
1

Modeling and Control for Vision Based Rear Wheel Drive Robot

And Solving Indoor SLAM Problem using LIDAR

Xianglong Lu

Chair: Dr. Armando Antonio Rodriguez
Dr. Spring Berman

Dr. Panagiotis Artemiadis

Arizona State University
July 19th 2016



Outline

2

Problem Statement & Contributions 

Hardware: Low Cost Self-Designed Robotic Vehicle 

Modeling & Control of Rear-Wheel Drive Robot 

Perform SLAM (Simultaneous localization and mapping)

Demonstrations 

Summary and Directions for Future Research 



Literature Survey: State of Field Use
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1. Rear wheel drive robot TITO LTI model (Marino, et.al. 2007) – basis for both decoupled longitudinal and 
lateral plant

2. Vision based complete lateral model of RWD vehicle (Jana Kosecka, 1996) – vision based lateral dynamics 
and vision based outer loop design

3. Image processing algorithm in opencv2 (Bradski G, Kaehler A, 2008) – camera used to get directional
information(8HZ, 320×240) or  a USB camera (4.5Hz, 640×480)

4. ROS architecture and API (Morgan, et al. 2009) – basic introduction of the open source robot operation 
system I was using (ROS, Robot Operation System)

5. Hector Mapping, SLAM relies only on LIDAR scan data (Giorgio, et al. 2005) – EKF, Main algorithm 
implemented 

6. Gmapping, SLAM relies on both odometry (encoder and IMU) and LIDAR scan data (SLAM for Dummies, 
Soren, et al.) – Extended Kalman Filter (EKF) is used to estimate the state of the robot from odometry data 
and landmark observation



Contributions
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• General  FAME architecture

• Self designed rear wheel drive multi-capability ground vehicle

• Modeling and control trade studies 

• Inner loop (𝑣 , 𝜔) control

• Speed-directional outer loop (𝑣, θ) control

• Planar (𝑥, 𝑦) Cartesian Stabilization

• Vision based outer loop (𝑣, θ) control

• Line tracking performance study with:

(1) Different cruise speed 𝑣𝑥

(2) Different camera fixed look-ahead distance 𝐿

(3) Different delay from vision subsystem 𝑇𝑑

• Manually remote controlled robot to perform indoor SLAM

• Autonomously line guided robot to perform indoor SLAM.



Motivation
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surveillance

Self-driving car Search/rescue

Sensing / Monitoring

Foundations of
Communications

Cooperative Planning & Control



Robots in the Market

6

Pioneer 3 DX

• mapping
• teleoperation
• localization
• monitoring
• reconnaissance
• vision
• manipulation
• autonomous navigation
• multi-robot cooperation and other behaviors
• general robotics

$ 4000    Pioneer 3 DX
Powerful but Expensive



Robots (Different Styles and Modes)
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FreeSLAM Robot: Vision Mode

Rear Wheel Drive, UAV 

Tracking, Camera vision sensing, 

Depth sensors 

Duo Lv’s Robot: Rigid Mode

Differential Drive, UAV landing,

Less Speed, More Rigid, Easy 

Turning

FreeSLAM Robot: LIDAR Mode

High Accuracy LIDAR Sensing,

Fixed Pan Servo, Less Speed for 

not Losing Landmarks



FAME Architecture
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• Flexible Autonomous Machines operating in an uncertain Environment
• Candidate system-level architecture for a fleet of robotic vehicles 



Hardware
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Enhanced FreeSLAM Robot



Robot Nominal Parameter Values and Characteristics
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Hardware Limitation

Sensors/Actuators/
Software 

t (sec)  (rad/s)
Bandwidth
Limitations

(factor of 10
rule) 

Arduino ZOH ½ sample delay   0.05 2

∆
= 40 4 rad/s

Arduino DA/AD 0.1 60 6 rad/s

Image Processing 0.133 47.1 4.7 rad/s

Wheel Encoders 0.0131 𝑣 479.4 𝑣 4.79 𝑣 rad/s

BNO055 9 dof IMU 0.01 600 60 rad/s

Inner Loop Bandwidth is limited by 4 rad/s
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Rear Wheel Drive Robot – State Space Representation
(Marino, et.al. 2007)

