi, 1,x−i,j)

·
∑
si

P
σ
(−ε)
i

(Xi = 1− xi | Si = si)

· Pσ−i,j(X−i,j = x−i,j, Si = si, Sj = 1)

= K1,j.

Similarly, K ′0,j = K0,j, L
′
1,j = L1,j, and L′0,j = L0,j. Therefore, for any feasible

(p1, p0, q1, q0),
U ′j(p1, p0, q1, q0) = Uj(p1, p0, q1, q0).

Thus σj is a best response of individual j in R′ when other individuals follow σ
(ε)
−j.

This completes the proof for (σ
(ε)
i ,σ−i) to be a Nash equilibrium in R′.

With the above proof, it is not hard to verify that the expected payment to each
individual at these two equilibria of the two mechanisms are the same.
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Proof. Consider any payment mechanism R and any Nash equilibrium σ of it. We

will construct a genie-aided mechanism R̂ such that σ is also a Nash equilibrium of

R̂ and the expected payment to each individual at this equilibrium is the same under

R and R̂.
As in the proof of Lemma 1, for any individual i, consider any strategy σ′i of

individual i and let

p1 = Pσ′i(Xi = 1 | Si = 1), q1 = Pσ′i(Xi = 0 | Si = 1),

p0 = Pσ′i(Xi = 1 | Si = 0), q0 = Pσ′i(Xi = 0 | Si = 0).

Then we will first derive the expected utility of individual i at the strategy σ′i as a
function of (p1, p0, q1, q0), denoted by Ui(p1, p0, q1, q0), but using a slightly different ex-
pression from the form in Lemma 1. When other individuals follow σ−i, the expected
payment to individual i at the strategy σ′i can be written as

E(σ′i,σ−i)
[Ri(X)]

=
∑
xi,si,w

{
Pσ′i(Xi = xi, Si = si,W = w)

· E(σ′i,σ−i)
[Ri(X) | Xi = xi, Si = si,W = w]

}
=
∑
xi,si,w

{
Pσ′i(Xi = xi | Si = si)P(Si = si,W = w)

· E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w]

}
,

where we have used the fact that Xi is independent from W given Si, and X−i is
independent from Si given Xi and W . Let Ri(xi;w) denote E(σ′i,σ−i)

[Ri(X) | Xi =

xi,W = w] for xi, w ∈ {0, 1}. Then Ri(xi;w) does not depend on the strategy of
individual i since

E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w]

= E(σ′i,σ−i)
[Ri(xi,X−i) | Xi = xi,W = w]

= Eσ−i [Ri(xi,X−i) | W = w],

where the last equality follows from the conditional independence between Xi and
X−i given W . With this notation,

E(σ′i,σ−i)
[Ri(X)]

=
∑
xi,si

{
Pσ′i(Xi = xi | Si = si)

·
∑
w

P(Si = si,W = w)Ri(xi;w)

}
.
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Therefore, the expected utility of individual i is given by

Ui(p1, p0, q1, q0)

= E(σ′i,σ−i)
[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)),

where

Ksi =
∑
w

P(Si = si,W = w)Ri(1;w), si ∈ {0, 1},

Lsi =
∑
w

P(Si = si,W = w)Ri(0;w), si ∈ {0, 1}.

Consider a genie-aided mechanism R̂ defined as follows: for any individual i,

R̂i(xi, w) = Ri(xi;w), xi ∈ X , w ∈ {0, 1}.

Still consider any individual i and any strategy σ′i of individual i. Let Ûi(p1, p0, q1, q0)
denote the expected utility of individual i at the strategy σ′i when other individuals
follow σ−i. Then

Ûi(p1, p0, q1, q0)

= E(σ′i,σ−i)

[
R̂i(Xi,W )− g(ζ(p1, p0, q1, q0))

]
=
∑
xi,si,w

Pσ′i(Xi = xi | Si = si)P(Si = si,W = w)R̂i(xi, w)

− g(ζ(p1, p0, q1, q0))

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)),

where the last equality follows from the definition of R̂i(xi, w). Thus,

Ûi(p1, p0, q1, q0) = Ui(p1, p0, q1, q0). Since σ is a Nash equilibrium of R, the
(p1, p0, q1, q0) that corresponds to σi maximizes Ui(p1, p0, q1, q0), which implies that

σi is also a best response of individual i under the genie-aided mechanism R̂ when

other individuals follow σ−i. Therefore, σ is also a Nash equilibrium of R̂, and the

expected payment to each individual at this equilibrium is the same under R and R̂.
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Proof. We first prove that ε̃ is well-defined. Let a function r : (0,+∞)→ R be defined
as

r(ε) =
D(ε)

VLB(ε)
.

Let P
(ε)
1 and P

(ε)
0 be the conditional distributions of the reported Xi at the ε-strategy

given W = 1 and W = 0, respectively, and let PU be the uniform distribution on
{0, 1}. Then note that

D(ε) = DKL(PU||P (ε)
1 ) = DKL(PU||P (ε)

0 )

=
1

2
ln

(eε + 1)2

4(θeε + 1− θ)((1− θ)eε + θ)
.

Therefore, the function r is continuous on (0,+∞). Further, the function r attains its
maximum value in a bounded subset of (0,+∞) since for any ε ∈ (0,+∞), r(ε) > 0,
and

lim
ε→0

r(ε) = 0

lim
ε→+∞

r(ε) = 0.

The set arg max r(ε) is a closed set since it is the inverse image of one point. Therefore,
ε̃ = inf{arg max r(ε)} is well-defined.

Now consider any feasible (N, ε1, ε2, . . . , εN) of (P1). By the construction of ε̃, for
any individual i,

VLB(εi) ≥
VLB(ε̃)

D(ε̃)
D(εi).

Then

N∑
i=1

VLB(εi) ≥
VLB(ε̃)

D(ε̃)

N∑
i=1

D(εi)

≥ VLB(ε̃)

D(ε̃)
ln(1/τ),

where the second inequality follows from the feasibility of (N, ε1, ε2, . . . , εN). By the

construction of Ñ ,

Ñ <
ln(1/τ)

D(ε̃)
+ 1.

