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ABSTRACT    

Time metric is an important consideration for all longitudinal models because it can 

influence the interpretation of estimates, parameter estimate accuracy, and model 

convergence in longitudinal models with latent variables. Currently, the literature on 

latent difference score (LDS) models does not discuss the importance of time metric. 

Furthermore, there is little research using simulations to investigate LDS models.  This 

study examined the influence of time metric on model estimation, interpretation, 

parameter estimate accuracy, and convergence in LDS models using empirical 

simulations. Results indicated that for a time structure with a true time metric where 

participants had different starting points and unequally spaced intervals, LDS models fit 

with a restructured and less informative time metric resulted in biased parameter 

estimates. However, models examined using the true time metric were less likely to 

converge than models using the restructured time metric, likely due to missing data. 

Where participants had different starting points but equally spaced intervals, LDS models 

fit with a restructured time metric resulted in biased estimates of intercept means, but all 

other parameter estimates were unbiased, and models examined using the true time 

metric had less convergence than the restructured time metric as well due to missing data. 

The findings of this study support prior research on time metric in longitudinal models, 

and further research should examine these findings under alternative conditions. The 

importance of these findings for substantive researchers is discussed. 
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Introduction 

 Longitudinal data analysis requires a temporal design that allows for accurate 

examination of the true process in the data (Collins, 2006). There are many 

considerations for temporal design, such as whether each participant has a similar or 

different timing schedule (that is, measurements are spaced uniquely for each 

participant), and whether the design is balanced (the spacing and number of measurement 

waves are the same across participants) (Card & Little, 2007; Singer & Willett, 2003). 

The time span of a study is also important when investigating developmental processes 

(Card & Little, 2007). Temporal design is defined as the “rationale underlying the 

sampling of times of measurement” (Collins & Graham, 2002). In longitudinal studies, 

temporal design choices should have a strong theoretical or empirical basis; however, 

these choices rarely have strong support in practice (Collins & Graham, 2002; Selig & 

Preacher, 2009).  

Most researchers use relatively simple time metrics when examining latent 

difference score (LDS) models even if a complex time metric is more appropriate. For 

example, researchers may use measurement occasion data instead of using age (a more 

complex time metric that is potentially more sensitive to capturing the true change 

process) because their data are already structured with respect to measurement occasion 

(Small, Dixon, McArdle, & Grimm, 2012). Researchers may not be willing to use the 

more sensitive time metric because it can be tedious to change the data structure and to 

re-program the LDS model to accommodate the more complex time metric. Furthermore, 

when using a more complex time metric, the organization of the data may lead to a very 

sparse data structure, which can affect model convergence.  
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 However, analyzing data structured with a time metric that does not capture the 

true process of change to estimate LDS models can affect parameter estimation and the 

conclusions drawn from the study. Specifically, coupling parameters (the time-dependent 

effects of one construct on successive change in another construct; McArdle, 2001, 2009) 

in the bivariate dual change LDS model have different interpretations based on the time 

metric of the data. Furthermore, model fit may be worse when using the time metric that 

does not capture the true process of change, and models may not converge if the time 

metric used is incorrect for the process of interest. Finally, covariance coverage may be 

very low for the later measurement occasion variables when data are structured by 

measurement occasion because of random and non-random attrition (i.e. a pattern of 

attrition). The consideration of time metric in LDS models is an extension of work 

examining the importance of time metric for other longitudinal models such as growth 

models (Hoffman, 2015). 

 It is important to examine the role of time structure in LDS models because the 

time metric must represent change as accurately as possible in the LDS model. Research 

has not yet addressed accuracy of change in the LDS model with respect to time, and 

there has been no simulation work investigating different time metrics with LDS models. 

This lack of discussion in the literature would indicate that researchers using the LDS 

model might not understand the consequences of using different time metrics for their 

data. This study is an important contribution for substantive researchers because it can 

inform researchers about the benefits of using more appropriate time metrics when fitting 

LDS models. The aim of this study is to determine whether different time metrics 
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influence the estimation and interpretation of model parameters, model convergence, and 

conclusions drawn from LDS models.  

Background Literature 

Latent Growth Curve (LGC) Models  

Latent growth curve (LGC) models account for intraindividual change over time 

and take into account predictors of this intraindividual change. LGC models can be fit in 

either the structural equation modeling (SEM) or multilevel modeling (MLM) 

frameworks (Muthén & Curran, 1997; Selig & Preacher, 2009; Singer & Willett, 2003). 

The LGC model can be represented as a restricted common factor model. Using matrix 

notation, the LGC model can be written as 

yn = Ληn + un       (1) 

where yn is the t x 1 vector of observed scores with t repeated measures for participant n, 

Λ is the t x R factor loading matrix defining the latent growth factors (R = 1 for no 

growth, R = 2 for linear growth), ηn is the R x 1 vector with latent factor scores for 

participant n, and un is the t x 1 vector of unique scores for participant n.  

Latent Difference Score (LDS) Models 

The latent difference score (LDS) model (also known as the latent change score or 

LCS model) allows researchers to investigate time-sequential effects with multivariate 

longitudinal data (Ferrer & McArdle, 2003; Hamagami & McArdle, 2001; McArdle, 

2001, 2009; McArdle & Nesselroade, 1994). The difference between LDS and LGC 

models is that LGC models assess the growth rates of the variable over time, and LDS 

models assess change between two time points for several measurement waves. The LDS 

and LGC models answer different substantive research questions about change over time 
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(Grimm, 2007). Growth models investigate change from start to finish, and LDS models 

focus on dynamic change where change between two time points is based prior status 

(and potentially prior rates of change). While LGC models provide information about 

how growth in variables is related over time, the LDS model provides information about 

dynamic relations between variables that the LGC model does not (McArdle, 2009). The 

LDS model represents dynamic change using difference scores (McArdle, 2001).  

The LDS model is often fit in the SEM framework and models change between 

each time point and the previous time point as a latent difference between two common 

factor scores (McArdle, 2001). LDS models address questions of causal and dynamic 

change that prior SEMs did not address (McArdle, 2009). The LDS model represents 

difference scores as latent variables meaning it is assumed that the differences 

represented by the scores are measured without error. Representing difference scores 

using latent variables addresses the problem of measurement error in difference scores 

(Cronbach & Furby, 1970). One advantage of the LDS model over the LGC model is that 

the LDS model allows predictors of change to differ at different measurement waves. The 

LDS model is also useful when researchers are interested in intraindividual change, but 

when that change may be different at different waves of measurement (Selig & Preacher, 

2009). With respect to time, the LGC and LDS models differ in that LGC models often 

treat time as a predictor, LDS models handle time by changing the data structure before 

fitting the model. 

To understand a latent difference score, it is necessary to understand the 

decomposition of an observed score following classical test theory (Ferrer & McArdle, 
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2003; McArdle 2001; Grimm, An, McArdle, Zonderman, & Resnick, 2012). An observed 

score Y is the sum of a true score and a unique score: 

Y[t]n = y[t]n + e[t]n      (2) 

where Y[t]n is the observed score for individual n at time t,  y[t]n is the true (latent) score, 

and e[t]n is the unique score. True scores are related over time and unique scores are not. 

In LDS models, true scores have fixed unit autoregressive relations over time, so a true 

score y[t]n is a function of the true score at the previous time, y[t - 1]n plus true score 

change from time t – 1 to t, Δy[t]n: 

y[t]n = y[t - 1]n + Δy[t]n     (3) 

Rearranging the terms from Equation 3, the latent difference score is represented by the 

difference between consecutive latent scores at time t and time t - 1: 

Δy[t]n = y[t]n - y[t - 1]n     (4) 

Like LGC models, LDS models have a trajectory equation for each observed 

variable. However, LDS model trajectory equations place focus on the latent difference 

scores instead of on latent true scores. The trajectory equation for a LDS model is as 

follows: 

)][(][
2

0 





tr

r

nnn rygty      (5) 

where g0n is the initial true level and )][(
2







tr

r

nry  is the sum of latent changes up to time t 

such that r = t.  

For a single observed variable Y, there are three commonly specified LDS models. 

These models can represent time-dependent change based on determinants of the LDSs 
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(Grimm, 2012; Grimm et al., 2012; McArdle & Grimm, 2010). The first model is the 

constant change model, Δy[t]n = α · g1n, where g1n is a constant change component for 

participant n (meaning it varies for individuals) with a mean of μg1 and variance of σ
2

g1 

and α is a fixed parameter usually equal to 1. The second model is the proportional 

change model, Δy[t]n = β · y[t – 1]n, where β is a fixed parameter that does not vary for 

individuals, meaning each time-dependent change is proportional to the previous true 

score. This proportional change parameter represents the effect of y on itself over time. 

The third model is the dual change model, which combines the constant change and 

proportional change models. In the dual change model, Δy[t]n = α · g1n + β · y[t – 1]n, so 

time-dependent changes have both a constant change component and depend on the 

previous true score. The dual change model is named as such because it includes both 

systematic constant change from the linear slope (α) and systematic proportional change 

over time (β) (McArdle, 2001, 2009). 

LDS models were developed to address change in multiple variables over time 

(Grimm et al., 2012). The composition of true and unique scores (Equation 1) and the 

trajectory equation (Equation 4) can also be used for a second observed variable X. When 

examining a bivariate dual change LDS model, the relationship between two variables 

over time is of interest and so we examine coupling effects (i.e., the effects of each 

variable on the other over time; McArdle, 2001). The following equations are the LDSs 

for X and Y for a bivariate dual change model: 

Δy[t]n = α · g1n + βy · y[t – 1]n + γyx · x[t – 1]n  (6) 

Δx[t]n = α · h1n + βx · x[t – 1]n + γxy · y[t – 1]n  (7) 
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where g1n and h1n are the constant change components for participant n on X and Y, βx and 

βy are the proportional change parameters for X and Y that represent the effects of the 

variables on themselves over time, and γxy and γyx are the coupling parameters for X and Y 

that represent the effects of each variable on the other over time. Non-zero coupling 

parameters are typically less than 1.  

Figure 1 (Appendix A, p. 54) shows a LDS model with five measurement waves 

for X and five measurement waves for Y. Although the model in Figure 1 includes LDSs 

for X and Y across five time points, in general LDS models can include LDSs for any 

number of time points greater than 1. 

 In Figure 1, μg0 and μh0 are the means for the initial levels (intercepts) of Y and X 

and μg1 and μh1 are the means for the constant change components (slopes) of Y and X. 

The variances σ
2

g0 and σ
2
h0 are the variances for the initial levels (intercepts) of Y and X 

and σ
2

g1 and σ
2
h1 are the variances for the constant change components (slopes) of Y and 

X. A full list with definitions for each term in Figure 1 is given in Appendix B. 

 Assumptions of LDS models. Like most SEMs, the LDS model requires several 

assumptions about observed data and latent variables. Five key assumptions of the LDS 

model are: 1) change in the model applies only to the true (latent) scores, 2) the 

proportional change component does not vary for individuals, however the constant 

change component may vary for individuals, 3) time interval is constant, 4) difference 

equations which approximate differential equations are used to represent change, and 5) 

means, variances, and covariances of observed variables over time are given a structure 

in order to fit SEMs (Hamagami & McArdle, 2007). 
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Time Metric 

 Time metric is defined as the time scale over which change occurs (Cicchetti, 

2016). The scale of a time metric can range from seconds to millennia, although most 

studies of longitudinal processes in the social sciences use a scale ranging from weeks to 

years. Example time metrics commonly found in longitudinal research are measurement 

occasion, chronological time from beginning of study, or age in years or months. When 

researchers are interested in investigating change over time, it is important to select a 

time metric that is appropriate for examining the process (Hoffman, 2015). Hoffman 

(2013) argued that an important missing step in conducting longitudinal data analysis is 

determining what the metric of time should be that matches the process of interest, and 

also determining how time should be modeled when there are individual differences in 

the time metric (Bell, 1953; McArdle & Bell, 2000). For example, participants may begin 

a study at different time points, or may have different measurement intervals. A time 

metric that is scaled such that it closely matches the longitudinal process of interest may 

be more sensitive to detecting true effects than other potential time metrics. A more 

sensitive time metric may have more or fewer time points than less sensitive time metrics 

depending on the process of interest. 

