
Modeling and Control for Vision Based Rear Wheel Drive Robot

and Solving Indoor SLAM Problem Using LIDAR

by

Xianglong Lu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2016 by the
Graduate Supervisory Committee:

Armando A. Rodriguez, Chair
Spring Berman

Panagiotis Artemiadis

ARIZONA STATE UNIVERSITY

August 2016

ABSTRACT

To achieve the ambitious long-term goal of a fleet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses sev-

eral critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central ob-

jective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabili-

ties. The augmented vehicle (FreeSLAM) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The fol-

lowing summarizes the key hardware demonstrations presented and analyzed: (1)

Cruise (v, θ) control along a line, (2) Cruise (v, θ) control along a curve, (3) Planar

(x, y) Cartesian Stabilization for rear wheel drive vehicle, (4) Finish the track with

camera pan tilt structure in minimum time, (5) Finish the track without camera pan

tilt structure in minimum time, (6) Vision based tracking performance with differ-

ent cruise speed, (7) Vision based tracking performance with different camera fixed

look-ahead distance, (8) Vision based tracking performance with different delay from

vision subsystem, (9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model-

based simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.

i

Dedicated to my parents

ii

ACKNOWLEDGMENTS

First, and most of all, I would like to thank Dr. Armando Antonio Rodriguez,

for his expertise, assistance, guidance, and patience throughout the process of writing

this thesis. Without his help and inspiration, this paper would not have been possible.

I would like to thank my committee members, Dr. Panagiotis Artemiadis and Dr.

Spring Berman, for their support, suggestions, and encouragement. Besides, I take

this opportunity to express my gratitude to all of the EE and CS faculty members

for their help and support.

Secondly, I also thank my parents for their encouragement, support and attention.

I can not finish this program without their support.

Last but not least, I would like to take this opportunity to extend my sincere

gratitude to my partners who supported me through this venture, especially, Zhichao

Li, Jesus Aldaco, Venkatraman Renganathan and Duo Lv. Their great help and

inspiration, have been sincerely appreciated.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION AND OVERVIEW OF WORK . 1

1.1 Introduction and Motivation . 1

1.2 Literature Servery: Robotics-controls and SLAM approaches 3

1.3 Frameworks . 6

1.4 Organization of Thesis . 17

1.5 Summary and Conclusions . 17

2 OVERVIEW OF GENERAL

FAME ARCHITECTURE & C4S REQUIREMENTS 19

2.1 Introduction and Overview . 19

2.2 FAME Architecture and C4S Requirements . 19

2.3 Summary and Conclusions . 23

3 VISION BASED COMPLETE LATERAL MODEL STUDIES AND

SIMULATION . 24

3.1 Introduction and Overview . 24

3.2 Vision Based Complete Lateral Model Studies and Simulations 25

3.2.1 Nonlinear Model . 25

3.3 Vision Dynamics . 28

3.4 Vision Subsystem Based Complete Lateral Model 30

3.5 Frequency Domain System Analysis . 32

3.5.1 Analysis of Model at Different Cruise Speed Vx 33

3.5.2 Analysis of Model at Different Look-Ahead Distance L 35

iv

CHAPTER Page

3.5.3 Analysis of Camera Vision Delay Issues . 37

3.6 Summary and Conclusion . 39

4 CASE STUDY FOR MODELING, CONTROL AND IMPLEMENT OF

A SELF-DESIGNED REAR WHEEL DRIVE TESTBED : FREESLAM

ROBOT . 40

4.1 Introduction and Overview . 40

4.2 Hardware Limitations . 41

4.3 DC Motor Dynamics . 44

4.4 Case Study for Vehicle Longitudinal Model and Linearized Lateral

Model . 49

4.5 Description of Nonlinear Model for Rear-Wheel Drive (RWD) Robot 50

4.5.1 Kinematic Model of FreeSLAM Robot . 50

4.5.2 Nonlinear Dynamics Model for FreeSLAM Rear Wheel Drive

Robot . 52

4.6 Analysis of Linearized Model . 54

4.6.1 Longitudinal Inner Loop Controller Design 57

4.6.2 On Ground Longitudinal Model . 59

4.6.3 Longitudinal Model Inner Loop PI Controller Trade Studies 62

4.6.4 Lateral Inner Loop Controller Design . 72

4.6.5 Lateral Model Inner Loop PI Controller frequency and

Time Domain Studies . 74

4.6.6 Time Domain Analysis for Robot Lateral Model 76

4.6.7 On Ground Lateral Model . 77

v

CHAPTER Page

4.7 Outer Loop: (v, θ) Cruise Control Along Line - Design and Imple-

mentation . 79

4.8 Outer Loop: Planar (x, y) Cartesian Stabilization - Design and

Implementation . 82

4.9 Outer Loop Vision Based (vx, θ) Control - Finish the Oval Track . . 85

4.9.1 Vision Based Black Line Guidance Outer Loop PD Con-

troller Trade Studies . 88

4.9.2 On Ground Lateral Model Outer Loop Controller Design . . . 92

4.10 Complete Lateral Model for FreeSLAM Robot - Lateral Model

with Pi Camera Vision Subsystem . 94

4.11 Plot Analysis . 95

4.11.1 Main Open Loop Transfer Functions . 96

4.11.2 Line Tracking Performance Impact Factors 97

4.12 Finish the Track in Minimum Time - With/Without Pan Servo 104

4.13 Summary and Conclusion . 107

5 SLAM WITH LIDAR SCAN DATA ONLY - HECTOR MAPPING 108

5.1 Introduction to SLAM (Simultaneous localization and mapping) . . . 108

5.2 System Overview . 109

5.3 Hector SLAM Approach . 111

5.3.1 Hector SLAM Requirements . 111

5.3.2 Hector Mapping-ROS API . 111

5.3.3 Whole picture of Hector SLAM . 111

5.3.4 Coordinate Frames . 112

5.4 Definitions and Extended Kalman Filter Implementation 115

vi

CHAPTER Page

5.4.1 SLAM Problem Model and Parameters Definition 115

5.4.2 Extended Kalman Filter Implementation in Hector Mapping 117

5.4.3 Vectors Used in EKF Implementation . 119

5.4.4 2D SLAM Visualization in RVIZ . 122

5.4.5 Hector Mapping Node Implementation . 125

5.5 EKF SLAM Implementation Results and Analysis 128

5.6 Summary and Conclusion . 134

6 SLAM WITH SENSOR FUSION OF ODOMETRY AND LIDAR SCAN

DATA - GMAPPING . 135

6.1 Introduction and Overview . 135

6.2 Detailed Modeling for Gmapping SLAM Approach 136

6.3 Probabilistic Laws . 137

6.4 Sample Base Localization . 139

6.5 Summary and Conclusion . 141

7 SUMMARY AND FUTURE DIRECTIONS . 142

7.1 Summary of Work . 142

7.2 Directions for Future Research . 143

REFERENCES . 145

APPENDIX

A MATLAB CODE . 148

B CPP CODE . 169

C C CODE . 174

D PYTHON CODE . 185

E ARDUINO CODE . 191

vii

LIST OF TABLES

Table Page

1.1 Bill of Material of FreeSLAM Robot . 16

4.1 RN 260 Motor Dynamics . 45

4.2 FreeSLAM Robot Nominal Parameter Values and Characteristics 47

4.3 Front Wheel Steer Angle δf Accuracy . 48

viii

LIST OF FIGURES

Figure Page

1.1 Side View of Self-Designed FreeSLAM Robot . 8

1.2 FreeSLAM Robot Scan Mode . 8

1.3 Duo’s Differential Robot . 9

1.4 360 Degree RP LiDAR . 10

1.5 Adafruit 9DOF Inertial Measurement Unit (IMU) . 11

1.6 Arduino Uno Open-Source Microcontroller Development Board 12

1.7 Adafruit Motor Shield for Arduino v2.3 - Provides PWM Signal to DC

Motors . 13

1.8 Raspberry Pi 3 Model B Open-Source Single Board Computer 13

1.9 Raspberry Pi 5MP Camera Module . 14

1.10 EDIMAX WiFi Adapter - Enables Video Link from Robot to Central

Laptop . 14

1.11 Moallifusa 2 DOF Pan Tilt Servos. 15

1.12 Spark Fun UART Chip . 15

1.13 Spark Fun UART Pin Connections . 16

2.1 FAME Architecture to Accommodate of Fleet of Cooperating Vehicles . 20

3.1 Kinematic Behavior of the Bicycle Model . 26

3.2 Visualization of Vision Dynamics . 29

3.3 The Block Diagram of the Overall Vision Based Lateral System 31

3.4 Root Locus of V1(s) for Varying Cruise Speed Vx and Fixed Look-

Ahead Distance L = 15m . 33

3.5 Bode Plot of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m . 34

ix

Figure Page

3.6 Root Locus of V2(s) for Varying Cruise Speed Vx and Fixed Look-

Ahead Distance L = 15m . 34

3.7 Bode Plot of V2(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m . 35

3.8 Root Locus of V1(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx . 35

3.9 Bode Plot of V1(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx . 36

3.10 Root Locus of V2(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx . 36

3.11 Bode Plot of V2(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx . 37

3.12 Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Vision Subsystem Delay t = 0.15s 38

3.13 Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Varying Vision Subsystem Delay t = 0.05s,

