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ABSTRACT 

Robotic systems are outmatched by the abilities of the human hand to perceive 

and manipulate the world. Human hands are able to physically interact with the world to 

perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact 

with and manipulate the world diminish their usefulness. In order to advance robot end 

effectors, specifically artificial hands, rich multimodal tactile sensing is needed. In this 

work, a multi-articulating, anthropomorphic robot testbed was developed for 

investigating tactile sensory stimuli during finger-object interactions. The artificial finger 

is controlled by a tendon-driven remote actuation system that allows for modular control 

of any tendon-driven end effector and capabilities for both speed and strength. The 

artificial proprioception system enables direct measurement of joint angles and tendon 

tensions while temperature, vibration, and skin deformation are provided by a multimodal 

tactile sensor. Next, attention was focused on real-time artificial perception for decision-

making. A robotic system needs to perceive its environment in order to make decisions. 

Specific actions such as “exploratory procedures” can be employed to classify and 

characterize object features. Prior work on offline perception was extended to develop an 

anytime predictive model that returns the probability of having touched a specific feature 

of an object based on minimally processed sensor data. Developing models for anytime 

classification of features facilitates real-time action-perception loops. Finally, by 

combining real-time action-perception with reinforcement learning, a policy was learned 

to complete a functional contour-following task: closing a deformable ziplock bag. The 

approach relies only on proprioceptive and localized tactile data. A Contextual Multi-

Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize 
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cumulative rewards within a finite time period by balancing exploration versus 

exploitation of the action space. Performance of the C-MAB learner was compared to a 

benchmark Q-learner that eventually returns the optimal policy. To assess robustness and 

generalizability, the learned policy was tested on variations of the original contour-

following task. The work presented contributes to the full range of tools necessary to 

advance the abilities of artificial hands with respect to dexterity, perception, decision-

making, and learning. 
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CHAPTER 1 

INTRODUCTION 

Motivation 

 Robot end effectors, artificial hands, and prosthetics are commonly benchmarked 

against the abilities of the human hand. The human hand is able to perceive, act and learn 

seamlessly in its environment through the integration of multiple sensory systems such as 

auditory, visual, proprioceptive and especially tactile stimulation. When learning a new 

manipulation task, the primary feedback modality is most often visual; one observes a 

deviation from a goal along with the success or failure of the task. While this is 

happening, visual cues are also being related to tactile and proprioceptive stimulation. 

Once the manipulation task has been successfully learned, it can often be completed with 

only tactile and proprioceptive feedback (Klatzky & Lederman, 1999). The task becomes 

almost automatic, requiring minimal attention (Johansson & Flanagan, 2009). This 

reduction of cognitive load happens only once we learn the nuances of a task and it no 

longer requires additional sensory oversight. These learned nuances of a manipulation 

task are then stored as experience with expected results. This allows us to learn similar 

and overlapping tasks quickly as our manipulation abilities improve.   

  While the kinematic capabilities of prosthetic and artificial hands are important, 

without sensory, or afferent, signals their usefulness becomes questionable. The majority 

of currently available prosthetic hands lack rich tactile sensing and the user must rely on 

visual and aural feedback. For a thorough review of current capabilities of common 

anthropomorphic prosthetic hands see (Belter & Dollar, 2011). It is important to note that 

while we are discussing the kinematic and sensory abilities of prosthetic devices, the 
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aesthetics are also of great importance although not the focus of this work. The necessity 

of sensory feedback is shown from the results of a study on the motor function of a man 

deafferented by severe peripheral sensory neuropathy (Rothwell et al., 1982). While the 

subject still has full motor function of his arm and hand, he is able to complete certain 

dexterous tasks primarily through visual feedback. However, without the use of vision, 

dexterous tasks quickly degrade: he is unable to hold a cup, button his shirt, or even judge 

the weight of objects. This shows the importance of afferent sensory signals in the 

functionality of our hands and reinforces the importance of sensory feedback for capable 

and effective anthropomorphic prosthetic hands. Additionally, it is important not to 

overwhelm the amputee with unintuitive sensory feedback. If sensory stimuli are non-

intuitive, it can become distracting or even habituated (Jimenez & Fishel, 2014). 

Preprocessing sensory feedback in an effort to recreate reflex responses or simplify 

sensory perception to the user of a prosthetic device could reduce the cognitive load and 

improve the functionality and usefulness of the device. 
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Figure 1.1 Typical set of “exploratory procedures” for haptically determining object 

properties. Excerpt from (Lederman & Klatzky, 1987). 

 

When learning to haptically perceive object features, humans rely on “exploratory 

procedures” (EPs) that are sets of motions used to determine specific properties 

(Lederman & Klatzky, 1987). Even while using vision as the primary feedback modality 

for learning, there are properties of objects that remain ambiguous through vision alone. 

This ambiguity arises because properties such as hardness, texture, or other visually 

obscure features cannot be ascertained through vision alone. In order to more accurately 

determine these features and reduce uncertainty, “exploratory procedures” are used. 

Based on the feature of interest, an appropriate exploratory action or set of actions will be 
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chosen. For example, pressure is used to determine hardness while lateral motions along 

a small region of the object are used to determine texture (Figure 1.1). These action 

choices are based on previous knowledge developed from years of learning action-

perception relationships.  

Current robotic systems have a limited ability to interact with the world. 

Developing robotic systems that can haptically interact and learn from the environment 

will advance the capabilities of the field. By advancing the abilities of artificial 

perception, learning, and manipulation, the functionality and usefulness of robotic 

systems and prosthetic devices will progress.  
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Contributions 

The work presented is focused on advancing the abilities of artificial hands with 

respect to dexterity, perception, and decision-making. This dissertation is comprised of 

three separate studies and a discussion on future work. Chapter 2 is focused on the 

development of a highly dexterous anthropomorphic testbed with rich tactile sensing. The 

testbed is tendon-driven by a remote actuation system. Two actuation systems are 

presented, one with zero-backlash (Hellman & Santos, 2012) and the second with a 

significantly streamlined design for cost reduction and manufacturability (Hellman, 

Chang, Tanner, Helms Tillery, & Santos, 2015). Both systems are characterized and 

shown to be capable of human-like speed and strength. Applications of the testbed are 

then discussed for the rehabilitation of upper-limb impairment or loss.  

Chapter 3 explores the use of probabilistic models for real-time haptic perception 

of geometric object features. Prior work was done to develop models for perceiving 

object features, but complete fingertip trajectories were needed (R. D. Ponce Wong, 

Hellman, & Santos, 2014). The work presented here resulted in anytime classification of 

edge orientation on partial information with minimally processed tactile data (Hellman & 

Santos, 2015).  

Chapter 4 describes the development of capabilities for a robotic system to 

perform a functional contour-following task. Perception and decision-making are needed 

to successfully complete the task. Perception during short end effector trajectories is 

useful for identifying deviations from successful task execution and taking frequent 

corrective actions (Hellman & Santos, 2016). Trained state classifiers are robust to novel 

contour-following tasks that were not used during training. Reinforcement learning is 
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used to determine the best policy with both Contextual Multi-Armed Bandits and Q-

learning algorithms. 

Chapter 5 summarizes the contributions of this dissertation and discusses 

applications and future directions. 
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CHAPTER 2 

ROBOTIC HAND TESTBED TO AID IN THE DEVELOPMENT OF HAPTIC 

ALGORITHMS FOR ARTIFICIAL PERCEPTION AND MANIPULATION 

Introduction 

Commercially available multi-articulating artificial hands use an intrinsic 

actuation system in which motors reside in the palm or at finger joints themselves (Belter, 

Segil, Dollar, & Weir, 2013; Controzzi, Cipriani, & Carrozza, 2014). As a result, these 

hands are either limited in movement speed or grip strength. For the purposes of a 

testbed, the “BairClaw” presented in this chapter along with multiple actuation systems 

was designed to have an extrinsic, tendon-driven, remote actuation system to enable 

human-like speeds and grip strengths while maintaining the small volume and form factor 

of a human-sized hand. The testbed was designed for a maximum fingertip force of 44.5 

N (10 lbf) and maximum individual tendon tensions of 111 N (25 lbf). The maximum 

fingertip force was selected to be consistent with human capabilities for opposition pinch 

and single-digit force production against a surface (Keenan & Massey, 2012; Swanson, 

Matev, & De Groot, 1970). The maximum individual tendon tension was estimated based 

on planned BairClaw kinematics and overall dimensions. As with the human hand and its 

extrinsic muscles, the BairClaw’s extrinsic actuation system resides proximal to the wrist 

and transmits multi-articular joint torques using tendons.  
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Currently there are multiple robotic hands that have similar kinematic capacities 

to that of human hands but are limited in their sensing capabilities. Chapter 1 discussed 

the currently available robot systems for manipulation while highlighting their 

capabilities. To advance the area of robot manipulation, a bench-mounted testbed capable 

of dexterous manipulation and rich tactile sensing has been developed.  

 The robot testbed is comprised of an actuation system and a highly dexterous 

robot finger. The robot finger is extrinsically actuated by tendons that are connected 

through a custom built transmission system. Extrinsic actuation allows the size and 

weight of the robot finger to remain anthropomorphic. 

 The majority of this chapter is from published work (Hellman et al., 2015; 

Hellman & Santos, 2012). 
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Robot Testbed 

Actuation Systems 

The design of human-sized artificial hands is challenged by the relatively small 

volume available for sensor, actuator, and plant components. An intrinsic actuation 

approach (with motors in the fingers and palm) results in a compact and elegant form 

(e.g., (Liu et al., 2008)), but often at the expense of finger motion and force production 

capabilities. When both strength and speed are desired, an extrinsic actuation approach 

can be taken similar to that of the human hand. In addition to smaller intrinsic muscles in 

the palm, powerful extrinsic muscles in the forearm transmit torques to finger joints 

through tendons and extensor hoods that pass over the joints (Tubiana, 1981). For 

practical reasons, many robot hands have actuators located proximal to the wrist and rely 

on cables to transmit torques about finger joints. Such tendon-driven designs have been 

used for underactuated (Dollar & Howe, 2010) and robotic hands (Lotti et al., 2005; 

Loucks, Johnson, Boissiere, Starr, & Steele, 1987; Lovchik & Diftler, 1999; Nahvi, 

Hollerbach, Yangming Xu, & Hunter, 1994; Shadow Robot Company, 2011), prosthetic 

hands (Dalley, Wiste, Withrow, & Goldfarb, 2009), and complex, anthropomorphic 

systems (Gialias & Matsuoka, 2004; Grebenstein, Chalon, Hirzinger, & Siegwart, 2010). 

Here we present a novel design for a rotary motor-based actuation system for a 

single revolute joint of a tendon-driven robotic hand. The actuation system was designed 

for a double-acting actuation scheme (“N-type”) in which one motor can control both 

rotation directions of a single revolute joint (Jacobsen, Ko, Iversen, & Davis, 1989). This 

“push-pull” capability reduces hardware and control complexity. However, the modular 

actuation system could be duplicated and used in a single-acting actuation scheme (“2N-



 

10 

type”) in which two motors actuate a single joint using an agonist/antagonist control 

scheme if co-contraction is desired. While the actuation system can be applied to any 

tendon-driven mechanism, the design criteria were created with a human-sized, 

anthropomorphic robot hand in mind. The actuation system is designed for use in a 

robotic hand testbed that allows for seamless transitions between different tendon-driven 

end effectors. 

 

First Generation Zero Backlash, Back-Driveable Actuation System 

I. Methods 

A. Design Criteria  

Strength, speed, precision, and robustness are key features to consider in the 

design of remote actuation systems (Melchiorri & Kaneko, 2008) for tendon-driven 

robotic hands. These features affect the ability of the fingertips to achieve the 

responsiveness necessary for implementation of artificial grip reflexes and the dexterity 

required for object manipulation during grasp. In particular, the use of flexible-link 

transmission systems (e.g., pulley- and sheath-routed tendons) adds to the design 

challenge (Melchiorri & Kaneko, 2008). 

The actuation system must have sufficient bandwidth and minimal phase delay so 

as to produce a fingertip force with minimal lag. Furthermore, proprioception capabilities 

are especially important. Motor encoders can provide tendon displacement and velocity 

measurements that, coupled with a known Jacobian matrix for the robot hand, could 

supplement joint angle and velocity data provided by the robot hand itself. In some cases, 

motor controllers can also provide motor current measurements as a method to determine 
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joint torques. However, the desired method to determine joint torques will be through the 

use of uniaxial load cells in series with each tendon. In the actuation system presented 

here, the compound pulley reduction produces a desired high tendon force output along 

with zero backlash back-drivability (Figure 2.1). The tendon preload and stiffness 

mechanisms, as well as the tendon tension sensors, are all located alongside a single 

Maxon EC-max 30 (30 mm diameter), 60 watt motor (Maxon Precision Motors, Inc.). 

 

 

Figure 2.1 Actuation system. The right half of the assembly contains a two-stage, zero 

backlash, 12:1 compound pulley reduction. Below the motor on the left are the tendon 

stiffness and preload mechanisms along with the inline load cells for measuring tendon 

tension. 
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 High factors of safety were used in the design of the actuation system in order to 

minimize performance limitations that might prohibit fast, reflex-like movements or 

functionally meaningful fingertip forces. Importantly, we are able to reduce the 

maximum motor current in order to accommodate different tendon-driven end effector 

designs without the actuation system itself limiting the performance of the overall robotic 

system. The motor bank is capable of achieving high forces that exceed the suggested 

maximum tendon tension of the Shadow Dexterous Robot Hand (Shadow Robot 

Company). To prevent damage to the end effector, a mechanical tendon fuse can be used 

as a secondary precaution in addition to software limitations on motor current. The 

mechanical fuse will be located serially in between the input tendons of the robotic hand 

and the output tendons of the actuation system. If the system were unexpectedly 

overloaded and the springs in the actuation system were unable to absorb the load, the 

mechanical fuse would fail, thereby sparing the robot hand from damage.  
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1) Compound pulley reduction  

Table 2.1 Design specification for actuation system. 

 

 

The motor module has a two-stage, 12:1 zero backlash compound pulley 

reduction from the motor shaft to the final output shaft (Figure 2.2). Based on the 60 watt 

specifications, stall torque of the Maxon EC-max motor will sustain tendon tensions at 

the output shaft of 533N (120 lbf) with a nominal dynamic load of 58N (13 lbf) (Table 

2.1). Although pulleys are mounted on ball bearing-supported shafts, the actual tendon 

forces will be slightly less due to frictional losses in the system. The fingertip force will 

vary depending on the actuation Jacobian that is unique to the design of the end effector 

that is in use. 
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Figure 2.2 Compound pulley reduction. a) Close up photo of 1st and 2nd stages of the 

compound pulley reduction. b) Exploded view of the “secondary pulley,” in reference to 

the second reduction of the compound reduction). 
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Each stage of the independent pulley reduction consists of a double-wrapped wire 

rope (1/32” diameter, 3x7 hollow-core, McMaster-Carr #3458T51) that has both of its 

attachment points on the main pulley and is double-wrapped around the pinion. The 

double-wrap around the pinion ensures sufficient friction such that the wire rope will not 

slip over the pinion as it “walks” during pinion rotation. Inspired by tendon tensioning 

mechanisms in the Barrett WAM (Barrett Technology), tension in each independent loop 

of wire rope is maintained with a one-way bearing housed inside of a larger pulley, which 

maintains a desired preload in the wire rope (Figure 2.2b).  Crimped copper stop sleeves 

(McMaster-Carr #3897T31) at each end of the wire rope are held in place by grooves at 

wire rope attachment points on each half of the two-part pulley. 

From the motor output shaft to the final output shaft, the system has zero backlash 

and is back-driveable. Zero backlash allows angular position/velocity and torque of the 

motor output shaft to be transformed according to the 12:1 reduction ratio with little loss 

at the final output shaft. Zero backlash also allows for back-driveable control of 

individual joints which simplifies the design of the actuation system as well as its 

modeling and control. The zero backlash pulley reduction and tensioning provided by a 

one-way bearing in each pulley serve to maintain a preload in the wire rope and prevent 

slack and unspooling. The relative rotation between each stage of the pulley reduction is 

kept fixed through the use of inextensible wire rope that is robust to creep. When first 

assembling, it takes a few cycles before the wire rope attains a stable position and 

rewraps in the same location. Once the desired wrap around the pulley is achieved, the 

rewrap position stays constant. 
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2) Tendon tensioning system 

After the 12:1 compound pulley reduction, the final output shaft transitions to the 

tendons that actuate the robot hand. The tendon is comprised of a 0.7 mm diameter, 

monofilament fishing line (200 lbf Spectra line, Power Pro), line will be routed through 

low friction sheathing having an inner diameter of 1.2 mm and wall thickness of 0.3 mm. 

From the output shaft, the tendons are routed across two pulleys to enable the use of 

mechanisms for pre-tensioning the tendons, maintaining tendon tension and absorbing 

unexpected loads during use, and directly measuring tendon tension (Figure 2.3). Due to 

the routing configuration of each tendon across a single pulley that attaches to a custom 

uniaxial load cell, the load cell measurements will be equal to twice the tendon tension. 

The load cell measurements can be used to monitor tendon tension directly and calculate 

finger joint torques. 
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Figure 2.3 Tendon tensioner, stiffness, and load cell. Tendon stiffness is determined by 

the modular spring (shown in red). Tendon preload and tension is adjusted by moving the 

guide plate along the lead screw with the tension adjustment screw (a-b). A custom 

uniaxial load cell is attached to the spring guide with a 1/16” diameter spring pin that 

constrains the assembly c) to the guide plate (a-b) for direct measurement of tendon 

tension. 
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Custom uniaxial load cells were designed specifically for the expected tendon 

force range of 0-530 N (0-120 lbf) with a resolution of 0.01 N (0.04 lbf). Each load cell 

has a full Wheatstone bridge with all strain gauges located on the interior of the load cell. 

The signal is amplified locally with an op-amp mounted to the load cell and a shield will 

cover all electrical components. Shielding on the load cell is required because the Maxon 

motor is in close proximity and will otherwise introduce significant noise into the load 

cell data. Each load cell serves as the main rigid link between the tendon and a die spring 

that maintains tendon stiffness.  

The load cell is mounted on the opposite side of a guide plate and pinned to a die 

spring guide shaft that determines the tendon response to unanticipated loads and 

sets/maintains initial tendon preload and stiffness. The load cell itself is secured to an 

adjustable guide plate with two guide rails and a lead screw (Figure 2.3b). Left-right 

adjustment of the guide plate (and spring-loaded tensioning mechanism) via rotation of 

the lead screw allows for changes in tendon lengths of up to 14 cm and tendon preload 

once tendon slack has been taken up. This tendon preload feature reduces overall setup 

time when an end effector is newly attached and simplifies adjustments that may be 

necessary due to the development of slack in tendons within the robot hand. Tendon 

tension will be incorporated into the control structure for determining finger joint torques 

and as a safety feature to prevent joint failure or system damage. 

An early design of the tendon tensioning assembly included a simple mechanism 

for achieving non-linear stiffness (as in (Petit et al., 2010)) where the tendon passed over 

a spring and, as the spring compressed, the angle of action over the spring changed. For 

compactness of design and to keep the spring tensioning and tendon routing in a single 
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plane (reducing hardware needs for redirecting tendons) we created the design presented 

here. The die spring in the modular tendon tensioning assembly can be changed to suit 

the tendon stiffness requirements of the user. This will affect the end effector’s response 

to unanticipated loads. For instance, the user may want different rates of compliance for 

flexion compared to that of extension. The prototype described here uses a 60 lbf/in die 

spring (McMaster-Carr #9584K15) for each of the flexor and extensor tendons. Alternate 

setups are also possible with the spring guide to achieve a composite, non-linear spring 

stiffness. A non-linear response can be achieved by nesting a preloaded spring and disc 

washer within the main spring. The interior spring would be held in place by disc washers 

held against the stepped features of the spring’s guide shaft (Figure 2.3c). 