Time and Longitudinal Models 

Timing and spacing of measurement waves is an important consideration for 

longitudinal studies that can influence the interpretation of study results. Participants may 

all be on the same assessment schedule so that every participant is assessed at the same 

time (i.e., time-structured data) or the assessment schedule of a study may vary for 

different participants (i.e., time-unstructured data; Singer & Willett, 2003). For both time-
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structured and time-unstructured data, measurement waves may be equally or unequally 

spaced. For some models, spacing of measurement waves is critical because relations 

between variables can differ at different measurement intervals (Collins & Graham, 

2002). Many times, longitudinal researchers use calendar time to determine timing and 

spacing of measurements, however calendar time is not always an appropriate choice 

(Collins, 2006; Lerner, Schwartz, & Phelps, 2009; Little, Card, Preacher, & McConnell, 

2009). As an example from developmental data, growth spurts in height during 

adolescence mean that regular interval measurements and time-structured data are not 

nuanced enough to capture the true change process; however, developmental researchers 

rarely address choice of time metric when examining height (Lerner et al., 2009). Models 

do exist that handle different measurement intervals in a single data set by treating 

measurement interval as a predictor (Selig, Preacher, & Little, 2012). In general, for a 

study with a given length of time, measurement waves that are spaced too far apart can 

lead to erroneous interpretations, and more measurement waves spaced closer together 

provide more accurate conclusions (Collins & Graham, 2002).  

Time and Growth Models 

Preacher (2010) gave a list of the components that are necessary for investigating 

growth and one of the most important items on the list was the description of the metric 

of time, second only to an appropriate substantive theory underlying the model. A benefit 

of LGC models is that they can accommodate any time metric, from milliseconds to 

millennia (Ram & Grimm, 2007), but it is important to know the metric underlying the 

process of interest. Referring to Equation 1, the LGC model is based on t repeated 

measures. The contents of each vector and matrix differ for different time metrics, 
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because the value of t differs (and therefore the number of vector and matrix rows). Time 

metrics for growth models can be discrete or continuous, with continuous time metrics 

referred to as individually-varying time metrics, although there is not a straightforward 

approach to growth models with individually-varying time metrics (Grimm, Ram, & 

Estabrook, 2016). For LGC models, the timing and spacing of measurement waves 

affects inference differently than for other models. The coding of slope factor loadings 

determine intercept location and slope scale in LGC models (Grimm, 2012). It follows 

that the treatment of the timing variable in longitudinal studies using LGC models can 

affect the interpretation of intercept and slope parameter estimates (Biesanz, Deeb-Sossa, 

Papadakis, Bollen, & Curran, 2004; Grimm, 2012; Mehta & West, 2000) and accurate 

choice of lag spacing is essential for capturing the true trajectory of change (Selig & 

Preacher, 2009). Larger intervals between measurements can result in oversimplified 

growth curves that do not reflect the true trajectory of change (Collins & Graham, 2002). 

More specifically, the selection of the unit of time may affect both the precision of 

estimates and power to detect effects in LGC models, and can affect the interpretation of 

functional form of relationships (Biesanz et al., 2004). Furthermore, when time intervals 

differ for participants or when participants vary widely in age at first measurement point, 

traditional SEM approaches to LGC models will produce biased estimates of intercept 

and slope covariances (Coulombe, Selig, & Delaney, 2015; Mehta & West, 2000). 

However, when time intervals are different for participants, the LGC model can also be 

used to investigate individual trajectories of change using a definition variable approach 

(Sterba, 2014). For nonlinear growth, using more measurement occasions to model 

growth will increase accuracy of parameters up to a point, and concentrating 
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measurements at extremes or around areas of predicted greatest nonlinear change will 

improve accuracy and efficiency of estimates (Timmons & Preacher, 2015). Timing is 

also important when making decisions about model intercepts in LGC models. For the 

LGC model, the time point that is equal to “time 0” (the reference point) changes the 

interpretation of effects related to the intercept. 

There has been debate in the literature about how to handle time metric in growth 

models. Some researchers argue that occasion should be used as the time metric for 

growth models, while including time-related information (such as age) as a predictor or 

covariate in the model (Hoffman, 2015, p. 442). Others argue that depending upon the 

process of interest, it is more appropriate to use time-related information as the actual 

time metric for the growth model (for example, using age as the time metric instead of 

including age as a predictor). These discussions about handling of time metric extend to 

the LDS model as well. 

Time and Latent Difference Score Models 

As mentioned above, LDS models make certain assumptions about measurement 

intervals, specifically that the time between all pairs of latent scores of interest (that is, 

the time between t and (t – 1)) has a constant interval such that Δt is equal to 1 (McArdle, 

2001, p. 348). The specific assumption is that the time interval between each set of latent 

variables is equal to the time interval between every other set of latent variables in the 

model, even if time interval is not equal for observed scores (the observed data are 

unbalanced) (Hamagami & McArdle, 2001, 2007; McArdle, 2009). Making the equal 

intervals assumption allows latent difference scores to be interpreted as rates of change, 

where Δy[t]n = Δy[t]n / Δt, and this assumption extends to bivariate dual change models. 
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Equal intervals are a key assumption for every LDS model because the use of fixed unit 

coefficients allows any trajectory equation to be defined from a starting change equation 

(McArdle, 2009). One traditional approach to using LDS models with unequal spacing of 

intervals is to include additional “incomplete” intervals representing gaps in the data such 

that there are unmeasured latent variables representing missing time points, allowing a 

model with data and incomplete data where Δt is equal to 1 (McArdle, 2001). More 

recently, a model termed the triple change score (TCS) model was proposed to relax the 

requirements of equal time intervals between the LDSs by including latent basis 

coefficients of change into the dual change model (McArdle & Nesselroade, 2014), but 

the TCS model is not widely used. 

Choice of interval size is important to the interpretation of effects in the LDS 

model because the interpretation of a difference score is dependent upon the lag between 

the two measurement waves used to calculate the difference score (Selig & Preacher, 

2009). As a reminder, in LDS models a fixed parameter α that is usually set to 1 scales 

the constant change component g1n. Changing the value of the fixed parameter α changes 

the interpretation of the constant change parameter by changing the metric of t. For 

example, changing α to 2 would mean that g1n can be interpreted with a .5-unit change in 

t as opposed to a 1-unit change. Consequently, the mean and variance of g1n both change 

to reflect the α scaling, and the covariance between g1n and the intercept may be 

influenced as well (Grimm, 2012).  Finally, as with LGC models, time is an important 

factor for LDS models when making decisions about intercept coding and centering. 

Recently, LDS models have been developed that allow for intercept centering at any 

measurement wave (Grimm, 2012). Moving the intercept requires changing the LDS 
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weights to maintain the assumption of invariant time intervals. Changing the location of 

the intercept influences interpretation of intercept parameters, but not other parameters or 

model fit.  

Hypotheses 

 Time metric is important for the interpretation of estimates in models assessing 

longitudinal change. It is expected that time metric will influence interpretation and 

accuracy of estimates for the bivariate LDS model as well. Specifically, 

1) Given a set of true parameters and a time metric that reflects the true process of 

change, bivariate LDS models using the original time metric will yield estimates 

closer to the defined true parameters than bivariate LDS models using a restructured 

time metric that provides less information about the process of change. 

2) Given a set of true parameters, coupling parameters will be more accurate in bivariate 

LDS models with data structured according to the original time metric, whereas 

bivariate LDS models with a restructured time metric will yield biased estimates of 

coupling parameters. 

3) Given a set of true parameters, bivariate LDS models using the original time metric 

will have better model convergence than bivariate LDS models using a restructured 

time metric. 

Method 

Simulation Conditions and Procedure 

Data for a bivariate dual change LDS model were simulated in SAS 9.4 with 

random seed set to the current time using the following equations:  

Y[t]n = y[t]n + e[t]n      (8) 
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X[t]n = x[t]n + e[t]n      (9) 

Where  

y[t]n = y[t - 1]n + Δy[t]n     (10) 

x[t]n = x[t - 1]n + Δx[t]n     (11) 

Δy[t]n = α · g1n + βy · y[t – 1]n + γyx · x[t – 1]n  (12) 

Δx[t]n = α · h1n + βx · x[t – 1]n + γxy · y[t – 1]n  (13) 

In the above equations, e[t]n is the product of σ
2

e and a random variate distributed N(0, 1). 

Conditions for this study were created based on differing number of time points (t), 

number of observations (n), and values of coupling parameters (γyx and γxy). Parameter 

bias, parameter variability, and model convergence were used to assess performance for 

each model.  

Parameter values for the simulations were selected based on a real data example 

of an LDS model examining reading and IQ (Ferrer, Shaywitz, Holahan, Marchione, & 

Shaywitz, 2010). The data were originally taken from the Connecticut Longitudinal 

Study (Shaywitz, Shaywitz, Fletcher, & Escobar, 1990) and comprised a sample of N = 

232 students measured from grades 1-12 (ages 6-18). The data included information on 

several time metrics, including age and grade; Ferrer et al. (2010) used grade as the time 

metric for their LDS model. In the Ferrer et al. example, X was a reading score composite 

that included subtests of sound-letter correspondence, word identification, and general 

reading comprehension from the Woodcock-Johnson Psycho-Educational Battery 

(Woodcock & Johnson, 1977). The Y measure was the Wechsler full scale IQ, assessed at 

each grade using the WISC-R (Wechsler, 1981). The Wechsler measure of IQ 

encompasses several measures of cognition and is expected to fluctuate over time. There 
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were three groups examined: typical readers (N = 142), compensated readers (N = 28), 

and persistently poor readers (N = 62). The parameters from the typical readers group 

were selected based on sample size and the presence of significant coupling for that 

group. The parameters for the typical readers group are as follows: μg0 = 0.220, μg1 = 

0.550, μh0 = 0.570, μh1 = 1.410, βy = -0.274, βx = -0.549. All parameters from Ferrer et al. 

2010 were standardized. The intercept mean parameters indicated that at baseline (grade 

1), typical readers had above-average reading and IQ means (μh0 = μread0 = .570 and μg0 = 

μIQ0 = .220).  The other parameters indicated that yearly changes from 1
st
 to 12

th
 grade 

were a function of a positive constant slope (positive slope mean parameters μh1 = μread1 = 

1.410 and μg1 = μIQ1 = .550) with inertia (negative proportional change parameters βx = 

βread = -0.549 and βy = βIQ = -0.27) representing the proportional effect of each variable’s 

previous value on its changes at the next measurement, and positive coupling (γyx = 

γread


IQ = 0.130 and γxy = γIQ


read = 0.401). The positive coupling parameters indicated 

that there was a mutual, positive relationship between reading and IQ over time. These 

parameters did not vary over conditions. 

All correlations between intercepts and slopes were set to 0.5. For coupling 

parameters, models had either positive non-zero coupling or no coupling, with non-zero 

coupling parameters coming from the typical readers group (γyx = 0.130 and γxy = 0.401) 

and for no coupling, coupling parameters were set to zero. When coupling parameters 

were set to zero, the error variance of X was adjusted 0.5 to produce appropriate 

trajectories. Individuals were assumed to have the same process of change (that is, 

variation in change was not measured at multiple levels). For number of observations, 

models were examined at two sample sizes, N  = 200 and N = 1000. These samples sizes 
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were selected as representations of relatively small and large sample sizes in 

developmental research.  

Two time structures were investigated. The first (referred to as the time-occasion 

structure) compared two time metrics with varied numbers of time points, 20 time points 

restructured to 10 time points and 20 time points restructured to 4 time points. The metric 

with 20 time points, the true time metric used to generate the data, can be considered a 

measure such as chronological time (for example, 20 months). This time metric will be 

referred to as the original time metric. The metric with fewer time points (10 or 4 time 

points) that was the restructured time metric can be considered an occasion metric. In the 

original time metric, participants were measured for a total of 10 or 4 occasions over 20 

time points where each participant had consecutive measurement occasions such that 

interval lag was equal within and across participants, but participants had different 

starting points. The restructuring of the data resulted in restructured time metrics with 4 

or 10 total time points that ignored participants’ different starting points. A figure 

elaborating the metrics of the time-occasion structure with t = 20 restructured to t = 4 is 

shown in Figure 2 (Appendix A, p. 55). The second time structure (referred to as the age-

grade structure) compared two time metrics with 24 time points restructured to 6 time 

points, and 12 time points restructured to 6 time points. The time metric with more time 

points (24 or 12 time points) can be considered a measure such as age measured in 

quarter- or half-years. For example, 24 time points could represent age measured in 

quarter-years from age 7 to age 12. The time metric with fewer time points that was the 

restructured time metric can be considered a less informative age metric, for example a 

measure of school grade that only allows measurement once per grade. In the original 



  17 

time metric, participants were measured for a total of 6 occasions over 12 or 24 time 

points where each participant had different intervals between measurements such that 

interval lag was different within and across participants, and participants had different 

starting points as well. The restructuring of the data resulted in a restructured time metric 

with 6 total time points that ignored participants’ different lags between measurements 

and differing starting points. A figure elaborating the metrics of the age-grade structure 

with t = 24 restructured to t = 6 is shown in Figure 3 (Appendix A, p. 56). For both the 

time-occasion and age-grade structures, the true time metric used to generate the data 

was the metric with more time points (t = 20 for time-occasion and t = 12 or 24 for age-

grade), however a metric with more time points will not always be the true time metric in 

applied research. More time points in the true time metric meant that there were complete 

data for all participants for the restructured time metric, but necessarily missing values 

for each participant for the true time metric. 