0.10s, 0.15s, 0.20s . 38

4.1 Encoder Resolution Before Average Filter Implementation 43

4.2 Encoder Resolution After Average Filter Implementation 43

4.3 Off Ground Motor Dynamics Comparison . 46

4.4 Visualization of Kinematic Model for RWD Robot (The Bicycle Model) 51

4.5 Longitudinal Dynamics at Different Cruise Speed Vx 55

4.6 Lateral Dynamics at Different Speed Vx . 56

4.7 Pole-Zero Map For Longitudinal Dynamics at Different Cruise Speed Vx 56

x

Figure Page

4.8 Pole-Zero Map For Lateral Dynamics at Different Cruise Speed Vx 57

4.9 Block Diagram for Longitudinal Model Inner Loop Control 57

4.10 Longitudinal Plant ea to vx Step Response . 60

4.11 Try (Vref to V) Hardware and Simulation Result . 61

4.12 Longitudinal Plant ea to vx Step Response . 61

4.13 Bode Magnitudes for Try (With Pre-Filter and g = 1-17, z = 0.5) 63

4.14 Bode Magnitudes for Try (With Pre-Filter and g = 9, z = 0.1-0.9) 63

4.15 Bode Magnitudes for L and g = 1-17, z = 0.5 . 64

4.16 Bode Magnitudes for T (With Pre-Filter and g = 1-17, z = 0.5) 64

4.17 Bode Magnitudes for Sensitivity, g = 1-17, z = 0.5 65

4.18 Bode Magnitudes for Sensitivity, g = 9, z = 0.1-0.9 65

4.19 Bode Magnitudes for Complementary Sensitivity T, g = 1-17, z = 0.5 . 66

4.20 Bode Magnitudes for Complementary Sensitivity T, g = 9, z = 0.1-0.9 . 67

4.21 Bode Magnitude plot for Tru , g = 1-17, z = 0.5 . 68

4.22 Bode Magnitude plot for Tru , g = 9, z = 0.1-0.9 . 68

4.23 Bode Magnitude plot for TruW , g = 1-17, z = 0.5 69

4.24 Bode Magnitude plot for TruW , g = 9, z = 0.1-0.9 70

4.25 Bode Magnitude plot for Tdiy , g = 1-17, z = 0.5 . 71

4.26 Bode Magnitude plot for Tdiy , g = 9, z = 0.1-0.9 . 71

4.27 Block Diagram for Robot Lateral Model Inner Loop Control 72

4.28 Front Wheels Steering DC Servo Dynamics . 72

4.29 Bode Plot for Open Loop Llateral . 74

4.30 Bode Magnitude Plot for Try without Prefilter W . 75

4.31 Bode Magnitude Plot for Try with Pre-Filter W . 76

xi

Figure Page

4.32 Step Response for Try without Pre-Filter W . 76

4.33 Step Response for Try with Pre-Filter W . 77

4.34 On Ground Lateral Plant . 78

4.35 Lateral On Ground Inner Loop Try . 79

4.36 Lateral On Ground Inner Loop Tru . 79

4.37 Visualization of Cruise Control Along a Line . 80

4.38 Robot Trajectory - Go Along a Line . 81

4.39 Orientation Error - Go Alone a Line . 81

4.40 Visualization of Planar (xy) Cartesian Stabilization Control System . . . 82

4.41 Visualization of Longitudinal Distance to Target es = ∆λ and Angular

Error eθ = ∆φ . 83

4.42 Robot Position Control in xy Plane - Cartesian Stabilization (small Kθ

= 0.8 . 84

4.43 Robot Position Control in xy Plane - Cartesian Stabilization (large Kθ

= 2 . 84

4.44 Visualization for Vision Based Outer Loop Control System Block Di-

agram . 85

4.45 Feedback Black Line Tracking Error in Degrees . 86

4.46 Simplified Block Diagram for Vision Based Lateral Outer Loop Control 86

4.47 Bode Plot for Open Loop L . 88

4.48 Bode Magnitude Plot for Outerloop Try . 89

4.49 Step Response for Outerloop Try . 90

4.50 Bode Magnitude Plot for Outerloop Tru . 91

4.51 Bode Magnitude Plot for Sensitivity S . 92

xii

Figure Page

4.52 Try for Lateral Outer Loop . 93

4.53 Tru for Lateral Outer Loop . 94

4.54 Root Locus of V1(s) for Varying Cruise Speed Vx and Fixed Look-

Ahead Distance L = 0.1m . 97

4.55 Bode Plot of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 0.1m . 98

4.56 Robot Goes Off the Track Due to Too High Speed. 99

4.57 Root Locus of V1(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx = 0.1 m/s . 100

4.58 Bode Plot of V1(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx = 0.1 m/s . 100

4.59 Trajectory of Robot When Small L is Applied . 101

4.60 Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Vision Subsystem Delay t = 0.15s 102

4.61 Trajectory of Robot When Vision Delay is 0.1s . 103

4.62 Trajectory of Robot When Vision Delay is 0.15s . 104

4.63 Robot Finish the Track without Pan Servo in 24s . 105

4.64 ψerror Changing with Time without Implementing Pan Servo 105

4.65 Robot Finish the Track with Pan Servo in 20s . 106

4.66 Yaw Error and Pan Servo Steer Changing with Time with Implement-

ing Pan Servo . 106

5.1 Big Picture Of Hector SLAM . 112

5.2 Big Picture Of Hector SLAM . 114

5.3 Standard Odometry Model . 115

xiii

Figure Page

5.4 Graphic Model of SLAM Problem Approach . 116

5.5 Complete Model with Extended Kalman Filter Implementation 117

5.6 2D Grid Map . 123

5.7 Bilinear Filtering Part 1 . 124

5.8 Bilinear Filtering of Occupancy Grid Map . 125

5.9 LIDAR Point Cloud Feature Detect . 127

5.10 Unknown Environment 2D Map Representation . 128

5.11 Self Designed Area for Mapping . 129

5.12 Comparison Between Generated Map and Real Floor Plan 130

5.13 Node rqt Graph . 131

5.14 ROS tf Frames . 132

5.15 Wireless SLAM in Room GWC 379C (5x3meters Room) 133

5.16 LIDAR Scan Frequency is Too Low . 134

6.1 The Dynamic Bayes Network that Characterized the Evolution of Con-

trols, States, and Measurements . 139

xiv

Chapter 1

INTRODUCTION AND OVERVIEW OF WORK

1.1 Introduction and Motivation

In recent years, with the improvement of economy and society, road capacity and

traffic safety are becoming serious problems. Heavy driving work and fatigue driving

are two key reasons causing traffic accidents. In this case, how to improve traffic

safety has become a fatal social issue. These problems have motivated new researches

and applications, for example, the self-driving vehicles, which can achieve better road

capacity and safer driving by using control and SLAM algorithms, etc.

As the evolution of electromechanical and computing technologies continue to

accelerate, the possible applications continue to grow. This accelerated growth is

observed within the robotics research. New technologies (e.g. Arduino, Raspberry Pi

with compatible interfaces, software and actuators/sensors) now permit young hob-

byists and researchers to perform very complicated tasks - tasks that would have

required great hardware/programming expertise just a few years ago. Within this

thesis, current off-the-shelf technologies (e.g. Arduino, Raspberry Pi, commercially

available chassis kit) are exploited to develop low-cost ground vehicles that can be

used for multi-vehicle robotics research. Short-term, the goal is to develop several

low cost ground vehicle platforms that can be used for multi-vehicle robotics research.

This goal is intended as a first step toward the longer-term goal of achieving a fleet

of Flexible Autonomous Machines operating in an uncertain Environment (FAME).

Such a fleet can involve multiple ground and air vehicles that work collaboratively

to accomplish coordinated tasks. Potential applications can include: Remote sens-

1

ing, mapping, intelligence gathering, intelligence-surveillance-reconnaissance (ISR),

search, rescue and much more. It is this vast application arena as well as the ongoing

accelerating technological revolution that continues to fuel robotic vehicle research.

This thesis addresses modeling, design and control issues associated with ground-

based robotic vehicle. Particularly, LIDAR was used to implement Simultaneous

Localization And Mapping (SLAM) algorithm (hector mapping) to perform indoor

robot localization and mapping. Toward the longer-term FAME goal, several critical

objectives are addressed. One central objective of the thesis was to show how to

use low-cost chassis kit and convert it into somewhat “intelligent” multi-capability

robotic platform that can be used for conducting FAME research. This thesis focuses

on a rear-wheel drive robot (called FreeSLAM). Kinematic and dynamical models are

examined. Rear-wheel drive means that the speed of the rear wheels are the same

and controlled by a single dc motor (in our case two motors are treated identically

and issued same voltage command). This vehicle class is non-holonomic: i.e. the

two (2) (x, y) or (v, θ) controllable degrees of freedom is less than the three (3) total

(x, y, θ) degrees of freedom. It is shown how continuous linear control theory can be

used to develop suitable control laws that are essential for achieving various critical

capabilities (e.g. speed control, control along a line/path, finish the track in minimum

time, etc). Once the basic control issues are addressed, the vision-based lateral model

is explained in detail. According to this model, three key parameters will greatly

influence the tracking performance: robot cruise speed, fixed look-ahead distance

and delay from vision subsystem. Each case above was well tested and discussed.

Hector Mapping, which is one of the popular SLAM approaches to solve indoor SLAM

problem was well discussed and implemented. Extended Kalman Filter is optimal

filter to estimate the robotic pose (X , Y position and orientation) under Gaussian

noise. Once we have those information, we can represent the 2D grid map of the

2

unknown environment using laser scan data.

To draw a brief conclusion, this chapter attempts to provide a fairly comprehensive

literature survey - one that summarizes relevant literature and how it has been used.

This is then used as the basis for outlining the central contributions of the thesis.