Therefore,

N∑
i=1

VLB(εi) ≥ (Ñ − 1)VLB(ε̃),

which completes the proof.
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Proof. We write R to represent the mechanism R(N,P,cth,ε) for conciseness in this
proof. Consider any individual i and any strategy σ′i. Given Ci = ci, let

p1 = Pσ′i(Xi = 1 | Ci = ci, Si = 1), p0 = Pσ′i(Xi = 1 | Ci = ci, Si = 0),

q1 = Pσ′i(Xi = 0 | Ci = ci, Si = 1), q0 = Pσ′i(Xi = 0 | Ci = ci, Si = 0).

Consider the function

ζ(p1, p0, q1, q0) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣, ∣∣∣∣ln q1q0
∣∣∣∣, ∣∣∣∣ln 1− q1

1− q0

∣∣∣∣,∣∣∣∣ln 1− p1 − q1
1− p0 − q0

∣∣∣∣, ∣∣∣∣ln p1 + q1
p0 + q0

∣∣∣∣}.
Then ζ(p1, p0, q1, q0) is the differential privacy level of σ′i at ci. When other individ-
uals follow σ−i, let J−i be the number of participants among individuals other than
individual i. Then the expected utility of individual i can be written as

E(σ′i,σ−i)
[Ri(X)− g(Ci, σ

′
i) | Ci = ci]

=
N∑
n=1

E(σ′i,σ−i)
[Ri(X) | J−i = n− 1, Ci = ci] · Pσ(J−i = n− 1 | Ci = ci)

− ciζ(p1, p0, q1, q0).

Next we derive the form of the utility as a function of p1, p0, q1 and q0. According
to σ−i,

{J−i = n− 1} =

{∑
j 6=i

1{Cj≤cth} = n− 1

}
, (F.1)

where 1E with E, an arbitrary event in the probability space, is the indicator function
of E. Therefore,

Pσ(J−i = n− 1 | Ci = ci) = Pσ

(∑
j 6=i

1{Cj≤cth} = n− 1 | Ci = ci

)

= P

(∑
j 6=i

1{Cj≤cth} = n− 1

)
,

which does not depend on the strategy of individual i. When n = 1, E(σ′i,σ−i)
[Ri(X) |

J−i = n− 1, Ci = ci] = 0, and Pσ(J−i = n− 1 | Ci = ci) = 1− P≥1, where recall that
P≥1 = 1− (1−FC(cth))N−1. When n > 1, utilizing the equivalence relation (F.1) and
the prior,

E(σ′i,σ−i)
[Ri(X) | J−i = n− 1, Ci = ci]

=
∑

xi∈{0,1,⊥},v∈{0,1}

E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w, J−i = n− 1, Ci = ci]
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· Pσ′i(Xi = xi,W = w | Ci = ci)

=
∑

xi∈{0,1,⊥},v∈{0,1}

{
E(σ′i,σ−i)

[Ri(X) | Xi = xi,W = w, J−i = n− 1] · P(W = w)

·
∑

Si∈{0,1}

P(Si = si | W = w)Pσ′i(Xi = xi | Ci = ci, Si = si)

}
.

Let

R̂i(xi, v, n) = E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w, J−i = n− 1],

xi ∈ {0, 1,⊥}, v ∈ {0, 1}, 1 < n ≤ N.

Then R̂i(xi, v, n) does not depend on the strategy of individual i since

E(σ′i,σ−i)
[Ri(X) | Xi = xi,W = w, J−i = n− 1]

= E(σ′i,σ−i)
[Ri(xi, X−i) | Xi = xi,W = w, J−i = n− 1]

= Eσ−i [Ri(xi, X−i) | W = w, J−i = n− 1].

The value of R̂i(xi, v, n) can be calculated from the description of the mechanism.
With this notation,

E(σ′i,σ−i)
[Ri(X) | J−i = n− 1, Ci = ci]

= R̂i(1, 1, n)PW (1)
(
θp1 + (1− θ)p0

)
+ R̂i(0, 1, n)PW (1)

(
θq1 + (1− θ)q0

)
+ R̂i(1, 0, n)PW (0)

(
(1− θ)p1 + θp0

)
+ R̂i(0, 0, n)PW (0)

(
(1− θ)q1 + θq0

)
=

1

P≥1
(K1p1 +K0p0 + L1q1 + L0q0), (F.2)

where

K1 = P≥1

(
R̂i(1, 1, n)PW (1)θ + R̂i(1, 0, n)PW (0)(1− θ)

)
,

K0 = P≥1

(
R̂i(1, 1, n)PW (1)(1− θ) + R̂i(1, 0, n)PW (0)θ

)
,

L1 = P≥1

(
R̂i(0, 1, n)PW (1)θ + R̂i(0, 0, n)PW (0)(1− θ)

)
,

L0 = P≥1

(
R̂i(0, 1, n)PW (1)(1− θ) + R̂i(0, 0, n)PW (0)θ

)
,

and we have used the fact that R̂i(⊥, v, n) = 0 for any v and n. Note that K1, K0,
L1 and L0 do not depend on p1, p0, q1 and q0. By the description of the mechanism,

K1 = L0 =
1

2

(
cth(eε + 1)

eε
+ cthε

)
,
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K0 = L1 =
1

2

(
cth(eε + 1)

eε
+ cthε−

cth(eε + 1)2

eε

)
.

We can see that K1, K0, L1 and L0 do not depend on n, either. Therefore, combining
the case that n = 1 and (F.2), the expected utility of individual i can be written as

E(σ′i,σ−i)
[Ri(X)− g(Ci, σ

′
i) | Ci = ci]

= K1p1 +K0p0 + L1q1 + L0q0 − ciζ(p1, p0, q1, q0).

Let this utility define a function U of p1, p0, q1, and q0; i.e.,

U(p1, p0, q1, q0) = K1p1 +K0p0 + L1q1 + L0q0 − ciζ(p1, p0, q1, q0).