 These condition variations resulted in 2
3
 = 8 conditions (N = 200 or 1000, 

coupling or no coupling, and two sets of time points) for each time structure. For each of 

the eight conditions, 500 replications were simulated. For each replication, data were 

simulated in SAS 9.4 with the true time metric, and then restructured to a second, less 

informative time metric (two data sets per replication). The two data sets from each 

replication were then read into Mplus 7 and appropriate bivariate dual change LDS 

models were fit to each data set. Models did not include starting values and maximum 

number of iterations was set to 10000 for each replication. Because models were fit to the 

true and restructured time metrics for each condition, 8*2 = 16 conditions were examined 

each for the time-occasion and age-grade structures. Appendix C gives sample code for 
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data generation in SAS and Appendix D gives sample code for the bivariate dual change 

LDS model in Mplus.  

Dependent Variables 

This study assessed performance of parameter estimates for the slope and 

intercept means, proportional change parameters, and coupling parameters by calculating 

parameter bias and parameter variability. Accuracy of parameter estimates was also 

examined using box plots. This study also examined model convergence and inadmissible 

parameter estimates. For the full simulation, some models provided all fit indices and 

some models provided only a subset of fit indices due to lack of information on the 

alternative hypothesis log-likelihood, and consequently it was difficult to examine model 

fit across conditions. Therefore, parameter estimate performance, model convergence, 

and presence of inadmissible parameter estimates were used as a proxy to determine 

adequacy of each model instead of model fit indices. If parameter estimates were 

unbiased and efficient, the model converged, and inadmissible parameter estimates were 

not present, a model was deemed adequate.  

Parameter bias was assessed in three ways, using raw, relative, and standardized 

parameter bias. Raw parameter bias was calculated by taking the difference between the 

true value of the parameter and the simulated parameter estimate. Relative parameter bias 

was calculated by dividing raw parameter bias by the true value of the parameter. 

Standardized parameter bias was calculated by dividing raw parameter bias by the 

standard deviation of the averaged parameter estimate by condition. Parameter variability 

was assessed by examining the standard deviation of the averaged parameter estimates by 

condition. 
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Model convergence was assessed by examining the proportion of times a model 

converged for a given condition. Conditions with a higher proportion of model 

convergence were considered to have better model convergence. Model convergence was 

coded for each replication as a binary variable where 0 = non-convergence and 1 = 

convergence. Inadmissible parameter estimates were assessed by examining the variance 

of the intercepts and slopes (σ
2

g0, σ
2
h0, σ

2
g1, and σ

2
h1). If any of the intercept or slope 

variance parameter estimates were negative, they were considered inadmissible. 

Inadmissible parameter estimates were coded by creating four binary variables, one for 

each of the four variances, where 0 = positive value (admissible) and 1 = negative value 

(inadmissible). For each replication, there were four variables coding inadmissible 

estimates: one variable each for σ
2

g0, σ
2
h0, σ

2
g1, and σ

2
h1.  

Statistical Analyses 

Analyses examined the impact of condition on the dependent variables of interest. 

Analyses were conducted at the replication level, where each replication was considered 

one observation. All analyses were conducted in SAS 9.4. For performance of estimates, 

ANOVA was used to examine the effect of study condition on parameter bias and 

parameter variability. Factors representing study conditions included in each ANOVA 

were n (200, 1000), t (6, 12, and 24 for age-grade structure; 4, 10, and 20 for time-

occasion structure), and coupling (positive non-zero coupling or no/zero coupling, also 

referred to as no coupling “NC” or yes coupling “YC”). All results reported from 

ANOVAs were computed using Type III sums of squares. For model convergence, 

logistic regression assessed predictors of a binary outcome where model non-

convergence = 0 and model convergence = 1. Logistic regression analyses were also used 
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for assessment of inadmissible parameter estimates, where 0 = admissible and 1 = 

inadmissible for the four variances of interest (negative values of intercept and slope 

variance). 

For each analysis, lower-order significant effects were not reported if higher-order 

interactions were significant as well. Because the large number of replications included in 

each analysis could lead to multiplicity (i.e. the multiple comparisons problem) and thus 

inflated Type I error rates, only effects with odds ratios (ORs) above 1.5 or below .5 or 

partial η
2
 effect sizes greater than 0.09 (roughly a medium partial η

2
) were considered 

meaningfully significant effects and were discussed. 

Results for Age-Grade Structure 

Parameter Estimate Bias 

For each measure of raw bias, an analysis of variance (ANOVA) was conducted 

with n (n = 200 or 1000), t (t = 6, 12, or 24), and coupling (positive non-zero coupling or 

“yes coupling” (“YC”) compared to “no coupling” (“NC”)) as predictors. All interactions 

between predictors were included in each analysis. Effects were deemed meaningfully 

significant if p < .001 and ηp
2
 ≥ .09. Partial η

2
 effect sizes are reported for each effect of 

interest. Table 1 (Appendix A, p. 42) shows results of these ANOVAS. For raw bias of 

the intercept mean parameter estimates μg0 and μh0, t was a meaningfully significant 

predictor of both parameters (p < .0001 and ηp
2
 = .62 for μg0, p < .0001 and ηp

2
 = .72 for 

μh0). For raw bias of the slope mean parameter estimates μg1 and μh1, the highest order 

meaningfully significant interaction was the interaction between the t and coupling 

predictors (p < .0001 and ηp
2
 = .08 for μg1 which bordered on meaningful significance, p 

< .0001 and ηp
2
 = .09 for μh1), while t was also a meaningfully significant predictor of the 



  21 

slope means (p < .0001 and ηp
2
 = .48 for μg1, p < .0001 and ηp

2
 = .52 for μh1). For raw bias 

of the proportional change parameters βy and βx, the highest order meaningfully 

significant interaction was the interaction between the t and coupling predictors (p < 

.0001 and ηp
2
 = .108 for βx and p < .0001 and ηp

2
 = .28 for βy), and t was also a 

meaningfully significant predictor of βx (p < .0001 and ηp
2
 = .43) and coupling was also a 

meaningfully significant predictor of βy (p < .0001 and ηp
2
 = .11). For the coupling 

parameters γyx and γxy, the highest order meaningfully significant interaction was the 

interaction between the t and coupling predictors (p < .0001 and ηp
2
 = .15 for γyx, and p < 

.0001 and ηp
2
 = .21 for γxy), and t was a meaningfully significant predictor as well (p < 

.0001 and ηp
2
 = .23 for both coupling parameters). Because the parameters used in the 

simulations were based on real data and therefore different values with differing 

variability, results were not the same for parameters related to X compared to parameters 

related to Y (specifically βx and βy). 

 To investigate the raw bias significant interactions further, box plots of raw bias 

were created separated by condition. Box plots of raw bias by condition for all 

parameters of interest are shown in Figures 4 through 11 (Appendix A, pp. 57-64). In 

each Figure, “YC” indicates “yes coupling” and “NC” indicates “no coupling”. Sample 

sizes are represented by “200” or “1000”, time structure is represented by “24-6” or “12-

6”, and number of time points for that condition is represented by “6”, “12”, or “24”. For 

all parameters, average raw bias was close to zero for true time metrics and was non-zero 

for the restructured time metric. The difference in bias increased when the true time 

metric had more time points (24-6 compared to 12-6), and when the 24-6 time structure 

had non-zero coupling. The bias values were also more stable (and slightly larger) at n = 
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1000 than at n = 200 for conditions with large bias. For the slope parameters, bias was 

positive and comparatively very large with non-zero coupling for the restructured time 

metric when 24 time points were restructured to 6 time points. For the proportional 

change and coupling parameters, bias was comparatively very large with non-zero 

coupling for the restructured time metric when 24 time points were restructured to 6 time 

points, and was negative for βx and γyx and positive for βy and γxy.  

 For each measure of relative bias, ANOVAs were conducted with n, t, and 

coupling as predictors and all interactions between predictors included. For the measures 

of relative bias for γyx and γxy, analyses were conducted for only those conditions with 

non-zero coupling, as relative bias is undefined for conditions where coupling is zero. 

These analyses included n, t, and the interaction between n and t as predictors. The same 

pattern of results held for measures of relative bias as for measures of raw bias for the 

intercept and slope mean parameter estimates and proportional change parameter 

estimates in terms of meaningfully significant effects with similar p values for all effects. 

For relative bias of estimates for γyx and γxy, all interaction and lower-order effects were 

significant for both measures. 

 For each measure of standardized bias, ANOVAS were conducted with n, t, and 

coupling as predictors and all interactions between predictors included. Table 2 

(Appendix A, p. 43) shows results of these ANOVAS. Results for analyses of 

standardized bias were similar to analyses of raw bias, with several additional 

meaningfully significant effects. For μg0 and μg0, the interaction between n and t 

approached meaningful significance (p < .0001 and ηp
2
 = .08 for both). For μg1, the 

interaction between n and t was meaningfully significant (p < .0001 and ηp
2
 = .10) and 
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the interaction between t and coupling was not meaningfully significant for either slope 

mean parameter. For βx, the interaction between n and t was meaningfully significant (p < 

.0001 and ηp
2
 = .09) and the interaction between t and coupling was not meaningfully 

significant. For μg0, μh0, βy, γyx, and γxy, the same predictors were meaningfully significant 

in the analyses of standardized bias as for raw bias.  

Parameter Estimate Variability 

Parameter variability (or stability) for the age-grade time structure was examined 

using the standard deviations of the averaged parameter estimates for each condition. The 

standard deviations of all parameter estimates of interest for each condition are shown in 

Table 3 (Appendix A, p. 44). For the intercept means, parameter estimates in conditions 

with the true time metric had larger variability (and thus less stability) than parameter 

estimates in conditions with the restructured time metric, and variability did not vary 

widely across conditions with coupling compared to no coupling. For the slope means, 

proportional change, and coupling parameters, parameter estimates in conditions with the 

restructured time metric had larger variability (and thus less stability) than parameter 

estimates in conditions with the true time metric. Also for the slope means, proportional 

change, and coupling parameters, parameter estimates in conditions with the restructured 

time metric at n = 200 with 24 time points restructured to 6 had much larger variability 

than parameter estimates in all other conditions, and variability was largest in the 

coupling condition. Variability was also large in the condition with the restructured time 

metric, no coupling, n = 1000 with 24 time points restructured to 6. The larger variability 

in intercept mean parameter estimates in the true time metric was likely due to the 

missing data and individually differing intercepts in the true time metric. 
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Convergence 

For model convergence in the age-grade time structure, a logistic regression was 

conducted at the condition level with n, coupling, and the interaction between n and 

coupling as predictors. The t predictor was excluded from analysis as non-convergence 

occurred in non-zero coupling conditions only when t = 24, and there were too few 

instances of non-convergence at t = 6 and t =12 to include t as a predictor. The outcome 

was coded as 1 = convergence and 0 = non-convergence, so this logistic regression 

predicted the group coded zero (or instances of non-convergence). Table 4 (Appendix A, 

p. 45) shows results of this logistic regression. For model convergence, all effects were 

significant at p < .001, however, only the coupling predictor had an odds ratio (OR) 

above 1.5. The coupling predictor had an OR of 3.581. Coupling was coded as 0 = no 

coupling and 1 = coupling, so the interpretation of this OR is that the odds of non-

convergence were larger in replications with coupling compared to replications with no 

coupling. To elaborate these results further, Table 5 (Appendix A, p. 46) shows 

frequency tables for convergence separated by t and coupling. For conditions with the 

restructured time metric (t = 6) and non-zero coupling, models converged for all 2000 

replications, and for conditions with the restructured time metric and no coupling, models 

did not converge for 10 of 2000 replications. Models converged for all 1000 replications 

for conditions with the true time metric (t = 12) and non-zero coupling, and models did 

not converge for 4 of 1000 replications for conditions with the true time metric (t = 12) 

and no coupling. The majority of models that did not converge were in conditions with 

the true time metric where t = 24. For conditions with the true time metric (t = 24), 

models did not converge for 49 of 1000 replications in conditions with non-zero 



  25 

coupling, models did not converge for 301 out of 1000 replications in conditions with no 

coupling.  

Inadmissible Parameter Estimates 

A check for inadmissible parameter estimates was conducted by examining 

descriptive statistics for variances of intercepts and slopes. For all conditions in the age-

grade time structure, there were no inadmissible parameter estimates, meaning all 

intercept and slope variances were non-negative at the replication level. 