1.2 Literature Servery: Robotics-controls and SLAM approaches

In an effort to emphasize on the state of ground robotics vehicle modeling, hard-

ware, design, control and SLAM basic approaches, the following topically literature

survey is offered. In short, the following works are most relevant for the developments

within this thesis:

• Tricycle-model vehicle steering control problem (presenting kinematic model)

work within: [2]

• Rear-wheel drive vehicle modeling work within [3], (presenting dynamical model),

addressing the affects of robot cruise speed Vx, vision subsystem look-ahead

distance L and delay of vision subsystem Td. Nominal parameters for the sim-

ulation in Chapter 3 was taken from [3]

• Camera based vision-based line/curve following work within both [3] and [14]

• Robot Operating System (ROS) architecture (ROS nodes, publisher and sub-

scriber protocols and catkin working space etc.) within: [12]

• Extended Kalman Filter algorithm (EKF, implemented for filter the Gaussian

noise for depth sensors) within: [1]

• Rao-Blackwellized Particle Filters algorithm (PF, for reducing non-Gaussian

noise in SLAM problems) within: [6]

3

An attempt is made below to provide relevant insightful technical details.

• Rear-Wheel Drive Robot Modeling

Within this thesis, rear-wheel drive ground vehicle(Self-Designed FreeSLAM Robot)

represents a central focus of the work. Here, rear-wheel drive means the car’s driven

wheels - i.e., the wheels that receive power from the engine (DC motors) - are the

ones in back, and those two front wheels, are responsible for steering only. As such,

two rear wheels are of the same speed. Nominally, we assume that the motors are

identical. The motor inputs (vehicle controls) are voltages. Speed of the robot vx

depends on the applied voltages and the steering servo controls the direction (ψ in

the following chapters).

Kinematic Model

A kinematic model for rear-wheel drive robot (ignoring dynamic mass-inertia effects)

is presented within [3]. Within this kinematic model, it is assumed that the trans-

lational and angular velocities (vx,ψ̇) of the robot are realized instantaneously. Of

course, it is not real because of real-world actuator(e.g. motor) limitations and mass-

inertia constraints. From Newton’s second law of motion, we know that an instan-

taneously achieved velocity requires infinite acceleration and force. In short, the

kinematic model is less accurate than a dynamic model (which includes acceleration

constraining mass-inertia effects).

Dynamic Model

A dynamic model can take the torques applied to the robot wheels as inputs (con-

trols) to the system. This is done within [3]. The model presents within these works

incorporates dynamic (acceleration constraining) mass-inertia effects as well as fric-

tion, wheel slippage etc. Given this, it is obvious that a dynamic model generally

gives a much more accurate model of the vehicle robot.

4

Simultaneous localization and mapping

In robotic mapping, simultaneous localization and mapping (SLAM) is the computa-

tional problem of constructing or updating a map of an unknown environment while

simultaneously keeping track of an agent’s location within it. While this initially ap-

pears to be a chicken-and-egg problem there are several algorithms known for solving

it, at least approximately, in tractable time for certain environments. Popular approx-

imate solution methods include the particle filter and extended Kalman filter. SLAM

algorithms are tailored to the available resources, hence not aimed at perfection, but

at operational compliance. Published approaches are employed in self-driving cars,

unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, newly

emerging domestic robots and even inside the human body.

Extended Kalman Filter (EKF)

In robotics, EKF SLAM is a class of algorithms which utilizes the extended Kalman

filter (EKF) for simultaneous localization and mapping (SLAM). Typically, EKF

SLAM algorithms are feature based, and use the maximum likelihood algorithm for

data association. For the past decade, the EKF SLAM has not been the major method

for SLAM, until the introduction of FastSLAM.[1]

Associated with the EKF is the Gaussian noise assumption, which significantly im-

pairs EKF SLAM’s ability to deal with uncertainty. With greater amount of uncer-

tainty in the posterior, the linearization in the EKF fails. In this thesis, EKF is used

to estimate the current states of the vehicle robot, which are X, Y (current position)

and (current orientation), those states are estimated and used to design controllers

and solve localization problems.

Rao-Blackwellized Particle Filters algorithm (PF algorithm)

Recently Rao-Blackwellized particle filters have been introduced as effective means

to solve the simultaneous localization and mapping (SLAM) problem. This approach

5

uses a particle filter in which each particle carries an individual map of the environ-

ment. Accordingly, a key question is how to reduce the number of particles. We

present adaptive techniques to reduce the number of particles in a Rao-Blackwellized

particle filter for learning grid maps. We propose an approach to compute an accu-

rate proposal distribution taking into account not only the movement of the robot but

also the most recent observation. This drastically decrease the uncertainty about the

robot’s pose in the prediction step of the filter. Furthermore, we apply an approach

to selectively carry out re-sampling operations which seriously reduces the problem

of particle depletion.

1.3 Frameworks

ROS(The Robot Operating System)

Robot Operating System (ROS) is a collection of software frameworks for robot

software development, (see also Robotics middle-ware) providing operating system-

like functionality on a heterogeneous computer cluster. ROS provides standard oper-

ating system services such as hardware abstraction, low-level device control, imple-

mentation of commonly used functionality, message-passing between processes, and

package management. Running sets of ROS-based processes are represented in a

graph architecture where processing takes place in nodes that may receive, post and

multiplex sensor, control, state, planning, actuator and other messages. Despite the

importance of reactivity and low latency in robot control, ROS, itself, is not a Real-

time OS, though it is possible to integrate ROS with real-time code.

Both the language-independent tools and the main client libraries (C++, Python,

LISP) are released under the terms of the BSD license, and as such are open source

software and free for both commercial and research use. The majority of other pack-

ages are licensed under a variety of open source licenses. These other packages imple-

6

ment commonly used functionality and applications such as hardware drivers, robot

models, data types, planning, perception, simultaneous localization and mapping,

simulation tools, and other algorithms.

The main ROS client libraries (C++, Python, LISP) are geared toward a Unix-like

system, primarily because of their dependence on large collections of open-source soft-

ware dependencies. For these client libraries, Ubuntu Linux is listed as ”Supported”

while other variants such as Fedora Linux, Mac OS X, and Microsoft Windows are

designated ”Experimental” and are supported by the community. The native Java

ROS client library, rosjava, however, does not share these limitations and has enabled

ROS-based software to be written for the Android OS. rosjava has also enabled ROS

to be integrated into an officially-supported MATLAB toolbox which can be used on

Linux, Mac OS X, and Microsoft Windows. A JavaScript client library, roslibjs has

also been developed which enables integration of software into a ROS system via any

standards-compliant web browser.

ROS used in this thesis is the latest version: ROS JADE.

7

Self-Designed Rear Wheel Drive SLAM Robot Enhancement

As discussed above, and within the thesis, the rear wheel drive vehicle platform is

augmented with the following:

(1) Visualization of Full-Loaded(Enhanced) Real Rheel Drive FreeSLAM Robot - Vi-

sion Mode

Figure 1.1: Side View of Self-Designed FreeSLAM Robot

FreeSLAM Robot: Vision Mode

Rear Wheel Drive, UAV Tracking, Camera vision sensing, Depth sensors

(2) Visualization of Full-Loaded(Enhanced) Real Rheel Drive FreeSLAM Robot - Scan

Mode

Figure 1.2: FreeSLAM Robot Scan Mode

8

FreeSLAM Robot : Scan Mode

High Accuracy LIDAR Sensing, Fixed Pan Servo, Less Speed for not Losing Land-

marks

(3) Duo’s Differential Drive Robot

Figure 1.3: Duo’s Differential Robot

(4) 360 Degree RP Lidar

The RPLIDAR 360 Laser Scanner is a low cost 360 degree 2D scanner (LIDAR)

solution. It preforms 360 degree laser scanning with more than 6 meters distance

detection range. The produced 2D point cloud data can be used in mapping, local-

ization (SLAM) and object/ environment modeling. RPLIDAR emits a modulated

infrared laser signal and the laser signal is then reflected by the object to be detected.

The returning signal is sampled by vision acquisition in RPLIDAR and the DSP em-

bedded in RPLIDAR starts processing the sample data, output distance value and

angle value between the object and the RPLIDAR. Through processing the sample

data is output through a communication interface.

9

Figure 1.4: 360 Degree RP LiDAR

Description:

• 360 laser scanner development kit with omnidirectional laser scan

• High speed laser triangulation vision system

• Ideal sensor for robot localization mapping

• User configurable scan rate (rotation speed) via PWM signal

Features: Omnidirectional laser scan, User configurable scan rate via the motor

PWM signal, Plug Play using included USB cable, No coding job required, SLAM

ready, 5.5hz (2000 sample/sec), 6 meters measurement range, Obstacle avoidance,

mapping localization, navigation sensor.

Specifications: Distance range: 0.2 - 6m, Angular range: 0°-360°, Distance resolu-

tion <0.5mm (1 percent of the distance), Angular resolution: ≤1°, Sample duration:

0.5 milliseconds, Sample frequency: ≥2000Hz, Scan rate: 5.5Hz, M2.5 x 15mm stand-

offs.

Optical: Laser wavelength: 785 nanometer, Laser power: 3 milliwatt, Pulse length:

110 microsecond.

10

Applications:

• Robot localization mapping (SLAM)

• 3D modeling

• Obstacle avoidance and security

• Multitouch and human interaction

(5) Adafruit 9DOF Inertial Measurement Unit (IMU)

Figure 1.5: Adafruit 9DOF Inertial Measurement Unit (IMU)

Figure 1.5 is a visualization for the 9 DOF (degree of freedom) IMU we were using:

BNO055. The BNO055 can output the following sensor data:

Absolute Orientation (100Hz), Angular Velocity Vector (100Hz), Acceleration Vector

(100Hz), Magnetic Field Strength Vector (20Hz), Linear Acceleration Vector (100Hz),

Gravity Vector (100Hz) and Temperature(1Hz). The gyroscope and accelerometer are

the two sensors we have used the most.