 

B. Key Features 

Both flexion and extension are achieved with a single actuation unit, with one 

actuator per revolute joint. Tendon stiffness and pretension can vary depending on the 

assigned joint and desired response to unanticipated loads. The zero-backlash back 

driveable motor module simplifies the design along with reducing the size of the motor 

bank necessary to control all degrees of freedom of the end effector. Use of a one-way 

bearing in the pulley allows the motor module to be compact and robust. The desired 

preload maintained with the one-way bearing ensures that the wire wrapped pulley will 

not unspool even in the case of an unanticipated load or rapid rotation. 

The custom uniaxial loads cells are designed specifically for tendon loads for 

robotic grasp applications. Load cells are attached to a spring guide with a 1/16” diameter 

spring pin. The large diameter cap of the spring guide shaft constrains the die spring 
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against the guide plate, allowing the load cell to move as a unit under high tendon loads. 

When one tendon, say a flexor, is loaded, a net torque will develop at the joint, the 

flexor’s die spring will compress, and the extensor’s die spring will extend and take up 

the slack in the extensor tendon. 

The ease of setup between various end effectors is a major advantage of the 

actuation system. Such a modular setup will enable experiments with different end 

effectors, each with unique proprioceptive and tactile sensing capabilities, and the testing 

of similar control policies on different plants. 

Coupling between the actuation system and the robot hand is done by linking 

tendons via fishing-style swivel clips (100 lbf SPRO Power Swivels). Attachments are 

made with the system in slack and then each individual tendon is brought to a desired 

preload with the lead screw tendon tensioning mechanism. 
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C. Control Setup 

 The motor module allows for multiple control structures including position, 

velocity, force, and impedance (by varying the motor current). The Maxon EPOS2 24/5 

Motor Controller has sampling rates for position control of 1 kHz and current control of 

10 kHz. With a quad count encoder the motor position can theoretically be controlled 

with a resolution of 1/2000 counts per revolution (1.3 µm of tendon displacement). 

However, in practice, the position control resolution is on the order of 1/1000 counts per 

revolution and actual tendon displacements are not likely to be on the order of microns. 

 Depending on the context of the grasp or manipulation task, the control structure 

can be switched on the fly. For automated closure of the hand around a novel object, the 

motor module can be set to a compliance mode which uses limits on joint torques for 

safety, as in commercially-available prosthetic hands such as the Touch Bionics i-limb 

(“Touch Bionics i-limb hand,” 2009). Furthermore, by controlling motor current one can 

implement impedance control for each digit (Hogan, 1985). 

Maxon EPOS2 24/5 controllers also have built-in position profile modes with 

limited variability. Position profile mode allows the user to set the minimum and 

maximum motor acceleration and uses a trapezoidal velocity profile. The motor 

controllers communicate through an internal CANOpen (Control Area Network) network 

between the individual controllers. The master controller on the CAN network is capable 

of being connected to the central computer by either USB or the more robust industrial 

standard of RS-232.  
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The central computer interfaces with the motors through the use of a Maxon 

command library in C++. There are multiple options for communication with Maxon 

devices, but C++ was selected as it the main language used for additional pieces of 

equipment, such as the Shadow Dexterous Robot Hand and multimodal BioTac tactile 

sensors (Syntouch, LLC) (Wettels, Santos, Johansson, & Loeb, 2008; Wettels et al., 

2008). 

We can also measure compliance indirectly by comparing joint-based Hall effect 

sensor measurements and motor position encoder measurements. Such comparative 

information can be used in the control loop or as a safety fault in case the actuation and 

hand system experiences tendon slip or creep. 
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D. Preliminary Dynamic Testing 

The dynamic response of a single motor actuation system was tested with 500 g 

masses attached to each of the two output tendons. The actuation system was clamped to 

the edge of a workbench and the masses were allowed to hang freely over the edge of the 

workbench. The motor was controlled in position control mode to produce sinusoidal 

waves having an amplitude of 180° of rotation at the motor output shaft, which is 

equivalent to 1.3mm of tendon excursion. A tendon excursion of 1.3mm is approximately 

equal to 15° of rotation at a joint having a 10 mm diameter actuation pulley. 

The sine wave was implemented for the following frequencies: 3.33 Hz, 4 Hz, 5 

Hz, 6.67 Hz, 10 Hz, and 20 Hz. Due to sensor limitations in the current experimental 

setup, encoder position sampled at 100 Hz was subjected to a forward and reverse low 

pass filter that does not distort phase (MATLAB’s “filtfilt” function) and then 

differentiated twice to enable comparisons between the acceleration of the motor output 

shaft and that of the 500 g mass hanging from the end of a single tendon. Acceleration of 

the 500 g mass was recorded at 150 Hz using a six degree-of-freedom inertial 

measurement unit (MEMSense IM05-0600C050T00). 
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II. Results 

 

Figure 2.4 Dynamic response of compound pulley reduction and tendon tensioning 

system. At a frequency of 6.67 Hz (top), the magnitude of the acceleration of the 500 g 

free-hanging mass (closed circles, solid line) is comparable to that of the motor shaft 

output (open circles, dotted line). Decreases in the system gain are shown for 10 Hz 

(middle) and 20 Hz (bottom). Phase shift is estimated for visualization purposes only. 
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Initial dynamic characterization was conducted on a single actuation unit, 

specifically the dynamic response of the compound pulley reduction and tendon 

tensioning system. Due to limitations of the experimental setup, we can only reliably 

report on input and output magnitudes at this time (Figure 2.4). At a frequency of 6.67 

Hz, the gain of the compound pulley reduction and tendon tensioning system is 

approximately one. At a frequency of 10 Hz, a decrease in system gain occurs until the 

gain drops severely around 20 Hz. 

The actuation system was also used to directly actuate a single joint in the 18 

degree-of-freedom Shadow Dexterous Robot Hand (Figure 2.5). For initial testing, a 

single actuation unit was used to actuate the proximal interphalangeal (PIP) joint of the 

index finger directly. The distal interphalangeal (DIP) joint, coupled to the PIP joint, also 

moved under actuation.  

The attachment of the Shadow Dexterous Robot Hand tendons and removal of 

tendon slack were simple due to the lead screw tendon preloading mechanism. Using 

position control mode, the actuation unit flexed and extended the index finger at both low 

(1 Hz) and high (4 Hz) frequencies. Flexion and extension were smooth and highly 

sensitive to small motor displacements. Figure 2.5 shows the rapid cycling of flexion and 

extension at a rate of 415 mm/min. The motion is shown in 0.25 sec increments. The wire 

rope “walked” smoothly along the pinion of the first stage of the pulley reduction without 

interfering with itself (see white arrows in Figure 2.5).  
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III. Discussion  

 

Figure 2.5 Direct actuation of a single joint of the index finger of the Shadow Dexterous 

Robot Hand (inset). The a, b, and c snapshots show increments of 0.25 seconds (tendon 

rate of 415mm/min). 

 

A. Advantages of Design 

The main advantages of the actuation system are its modularity, ease of setup, and 

ability to control different tendon-driven mechanisms. A single actuation unit is capable 

of controlling both flexion and extension while maintaining a tendon preload and 

stiffness for unanticipated loading of a fingertip, for example. The compression springs, 

in particular, afford deformation in the overall system that provides safety from 

unexpected loading of the finger. Various springs with different spring constants can be 

installed on a joint-specific basis depending on desired behaviors. In the two tendon 

back-driveable configuration (N-type) each tendon can have user-defined tension 

preloads due to the modular compression spring while the motor output shaft is traveling 

to or maintaining a desired joint angle.  
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Attachment between a remote bank of actuation units and the robot hand will be 

made via a bundle of low friction tendon sheaths. This will allow for a flexible, kink-

resistant, and low-friction attachment of tendons from the actuation system to the robot 

hand as the hand is moved in the workspace.  

Actuation units can be mounted such that each additional unit’s controller can be 

linked to the existing EPOS CAN network and assigned a node value directly on the 

controller. The EPOS2 24/5 CAN network has a maximum of 128 separate nodes which 

is more than sufficient for an anthropomorphic robot hand. 

The Shadow Dexterous Robot Hand requires 18 modules for complete double-acting, N-

type actuation. Two actuation units can be operated with only a single output tendon to 

accomplish co-contraction in a 2N-type actuation scheme. Individual joints on a robot 

hand can be manually changed between single-acting actuation and double-acting 

actuation depending on the control architecture. To reduce control complexity, multiple 

tendons can be actuated simultaneously in order to produce synergistic joint movements 

or control underactuated manipulators. Preliminary tests suggest that the actuation system 

will enable high frequency responses that can match or exceed those of the human hand. 

As such, the actuation system presented here is appropriate for a robotic hand testbed that 

is capable of producing fast, reflex-like grip responses. 

 

  



 

28 

B. Disadvantages of Design  

Due to size and weight issues, the bank of actuation units cannot be located on the 

robot arm itself without severely limiting the payload of the robot arm. The motor bank 

will be placed alongside the base of the robotic arm and will require lengths of tendon 

sheathing to route tendons flexibly up to the robot hand. However, this is acceptable for 

current purposes of creating a tendon-driven robot hand testbed as opposed to a body-

worn neuroprosthesis, for example. Efforts will be made to reduce the length of the 

tendon sheaths as much as possible in order to minimize frictional losses between the 

remote actuation system and the end effector. Weight and power consumption are both 

issues that require further attention in the development of a compact and efficient motor 

control bank, although they are not immediate concerns for the present outlet-powered, 

workbench-mounted testbed design. Since the design of the robot hand testbed is 

intended for use as a research tool to advance the functional capabilities of highly 

dexterous robot hands, the power consumption of the motor units and supporting systems 

has not been considered as a significant design criterion.  
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Second Generation Plate-Mounted Force Transducer for Actuation System 

 

Figure 2.6 The modular remote actuation system is shown for two degrees of freedom in 

an “N-type” configuration: one motor each for PIP/DIP and MCP flexion/extension. A 

customizable circuit board locally amplifies and samples tendon tensions for transmission 

on the CAN bus. 

 

A modular motor bank was used to apply tendon tensions and/or excursions 

(Figure 2.6). The design of the motor bank allows for either a “2N-type” or “N-type” set-

up. With a 2N-type arrangement, there are two motors per joint allowing for independent 

control of a flexor and extensor tendon and enabling co-contraction and joint stiffness 
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control. With an N-type arrangement, a single motor is used at each joint in a “push-pull” 

fashion such that rotation of the motor shaft in one direction flexes the joint and rotation 

in the other direction extends the joint (Jacobsen et al., 1989). It was desired that the 

motor bank allow for the actuation of any tendon-driven mechanism. Thus, each motor 

has a split output shaft with a spring-loaded ratcheting mechanism to allow for quick 

setup and adjustment of tendon preloads (Figure 2.6). 

Each motor (EC-max 30, 60 watt, Maxon Precision Motors, Inc.) is controlled by 

an EPOS 24/5 controller, which is connected to a CAN bus. Built-in microcontrollers 

allow for the offloading of low-level processes during position or current control, which 

aids in reducing the bandwidth of the bus and enables fast communication rates. Since the 

BairClaw is intended as a testbed, features such as weight, size, and power consumption 

of the actuation system were not optimized. 
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Tendon Tension Calculations 

Each tendon was routed over multiple low friction pulleys (Figure 2.6). A spring-

loaded pulley was used to maintain tendon tension and to provide passive compliance for 

unexpected loads or impacts during operation. For each tendon, another pulley was 

placed on the end of a cantilever beam cut into the motor plate. In order to measure 

tendon tensions, the base of each cantilever beam was instrumented with strain gages. A 

half Wheatstone bridge configuration was used for temperature compensation with 

reference gages located centrally on the plate. All gage measurements were amplified and 

sampled locally using a custom circuit board. Trimpots on the board allow for 

customization of baseline values, amplification, and resolution according to each 

tendon’s range of operation (Table 2.2). It was desired that tendon tensions be measured 

with a resolution of ≤ 1 N (0.22 lbf). 

Tendon tensions are sampled via the EPOS 24/5 motor controllers and transmitted 

over the central CAN bus. By using the motor controllers to sample tendon tensions, we 

can scale the entire testbed by simply daisy chaining more controllers onto the CAN bus 

with little to no modification of the low-level communication scheme. 
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Table 2.2 Specifications for the artificial proprioception, tactile sensor, and remote 

actuation subsystems 

 Sampling 
rates (Hz) 

Design 
range 

[min, max] 

Design 
resolution 

BairClaw index finger    

Joint angle sensors    

DIP flex/ext 100 – 1000 [-30°, 90°] 0.12° 

PIP flex/ext 100 – 1000 [-10°, 90°] 0.10° 

MCP flex/ext 100 – 1000 [-30°, 90°] 0.12° 

MCP add/abd 100 – 1000 [-15°, 15°] 0.03° 

Multimodal tactile sensor 
(BioTac, SynTouch LLC) 

   

Electrode impedance 
(19 electrodes total) 

100 – 200 
(per elec.) 

[0, 3.3 V] 3.2 mV 

Internal fluid pressure 100 – 200 [0, 100 kPa] 36.5 Pa 

Vibration 2200 – 4400 ± 0.76 kPa 0.37 Pa 

Temperature 100 – 200 [0, 75 °C] 0.1 °C 

Thermal flux 100 – 200 [0, 1 °C/s]  0.001 °C/s 

Remote actuation system    

Tendon excursion 200 --- 0.9 µm 

Tendon tension 200 [0, 111 N 
(25lbf)] 

0.11 N 
(0.025lbf) 

 

 

The tendon tension measurement system was calibrated using a multi-step process 

that accounted for interactions between neighboring strain gages on the motor plate. In 

general, the change in resistance of a strain gage is linearly dependent on the internal 

strain and stress at the location of the sensor. Due to highly sensitive gages and the close 

proximity of pulleys on the motor plate, each half Wheatstone bridge sensed strain caused 

by tendons routed over nearby pulleys.  
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Figure 2.7 Strain gage calibration with custom calibration rig. The calibration rig was 

used to apply random tensions ranging from 0-50 N on each half bridge. Recorded strain 

measurement was then used to train a multivariate tendon tension model.  

 

A custom calibration rig (Figure 2.7) was built that randomly applied a known 

force to all four tendons simultaneously. The Maxon EC-max 30 motors were initially 

calibrated using a single axis force transducer. The motors were fit to static motor current 

torque curves to determine the force applied on each of the tendons. One thousand trials 

of randomly selected tendon tension combinations were applied, with each individual 
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tendon tension ranging from 0-50 N. Each tendon tension sensor was fit to a multivariate 

linear model comprised of a sum of scaled tensions of tendons mounted nearby on the 

motor plate (Figure 2.8). The calibration models were cross-validated using a Lasso 

method to minimize mean squared error. The Lasso method returned comparable models 

and confirmed the statistical significance of the additive terms associated with nearby 

tendons (Tibshirani, 1996).  

 

 

Figure 2.8 A representative tension calibration is shown for the MCP flexion tendon. 

Using 1000 trials of randomly selected tendon tension combinations, each tendon tension 

sensor was fit to a linear model comprised of a sum of scaled tensions of tendons 

mounted nearby on the motor plate. 
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Highly Dexterous Robot Finger with Rich Tactile Sensing: The “BairClaw” 

In this section, we present the “BairClaw,” a highly sensorized, multi-articulating, 

anthropomorphic robot hand testbed with rich proprioceptive and tactile sensing 

capabilities (Figure 2.9). The BairClaw was originally conceived for the advancement of 

artificial grasp, manipulation, and haptic exploration. We posit that the system could also 

be used for the neurorehabilitation of somatosensory disorders due to upper limb 

impairment or loss.  

Thus far, efforts to enhance an amputee’s sense of embodiment with a prosthesis 

have focused on cosmetic appearance via the development of five-digit, multi-articulating 

prosthetic hands and attempts to design realistic, skin-like cosmeses (Marasco, Kim, 

Colgate, Peshkin, & Kuiken, 2011). We believe that embodiment additionally requires 

the development of consistent action-perception relationships and their encoding in the 

nervous system. The BairClaw testbed was designed to enable the development of 

consistent action-perception relationships that enhance one’s sense of embodiment for 

robotic or human-in-the-loop use. Mirror visual feedback techniques that facilitate neural 

plasticity can be further enhanced through the provision of rich proprioceptive and tactile 

feedback in synchrony with action. By providing amputees with the ability to control, 

visualize, and feel physical finger-object interactions in a controlled clinical setting, it 

may be possible to extend current therapies that focus on visualizations of posture alone. 
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Figure 2.9 The BairClaw index finger has four degrees of freedom: DIP, PIP, and MCP 

flexion/extension and MCP adduction/abduction. The DIP and PIP joints are passively 

coupled by a spring. Joint angles are measured by Hall effect sensors while temperature, 

vibration, and skin deformation are provided by a multimodal tactile sensor. Dorsal views 

of the (A) design schematic and (B) prototype are shown. 

 

Asymmetric Finger Design 

The BairClaw was designed to accommodate a multimodal tactile sensor (BioTac, 

SynTouch LLC) that has an immobile distal interphalangeal joint (“SynTouch BioTac 

biomimetic tactile sensor,” 2007). In order to perform complex, human-inspired motions 
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such as stroking and rolling of objects between the fingertips, the distal interphalangeal 

joint was restored through the use of an asymmetric finger design. The four degree-of-

freedom index finger features flexion/extension and adduction/abduction at the 

metacarpophalangeal joint (MCP) and coupled flexion/extension of the proximal and 

distal interphalangeal joints (PIP and DIP, respectively). The proximal end of the BioTac 

can rotate toward and slightly through the dorsum of the hand, thereby allowing the distal 

joint to function normally (Figure 2.9B).  

An embedded spring in the middle phalanx controls the flexure of the DIP joint 

during PIP and DIP joint flexion. The spring slightly increases the torque required to flex 

the DIP joint, which causes the PIP joint to flex first. Motion at the DIP joint begins 

when the PIP joint has reached its full range of motion or if an object impedes PIP joint 

motion. The spring and an internal PIP joint pulley allow for a low friction, passive 

compliance of the finger. To minimize friction, all joints were supported by ball bearings, 

and a PTFE-lined internal channel within the proximal phalanx was used to route 

tendons. 

Eventually, an elastomeric cosmesis could be used to hide the slight protrusion of 

the BioTac through the dorsal surface of the hand, so as not to break the anthropomorphic 

illusion for embodiment purposes. However, such illusions are fragile and strengthening 

of the body schema may be better served by accurate motions and the provision of 

sensory feedback consistent with actions as opposed to an anthropomorphic appearance 

only.  
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Tendon Routing and Sheath Design 

 

Figure 2.10 Tendon routing from 2nd actuation system (Figure 2.6) to the BairClaw. Four 

PTFE sheaths were routed through a yellow vacuum line that acts as a Bowden cable. 

 

Under load, friction in the tendon routing system can significantly influence the 

dynamics of the system and cannot be overlooked (Nahvi et al., 1994). Thus, each tendon 

(200 lbf Spectra line, Power Pro) was routed through a low friction 

polytetrafluoroethylene (PTFE) sheath, four of which were additionally bundled within a 

polyethylene vacuum line that serves as the supporting structure of the Bowden cable 

design (Figure 2.10). Bowden cables consist of an outer sheath that is constrained at both 

ends while the internal cable transmits a pulling force. The outer cable is flexible and 

constant in length allowing for force transmission. Additionally, tendon paths were 

rerouted using small, ball bearing-mounted pulleys. 
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Joint Angle Sensing 

In the index finger prototype, Hall effect sensors were used to measure four sets 

of joint angles: flexion/extension and adduction/abduction at the MCP joint, 

flexion/extension at the PIP joint, and flexion/extension at the DIP joint. Each joint angle 

sensor was comprised of a Hall effect sensor that measured the change in magnetic field 

induced by the rotation of a diametrically magnetized ring magnet. Various Hall effect 

sensor and ring magnet combinations were used to optimize the resolution of each sensor 

over the full, joint-specific range of motion (Table 2.2), and were designed to measure 

joint angles with a resolution of ≤ 1°. It was desired that all proprioceptive sensors be 

sampled at rates of at least 100 Hz. 
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Figure 2.11 Joint angle measurement calibrations are shown for the (A) DIP, (B) PIP, 

and (C) MCP flexion/extension degrees of freedom. Fourth order polynomial fits 

performed on calibration data collected in 10° increments resulted in R2 > 0.99 for each 

joint. Positive angles indicate joint flexion from a neutral position at 0°. 