Results for Time-Occasion Structure 

Parameter Estimate Bias 

For each measure of raw bias, an ANOVA was conducted with n (n = 200 or 

1000), t (t = 4, 10, or 20), and coupling (positive non-zero coupling or “yes coupling” 

(YC) compared to “no coupling” (NC)) as predictors, and all interactions between 

predictors included. Effects were deemed meaningfully significant if p < .001 and ηp
2
 ≥ 

.09. Partial η
2
 effect sizes are reported for each effect of interest. Table 6 (Appendix A, p. 

47) shows results of these ANOVAS. For raw bias of the intercept mean parameter 

estimates μg0 and μh0, meaningfully significant predictors were the t predictor (p < .0001 

and ηp
2
 = .72 for both) and the coupling predictor (p < .0001 and ηp

2
 = .14 for both). 

There were no meaningfully significant predictors of raw bias of any other parameter 

estimates.  

 To investigate significant predictors of raw bias further, box plots were created to 

examine raw bias separated by condition for the intercept mean parameter estimates. 

Examination of box plots of raw bias for the slope mean parameter estimates μg1 and μh1, 

and proportional change and coupling parameter estimates βx, βx, γyx, and γxy showed that 
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average raw bias was very close to zero across conditions, but that raw bias tended to 

have larger variability (and thus was less stable) with smaller n and restructured time 

metrics (t = 4 and t = 10). Box plots for the intercept mean parameter estimates μg0 and 

μh0 (the only parameter estimates with conditions that had non-zero average raw bias) are 

shown in Figures 12 and 13 (Appendix A, pp. 65-66). In these two Figures, “YC” 

indicates “yes coupling” and “NC” indicates “no coupling”, sample sizes are represented 

by “200” or “1000”, time structure is represented by “20-10” or “20-4”, and number of 

time points for that condition is represented by “4”, “10”, or “20”. For the intercept mean 

parameter estimates μg0 and μh0, average raw bias was close to zero for the true time 

metric and there was non-zero bias for the restructured time metric. This difference in 

bias increased when the restructured time metric had fewer time points (20-4 compared to 

20-10), and for conditions with non-zero coupling. The bias values were also more stable 

at n = 1000 compared to n = 200.  

 For each measure of relative bias, n, t, and coupling were used as predictors in a 

series of ANOVAs with all interactions between predictors included. For relative bias of 

γyx and γxy, analyses were conducted only for those conditions with non-zero coupling, as 

relative bias is undefined where coupling is zero. Analyses for relative bias of γyx and γxy 

included n, t, and the interaction between n and t as predictors. The same pattern of 

results held for measures of relative bias as for measures of raw bias of the intercept 

mean parameter estimates in terms of meaningfully significant predictors between 

predictors with similar p values for the interactions.  

 Table 7 (Appendix A, p. 48) shows results from ANOVAS for each measure of 

standardized bias with n, t, and coupling as predictors and all interactions between 
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predictors included. For standardized bias of the intercept mean parameter estimates μg0 

and μh0, the highest order meaningfully significant interaction was the two-way 

interaction between n and t (p < .0001 and ηp
2
 = .10 for μg0 and μh0) and the n and t 

predictors were meaningfully significant as well. For the slope mean parameter estimates 

μg1 and μh1, proportional change parameter estimate βx, and coupling parameter estimates 

γyx and γxy, there were no significant predictors of standardized bias at p < .0001 with ηp
2
 

≥ .09.  

Parameter Estimate Variability 

Standard deviations of the averaged parameter estimates for each condition were 

used to examine parameter variability (or stability) for the time-occasion time structure. 

The standard deviations for each condition for all parameter estimates of interest are 

shown in Table 8 (Appendix A, p. 49). For the intercept means, conditions with the true 

time metric had parameter estimates with larger variability (less stability) than conditions 

with restructured time metrics, and parameter estimate variability was larger for 

conditions with non-zero coupling. For the slope means, proportional change, and 

coupling parameter estimates, conditions with restructured time metrics had parameter 

estimates with larger variability (and thus less stability) than parameter estimates in 

conditions with the true time metric. Also for slope means, proportional change, and 

coupling, parameter estimates in conditions with restructured time metrics at n = 200 with 

20 time points restructured to 4 had larger variability than parameter estimates in all other 

conditions, and variability was largest in the no coupling condition. Variability was also 

large in the condition with the restructured time metric, no coupling, n = 1000 with 20 

time points restructured to 4. As for the age-grade time structure, the larger variability 
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noted in intercept mean parameter estimates in the true time metric was likely due to the 

missing data and individually differing intercepts in the true time metric. 

Convergence 

A logistic regression was conducted at the condition level with n, t, and coupling 

as predictors to assess model convergence in the time-occasion time structure. All 

interactions between predictors were included in the analysis. The outcome was coded as 

1 = convergence and 0 = non-convergence, so this logistic regression predicted the group 

coded zero (or instances of non-convergence). Results from this logistic regression are 

shown in Table 9 (Appendix A, p. 50). For model convergence, all effects had odds ratios 

(ORs) very close to 1 except for the effect of coupling on convergence, which had an OR 

of 7.345. Coupling was coded as 0 = no coupling and 1 = coupling, so the interpretation 

of this OR is that the odds of non-convergence were larger in replications with coupling 

than in replications with no coupling. 

 To investigate these results further, Table 10 (Appendix A, p. 51) shows 

frequency tables for convergence separated by coupling. For conditions with no coupling, 

models did not converge for 601 of 4000 replications, and for conditions with coupling, 

models did not converge for 1156 of 4000 replications. Conditions with coupling had 

models with no convergence in almost twice the number of replications as conditions 

with no coupling. Although the effect of the interaction between t and coupling was not 

significant, conditions with t = 20 had the majority of models that did not converge, and 

within t = 20 conditions with coupling had twice as many replications with no 

convergence as conditions with no coupling. 
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Inadmissible Parameter Estimates 

A check for inadmissible parameter estimates was conducted by examining 

descriptive statistics for variances of intercepts and slopes. For the time-occasion time 

structure, there were no inadmissible parameter estimates for the y intercept and slope 

variances (σ
2

g0 and σ
2

g1), however negative parameter estimates were detected for the x 

intercept and slope variances (σ
2

h0 and σ
2

h1). These inadmissible parameter estimates 

were investigated by examining frequency tables of each of the binary variables created 

to code negative variances of h0n and h1n. Negative estimates of x intercept variances 

occurred in replications for two conditions: where n = 200, no coupling, and t = 20, for 

20 time points restructured to 4 (11 replications), and for 20 time points restructured to 10 

(2 replications). Negative estimates of x slope variances occurred in replications for three 

conditions: where n = 200, no coupling, and 20 time points restructured to 4 for 1) t = 4 

(12 replications); for 2) t = 20 (2 replications); and for 3) n = 1000, no coupling, 20 time 

points restructured to 4, and t = 4. Frequencies of inadmissible parameter estimates by t, 

n, and coupling for x slope and intercept variances are shown in Tables 11 and 12 

(Appendix A, pp. 52-53). There did not appear to be a pattern of results with regard to 

conditions containing inadmissible parameter estimates, however all inadmissible 

parameter estimates were estimates relating to x slope and intercept. These results should 

thus be investigated further before conclusions can be drawn. 
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Discussion 

Summary of Results  

The purpose of this study was to investigate the influence of time metric on 

interpretation, model estimation, and model convergence for bivariate dual change LDS 

models. Results for the age-grade time structure (24 or 12 time points restructured to 6) 

indicated that parameter estimates in models with the restructured time metric (t = 6) had 

more bias and less stability than estimates from the models with the true time metric (t = 

24 or t = 12). When the true time metric had more time points, the difference in bias and 

stability was even larger, indicating that more information about the change process was 

lost when models were fit using the restructured data. This difference in bias and stability 

was most apparent in conditions with non-zero coupling, where bias and variability of all 

parameter estimates were comparatively greatly increased for conditions with the 

restructured time metric where the true time metric had more time points. The finding 

that parameter estimates with the true time metric have less bias and less variability 

indicates that when the restructured time metric was used, model parameter estimates did 

not capture the true process of change in the data. 

 In contrast to the improved accuracy of the true time metric above, there was less 

convergence in the age-grade structure for models in conditions where the true time 

metric had more time points. The models with 24 time points may have had less 

convergence due to the fact that each participant had only 6 time points and was missing 

data on all other time points, so covariance coverage was very low, which resulted in 

more models that did not converge. Covariance coverage is the proportion of cases that 

contribute values used to calculate each variance or covariance between variables, and 
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ranges from 0 to 1 with 1 being 100% of cases used and 0 being 0% of cases used 

(Geiser, 2013). When a small proportion of cases are used to calculate variances and 

covariances and thus covariance coverage is low, this can lead to model non-

convergence. This lack of convergence is one limitation of using data with a true time 

metric that has nontrivial missing data for LDS models. Inadmissible parameter estimates 

were not present for any conditions examined using the age-grade time structure, 

regardless of true or restructured time metric. 

 For the time-occasion structure, all parameters estimates excluding the intercept 

means were unbiased regardless of the time metric used. However, although bias was 

near zero across conditions, all parameter estimates from models with the restructured 

time metric except the intercept means were less stable than estimates from models with 

the true time metric. The high variability of the parameter estimates indicates that using a 

time metric that does not match the true process of change, but has lags equal to the true 

time metric, may result in unstable parameter estimates even though the estimates 

produced using the restructured time metric are generally unbiased. 

 For the intercept mean parameter estimates, the same pattern of results for bias 

held in the time-occasion structure as for all parameters in the age-grade structure. 

Intercept mean parameter estimates from models with the restructured time metric were 

more biased than estimates from the models with the true time metric and that difference 

in bias was increased when the true time metric had more time points (20 vs. 10), 

particularly with non-zero coupling. However, the intercept mean parameter estimates in 

models with the restructured time metric were also more stable than in models with the 

true time metric. 
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 There were less instances of convergence for conditions in the time-occasion 

structure for models with coupling, especially in models with the true time metric and 

more time points (t = 20). As with the age-grade structure, non-convergence was likely 

due to the covariance coverage being near zero and presents a potential problem when the 

true time metric requires many missing data points Some replications in the time-

occasion conditions also had negative variances of intercepts and slopes for both the true 

and restructured time metrics.  Negative slope and intercept variances indicate that 

parameter estimates from some of these models were untrustworthy. It is possible that the 

negative variances appearing in the time-occasion structure were due to the combination 

of parameter estimates used in the simulation, and the inadmissible parameter estimates 

should be investigated further with other combinations of parameters. 

 The time-occasion structure in the time study differed from the age-grade 

structure in that for the time-occasion structure, participants had different starting points 

in the data for the true time metric but each participant had the same time lag between 

measurements and the measurement intervals were equal for both time metrics. In the 

age-grade structure, participants had different starting points and different lags between 

time points in the true time metric, but starting points and lags were the same across 

participants and lags were equal in the restructured time metric. For both time structures, 

the difference in participants’ starting points in the true time metric resulted in biased 

estimates of intercept means for the restructured time metric. The bias and instability of 

all other parameter estimates for models with the restructured time metric in the age-

grade structure was likely due to the differing lags between measurements in the true 
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time metric, which were not accounted for when models were fit to the data using the 

restructured time metric.  

Fit with Earlier Literature 

 In previous research on time in longitudinal models, time metric, intercept 

placement, and interval spacing influenced model interpretation and accuracy. The results 

of this study confirm that time metric also influenced model interpretation and accuracy, 

including intercept and interval spacing, for the LDS model. These results support 

findings in existing literature and extend these findings to the LDS model as well. In 

addition, results from this study shed light on how time metric influences those 

parameters that are unique to LDS models. In LDS models, the unique parameters of 

interest that reflect dynamic change are the proportional change and coupling parameters. 

When a time metric that does not reflect true process of change was used to fit LDS 

models, the proportional change and coupling parameters were biased. 

Limitations 

The difference in meaningfully significant predictors of bias of the proportional 

change and coupling parameter estimates was likely due to the different values of 

population parameters that were used for X and Y. This study did not vary parameter 

estimates over conditions, but used one set of parameter estimates based on a LDS model 

from a substantive example. Use of alternative parameter estimates with otherwise 

equivalent conditions could provide explanation for the difference in meaningful 

significance. Furthermore, the parameter values were taken from a subgroup with a 

sample size of 142. These parameters were then used to simulate data with sample sizes 

of N = 200 and N = 1000. The difference in sample size could account for some of the 
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parameter variability results. The lack of literature on optimal parameter estimates to use 

when investigating LDS models using analytical work and simulations is a general 

limitation of methodological work on LDS models. Future research should determine 

realistic or typical parameters and parameter variances and covariances that would allow 

for more detailed examination of LDS models via analytical and simulation work.  