(6) an Arduino Uno open-source microcontroller development board (16MHZ AT-

mega328 processor, 32KB Flash Memory, 14 digital I/O pins, 6 analog inputs, $25,

11

see Figure 1.6) for both encoder-IMU-based speed (v, ω) or (vx, δf) inner-loop control

and encoder-IMU-ultrasound-based cruise-position-directional-separation outer-loop

control

Figure 1.6: Arduino Uno Open-Source Microcontroller Development Board

(7) an Arduino motor shield (see Figure 1.7) for inner-loop motor PWM1 speed con-

trol,

1PWM or pulse width modulation is a method for generating a desired dc voltage level from a

larger positive dc reference voltage. The reference voltage is switched on and off via FETs to produce

a high frequency PWM (or square-wave like) signal. The FET inputs are controlled to adjust the

duty cycle of the PWM signal. When the PWM signal is low pass filtered, the desired dc voltage is

obtained (with some ripple). When the motor shield drives a dc motor, the motor-load moment of

inertia as well as the motor’s armature inductance will provide sufficient low pass filtering so that

the resulkting ripple is negligibly small. Given the above, complementary paired FETs can be used

to produce negative dc voltages.

12

Figure 1.7: Adafruit Motor Shield for Arduino v2.3 - Provides PWM Signal to DC

Motors

(8) a Raspberry Pi III Model B single board computer (A 1.2GHz 64-bit quad-core

ARMv8 CPU, 802.11n Wireless LAN, Bluetooth 4.1, 1GB RAM 4 USB ports 40 GPIO

pins, (like raspberry Pi II Model B), see Figure 1.8) for more demanding vision-based

cruise-position-directional outer-loop control,

Figure 1.8: Raspberry Pi 3 Model B Open-Source Single Board Computer

(9) Linux USB camera (2592 × 1944 pixel or 5 MP static images; 1080p30 (30 fps),

720p60 and 640x480p60/90 MPEG-4 video, see Figure 1.9) for outer-loop cruise-

position-directional control,

13

Figure 1.9: Raspberry Pi 5MP Camera Module

(10) Wireless Communication between Raspberry Pi and PC

FreeSLAM robot is able to establish wireless communication with host PC through

ssh. This is done via WiFi - a wireless local area network based on the IEEE 802.11

(2.4, 5 GHz) standard. More precisely, PC can send commands to Pi and get data

back wirelessly. see Figure 1.10) which serves as a transmitter on the robot.

Figure 1.10: EDIMAX WiFi Adapter - Enables Video Link from Robot to Central

Laptop

Data will be sent to a remotely situated (< 30 m) TPLINK TL-WDR3500 wireless

router (600 Mbps total bandwidth, 300 Mbps for 2.4GHz, 300 Mbps for 5GHz). The

router transmits the radio signal to a wireless adapter on the nearby (< 30 m) laptop.

14

(11) Mallofusa 2 DOF Pan Tilt with Mg995 Servos Sensor Mount Each servo of this

pan tilt has a scan range of 120 degrees with a 0.1 degree accuracy. This pan tilt is

designed for line tracking, object tracking, video streaming, sensor fusion and extra.

Figure 1.11: Moallifusa 2 DOF Pan Tilt Servos

(12) USB to serial UART bridge

SparkFun has a line of USB to serial UART bridge products designed to allow a

user to communicate with a serial UART through a common USB port. It is harder

to find computers with serial UART ports on them these days, but super common to

find serial devices. Many of the official Arduino and clones share a common interface.

This interface is essentially the 6 pin Single-In-Line (SIL), 0.1 pitch version of FTDIs

TTL-232R cables.

Figure 1.12: Spark Fun UART Chip

15

The key change from the FTDI cables to our Arduino compatible boards is that

we swapped pin 6 from RTS to DTR. This change was required to match Arduinos

method of resetting the ATmega328P using the DTR signal.

Figure 1.13: Spark Fun UART Pin Connections

Component Price

Chassis and Motors $180

Futaba S3003 Servo $10

Arduino Uno $25

Adafruit Motor Shield $20

Raspberry Pi 2 $40

WiFi adapter $25

Adafruit 9DOF IMU $20

Pi camera $20

Neato xv11 LIDAR $80

5V external battery for Raspberry Pi $20

Hitachi 18650 battery for motor $30

Total Price $470

Table 1.1: Bill of Material of FreeSLAM Robot

16

1.4 Organization of Thesis

The remainder of the thesis is organized as follows.

• Chapter 2 presents an overview for a general FAME architecture describing

candidate technologies (e.g. sensing, communications, computing, actuation).

• Chapter 3 describes modeling and control issues for rear-wheel drive (RWD)

ground vehicles. The ideas presented here using an academic (numerical) system

provide a foundation for the work in Chapter 4.

• Chapter 4 presents system-theoretic as well as hardware results for our FreeSLAM

ground robotic vehicle. Many demonstrations are described. This chapter con-

tains the main work that was conducted.

• Chapter 5 describes one of the most popular SLAM algorithm - Hector Map-

ping. Hector Mapping requires LIDAR scan data only to estimated robot pose.

Extended Kalman Filter implementation (to reduce Gaussian Noise) is well

discussed.

• Chapter 6 summarized another SLAM approach - gmapping. For gmapping,

sensor fusion of LIDAR scan data and odometry data (IMU and encoders) is

required. Partical Filter is introduced in the case that input and observation

noise are not Gaussian distribution.

• Chapter 7 talks about general future works and researches.

1.5 Summary and Conclusions

In this chapter, we described a general (candidate) FAME architecture for a fleet of

cooperating robotic vehicles. This self-designed rear-wheel drive robot - FreeSLAM

17

robot can be a part of it. Besides, how we enhanced the robot is well addressed.

In the following chapters, as we introduced before, both simulation and hardware

implementation for modeling and controller design of the robot will be discussed in

the following chapters.

18

Chapter 2

OVERVIEW OF GENERAL

FAME ARCHITECTURE & C4S REQUIREMENTS

2.1 Introduction and Overview

In this chapter, we describe a general architecture for our general FAME research.

The architecture described attempts to shed light on command, control, communi-

cations, computing (C4), and sensing (S) requirements needed to support a fleet of

collaborating vehicles. Collectively, the C4S and S requirements are referred to as

(C4S) requirements.

2.2 FAME Architecture and C4S Requirements

In this section, we describe a candidate system-level architecture that can be

used for a fleet of robotic vehicles1. The architecture can be visualized as shown

in Figure 2.1. The architecture addresses global/central as well as local command,

control, computing, communications (C4), and sensing (C4S) needs. Elements within

the figure are now described.

1Here the term robotic vehicle can refer to a ground, air, space, sea or underwater vehicle.

19

Figure 2.1: FAME Architecture to Accommodate of Fleet of Cooperating Vehicles

• Central Command: Global/Central Command, Control, Computing.

A global/central computer (or suite of computers) can be used to perform all

of the very heavy computing requirements. This computer gathers information

from a global/central (possibly distributed) suite of sensors (e.g. GPS, radar,

cameras). The information gathered is used for many purposes. This includes

temporal/spatial mission planning, objective adaptation, optimization, decision

making (control), information transmission/broadcasting and the generation of

commands that can be issued to members of the fleet. Within this thesis, we

simply have a central command laptop.

• Global/Central Sensing. In order to make global/central decisions, a suite

of sensors should be available (e.g. GPS, radar, cameras). This suite provides

information about the state of the fleet (or individual members) that can be

used by central command. Within this thesis, global sensing is achieved by

20

feeding back real-time video from our enhanced differential-drive robotic Thun-

der Tumbler vehicles to our central command laptop. Ongoing work includes a

vision-lab-based localization system. Such a lab-based system offers the benefit

that it can be fairly easily transported for use elsewhere (with some peruse cali-

bration). Such a system can be used to examine a wide range of scenarios. Also

ongoing is an effort to more profoundly exploit vision on individual vehicles.

• Global/Central Communications. In order to communicate with members

of the fleet, a suite of communication devices must be available to central com-

mand. Such devices can include (wideband) spread spectrum transmitters/re-

ceivers, WiFi/Bluetooth adapters, etc. Within this thesis, we use (wideband)

spread spectrum transmitters/receivers and WiFi adapters.

• Fleet of Vehicles. The fleet of vehicles can consist of ground, air, space, sea or

underwater vehicles. Ground vehicles can consist of semi-autonomous/autonomous

robotic vehicles (e.g. differential-drive, rear-wheel drive, etc.). Here, autonomous

implies that no human intervention is involved (a longer-term objective). Semi-

autonomous implies that some human intervention is involved. Air vehicles can

consist of quadrotors, micro/nano air vehicles, drones, other air vehicles and

space vehicles. Sea vehicles can consist of a variety of surface and underwater

vehicles. Within this thesis the focus is on ground vehicles (e.g. rear-wheel drive

robot - FreeSLAM robot).

• Local Computing. Every vehicle in the fleet will (generally speaking) have

some computing capability. Some vehicles may have more than others. Lo-

cal computing here is used to address command, control, computing, planning

and optimization needs for a single vehicle. The objective for the single vehicle,

21

however, may (in general) involve multiple vehicles in the fleet (e.g. maintaining

a specified formation, controlling the inter-vehicle spacing for a platoon of ve-

hicles). Local computing can consist of a computer, micro-controller or suite of

computers/micro-controllers. Within this thesis, we primarily exploit Arduino

Uno micro-controller (16MHZ ATmega328 processor, 32KB Flash Memory, 14

digital I/O pins, 6 analog inputs, $25) [19]and Raspberry Pi II (900 MHz quad-

core ARM Cortex-A7 CPU, 1GB SDRAM, 40 GPIO pins, camera interface,

$35) [20] computer boards for local computing on a vehicle. They are low-cost,

well supported (e.g. some high-level software development tools Arduino IDE

and Raspberry Pi II IDLE), and easy to use.