 

The joint angle measurement system was calibrated for each joint’s range of 

motion in 10° increments using a goniometer. The Hall effect sensors were designed to 

respond linearly to changes in the magnetic field. Due to small variations of the magnetic 

field near the ends of the range of motion, it was necessary to fit a 4th order polynomial 
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model to the sensor response (Figure 2.11). Each model had a coefficient of 

determination R2 value greater than 0.99. The slope of the calibration curves depended on 

space requirements within the limited volume of the BairClaw finger and the Hall effect 

sensor configuration at each joint. 

 

Communication and Scalability 

  The BairClaw testbed is controlled by a central, Linux computer running Ubuntu 

12.04 that has been modified with a Xenomai kernel patch for hard real-time operation. 

All communication is performed on a CAN bus, a standard in industrial automation and 

motor vehicles that ensures real-time communication with simple message packets and a 

node-based communication structure. Data transmitted via CAN and USB (for the 

multimodal tactile sensor) are recorded and logged in real-time. Since CAN uses a simple 

two-line bus, the entire system can easily be scaled by daisy chaining additional digits 

and motor controllers onto the original bus. 
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Controllers 

 

Figure 2.12 (A) The BairClaw was used to perform a tap-and-hold experiment against an 

instrumented plate. (B) Joint angles, (C) tactile sensor internal fluid pressure (left y-axis) 

and microvibration (right y-axis), (D) tactile sensor skin deformation, and (E) normal 

contact force data are shown for two cycles of motion and force production. As the finger 
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flexed and the tactile sensor’s internal fluid pressure exceeded a threshold value, the 

position controller switched to a force controller designed to achieve and maintain a 

desired fluid pressure value (horizontal dashed line in (C)). Fingertip contact with and 

release from the plate are indicated by dashed and dotted vertical lines, respectively. 

 

A variety of control schemes could be devised for the testbed. A position 

controller could use proprioceptive sensor data from joint angle sensors and motor 

encoders as control signals. A force controller could use proprioceptive sensor data, such 

as tendon tensions and motor current, or tactile sensor data as control signals. Tendon 

tensions and moment arms, known from design schematics, can be used to calculate joint 

torques created by the multi-articular tendons. Standard robotics equations can be applied 

to relate joint motion to fingertip motion, or joint torque to fingertip forces and torques in 

three dimensions (Murray, Li, Sastry, & Sastry, 1994). 

For demonstration purposes, we illustrate the use of a hybrid position and force 

feedback controller for a cyclic tap-and-hold task (Figure 2.12B). The controller was 

designed to function as a state machine that initially operates in position control and 

moves at a set rate to achieve a commanded posture unless the finger pad comes into 

contact with an object. In this example, once the tactile sensor’s internal fluid pressure 

exceeded a threshold, the position controller switched to a force feedback controller 

designed to achieve and maintain a desired fluid pressure value (as a proxy for fingertip 

contact force). Specifically, the fluid pressure signal was used in a proportional-integral-

derivative feedback controller to quickly achieve and maintain the desired reference 

value with zero steady-state error. 
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Hybrid Position and Force Feedback Controller 

The tap-and-hold example demonstrates the speed with which the BairClaw 

testbed can switch control modes, the versatility of control using a variety of feedback 

control signals, and the stability of the overall mechatronic system. Figure 2.12B-E 

shows two cycles of a tap-and-hold experiment in which joint angles and angular 

velocities were tracked as the BairClaw flexed to a pre-specified posture. Before the final 

posture could be achieved, the BairClaw fingertip contacted a plate instrumented with a 

six degree-of-freedom load cell (Nano-17, ATI Industrial Automation). Once the internal 

fluid pressure of the tactile sensor reached a threshold, the position controller switched to 

a force controller to achieve and maintain a desired reference fluid pressure value. The 

pre-specified posture and fluid pressure threshold and reference values were selected 

arbitrarily for demonstration purposes, but could be set according to the context of the 

experimental task.  

Figure 2.12B-D show the joint angles, and tactile sensor internal fluid pressure, 

microvibration, and skin deformation data. As with any higher order, underdamped 

system, a slight overshoot occurred in the internal fluid pressure control signal, but was 

quickly corrected (Figure 2.12C). Trends in the normal contact force measured by the 

instrumented plate aligned with the internal fluid pressure signal used for force feedback 

control (Figure 2.12E). 

The tactile sensor’s electrode impedance values provide information on skin 

deformation caused by the BairClaw’s forceful interaction with the plate. Individual 

electrode impedance values were grouped into anatomically meaningful clusters for 

visualization purposes. Increases in impedance indicate that the skin is being compressed 
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toward the sensor’s rigid core while decreases in impedance indicate bulging away from 

the core. As expected, the electrode impedance data indicate compression of the skin at 

the fingertip and bulging of the skin on other regions of the finger during the tap-and-

hold phase of the trial. 

In order to relate one’s voluntary actions to resulting stimuli (visual or otherwise), 

there must be minimal delay between the action and the perceived stimuli. Previous work 

has shown that delays for myoelectric prosthetics should be kept below 125 ms (Farrell & 

Weir, 2007). The majority of the delay found in myoelectric controllers is due to 

processing of the myoelectric signals. The BairClaw is capable of processing and reacting 

to various inputs within a single sampling period (10 ms). Mechanical and computational 

delays, estimated from the delay between the switching of the controller and a 

measurable change in system response, was approximately 65 ms in the tap-and-hold 

example. Any additional delays for a human-in-the-loop configuration would be specific 

to the human-machine interface and signal processing, such as pattern recognition that 

may be performed on the human command signals.  
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Discussion 

Contrasting First and Second Generation Actuation Systems 

 Each actuation system has similar functionality although accomplished through 

different designs. The main differences between the two actuation systems are in their 

reduction drive, tensioning mechanism, and force transducers.   

 The first design presented has a 12:1 compound pulley reduction that has zero 

backlash (Figure 2.1). Zero backlash is a convenient feature that will improve high 

frequency tracking response of the actuation system and also contribute to an aesthetic 

feel. However, the additional cost and assembly time of the zero backlash actuation 

system did not justify its added benefit. In order to reduce both cost and time of 

production, we explored alternate reduction drives. Maxon offers a low backlash 18:1 

planetary gearhead designed to fit the EC-max 30 motors used on both actuation systems. 

Use of the planetary gearhead introduced small amounts of backlash into the system, but 

the majority of the backlash from the planetary gear head is damped by the compression 

springs and any tendon creep. The second actuation system (Figure 2.6) presented centers 

around a main mounting plate in which the planetary gearhead is directly mounted. 

Mounting the planetary gearhead directly to a central fixture plate reduces cost of both 

assembly and machining.  

 The functionality of the tensioning system on the first actuation system (Figure 

2.1) is similar to that of the split output shaft with ratcheting mechanism on the second 

actuation system (Figure 2.6). The split output shaft has additional benefits. For instance, 

slots are cut into each pulley allowing a stop knot to be easily slid into the pulley without 

any cutting of tendons or retying of knots. The split output shaft is not limited in the 
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allowed adjustments while the lead screw tensioning mechanism (Figure 2.3) is limited 

to 14 cm of overall adjustment. If the split output shaft fills will excess tendon you can 

simply unspool and trim the tendon and then slide the stop knot back on the pulley. 

Releasing tension on the split output shaft is easily done by compressing the spring 

between the motor output and the back pulley (Figure 2.6). Once the ratchet is 

disengaged, the two pulleys on the split output shaft will counter-rotate, thereby 

loosening the tendons for swapping of end effectors. Reapplying the tension to the 

tendons is quickly done by impeding rotation of the tab on the backside pulley and 

rotating the thumb tab on the front pulley. While the output shaft rotates the ratchet will 

click incrementally to increase the tension in the tendons. To accomplish similar tension 

adjustments with the first actuation system a screwdriver is required to adjust a centrally 

mounted lead screw. The use of the split output shaft provides multiple benefits over the 

lead screw of the first design by reducing overall weight, parts and machining and 

assembly time.  

 The force transducer for the second actuation system is designed directly onto the 

central mounting plate shown in Figure 2.6. By having all the major features on the 

central mounting plate we are able to reduce the CNC machining to a single face of the 

plate. The benefit of machining only one of the six faces of the plate is that there is no 

need adjust or index the CNC mill between tool changes or the production of multiple 

plates. For instance, with the first transducer design, the strain gages required additional 

support to correctly epoxy them on the tight inner contours of the inline force transducer 

(Figure 2.6) while the second design simplified the installation by utilizing a simple 

cantilever beam to measure strain. Furthermore, by mounting the gages to the center plate 
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we can remove any possible failure modes introduced by additional wiring and 

connections necessary for communicating with the moving gages of the first actuation 

system. Given the simplified installation of the strain gages there is always a tradeoff. 

The strain gages of the second actuation systems are now in close proximity to one 

another. As a result, all gages are now sensitive to loads on any specific cantilever beam.  

The resulting cross-talk between the gages was managed in a straightforward way; a 

multivariate linear model was trained to accurately determine each individual gage 

response.  

 Overall, the design changes in the second actuation system reduced cost and 

assembly time while improving performance and ease of use compared to the first 

actuation system.  
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Applications of the Robot Testbed 

Upper limb impairment or loss can be caused by a multitude of factors including 

disease, trauma, surgery, and brain infarction (Dickstein & Deutsch, 2007; Harris, 1999). 

There is a 50-80% chance that when one loses a limb an incessant pain called “phantom 

limb pain” will remain after amputation (Nikolajsen & Jensen, 2001). The pain can occur 

immediately after trauma or may take months to years to develop. The root cause of 

phantom limb pain is not well understood and may be due to an irritation of nerve 

endings, a central remapping of sensations that results in misinterpreted activations of 

pain neurons, or the mismatch of motor commands and visual feedback that are then 

interpreted as pain (Ramachandran & Hirstein, 1998). Even in the absence of severe pain, 

amputees often refer to their missing limbs as feeling paralyzed in an uncomfortable or 

cramped position. Patients often experience depression due to the pain and discomfort 

that is degrading their quality of life. In the remainder of this chapter we will discuss 

potential clinical benefits to upper limb amputees that could arise from the confluence of 

known concepts such as mirror visual feedback and the "rubber hand" illusion, and new 

technologies such as neural interfaces for artificial sensory feedback and highly 

sensorized robot hand testbeds, such as the “BairClaw”. 
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Non-Invasive, Vision-Based Therapies for Pain Disorders and Paralysis 

Mirror visual feedback (MVF) was introduced in 1992 as a non-invasive 

technique to treat phantom limb pain due to amputation and paralysis due to stroke 

(Ramachandran & Altschuler, 2009). A mirror or virtual environment is used to provide a 

visualization of one’s missing or hidden impaired limb by reflecting the movement of the 

contralateral unimpaired limb. Despite inaction by the impaired limb, this technique 

results in activation of regions of the brain corresponding to the lost or impaired limb. 

When MVF was first examined over 20 years ago, pain disorders and paralysis were 

believed to be untreatable. Since then, MVF has been used to treat complex regional pain 

syndrome and peripheral nerve damage. Even though MVF is not a panacea, it has been 

shown to be an effective form of therapy for phantom limb pain (Darnall, 2009; Stevens 

& Stoykov, 2003). Any positive treatment can have a large impact considering the high 

occurrence of phantom limb pain in amputees, and the fact that strokes are the leading 

cause of long-term disability (Go et al., 2014).  

Graded Motor Imagery (GMI) is a variation of MVF that has had success in 

reducing pain and discomfort associated with pain and movement problems. GMI 

consists of three steps: left/right discrimination, motor imagery exercises, and mirror 

therapy (Johnson et al., 2012; Moseley, 2006). When first starting GMI treatment, 

left/right discrimination is the primary focus because it has been shown that individuals 

with chronic pain are less accurate and/or slower in determining whether an image is of a 

left or right limb compared to healthy individuals (Schwoebel, Friedman, Duda, & 

Coslett, 2001). Difficulty in determining laterality reflects the lack of a strong body 

schema. Motor imagery exercises such as imagining hand movements aid in increasing 
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activity of motor cortical neurons that are involved with observed, imagined, or executed 

movements (Rizzolatti & Craighero, 2004). Strengthening of the body schema through 

left/right discrimination and explicit motor imagery creates a foundation upon which 

subsequent mirror therapy can be most effective (Pellegrino, Fadiga, Fogassi, Gallese, & 

Rizzolatti, 1992; Priganc & Stralka, 2011; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). 

Through the use of GMI and sensory feedback to the phantom limb, it should be possible 

for a neuroprosthetic or robotic system to be incorporated into one’s body schema, which 

could aid in the treatment of phantom limb pain and improve functional performance 

with a prosthesis. 

 

The “Rubber Hand” Illusion 

Studied often, the rubber hand illusion phenomenon illustrates the interactions 

between vision, touch, and proprioception as they relate to the body’s self-identification 

(Botvinick & Cohen, 1998). The illusion is created by hiding the subject’s hand out of 

view and then placing a rubber hand in its place. Both the subject’s hand and the rubber 

hand are brushed simultaneously. After some time, the subject can develop a sense of 

ownership with the rubber hand and disassociate from his/her native hand, reporting the 

feeling of brush strokes when only the rubber hand is brushed (Botvinick & Cohen, 

1998). Subjects also experience “proprioceptive drift,” which describes the phenomenon 

in which subjects report the location of his/her native hand as being closer to the rubber 

hand than the native hand's actual location.  That is, the proprioceptive percept of the 

subject's native hand has "drifted" towards the rubber hand.  
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Neuroplasticity and the ability to incorporate an artificial limb into one’s body 

schema date back to studies from 1937. Early work on the Aristotle illusion examined 

localization errors in perceived tactile stimuli when an object was touched simultaneously 

by the outer regions of two crossed fingers (Tastevin, 1937). For example, simultaneous 

contact of one’s nose with the radial aspect of the index finger and ulnar aspect of the 

middle finger can result in the perception that one has two noses. Recent studies have 

further demonstrated a link between one’s body schema and the physiological self, and 

how expressions of this link manifest themselves in measurable physiological changes. It 

has been hypothesized that increased ownership of an artificial limb disrupts regulation of 

certain aspects of the native limb. Interestingly, as an artificial upper limb becomes 

accepted into one’s body schema, the temperature of the native limb decreases (Moseley 

et al., 2008). Other experiments have shown that, through the rubber hand illusion, 

subjects’ immunological responses can be altered. The immune system’s primary goal is 

to discriminate self from non-self in order to protect the body from foreign organisms. In 

one such experiment, the response to a topically applied histamine was altered during the 

rubber hand experiment; welt size was larger for the hidden native limb when the illusion 

was in effect (Barnsley et al., 2011). The ability to manipulate the physiological response 

of the body through a visual illusion leads one to believe that the addition of congruent 

proprioceptive and touch feedback could accelerate the incorporation of a 

neuroprostheses into one’s body schema.  
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In a 2012 rubber hand illusion experiment, biological fingerpads were subjected 

to vibrotactile stimulation while a rubber hand was stroked or tapped (D’Alonzo & 

Cipriani, 2012). When vibrotactile stimuli were synchronized with the visual feedback, 

subjects developed a sense of ownership of the fake hand, despite the sensory 

substitution, modality mismatched nature of the sensory feedback to the biological hand. 

Recently, a single digit version of the rubber hand illusion was conducted with a tactile 

sensor (Hartmann, Dosen, & Farina, 2014). The fingertip sensor was stroked and pressed 

in different regions in each subject’s view while the subject’s native hidden forearm was 

electrocutaneously stimulated according to changes in the tactile sensor data. Preliminary 

findings showed that subjects’ skin temperature decreased slightly in the native limb and 

proprioceptive drift resulted, as would be expected when the illusion is successful. 

Interestingly, even though some subjects indicated a lack of embodiment of the green-

colored fingertip sensor, and sensory substitution methods were employed, researchers 

still observed physiological signs of a subconscious incorporation of the artificial finger 

into the body schema. 

 

  



 

54 

Proprioceptive and Exteroceptive Feedback for Amputees 

Prior work suggests that tactile and proprioceptive inputs are encoded 

simultaneously in unimpaired individuals (Rincon-Gonzalez, Naufel, Santos, & Helms 

Tillery, 2012). For instance, non-weight bearing contact of the fingertip against a surface 

can improve the accuracy of perceived posture. In turn, limb posture can significantly 

change the cortical response to identical tactile stimuli (Rincon-Gonzalez, Warren, 

Meller, & Helms Tillery, 2011). Sensory feedback mappings are clearly a function of 

both proprioceptive and exteroceptive information. Ongoing efforts to artificially produce 

conscious perceptions of phantom limb posture, motion, and contact with objects could 

be accelerated if proprioceptive and exteroceptive information could be provided to an 

amputee simultaneously and in an intuitive manner. 

 

Natural Sensory Feedback from the Residual Limb 

The body-powered, cable-driven prosthesis is still a popular choice for many 

amputees. While rejection rates remain somewhat high for powered, myoelectric 

prostheses (35% and 23% for children and adults, respectively) (E. A. Biddiss & Chau, 

2007), many amputees prefer the speed of control and immediate natural sensory 

feedback obtained via extended physiological proprioception. During operation, cable 

excursion and stiffness can be sensed through the prosthesis socket as well as through the 

body harness (e.g. standard figure eight harness or cutaneous anchor adhered directly to 

the skin) (Williams III, 2011). Although direct joint movement information is not 

available, body-powered prosthesis users are able to learn how to use this extended form 
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of proprioception for the grasp and manipulation of objects. It has been shown that 

functional performance with body-powered prostheses can be further improved when the 

prosthesis is designed with extended physiological proprioception in mind (Doubler & 

Childress, 1984). 

 

Methods for the Provision of Artificial Sensory Feedback 

Communicating proprioceptive and exteroceptive information to amputees 

remains a grand challenge. Non-invasive sensory substitution methods using vibrotactile 

or electrotactile stimuli can be used to provide feedback, but the feedback is typically 

non-intuitive or difficult to scale to a multitude of simultaneous signals (Kaczmarek, 

Webster, Bach-y-Rita, & Tompkins, 1991). For example, vibrations can be applied to a 

residual limb in relation to prosthesis grip force, but the amputee must learn this non-

intuitive mapping. This may suffice for a single channel of information, but additional 

non-intuitive vibratory feedback that is simultaneously applied to other regions of the 

body will likely increase the cognitive burden on the user. In different studies, subjects 

often reported that feedback provided via sensory substitution methods was distracting 

(Jimenez & Fishel, 2014; Pylatiuk, Kargov, & Schulz, 2006; Uellendahl, Mandacina, & 

Ramdial, 2006).  

Significant progress has been made toward the development of non-invasive and 

invasive peripheral and cortical neural interface technologies for providing multiple 

channels of sensory feedback in a more intuitive manner. Tactors have been used to non-

invasively vibrate regions of skin covering tissue that has under gone targeted muscle 

reinnervation. Impressive subject-specific mappings have been published that show the 
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regions of the chest, for example, that can be stimulated to induce percepts on the 

phantom limb (Kuiken, Marasco, Lock, Harden, & Dewald, 2007). Subjective and 

objective outcome measures have shown that the use of tactors reinforces one’s sense of 

embodiment of the artificial limb (Marasco et al., 2011).  

Peripheral neural interfaces, such as nerve cuff electrodes, have been used to 

stimulate the median, ulnar, and radial nerves in the residual limb (Navarro et al., 2005). 

Such electrodes have recently been used to provide simultaneous proprioceptive and 

tactile feedback to different regions of the phantom limb (D. Tan et al., 2014; D. W. Tan 

et al., 2014, p. -). Interestingly, when two distinct channels on the electrode were 

stimulated simultaneously, subjects reported percepts in regions of the phantom limb that 

were not previously reported after stimulation by any individual channel. Although 

further subject-specific characterization of this phenomenon is necessary, it is clear that 

the provision of simultaneous tactile and proprioceptive feedback will be possible for 

many more regions of the phantom limb than there are physical neural interface channels. 