Equilibrium cruise speed of  𝑣e = 0.1𝑚/𝑠:

Decoupled 
TITO LTI System

𝑃𝑙𝑜𝑛𝑔 = 
𝑉𝑥

𝐹
= 

0.6803

(𝑠+1.116)  (Analysis in next slide)
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Why This Calculated Numerical Model is Not Quite Accurate 

𝑃𝑙𝑜𝑛𝑔 = 
𝑉𝑥

𝐹
= 

0.6803

(𝑠+1.116)

 a = 1.116
 b = 0.6803

𝑃𝑙𝑜𝑛𝑔 = 
𝑏

𝑠+𝑎  𝑡𝑠 = 
5

𝑎
(1%)= 4.48s


𝑦𝑠𝑠

𝑒𝑠𝑠
= 
𝑏

𝑎
= 
0.6803

1.116
= 0.61

𝐼 = 0.0015𝑘𝑔 ∙ 𝑚2 (car is estimated as a cube)

𝑐𝑓 = 𝑐𝑟 = 0.0368 𝑁/𝑟𝑎𝑑 (estimated wheel rotary stiffness )

Why model is not quite accurate:

 Inaccurate 𝑐𝑓, 𝑐𝑟 and 𝐼

 Static friction 



Robot Motor Parameter Estimations
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DC Motor Transfer Function
(From input voltage to angular velocity)

Known the DC motor model is RN 260-C

• 𝐿𝑎 = 0.2𝑚𝐻 (Armature Inductance)

• 𝑅𝑎:   Armature Resistance

𝑈𝑎 = 𝐸𝑎 + 𝐼𝑎𝑅𝑎
𝑃1 = 𝑈𝑎𝐼𝑎 = 1.07A × 4.5𝑉 = 4.815𝑊
𝑃𝑀 = 𝐸𝑎𝐼𝑎

𝑅𝑎 =
𝑃1 − 𝑃𝑀

𝐼𝑎
2 = 2.523Ω

• 𝐾𝑡 : motor torque constant 

• 𝐾𝑒 : motor back EMF constant

• 𝐽 is moment of inertia of the motor shaft-load system
𝐽 = 2.96 × 10−6 𝑘𝑔 ∙ 𝑚2

• 𝐵 is load-motor speed rotational damping constant
𝐵 = 4.3 × 10−5 𝑁𝑚𝑠



DC Motor Dynamics
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𝑃𝑚𝑜𝑡𝑜𝑟 =
𝑣(𝑠)

𝑒𝑎(𝑠)
=

27.1

𝑠 + 10.64

Step Response of DC Motor with 

Motor input voltage is 3.53 V

 Step Response Ripple: 2.4 m/sec 



On Ground Longitudinal and Lateral Model
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𝑃𝑙𝑜𝑛𝑔 =
𝑉𝑥
𝑒𝑎

=
0.3274

𝑠 + 1.176
𝑃𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =

 𝜓

𝛿𝑓
=

2.892

𝑠 + 2.659

Encoder is used to get linear velocity while IMU BON055 is used to get angular velocity information

 Step Response Ripple: 0.06 m/sec  Step Response Ripple: 0.27 rad/sec 



Longitudinal Inner Loop PI Controller Design
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 Settling time 𝑡𝑠 is set to 2 seconds

 Damping ratio ζ is set to 0.9

In this case

 𝜔𝑛 is set to 2.78 𝑟𝑎𝑑/𝑠
 Overshoot is 0.15%

PI controller:  g = 11.68   z = 2.02

𝑇𝑟𝑦 = 𝑊𝑃𝐾(1 + 𝑃𝐾)−1 𝑇𝑟𝑦
𝑉𝑟𝑒𝑓 𝑡𝑜 𝑉 7.716

𝑠2+5𝑠+7.716

Ripple: 0.06m/s



On Ground Lateral Inner Loop PI Controller Design
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 𝜓𝑟𝑒𝑓 is desired angular velocity