• Local Sensing. Local sensing, in general, refers to sensors on individual vehi-

cles. As such, this can involve a variety of sensors. These can include encoders,

IMUs (containing accelerometers, gyroscopes, magnetometers), ultrasonic range

sensors, Lidar, GPS, radar, and cameras. Within this thesis, we exploit mag-

netic encoders(A3144 Hall effect sensor, VELLEMAN 8 mm × 3 mm magnet,

12 per wheel), IMUs to measure vehicle rotation (9DOF, Accelerometer ±

2,4,6,8,16g. Gyro ± 245, 500, 2000◦/sec. Compass ± 1.3 to ± 8.1 Gauss) [27],

ultrasonic range sensors (40kHz, 0.02-3 m, approximately ±8◦ directional), and

Raspberry Pi cameras(2592 × 1944, 30 fps, 150 MPs, MPEG-4) [24]. Lidar,

GPS and radar are not used.

• Local Communications. Here, local communications refers to how fleet ve-

hicles communicate with one another as well as with central command. In

this thesis, vehicles exploit WiFi (IEEE 802.11 (2.4, 5GHz) standard) to send

locally obtained Raspberry Pi camera video (2592 × 1944, 30 fps, 150 MPs,

22

MPEG-4) [24] to a central command laptop.

2.3 Summary and Conclusions

In this chapter, we described a general (candidate) FAME architecture for a fleet

of cooperating robotic vehicles. Of critical importance to properly assess the util-

ity of a FAME architecture is understanding the fundamental limitations imposed

by its subsystems (e.g. bandwidth/dynamic, accuracy/static). This “fundamental

limitation issue is addressed within Chapter 4 where self-designed rear-wheel drive

FreeSLAM robot is used as a member of the fleet.

23

Chapter 3

VISION BASED COMPLETE LATERAL MODEL STUDIES AND SIMULATION

3.1 Introduction and Overview

Recent interest in self-driving car system and current advances in real-time image

processing provide a suitable testbed for employing the visual information extracted

from image sequences in the feedback loop of the control system.

Once including the vision part in the whole feedback control system, various strate-

gies for controller design system are presented. We investigate the choice of the look-

ahead distance L, which varies with the longitudinal velocity and is affected by the

quality of the offset estimations. Several controller design techniques and closed loop

simulations are presented.

The purpose of this chapter is to illustrate fundamental modeling and control

design methods for a rear-wheel drive (RWD) robotic ground vehicle. This is achieved

by presenting relevant model trade studies and then illustrating the design of an inner-

loop (vx, ψ̇) speed and direction control law and associated trade-offs. Such a control

law is generally the basis for any outer-loop control law.

24

3.2 Vision Based Complete Lateral Model Studies and Simulations

The dynamic model of the vehicle is described by a detailed 6-DOF nonlinear

model. This model is too complex and not suitable for controller design. Due to the

possibility decoupling of longitudinal and lateral dynamics, a linearized model of the

lateral vehicle dynamics is used for controller design. Besides, closed loop simulations

take into account the full nonlinear dynamic model of the vehicle.

3.2.1 Nonlinear Model

When physical parameters of the tires (tire pressure, road, tire surface condition)

are fixed and cornering forces are determined solely by tire normal force, tire slip

angle and tire slip ratio. In the simplified setting the tire normal force generated

from the tire can be approximated by:

Fy = cα (3.1)

The quantity c characterizes the tire cornering capabilities and is referred to as

corneringstiffness, and α is the tire slip angle between the orientation of the tire

and its velocity. While c∗ is the effective value of the cornering stiffness and µ is the

road adhesiveness parameter. This relationship is captured by

c = µc∗ (3.2)

25

Figure 3.1: Kinematic Behavior of the Bicycle Model

The velocity v = (vx, vy) expressed in inertial vehicle frame and the yaw rate of

the vehicle ψ̇ characterizes the motion of the vehicle. The forces acting on the front

and rear wheels are Ff and Fr. Side slip angles are denoted αf , αr and those are

the angles between the current steering angle and the vehicle’s current orientation.

Besides, the steering angle of the front wheel is δf , the distance of the axles to the

center of the gravity of the vehicle are lf and lr.

The kinematic behavior of the vehicle which is shown above is approximated by

the bicycle model, with two front and rear wheels lumped together. Lateral dynamics

can be linearized by current longitudinal velocity. The net lateral force and the net

torque acting on the center of the gravity of the vehicle are:

F = Ff + Fr (3.3)

τ = Ff lf + Frlr (3.4)

26

The variables and additional parameters in the model are:

vx denotes longitudinal speed

αf ,αr side slips angle between steering angle and front and rear tire velocities

vehicle yaw angle

δf front wheel steering angle

δ commanded steering angle

m total mass of the vehicle

Iψ total inertia of the vehicle around centre of gravity

lf , lr distance of the front and rear axles from the CG l distance between the front

and the rear axle lf + lr cf .cr cornering stiffness of the front and rear tires

Nominal Parameters

Here in the simulations, parameters are taken from [3].

The values of the parameters of the particular model used in simulations are: m =

1573kg, Ipsi = 2753kgm2 , lf = 1.137m, lr = 1.530m, cf = 2x60000 N/rad,

cr = 2x50000 N/rad. The cornering stiffness is doubled since the two tires are

lumped together. The individual normal forces acting at the front and rear tires are:

Ff = cfαf (3.5)

Fr = crαr (3.6)

where slide slip angles αf and αr between the steering angle and the tire velocity

are:

27

αf = δ − arctan(
vy + lf ψ̇

vx
) ≈ δ − vy + lf ψ̇

vx
(3.7)

αr = −arctan(
vy − lrψ̇
vx

) ≈ −vy + lrψ̇

vx
(3.8)

The net lateral force F and the net torque τ at the center of gravity are:

F = ma = m(y+vxψ̇) = Ff + Fr (3.9)

τ = Iψψ̈ = Ff lf − Frlr (3.10)

the lateral dynamics have the following form:

v̇y
ψ̈

 =

 − cf+cr
mvx

−vx +
crlr−cf lf
mvx

−lf cf+lrcr
Iψvx

− l2f cf+lrcr

Iψvx

vy
ψ̇

+

 cf
m

lf cf
Iψ

 δf
3.3 Vision Dynamics

The equations capturing the evolution of the measurements extracted from images

(Implementing OpenCV in Raspberry Pi Camera) are as follows:

ẏL = vεL − vy − ψ̇L (3.11)

ε̇L = vKL − ψ̇ (3.12)

28

Figure 3.2: Visualization of Vision Dynamics

The vision system estimates the offset from the center line yL and the angle

between the road tangent and heading of the vehicle εL at some look-ahead distance

L.

The additional parameters and measurements of the vision system are:

• yL the offset from the center-line at the look-ahead distance

• εL the angle between the tangent to the road and the orientation of the vehicle

with respect to the road

• L look ahead distance at which the measurements are taken

• KL is the disturbance

29

3.4 Vision Subsystem Based Complete Lateral Model

Combining the vehicle lateral dynamics with the vision dynamics.

ẋ = Ax+Bu+ Eω (3.13)

y = Cx+Du+ Fω (3.14)

The state x = [vy, ψ̇, yL, εL]T and control input u = δf , and disturbance ω = KL.

Here is the state space equations for the complete dynamic model:

v̇y

ψ̈

ẏL

ε̇L

=

− cf+cr
mvx

−vx +
crlr−cf lf
mvx

0 0

−lf cf+lrcr
Iψvx

− l2f cf+l2rcr

Iψvx
0 0

−1 −L 0 vx

0 −1 0 0

vy

ψ̇

yL

εL

+

cf
m

lfcf
Iψ

0

0

δf +

0

0

0

vx

KL

There are two subsystems in this whole complete model. The first one is the on-

board vehicle sensors subsystem, where inertial sensors (9 DOF IMU and encoders)

are used for measuring lateral acceleration ÿ = (v̇y + vxψ̇) and the yaw rate ψ̇. Mean-

while, the vision subsystem estimates yL and εL. The road curvature KL is working

as a exogenous disturbance signal.

The output equations have following form:

30

y =

− cf+cr
mvx

crlr−cf lf
mvx

0 0

0 1 0 0

0 0 1 0

0 0 0 1

vy

ψ̇

yL

εL

+

cf
m

0

0

0

δf

The block diagram of the overall camera vision based lateral system is showed in

Figure 2.4.

Figure 3.3: The Block Diagram of the Overall Vision Based Lateral System

There are two important transfer functions: The first one is V1(s) between the

front wheel steering angle δf and yL and the second one is V2(s) between δf and εL.

The transfer functions V1(s) and V2(s) share a denominator P (s):

Ps = s2(s2v2
xmIψ+svx(Iψ(cf +cr)+m(cf l

2
f +crl

2
r))+cfcrl

2 +mv2
x(cf lf +crlr)) (3.15)

and the visualization of those two important transfer functions are:

V1(s) =
yL
δf

=
s2v2

xcfIψ + svxcrcf (lf lr + l2r) + crcfv
2
xl + L(s2v2

xcf lfm+ svxcrcf l)

P (s)

(3.16)

V2(s) =
εL
δf

=
s2cf lfmv

2
x + scfcrvxl

P (s)
(3.17)

31

Where δf denotes the front wheel steering angle, yL is the offset from the center

line at the look-ahead distance, εL is the angle between the tangent to the road and

the orientation of the vehicle with respect to the road and L is the camera look-ahead

distance.

3.5 Frequency Domain System Analysis

Under the situation that: vehicle cruise speed Vx = 20m/s and fixed look-ahead

distance L = 15m.