Now we find the best response of individual i, i.e., an optimal solution of the following
optimization problem:

max
p1,p0,q1,q0

U(p1, p0, q1, q0)

subject to 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1,

0 ≤ p1 + q1 ≤ 1,

0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1,

0 ≤ p0 + q0 ≤ 1,

by the following three steps.
Step 1: First we can focus on an optimal solution (p∗1, p

∗
0, q
∗
1, q
∗
0) such that p∗1 = q∗0

and p∗0 = q∗1 for the following reasons. For any feasible solution (p1, p0, q1, q0), consider
the solution (p′1, p

′
0, q
′
1, q
′
0) given by

p′1 = q′0 =
p1 + q0

2
, p′0 = q′1 =

p0 + q1
2

.

Then since K1 = L0 and K0 = L1,

K1p
′
1 +K0p

′
0 + L1q

′
1 + L0q

′
0 = K1p1 +K0p0 + L1q1 + L0q0.

By the definition of the function ζ,

p0e
−ζ(p1,p0,q1,q0) ≤ p1 ≤ p0e

ζ(p1,p0,q1,q0),

(1− p0)e−ζ(p1,p0,q1,q0) ≤ 1− p1 ≤ (1− p0)eζ(p1,p0,q1,q0),
q0e
−ζ(p1,p0,q1,q0) ≤ q1 ≤ q0e

ζ(p1,p0,q1,q0),

(1− q0)e−ζ(p1,p0,q1,q0) ≤ 1− q1 ≤ (1− q0)eζ(p1,p0,q1,q0).

Then it is not hard to verify that

p′0e
−ζ(p1,p0,q1,q0) ≤ p′1 ≤ p′0e

ζ(p1,p0,q1,q0),

(1− p′0)e−ζ(p1,p0,q1,q0) ≤ 1− p′1 ≤ (1− p′0)eζ(p1,p0,q1,q0),

138



q′0e
−ζ(p1,p0,q1,q0) ≤ q′1 ≤ q′0e

ζ(p1,p0,q1,q0),

(1− q′0)e−ζ(p1,p0,q1,q0) ≤ 1− q′1 ≤ (1− q′0)eζ(p1,p0,q1,q0).
Besides,

1− p′1 − q′1 = 1− p′0 − q′0, p′1 + q′1 = p′0 + q′0.

Thus
ζ(p′1, p

′
0, q
′
1, q
′
0) ≤ ζ(p1, p0, q1, q0),

and
U(p′1, p

′
0, q
′
1, q
′
0) ≥ U(p1, p0, q1, q0).

Further, an optimal solution (p∗1, p
∗
0, q
∗
1, q
∗
0) such that p∗1 = q∗0 and p∗0 = q∗1 must satisfy

that p∗1 ≥ q∗1, since otherwise by swapping p∗1 and p∗0 with q∗1 and q∗0, respectively, the
utility is increased, which contradicts with the optimality of (p∗1, p

∗
0, q
∗
1, q
∗
0).

Step 2: Next, for any such an optimal solution, i.e., (p∗1, p
∗
0, q
∗
1, q
∗
0) with p∗1 = q∗0

and p∗0 = q∗1, we prove that one of the following two holds

p∗1 = q∗0 = p∗0 = q∗1 = 0, or (F.3)

p∗1 + q∗1 = p∗0 + q∗0 = 1, p∗1 > q∗1. (F.4)

Suppose not. Since (p1, p0, q1, q0) = (0, 0, 0, 0) is a feasible solution, U(p∗1, p
∗
0, q
∗
1, q
∗
0) ≥

U(p1, p0, q1, q0) ≥ 0, and thus K1p
∗
1 +K0p

∗
0 + L1q

∗
1 + L0q

∗
0 ≥ 0. Suppose that K1p

∗
1 +

K0p
∗
0 +L1q

∗
1 +L0q

∗
0 = 0. Then since U(p∗1, p

∗
0, q
∗
1, q
∗
0) ≥ 0, we have ζ(p∗1, p

∗
0, q
∗
1, q
∗
0) = 0,

which implies that p∗1 = p∗0 and q∗1 = q∗0. Thus,

K1p
∗
1 +K0p

∗
0 + L1q

∗
1 + L0q

∗
0 =

cth
2

(e−ε + 2ε− eε)(p∗1 + q∗1).

Since e−ε+2ε−eε < 0 for any ε > 0, it must be that p∗1+q∗1 = 0, which contradicts with
the assumption that (p∗1, p

∗
0, q
∗
1, q
∗
0) does not satisfy (F.3). Therefore, K1p

∗
1 + K0p

∗
0 +

L1q
∗
1+L0q

∗
0 > 0. Since (p∗1, p

∗
0, q
∗
1, q
∗
0) does not satisfy (F.4), either p∗1+q∗1 = p∗0+q∗0 < 1

or p∗1 = q∗1. If p∗1 + q∗1 = p∗0 + q∗0 < 1, consider the solution (p′1, p
′
0, q
′
1, q
′
0) given by

p′1 =
p∗1

p∗1 + q∗1
, p′0 =

p∗0
p∗0 + q∗0

,

q′1 =
q∗1

p∗1 + q∗1
, q′0 =

q∗0
p∗0 + q∗0

.

Then

K1p
′
1 +K0p

′
0 + L1q

′
1 + L0q

′
0 =

1

p∗1 + q∗1
(K1p

∗
1 +K0p

∗
0 + L1q

∗
1 + L0q

∗
0)

> K1p
∗
1 +K0p

∗
0 + L1q

∗
1 + L0q

∗
0.