Future Directions 

Future research should simulate these conditions using alternative parameter 

values to determine that the results generalize to other values of parameters. Future 

research should also investigate importance of time metric under conditions where the 

true time metric has fewer time points than the restructured (less informative) time 

metric. For example, a process that unfolds more slowly over time may require less time 

points to represent change accurately. If a process takes place over several years, it is 

unnecessary to measure participants at monthly intervals to investigate the change 

process, and doing so could result in inaccurate or unstable parameter estimates from 

LDS models. Also, time metric in the LDS model should be examined including 

additional predictors such as moderators and mediators of change to examine how time 

metric influences these additional effects. Finally, work on time metric in LDS models 

can be extended to investigate the question: Which time metrics most accurately capture 

true change processes in LDS models with variables commonly used in developmental 

research? 

 The most important finding of this study was that time metric influenced bias and 

interpretation of the proportional change and coupling parameters in the LDS model. 

Another finding was that assuming the same starting point for all participants resulted in 
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biased intercept mean parameter estimates when participants had different starting points 

in the true time metric. These results for the influence of time metric on LDS models are 

important for planning in research design. Substantive researchers planning longitudinal 

designs with focus on dynamic change must consider the time metric that will most 

accurately represent the true process of change. Specifically, results from this study 

indicate that when the true process of change is most accurately represented by a time 

metric where participants have different starting points, if researchers use a time metric 

that does not take into account the different starting points to estimate a LDS model this 

will result in biased intercept mean parameter estimates. If researchers use a time metric 

that does not account for different lags between measurements both between and within 

participants to estimate a LDS model, this will result in biased constant change (slope), 

proportional change, and coupling parameter estimates. Researchers must also make 

special considerations for coupling, a parameter that is unique to LDS models. When the 

two variables of interest have a mutual relationship over time, researchers should closely 

examine the intercept mean parameter estimates (for time metrics with different starting 

points but equal intervals) or all parameter estimates (for time metric with different 

starting points and unequal intervals) for bias if it is suspected that the time metric does 

not accurately represent the change process. Bias will be increased compared to a 

research scenario where two variables do not have a mutual relationship over time. 

Researchers must also be aware of the potential for non-convergence if data are 

structured with a time metric that accurately represents change in the data, but results in 

many missing values for each participant. Failure to consider the true process of change 

will result in inaccurate conclusions about dynamic change from LDS models. In 
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conclusion, consideration of time metric is essential for interpreting dynamic change 

processes in LDS models.  
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Tables 

 

 

Table 1 

     Analyses of Variance for n, t, and Coupling on Raw Bias of 

Parameter Estimates for Age-Grade Time Structure 

µg0   df F p ηp
2	

 

n 1 9.07 0.0026 0.00044 

 

t 2 6438.57 <.0001 0.6177* 

 

coupling 1 39.57 <.0001 0.0019 

 

n*t 2 5.78 0.0031 0.00055 

 

n*coupling 1 0.07 0.7961 3.2E-06 

 

t*coupling 2 60.51 <.0001 0.0058 

 

n*t*coupling 2 0.13 0.8746 1.3E-05 

µh0           

 

n 1 13.64 0.0002 0.00047 

 

t 2 10384.4 <.0001 0.71945* 

 

coupling 1 58.57 <.0001 0.00203 

 

n*t 2 8.23 0.0003 0.00057 

 

n*coupling 1 0 0.9758 3.2E-08 

 

t*coupling 2 68.01 <.0001 0.00471 

 

n*t*coupling 2 0.59 0.5525 4.1E-05 

µg1           

 

n 1 0.8 0.372 3.6E-05 

 

t 2 5375.34 <.0001 0.48492* 

 

coupling 1 680.06 <.0001 0.03068 

 

n*t 2 1.33 0.2658 0.00012 

 

n*coupling 1 1.01 0.3147 4.6E-05 

 

t*coupling 2 887.17 <.0001 0.08003 

 

n*t*coupling 2 1.3 0.2724 0.00012 

µh1           

 

n 1 0.78 0.377 2.9E-05 

 

t 2 6936.71 <.0001 0.51858* 

 

coupling 1 933.86 <.0001 0.03491 

 

n*t 2 1.87 0.1546 0.00014 

 

n*coupling 1 1.48 0.2245 5.5E-05 

 

t*coupling 2 1237.15 <.0001 0.09249* 

 

n*t*coupling 2 1.18 0.3064 8.8E-05 

βx           

 

n 1 4.77 0.0289 0.00021 

 

t 2 4878.15 <.0001 0.43141* 

 

coupling 1 917.87 <.0001 0.04059 

 

n*t 2 9.12 0.0001 0.00081 

 

n*coupling 1 7.88 0.005 0.00035 

 

t*coupling 2 1227.79 <.0001 0.10858* 

 

n*t*coupling 2 6.32 0.0018 0.00056 

βy           

 

n 1 7.65 0.0057 0.00039 

 

t 2 201.15 <.0001 0.02047 

 

coupling 1 2127.09 <.0001 0.10822* 

 

n*t 2 12.31 <.0001 0.00125 

 

n*coupling 1 5.43 0.0198 0.00028 

 

t*coupling 2 2726.21 <.0001 0.2774* 

 

n*t*coupling 2 8.36 0.0002 0.00085 

γyx           

 

n 1 4.53 0.0334 0.00026 

 

t 2 1973.3 <.0001 0.23004* 

 

coupling 1 1013.29 <.0001 0.05906 

 

n*t 2 7.71 0.0005 0.0009 

 

n*coupling 1 4.09 0.0431 0.00024 

 

t*coupling 2 1304.44 <.0001 0.15207* 

 

n*t*coupling 2 5.82 0.003 0.00068 

γxy           

 

n 1 8.4 0.0038 0.00036 

 

t 2 2696.59 <.0001 0.23048* 

 

coupling 1 1854.33 <.0001 0.07924 

 

n*t 2 14.08 <.0001 0.0012 

 

n*coupling 1 12.06 0.0005 0.00052 

 

t*coupling 2 2445.92 <.0001 0.20905* 

  n*t*coupling 2 10.65 <.0001 0.00091 

* indicates ηp
2
 ≥ .09. 

Note: n = 200, 1000; t = 6, 12, 24; coupling = yes coupling (YC), 

no coupling (NC). 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the 
restructured time metric. 
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Table 2 

     Analyses of Variance for n, t, and Coupling on Standardized Bias of 

Parameter Estimates for Age-Grade Time Structure 

µg0   df F p ηp
2	

 

n 1 806.79 <.0001 0.032742 

 

t 2 6184.26 <.0001 0.501947* 

 

coupling 1 27.03 <.0001 0.001097 

 

n*t 2 1025.55 <.0001 0.083239 

 

n*coupling 1 5.9 0.0152 0.000239 

 

t*coupling 2 41.1 <.0001 0.003336 

 

n*t*coupling 2 8.36 0.0002 0.000679 

µh0           

 

n 1 1055.3 <.0001 0.033292 

 

t 2 8169.56 <.0001 0.515458* 

 

coupling 1 303.07 <.0001 0.009561 

 

n*t 2 1342.25 <.0001 0.084689 

 

n*coupling 1 45.54 <.0001 0.001437 

 

t*coupling 2 392.19 <.0001 0.024745 

 

n*t*coupling 2 60.75 <.0001 0.003833 

µg1           

 

n 1 4832.24 <.0001 0.037866 

 

t 2 44283.1 <.0001 0.694008* 

 

coupling 1 746.05 <.0001 0.005846 

 

n*t 2 6287.21 <.0001 0.098534* 

 

n*coupling 1 22.16 <.0001 0.000174 

 

t*coupling 2 976.45 <.0001 0.015303 

 

n*t*coupling 2 30.34 <.0001 0.000476 

µh1           

 

n 1 1571.99 <.0001 0.027734 

 

t 2 15479.9 <.0001 0.546218* 

 

coupling 1 1578.88 <.0001 0.027856 

 

n*t 2 2049.02 <.0001 0.072301 

 

n*coupling 1 107.09 <.0001 0.001889 

 

t*coupling 2 2062.33 <.0001 0.072771 

 

n*t*coupling 2 127.18 <.0001 0.004488 

βx           

 

n 1 2901.67 <.0001 0.034088 

 

t 2 24747.4 <.0001 0.581444* 

 

coupling 1 1951.88 <.0001 0.02293 

 

n*t 2 3821.63 <.0001 0.08979* 

 

n*coupling 1 186.34 <.0001 0.002189 

 

t*coupling 2 2575.29 <.0001 0.060507 

 

n*t*coupling 2 158.67 <.0001 0.003728 

βy           

 

n 1 323.84 <.0001 0.003351 

 

t 2 2078.03 <.0001 0.043007 

 

coupling 1 13140.2 <.0001 0.135974* 

 

n*t 2 375.9 <.0001 0.00778 

 

n*coupling 1 2240.57 <.0001 0.023185 

 

t*coupling 2 16598.8 <.0001 0.343525* 

 

n*t*coupling 2 2974.58 <.0001 0.061561 

γyx           

 

n 1 1631.06 <.0001 0.023392 

 

t 2 14128.6 <.0001 0.405256* 

 

coupling 1 4099.74 <.0001 0.058797 

 

n*t 2 2246.59 <.0001 0.06444 

 

n*coupling 1 445.18 <.0001 0.006385 

 

t*coupling 2 5089.96 <.0001 0.145997* 

 

n*t*coupling 2 607.1 <.0001 0.017414 

γxy           

 

n 1 1322.83 <.0001 0.015313 

 

t 2 11937.9 <.0001 0.276385* 

 

coupling 1 7590.91 <.0001 0.087872* 

 

n*t 2 1774.1 <.0001 0.041074 

 

n*coupling 1 1212.92 <.0001 0.014041 

 

t*coupling 2 9844.15 <.0001 0.227911* 

  n*t*coupling 2 1256.92 <.0001 0.0291 

* indicates ηp
2
 ≥ .09. 

Note: n = 200, 1000; t = 6, 12, 24; coupling = yes coupling (YC), no 
coupling (NC). 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the 

restructured time metric. 
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Table 3         

Standard Deviations of Parameter Estimates by Condition for Age-Grade Time Structure 

Condition SD(µg0) SD(µh0) SD(µg1) SD(µh1) SD(βx) SD(βy) SD(γyx) SD(γxy) 

NC, n = 200, 12-6, t = 6 0.0509 0.0670 0.0548 0.0925 0.0809 0.0426 0.0426 0.0867 

NC, n = 200, 12-6, t =12 0.0588 0.0938 0.0430 0.0858 0.0655 0.0238 0.0290 0.0604 

NC, n = 200, 24-6, t = 6 0.0506 0.0615 0.1388 0.2137 0.1723 0.0824 0.1078 0.1343 

NC, n = 200, 24-6, t = 24 0.0850 0.1371 0.0718 0.1177 0.0780 0.0235 0.0415 0.0599 

NC, n = 1000, 12-6, t = 6 0.0239 0.0302 0.0266 0.0442 0.0366 0.0195 0.0204 0.0376 

NC, n = 1000, 12-6, t = 12 0.0281 0.0445 0.0194 0.0378 0.0277 0.0105 0.0129 0.0246 

NC, n = 1000, 24-6, t = 6 0.0225 0.0270 0.0496 0.0700 0.0545 0.0283 0.0361 0.0469 

NC, n = 1000, 24-6, t = 24 0.0384 0.0621 0.0314 0.0539 0.0345 0.0098 0.0175 0.0254 

YC, n = 200, 12-6, t = 6 0.0533 0.0499 0.0586 0.0545 0.0603 0.0547 0.0503 0.0690 

YC, n = 200, 12-6, t = 12 0.0583 0.0610 0.0327 0.0401 0.0386 0.0306 0.0280 0.0423 

YC, n = 200, 24-6, t = 6 0.0527 0.0459 0.2737 0.2987 0.2841 0.2690 0.2565 0.2996 

YC, n = 200, 24-6, t = 24 0.0713 0.0841 0.0467 0.0560 0.0489 0.0378 0.0370 0.0510 

YC, n = 1000, 12-6, t =  6 0.0218 0.0214 0.0279 0.0272 0.0298 0.0265 0.0246 0.0340 

YC, n = 1000, 12-6, t = 12 0.0241 0.0270 0.0138 0.0134 0.0126 0.0134 0.0122 0.0138 

YC, n = 1000, 24-6, t = 6 0.0241 0.0212 0.1436 0.1580 0.1534 0.1452 0.1378 0.1620 

YC, n = 1000, 24-6, t = 24 0.0324 0.0353 0.0210 0.0233 0.0207 0.0167 0.0164 0.0217 

Note: “NC” indicates no coupling conditions and “YC” indicates coupling conditions.  
Note: 12-6 indicates 12 time points restructured to 6, and 24-6 indicates 24 time points restructured to 6. 