P = 1.732e09s4 + 2.436e10s3 + 2.675e11s2 (3.18)

V1 =
yL
δf

=
819.7s2 + 6108s+ 7390

s4 + 14.06s3 + 154.4s2
(3.19)

V2 =
εL
δf

=
49.56s+ 369.5

s3 + 14.062 + 154.4s
(3.20)

The core of the analysis lies in the understanding of the behavior of the vehicle

at various speeds (the complex nonlinear model can be linearized at different cruise

speed Vx), under various road conditions. Then, we analysed how different look-ahead

distance L affects the dynamic behavior of the vehicle. Besides, the delay of vision

subsystem is very important too.

In the following subsection, we study the system close loop performance by ana-

lyzing root locus and bode plot. When we apply a P controller (K = 1) to the plant

V1 and V2, then we have L = PK, which is the open loop transfer function. Last, we

can draw bode plots and root locus for the open loop transfer functions and we know

the closed loop dynamics then.

32

3.5.1 Analysis of Model at Different Cruise Speed Vx

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4
−100

−80

−60

−40

−20

0

20

40

60

80

100

0.0160.0360.0560.0850.115
0.17

0.26

0.5

0.0160.0360.0560.0850.115
0.17

0.26

0.5

20

40

60

80

100

20

40

60

80

100

Root Locus of V1(s) for Velocity vx = 10,20,30,40m/s and Fixed Look−ahead Distance L = 15m

Real Axis (seconds
−1

)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−1
)

vx=10m/s

vx=20m/s

vx=30m/s

vx=40m/s

Figure 3.4: Root Locus of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m

Figure 3.4: As the root locus of V 1s shows, overall, the double integrator at the

origin corresponds to the integration action between lateral acceleration and position

at the look-ahead. The two poles and zeros in the left half plane characterize the

vehicle dynamics.

By increasing the cruise speed Vx, both two poles and two zeros in the left half plane

are moving towards to the imaginary axis.

33

−60

−40

−20

0

20

40

60

80

100

120

140

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

−45

P
ha

se
 (

de
g)

Bode Plot V1(s) for Varying Velocity vx = 10,20,30,40 m/s and Fixed Look−ahead Distance L = 15m

Frequency (rad/s)

vx=10m/s

vx=20m/s

vx=30m/s

vx=40m/s

Figure 3.5: Bode Plot of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m

Figure 3.5: Bode plot V1(s) for varying cruise speed Vx = 10, 20, 30, 40 m/s

with a fixed camera look-ahead distance and no vision subsystem delay. It shows

that increasing the cruise speed Vx will decrease the Phase Margin (PM). Under the

condition that cruise speed Vx = 40m/s (maximum speed in the plot), the Phase

Margin (PM) is only 3.42 degrees which is not good.

−20 −15 −10 −5 0 5
−100

−80

−60

−40

−20

0

20

40

60

80

100

0.020.0440.070.1050.15
0.21

0.32

0.55

0.020.0440.070.1050.15
0.21

0.32

0.55

20

40

60

80

100

20

40

60

80

100

Root Locus of V2(s) for Velocity vx = 10,20,30,40m/s and Fixed Look−ahead Distance L = 15m

Real Axis (seconds
−1

)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−1
)

vx=10m/s

vx=20m/s

vx=30m/s

vx=40m/s

Figure 3.6: Root Locus of V2(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m

34

−100

−80

−60

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Bode Plot V2(s) for Varing Velocity vx = 10,20,30,40 m/s and Fixed Look−ahead Distance L = 15m

Frequency (rad/s)

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

−45

P
ha

se
 (

de
g)

vx=10m/s

vx=20m/s

vx=30m/s

vx=40m/s

Figure 3.7: Bode Plot of V2(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 15m

3.5.2 Analysis of Model at Different Look-Ahead Distance L

−10 −8 −6 −4 −2 0 2 4
−80

−60

−40

−20

0

20

40

60

80

0.0140.0320.050.0750.105

0.15

0.24

0.45

0.0140.0320.050.0750.105

0.15

0.24

0.45

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Root Locus V1(s) for Varing Look−ahead Distance L = 5,10,15,20m and Fixed Velocity xv = 20 m/s

Real Axis (seconds
−1

)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−1
)

L=5m

L=10m

L=15m

L=20m

Figure 3.8: Root Locus of V1(s) for Varying Look-Ahead Distance L and Fixed Cruise

Speed Vx

35

−40

−20

0

20

40

60

80

100

120

140

M
ag

ni
tu

de
 (

dB
)

Bode Plot V1(s) for Varing Look−ahead Distance L = 5,10,15,20m and Fixed Velocity xv = 20 m/s

Frequency (rad/s)

10
−2

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

P
ha

se
 (

de
g)

L=5m

L=10m

L=15m

L=20m

Figure 3.9: Bode Plot of V1(s) for Varying Look-Ahead Distance L and Fixed Cruise

Speed Vx

Figure 3.9: Bode plot V1(s) for varying look-ahead distance L = 5, 10, 15, 20 m at

Vx = 20m/s without delay. As the plot represents, increasing the look-ahead distance

L adds substantial phase lead at the crossover frequencies.

−12 −10 −8 −6 −4 −2 0 2 4
−80

−60

−40

−20

0

20

40

60

80

0.0160.0360.0560.0850.115

0.17

0.26

0.5

0.0160.0360.0560.0850.115

0.17

0.26

0.5

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Root Locus V2(s) for Varing Look−ahead Distance L = 5,10,15,20m and Fixed Velocity xv = 20 m/s

Real Axis (seconds
−1

)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−1
)

L=5m

L=10m

L=15m

L=20m

Figure 3.10: Root Locus of V2(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx

36

−50

−40

−30

−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

P
ha

se
 (

de
g)

Bode Plot V2(s) for Varing Look−ahead Distance L = 5,10,15,20m and Fixed Velocity xv = 20 m/s

Frequency (rad/s)

L=5m

L=10m

L=15m

L=20m

Figure 3.11: Bode Plot of V2(s) for Varying Look-Ahead Distance L and Fixed Cruise

Speed Vx

3.5.3 Analysis of Camera Vision Delay Issues

One important parameter which will effect the overall system is the delay asso-

ciated with the latency of visual processing. As shown in the overall system block

diagram, the component is a pure time delay element e−Tds representing the latency

Td of the vision subsystem. This delay component becomes:

D(s) = e−Tds ≈ 2− Tds
2 + Tds

(3.21)

V1(s)D(s) demonstrate the effect of vision subsystem latency.

Under certain condition:

D(s) =
−0.15s+ 2

0.15s+ 2
(3.22)

37

−60

−40

−20

0

20

40

60

80

M
ag

ni
tu

de
 (

dB
)

Cruise Speed Vx = 20m/s, Look−Ahead Distance L = 15m,Vision Subsystem Delay t = 0.15s

Frequency (rad/s)

10
−1

10
0

10
1

10
2

10
3

0

45

90

135

180

225

270

System: vision subsystem delay t = 0.15s
Phase Margin (deg): −126
Delay Margin (sec): 0.134
At frequency (rad/s): 30.6
Closed loop stable? No

P
ha

se
 (

de
g)

vision subsystem delay t = 0.15s

Figure 3.12: Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Vision Subsystem Delay t = 0.15s

In this Situation, the Phase Margin (PM) is −126◦ which shows that the open

loop system V1D(s) is unstable due to the 0.15s vision subsystem latency.

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

Cruise Speed Vx = 20m/s, Look−Ahead Distance L = 15m,Vision Subsystem Delay t = 0.05s,0.10s,0.15s,0.20s

Frequency (rad/s)

10
−2

10
−1

10
0

10
1

10
2

10
3

0

45

90

135

180

225

270

P
ha

se
 (

de
g)

Td = 0.05s

Td = 0.10s

Td = 0.15s

Td = 0.20s

Figure 3.13: Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Varying Vision Subsystem Delay t = 0.05s, 0.10s, 0.15s, 0.20s

Figure 3.13: The presence of the delay adds an additional phase lag over the whole

range of frequencies. In this case, the phase margin (PM) of all circumstances will

diminishes and the systems are becoming unstable.

38

3.6 Summary and Conclusion

Within this Chapter 3, we discussed the vision based lateral complete model, sim-

ulation results were well presented and analysed. In the following chapter, hardware

implementations will be introduced and compared to the simulation results.

39

Chapter 4

CASE STUDY FOR MODELING, CONTROL AND IMPLEMENT OF A

SELF-DESIGNED REAR WHEEL DRIVE TESTBED : FREESLAM ROBOT

4.1 Introduction and Overview

In this chapter, we describe how to significantly enhance a self-designed rear-wheel

drive FreeSLAM vehicle with the capabilities described in Chapter 1. i.e.magnetic

wheel encoders for estimating translational/rotational speeds and distances, IMU

for vehicle posture θ estimation, camera for directional information, xv 11 hacked

LIDAR for depth information, Wi-Fi adapter for wireless communication between

PC and Raspberry Pi, Arduino for less intense computations, Raspberry Pi II for

more intense (e.g. video based) computations. Both modeling and control issues are

addressed. A TITO LTI vehicle-motor model is used as the basis for designing (v,ψ̇

) inner-loop control laws. Two outer-loop control law types are presented, analyzed

and implemented in hardware: (1) (v,θ) cruise control - track following (using camera,

encoder and IMU), (2) planar (x, y) Cartesian stabilization (using encoders and IMU).

Once the basic control issues are addressed, the vision-based lateral model is explained

in detail. According to this model, three key parameters will greatly influence the

tracking performance: robot cruise speed, fixed look-ahead distance and delay from

vision subsystem. Each case above was well tested and discussed. The underlying

theory for each control law is explained and justified. Finally, the results from our

many hardware demonstrations are presented and discussed.

40

4.2 Hardware Limitations

Understanding fundamental hardware limitations is critical to understand what

is realistically achievable. This is addressed for each of the following: xv 11 hacked

LIDAR, encoders, Raspberry pi camera, Arduino Uno, IMU, and Raspberry Pi II.