However, ζ(p′1, p
′
0, q
′
1, q
′
0) = ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus U(p′1, p

′
0, q
′
1, q
′
0) > U(p∗1, p

∗
0, q
∗
1, q
∗
0),

which contradicts with the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0). If p∗1 = q∗1, then p∗1 = q∗0 =

p∗0 = q∗1 and

K1p
∗
1 +K0p

∗
0 + L1q

∗
1 + L0q

∗
0 = cth(e−ε + 2ε− eε)p∗1 < 0,
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which contradicts with the fact that K1p
∗
1 + K0p

∗
0 + L1q

∗
1 + L0q

∗
0 > 0. In summary,

for any optimal solution (p∗1, p
∗
0, q
∗
1, q
∗
0) with p∗1 = q∗0 and p∗0 = q∗1, either (F.3) or (F.4)

holds.
Step 3: According to Step 1 and Step 2, we can find an optimal solution among

those feasible solutions, say (p1, p0, q1, q0), with p1 = q0 and p0 = q1, that satisfy
either

p1 = q0 = p0 = q1 = 0, or (F.5)

p1 + q1 = p0 + q0 = 1, p1 > q1. (F.6)

Consider any feasible solution (p1, p0, q1, q0) with p1 = q0 and p0 = q1 and satisfies
(F.6), which can be written as

p1 = q0 =
eεi

eεi + 1
, p0 = q1 =

1

eεi + 1
,

for some εi > 0. Then

U(p1, p0, q1, q0) = −cth(eε + 1)2

eε
1

eεi + 1
− ciεi +

cth(eε + 1)

eε
+ cthε.

Consider a function h : (0,+∞)→ R defined as

h(εi) = −cth(eε + 1)2

eε
1

eεi + 1
− ciεi. (F.7)

Then

h′(εi) =
cth(eε + 1)2

eε
eεi

(eεi + 1)2
− ci,

h′′(εi) = −cth(eε + 1)2

eε
eεi(eεi − 1)

(eεi + 1)3
< 0.

Thus, ε∗i that satisfies
cth(eε + 1)2

eε
eε
∗
i

(eε
∗
i + 1)2

− ci = 0,

i.e., ε∗i = ξ(ci) defined in (4.1), maximizes h(·), and hence maximizes the utility.
Therefore, among those feasible solutions that satisfy (F.6), the solution (p̃∗1, p̃

∗
0, q̃
∗
1, q̃
∗
0)

with

p̃∗1 = q̃∗0 =
eξ(ci)

eξ(ci) + 1
, p̃∗0 = q̃∗1 =

1

eξ(ci) + 1

maximizes the utility. This implies that an optimal solution is either (0, 0, 0, 0) or
(p̃∗1, p̃

∗
0, q̃
∗
1, q̃
∗
0). In the remainder of this step, we prove that if ci > cth, (0, 0, 0, 0) is an

optimal solution, and otherwise, i.e., ci ≤ cth, (p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) is an optimal solution.

First consider the case that ci > cth. Then

U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) = −cth(eε + 1)2

eε
1

eξ(ci) + 1
+
cth(eε + 1)

eε
+ cthε
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− cth(eε + 1)2

eε
ξ(ci)e

ξ(ci)

(eξ(ci) + 1)2

=
cth(eε + 1)2

eε

(
1

eε + 1
+

εeε

(eε + 1)2
− 1

eξ(ci) + 1
− ξ(ci)e

ξ(ci)

(eξ(ci) + 1)2

)
.

Consider a function z : (0,+∞)→ R defined as

z(εi) =
1

eε + 1
+

εeε

(eε + 1)2
− 1

eεi + 1
− εie

εi

(eεi + 1)2
.

Then

z(ε) = 0,

z′(εi) =
εie

εi(eεi − 1)

(eεi + 1)3
> 0.

Thus, for any εi < ε, z(εi) < 0. Since

U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) =

cth(eε + 1)2

eε
z(ξ(ci)),

and ξ(ci) < ε due to ci > cth, we have U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) < 0 = U(0, 0, 0, 0). Therefore,

for the case that ci > cth, (0, 0, 0, 0) is an optimal solution. Next consider the case
that ci ≤ cth. Write the utility as

U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) = h(ξ(ci)) +

cth(eε + 1)

eε
+ cthε,

where the function h is defined in (F.7). Since

h(ε) +
cth(eε + 1)

eε
+ cthε = (cth − ci)ε ≥ 0,

and ξ(ci) maximizes h(·), we have U(p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) ≥ 0 = U(0, 0, 0, 0). Therefore, for

the case that ci ≤ cth, (p̃∗1, p̃
∗
0, q̃
∗
1, q̃
∗
0) is an optimal solution.

In summary, by the three steps above, a best response of individual i is described
as follows:

• If ci > cth,

Pσi(Xi = ⊥ | Ci = ci, Si = si) = 1, for any Si ∈ {0, 1}.

• If ci ≤ cth,

Pσi(Xi = 1 | Ci = ci, Si = 1) = Pσi(Xi = 0 | Ci = ci, Si = 0) =
eξ(ci)

eξ(ci) + 1
,

Pσi(Xi = 0 | Ci = ci, Si = 1) = Pσi(Xi = 1 | Ci = ci, Si = 0) =
1

eξ(ci) + 1
,

where ξ(ci) is defined in (4.1).

This completes the proof that σ is a Bayesian Nash equilibrium of the mechanism
R(N,P,cth,ε).
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Proof. Let the parameter tuple (N, cth, ε) be chosen according to (4.5)–(4.11). Then
cth is a function of N and ε. We write ne, ρ, pth, cth to represent ne(ε), ρ(ε), pth(N, ε),
cth(N, ε) and keep their dependence on N, ε in mind for conciseness in this proof.

We first derive the form of the maximum likelihood decision function ψ. For any
realization X = x, since ψ uses maximum likelihood,

ψ(x) =

{
1 if Pσ(X = x | W = 1) ≥ Pσ(X = x | W = 0),

0 otherwise.

Let A(x) = {i ∈ N : xi 6= ⊥}. By Theorem 7,

Pσ(X = x | W = 1)

=
∏

i∈A(x)

Pσi(Xi = xi, Ci ≤ cth | W = 1) ·
∏

j /∈A(x)

P(Cj > cth)

=
∏

i∈A(x)

Pσi(Xi = xi | Ci ≤ cth,W = 1)P(Ci ≤ cth) ·
∏

j /∈A(x)

P(Cj > cth)

=
∏

i∈A(x)

αxi(1− α)1−xiP(Ci ≤ cth) ·
∏

j /∈A(x)

P(Cj > cth),

where recall that α is defined as in (4.2). Similarly,

Pσ(X = x | W = 0) =
∏

i∈A(x)

(1− α)xiα1−xiP(Ci ≤ cth) ·
∏

j /∈A(x)

P(Cj > cth).