𝛿𝑓 is commanded front wheel steer angle

To design this PI controller

 Set settling time 𝑡𝑠 to 1.5s
 Set damping ratio 휁 to 0.886

In this case
 𝜔𝑛 is set to 3.8 𝑟𝑎𝑑/𝑠
 Overshoot is set to 0.4%

Then we have the PI controller: g = 1.38  z = 3.53

𝑇𝑟𝑦 = 𝑊𝑃𝐾(1 + 𝑃𝐾)−1 𝑇𝑟𝑦 =
14.8

𝑠2 + 6.67𝑠 + 14.8



Lateral Outer Loop PD Controller Design
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From system estimation aspect:

𝑃𝑜𝑢𝑡𝑒𝑟 can be estimated as a 

First order system with an integrator:

𝑃𝑜𝑢𝑡𝑒𝑟 ≈
3.3

𝑠(𝑠+3.3)
Using root locus method to design the PD controller:
(Put a zero at s = -2) 

Kp = 1.2 Kd = 0.6 ( g = 1.2 and z = 2 )



Lateral Outer Loop PD Controller Performance

20

𝑇𝑟𝑦 = 
1.98(𝑠+2)

(𝑠+0.9)(𝑠+4.375)

Bode Magnitude Plot for PD Outer Loop 𝑇𝑟𝑦

𝑇𝑟𝑢 =
0.6(𝑠 + 3.3)(𝑠 + 2)

(𝑠 + 0.9)(𝑠 + 4.375)

Step Response for Outer Loop 𝑇𝑟𝑢
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Going Along a Straight Line (𝒗, 𝜽 Control)
(Dhaouadi, et al, 2013) 

Orientation Angle Error (IMU) Trajectory (IMU and Encoder)

 Due to Dead Reckoning Error
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Planar (x, y) Cartesian Stabilization –Algorithm
(Vieira, et.al. 2004)

Pointing angle: 

Outer Loop P controller, then send 𝑣𝑟𝑒𝑓 and 𝜔𝑟𝑒𝑓 to inner loops: 
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Planar (x, y) Cartesian Stabilization - Implementation

 Small 𝐾𝜃 𝐾𝜃 = 0.8

 Less directionally aggressive

 Large 𝐾𝜃 (𝐾𝜃 = 2)

 Move more directly towards the target

 Fixed 𝐾𝑠



Image Processing to Get Outer Loop 𝝍𝒆𝒓𝒓𝒐𝒓
(Bradski G, Kaehler A, 2008) 
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 Vision subsystem offers 
𝝍𝒆𝒓𝒓𝒐𝒓 directly and send 
it to lower level controllers

 Outer loop frequency is 
limited by image processing
process, which is 7.5𝐻𝑧



Vision Subsystem Based Complete Model 
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 𝑦𝐿 offset from the centerline at the look − ahead distance

 휀𝐿 angle between target to road and
orientation of vehicle wrt the road

 𝐿 Look ahead distance at which the measurements are taken

 𝐾𝐿 is Disturbance 



Rear Wheel Drive Robot Finish Oval Track 
in Minimum Time With/Without Pan Servo
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Without Pan Servo With Pan Servo



Track Following Performance with Different
Cruise Speed 𝑽𝒙
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 Phase Margin decreases as the robot cruise speed is increasing

 Hardware Result: Robot goes off the track with too high cruise speed (𝑣𝑥 = 0.7𝑚/𝑠)

 When implementing a P controller: K = 1



Track Following Performance with 
Different Camera Look-Ahead Distance 𝑳
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 Phase Margin (PM) increases as the L is increasing.