After stimulation sessions, amputees have reported changes in their previously paralyzed 

phantom limb postures and, importantly, a reduction in phantom limb pain. Some 

subjects even reported that they were practically pain free (D. W. Tan et al., 2014).  

Intracortical microstimulation has been used in brain-machine interfaces for the 

provision of tactile and proprioceptive feedback (Rincon-Gonzalez et al., 2012; Velliste, 

Perel, Spalding, Whitford, & Schwartz, 2008). In non-human primate studies, electrical 

stimulation in somatosensory cortex has been used to convey limb movement, although 

the provision of absolute limb position remains a challenge, irrespective of the neural 

interface method being used (London, Jordan, Jackson, & Miller, 2008). While 
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intracortical microstimulation has been shown to be an adequate tool for influencing the 

perception of limb motion, stimulation in area 3a also elicits detectable changes in 

electromyograms in associated musculature (Witham & Baker, 2011). However, the 

sensations that are elicited by area 3a stimulation remain unknown. 

Researchers have also vibrated tendons in the residual limb to provide 

proprioceptive feedback to amputees. It is hypothesized that the vibrations excite muscle 

spindles such that a muscle lengthening is perceived. For example, vibration of an 

extensor tendon can create the sense that the associated joint is being flexed. Amputees 

have been able to sense joint motion in the phantom limb, as when opening or closing the 

hand (Marasco, 2014b). 
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Availability of Sensor Technology in Artificial Hands 

To date, the availability of proprioceptive sensors in commercially available 

prosthetic hands has been limited (Controzzi et al., 2014). Joint angle encoders are not 

available in commercially available myoelectric prostheses, rather motor encoders are 

used to estimate grip aperture. However, motor encoders cannot be used to estimate the 

posture of multi-articulating digits when underactuated finger designs are used. For 

instance, the tendon-driven, conformal grasp of prosthetic hands such as the Touch 

Bionics i-limb prosthesis (“Touch Bionics i-limb product range,” 2014) reduces the 

degrees of freedom that an amputee must consider for control, but specific hand 

configurations cannot be measured or conveyed to an amputee in real-time. One recent 

study with the i-limb reports the use of motor current monitoring and timing of finger 

movements from the i-limb’s neutral, fully opened position as a way to estimate joint 

angles (Kyranou, 2014). Future work is required to overcome limitations resulting from 

assumptions about finger velocity, battery power, and object rigidity. The VINCENT 

hand prosthesis (“Vincent Systems VINCENTevolution 2,” 2014) was designed with less 

joints per digit than the biological hand and a spring is used to couple joints in each digit. 

In a research model of the VINCENT hand called the “Bionic Hand,” flex/bend sensors 

were placed at the metacarpal joints only (“Vincent Systems Bionic Hand,” 2014). The 

rigid link design of the RSL Steeper Bebionic hand prosthesis (Medynski & Rattray, 

2011; “RSL Steeper Bebionic3 Hand,” 2014) facilitates the use of motor encoders to 

track digit posture, but the system does not currently include tactile sensors. 

Tactile sensor technology is also scarce in commercially available prosthetic 

hands, and remains unimodal in nature (Controzzi et al., 2014). The one degree of 
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freedom Otto Bock SensorHand Speed hand prosthesis (Puchhammer, 2000) uses 

fingertip sensors to detect the slip of a grasped object. Some commercially available 

myoelectric hands have been modified with multimodal tactile sensors as research tools 

(Jimenez & Fishel, 2014). Advanced multi-articulating prosthetic hands produced by the 

DARPA Revolutionizing Prosthetics Initiatives 2007 and 2009, such as the DEKA “Luke 

Arm” and the Johns Hopkins University Applied Physics Lab “Modular Prosthetic Limb” 

(Otto, 2013), are highly sensorized, but access to these systems remains limited. 

Since affordable, off-the-shelf solutions were unavailable, the BairClaw testbed 

was designed to be highly sensorized for both proprioception and multimodal tactile 

sensation from the ground up. Joint angles are measured directly at each joint and with 

minimal drift. As a result, the BairClaw proprioception system enables accurate joint 

angle tracking without having to cycle the hand through neutral postures to reset postural 

baselines, as with commercially available prosthetic hands. The proprioception system 

utilizes inexpensive ring magnets and Hall effect sensors to achieve joint angle resolution 

of just over a tenth of a degree at 100-200 Hz sampling rates. The BioTac is capable of 

measuring multiple types of graded tactile information at data rates of 100-4400 Hz. The 

BairClaw testbed is limited in that the system requires tethered power and users cannot 

don the bulky actuation system. While the entire testbed was not designed to be donned 

by subjects, the hand itself can be mounted to a lightweight test socket for whole arm 

experiments. The inclusion of rich proprioceptive and tactile sensing will enable the 

study of action-perception relationships, the development of new feedback control 

schemes, and the ability to provide amputees with simultaneous proprioceptive and tactile 

sensory feedback via cutting edge neural interface techniques. 
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Applications of the BairClaw Testbed to Neurorehabilitation of Body Schema 

The hope that a mechanical or robotic system could become part of one’s body 

schema is hardly a new idea. Mirror visual feedback and graded motor imagery 

techniques are established methods for the manipulation of body schema through visual 

feedback alone. The use of MVF is an important paradigm shift in the treatment of 

neurological damage to the brain and peripheral nervous system, as the technique seeks to 

take advantage of the dynamic restructuring capabilities of the brain to manipulate body 

schema. It is believed that the illusory influence of visual feedback can be further 

enhanced by simultaneous proprioceptive and tactile feedback that is congruent with 

what is being seen. 
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Closing the Somatosensory Loop with Amputees 

While the development of neural interfaces for proprioceptive and tactile 

feedback is hardly a solved problem, promising new techniques and highly encouraging 

findings are being reported. For instance, intrafascicular multichannel electrodes inserted 

into median and ulnar nerves have been used to provide real-time sensory feedback of a 

bidirectional prosthetic hand (Raspopovic et al., 2014). Force sensors at prosthetic 

fingertips were used to drive electrode stimulation currents. The amputee subject was 

able to exploit features of the dynamic, graded tactile feedback, such as rates of change of 

current amplitude and differential timing of contact across the hand, to distinguish 

between objects based on stiffness and shape, respectively.  

More recently, researchers have used selective, nonpenetrating peripheral nerve 

cuff electrodes to stimulate residual upper limb nerves in unilateral amputees (D. W. Tan 

et al., 2014). Using a systems identification approach, they were able to elicit long-term 

stable, graded, natural percepts including tapping, constant pressure, vibration, and even 

light moving touch, all of which could be driven by a highly sensorized testbed, such as 

the BairClaw. Percept area and intensity could be modulated via stimulation intensity and 

frequency, respectively. Percept sites were numerous, independent, well-defined, and 

even included sites on fingertips. Proprioceptive percepts remain to be systematically 

explored and mapped.  
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Using closed-loop feedback, subjects were able to accomplish dexterous tasks 

while blindfolded.  In addition to the functional benefits enabled by the sensory system, 

there were positive embodiment-related and therapeutic effects as well.  According to 

page 9 of (D. W. Tan et al., 2014), “When sensation was active, both subjects perceived 

the hand and prosthetic hand to be nearly perfectly colocated in space. When sensation 

was not active, the prosthesis was viewed by the subjects as a tool that extended beyond 

their hands.” Although further investigation is required, it is exciting that both subjects 

reported the elimination of phantom limb pain with the use of the sensory feedback 

system. 

Other researchers have recently used a non-invasive tendon vibration technique to 

elicit percepts of joint-specific movement via the “Kinesthetic Illusion” effect (Marasco, 

2014a, 2014b). It is well-known that tendon vibration creates an illusion of muscle 

lengthening (Lackner, 1988). Working with amputees who had undergone targeted 

sensory reinnervation, researchers were able to vibrate reinnervated muscle to produce 

the percepts of different, gross hand postures, including a cylinder grip, precision pinch, 

and opening of the hand.  

While methods for communication between artificial hands and the human 

nervous system continue to improve, further investigation is needed to address gaps that 

remain. For instance, a myriad of high resolution joint angles can easily be obtained from 

highly sensorized artificial testbeds, such as the BairClaw. However, it is unclear how to 

convey this detailed postural information via coarse methods for artificial proprioceptive 

feedback such as tendon vibration, which has been recently used to convey a small 

number of gross hand postures. Furthermore, the lack of validated, objective functional 
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outcome measures for upper-limb myoelectric prosthesis use, let alone bidirectional 

prosthesis use, makes it difficult for researchers to relate the quality of artificial sensory 

feedback to improvements in quality of life (Hill et al., 2009; Wright, 2006).     

 

Extending Vision-Based Therapies with a High-Tech Rubber Hand Illusion 

The high occurrence of phantom limb pain and proprioceptive disorders may be 

due to the lack of embodiment, or a disrupted sense of ownership due to mismatches 

between different modalities of sensory feedback, such as touch and vision (Harris, 

1999). Prior efforts to improve the embodiment of prosthetic devices have focused on 

appearance. Although visual appearance is extremely important to amputees for both 

embodiment and interactions with others, it is a fragile illusion. Surveys have shown that 

sensory feedback is often ranked as a higher priority than life-like appearance for 

powered prostheses (E. Biddiss, Beaton, & Chau, 2007; E. Biddiss & Chau, 2007). 

Through artificial proprioceptive and exteroceptive feedback to a phantom limb, an 

amputee could develop and maintain an internal model of a neuroprostheses as part of 

his/her body schema. 

It has already been reported that phantom limb pain could be reduced when 

sensory substitution via electrotactile stimulation was used to provide feedback on grip 

force to transradial amputees. Clinically relevant improvements were observed even after 

a short two week training period (Dietrich et al., 2012). It has been postulated that, based 

on the increased functionality and decreased phantom limb pain that was observed, a 

cortical reorganization likely occurred (“Touch Bionics i-limb hand,” 2009). Thus, it may  
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pbe possible to rehabilitate body schema and reduce chronic pain through the dynamic 

restructuring of neuronal pathways in the brain, even with sensory substitution 

techniques. 

In this chapter, we demonstrated the use of the BairClaw testbed for a tap-and-

hold experiment that resembles a task that might be done in a mirror visual feedback 

therapy session. The BairClaw testbed has also been used to produce stroking motions for 

haptic exploration of surfaces (supplemental video) and to track fingertip forces from a 

nonhuman primate precision grip task (Hellman, Chang, Tanner, Helms Tillery, & 

Santos, 2014). Preliminary results suggest that the BairClaw is capable of fine fingertip 

force control at physiologically meaningful magnitudes and timescales. 

 

Summary 

Established therapeutic techniques such as mirror visual feedback and graded 

motor imagery rely purely on visual feedback or imagined action, respectively. The 

rubber hand illusion demonstrates the power of visual feedback combined with 

somatosensory feedback. Advances in artificial hand technology and techniques for 

providing proprioceptive and exteroceptive feedback now make it possible to combine 

mirror visual feedback with a high-tech version of the rubber hand illusion. The efficacy 

of visual manipulations for neurorehabilitation could be enhanced if coupled with 

proprioceptive and tactile feedback in a controlled therapy environment.  

Even at this nascent stage of neural interface development, reports of natural 

proprioceptive and tactile percepts from upper limb amputees are highly encouraging. It 

will soon be possible to provide graded, natural percepts to amputees that could be driven 
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directly by joint angle encoders, tactile sensors, skin stretch sensors, thermistors, etc. 

There are numerous potential benefits of enhanced embodiment by way of congruent 

multisensory feedback that is spatiotemporally consistent with commanded actions: 

reduction of phantom limb pain, a renewed sense of ownership, stronger connections to 

others and to society, and increased use of a prosthesis due to improved functionality and 

reduced cognitive burden. We believe that highly sensorized testbeds such as the 

BairClaw can be used to enhance the embodiment of a neuroprosthesis into one’s body 

schema, and be used to probe the complex relationships between sensory feedback, 

illusion-based percepts, and body schema manipulation. 
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CHAPTER 3 

DEVELOPMENT OF PROBABILISTIC MODELS FOR REAL-TIME 

PERCEPTION OF GEOMETRIC FEATURES WITH A SENSORIZED 

ARTIFICIAL FINGER 

Introduction 

Humans use haptic “exploratory procedures” (EPs) to extract object properties 

using the sense of touch (Lederman & Klatzky, 1987). Geometric features such as 

curvature, aspect ratio, and edge orientation can be extracted using EPs such as whole 

hand enclosure and contour following (Figure 1.1). Haptic perception often enables 

object identification through touch alone (Plaisier, Bergmann Tiest, & Kappers, 2009). 

Previously, we developed a support vector regression model to perceive edge 

orientation with respect to a body- fixed, fingertip reference frame (Plaisier et al., 2009). 

With multimodal data from a bio-inspired tactile sensor (BioTac, SynTouch LLC), the 

support vector regression model was able to perceive edge orientation with accuracies 

similar to that of the human finger (R. D. Ponce Wong et al., 2014). However, one 

limitation of the model was that it required some degree of post-processing; carefully 

constructed temporal “windows” of sensor data had to be extracted and further processed 

to yield model inputs. Post-processing of the sensor data makes it difficult to implement 

these models in real-time decision-making applications, such as contour-following of 

object features at human-like speeds. 

In this work, we develop Hidden Markov Models (HMMs) that can be used as a 

foundation for real-time decision-making. HMMs have been applied extensively in 

speech recognition applications and have been successfully used to model temporal data 
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(Rabiner, 1989). Importantly, HMMs enable the modeling of observations generated by 

stochastic processes where the states are hidden. HMMs also enable perception updating 

as new observations are collected. Thus, one might be able to identify the orientation of 

an edge, before an EP has been completed and without the need for post-processing the 

sensor data.  

The majority of this chapter is an extension of previously published work 

(Hellman & Santos, 2015; R. D. Ponce Wong et al., 2014). 
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Methods 

Experimental Apparatus 

 

Figure 3.1 From (R. D. Ponce Wong et al., 2014)The Barrett WAM, BarrettHand, and 

BioTac were used to explore edge stimuli presented at random orientation with respect to 

the fingertip reference frame by a motor-driven turntable.  

 

A subset of multimodal sensor data from (R. D. Ponce Wong et al., 2014) were 

used in this study. Briefly, the data were collected using a robot testbed (Figure 3.1) 

consisting of a Whole Arm Manipulator and BarrettHand (Barrett Technology, 

Cambridge MA) in which a single digit had been outfitted with a BioTac sensor. The 

artificial fingertip was used to haptically explore a 0.4 cm thick blade using pre-planned 

trajectories. The edge was randomly oriented at angles ranging from 90° to -90° in 1° 

Contact angle

αTurntable

SynTouch
BioTac

Barrett WAM
and

BarrettHand



 

69 

increments using the angle definition shown in Figure 3.2a. A radial to ulnar stroke 

(Figure 3.2a, was conducted at fingertip speeds of 2 and 4 cm/s, and at two contact 

pressures that can be considered low and high. 

 

 

Figure 3.2 From (R. D. Ponce Wong et al., 2014), a) The arrow indicates the radial to 

ulnar motion of a right-handed index finger across a thick blade that is at an angle of Θ 

with respect to a body-fixed fingertip reference frame. b) The BioTac sensor electrodes 

were clustered into 6 regions of the fingertip. 

 

  



 

70 

Processing of Tactile Sensor Data 

The BioTac contains 19 electrodes, sampled at 100 Hz, which can be used to 

extract information about the elastomeric skin deformation relative to the rigid sensor 

core. As in (R. D. Ponce Wong et al., 2014), the electrodes were clustered into 6 groups 

based on fingertip location (Figure 3.2b). In this study, we did not use specific temporal 

windows of data to extract model inputs. Rather a 12-element vector was constructed for 

each timepoint (in 10 ms increments) that consisted of mean impedance and differential 

changes in mean impedance for each of the six clusters. 

 

Hidden Markov Models 

 Hidden Markov Models (HMM) have been used extensively in speech recognition 

and are statistical methods of representing temporal sequences of complex data. They 

have been successfully applied to stochastic signal modeling (Rabiner, 1989). HMMs are 

a special form of a Markov chain; A Markov chain is conditionally independent of other 

observations given the current state. This means that the probability of being in a state is 

only dependent on its current state. HMM model parameters 𝜆 = (𝐴, 𝐵, 𝜋) are specified 

by a transition matrix A, belief matrix B, and an initial state distribution 𝜋. The transition 

matrix 𝐴 is the probability of transitioning to a state given the current state. The belief 

matrix 𝐵 is the probability of an observation given the current state, and the initial state 

distribution 𝜋 is the probability of starting in a given state.  

 The fundamental idea behind using a statistical model is to determine the 

probability of an object feature given a sequence of observations X Eq. (3.1).  By using 
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Bayes’ Theorem Eq. (3.2), we can consider the impact of an observation and the belief of 

possible features. The posterior is the left side of Bayes’ Theorem and is proportional to 

the likelihood times the prior Eq. (3.3). Eq. (3.4) shows how we can determine the 

likelihood of a given model where 𝑝 𝑋 𝐸  is considered the sensor model and 𝑝(𝐸) is the 

salient feature model. By using Eq. (3.4) in place of Eq. (3.1) we return the results of the 

probability of observing a given feature from information that is available through prior 

knowledge and the observation sequence.  

 

 𝐸∗ = 𝑎𝑟𝑔max
3
𝑝(𝐸|𝑋) 3.1 

 
𝑝 𝐸 𝑋 = 	

𝑝 𝑋 𝐸 𝑝(𝐸)
𝑝(𝑋)  

3.2 

 𝑝 𝐸 𝑋 	∝ 𝑝 𝑋 𝐸 		𝑝(𝐸) 3.3 

 𝐸∗ = 𝑎𝑟𝑔max
3
𝑝 𝑋 𝐸 		𝑝(𝐸) 3.4 

  

There are many distinct types of HMMs, such as an ergodic model in which every 

state can be reached from every other state (transition matrix shown in Figure 3.3a). 

Other models include n-state left-right models where the number of states n determines 

the size of the forward state jump that can occur (2-state left-right model transition matrix 

shown in Figure 3.3b). For the models considered here we use a left-right state model 

(Figure 3.3), which has been shown to fit stochastic sequential models well (Gales & 

Young, 2007; Rabiner, 1989).  
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a) Ergodic model transition coeff. 

 
b) Left-right model transition coeff. 

𝐴 =

𝑎77 𝑎78
𝑎87 𝑎88

𝑎79 𝑎7:
𝑎89 𝑎8:

𝑎97 𝑎98
𝑎:7 𝑎:8

𝑎99 𝑎9:
𝑎:9 𝑎::

	 𝐴 =

𝑎77 𝑎78
			0 𝑎88

𝑎89 0
𝑎89 𝑎8:

0 0
0 0

𝑎99 𝑎9:
0 𝑎::

 

 

 

Figure 3.3 Continuous observation HMM. Circles are discrete hidden nodes and squares 

are continuous observations. X is the observation vector. Transition matrices show the 

structure for an (a) ergodic and (b) 2-state left-right HMM.  

 

 HMMs can have discrete or continuous observations. Discrete observation HMMs 

require a code book for a given observation and have shown success in speech 

recognition with a large corpus (Rabiner, 1989). The continuous emission model can be 

either a single multivariate Gaussian Eq. (3.5) or an M-component Gaussian mixture 

model Eq. (3.6). The M-component Gaussian mixture is the one used in the preliminary 

study presented here due to its ability to model multiple observation sequences for each 

state belief matrix. 

   

SI S1 S2 SN 

X X X 

aI1(s1|sI) 

b1(X|s1) 

a11(s1|sI) a22(s2|s2) aNN(sN|sN) 

a12(s2|s1) aN-1N(sN|sN-1) 

b2(X|s2) b3(X|sN) 

.	.	.	 
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 𝑏= 𝑥 = 	𝑝 𝑥 𝑠= = 	𝒩 𝑥; 𝜇=, Σ=  3.5 

 
𝑏= 𝑥 = 	𝑝 𝑥 𝑠= = 	 𝑐=E𝒩 𝑥; 𝜇=E, Σ=E

F

EG7

 
3.6 

 To successfully apply Hidden Markov Models, we need to first build the signal 

model which can then be used to determine the likelihood that a signal fits a specific 

model. Model likelihood will be described first as it is necessary to drive the tuning of the 

model parameters.  