The following is common to all hardware implementations for our rear-wheel drive

robot.

• Arduino D-to-A (Actuation). In this thesis, the Arduino actuation rate to

the motor shield is 10Hz (0.1 sec actuation interval) or about 60rad/sec. Given

this, the widely used factor-of-ten rule yields maximum control bandwidth of 6

rad/s. Associated with classic D-to-A actuation is a zero order hold half sample

time delay.

ZOH(jω) =
1− e−jωT

jω
= e−jω0.5T j2 sinω0.5T

jω
= Te−jω0.5T

[
sin 0.5ωT

0.5ωT

]
(4.1)

The half sample time delay is seen in the term e−jω0.5T . From the following first

order Pade approximation

e−s∆ =
e−s0.5∆

es0.5∆
≈ 1− s0.5∆

1 + s0.5∆
=

[2
∆
− s

2
∆

+ s

]
(4.2)

it follows that a time delay ∆ has a right half plane (non-minimum phase) zero

at z = 2
∆

. With ∆ = 0.05 (half sample time delay associated with ZOH), we get

z = 2
0.05

= 40. This then yields, using our factor-of-ten rule, a maximum control

bandwidth of about 4 rad/s. We thus see that a maximum inner-loop control

bandwidth of about 4-6 rad/sec is about all we should be willing to push with-

out further (more detailed) modeling.

• Arduino A-to-D (Sampling). In this thesis, the sampling time for all exper-

imental hardware demonstrations is 10 Hz (0.1 sec actuation interval) or about

41

60 rad/sec. Given this, the widely used factor-of-ten rule yields maximum con-

trol bandwidth of 6 rad/s. It should be noted that the Arduino has a 10-bit ADC

(210 = 1024) capability . This translates to about 0.1% of the maximum speed.

If we associate a maximum voltage 5 V with 10 bits and a maximum speed of

3 m/sec, it follows that a 1 bit error translates into a 3
1024
≈ 0.003 m/sec speed

error. This is not very significant so long as the speeds that our vehicles are

likely to operate at are not too low. If the speed is greater than 3 cm/sec, then

this 1 bit error (0.003) will represent less than 10%; 5% for speeds exceeding 6

cm/sec. Again, we’d have to travel very slowly for this 1 bit error to matter.

• Wheel Encoder Limitations. In this thesis, 12 small magnets and one hall

effect sensor are used to serve as an self-designed encoder. Encoders on a ve-

hicle’s wheels can be used to measure wheel angular speed, wheel angular ro-

tation, wheel translational speed, wheel linear translation. Lets focus on the

latter because it corresponds to vehicle linear translation when moving along a

straight line. For our differential-drive Thunder Tumbler vehicles, we use eight

encoders on each wheel. As such, our angular resolution is 2π
12

= π
6

or 30◦. This

amount of error seems very large. Because we could not fit more magnets on the

wheel, we maxed out at eight. We then decided to see what we could achieve

with this low-cost speed-position measuring solution. A consequence of using

wheel encoders for measuring distance traveled is the inevitable accumulation

of dead-reckoning error. The spatial resolution associated with an 12 magnet

system is xresolution = rwheelθmagresolution = (2.4cm)(2π
12

) ≈ 1.31 cm. How do we

use this information? Let the variable ‘counter’ denote the number of pulses

that we have counted due to wheel rotation. (The count increments each time

a magnet crosses the Hall effect sensor.) The distance traveled at each count is

∆x = 0.0131× counter m.

42

Figure 4.1: Encoder Resolution Before Average Filter Implementation

Original Encoder Resolution

Average angular velocity is 28.8 rad/s and peak to peak ripple is 5.2 rad/s.

After implementing average filter (a signal processing method)

Figure 4.2: Encoder Resolution After Average Filter Implementation

Filtered Encoder Resolution

After implementing the average filter, we can make the following observations

that peak to peak ripple is 2.6 rad/s, which has been greatly reduced.

43

4.3 DC Motor Dynamics

Estimation of Vehicle-Motor Model Parameters. The dc motor parameters

were estimated by iterating between experiments and model-based time simulations.

Motor armature inductance La was neglected. Armature resistance Ra was measured

using Ohm’s law: Ra = V
Ia

. Settling time, steady state speed and armature current

were used to solve for two parameters: angular speed damping β, back emf and

torque constant Kb = Kt. The transfer function from armature voltage control input

to angular shaft velocity for a dc motor-load combination is given by:

ω

V
=

[
Km
RaI

s+ Rab+KbKm
RaI

]
(4.3)

From this, we observe that the

Motor DC Gain =
Kt

KtKb +Rab
(4.4)

Motor Dominant Pole =
Rab+KbKt

RaI
(4.5)

Motor Model for FreeSLAM rear wheel drive robot is RN 260-c.

Here are the parameters:

Motor(Actuator) transfer function:

Ω(s)

Ua(s)
=

Kt

LaJs2 + s(LaB +RaJ) +KeKt +RaB

Here, ea represents the applied armature voltage. This is the control input for an

armature controlled dc motor. Other relevant variables are as follows: ia represents

the armature current, eb represents the back emf, τ represents the torque exerted

44

Table 4.1: RN 260 Motor Dynamics

Current (A) Speed (rpm) Torque (g*cm) Voltage (V)

No Load 0.13 10000 0 4.5

Max Efficiency 0.51 7950 18 4.5

Max Output 1.07 5000 44 4.5

Stall 2 0 88 4.5

by the motor on the motor shaft-load system, ω represents the motor shaft angular

speed.

Relevant motor parameters are as follows: La represents the armature inductance

(often negligibly small in many applications), Ra represents the armature resistance,

Ke represents the back emf motor constant, Kt represents the motor torque constant,

b represents a load-motor speed rotational damping constant, and I represents the

moment of inertia of the motor shaft-load system.

• Ra Armature Resistance

Ua = Ea + Ia +Ra (4.6)

P1 = UaIa (4.7)

PM = EaIa (4.8)

Ra =
P1 − PM

I2
a

(4.9)

• La Armature Inductor

La = 0.2mH (4.10)

• Kt motor torque constant and Ke motor back EMF constant

45

Te = KtIa (4.11)

Ia = 1.07A (4.12)

Te = 44g · cm (4.13)

= 0.0043N ·m (4.14)

Ke = Kt (4.15)

Off Ground Motor Dynamics Comparison Between Hardware and Simu-

lation Result

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Simulation Data

Hardware Data

Step Response of DC Motor at 3.53V

Time (seconds)

L
in

e
a
r

V
e
lo

c
it
y
 (

m
/s

e
c
)

Figure 4.3: Off Ground Motor Dynamics Comparison

From figure 4.3, we can make the following observations:

When the input voltage of DC motor is 3.53V, we can measure the steady state

of wheel linear velocity which is 9 m/sec. Motor dynamics can be estimated as a

standard first order system. Settling time Ts of the system is 0.3 seconds with a step

response peak-peak ripple of 2.4 m/s.

46

DC Motor Dynamics (first order plant)

Pmotor =
27.1

s+ 10.64
(4.16)

Table 4.2: FreeSLAM Robot Nominal Parameter Values and Characteristics

Parameters Definition Nominal Values

m Fully Loaded Mass 1.47kg

m0 Mass (Not Loaded) 0.83kg

I Moment of Inertia (Estimated using Cube) 0.0015kgm2

r Wheel Radius 0.024m

dw Distance Btw 2 Rear Wheels 0.134m

La Armature Inductance 0.2mH (neglected)

Ra Armature Resistance 2.523Ω

Kb Back EMF Constant 0.004V/(rad/sec)

Kt Torque Constant 0.004Nm/A

vmax Max. Observed Speed (Enhanced Vehicle) 5m/s

vmax0 Max. Observed Speed (Original vehicle) 7.2m/s

eamax Max. Motor Voltage 7.2V

amax Max. Accel. (Enhanced) 3.2m/sec2

ωwheelmax Max. Angular Vel. (Enhanced) 208.3 rad/sec

47

Table 4.3: Front Wheel Steer Angle δf Accuracy

Front Wheels Steering to The Right

Arduino Servo

PWM Command

Increasement

Previous

Steering

Angle

Current

Steering

Angle

Actual Angle

Increasement
Error

Percentage

Error

N/A N/A 5.9375 N/A N/A N/A

+5 5.9375 11.0625 5.125 +0.125 2.5%

+5 11.0625 16.0000 4.9375 -0.0625 1.25%

+5 16.0000 20.9375 4.9375 -0.0625 1.25%

+5 20.9375 25.8125 4.875 -0.125 2.5%

Front Wheels Steering to The Left

N/A N/A -5.1250 N/A N/A

-5 -5.1250 -10.6875 -5.5625 -0.5625 11.25%

-5 -10.6875 -15.5625 -4.875 +0.125 2.5%

-5 -15.5625 -20.4375 -4.875 +0.125 2.5%

-5 -20.4375 -25.5625 -5.125 -0.125 2.5%

Avg. Steering Angle Error 3.28%

Front Wheel Steering Angle Accuracy

To detect the accuracy of the front wheel steering inner loop, BON055 IMU is used

to test the accuracy of response to Arduino servo command. Due to hardware limi-

tations, range of steering angle is −30◦ ∼ +30◦ (+ denotes steering to the right).

48

4.4 Case Study for Vehicle Longitudinal Model and Linearized Lateral Model

Within this section , we address modeling, analysis and control design for rear

wheel drive SLAM robot. Both kinematic and nonlinear models are examined. Nom-

inal model parameters were accurately measured for FreeSLAM robot. The nonlinear

dynamical model is a three degree-of-freedom (dof) sixth order model that ignores

actuator (DC motor) dynamics.The linear model is fourth order if the two posi-

tion variables(X,Y) are removed from the model.The dynamical model is linearized

about constant translational speed conditions. The goal is to understand the model

to develop speed dependent cruise control laws. The studies presented shall serve

as the basis for future cruise control system designs and hardware implementations.