Note: t = 24 and 12 are the true time metrics, and t = 6 is the restructured time metric. 
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Table 4 

     Logistic Regression with n and Coupling Predicting Model Convergence 

for Age-Grade Time Structure at t = 24 

  B S.E. Wald p OR 

n -0.0021 0.0005 18.1184 <.0001 0.9980 

coupling 1.2756 0.2378 28.7857 <.0001 3.581* 

n*coupling 0.0016 0.0005 9.5504 0.0020 1.0020 

Note: * indicates OR > 1.5 or OR < .5. 

Note: Convergence was coded such that 0 = non-convergence and 1 = 

convergence; n = 200, 1000; coupling was coded such that 0 = no 

coupling and 1 = coupling. 
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Table 5  

   Frequencies of Model Convergence by t and Coupling for Age-Grade Time 

Structure 

t = 6 

(restructured) 

 

No Convergence Convergence Total 

 

No Coupling 0 2000 2000 

 

Coupling 10 1990 2000 

 

Total 10 3990 4000 

t = 12 

(true) 

 

  

 

 

No Coupling 0 1000 1000 

 

Coupling 4 996 1000 

 

Total 4 1996 2000 

t = 24 

(true) 

 

   

 

No Coupling 49 951 1000 

 

Coupling 301 699 1000 

  Total 350 1650 2000 

Note: t = 12 and t = 24 are the true time metrics, and t = 6 is the restructured  

time metric. 
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Table 6 

     Analyses of Variance for n, t, and Coupling on Raw Bias of Parameter 

Estimates for Time-Occasion Time Structure 

µg0   df F p ηp
2 

 

n 1 2.73 0.0987 0 

 

t 2 431479 <.0001 0.7204* 

 

coupling 1 166414 <.0001 0.1389* 

 

n*t 2 0.02 0.9833 0 

 

n*coupling 1 0.41 0.5243 0 

 

t*coupling 2 46905.8 <.0001 0.0783 

 

n*t*coupling 2 0.26 0.7676 0 

µh0           

 

n 1 0.58 0.4454 0 

 

t 2 372212 <.0001 0.7211* 

 

coupling 1 144250 <.0001 0.1397* 

 

n*t 2 3.02 0.0491 0 

 

n*coupling 1 1.06 0.3043 0 

 

t*coupling 2 39681.9 <.0001 0.0769 

 

n*t*coupling 2 0.09 0.9172 0 

µg1           

 

n 1 0.88 0.3486 0.0001 

 

t 2 0.45 0.6347 0.0001 

 

coupling 1 0.54 0.4605 0.0001 

 

n*t 2 0.84 0.4309 0.0003 

 

n*coupling 1 0.01 0.9335 0 

 

t*coupling 2 0.3 0.7418 0.0001 

 

n*t*coupling 2 0.06 0.9374 0 

µh1           

 

n 1 0.68 0.4092 0.0001 

 

t 2 0.18 0.839 0.0001 

 

coupling 1 0.06 0.7991 0 

 

n*t 2 0.48 0.6206 0.0002 

 

n*coupling 1 0.58 0.4475 0.0001 

 

t*coupling 2 0.11 0.8995 0 

 

n*t*coupling 2 0.14 0.8656 0 

βx           

 

n 1 0.61 0.4339 0.0001 

 

t 2 3.66 0.0258 0.0012 

 

coupling 1 1.01 0.3155 0.0002 

 

n*t 2 0.92 0.3985 0.0003 

 

n*coupling 1 0.05 0.8205 0 

 

t*coupling 2 2.64 0.0716 0.0008 

 

n*t*coupling 2 1.29 0.2765 0.0004 

βy           

 

n 1 1.25 0.2633 0.0002 

 

t 2 14.98 <.0001 0.0048 

 

coupling 1 0.71 0.3991 0.0001 

 

n*t 2 1.15 0.3156 0.0004 

 

n*coupling 1 6.55 0.0105 0.001 

 

t*coupling 2 0.53 0.5865 0.0002 

 

n*t*coupling 2 6.6 0.0014 0.0021 

γyx           

 

n 1 0.4 0.5293 0.0001 

 

t 2 8.54 0.0002 0.0027 

 

coupling 1 1.09 0.2966 0.0002 

 

n*t 2 0.39 0.6766 0.0001 

 

n*coupling 1 5.23 0.0223 0.0008 

 

t*coupling 2 0.8 0.4498 0.0003 

 

n*t*coupling 2 5.11 0.0061 0.0016 

γxy           

 

n 1 1.59 0.2074 0.0003 

 

t 2 4.71 0.009 0.0015 

 

coupling 1 0.97 0.3251 0.0002 

 

n*t 2 1.52 0.2189 0.0005 

 

n*coupling 1 0.4 0.5276 0.0001 

 

t*coupling 2 2.86 0.0574 0.0009 

  n*t*coupling 2 1.64 0.1947 0.0005 

* indicates ηp
2
 ≥ .09. 

Note: n = 200, 1000; t = 4, 10, 20; coupling = yes coupling (YC), no 

coupling (NC). 

Note: t = 20 is the true time metric, and t = 4 and 10 are the restructured 

time metrics. 
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Table 7 

     Analyses of Variance for n, t, and Coupling on Standardized Bias of 

Parameter Estimates for Time-Occasion Time Structure 

g0n   df F p ηp
2
 

 

n 1 479888 <.0001 0.1841* 

 

t 2 852621 <.0001 0.6542* 

 

coupling 1 9191.1 <.0001 0.0035 

 

n*t 2 125845 <.0001 0.0966* 

 

n*coupling 1 2623.17 <.0001 0.001 

 

t*coupling 2 2426.81 <.0001 0.0019 

 

n*t*coupling 2 1138.48 <.0001 0.0009 

h0n           

 

n 1 791065 <.0001 0.1839* 

 

t 2 1414300 <.0001 0.6574* 

 

coupling 1 11983.9 <.0001 0.0028 

 

n*t 2 205167 <.0001 0.0954* 

 

n*coupling 1 5626.88 <.0001 0.0013 

 

t*coupling 2 3353.89 <.0001 0.0016 

 

n*t*coupling 2 1930.26 <.0001 0.0009 

g1n           

 

n 1 1.84 0.1746 0.0003 

 

t 2 0.36 0.6997 0.0001 

 

coupling 1 0.93 0.334 0.0001 

 

n*t 2 0.1 0.9084 0 

 

n*coupling 1 1.42 0.2335 0.0002 

 

t*coupling 2 0.14 0.8724 0 

 

n*t*coupling 2 0.54 0.5827 0.0002 

h1n           

 

n 1 0.39 0.5348 0.0001 

 

t 2 0.75 0.4733 0.0002 

 

coupling 1 0.53 0.4659 0.0001 

 

n*t 2 0.54 0.5847 0.0002 

 

n*coupling 1 1.78 0.182 0.0003 

 

t*coupling 2 0.46 0.6316 0.0001 

 

n*t*coupling 2 0.37 0.6911 0.0001 

βx           

 

n 1 0.03 0.8642 0 

 

t 2 0.28 0.7528 0.0001 

 

coupling 1 0.85 0.3572 0.0001 

 

n*t 2 0.22 0.8028 0.0001 

 

n*coupling 1 1.22 0.2697 0.0002 

 

t*coupling 2 0.54 0.584 0.0002 

 

n*t*coupling 2 1.43 0.2384 0.0005 

βy           

 

n 1 1.74 0.1876 0.0003 

 

t 2 2.69 0.068 0.0009 

 

coupling 1 0 0.9879 0 

 

n*t 2 0.1 0.9013 0 

 

n*coupling 1 0.73 0.3939 0.0001 

 

t*coupling 2 0.2 0.8191 0.0001 

 

n*t*coupling 2 3.09 0.0457 0.001 

γyx           

 

n 1 1.88 0.1709 0.0003 

 

t 2 2.27 0.1034 0.0007 

 

coupling 1 0.29 0.5876 0 

 

n*t 2 0.11 0.897 0 

 

n*coupling 1 0.43 0.5137 0.0001 

 

t*coupling 2 0.2 0.8195 0.0001 

 

n*t*coupling 2 2.69 0.0679 0.0009 

γxy           

 

n 1 0.08 0.7738 0 

 

t 2 0.77 0.4628 0.0002 

 

coupling 1 3.73 0.0535 0.0006 

 

n*t 2 0.15 0.8633 0 

 

n*coupling 1 0.68 0.4079 0.0001 

 

t*coupling 2 0.93 0.3956 0.0003 

  n*t*coupling 2 1.44 0.2366 0.0005 

* indicates ηp
2
 ≥ .09. 

Note: n = 200, 1000; t = 4, 10, 20; coupling = yes coupling (YC), no 

coupling (NC). 

Note: t = 20 is the true time metric, and t = 4 and 10 are the restructured 
time metrics. 
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Table 8         

Standard Deviations of Parameter Estimates by Condition for Time-Occasion Time Structure 

Condition SD(µg0) SD(µh0) SD(µg1) SD(µh1) SD(βx) SD(βy) SD(γyx) SD(γxy) 

NC, n = 200, 20-10, t = 10 0.0665 0.0677 0.1519 0.2867 0.2000 0.0663 0.1013 0.1412 

NC, n = 200, 20-10, t = 20 0.1218 0.2262 0.0729 0.1398 0.0860 0.0250 0.0406 0.0582 

NC, n = 200, 20-4, t = 4 0.0608 0.0602 0.5828 0.8076 0.7578 0.6073 0.5645 0.9647 

NC, n = 200, 20-4, t = 20 0.1425 0.2972 0.1193 0.1747 0.1142 0.0546 0.0750 0.0850 

NC, n = 1000, 20-10, t = 10 0.0280 0.0299 0.0441 0.1032 0.0665 0.0198 0.0281 0.0493 

NC, n = 1000, 20-10, t = 20 0.0551 0.0964 0.0300 0.0570 0.0339 0.0099 0.0160 0.0246 

NC, n = 1000, 20-4, t = 4 0.0292 0.0289 0.1570 0.2719 0.3630 0.2646 0.2103 0.4822 

NC, n = 1000, 20-4, t = 20 0.0676 0.1303 0.0461 0.0792 0.0532 0.0244 0.0307 0.0394 

YC, n = 200, 20-10, t = 10 0.1081 0.1150 0.0908 0.0791 0.0694 0.0820 0.0791 0.0725 

YC, n = 200, 20-10, t = 20 0.0984 0.1191 0.0594 0.0484 0.0419 0.0495 0.0486 0.0441 

YC, n = 200, 20-4, t = 4 0.1184 0.1197 0.3425 0.1886 0.2528 0.5018 0.4079 0.3099 

YC, n = 200, 20-4, t = 20 0.1749 0.1822 0.1402 0.0930 0.0951 0.1260 0.1222 0.1037 

YC, n = 1000, 20-10, t =  10 0.0466 0.0491 0.0350 0.0272 0.0240 0.0323 0.0307 0.0254 

YC, n = 1000, 20-10, t = 20 0.0438 0.0520 0.0256 0.0213 0.0184 0.0217 0.0211 0.0194 

YC, n = 1000, 20-4, t = 4 0.0519 0.0521 0.1120 0.0596 0.0672 0.1437 0.1141 0.0868 

YC, n = 1000, 20-4, t = 20 0.0657 0.0742 0.0385 0.0227 0.0171 0.0294 0.0300 0.0183 

Note: “NC” indicates no coupling conditions and “YC” indicates coupling conditions.  
Note: 20-10 indicates 20 time points restructured to 10, and 20-4 indicates 20 time points restructured to 4. 

Note: t = 20 is the true time metric, and t = 4 and 10 are the restructured time metrics. 
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Table 9 

     Logistic Regression with n, t, and Coupling Predicting Model 

Convergence for Time-Occasion Time Structure 

  B S.E. Wald p OR 

n -0.0041 0.0006 43.1325 <.0001 0.996 

t 0.0658 0.0124 28.0997 <.0001 1.068 

coupling 1.9940 51.7296 0.0015 0.9693        7.345* 

n*t 0.0001 0.0000 8.7462 0.0031 1 

n*coupling -0.0274 0.2586 0.0112 0.9157 0.973 

t*coupling -0.0630 2.5865 0.0006 0.9806 0.939 

n*t*coupling 0.0015 0.0129 0.0126 0.9107 1.001 

Note: * indicates OR > 1.5 or OR < .5. 