By Corollary 1,

α = θµ+ (1− θ)(1− µ) ≥ θ
eε

eε + 1
+ (1− θ) 1

eε + 1
>

1

2
.

Thus, the condition Pσ(X = x | W = 1) ≥ Pσ(X = x | W = 0) is equivalent to the
condition that the number of 1’s is larger than or equal to the number of 0’s in x.
Therefore,

ψ(X) =

{
1 if

∑
i 1{Xi=1} ≥

∑
i 1{Xi=0},

0 otherwise.

Next we calculate the probability of error, pe. Let

k =

√
2

pmax
e

, d =
√
Npth(1− pth).

By definition,

pe = Pσ(ψ(X) 6= W )

= Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ ≥ kd, ψ(X) 6= W

)
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+ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)
.

Since the random variables 1{Xi 6=⊥} = 1{Ci≤cth} are i.i.d. with mean pth and variance
d2

N
, by Chebyshev’s inequality,

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ ≥ kd, ψ(X) 6= W

)
≤ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ ≥ kd

)
≤ 1

k2

=
pmax
e

2
.

For the second part of pe, we have

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)

≤ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

∣∣∣∣ W = 1

)

+ Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

∣∣∣∣ W = 0

)
=

∑
x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0),

where

B =
{
x ∈ XN :

∣∣|A(x)| −Npth
∣∣ < kd

}
,

R1 =
{
x ∈ XN : ψ(x) 6= 1

}
,

R0 =
{
x ∈ XN : ψ(x) 6= 0

}
,

and |A(x)| is the cardinality of the set A(x) = {i ∈ N : xi 6= ⊥}. Since ψ uses
maximum likelihood,∑

x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0)

=
∑
x∈B

min
{
Pσ(X = x | W = 1),Pσ(X = x | W = 0)

}
≤
∑
x∈B

√
Pσ(X = x | W = 1)Pσ(X = x | W = 0)

=
∑
x∈B

{(√
α(1− α)

)|A(x)|
·
∏

i∈A(x)

P(Ci ≤ cth) ·
∏

j 6=A(x)

P(Cj > cth)

}
.
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Combining the x’s with the same A(x) yields∑
x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0)

≤
∑

I⊆N :||I|−Npth|<kd

{
2|I|
(√

α(1− α)

)|I|
·
∏
i∈I

P(Ci ≤ cth) ·
∏
j 6=I

P(Cj > cth)

}

=
∑

I⊆N :||I|−Npth|<kd

{
e−
|I|
2

ln 1
4α(1−α) ·

∏
i∈I

P(Ci ≤ cth) ·
∏
j 6=I

P(Cj > cth)

}
.

For any I ⊆ N such that
∣∣|I| −Npth∣∣ < kd,

|I| > Npth − kd

= ρne −
√

2

pmax
e

√
ρne(1− pth)

> ρne −
√

2

pmax
e

√
ρne.

By the choice of ρ,

√
ρne >

√√√√ 1

pmax
e

+ ne +

√
1

(pmax
e )2

+
2ne
pmax
e

=

√
1

2pmax
e

+

√
1

2pmax
e

+ ne.

Thus

|I| > ne.

We have known that

α ≥ θ
eε

eε + 1
+ (1− θ) 1

eε + 1
.

Combining the two inequalities above yields

e−
|I|
2

ln 1
4α(1−α) < e−

ne
2

ln
(eε+1)2

4(θeε+1−θ)((1−θ)eε+θ) = e−neD(ε).

By the choice of ne,

e−neD(ε) =
pmax
e

2
.
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Hence, ∑
x∈B∩R1

Pσ(X = x | W = 1) +
∑

x∈B∩R0

Pσ(X = x | W = 0)

≤ pmax
e

2

∑
I⊆N :||I|−Npth|<kd

{∏
i∈I

P(Ci ≤ cth) ·
∏
j 6=I

P(Cj > cth)

}

≤ pmax
e

2

∑
I⊆N

{∏
i∈I

P(Ci ≤ cth) ·
∏
j 6=I

P(Cj > cth)

}
=
pmax
e

2
.

This gives an upper bound on the second part of pe; i.e.,

Pσ

(∣∣∣∣∣
N∑
i=1

1{Xi 6=⊥} −Npth
∣∣∣∣∣ < kd, ψ(X) 6= W

)
≤ pmax

e

2
.

Therefore,
pe ≤ pmax

e .

Finally, we bound the total expected payment. Let J be the number of partici-
pants. By Corollary 1,

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

∣∣∣∣ J
]
≤ Jcth(1 + e−ε + ε).

By Theorem 7,

J =
N∑
i=1

1{Ci≤cth}.

Then Eσ[J ] = Npth = ρne. Therefore,

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

]
= Eσ

[
Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

∣∣∣∣ J
]]

≤ Eσ[J ]cth(1 + e−ε + ε)

= ρnecth(1 + e−ε + ε).

The parameters ρ and ne do not depend on the choice of N . However, by Lemma 6,

lim
N→+∞

cth = 0.

Therefore, the total expected payment goes to zero as the chosen N goes to infinity.
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In this section we prove that D 6= 0 is equivalent to the statement Si and Sj
are not independent for any two distinct players i and j. The direction that D 6= 0
implies dependence is obvious since D is the covariance of Si and Sj.

For the other direction, suppose by contradiction that D = 0. Consider any two
distinct players i and j. Recall that

P1 = P(Si = 1), P0 = P(Si = 0).

First notice that P1 6= 0 and P0 6= 0 since otherwise Si and Sj are independent. Then
D = 0 implies that

P(Sj = 1 | Si = 1)P(Sj = 0 | Si = 0)

= P(Sj = 0 | Si = 1)P(Sj = 1 | Si = 0).
(H.1)

Since P(Sj = 0 | Si = 1) = 1−P(Sj = 1 | Si = 1) and P(Sj = 1 | Si = 0) = 1−P(Sj =
0 | Si = 0), (H.1) further implies that

P(Sj = 1 | Si = 1) = 1− P(Sj = 0 | Si = 0)

= P(Sj = 1 | Si = 0).