 

Likelihood 

 The likelihood of a given model 𝑝(𝑋|𝜆) can be determined recursively. The 

forward probability is denoted as 𝛼 and is the probability of observing the observation 

sequence X at time t. The forward algorithm Eq. (3.7) can determine the probability of an 

observation sequence on the order of 𝑁8𝑇 which is computationally feasible for large 

values of the number of states N and length of the datastream T.  After initialization Eq. 

(3.7-3.9) the forward probability is solved through induction Eq. (3.9) and then 

terminated Eq. (3.10) at the end of the observation sequence of length T. The forward 

algorithm is necessary to solve the probability of an observation sequence in a tractable 

manner. If we wanted to directly solve the probability of an observation sequence we 

would need to enumerate over all possible state sequences, which is intractable for even 

small values of N and T on the order of 2𝑇 ∗ 𝑁L. The forward algorithm is visualized in 

Figure 3.4, which shows the sequence of operations based on the lattice or trellis 

structure (Rabiner, 1989).  
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Initialization: ∝M 𝑠N = 	1 3.7 

                        ∝M 𝑠= = 	0							𝑖𝑓	𝑠N 	≠ 𝑠=     3.8 

Induction: 
∝S 𝑠= = ∝ST7 (𝑠N

U

NG7

)𝑎N= 𝑏=(𝑥S) 
3.9 

Termination: 
𝑝 𝑋|𝜆 = 	 ∝L (𝑠N

U

NG7

) 
3.10 

 

Figure 3.4 a) Shows the sequence of operations required to compute the forward variable 

αWX7 j . b) Illustration of the complete process for the forward algorithm. Excerpt from 

(Rabiner, 1989). 
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We introduce the backward probability here due to its similarity to the forward 

algorithm. The backward algorithm is primarily used in the solution to model training and 

will return the same result as the forward algorithm for an observation sequence.  The 

backward algorithm Eq. (3.11-3.12) is the backward probability of the partial observation 

sequence from t+1 to the end (Figure 3.5).  

 

 
𝛽S 𝑖 = 𝑎N=𝑏=(𝑥SX7

U

NG7

)𝛽SX7(𝑗) 
3.11 

 𝑡 = 𝑇 − 1, 𝑇 − 2,⋯ , 1, 1 ≤ 𝑖	 ≤ 𝑁 3.12 

 

 

 

Figure 3.5 Visualization of the calculation of the backward variable 𝛽. Excerpt from 

(Rabiner, 1989). 
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Sequence  

 There are a few options when determining the best sequence of states for a given 

observation sequence. One could possibly choose the state sequence where each state is 

individually most likely given the observations, although that might not be the best 

considering the structure of the HMM and transition matrix. The Viterbi algorithm is a 

method to find the single best state sequence for a given observation sequence (Viterbi, 

1967). We define the quantity 𝑉S in Eq. (3.16) as the highest probability along a single 

path at time t. The algorithm is similar to that of the forward algorithm but determines the 

maximum likelihood for each time step and then keeps an array Eq. (3.17) of 

backpointers to store the most probable path. The back trace variable bt Eq. (3.15) is the 

array of backpointers that record the best state sequence given by the Viterbi algorithm. 

 
Initialization: 𝑉M 𝑠N = 	1 3.13 

                        𝑉M 𝑠= = 	1							𝑖𝑓	𝑠N 	≠ 𝑠=     3.14 

 𝑏𝑡M 𝑠= = 	0 3.15 

 

Recursion: 𝑉S 𝑠= = 	max
NG7

𝑉ST7(𝑠N)𝑎N=𝑏=(𝑥S) 3.16 

 𝑏𝑡S 𝑠= = 	 argmax
NG7

𝑉ST7(𝑠N)𝑎N=𝑏=(𝑥S) 3.17 

 

 𝑃∗ = 	 max
7dNdU

𝑉L(𝑠N) 3.18 

 𝑠L∗ = 	 argmax
7dNdU

𝑉L(𝑠N) 3.19 
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 The Viterbi algorithm can be very helpful in determining the ability of a model to 

fit a complex signal. The algorithm can provide insight into the performance of an HMM 

by showing the sequence of most likely state transitions from the trained model and then 

comparing it to how well it fits a known observation state sequence. Essentially, by 

inputting a known observation sequence through a trained HMM and comparing the 

known and predicted best sequence of states side-by-side we can gain an empirical 

estimate of model accuracy. 

 

Tuning 

 Tuning, or training of model parameters, is the hardest of the three steps when 

developing an HMM. There is no analytical solution to solve this problem, although we 

can use an iterative procedure such as the Baum-Welch method, which is an expectation 

maximization (EM) algorithm (Rabiner, 1989). Baum-Welch allows the selection of 

model parameters 𝜆 = 	 (𝐴, 𝐵, 𝜋) such that 𝑃 𝑋 𝜆  is locally maximized. The E-step 

(expectation) is an estimate of the state occupation probability. The M-step 

(maximization) is a re-estimation of the HMM parameters based on the estimate of the 

state occupation probability. The state occupation probability 𝛾S(𝑠N) Eq. (3.20) is the 

probability of occupying state i at time t with respect to both the forward and backward 

probabilities. The EM equations presented will be for a mixture of Gaussians Eq. (3.6). 

To obtain the same equations for a single Gaussian model Eq. (3.5), the number of 

Gaussians m is set to 1.   
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 𝛾S 𝑠N = 	
𝛼S(𝑠N)𝛽S(𝑠N)
𝑃(𝑋|𝜆) = 	

𝛼S(𝑠N)𝛽S(𝑠N)
𝛼S 𝑠NU

NG7 𝛽S(𝑠N)
 3.20 

We also need to define 𝜉S 𝑠N, 𝑠= 	Eq. (3.21), which is the probability of being in state i at 

time t and state j at time t+1.  

 𝜉S 𝑠N, 𝑠= = 𝑃(	𝑆 𝑡 = 𝑠N, _𝑆 𝑡 + 1 = 𝑠=|𝑋, _𝜆	) 3.21 

 
𝜉S 𝑠N, 𝑠= = 	

𝛼S(𝑠N)𝑎N=𝑏=(𝑥SX7)𝛽SX7(𝑠=)
𝛼L(𝑠3)

 
3.22 

The sum of the occupation probabilities through time is used to re-estimate the Gaussian 

parameters mean Eq. (3.23) and covariance Eq. (3.24).  

 
𝜇=E =

𝛾SL
SG7 (𝑠=,𝑚)𝑥S

𝛾SL
SG7 (𝑠=,𝑚)

 3.23 

 
Σ=E =

𝛾SL
SG7 𝑠=,𝑚 (𝑥S − 𝜇=E)(𝑥S − 𝜇=E)k

𝛾SL
SG7 (𝑠=,𝑚)

 
3.24 

The mixture coefficients Eq. (3.25) are re-estimated in a similar way to the Gaussian 

parameters and are needed so that the beliefs remain stochastic.  

 
𝑐=E =

𝛾SL
SG7 (𝑠=,𝑚)

𝛾SL
SG7 (𝑠=, 𝑙)F

mG7
 3.25 

Using the state occupation probability we can also re-estimate the transition probabilities 

Eq. (3.26-3.27). 

 

 
𝑎N= =

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑓𝑟𝑜𝑚	𝑠N	𝑡𝑜	𝑠=
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑓𝑟𝑜𝑚	𝑠N

 3.26 

 
𝑎N= =

𝜉SL
SG7 (𝑠N, 𝑠=)

𝜉SL
SG7 (𝑠N, 𝑠s)U

sG7
=

𝜉SL
SG7 (𝑠N, 𝑠=)

𝛾SL
SG7 (𝑠N)

	 
3.27 
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Using the EM Baum-Welch equations shown here (sometimes called forward-backward 

algorithm) we can iteratively solve for 𝜆, which is the re-estimation of the HMM model 

parameters 𝜆 that improve the probability of the observation sequence from the model 

until the model likelihood converges.  

 

Statistical Feature Models to Predict Edge Orientation 

When applying HMMs to tactile data the belief matrix is a mixture of Gaussians 

that contains the probability of an observation (6 mean impedance and 6 differential 

changes in mean impedance values) given the current state.  

The state of an HMM is an abstraction of the feature space of the data. To avoid 

overfitting of the model, it is necessary to limit the number of states. In this work, we 

investigated the effects of the number of states on model performance. Nine different 

classification models were examined, with states ranging in number from 2-10.  

A total of 1445 data samples were used from (R. D. Ponce Wong et al., 2014). A 

threshold on the internal fluid pressure of the BioTac sensor was used to define the start 

and end of contact between the fingertip and the edge stimulus. The [-90°, 90°] range of 

edge orientation angles was split into 36 equally sized 5° increment bins. Thus, for each 

classification model, a total of 36 independent HMMs were built (one HMM per bin). 

Within each bin, 90% of the data were randomly selected for a training set, and the 

remaining 10% of the data were reserved for testing of the classification model.  

Each of the HMM’s belief and transition matrices were initialized with a random 

training observation from each bin. The initial state distributions were set to one for the 

first state and zero for all others. The models were then run through the Baum-Welch 
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algorithm, which adjusts model parameters based on expectation-modification (Rabiner, 

1989). At each incremental time point for a given datastream that includes all data from 

initial contact, the classifier determined the most likely bin based on which bin-specific 

HMM yielded the maximum log-likelihood value. Each of the 9 classification models 

was tested with a novel dataset. 
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Results and Discussion 

 

Figure 3.6 Confusion matrix for an 8-state classification model applied to a test dataset. 

 

The 8-state model performed the best with probabilities of 0.35 and 0.81 for 

accuracies of ±2.5° (one bin) and ±12.5° (one bin ± 2 bins), respectively (Figure 3.6). 

The 6-state model produced the highest probability of 0.90 for an accuracy of ±12.5°. 

Large prediction errors tended to be near -90° and 90° (Figure 3.6). It may be that a 

radial to ulnar stroke against the thick blade generated similar sensor data for the -90° and 

90° orientations, which would make these angles appear similar to the classification 

model. 
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While these preliminary probabilistic models could be improved, the results 

constitute a promising first step toward real-time decision-making based on haptic 

perception. Real-time calculations of log-likelihood for a given model are on the order of 

N2T where N is the number of states and T is the length of the datastream (R. D. Ponce 

Wong et al., 2014). Modern processors are more than capable of determining log 

likelihood in real-time. It should be noted that the bin-specific HMMs were robust to 

differences in fingertip speed and contact pressure. Using a single HMM per bin reduces 

the computational expense of the log-likelihood calculations and speeds up the 

classification process. Prediction accuracy would likely improve with a more 

comprehensive training dataset, additional tuning of model parameters such as 

observation size and sliding window spacing, and modification of model prior 

distributions. 

 

Conclusions and Future Work 

In this study, HMMs were used to develop models that can classify edge 

orientation relative to a body-fixed, fingertip reference frame in real-time. Such models 

could be used as a foundation for contour following at human-like speeds. Future work 

includes expanding the probabilistic models beyond edge orientation and adding models 

for other salient geometric features, such as bumps and pits (Ruben D. Ponce Wong, 

Hellman, & Santos, 2014). By leveraging probabilistic HMM techniques used in speech 

recognition for grammar models, we can develop the grammar of haptic exploration. 
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CHAPTER 4 

FUNCTIONAL CONTOUR-FOLLOWING VIA HAPTIC PERCEPTION AND 

REINFORCEMENT LEARNING 

Introduction 

Contour-following is often necessary for tasks requiring fine manipulation skills 

such as tying shoelaces, searching pockets, and buttoning shirts. The ability to perform 

haptic contour-following enables specific dexterous abilities that are necessary for 

capable robotic systems. In this chapter, we present a functional form of contour-

following in which the contour is the zipper on a deformable ziplock bag to be closed. 

Early work in contour-following used contact forces to track edges (Chen, Zhang, 

& Rink, 1995). Scene and tactile images of the contacted interface were filtered to 

determine edges for vision-based contour-following (Nakhaeinia, Payeur, & Laganiere, 

2014). Techniques integrating vision, force sensing, and accelerometers have also been 

used to track contours (Koch, Konig, Weigl-Seitz, Kleinmann, & Suchy, 2013). The 

effectiveness of these computer vision approaches can be limited if target objects are 

occluded, transparent, deformable, or otherwise optically ambiguous (Irani, Rousso, & 

Peleg, 1994). In such scenarios, it becomes necessary to rely on haptic and proprioceptive 

feedback in order to perform functional tasks.  

Robotic systems have various levels of proprioceptive precision. For instance, 

lash in tendon-driven systems or static friction in joints can lead to noisy torque 

estimates. Compliance in soft robot arms can mask finger-object interactions that would 

otherwise be observable with precise, direct-drive robot arms (Pratt & Williamson, 1995). 

As robotic devices become more common place in our surroundings they will begin to 
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interact in ways similar to their human counterparts. This interaction will involve 

incidental and planned contact with not only the end effector but other areas of the 

robotic system as well (Bhattacharjee, Shenoi, Park, Rehg, & Kemp, 2015). From these 

incidental contacts, proprioceptive data that could have been used to calculate localized 

contact information will become indeterminate. This will happen as robots start to 

manipulate objects in pockets and bags due to incidental and/or planned contacts away 

from the manipulator, such as on the forearm or upper regions of the arm and hand. In 

this work, we rely heavily upon tactile percepts that are localized near the point of finger-

object contact, as visual and proprioceptive feedback can be noisy or intermittent.  

Tasks that require contour-following are not limited to manipulation of rigid 

objects. The manipulation of deformable objects such as rope, cloth, and sponges have 

been a focus of extensive research due to their applications in surgical and service 

robotics (Lazher, Belhassen-Chedli, Sabourin, & Youcef, 2014; Salzmann, Pilet, Ilic, & 

Fua, 2007; Schulman, Lee, Ho, & Abbeel, 2013). Both physics-based and model-free 

approaches have been successfully implemented (Berenson, 2013; Bretl & McCarthy, 

2013; Maitin-Shepard, Cusumano-Towner, Lei, & Abbeel, 2010; Schulman et al., 2013; 

Shah & Shah, 2016). In the work presented here, we use a model-free approach in which 

the stochastic nature of physical interactions with a deformable object is learned from 

action-driven haptic and proprioceptive sensory feedback. Using reinforcement learning 

we explore the benefits of Contextual Multi-Armed Bandits and compare against a Q-

learning benchmark. Learning algorithms are shown to be capable of intelligently 

selecting actions to maximize cumulative rewards. 
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Importance of Local Contact 

 Manipulating objects based purely on proprioceptive and visual information is 

often challenging due to compliance in robotic systems and/or objects being manipulated. 

It is unlikely that a rigid robotic system could perfectly implement planned motions as 

there is typically uncertainty in joint angles (Klingensmith, Sirinivasa, & Kaess, 2016). 

By sensing at the point of contact we remove the possibility of error propagation in 

forward calculations from both visual and proprioceptive systems. Having a compliant 

fingertip sensor at the point of the grasp allows it to conform to object features. Localized 

sensing at the point of contact is robust to uncertainty due to incidental contact on the 

robot system, proprioceptive sensor errors, or visual occlusions.   

The use of vision for the complete execution of a manipulation task will be 

challenging as objects become occluded. While invaluable for task planning, vision is not 

a panacea. Occlusions caused by the arm and hand are inevitable and will hamper the 

robustness of systems that rely purely on vision for feedback control.  

 

Real-Time Perception During Task Execution 

In order to complete a functional manipulation task, the robotic system has to 

perceive the current state and then take the best action based on previous experiences or a 

learned policy. By perceiving the state of the system in real-time, corrective actions can 

be taken to achieve the goal of the manipulation task. The method of real-time perception 

of features differs from previous work presented in Chapter 2. Work presented in Chapter  
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2 used known exploratory procedures (EPs) (Figure 1.1) and tactile data from complete 

fingertip trajectories to perceive edge orientation (Lederman & Klatzky, 1987).  

The EPs, which are mostly used to determine object properties, rely on known 

trajectories with large displacements of the finger relative to the object size. These known 

trajectories simplify the ability of an algorithm to successfully classify object features. 

The classification of these longer trajectories or EPs is often easier than classification of 

shorter trajectories because the signals generated are more predictable and distinguishable 

from noise and transients for a complete trajectory. It is typical to start a pre-planned 

fingertip trajectory with the sensor in free space and not in contact with the object. By 

beginning a trajectory with the sensor in free space, strain in the compliant fingerpad is 

mechanically reset to baseline conditions. However, when the goal is to complete a 

manipulation task, the larger displacement trajectories may not be an option and may 

actually interfere with the successful completion of a task. In contrast, shorter motions 

are more realistic by requiring the classifier to more frequently determine the state of the 

system. With more frequent real-time perception, however, accurate classification is 

more difficult than that of longer EP trajectories. With a compliant sensor, the signal 

response and initial state may be completely different given the set of prior actions taken. 

This difference in the raw sensor baseline signals during each motion adds to the 

difficulty in classifying salient object features during real-time perception.  

For the development of real-time manipulation capabilities, it is necessary to 

update percepts after relatively small windows of time and displacements. By updating 

percepts at a higher rate, after smaller displacements, corrective actions can be taken 

sooner and more often.  
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Task Description 

The closure of a plastic ziplock bag is an everyday task that presents unique 

challenges for robotic systems. The task requires the manipulation of a transparent, 

deformable object whose geometric features are visually occluded by artificial fingertips. 

Computer vision could be useful for planning, but will likely be insufficient for task 

execution. While the closure of a plastic bag is typically a bimanual task, we simplified 

the experimental set-up to focus on the control of a single sensorized robot hand, wrist, 

and arm. 

To successfully complete the task, we will need to determine the current 

orientation of the zipper in the grasp and then take an appropriate action. The action 

chosen should either maintain the current state or bring the system into a new desired 

state which will have the highest probability of a successful zipper closure. 

 

Pilot Study  

 A preliminary study that employed Q-learning was conducted to determine the 

validity of applying reinforcement learning to a functional contour-following task. The 

preliminary work presented in this section was used to refine many of the system 

parameters that will be presented in the following sections of this chapter. 
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Methods 

Robot Testbed 

 

Figure 4.1 Experimental set-up used to develop online haptic perception and decision-

making capabilities for a functional contour-following task. 

 

The experimental set-up required the integration of multiple robotic systems, 

sensors, and processors. Processing was separated into hard and soft real-time modules. 

Hard real-time processes were controlled from a Linux computer running Ubuntu 12.04 
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modified with a Xenomai kernel. For reliable control and sensing, command signals and 

sensor sampling were handled by hard real-time modules. Computational tasks such as 

haptic perception, decision-making, and reinforcement learning were implemented by 

soft real-time processes on a 2013 MacBook Pro. By isolating the soft real-time 

processes, the load variability on the hard real-time threads was reduced since certain 

algorithms and tasks did not have guaranteed execution times. 

The robot testbed consisted of a 7 DOF Barrett Whole Arm Manipulator (WAM) 

with a 4 DOF BarrettHand (Barrett Technology, Cambridge, MA). The BarrettHand can 

independently flex/extend three digits and adduct/abduct the outer two digits. BioTac 

sensors (SynTouch LLC, Los Angeles, CA) were attached to two opposing digits on the 

hand (Figure 4.1) for the recording of internal fluid pressure, vibration, skin deformation, 

and temperature (Wettels et al., 2008). Due to the redundant information from the two 

BioTacs in this particular experiment, only a single BioTac was used for analysis. 

Electrode impedance (Figure 4.2) was sampled at 100 Hz and internal fluid pressure was 

sampled at 100 and 2,200 Hz. 

To achieve a precision pinch with ample fingerpad contact areas for bag closure, a 

custom adapter was used to reduce the BarrettHand-BioTac system to a sensorized 

parallel gripper (Figure 4.1). The variable adapter enabled the selection of human-

inspired, task-appropriate fingertip contact angles, such as 20° per digit in this 

experiment. 