 Hardware Result: Robot goes off the track with too small camera look-ahead distance 𝐿 = 0.1𝑚

 When implementing a P controller: K = 1



Track Following Performance with 
Different Vision subsystem delay 𝑻𝒅
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According to Padé approximation:

 With small vision subsystem delay 𝑇𝑑
phase margin is very small

 With large vision subsystem delay 𝑇𝑑,
𝐿 has a negative phase margin     

 When implementing a P controller

K = 1



Track Following Performance with 
Different Vision subsystem delay 𝑻𝒅 (Trajectory)
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When we increases the delay from 0.1s to 0.15s

 Without vision subsystem delay (𝑇𝑑 = 0s), outer loop frequency is 7.52 𝐻𝑧

 Without vision subsystem delay (𝑇𝑑 = 0.1s), outer loop frequency is  4.28𝐻𝑧

 Without vision subsystem delay (𝑇𝑑 = 0.15s), outer loop frequency is  3.35𝐻𝑧

𝑇𝑑 = 0.1 sec 𝑇𝑑 = 0.15 sec
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LIDAR Hardware Description

 LIDAR I’m using:

XV 11 Hacked LIDAR

 A better LIDAR:

Hokuyo URG-04LX-UG01 

 Price: $80

 Scan range: 0.2 to 6.0 meters

 Scan Frequency: 5.5 Hz

 Accuracy: ±80 mm

 Angular Resolution: 0.52°

 Price: $1115

 Scan range: 0.1 to 5.6 meters

 Scan Frequency: 10.0 Hz

 Accuracy: ±30mm

 Angular Resolution: 0.35°



SLAM Problem Definition
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𝑓 -motion equation
𝑢 -control inputs
𝑤 -Input noise
𝑔 -observation equation
𝑦 -observation data
𝑛 -observation noise



Motion Model
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Input Noise: 𝑤𝑘 (Gaussian Noise)

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥𝑘 +𝑤𝑘

𝑥𝑘 = 𝑥, 𝑦, 𝜓 𝑘

Motion equation 𝑓: 

Pose: 

Non Gaussian Noise:  Salt and Pepper Distribution
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Observation Model

𝑟
𝜃 𝑘

=
𝑥𝑘 − 𝐿𝑘 2

𝑡𝑎𝑛−1
𝐿𝑘,𝑦−𝑥𝑘,𝑦

𝐿𝑘,𝑥−𝑥𝑘,𝑥

+ 𝑛𝑘

Observation Equation 𝑔:

𝐿𝑘 = 𝐿𝑘,𝑥 , 𝐿𝑘,𝑦 is a 2D landmark

 f and g are linearized around  𝑥𝑘−1 𝑎𝑛𝑑  𝑥𝑘

 Then apply Kalman Filter



Block Diagram – Extended Kalman Filter (EKF)
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Pose Estimation for nonlinear system



Self Build Indoor Experiment Area (GWC 2nd Floor)
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Robot has the ability to map a 26 𝑚2environment in 38 seconds.



Simulation and Implementation 
Results for Mapping this Area
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Simulation Result

Implementation Result

 horizontal accuracy : 5.40%

 vertical accuracy : 2.97%
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Comparison Between Real Floor Plan and Generated 2D Grid Map



Mapping Duo's house, robot was controlled 
manually by GUI pedals (on the right)
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 Map the unknown environment

 Localize robot

 Real-time capable

 Saving GeoTiff maps

Real time position of the robot

Please see demo on Youtube:
https://www.youtube.com/watch?v=750z3U4tSAA



When Will Something Go Wrong (Turning too Fast)
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 Map of CenterPoint 
Building Floor 4 Computer 
Science Lab and Hallway

 Lack of scan frequency



Future Works and Studies
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 Localization Development of a lab-based localization system using a variety
of technologies (e.g. USB cameras, depth sensors, LIDAR, ultrasonic, etc.).

 On-board Sensing Addition of multiple on board sensors; e.g. additional
ultrasonic, depth sensors (Kinect), 3D LIDAR, GPS, cameras, etc.

 Advanced Image Processing Use of advanced image processing and optimization
algorithms; e.g. Implementations of OpenCV and OpenGL and
vision based mapping and localization.

 3D unknown environment reconstruction. In this thesis, the 2D indoor
unknown environment mapping was well discussed.

 Modelling and Control More accurate dynamic models and controls laws.

 Control-Centric Vehicle Design Understanding when simple control laws
are possible and when complex control laws are essential.



Thank you
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