Similarly,
P(Sj = 0 | Si = 1) = P(Sj = 0 | Si = 0).

Therefore, Si and Sj are independent, which contradicts with the assumption that
they are not independent. This completes the proof.
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Proof. We write R to represent the mechanism R(N,ε) for conciseness in this proof.
For any player i and any strategy σ′i, let

p1 = Pσ′i(Xi = 1 | Si = 1), p0 = Pσ′i(Xi = 1 | Si = 0),

q1 = Pσ′i(Xi = 0 | Si = 1), q0 = Pσ′i(Xi = 0 | Si = 0).

We consider the case that D > 0. The proof for the case that D < 0 is similar.
Suppose that other players follow σ∗−i. Let the payment of player i be computed

using the reported data Xj of some other player j. Then the expected payment of
player i can be written as

E(σ′i,σ
∗
−i)

[Ri(X)]

=
∑

xi,xj∈{0,1}

Ri(xi, xj)P(σ′i,σ
∗
−i)

(Xi = xi, Xj = xj)

=
∑

xi,Si∈{0,1}

(
Pσ′i(Xi = xi | Si = si)

·
∑

xj∈{0,1}

Ri(xi, xj)Pσ∗j (Xj = xj, Si = si)

)
= K1p1 +K0p0 + L1q1 + L0q0,

where

K1 =
g′(ε)(eε + 1)2

2eε
A1,1 · Pσ∗j (Xj = 1, Si = 1),

K0 =
g′(ε)(eε + 1)2

2eε
A1,1 · Pσ∗j (Xj = 1, Si = 0),

L1 =
g′(ε)(eε + 1)2

2eε
A0,0 · Pσ∗j (Xj = 0, Si = 1),

L0 =
g′(ε)(eε + 1)2

2eε
A0,0 · Pσ∗j (Xj = 0, Si = 0).

Note that K1, K0, L1 and L0 are all positive and they do not depend on p1, p0, q1
and q0.

The privacy level of σ′i can be written as

ζ(σ′i) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣, ∣∣∣∣ln q1q0
∣∣∣∣, ∣∣∣∣ln 1− q1

1− q0

∣∣∣∣,∣∣∣∣ln 1− p1 − q1
1− p0 − q0

∣∣∣∣, ∣∣∣∣ln p1 + q1
p0 + q0

∣∣∣∣}.
With a little abuse of notation, we consider ζ(σ′i) as a function ζ(p1, p0, q1, q0).

The expected utility of player i can thus be written as

E(σ′i,σ
∗
−i)

[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)).
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Let this utility define a function U(p1, p0, q1, q0). Now we find the best response of
player i, i.e., the (p1, p0, q1, q0) that maximizes U(p1, p0, q1, q0). If player i does not
participate, then p1 = p0 = q1 = q0 = 0 and U(0, 0, 0, 0) = 0. Otherwise, we find an
optimal solution of the following optimization problem:

max
p1,p0,q1,q0

U(p1, p0, q1, q0) (P)

subject to 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1,

0 ≤ p1 + q1 ≤ 1,

0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1,

0 ≤ p0 + q0 ≤ 1,

p1 + q1 + p0 + q0 > 0, (I.1)

by the following three steps.
Step 1. First, we prove that an optimal solution (p∗1, p

∗
0, q
∗
1, q
∗
0) must satisfy that

p∗1 + q∗1 = p∗0 + q∗0. Suppose not. Without loss of generality we assume that p∗1 + q∗1 <
p∗0 + q∗0. We will find another solution (p′1, p

∗
0, q
′
1, q
∗
0) that yields better utility, which

contradicts the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0).

Since we assume that p∗1 + q∗1 < p∗0 + q∗0, then at least one of the following two
inequality holds: p∗1 < p∗0, q

∗
1 < q∗0. Still without loss of generality we assume that

p∗1 < p∗0. Then if q∗1 < q∗0, let p′1 = p∗0 and q′1 = q∗0. Since K1 and L1 are posi-
tive, (p′1, p

∗
0, q
′
1, q
∗
0) yields higher payment. It is easy to verify that ζ(p′1, p

∗
0, q
′
1, q
∗
0) <

ζ(p∗1, p
∗
0, q
∗
1, q
∗
0). Thus (p′1, p

∗
0, q
′
1, q
∗
0) yields better utility. For the other case that

q∗1 ≥ q∗0, let p′1 = p∗0 + q∗0 − q∗1 and q′1 = q∗1. Then p∗1 < p′1 ≤ p∗0. Since K1 is positive,
(p′1, p

∗
0, q
′
1, q
∗
0) yields higher payment. To check the privacy cost, notice that

ζ(p∗1, p
∗
0, q
∗
1, q
∗
0) = max

{
ln
p∗0
p∗1
, ln

1− p∗1
1− p∗0

, ln
q∗1
q∗0
, ln

1− q∗0
1− q∗1

,

ln
1− p∗1 − q∗1
1− p∗0 − q∗0

, ln
p∗0 + q∗0
p∗1 + q∗1

}
,

and

ζ(p′1, p
∗
0, q
′
1, q
∗
0) = max

{
ln
p∗0
p′1
, ln

1− p′1
1− p∗0

, ln
q′1
q∗0
, ln

1− q∗0
1− q′1

}
.

Since p′1 > p∗1 and q′1 = q∗1, ζ(p′1, p
∗
0, q
′
1, q
∗
0) ≤ ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus (p′1, p

∗
0, q
′
1, q
∗
0) yields

better utility. Therefore, by contradiction, we must have p∗1 + q∗1 = p∗0 + q∗0.
Step 2. Next, we prove that an optimal solution (p∗1, p

∗
0, q
∗
1, q
∗
0) must satisfy that

p∗1 + q∗1 = p∗0 + q∗0 = 1. Still, suppose not. Then we will find another solution
(p′1, p

′
0, q
′
1, q
′
0) that yields better utility.