A custom iOS application (iOS Apple Inc., 2014) was built for video and image 

capture during task execution. The application recorded incremental video files from each 

action to be used for offline analysis and labeling. A local http server on an iPhone 4s  
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acted as an access point for the other systems that send start and stop triggers along with 

a filename to the application.  

 

Motion Planning 

An online motion planner was necessary to select one of an infinite number of 

robot poses and desired end states, and then determine a feasible trajectory while 

maintaining the desired end effector orientation. Using the Robot Operating System 

(“Robot Operating System (ROS),” 2011), we communicated between computational 

nodes and the motion planner (Quigley et al., 2009).  

We used MoveIt! for motion planning and collision avoidance (Sucan & Chitta, 

2015). MoveIt! incorporates various planning algorithms; we selected the commonly 

used sampling-based Optimally Rapidly-exploring Random Trees (RRT*) planner from 

the Open Motion Planning Library (“Open Motion Planning Library (OMPL),” 2015). 

Once a path is found with RRT* the algorithm will continue to optimize the path until a 

specified planning time has expired. If the planning time expires without returning a 

feasible trajectory, the system will recursively add additional time to the algorithm and 

replan until a successful trajectory is returned.  
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Communication and Data Logging 

MATLAB (MathWorks) was used for the online analysis of tactile (BioTac) and 

proprioceptive (WAM) data. A TCP/IP connection was used for communication between 

MATLAB and the hard real-time robotic system running in C++. The sensory data were 

sent to an external soft real-time node for processing. For training and data labeling, we 

recorded close-up videos of the artificial fingertips and zipper. The iPhone video camera 

received start/stop triggers and filenames from the hard real-time node. After each trial, 

we had a recording of all tactile sensor data, joint positions, joint velocities, joint torques 

and a close-up video of each individual action taken. All data were synchronized on the 

hard real-time thread and recorded only during the motion of the end effector.  Having 

recordings that are the length of each motion provides benefit by reducing the need for 

any thresholding or preprocessing of the data recordings. 

 

Reinforcement Learning via Q-Learning 

Reinforcement learning is a well-established approach for learning a policy to 

select actions in order to maximize the expected rewards. During reinforcement learning, 

state and action spaces are explored and appropriate rewards are given after each action. 

The reward is then used to update the expected reward from the action taken. 

Q-learning was used as a baseline to learn which action to take in order to 

maximize expected rewards. As a temporal difference method, Q-learning results in 

delayed rewards, and will converge to the optimal policy as time goes to infinity. The 

policy is in the form of a “Q matrix” that contains the expected rewards for each “state-
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action pair” (Christopher J. C. H. Watkins & Dayan, 1992; Christopher John Cornish 

Hellaby Watkins, 1989). Each row of the Q-matrix corresponds to a state and the 

columns are the available actions. A single entry in the Q-matrix corresponds to the 

expected reward of taking an action given the current state which is referred to as the 

“state-action pair.” It is necessary for the Q-learning algorithm to comprehensively 

explore the state space in order for rewards to back-propagate through the system. Given 

enough exploration, the expected reward of each state will converge to the optimal 

solution. However, exploration and exploitation must be balanced; excessive exploration 

to reduce uncertainty will waste time and increase regret, which is the difference in 

rewards earned by an agent acting optimally versus those earned by an agent that receives 

random rewards.  

Designers of Q-learning algorithms must set three parameters: learning rate α, 

discount rate γ, and exploration rate ε. The learning rate determines how quickly 

expected rewards are updated based on the difference in the expected reward and actual 

reward observed. If the learning rate is too high then stochastic responses can excessively 

influence expected rewards. The discount rate can be used to specify a decrease in value 

of future rewards. A low discount rate causes the learner to behave in a short-sighted and 

greedy manner by favoring immediate rewards. The discount rate is typically below one 

because future rewards can be troublesome, as they have the ability to propagate large 

stochastic errors. The discount rate was set to 1 in this work such that future rewards 

were not discounted. This seemed reasonable given the small state space of this system. 

The exploration rate is used to adjust the probability of further exploring the state space 

to reduce uncertainty versus exploiting current knowledge and taking the action expected 
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to return the maximum reward based on the current state. While Q-learning does not 

provide any guarantees on regret via an exponentially decaying exploration rate, it is 

possible to tune performance and empirically improve the rate of convergence to the 

optimal policy. However, such manual tuning of the Q-learning parameters could be 

sidestepped through the use of more advanced learners, such as Contextual Multi-Armed 

Bandits, to be discussed later. Eq. (4.1) shows the main update to the Q-matrix that 

happens at every iteration when a reward is received. The Q-matrix in Eq. (4.1) shows the 

estimated reward r at time t of taking an action a given the current state s.  

 

𝑄 𝑠S, 𝑎S ← 𝑄 𝑠S, 𝑎S + 	𝛼[	𝑟SX7 + 	𝛾𝑚𝑎𝑥w𝑄 𝑠SX7, 𝑎 − 	𝑄 𝑠S, 𝑎S ] 4.1 

An interesting benefit of Q-learning is that the robotic system can learn from 

incorrect actions. All tuning of the learning rate α, discount rate γ, and exploration rate ε 

are done manually. While Q-learning will converge to the optimal policy, it does not 

provide any guarantees of optimality in balancing exploration versus exploitation. 
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State Space and Action Space 

 

Figure 4.2 Pilot study state, actions, and rewards. Excerpt from (Hellman & Santos, 

2016). (a) BioTac electrodes were clustered into six regions according to spatial location. 

(b) Sensor data were labeled and rewards assigned using the regions indicated on the 

sensor skin.  (c)The action space consists of 0.5 cm fingertip movements in five 

directions. 
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Contour-following requires the fingertips to be moved relative to the ziplock bag, 

which requires perception of the fingertips relative to the contour (zipper) to be followed. 

We defined a discretized state space that would represent the longitudinal position of the 

zipper relative to the artificial fingerpad. The state space classes were “Off”, “Lower” 

(distal), “Center”, or “Upper” (proximal) (Figure 4.2b).  

 Once the fingerpad-zipper relationship had been perceived, a decision could be 

made about which action the robot should take next. For this proof-of-concept work, we 

considered a simple action space: 0.5 cm fingertip movement in a 90°, 135°, 180°, 225°, 

or 270° direction from the current fingertip location (Figure 4.2c). A displacement of 0.5 

cm was implemented such that the fingertips would remain in contact with the zipper 

during exploration even if the worst action were selected from an ideal state. By 

remaining in contact with the zipper, the robot can estimate the state, determine error, 

take an appropriate corrective action, and learn from the action-state pair. Each sequential 

action maintains the initial (constant) fingertip orientation and constrains motions to the 

plane of the ziplock bag. 
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Training of State Classifier 

 Baseline BioTac data were collected prior to each trial under no-contact 

conditions. Upon initial contact with the ziplock bag, grasp pressure was increased until a 

pre-specified internal fluid pressure was achieved by both BioTacs. This grasp pressure 

was maintained throughout the experiment. Random exploration of the action space 

provided training data for building classifier models for the state of the system. We 

collected 3,000 trials for offline training of classifiers to estimate the location of the 

zipper along the longitude of the artificial fingertip. Each training trial consisted of a 

random series of 7-10 consecutive actions after a pinch grasp had been established on the 

bag. A custom MATLAB GUI was used to extract video snapshots for the manual 

labeling of states according to Figure 4.2b. 

For analysis, the 19 BioTac electrodes were grouped into six clusters according to 

spatial location on the finger (Figure 4.2a). It has been shown previously that the 

reduction of the spatial resolution of the electrodes does not significantly degrade 

machine learning performance (R. D. Ponce Wong et al., 2014; Ruben D. Ponce Wong et 

al., 2014; Su, Fishel, Yamamoto, & Loeb, 2012). The reduction in spatial resolution 

reduces the complexity of trained models, speeds up online inferences, and ultimately, 

aids in the real-time execution of the classifier.  

Two commonly used classification techniques were applied to the labeled training 

data: Hidden Markov Models (HMMs) and Support Vector Machines (SVMs). Due to the 

dynamic nature of the tactile sensor data, HMMs were considered for their anytime 

classification capabilities (i.e. while the fingertip is moving and before a complete pre-

planned fingertip trajectory has been completed). SVMs were considered for their broad 
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success in classifying nonlinear data. The simplicity of the SVM feature vector allows for 

fast inference, although the action (fingertip movement) must be completed prior to 

classification. 

 

Hidden Markov Models 

As described in Chapter 3 a Hidden Markov Model is a Markov chain in which 

observations are conditionally independent of other observations given the current state. 

HMMs are specified by a transition matrix, belief matrix, and an initial state distribution. 

The transition matrix is the probability of transitioning to a state given the current state. 

The belief matrix is a mixture of Gaussians that contains the probability of an observation 

(six cluster-based observations per BioTac, as shown in Figure 4.2a) given the current 

state. Each of the HMM’s belief and transition matrices were initialized with a random 

training observation from each class (“Off,” “Lower,” “Center,” “Upper”). The initial 

state distributions were set to one for the first state and zero for all others. The models 

were then run through the Baum-Welch algorithm, which adjusts model parameters based 

on expectation-modification (Rabiner, 1989). At each incremental timepoint for a given 

datastream that includes all data from the start of an action, the classifier determined the  

most likely state based on which state-specific HMM yielded the maximum log-

likelihood value.  

The state of an HMM is an abstraction of the feature space of the data. To avoid 

overfitting of the model, it is necessary to limit the number of states. We investigated the 

effects of the number of states (2-10) on model performance. For additional details on 

HMMs see Chapter 3.  
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Support Vector Machines 

Support Vector Machines provide a robust and well-established way to classify 

data. SVMs are robust to outliers and will converge to a global minimum (P. N. Tan, 

Steinbach, & Kumar, 2006). SVMs were trained using the mean value from each of six 

BioTac clusters over the entire action. MATLAB was used to train the SVM and 10-fold 

cross-validation was used to verify the model (P. N. Tan et al., 2006). 

The SVM was tuned to improve performance and reduce overfitting of the data. 

We investigated the effect of changes in the box constraint ([1x10-5 :10: 1x106]) on model 

performance. Tuning of the box constraint adjusts how tightly the model is forced to fit 

the training data; too large of a box constraint results in model overfitting.  

 

Results 

Classifier Training 

 Each state classifier was trained independently from 3,000 trials. The offline 

training of each HMM and SVM classifier took approximately 20 min. and 2 min., 

respectively (2013 MacBook Pro, MATLAB). Model performance was assessed using 

the best 10-fold, cross-validated, out-of-sample classification. The HMM with 6-states 

and the SVM having a box constraint of 0.1 performed comparably. Cross-validated out-

of-sample classification for the best HMM and SVM models were 85% and 89%, 

respectively. The SVM was selected for online haptic perception during the test trials 

described later. 
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Reinforcement Learning in Simulation 

 The success of the Q-learning algorithm depends on the classifier’s ability to 

provide an accurate state estimate. Without an accurate model of the location of the 

zipper with respect to the fingerpad, the Q-matrix will be useless, as it will be unable to 

develop a consistent model of the expected reward for each action-state pair.  

In simulation, the Q-learning algorithm successfully built a Q-matrix with the 

3,000 training trials (Figure 4.3). The four possible states of the system are shown 

alongside pie charts that show the five actions that can be taken from each state. 

Specifically, each pie chart consists of five slices that represent the five directions [90°, 

135°, 180°, 225°, 270°] that the fingertips could be moved relative to their current 

location. The green color indicates the recommended actions based on expected rewards 

learned from the training data. 
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Figure 4.3 State-action policy from 3,000 exploratory motions. (a-d) Four possible states 

(Figure 4.2b) were manually labeled.  Each slice in the pie charts represents an action 

(Figure 4.2c). Green and red represent the scaled maximum and minimum expected 

reward of each action-state pair. 
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Test Trials 

 Five test trials were run with the trained SVM classifier (with 0.1 box constraint) 

and Q-learner. Each test trial began by moving the WAM fingers close to the pinned 

corner of the ziplock bag (Figure 4.4a). Baseline BioTac data were collected in a non-

contact state and then the gripper was closed to a pre-specified contact pressure. The 

classifier would make its first state estimate and then begin the iterative action-perception 

process by selecting an action that exploited the previously learned policy that is the Q 

matrix.  

The system continued until criteria were met, thereby signaling completion of the 

task (Figure 4.4(a-e)). Completion was specified as either three consecutive “Off” states 

or by traversing 1 cm longer than the length of the ziplock bag determined by the straight 

line distance from the original grasp point.  

Four out of five trials were concluded with three consecutive “Off” states. Due to 

misclassification of the “Off” state near the end of the ziplock bag, the fifth trial 

concluded by exceeding the pre-specified zipper length threshold. The zipper was 

successfully tracked in all test trials and the bag was successfully closed in three out of 

five trials. 

 



 

102 

 

Figure 4.4 Representative trial of successful haptic perception, reinforcement learning, 

and decision-making. (a) Initial state with open bag. (b-c) Examples of SVM state 

estimates, rewards, and actions selected using Q-learning. (d) Completed trial with 

fingers reset and the sealed ziplock bag. 
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Discussion 

Effects of Classifier Model Type 

HMMs are inherently able to provide model likelihoods during action execution 

and have been shown to model complex temporal data well (Rabiner, 1989). This is 

useful for classifying states prior to action completion, which could enable more frequent 

inferences, earlier decision-making, and earlier corrective actions. SVMs do not 

inherently support anytime inference, but have the advantage that they can be used to 

classify high-dimensional nonlinear spaces.  

Both the SVM and HMM had similar cross-validated, out-of-sample classification 

errors. The HMM approach enabled classification while the fingertips were moving. 

However, the SVM resulted in a more reliable classification rate. This slightly superior 

performance of the SVM may reflect that the nonlinear polynomial kernel is more 

generalizable than that of the HMM mixed Gaussian model, especially given the 

nonlinearity of the tactile sensor data.  
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Assumption of Observation Independence May Not Apply to Data from Tactile Sensors 

Task success critically depends upon the accuracy of the state classifier. 

Classifiers were trained on random sequences of actions but applied to tactile sensor data 

from non-random sequences of actions. In this sense, the classifier was disadvantaged 

when it was trained, although random exploration of the state space was important.  

Our prior work showed that the deformation of the tactile sensor skin is greatly 

affected by the conditions of the initial contact, especially contact area (R. D. Ponce 

Wong et al., 2014). In this work, the “initial contact” conditions for each state-action 

iteration were dependent upon the previous sequence of actions for a given trial. Due to 

the bladder design of the tactile sensor, there is valuable information away from the 

region of contact. This information is encoded in skin stretch, which depends upon prior 

contact conditions and actions that may be irrelevant. Since a recent strain history is 

encoded in the skin stretch, it may be valuable to implement reinforcement learning with 

classifiers that rely only on the current state for context, as is presented in the following 

sections.  

In addition, the SVM classifier model was built under the assumption of action 

independence and, thus, observation independence. An approach to improve the current 

classifier could be to group the training data according to the previous action in order to 

account for variation in “initial contact” conditions. One could also build separate action-

specific models, but the number of models would increase with the size of the action 

space. The possible sequences of actions that would lead to successful bag closure are 

infinite and cannot possibly be haptically experienced a priori. Furthermore, additional  

training data would be required and tactile sensor data are costly to obtain, with respect to 
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time and wear, as compared to less physically interactive sensing modalities such as 

computer vision. 

 

Stochastically Robust Techniques for Haptic Perception and Manipulation 

Reinforcement learning is a promising approach to develop methods to learn new 

haptic perception and manipulation skills. The stochastic nature of physical systems can 

cause issues when developing new skills. Fortunately, Q-learning can account for the 

stochastic interactions of soft, deformable tactile sensors with the environment. The Q-

learning algorithm has been extremely successful in the advancement of reinforcement 

learning techniques primarily due to its relative simplicity and ability to support 

stochastic feature sets (Christopher J. C. H. Watkins & Dayan, 1992). Q-learning serves 

as a benchmark for the future development of haptic decision-making and learning 

algorithms. 
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Summary of Pilot Study 

While we were successful in closing a ziplock bag, some actions were inefficient. 

During task execution, the policy cycled between “center” and “upper” states. This 

cycling was mostly due to the coarse nature of the action space and the absence of a 

penalty for unnecessary moves. To improve time to completion, more efficient and 

aggressive actions could be used along with a discounted reward for excessive actions. 

New actions could include adjustments to grip contact pressure and variable fingertip 

travel based on state confidence.  

During the pilot study, many of the hardware systems were fine-tuned. Yet, some 

aspects of the system required that a human be present to manually label data and oversee 

other aspects of the system. Extending the incremental work of this pilot study, the 

following sections will describe how the system was fully automated with the ability to 

label and learn without human supervision. 
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Learning a Functional Task with Optimal Cumulative Rewards 

 From the pilot study we successfully learned a policy to track a zipper and close a 

ziplock bag. While Q-learning was successful, a significant downside is that it does not 

provide guarantees on optimality. From lessons learned during the pilot study, we made 

changes to the state and action spaces and implemented new reinforcement learning 

algorithms that minimize regret by optimizing the cumulative rewards received.  

 The same hardware shown for the pilot study was employed for the following 

work. State labeling and classification were automated to remove the need for human 

supervision and minimize the introduction of human error. Additionally, changes to the 

processing of the tactile data greatly improved the robustness of the state classification.  
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Methods 

Reinforcement Learning via Contextual Multi-Armed Bandits 

 Multi-Armed Bandit (MAB) reinforcement learning algorithms are often 

explained using the analogy of a bank of slot machines that return unknown random 

rewards. MABs are used to determine the best sequence and choice of slot machine arm 

“pulls” (or action choices) in order to maximize rewards. The slot machines all return a 

random reward from a unique unknown probability distribution. The terms “arm” and 

“action” will be used interchangeably for the remainder of this Chapter. The question of 

what is the appropriate choice of arms requires probability theory to determine which arm 

and sequence of arms will result in an optimal policy that maximizes cumulative rewards. 

Early work such as the Gittins Index derived the optimal policy for maximizing the 

expected rewards of MABs (Gittins, Glazebrook, & Weber, 2011). MABs can be 

designed to be optimal and maximize the total rewards received for both a known and 

unknown number of finite actions (number of arm pulls, or data collection trials). Each 

action is defined by a single pull of an arm which then receives a reward based on the 

outcome (i.e. new state) resulting from the action. Simply put, MABs balance the 

exploration versus exploitation of the arms to maximize the total reward. MABs track the 

number of pulls per arm (i.e. how frequently each action has been explored) and estimate 

the expected reward of each arm. Given a sufficient amount of exploration of all arms the 

MAB will then begin choosing the arm with the highest expected reward.  
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Contextual Multi-Armed Bandits (C-MABs) are a particularly useful variant of 

MABs. C-MABs receive a feature vector (context) that is associated with each iteration 

or action. The feature vector can contain a wide range of information that the algorithm 

can then use to make better choices during exploration and exploitation. The contextual 

bandit problem is well known and has been an area of comprehensive study (Bubeck, 

Munos, Stoltz, & Szepesvari, 2011; Dudik et al., 2011; Kleinberg, Slivkins, & Upfal, 

2008; Langford & Zhang, 2008; Slivkins, 2014). The algorithms listed all assume a 

known similarity metric between neighboring contexts and achieve sublinear-in-time 

regret with respect to the complete knowledge benchmark. Sublinear regret implies that 

the policy will converge to the optimal reward.  

The variant of contextual bandits used in this chapter is Contextual Learning with 

Uniform Partition (CLUP) applied to a single agent setting (Cem Tekin & van der 

Schaar, 2015). CLUP is optimized to maximize the cumulative rewards given the number 

of current trials. Other algorithms may optimize on a finite number of trials which then 

becomes a problem of optimizing the total exploration. Given haptic interactions and an 

indeterminate number of trials we believe that maximizing the cumulative rewards is the 

best course of action.  