Note: Convergence was coded such that 0 = non-convergence and 1 = 

convergence; n = 200, 1000; t = 4, 10, 20; coupling was coded such 

that 0 = no coupling and 1 = coupling. 

Note: t = 20 is the true time metric, and t = 4 and t = 10 are the 

restructured time metrics. 
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Table 10 

   Frequencies of Model Convergence by Coupling for Time-

Occasion Time Structure 

 

No Convergence Convergence Total 

No Coupling 601 3399 4000 

Coupling 1156 2844 4000 

Total 1757 6243 8000 
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Table 11      

Frequencies of Inadmissible Parameter Estimates for μh0 by n, t, and 

Coupling for Time-Occasion Time Structure 

   

Variance ≥ 0 Variance < 0 Total 

n = 200 No Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

 

  t = 20 987 13 1000 

 

Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

 

  t = 20 1000 0 1000 

n = 1000 No Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

 

  t = 20 1000 0 1000 

 

Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

    t = 20 1000 0 1000 

Note: t = 20 is the true time metric, and t = 4 and t = 10 are the restructured  

time metrics.  
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Table 12      

Frequencies of Inadmissible Parameter Estimates for μh1 by n, t, and 

Coupling for Time-Occasion Time Structure 

   

Variance ≥ 0 Variance < 0 Total 

n = 200 No Coupling t = 4 488 12 500 

  

t = 10 500 0 500 

 

  t = 20 998 2 1000 

 

Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

 

  t = 20 1000 0 1000 

n = 1000 No Coupling t = 4 499 1 500 

  

t = 10 500 0 500 

 

  t = 20 1000 0 1000 

 

Coupling t = 4 500 0 500 

  

t = 10 500 0 500 

    t = 20 1000 0 1000 

Note: t = 20 is the true time metric, and t = 4 and t = 10 are the restructured  

time metrics. 
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Figures 

 
  

1 

Figure 1. Latent difference score model with five waves. Adapted from McArdle (2009). 
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Figure 2. Time metrics compared in time-occasion time structure where true time metric 

has t = 20 time points and restructured time metric has t = 4 time points. 

 

True Time Metric (Chronological Time) 
              

 

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 T 14 T 15 T 16 T 17 T 18 T 19 T 20 

ID 1 . . . x x x x . . . . . . . . . . . . . 

ID 2 . . . . . . . . . . x x x x . . . . . . 

ID 3 . . . . . . . x x x x . . . . . . . . . 

ID 4 x x x x . . . . . . . . . . . . . . . . 

ID 5 . . . . . . . . . . . . . . . x x x x . 

                     Restructured Time Metric (Occasion) 
              

 

T 1 T 2 T 3 T 4 

                ID 1 x x x x 
                ID 2 x x x x 
                ID 3 x x x x 

                ID 4 x x x x 

                ID 5 x x x x 

                 



  56 

 
Figure 3. Time metrics compared in age-grade time structure where true time metric has 

t = 24 time points and restructured time metric has t = 6 time points. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 4. Box plots of raw bias for the intercept parameter μg0 by condition for age-grade 

time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 5. Box plots of raw bias for the intercept parameter μh0 by condition for age-grade 

time structure in time study.   
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 6. Box plots of raw bias for the slope parameter μg1 by condition for age-grade 

time structure in time study.   

12-6, 6

200,

NC,

12

12-6,

200,

NC,

24-6, 6

200,

NC,

24

24-6,

200,

NC,

12-6, 6

1000,

NC,

12

12-6,

1000,

NC,

24-6, 6

1000,

NC,

24

24-6,

1000,

NC,

12-6, 6

200,

YC,

12

12-6,

200,

YC,

24-6, 6

200,

YC,

24

24-6,

200,

YC,

12-6, 6

1000,

YC,

12

12-6,

1000,

YC,

24-6, 6

1000,

YC,

24

24-6,

1000,

YC,

Condition

0

1

2

3

4

R
a

w
 B

ia
s 

o
f 

Y
 S

lo
p

e

Raw Bias of Y Slope by Condition

for Age-Grade Time Structure



  60 

  

“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 7. Box plots of raw bias for the slope parameter μh1 by condition for age-grade 

time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 8. Box plots of raw bias for the proportional change parameter βx by condition for 

age-grade time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 9. Box plots of raw bias for the proportional change parameter βy by condition for 

age-grade time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 10. Box plots of raw bias for the coupling parameter γyx by condition for age-

grade time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

12-6 = 12 time points restructured to 6, 24-6 = 24 time points restructured to 6 

t = 6,12, 24 

Note: t = 12 and 24 are the true time metrics, and t = 6 is the restructured time metric. 

 

Figure 11. Box plots of raw bias for the coupling parameter γxy by condition for age-

grade time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

20-10 = 20 time points restructured to 10, 20-4 = 20 time points restructured to 4 

t = 4, 10, 20 

Note: t = 20 is the true time metric, and t = 4 and 10 are the restructured time metrics. 

 

Figure 12. Box plots of raw bias for the intercept parameter μg0 by condition for time-

occasion time structure in time study. 
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“NC” = no coupling, “YC” = yes coupling 

n = 200, 1000 

20-10 = 20 time points restructured to 10, 20-4 = 20 time points restructured to 4 

t = 4, 10, 20 

Note: t = 20 is the true time metric, and t = 4 and 10 are the restructured time metrics. 

 

Figure 13. Box plots of raw bias for the intercept parameter μh0 by condition for time-

occasion time structure in time study. 
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APPENDIX B  

DOCUMENT NOTATION 
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α  A fixed parameter in the latent difference score equation, usually equal to  

  1. 

β  Systematic proportional change over time that does not vary across  

  individuals.  

βx  Proportional change for X. 

βy  Proportional change for Y. 

Δy[t]n  The latent difference score for Y for an individual n at time t. 

ηn   The R x 1 vector with latent factor scores for an individual n. 

γxy   The coupling parameter for the effect of  Y on X over time. 

γyx  The coupling parameter for the effect of  X on Y over time. 

Λ  The t x R factor loading matrix defining the latent growth factors. 

μg0  The mean for the initial level of Y. 

μg1  The mean for the constant change component of Y. 

μh0  The mean for the initial level of X. 

μh1  The mean for the constant change component of X. 

σ
2

g0  The variance for the initial level of Y. 

σ
2

g1  The variance for the constant change component of Y. 

σg0,g1  The covariance between the initial level of Y and the constant change  

  component of Y. 

σ
2

h0  The variance for the initial level of X. 

σ
2

h1  The variance for the constant change component of X. 

σh0,h1  The covariance between the initial level of X and the constant change  

  component of X. 
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σg0,h0  The covariance between the initial levels of X and Y. 

σg1,h1  The covariance between the constant change components of X and Y. 

e[t]n  Unique score (error) for an individual n at time t. 

g0n  The initial level for participant n on Y. 

g1n  The constant change component for participant n on Y. 

h0n  The initial level for participant n on X. 

h1n  The constant change component for participant n on X. 

N  Number of participants. 

n  Denotes an individual. 

R  In linear growth model notation, R = 1 for no growth, R = 2 for linear  

  growth. 

t  Number of time points. 

un  The t x 1 vector of unique scores for participant n. 

Y[t]n  Observed score for an individual n at time t. 

y[t]n  True score for an individual n at time t. 

y[t - 1]n True score for an individual n at the time point previous to t. 

yn  The t x 1 vector of observed scores with t repeated measures for an  

  individual n.
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APPENDIX C  

SAMPLE SAS CODE FOR DATA GENERATION OF BIVARIATE DUAL CHANGE 

LDS MODEL 
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TITLE 'Dissertation 20-4 N=200 couple-Y Occasion example' ; 

 

/***********************************************************************

*****            

         

 THIS FILE GENERATES TWO SETS OF DATA SETS, ONE SET BASED ON 20 

OCCASIONS WHERE  

 PARTICIPANTS ARE MEASURED 4 TIMES OVER THE 20 MEASUREMENT 

OCCASIONS AND  

 ONE SET THAT HAS COMPLETE DATA ON THOSE 4 OCCASIONS (THE FIRST 

DATA SET,  

 RESTRUCTURED. THIS FILE CREATES NUMEROUS DATA SETS FOR EACH 

STRUCTURE AND  

 OUTPUTS THEM TO TWO SEPARATE FOLDERS, SEPARATED BY DATA 

STRUCTURE. 

 HOLLY OROURKE 110415 

 

************************************************************************

*****/ 

  

 %MACRO SIMULATION; 

 *Covariance Matrix of Levels and Slopes; 

 PROC IML; 

 * Specify random number seed; 

  current = TIME(); 

  Seed = ROUND(current*10001.5); 

 * Specify number of observations for the data matrix; 

  n=200; 

 * Define Correlation Matrix (add column for systematic variance for moderator); 

  R={1.0  0.50  0.50  0.50, 

  0.50  1.0  0.50 0.50, 

  0.50 0.50 1.0  0.50, 

  0.50 0.50 0.50 1.0}; 

 * Define Vector of Standard Deviations; 

 *(comes from Ferrer et al. 2010 - typical readers, p. 97; 

 *intercept SDs are .734 & .660 and slope SDs are .118 & .207); 

 Ds=Diag({.734 .118 .660 .207}); 

  * Compute Covariance Matrix; 

 S=Ds*R*Ds; 

  * Compute Choleski Root for transformation; 

 T=Root(S); 

  * Initialize data vector with random number seed; 

 X=J(n,NRow(S),Seed); 

  * Generate Independent Standard Normals for the data matrix; 

 X=Rannor(X); 
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  * Now transform to have the desired covariance structure; 

 Y=X*T; 

  * Save the data matrix; 

 CREATE NormalData From Y; 

 APPEND From Y; 

 CLOSE NormalData; 

  * Done; 

 QUIT; 

  

 DATA newnames; 

  SET NormalData; 

  RENAME col1 = x0_0; 

  RENAME col2 = x1_0; 

  RENAME col3 = y0_0; 

  RENAME col4 = y1_0; 

 RUN; 

  

 Proc Corr Data=newnames; 

 Run; 

  

  

 TITLE2 'Generating Simulation Data using random normal theory'; 

 DATA row_DYN1; 

  SET newnames; 

 ARRAY Ym[20] y01 y02 y03 y04 y05 y06 y07 y08 y09 y10 y11 y12 y13 y14 y15 y16 

y17 y18 y19 y20 ; 

 ARRAY Xm[20] x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x11 x12 x13 x14 x15 x16 

x17 x18 x19 x20 ; 

 ARRAY yl[20] yl01 yl02 yl03 yl04 yl05 yl06 yl07 yl08 yl09 yl10 yl11 yl12 yl13 yl14 

yl15 yl16 yl17 yl18 yl19 yl20 ; 

 ARRAY xl[20] xl01 xl02 xl03 xl04 xl05 xl06 xl07 xl08 xl09 xl10 xl11 xl12 xl13 xl14 

xl15 xl16 xl17 xl18 xl19 xl20 ; 

 ARRAY ye[20] ye01 ye02 ye03 ye04 ye05 ye06 ye07 ye08 ye09 ye10 ye11 ye12 ye13 

ye14 ye15 ye16 ye17 ye18 ye19 ye20 ; 

 ARRAY xe[20] xe01 xe02 xe03 xe04 xe05 xe06 xe07 xe08 xe09 xe10 xe11 xe12 xe13 

xe14 xe15 xe16 xe17 xe18 xe19 xe20 ; 

 ARRAY dy[20] dy01 dy02 dy03 dy04 dy05 dy06 dy07 dy08 dy09 dy10 dy11 dy12 dy13 

dy14 dy15 dy16 dy17 dy18 dy19 dy20 ; 

 ARRAY dx[20] dx01 dx02 dx03 dx04 dx05 dx06 dx07 dx08 dx09 dx10 dx11 dx12 dx13 

dx14 dx15 dx16 dx17 dx18 dx19 dx20 ; 

  

 * setting mathematical parameters -- from Ferrer et al. 2010 typical readers, p. 97; 

 * gamma_xy=coupling y to x, gamma_yx = coupling x to y; 

   mu_y0 = .220;   

   mu_ys = .550;   
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   sig2_ye = .101;  sigma_ye = SQRT(sig2_ye);  

   

   mu_x0 = .570;   

   mu_xs = 1.410;   

   sig2_xe =  .025;  sigma_xe = SQRT(sig2_xe);  

  

   alpha_y  = 1;  beta_y =  -.274; 

   alpha_x  = 1;  beta_x =  -.549; 

   gamma_xy = +.401;  gamma_yx= +.130; 

   

 * setting statistical parameters; 

   current = TIME(); 

   Seed = ROUND(current*10001.5); 

 * generating raw data; 

  id = _N_; 