Let

p′1 =
p∗1

p∗1 + q∗1
, q′1 =

q∗1
p∗1 + q∗1

,

p′0 =
p∗0

p∗0 + q∗0
, q′0 =

q∗0
p∗0 + q∗0

.
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By Step 1, p∗1 + q∗1 = p∗0 + q∗0. By constraint (I.1), p∗1 + q∗1 = p∗0 + q∗0 > 0. Since we
assume that p∗1 + q∗1 and p∗0 + q∗0 are not equal to 1, they must be less than 1. Since
K1, K0, L1 and L0 are positive, (p′1, p

′
0, q
′
1, q
′
0) yields higher payment. It is easy to

verify that ζ(p′1, p
′
0, q
′
1, q
′
0) ≤ ζ(p∗1, p

∗
0, q
∗
1, q
∗
0). Thus (p′1, p

′
0, q
′
1, q
′
0) yields better utility,

which contradicts the optimality of (p∗1, p
∗
0, q
∗
1, q
∗
0).

Step 3. By Step 1 and Step 2, the optimization problem (P) can be written as:

max
p1,p0∈[0,1]

K̄1p1 + K̄0p0 − g(ζ(p1, p0, 1− p1, 1− p0)) + K̄, (P1)

where

K̄1 = K1 − L1 =
g′(ε)(eε + 1)2

2eε
,

K̄0 = K0 − L0 = −g
′(ε)(eε + 1)2

2eε
,

K̄ = L1 + L0

=
g′(ε)(eε + 1)2

2eε
(eε + 1)2

e2ε − 1

1

D

·
(

eε

eε + 1
P1 +

1

eε + 1
P0

)(
1

eε + 1
P1 +

eε

eε + 1
P0

)
.

The above calculation is done by noticing that

e2ε − 1

(eε + 1)2
D = Pσj(Xj = 1, Si = 1)Pσj(Xj = 0, Si = 0)

− Pσj(Xj = 0, Si = 1)Pσj(Xj = 1, Si = 0).

Solving (P1) is equivalent to solving the following optimization problem

max
p1,p0,ξ

K̄1p1 + K̄0p0 − g(ξ) + K̄ (P2)

subject to ln p1 − ln p0 − ξ ≤ 0

ln p1 − ln p0 + ξ ≥ 0

ln(1− p1)− ln(1− p0)− ξ ≤ 0

ln(1− p1)− ln(1− p0) + ξ ≥ 0

p1 ∈ [0, 1], p0 ∈ [0, 1], ξ ∈ [0,+∞].

The problem (P2) can be solved as follows: we first fix a ξ ∈ [0,+∞] and maximize
the objective function with respect to p1 and p0; then we find an optimal ξ. For
ξ = 0, the objective function always equals to K̄ for feasible (p1, p0). For ξ = +∞,
the objective function always equal to −∞. For any fixed 0 < ξ < +∞, the problem
(P2) is a linear programming problem. The optimal solution is

(p
(ξ)
1 , p

(ξ)
0 ) =

(
eξ

eξ + 1
,

1

eξ + 1

)
,
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and the optimal value is

−g
′(ε)(eε + 1)2

eε
1

eξ + 1
− g(ξ) + K̄1 + K̄.

Let this optimal value defines a function f of ξ; i.e.,

f(ξ) = −g
′(ε)(eε + 1)2

eε
1

eξ + 1
− g(ξ) + K̄1 + K̄. (I.2)

To find the optimal ξ of f(ξ), we calculate the derivatives of f as follows:

f ′(ξ) =
g′(ε)(eε + 1)2

eε
eξ

(eξ + 1)2
− g′(ξ),

f ′′(ξ) = −g
′(ε)(eε + 1)2

eε
eξ(eξ − 1)

(eξ + 1)3
− g′′(ξ) ≤ 0,

where the second inequality is due to the convexity of the cost function g. Therefore,
f is concave. Since f ′(ε) = 0, the maximum value of f is achieved at ε. The optimal
value is given by

f(ε) = −g
′(ε)(eε + 1)2

eε
1

eε + 1
− g(ε) + K̄1 + K̄

= g′(ε)
eε − e−ε

2
− g(ε) + K̄.

By the convexity of g,

g(ε) ≤ g′(ε)ε ≤ g′(ε)
eε − e−ε

2
.

Therefore, the optimal value satisfies that f(ε) ≥ K̄, which is greater than 0, and the
optimal solution of (P1) is given by

p∗1 =
eε

eε + 1
, p∗0 =

1

eε + 1
.

According to the three steps above, the optimal solution of (P) is given by

p∗1 =
eε

eε + 1
, p∗0 =

1

eε + 1
,

q∗1 =
1

eε + 1
, q∗0 =

eε

eε + 1
,

and the optimal value is greater than 0. Therefore, the best response of player i is
σ∗i , which implies that σ∗ is a Nash equilibrium of the mechanism R(N,ε).
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Proof. In the equilibrium σ∗ of the mechanism R(N,ε), for each player i, given the
private bit Si, the reported data Xi is independent of S−i and X−i, and for any
si ∈ {0, 1},

Pσ∗i (Xi = si | Si = si) =
eε

eε + 1
,

Pσ∗i (Xi = 1− si | Si = si) =
1

eε + 1
.

Therefore, given S = s for any s ∈ {0, 1}N , X1, X2, . . . , XN are independent random
variables and each Xi has the distribution:

Pσ∗i (Xi = 1 | S = s) =
esiε

eε + 1
,

Pσ∗i (Xi = 0 | S = s) =
e(1−si)ε

eε + 1
.

Recall that the principal is interested in estimating S̄ = 1
N

∑N
i=1 Si. The mech-

anism R(N,ε) estimates S̄ by µ̂, which can be written as follows in the equilibrium
σ∗:

µ̂ =
eε + 1

eε − 1

1

N

N∑
i=1

Xi −
1

eε − 1
.