We now define the parameters of CLUP before discussing the algorithm. Let 𝑓 ∈

	ℱ be the set of arms available to the learner. Given uniform partitioning, let 𝑝 𝑡  be the 

set in 𝒫	to which the 𝑥(𝑡) context belongs. Let 𝑁|,} 𝑡  be the number of “context 

arrivals” (i.e. how many times a context has been visited) for each arm given the uniform 

partitioning of the context.  
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From the set of arms ℱ and the fact that the learner operates in discrete time space 

𝑡 = 1, 2, … , 𝑇 the following events happen sequentially for each time step: (i) receive a 

context 𝑥(𝑡); (ii) from 𝑥 𝑡 , the learner will choose an arm 𝑓 ∈ 	ℱ. The choice of arm 𝑓 

depends on 𝐷, which is of the form 𝐷 𝑡 = 	 𝑡� log 𝑡. The learner will determine the set of 

under-explored arms (Eq. 4.2).  

 ℱ�� ∶=	 𝑓 ∈ 	ℱ ∶ 𝑁|,} 𝑡 	≤ 	𝐷(𝑡)  4.2 

The parameter 𝐷 is a deterministic, increasing function of t called the control function. 

For a rigorous proof of CLUP along with the control function 𝐷 see (Cem Tekin & van 

der Schaar, 2015). If the set of ℱ�� is non-empty, the learner enters the exploration state 

and will select a random arm from ℱ�� to explore. Once the set ℱ�� is empty, the learner 

will enter the exploitation phase where it selects the choice with the highest estimated 

reward (Eq. 4.3).  

 𝑎 𝑡 ∈ argmax
|

𝑟|,}(𝑡) 4.3 

The mean estimated reward is updated for each arm as context arrivals occur and a 

reward 𝑟 is received (Eq. 4.4). The pseudocode for CLUP for a single agent learner is 

shown in Figure 4.5. All context arrivals occur before an arm is selected, as shown on 

line 6 of Figure 4.5. The parameters z and 𝑚L define the similarity and size of the metric 

space, respectively, that are used to calculate the control function at a given time. 

 𝑟|,} = 	
𝑟|,}	𝑁|,} + 𝑟
𝑁|,} + 1

 4.4 
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CLUP adapted for single agent learner: 
1: Input: 𝐷(𝑡), T, 𝑚L 
2: Initialize sets: Create partition 𝒫 of context 
3: 
4: 

Initialize counter: 𝑁|,} = 0, ∀𝑓 ∈ ℱ, 𝜌 ∈ 𝒫 
Initialize estimates: 𝑟|,} = 0, ∀𝑓 ∈ ℱ, 𝜌 ∈ 

5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

While 	𝑡 ≥ 1 do 
   Find the set in 𝒫 that 𝑥(𝑡) belongs to 
   Let 𝑝	 = 	𝑝(𝑡) 
   Compute set of under explored arms ℱ��(𝑡) from Eq. 4.2 
   if ℱ�� 𝑡 ≠ 0 then 
      Select a randomly from ℱ�� 𝑡  
   else 
      Select a randomly from argmax

|
𝑟|,}(𝑡) 

13: 
 
14: 

   end 
    
   𝑟|,} = 	

��,�	U�,�X�
U�,�X7

 

 
15: 
16: 

  𝑁|,} + + 
  𝑡 = 𝑡 + 1 

17: end while 
 

Figure 4.5 Pseudocode for the Adapted CLUP algorithm for a single agent learner (Cem 

Tekin & van der Schaar, 2015). 

 

State Space and Action Space 

There are various ways in which to represent the states of the fingerpad such as 

the mean longitudinal position of the zipper relative to the fingerpad, or possibly the 

direction of motion of the zipper relative to the fingerpad during each action. The state 

space used in this experiment was defined according to empirical results from the pilot 

study. The system state was discretized into fingerpad states of “High,” “Center,” and 

“Low” that represent the location of the zipper along the length of the fingerpad (Figure 

4.8).  
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During the pilot study with the four state system (Figure 4.2) a sawtooth 

trajectory of the fingertips was observed during task execution. We believe that the 

learned policy was oscillating between the “Upper” and “Lower” states in an attempt to 

maximize the occurrence of the “Center” state while also avoiding the “Off” state. The 

reward of the “Off” state may have been overweighted in the model, which would cause 

the policy to act overly cautious. In an attempt to avoid the “Off” state the system would 

learn to oscillate around “Center.” Since the policy will optimize a system according to 

its defined state and action spaces, both spaces were refined for the follow-on study.  

In defining the appropriate context vector for the C-MAB, two techniques were 

explored: (i) using raw sensor data as the context to the bandits, and (ii) using machine 

learning to pre-process the sensor data and classify the context. In order to input raw 

sensor data as the context in technique (i), the tactile data were partitioned. Using the six 

cluster-based observations per BioTac from the pilot study shown in Figure 4.2a, each 

cluster was assigned a value indicating a compressed, neutral, or bulged state of the 

fingerpad skin relative to the sensor core. Partitioning of the data was done through k-

means clustering (Hartigan, 1979). The mean value of each cluster from the full 3,000 

training trials of the pilot study are shown in Figure 4.6. The selected thresholds are 

shown as red vertical bars that indicate the threshold for each individual cluster (rows) 

and contact pressure (columns: low, medium and high). Global thresholds, shown as the 

green regions in Figure 4.6 for each cluster, were determined through k-means clustering 

of the full set of training data that includes all contact pressures. 
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Figure 4.6 Tactile data from the pilot study were partitioned for the labeling of three 

regions: compressed (left of green region), neutral (green region), or bulged (right of 

green region). Rows indicate clusters 1-6 and columns indicate the three contact 

pressures (low, medium, and high). Thresholds shown on the histograms evenly distribute 

the context labeling by minimizing in-sample variance.  
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The total number of possible contexts was 36 (729), where there are 3 possible 

states for each of the six clusters. The context with the most arrivals was consistent with 

what would be expected during a simple perpendicular sliding motion along the fingertip: 

the radial side of the finger was compressed, the ulnar side was bulged, and the center of 

the finger and the fingertip were in a neutral state (Figure 4.7 inset). While the training 

data were fairly distributed along the possible contexts there were still areas with 

disproportionate context arrivals (Figure 4.7). Having 729 possible contexts requires 

significantly more training data then the 3,000 available trials, and there is no guarantee 

that all contexts are physically meaningful or possible. Due to the large volume of 

training data necessary for this technique (i), a machine learning algorithm was instead 

used to interpret sensor data and reduce the dimensionality of the context.  

To reduce the size of the context space and keep the required exploration 

tractable, a classifier was implemented (technique (ii) mentioned previously). The 

classifier takes normalized sensor data from each action and determines the state of the 

fingerpad-object interaction. The details of the state classifier are expanded in the 

following section, “State Classification via Deep Neural Nets.”  

For the remainder of the work presented we used a simple reward structure 

founded upon previous experience with models developed in the pilot study, artificial 

fingertips, and the need to remain in contact with the zipper for bag closure (Hellman & 

Santos, 2016). The state space in Figure 4.8 consists of three states “High”, “Center”, and 

“Low”. The actual position and labeling of the states will be discussed in the “Data 

labeling” section of this chapter. Having only three states helps to keep the necessary 

exploration of the state space tractable. Rewards were assigned based on the classified 
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state: “Center” received a +1 reward while all other states received a reward of 0. The 

“Off” state was removed because it is assumed that if the current state is predicted as 

“Off” then the robotic system has already failed the task and the appropriate action would 

be to restart the task. Given that the appropriate course of action from the “Off” state is to 

restart, any exploration from there is unproductive.  
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Figure 4.7 a) Number of context arrivals shown for all 729 variations of the 6 clusters in 

compression, no change (neutral), or bulging. b) Shows expanded view of context that 

have a lower arrival rate. Inset image is the context with the highest number of 

occurrences (1,398) during 3,000 trials.  

 



 

117 

When the fingerpad-zipper relationship is perceived, a decision is made about 

which action the robot should take next. It is necessary to define an appropriate set of 

actions that the robotic system can take to either maintain or correct the state of the 

system. 

 

 

Figure 4.8 Fingerpad state representation for Q-Learner and Contextual Multi-Armed 

Bandits.  The reward r is shown for each state. 

  

For the trials presented in this follow-on study, action displacements were 

increased to 0.75 cm per trajectory from the previous 0.5 cm of the pilot study (Hellman 

& Santos, 2016). The increase was due to the elasticity of the silicone fingerpad and the 

desire for the fingerpads to slide along the zipper; each motion requires enough skin 

stretch before sliding begins and the friction in the contact region transitions from static 

to kinetic.  The reduced coefficient of friction during sliding helps to reduce the stored 
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energy in the elastic stretch of the skin between pauses in actions, and during motion 

planning of successive fingertip trajectories. All motions had a trapezoidal velocity 

profile with a speed of 0.5 cm/s. The action space consisted of trajectories in a 135°, 

155°, 180°, 225°, or 270° direction from the current fingertip location (Figure 4.9). The 

action space has asymmetric trajectories for proximal versus distal corrective actions. The 

asymmetric action space is an empirical result from many trials of learning during the 

pilot study. The geometric shape of the round fingertip results in large normal forces for 

distally directed corrective actions that tend to push the zipper out of the grasp. Thus, the 

action space was defined with more aggressive angles of attack in the distal directions. 

 

 

Figure 4.9 The action space consisted of 0.75 cm fingertip movements in five directions. 

The asymmetric action space was due to the large normal forces generated by corrective 

actions in the distal direction that tended to push the zipper out of the grasp.  
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Robust Conditioning of Tactile Data 

 Tactile data processing was kept to a minimum in order to maintain the speed and 

robustness of classification during online trials. Minimizing this processing was a 

challenge because many tactile sensors, including the BioTac (Yamamoto, Wettels, 

Fishel, Lin, & Loeb, 2012) used in this experiment, are susceptible to sensor drift . For 

the BioTac, sensor drift most likely stems from the variability in the silicone skin which 

is inflated by a weakly conductive fluid away from the sensor’s rigid core. All electronic 

sensing elements of the BioTac are located on the rigid core of the finger. Variations in 

the internal fluid volume, external temperature, and any damage or overuse to the skin of 

the BioTac may be the cause of this instability. Sensor drift is also apparent from day-to-

day classification of trained algorithms (Hui, Block, Taylor, & Kuchenbecker, 2016).  

To best regularize classifier inputs, we focused on relative movements of the 

finger. In the pilot study, the baseline reference was set for each trial prior to grasp 

initialization. Each trial is defined by the set of actions from initial grasp to either 

successful zipper closure or failure (Figure 4.4). Referencing the baseline for multiple 

actions can introduce sensor variations and stochastic noise from the robot system.   

In order to minimize all possible sources of noise and ensure the robustness of the 

classifier, we refined the baseline to be action-dependent during each trial. Prior to each 

action the BioTac records 100 ms (10 batches of data) that are used to baseline each 

individual action. The processing was done to ensure the robustness and accuracy of the 

classifier. Each action coincided with approximately 1.5 seconds of recorded data.  
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Automated Labeling of States  

 In order to train classifiers to predict the state of the zipper within the pinch grasp, 

it was necessary to label the data for supervised learning. During the pilot study, labeling 

of states was done manually based on lines marked on the skin of the BioTac. This 

approach ignored the fact that the skin is elastic and, depending on the sequence of 

actions and strain stored in the skin, the actual location of the zipper relative to the core 

of the finger could be very different. It was necessary to develop a new method that 

would be robust to skin strain and representative of the zipper position relative to the core 

of the tactile sensor. It is important to maintain consistency relative to the core because 

this is also the reference location of the sensing electrodes of the BioTac (Figure 4.2a). 

Automated labeling would also reduce the introduction of uncertainty from human error 

during labeling. 

 In the pilot study, images were captured with a view of the radial aspect of the 

fingerpad in order to view the center of the pinch grasp similar to that of Figure 4.8. By 

repositioning the plane of the camera lens to be parallel to the plane of the ziplock bag, as 

in Figure 4.10, both the nail of the BioTac and the full contour of the zipper could be 

observed. The nail of the BioTac is rigidly attached to the core with two screws that serve 

as convenient reference points. In order to quickly identify the location of the nail on the 

BioTac, red circles were placed over each fingernail screw. The distance between the 

centers of the two red circles was 1 cm (Figure 4.10). The zipper was colored blue for 

ease of automated visual identification. By marking the inside of the transparent zipper, 

the coloring withstood thousands of trials. 
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Figure 4.10 Image captured after completion of action. Red circles were placed over the 

fingernail attachment screws to determine the location of the BioTac. The zipper was 

colored blue in order to determine zipper offset relative to the center of the two red 

circles. 
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The ability of a trained model to successfully classify data is significantly 

influenced by the accuracy of the label. When manually labeling thousands of data trials, 

as in the pilot study, it is possible for human error to introduce errors in labeling. In order 

to reduce errors and speed up the labeling process, an automated labeling system was 

developed using OpenCV (“Open Computer Vision (OpenCV) Library 

(SourceForge.net),” 2015).  

 Each image was processed through a custom Python node that received an image 

from a custom iOS application (Figure 4.1). The output of the OpenCV processing was a 

measurement of the offset (shortest distance) between the center of the two red fingernail 

circles and the contour of the blue zipper along the center line of the finger shown in 

Figure 4.11. The image processing steps are listed below. Once processing was complete, 

the Python nodes saved the edited image file and appended the offset error in mm to the 

image name.  
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Image Processing 

1. Load image through Python http server. 

2. Prepare image for processing 

a. Apply Gaussian blur to reduce any high frequency noise. 

b. Convert image to HSV. HSV is a more intuitive representation of color 

that allows for easier thresholding compared to that of BGR 

(OpenCV defaults to BGR not RGB for historical reasons). 

3. Locate red BioTac nail markers. 

a. Threshold image for HSV red. 

b. Dilate mask to smooth any misses in the thresholding. 

c. Locate the center of the two red clusters with k-mean clustering. The 

center of the two red circles are indicated by green dots in Figure 4.11. 

4. Locate blue Zipper. 

a. Threshold image for blue. 

b. The color mask will occasionally be inaccurate due to some noise and 

the blue palm of the BarrettHand. Since we know where the BioTacs 

are we built a rectangle around that region to shrink the area where the 

bag should be and update the threshold. By narrowing the blue 

threshold around the BioTacs we remove any possible interference 

with the BarrettHand. 

c. Fit two rectangular contours that match the blue bag on both sides of 

the finger and combine into one contour. 

d. Fit line to contour (yellow line Figure 4.11).  

5. Calculate the offset value as the distance between the center of the two red 

circles (green dot) and the line (blue dot on the yellow line Figure 4.11) at the 

current location of the BioTac. Convert from pixel offset to mm by using 

known separation distance of 1 cm between the two red dots on the BioTac (- 

for below center and + for above center).   
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Classifying Region of Fingerpad 

 Using the offset value from the processed images each state could be labeled 

according to predefined thresholds. The state for an offset value greater than 0 mm 

(indicated at the center of the two red circles) was labeled “High” (Figure 4.11a). The 

state for an offset value less than or equal to 0 mm and greater than -2.5 mm was labeled 

“Center,” (Figure 4.11b) while all other states less than or equal to -2.5 mm (Figure 

4.11c) were labeled “Low”. Once the zipper was considered to be out of contact with the 

BioTacs based on the predefined offset thresholds, the data were discarded and excluded 

from model training.  
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Figure 4.11 Automated labeling of grasp offset. a) State for an offset value greater than 0 

mm was labeled “High.” b) The state for an offset value less than or equal to 0 mm and 

greater than -2.5 mm was labeled “Center.” c) All other states less than or equal to -2.5 

mm were labeled “Low”. Green dots in the center of the red circles are found through k-

means clustering of the red image threshold. Blue color threshold determines the contour; 
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a straight-line fit to the contour is indicated by yellow line. The intersection of the blue 

contour and line connecting the green dots is indicated by a blue dot on the yellow line. 

The offset value is measured as the pixel/mm difference between the center of the finger 

(middle of two green dots) and the location of the zipper in the grasp (blue dot).  

 

State Classification via Deep Neural Nets 

 A Deep Neural Net (DNN) was selected for state classification of the tactile data. 

DNNs consist of multiple neural net layers in which each layer has a rectified linear unit 

(ReLU) applied to the outputs. By using ReLUs with DNNs we are able to fit nonlinear 

data, thereby allowing for robust classification of the nonlinear robot testbed system. 

DNNs require a feature vector as inputs and return a classification from a predefined set 

of outputs. The feature inputs selected for the trained DNN were the 2-norm of the mean 

value of the final 100 ms of recorded tactile data from each action. The sensor data were 

initially baselined for the action-dependent movements, as described in the previous 

section on “Robust Conditioning of Tactile Data”.  

 Classification and training were achieved with TensorFlow (Abadi et al., 2016). 

Over 8,000 labeled data trials were used in training. Training of the DNN was 

accomplished through stochastic gradient descent (SGD) with an exponentially decaying 

learning rate, regularization, and dropout. SGD is a method of adjusting the weights and 

biases of each layer of the DNN to minimize a specified loss function. Instead of using 

the full set of training data for every update to the model, SGD randomly selects a small 

set of data. By using SGD, training time is significantly reduced. Even though each 

training step does not use the full set of training data, by stochastically varying the 
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training set the full set is represented. In this work we use L2 Regularization (Ng, 2004) 

which adds additional terms to the loss in order to penalize large weights. Penalizing 

large weights helps to prevent overfitting of the model to training data. Dropout is a 

technique of stochastically turning weights on and off during training (Srivastava, 

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dropout is an extremely useful 

development for neural nets that prevents overfitting and distributes activation weights 

across the nodes of the DNN. By randomly turning a set percentage of the weights on and 

off during training, the model no longer relies on a single activation for classification. 

Randomly removing weights ensures that the activation of nodes are distributed though 

out the network. The DNN used three hidden layers with 512 nodes per hidden layer.  
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Results and Discussion 

State Classification 

The DNN classifier was trained with 7,200 (90%) data samples; 800 (10%) data 

samples were used to validate the model.  Approximately 15,000 iterations were taken to 

train the model with an average training time of less than 10 minutes (2013 MacBook 

Pro, MATLAB).  The DNN performed with an 89% classification accuracy on the 

training data and an 86% classification accuracy on the validation set.  

Robustness of the model to daily environmental variations is critical to the 

success of the learner. The model’s ability to correctly classify the state of the zipper 

within the pinch grasp will minimize stochasticity of rewards during reinforcement 

learning. Correct classification will allow both Q-learning and CLUP to more efficiently 

converge to the optimal policy for each state-action pair.  

Prior to action classification, each trial is initialized by grasping the ziplock bag 

and taking a 180° action. This initializing action is necessary to set the direction of strain 

in the skin of the BioTac. Initial variations of the baselined electrode values fluctuate 

during the first action as seen in Figure 4.12a show why the initialization action is 

necessary prior to classification. The changes in signs of the electrode values are due to 

the initial state of the skin during grasp initialization.  
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Figure 4.12 Full action dataset and classification for sequential actions. a) shows the 

initial start of a trial where a 180° action always initializes the system and does not 

receive a classification. The second action taken (b) is correctly classified as “high” with 

an offset value of 0.2 mm. The plot for each action shows the sensor’s response during 
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movement. Plot descriptions from the top down (all tactile data initialized with action-

dependent baseline): histogram shows mean value of the last 100 ms for all 19 electrodes, 

complete electrode response from the full action (100 Hz), low frequency fluid pressure 

of the BioTac (100 Hz), and high frequency pressure response of BioTac (2200 Hz).  

DNN input vector values are shown as a histogram of the 19 normalized electrode values. 

The x-axis for the baselined impedance electrode (100Hz), low frequency pressure 

(100Hz), and high frequency pressure (2200Hz) data is the sample number within the full 

trial.   

 

Reinforcement Learning and Expected Reward 

 Reinforcement learning is used to determine the expected reward for each of the 

state-action pairs. When learning, rewards are stochastically received and the learner 

must appropriately update the expected reward based on the difference between an 

observed reward and the expected reward. Q-learning will converge to the optimal 

expected reward, but only as time goes to infinity. Q-learning also does not provide any 

finite guarantees on optimality. C-MABs provide an optimal search of the state-action 

space to maximize the cumulative rewards given the current number of actions taken.  