  

  y0 = mu_y0 + y0_0;  

     ys = mu_ys + y1_0; 

     ye[1] = sigma_ye * RANNOR(seed);  

     yl[1] = y0;  

     ym[1] = yl[1] + ye[1];   

   

     x0 = mu_x0 + x0_0; 

     xs = mu_xs + x1_0; 

     xe[1] = sigma_xe * RANNOR(seed);  

     xl[1] = x0;  

     xm[1] = xl[1] + xe[1];   

  

 * latent trajectory ; 

     DO t = 2 TO 20; 

     dy[t] = alpha_y * ys + beta_y * yl[t-1] + gamma_yx * xl[t-1] ;   

  ye[t] = sigma_ye * RANNOR(seed);  

     yl[t] = yl[t-1] + dy[t];  

     ym[t] = yl[t] + ye[t];   

  

     dx[t] = alpha_x * xs + beta_x * xl[t-1] + gamma_xy * yl[t-1] ; 

     xe[t] = sigma_xe * RANNOR(seed);   

     xl[t] = xl[t-1] + dx[t];  

     xm[t] = xl[t] + xe[t];  

  call streaminit(0); 

  u=rand("Uniform"); 

  max=17; 

  ranstart=ceil(max*u); 

  END;  

  OUTPUT; 
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  KEEP id ranstart y0 ys x0 xs y01--y20 x01--x20 ; 

 RUN; 

 %MEND SIMULATION; 

  

 /*%MACRO PLOT;*/ 

 /*PROC GPLOT DATA = col_dyn1 (where = (id<100));*/ 

 /* SYMBOL1 I=JOIN COLOR=BLACK VALUE=DOT HEIGHT=1.25 

WIDTH=1.25 LINE=1 REPEAT=5000;*/ 

 /* PLOT y*time = id/NOLEGEND;*/ 

 /*RUN;*/ 

 /**/ 

 /*PROC GPLOT DATA = col_dyn1 (where = (id<100));*/ 

 /* SYMBOL1 I=JOIN COLOR=BLACK VALUE=DOT HEIGHT=1.25 

WIDTH=1.25 LINE=1 REPEAT=5000;*/ 

 /* PLOT x*time = id/NOLEGEND;*/ 

 /*RUN;*/ 

 /*%MEND PLOT;*/ 

  

 %MACRO TRANSFORM1; 

 DATA col_dyn1; 

  SET row_dyn1; 

  y = y01; x = x01; time = 1;  OUTPUT; 

  y = y02; x = x02; time = 2;  OUTPUT; 

  y = y03; x = x03; time = 3;  OUTPUT; 

  y = y04; x = x04; time = 4;  OUTPUT; 

  y = y05; x = x05; time = 5;  OUTPUT; 

  y = y06; x = x06; time = 6;  OUTPUT; 

  y = y07; x = x07; time = 7;  OUTPUT; 

  y = y08; x = x08; time = 8;  OUTPUT; 

  y = y09; x = x09; time = 9;  OUTPUT; 

  y = y10; x = x10; time = 10;  OUTPUT; 

  y = y11; x = x11; time = 11;  OUTPUT; 

  y = y12; x = x12; time = 12;  OUTPUT; 

  y = y13; x = x13; time = 13;  OUTPUT; 

  y = y14; x = x14; time = 14;  OUTPUT; 

  y = y15; x = x15; time = 15;  OUTPUT; 

  y = y16; x = x16; time = 16;  OUTPUT; 

  y = y17; x = x17; time = 17;  OUTPUT; 

  y = y18; x = x18; time = 18;  OUTPUT; 

  y = y19; x = x19; time = 19;  OUTPUT; 

  y = y20; x = x20; time = 20;  OUTPUT; 

  KEEP id ranstart time y0 ys y x0 xs x; 

 RUN; 

 %MEND TRANSFORM1; 
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 %MACRO TRANSFORM2; 

 DATA col_dyn2; 

  SET col_dyn1; 

  occ=0; 

  if time=ranstart then occ=1; 

  if time=(ranstart+1) then occ=2; 

  if time=(ranstart+2) then occ=3; 

  if time=(ranstart+3) then occ=4; 

 RUN; 

  

 DATA col_dyn2a; 

  SET col_dyn2; 

  if occ=0 then x=.; 

  if occ=0 then y=.; 

 RUN; 

  

 DATA col_dyn3; 

  SET col_dyn2; 

  if occ=0 then delete; 

 RUN; 

 %MEND TRANSFORM2; 

  

 %MACRO TRANSFORM3; 

 proc transpose data=col_dyn3 out=row_dynx prefix=x; 

  by id y0 ys x0 xs; 

  id occ; 

  var x; 

 run; 

  

 proc transpose data=col_dyn3 out=row_dyny prefix=y; 

  by id; 

  id occ; 

  var y; 

 run; 

  

 data row_dyn2; 

  merge row_dynx row_dyny; 

  drop _name_; 

 run; 

  

 proc transpose data=col_dyn2a out=row_dynxa prefix=x; 

  by id y0 ys x0 xs; 

  id time; 

  var x; 

 run; 
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 proc transpose data=col_dyn2a out=row_dynya prefix=y; 

  by id; 

  id time; 

  var y; 

 run; 

  

 data row_dyn2a; 

  merge row_dynxa row_dynya; 

  drop _name_; 

 run; 

  

 data row_dyn2a; 

  set row_dyn2a; 

 ARRAY Ym[20] y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 

y20; 

 ARRAY Xm[20] x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 

x20; 

 DO t=1 TO 20; 

  if Xm[t] =. then Xm[t] = 999; 

 END; 

 DO t=1 TO 20; 

  if Ym[t] =. then Ym[t] = 999; 

 END; 

 KEEP id y0 ys x0 xs x1--x20 y1--y20; 

  OUTPUT; 

 RUN; 

 %MEND TRANSFORM3; 

  

 %MACRO OUTPUT1; 

 /*Writing Out More-Info Time Structure Data Files for Mplus*/ 

 DATA _NULL_; 

  SET row_dyn2a; 

  data = &count; 

  datastr = PUT(data,4.); 

  datastrcomp = COMPRESS(datastr,' '); 

  name = 'C:\Users\horourke\Google Drive\Dissertation\more 

info\test_'||datastrcomp||'.dat'; 

  FILE tempfile filevar=name; 

  PUT (id y0 ys x0 xs x1-x20 y1-y20) (11.2); 

 RUN; 

 %MEND OUTPUT1; 

  

 %MACRO OUTPUT2; 

 /*Writing Out Less-Info Time Structure Data Files for Mplus*/ 
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 DATA _NULL_; 

  SET row_dyn2; 

  data = &count; 

  datastr = PUT(data,4.); 

  datastrcomp = COMPRESS(datastr,' '); 

  name = 'C:\Users\horourke\Google Drive\Dissertation\less 

info\test_'||datastrcomp||'.dat'; 

  FILE tempfile filevar=name; 

  PUT (id y0 ys x0 xs x1-x4 y1-y4) (11.2); 

 RUN; 

 %MEND OUTPUT2; 

  

 %MACRO ALLJOB; 

  %LOCAL count; 

  %LOCAL stop; 

  %LET stop = 1500; 

  %LET count= 1001; 

   %DO %WHILE (&count <= &stop); 

    %SIMULATION; *Recall local macro - SIMULATION; 

    %TRANSFORM1; 

    %TRANSFORM2; 

    %TRANSFORM3; 

    %OUTPUT1; 

    %OUTPUT2; 

    %LET count = %EVAL(&count+1); *Increment count by 1; 

   %END; 

 %MEND ALLJOB; 

  

 %ALLJOB; 
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APPENDIX D  

SAMPLE MPLUS CODE FOR BIVARIATE DUAL CHANGE LDS MODEL 
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!*********************************************! 

! LDS model for data structure with less info        ! 

!*********************************************! 

 

TITLE: LDS model for age-grade example - less info data structure; 

!The data to be analyzed 

DATA: FILE IS testage2.DAT; 

VARIABLE: NAMES ARE  

id y0 ys x0 xs x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6 ; 

 USEVARIABLE ARE x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6 ; 

 MISSING are all (999); 

 ANALYSIS:  

 !TYPE=MEANSTRUCTURE; 

 ITERATIONS = 5000; 

 COVERAGE = 0; 

MODEL: 

!For the variable y 

!Oberved variables and latent level 

ly1 by y1 @1; 

ly2 by y2 @1; 

ly3 by y3 @1; 

ly4 by y4 @1; 

ly5 by y5 @1; 

ly6 by y6 @1; 

!Autoregressive part 

ly2 on ly1 @1; 

ly3 on ly2 @1; 

ly4 on ly3 @1; 

ly5 on ly4 @1; 

ly6 on ly5 @1; 

!Difference score on latent level 

dy1 by ly2 @1; 

dy2 by ly3 @1; 

dy3 by ly4 @1; 

dy4 by ly5 @1; 

dy5 by ly6 @1; 

!Auto-porpotion of difference score on level 

! add the starting values after * 

dy1 on ly1 * (1); 

dy2 on ly2 * (1); 

dy3 on ly3 * (1); 

dy4 on ly4 * (1); 

dy5 on ly5 * (1); 

!Model relationship between slope and ds 

sy by dy1 @1; 
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sy by dy2 @1; 

sy by dy3 @1; 

sy by dy4 @1; 

sy by dy5 @1; 

y0 by ly1 @1; 

! Set the means and variance to be 0 

[y1@0]; [ly1@0]; [dy1@0]; ly1@0; dy1@0; 

[y2@0]; [ly2@0]; [dy2@0]; ly2@0; dy2@0; 

[y3@0]; [ly3@0]; [dy3@0]; ly3@0; dy3@0; 

[y4@0]; [ly4@0]; [dy4@0]; ly4@0; dy4@0; 

[y5@0]; [ly5@0]; [dy5@0]; ly5@0; dy5@0; 

[y6@0]; [ly6@0];ly6@0; 

!beginning the codes for x variables 

!For the variable x 

!Oberved variables and latent level 

lx1 by x1 @1; 

lx2 by x2 @1; 

lx3 by x3 @1; 

lx4 by x4 @1; 

lx5 by x5 @1; 

lx6 by x6 @1; 

!Autoregressive part 

lx2 on lx1 @1; 

lx3 on lx2 @1; 

lx4 on lx3 @1; 

lx5 on lx4 @1; 

lx6 on lx5 @1; 

!Difference score on latent level 

dx1 by lx2 @1; 

dx2 by lx3 @1; 

dx3 by lx4 @1; 

dx4 by lx5 @1; 

dx5 by lx6 @1; 

!Auto-porpotion of difference score on level 

! add the starting values after * 

dx1 on lx1 * (2); 

dx2 on lx2 * (2); 

dx3 on lx3 * (2); 

dx4 on lx4 * (2); 

dx5 on lx5 * (2); 

!Model relationship between slope and ds 

sx by dx1 @1; 

sx by dx2 @1; 

sx by dx3 @1; 

sx by dx4 @1; 
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sx by dx5 @1; 

x0 by lx1 @1; 

 !Set the means and variance to be 0 

[x1@0]; [lx1@0]; [dx1@0]; lx1@0; dx1@0; 

[x2@0]; [lx2@0]; [dx2@0]; lx2@0; dx2@0; 

[x3@0]; [lx3@0]; [dx3@0]; lx3@0; dx3@0; 

[x4@0]; [lx4@0]; [dx4@0]; lx4@0; dx4@0; 

[x5@0]; [lx5@0]; [dx5@0]; lx5@0; dx5@0; 

[x6@0]; [lx6@0]; lx6@0; 

 

!coupling from y to x 

dx1 on ly1*(3); 

dx2 on ly2*(3); 

dx3 on ly3*(3); 

dx4 on ly4*(3); 

dx5 on ly5*(3); 

!coupling from x to y 

dy1 on lx1*(4); 

dy2 on lx2*(4); 

dy3 on lx3*(4); 

dy4 on lx4*(4); 

dy5 on lx5*(4); 

[y0 x0 sy sx]; 

y0 x0 sy sx; 

!Set all residuals to be equal 

y1*1 (5);x1*1 (6); 

y2*1 (5);x2*1 (6); 

y3*1 (5);x3*1 (6); 

y4*1 (5);x4*1 (6); 

y5*1 (5);x5*1 (6); 

y6*1 (5);x6*1 (6); 

! Set the correlated residuals 

y1 with x1* (7); 

y2 with x2* (7); 

y3 with x3* (7); 

y4 with x4* (7); 

y5 with x5* (7); 

y6 with x6* (7); 

OUTPUT:  TECH1 TECH4; 

SAVEDATA: 

RESULTS=testage2results.txt; 