We bound the probability for |S̄ − µ̂| > α in the equilibrium σ∗. First we write this
probability as follows:

Pσ∗(|S̄ − µ̂| > α)

=
∑

s∈{0,1}N
Pσ∗(|S̄ − µ̂| > α | S = s)P(S = s)

Given any s ∈ {0, 1}N , notice that

S̄ − µ̂ =
1

N

N∑
i=1

(
eε + 1

eε − 1
Xi − Si −

1

eε − 1

)
is the average of N independent random variables. The expectation and variance of
S̄ − µ̂ can be calculated as

Eσ∗ [S̄ − µ̂] = 0,

Vσ∗(S̄ − µ̂) =
1

N

eε

(eε − 1)2
.

Then by Chebyshev’s inequality,

Pσ∗(|S̄ − µ̂| > α | S = s) ≤ 1

α2N

eε

(eε − 1)2
.
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Therefore,

Pσ∗(|S̄ − µ̂| > α) ≤ 1

α2N

eε

(eε − 1)2
.

Since we choose

ε ≥ ln

(
2 +

1

Nα2δ

)
,

we have

1

α2N

eε

(eε − 1)2
=

1

α2N

1

eε + e−ε − 2

≤ 1

α2N

1

eε − 2
≤ δ.

Therefore, Pσ∗(|S̄ − µ̂| > α) ≤ δ and thus Pσ∗(|S̄ − µ̂| ≤ α) ≥ 1− δ, which indicates
that the estimate µ̂ is (α, δ)-accurate in the equilibrium σ∗.
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Proof. Consider any nonnegative payment mechanism R. For any player i and any
strategy σ′i, let

p1 = Pσ′i(Xi = 1 | Si = 1), p0 = Pσ′i(Xi = 1 | Si = 0),

q1 = Pσ′i(Xi = 0 | Si = 1), q0 = Pσ′i(Xi = 0 | Si = 0).

Consider the strategy profile σ∗. Similar to the proof of Theorem 9, we write the
expected payment of player i as

E(σ′i,σ
∗
−i)

[Ri(X)]

=
∑

x∈{0,1}N
Ri(xi, x−i)P(σ′i,σ

∗
−i)

(Xi, X−i)

=
∑

xi,si∈{0,1}

(
Pσ′i(Xi = xi | Si = si)

·
∑

x−i∈{0,1}N−1

Ri(xi, x−i)Pσ∗−i(X−i = x−i, Si = si)

)
= K1p1 +K0p0 + L1q1 + L0q0,

where

K1 =
∑

x−i∈{0,1}N−1

Ri(1, x−i)Pσ−i(X−i = x−i, Si = 1),

K0 =
∑

x−i∈{0,1}N−1

Ri(1, x−i)Pσ−i(X−i = x−i, Si = 0),

L1 =
∑

x−i∈{0,1}N−1

Ri(0, x−i)Pσ−i(X−i = x−i, Si = 1),

L0 =
∑

x−i∈{0,1}N−1

Ri(0, x−i)Pσ−i(X−i = x−i, Si = 0).

Note that K1, K0, L1 and L0 are all nonnegative and they do not depend on σ′i. Then
the expected utility of player i can be written as

E(σ′i,σ
∗
−i)

[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)).

Consider the strategy σ
(ξ)
i of player i defined as follows

P
σ
(ξ)
i

(Xi = 1 | Si = 1) = P
σ
(ξ)
i

(Xi = 0 | Si = 0) =
eξ

eξ + 1
,

P
σ
(ξ)
i

(Xi = 0 | Si = 1) = P
σ
(ξ)
i

(Xi = 1 | Si = 0) =
1

eξ + 1
.
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Then the expected utility of player i can be further written as

E
(σ

(ξ)
i ,σ∗−i)

[Ri(X)− g(ζ(σ
(ξ)
i ))]

= (K1 − L1)
eξ

eξ + 1
+ (K0 − L0)

1

eξ + 1
+ L1 + L0 − g(ξ)

= K̄1
eξ

eξ + 1
+ K̄0

1

eξ + 1
+ K̄ − g(ξ)

= −(K̄1 − K̄0)
1

eξ + 1
− g(ξ) + K̄1 + K̄,

where
K̄1 = K1 − L1, K̄0 = K0 − L0, K̄ = L1 + L0.

Let this expected utility define a function h of ξ; i.e.,

h(ξ) = −(K̄1 − K̄0)
1

eξ + 1
− g(ξ) + K̄1 + K̄.

Then a necessary condition for σ∗ to be a Nash equilibrium is that the level ε in σ∗i
maximizes h(ξ). Since

h′(ξ) = (K̄1 − K̄0)
eξ

(eξ + 1)2
− g′(ξ),

we must have

K̄1 − K̄0 =
g′(ε)(eε + 1)2

eε
.

Next let us bound K̄1 + K̄. By definitions,

K̄1 − K̄0 =
∑
x−i

(
Ri(1, x−i)−Ri(0, x−i)

)
·
(
Pσ∗−i(X−i = x−i, Si = 1)

− Pσ∗−i(X−i = x−i, Si = 0)
)
.

Let A = {x−i ∈ {0, 1}N−1 : Ri(1, x−i) ≥ Ri(0, x−i)}. Then

K̄1 + K̄ =
∑
x−i

(
Ri(1, x−i)Pσ∗−i(X−i = x−i, Si = 1)

+Ri(0, x−i)Pσ∗−i(X−i = x−i, Si = 0)
)

≥
∑
x−i∈A

(
Ri(1, x−i)−Ri(0, x−i)

)
· Pσ∗−i(X−i = x−i, Si = 1)
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+
∑

x−i∈Ac

(
Ri(0, x−i)−Ri(1, x−i)

)
· Pσ∗−i(X−i = x−i, Si = 0)

≥ K̄1 − K̄0

=
g′(ε)(eε + 1)2

eε
.

Therefore, the expected payment to player i at σ∗ is lower bounded as

Eσ∗ [Ri(X)] = −(K̄1 − K̄0)
1

eξ + 1
+ K̄1 + K̄

≥ g′(ε)(eε + 1),

and thus the total expected payment at σ∗ is lower bounded as

Eσ∗
[

N∑
i=1

Ri(X)

]
≥ Ng′(ε)(eε + 1).
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