 Both Q-learning and C-MAB were run for just over 750 actions to compare each 

algorithm’s expected reward. Figure 4.13 shows the expected rewards after 757 actions 

taken with Q-learning and 758 actions taken with C-MABs. All reinforcement learning 

was done online and independently of one another. For a true comparison between both 

algorithms, it is necessary to run them online because each algorithm determines actions 

sequentially.  
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Figure 4.13 Expected rewards from each state-action pair. Each pie chart represents the 

state “high”, “center,” and “low” (Figure 4.8).  Slices of each pie chart correspond to 

available actions (Figure 4.9). a) Expected reward from Q-learning. b) Expected reward 

from C-MABs. Numbers next to each slice of the pie chart correspond to the number of 

context arrivals. Actions are ranked based on the expected reward, as indicated by the 

color bar shown below the pie charts.  
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Of the maximum expected reward from both Q-learning and C-MABs, only one 

of the three states (“high”) have the matching action with the highest expected reward. 

The two states (“center” and “low”) do not have matching actions for the highest 

expected maximum rewards, but do have similar actions and expected maximum 

rewards. The maximum expected reward for the “low” state is received for a downward 

action for CLUP and a downward diagonal action for Q-Learning. If Q-learning were to 

continue for additional trials it is likely that it would converge to same maximum 

expected reward of C-MABs. C-MABs employ a controlled exploration of the state-

action space and are able to hone in on the actions that it learns to have the maximum 

expected reward. By selecting actions to reduce uncertainty, C-MABs are able to increase 

the confidence of the expected rewards. For example, in Figure 4.13b the C-MAB “low” 

state has spent the majority of its exploitation efforts on actions 225° and 270°. C-MABs 

are receiving stochastic rewards and alternate between the belief that either action 225° or 

270° has the maximum expected reward. By alternating between the two likely correct 

actions, the learner will converge to the optimal action that returns the highest expected 

reward.  

 Efficient exploration during learning will help to reduce uncertainty for the 

actions suspected of returning larger rewards. In Figure 4.13, based on the number of 

context arrivals, indicated next to each pie slice, it is apparent that C-MABs exhibit a 

more controlled exploratory behavior. If a state-action pair is not believed to return high 

rewards, it will only be explored to reduce uncertainty. The robotic system does not waste 

effort on exploration once the control parameter 𝐷	is met. In contrast, Q-learning   
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randomly chooses arms during exploration and does not consider the uncertainty of the 

expected rewards. 

 In order to demonstrate that the learned policy was necessary to accomplish the 

task, naive trajectories of the fingerpad along the zipper were tested. The zipper was 

placed at a known angle and assumed to follow a straight line. The fingerpads were then 

moved in a straight line without stopping and without the use of haptic perception or 

decision-making. All combinations of three trajectories and three zipper orientations (5°, 

0°, and -5°, relative to the horizontal) were tested twice. With the exception of one trial 

(zipper and fingerpad trajectory aligned with the horizontal), the pinch grasp failed to 

robustly track and seal the zipper bag during these 18 trials. The single successful trial 

occurred when the preplanned trajectory and orientation of the zipper were initialized 

perfectly.  
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Comparison of Reinforcement Learning Algorithms 

To compare the Q-learning and CLUP reinforcement learning algorithms, 

cumulative rewards during learning were evaluated. Cumulative rewards are the sum of 

all rewards received during the full set of trials. Both reinforcement learning algorithms 

have the identical state and action space available to them. What differentiates each 

learner is how actions are chosen during exploration and how expected rewards are 

updated. 

 

Figure 4.14 Cumulative rewards for over 750 consecutive actions of CLUP (dash-dotted 

blue) and Q-learning (solid red). CLUP outperforms Q-learning during learning by 

optimizing exploration versus exploitation.  
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Q-learning initially outperforms CLUP until approximately 240 trials have 

elapsed. This is because, based on the control function 𝐷, CLUP is purely exploring to 

gather information about the distribution of expected rewards. Once CLUP has sufficient 

information about expected rewards, it begins to exploit the policy it is learning. There 

are also short segments in Figure 4.14 where the CLUP cumulative reward line appears 

to be flat. These flat segments correspond to periods when the time-dependent control 

parameter D changes to the next integer value of context arrivals required for the 

exploration of the state-action pairs (Cem Tekin & van der Schaar, 2015). This single 

agent version of CLUP significantly outperforms Q-learning for cumulative rewards for 

the entire 750-action duration of learning (Figure 4.14).   

 

Robustness of the Learned Policy  

 Robust state classification is critical to the success of any reinforcement learning 

algorithm.  Improving accuracy for compliant sensors such as the BioTac continues to be 

a challenge (Hui et al., 2016). By taking the action-dependent baseline of the tactile data 

during each action and then the L2-norm of the baselined data for model features, we 

observed only minor decreases in classification accuracy for a model trained with data 

that were 84 days old.  
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Figure 4.15 Confusion matrix showing classification accuracy during training for (a) Q-

learning and (b) CLUP. Both learning algorithms used the same classifier that was trained 

with data recorded 84 days prior.  

 

The trained DNN had an initial accuracy of 86% on out-of-sample data not seen 

during training. This trained model was used to classify states during learning for both 

the Q-learner and CLUP presented in the previous section. State classification during 

learning was 71% for Q-learning and 74% for CLUP (Figure 4.15). The state 

classification accuracy for both Q-learning and CLUP should be identical, as the trained 

classifier should degrade uniformly due to environmental changes of the sensor. An 

average loss of 13% of classifier accuracy over an 84 day period shows the robustness of 

the classifier.  

The average time required to close the ziplock bag was approximately 2.5 

minutes. This time fluctuated due to length of the contour along with the efficiency of the 

actions chosen. While execution time was not the primary focus of this work, it is 
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important for the future functionality of the system. Significant delays were due to the 

motion planning time required for the robot arm. Calculations for the DNN and C-MABs 

required minimal processor time. Future work includes optimizing the motion planning 

and communication system to reduce the time for task completion. Implementing a 

graphical processing unit and parallelized planning during movements would 

significantly reduce total task execution time.  
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Automated Identification of Task Completion (Zipper Closure) 

 The robot system has learned a policy for a functional contour-following task, but 

still needs to learn to identify when the task has been completed (i.e. when the end of the 

contour has been reached).  Completion of the contour-following task is defined as when 

the pinch grasp has successfully reached the end of the zipper after maintaining contact 

during all prior actions.  

 

 

Figure 4.16 BioTac sensor data from an action in which the ziplock bag starts in contact 

with the fingertips and is lost. Both low (100 Hz) and high frequency (2200 Hz) fluid 

pressure signals, third and fourth rows, respectively, show clear signs of loss of contact.  
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In order to analyze what features are important for task completion, we ran 20 

trials of exactly 18 actions each, resulting in a total of 360 actions. During these 20 

training trials, even if the finger was the no longer in contact we continued executing 

until the full 18 actions were completed. For the 20 trials, the pinch grasp averaged 14 

consecutive actions before a loss of contact (Figure 4.16, example loss of contact). 

BioTac fluid pressure measurements from the low frequency pressure sensor of the 

BioTac were robust indicators of loss of contact. Figure 4.17 shows all 360 actions; the 

blue lines with diamond markers represent actions that resulted in loss of contact with the 

ziplock bag (Figure 4.16). By using a simple baselined threshold on the low frequency 

(100 Hz) pressure signal, we were able to accurately determine task completion. All trials 

conducted after the implementation of such a pressure threshold were able to identify loss 

of contact and task completion.  
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Figure 4.17 Analysis of low frequency (100 Hz) pressure during actions shown in Figure 

4.9. Blue lines with diamond markers represent the 20 action instances that resulted in 

loss of contact with the ziplock bag. Red lines represent the 340 other actions. 

 

Of the 20 trials, the first 10 trials were conducted with the ziplock bag open 

(Figure 4.18, red) while the last 10 trials were conducted with the ziplock bag sealed 

(Figure 4.18, blue). All trials successfully followed the contour of the zipper; all 10 trials 

in which the ziplock bag was initally open were successfully sealed. We postulate that the 

vibration sensed by the BioTac will be different when the bag is initially open as 

compared to when the bag is already closed. The power spectral density of the red trials 

(Figure 4.18), for which the ziplock bag was initially open and then successfully sealed, 

have a higher distribution up to 10 Hz. In contrast, the blue trials (Figure 4.18), for which 
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the bag was already closed, have a clear low frequency peak in the power spectral 

density. This suggests that additional vibration is generated from the zipper engagement 

during the last action that is made while in contact with the ziplock bag. The difference in 

the vibration signature generated from sealing the zipper could be used to determine the 

successful closure of a ziplock bag, and is left for future work. 
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Figure 4.18 Power spectral density of the last action made while in contact with the 

ziplock bag during contour following. Red and blue trials correspond to initially open and 

closed bags, respectively. 

 

Generalizability to Novel Contours  

 Now that the system is trained to close a particular ziplock bag, the ability of the 

system to generalize to new deformable contours is explored. New ziplock bags not used 

for training were tested with the trained classifier and learned policies. Bags were also 

filled with various distributions of 10 grams of cereal to test system robustness. 
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Figure 4.19 System tested on a novel ziplock bag not used during classifier training or 

policy learning. a) Ziplock bag with narrower, more deformable zipper than that of the 

bag used for learning the policy. b) Bag with 10 grams of cereal evenly distributed. c) 

Bag with 10 grams of cereal positioned toward the end of the bag. 
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The ziplock bag used for testing is shown in Figure 4.19 and was chosen as the 

most generic thin-walled ziplock bag available at the supermarket. Actual training data 

were collected with an industrial-style bag used for storing small machine parts, as shown 

in Figure 4.10. While the industrial bag lends itself to thousands of training trials, the 

thin-walled ziplock bag is more realistic as an everyday household bag. The classifier and 

policy were able to generalize and successfully close all five trials for each of the ziplock 

bag configurations shown in Figure 4.19. 

 Two weight distributions were used for the trials in which the bag contained 10 

grams of cereal. The first configuration was with the weight of the cereal evenly 

distributed and the second where the weight was distributed near the end of the bag. 

Having the weight distributed near the end of the bag caused the contour to have an 

exaggerated downward slope. The classifier was able to recognize that the zipper was in 

the “low” state and take corrective actions to correctly track the zipper. It should also be 

noted that the system was able to aggressively correct the “low” state (Figure 4.8) due to 

the maximum expected reward of the CLUP policy (Figure 4.13) with the asymmetric 

actions. 
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Figure 4.20 Policy tested on three non-zipper deformable contours, (a) thick electrical 

wire (3.5 mm), (b) thin electrical wire (1.5mm), and (c) nylon rope (4 mm). Each row of 

the figure shows sequential actions. None of the contours shown were used during 

classifier training or policy learning.  

 

 Additional non-zipper contours were tested to determine the robustness and 

generalizability of the system. Figure 4.20a-c shows three novel contours, a thick 

electrical wire (3.5 mm), thin electrical wire (1.5 mm), and nylon rope (4 mm). The 

policy was unable to maintain the contours in the desired “center” state of the grasp but 
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was robust in classifying the current state of the contour in the grasp. Since the classifier 

correctly identified the state of the contour, the correct action was robustly taken in an 

attempt to return the contour to the “center” of the grasp. Each row of Figure 4.20 show 

sequential actions. The robot was able to follow the contour for approximately three 

sequential actions before loss of contact. Low friction between the silicone skin and that 

of the electrical wire caused the contour to easily slip out the grasp. Grasp pressure was 

held constant for all actions, all trials, and all contours (training and testing). Modulating 

the grasp pressure during each action could improve performance for round contours. The 

modulation of the grasp pressure may enable the learning of fingerpad-contour 

interactions that are robust to differences in the size and shape of novel contours. Normal 

forces generated from the shape of the fingerpad along with the round shape of the wire 

and rope contours made it difficult for the system to maintain the contour in the “center” 

state. The actions chosen by the policies attempted to correct the state of the contours 

within the grasp, but were limited by the policies that were trained for a ziplock bag and 

its comparatively flat zipper. The state classifier was generalizable across different 

contour sizes and shapes. However, the policy for the flat zipper did not generalize to the 

round wires and rope, as the learned policy was unsuccessful in returning those contours 

to the “center” state after multiple fingertip movements along the contour.  Adjustments 

to the policy through additional learning may allow it to perform more robustly. By 

initializing a new policy for the contours in Figure 4.20 with the expected rewards of the 

previously trained model for zippers, a reduction in total training/exploration time may be 

achieved.  
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Summary 

The work presented in the chapter represents the development of a robotic system 

capable of learning a haptics-intensive functional manipulation task. A ziplock bag was 

used for manipulation task because it introduced many interesting challenges, such as 

being deformable, transparent, and visually occluded by the artificial fingertips. The 

approach presented was model-free and the policy was learned directly from exploration. 

Once the system learned a policy, the task was accomplished through the use of only 

localized tactile data and proprioception. By leveraging localized tactile data, we were 

able to reduce potential sources of error. As robots advance and begin to interact with 

cluttered environments, incidental contacts will reduce the usefulness of proprioceptive 

feedback for the perception of end effector interactions with the environment.  

When defining the state and action space it was necessary to define the spaces in a 

way that allows the algorithm to find interesting solutions that might not be apparent to 

the designer. Non-intuitive solutions can be found by exploring all areas of the state 

space and minimizing any uncertainty in the distribution of expected rewards. Although, 

the additional freedom of exploration comes at a price, as it was important to keep the 

required training tractable given the high cost of collecting tactile data. Tactile data is 

expensive because it is difficult to simulate, is time consuming to collect, and causes 

wear of the entire hardware system.  

 The system developed was capable of learning a functional task while optimizing 

the cumulative rewards received. Policies trained in this chapter were also able to 

generalize to novel zippers and bags with various weight distributions. A reduction of  
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training time could result from initializing policies for similar tasks with previously 

trained model parameters.  

 New reinforcement learning algorithms could also be considered in order to 

enhance performance. Adaptive algorithms that can zoom in on regions of higher state 

occupancy (context arrivals) can reduce the uncertainty of expected rewards (C. Tekin & 

Van der Schaar, 2015). By adaptively zooming in and further partitioning the context 

space, exploration remains tractable and focuses exploratory effort on contexts with 

higher state occupancy.  

Accurate state classification is of critical importance as inaccurate labeling will 

cause undesired stochasticity in the rewards. The state classification of tactile data is 

something that will continue to be developed as new techniques for real-time perception 

are explored. Future work will explore additional actions such as online adjustments to 

grasp pressure, confidence-based actions, and out of plane movements and rotation. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

The work presented in this dissertation has advanced the abilities of artificial 

hands in areas of dexterity, perception, decision making, and learning. The general theme 

of much of this work focused on the localized contact between an object and a sensorized 

fingerpad. By developing the abilities of artificial hands and haptic perception at the 

location of contact we remove multiple sources of error and create robust systems 

capable of online perception and manipulation. 

 

Major Contributions  

Novel design of robot testbed with rich tactile sensing and high dexterity: In 

order to perceive the environment through touch, a robotic system must be capable of 

executing dexterous movements. The robot testbed has human-like dexterity and is 

capable in both speed and strength. The actuation system measures proprioceptive tendon 

tension and allows for the actuation of any tendon-driven end effector. Modular design of 

the actuation system allows for quick setup of an end effector and the ability to control 

additional degrees of freedom. The asymmetric design of the finger allows for 

multimodal tactile sensing with the BioTac. The range of capacities of the testbed were 

shown in a simple tap-and-hold experiment. Applications of the testbed include the 

development of algorithms for haptic perception and manipulation, and aiding in 

rehabilitation for upper-limb impairment or loss. 

Online haptic perception to aid in the design of manipulation algorithms: By 

developing methods to haptically perceive the features of an object during motion we can 
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take corrective actions to accomplish a task or to better guide the exploration of an object. 

In this work we explored the ability of HMMs to provide anytime predictions of object 

features.  

Development of task-driven haptic perception, decision-making, and 

learning: In order to build a system capable of completing a functional contour-

following task, perception, decision-making and learning all need to work in unison. The 

closure of a plastic ziplock bag was chosen as the task, as it is an everyday task that 

presents unique challenges for robotic systems. The task requires the manipulation of a 

transparent, deformable object whose geometric features are visually occluded by 

artificial fingertips. Novel contributions to the online perception of the grasp state 

focused on action-dependent baselines. Performance comparison of two reinforcement 

learning algorithms were explored to learn and generalize a functional contour-following 

task. We compared the use of minimally processed tactile signals as context versus a 

classifier to determine context. The learned policy and classifier were able to generalize 

to novel zipper contours and bags with various weight distributions. 

 

  



 

151 

Directions for Future Work 

Expand State-Action Space Toward Continuous Representation 

The state and action space presented in Chapter 4 represent a small combination 

of the possible representations of the state of the fingerpad and the available actions that 

an unconstrained robot hand could perform. The state space used in Chapter 4 was 

defined according to the task. To improve the functionality for other tasks, it is necessary 

to expand the state representation on the fingerpad. Incorporating state confidence and 

considering that multiple state representations can occur simultaneously will add to the 

generalizability of the model. An example of a “simultaneous state representation” could 

include the perception that the zipper is in the “low” position of the fingerpad and the 

perception that the zipper is moving in the proximal direction along the fingerpad. Instead 

of learning all possible combinations of the policy, a blending of states could be explored 

similar to the forward algorithm Eq. (3.10) in Chapter 3. The forward algorithm is able to 

produce a model likelihood while not iterating over the full set of states. By blending the 

expected rewards, we may be able to provide an approximation of the actual rewards 

while keeping the training of the system tractable. This technique of blending state spaces 

and policies together could additionally improve the generalizability of the system. 

There are infinitely many actions that the robot end effector can take. 

Determining the best set of motions to keep training tractable is often a challenge because 

one needs to consider the amount of training time required for a given task. For the 

function contour-following task of Chapter 4, fingertip motion was constrained to the 

plane of the zipper and maintained at a constant orientation. Future work could expand 

upon the available action set. By considering the level of confidence of the expected 
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reward based on the number of occurrences in the C-MAB, the action space can be 

modified. Allowing the system to explore and expand the available actions in areas of 

high expected rewards may improve performance. Additionally, the expansion of the 

action space can be based on object affordances or the desired goal of the task (De 

Granville, Wang, Southerland, Fagg, & Platt, 2009). 

 

Incorporate New Learning Models  

The Distributed Context Zooming Algorithm (DCZA) can be used to adaptively 

partition the context based on the number of arrivals (C. Tekin & Van der Schaar, 2015). 

The assumption of CLUP used in Chapter 4 was that each partition of the context had an 

equal probability of arrival. With DCZA, the context will adaptively zoom in on areas of 

higher arrival to more evenly explore and discretize the context space. Context arrivals 

will determine the partitioning of the state space. The action space should also be 

adaptively modified in areas of high uncertainty. By adaptively, purposefully zooming on 

areas on interest, training can remain tractable.  
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Anytime State Predictions 

 Anytime haptic prediction developed in Chapter 3 was a major advancement in 

the abilities of the perception system utilized in this work. This advancement influenced 

greatly the work in Chapter 4. Having a system capable of perceiving features while 

executing an “exploratory motion” allows the system to make the most informed 

decisions for corrective actions or planning. For the work presented in Chapter 4, we did 

not use anytime algorithms mainly due to the robustness and ability of DNN to fit 

nonlinear data. However, the classifiers in Chapter 4 relied on 0.5 cm and 0.75 cm 

displacement trajectories to build the feature inputs to a DNN. These short displacement 

trajectories might result in similar outcomes as the results from anytime algorithms. What 

is important in the development of artificial perception capabilities is that systems are 

able to perceive more frequently and based on shorter sensory periods. In order to expand 

the capabilities developed in this dissertation, a larger haptic and manipulation library 

will need to be built that is continuously searching for features and evaluating additional 

inputs from all sensory modalities, including vision and sound. Context from multiple 

sensory modalities will help to reduce uncertainty and allow for the development of 

effective robotic systems that can learn how to perform novel functional tasks. 
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