Linearization about a constant speed (i.e. uniform rectilinear motion) results in de-

coupled longitudinal and lateral dynamics. As we will mention in Chapter 5, all those

motions we applied to the robot, are called control data in the observatory model,

they can be represented as:

ut1:u2 = ut1 , ut1+1, ut1+2, · · ·, ut2 (4.17)

The linear longitudinal model (throttle to longitudinal speed vx) is first order,

stable and minimum phase. It is easy to control and trivial. The linear lateral model

(steering angle to yaw angle) is third order and it is a little bit harder to control.

Model characteristics were analyzed as a function of speed (for future cruise control

developments). The (steering angle to yew rate ψ̇) linear lateral model is stable for

all speeds because the vehicle exhibits rear-wheel-dominated concerning(lfcf < lrcr).

Given this, it follows that the linear lateral dynamics (steering angle to yaw) are

marginally stable for any speed (due to an integrator to generate yaw from yaw rate).

The longitudinal input is applied longitudinal force F(can be thought of as equiva-

lent to throttle). The associated output is speed. The lateral input is the front wheel

49

steering angle δf . The associated output is yaw angle ψ. A PI controller (with roll-off

and a command pre-filter) was used for lateral angle (directional control). Control

law parameters were selected at each speed in order to achieve a 5 seconds speed

settling time and 2.5 seconds yaw settling time both with less than 7 percent over-

shoot to step reference commands. With this implementation, we then show how the

control law parameters change as a function of speed again, for future cruise control

law developments.

In short, the chapter presents results that will be useful for future cruise control

law developments, for example, robot accurately line tracking and simultaneously

localization and mapping and path planning etc.

4.5 Description of Nonlinear Model for Rear-Wheel Drive (RWD) Robot

Within this section, we examine two models for the rear wheel drive vehicle

(FreeSLAM robot). The first is an ideal kinematic model one that neglects mass-

inertia effects. The second one is a more accurate dynamics model that captures

mass-inertia effects. It is the latter dunamics model that will be used to conduct

relevant speed dependent linear trade studies within this section.

4.5.1 Kinematic Model of FreeSLAM Robot

This section describes a kinematic model for my rear wheel drive FreeSLAM robot.

Being a kinematic model, it ignores mass-inertia effects. Many of the equations of

motion developed from this point forward will be based upon a simplification in which

both the front and rear wheels of the vehicle are lumped together to form a single front

and a single rear tire. This simplification is often referred to as a single bicyclemodel.

The latter of these names belies the utility of this approach. One can find more

complicated models which include roll and pitch dynamics. Such models are often

50

used only for simulation.The bicyclemodel is more useful for analysis and control law

development. Consider Figure 4.4. Within this figure, a body-fixed coordinate system

is affixed to the vehicle’s rear axle.

Figure 4.4: Visualization of Kinematic Model for RWD Robot (The Bicycle Model)

The vehicle’s kinematics are as follows.

ẋ = vcosΨ

ẏ = vsinΨ

Ψ̇ =
vtanΨ

L

where:

• Ψ is the vehicle angle with respect to the X - axis

• vx = ẋ and vy = ẏ are the x and y projections of v.

51

• L is the distance between the front and rear wheels.

• δ is the front wheel steering angel

4.5.2 Nonlinear Dynamics Model for FreeSLAM Rear Wheel Drive Robot

Nominal model parameters were measured. The following defines key model vari-

ables.

• vx denotes longitudinal speed

• αf ,αr side slips angle between steering angle and front and rear tire velocities

• ψ vehicle yaw angle

• δf front wheel steering angle

• δ commanded steering angle

• m total mass of the vehicle

• I total inertia of the vehicle around centre of gravity

The nonlinear (single track) dynamics model is used within this thesis. Nominal

model parameters were accurately measured for FreeSLAM robot. The nonlinear

vehicle model is described by the following dynamics equations:

m(v̇x − vyr) = −cavx2 + flfcosδf + flr − fsfsinδf (4.18)

m(v̇y + vxr) = fsfcosδf + fsr + flfsinδf (4.19)

52

Iṙ = lffsfcosδf − lrfsr + lfflfsinδf (4.20)

and the following represents front and rear slip angles:

αf = δf − (
vy + lfr

vx
) (4.21)

αr = −(
vy − lrr
vx

) (4.22)

Additional relationships that are useful are the following:

ay = v̇y + rvx (4.23)

vy = vsinβ (4.24)

The longitudinal and lateral models can be described as the following forth order

matrix.

v̇x

v̇y

ψ̇

ψ̈

=

−2vxca
m

0 0 0

0 − cf+cr
mvx

0 −vx +
crlr−cf lf
mvx

0 0 0 1

0
−lf cf+lrcr

Ivx
0 − l2f cf+l2rcr

Ivx

vx

vy

ψ

ψ̇

+

1
m

0

0
cf
m

0 0

0
lf cf
I

F
δf

y =

1 0 0 0

0 0 0 1

vx

vy

ψ

ψ̇

53

It is a decoupled TITO LTI system for the following reasons: we can observe the

zeros in both first column and first row in matrix A, which means longitudinal state

vx is not influencing the 3 lateral states (vy, ψ and ψ̇). In the same way, those three

lateral states are not influencing the longitudinal state (vx). According to the analysis

above, we can make a brief conclusion that it is a decoupled TITO LTI System.

The values of the parameters of the FreeSLAM model used in simulations are : m

= 1.47kg , I = 0.0015 kg· m2 , front wheel stiffness cf = 0.0368 N/rad , rear wheel

stiffness cr = 0.0368 N/rad , the concerning stiffness is increased by factor 2 since

the two tires are lumped together.

However, we have to state here that both longitudinal and lateral plant are not

that accurate for the following three reasons:

• When we calculate the moment of inertia of the robot, it has been estimated as

a cube

• front and rear wheel rotary stiffness (cf and cr) are under estimation

• the state space neglects static friction of the ground

Since the system dynamic estimation is not that accurate, we’ll introduce System

Identify method in the following subsection by introducing on-ground test. Compari-

son between the estimated model and System ID based model will be well explained.

4.6 Analysis of Linearized Model

Longitudinal Model(first order)

54

Plongitudinal =
vx
F

=
0.6803

(s+ 0.1116)
(4.25)

Lateral Model (third order)

when equilibrium linear velocity ve is 0.1 m/s

PLateral =
ψ̇

δf
=

0.368(s+ 0.484)

(s+ 1.007)(s+ 0.457)
(4.26)

Longitudinal Dynamics

Bode frequency response plot for the longitudinal plant as we change the equilibrium

speed vx in increments of 0.1 m/sec. We make the following observations:

−25

−20

−15

−10

−5

0

5

10

15

20

M
a

g
n

it
u

d
e

 (
d

B
)

10
−3

10
−2

10
−1

10
0

10
1

−90

−45

0

 (
d

e
g

)

Longitudinal Dynamics At Different Cruise Speeds Vx

freq (rad/s)

vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.5: Longitudinal Dynamics at Different Cruise Speed Vx

Lateral Dynamics

Bode frequency response plot for the lateral plant as we change the equilibrium speed

vx in increments of 0.1 m/sec. We make the following observations:

55

Lateral Dynamics At Different Cruise Speeds Vx

freq (rad/s)

−100

−50

0

50

100

150

M
a

g
n

it
u

d
e

 (
d

B
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−270

−225

−180

−135

−90

 (
d

e
g

)
vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.6: Lateral Dynamics at Different Speed Vx

Speed Dependent Pole Movement.

Bode frequency response plot for the lateral plant as we change the equilibrium speed

vx in increments of 0.1 m/sec. We make the following pole movement observations:

Pole−Zero Map For Longitudinal Dynamics At Different Cruise Speed Vx

 (seconds
−1

)

 (
s
e

c
o

n
d

s
−

1
)

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0.420.56

0.74

0.9

0.070.140.220.320.420.56

0.74

0.9

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.070.140.220.32

vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.7: Pole-Zero Map For Longitudinal Dynamics at Different Cruise Speed Vx

56

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0.160.340.50.640.76

0.86

0.94

0.985

0.160.340.50.640.76

0.86

0.94

0.985

0.20.40.60.811.21.4

Pole−Zero Map For Lateral Dynamics At Different Cruise Speed Vx

 (seconds
−1

)

 (
s
e

c
o

n
d

s
−

1
)

vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.8: Pole-Zero Map For Lateral Dynamics at Different Cruise Speed Vx

4.6.1 Longitudinal Inner Loop Controller Design

Inner Loop Controller Design: PI With One Pole Roll-Off and Com-

mand Pre-filter

Based on the simple (decoupled first order) LTI model obtained in the previous sec-

tion.

Figure 4.9: Block Diagram for Longitudinal Model Inner Loop Control

Longitudinal Plant:

57

Plong =
Vx
F

=

[
0.6803

(s+ 0.1116)

]
(4.27)

Then combining the motor dynamics we have obtained in Chapter 3

F

ea
= 0.215

[
(s+ 14.53)

(s+ 16.67)

]
(4.28)

we get the final longitudinal inner loop plant:

Plonginner = Plong
F

ea
= 0.146

[
(s+ 14.53)

(s+ 0.1116)(s+ 16.67)

]
(4.29)

As we can see here, the dominant pole is (s = −0.1116) and the fast pole (s =

−16.67) comes from the motor dynamics.

Here we design a PI controller with roll-off and pre-filter. The controller has the

form (PI plus roll-off):

Kinner =
g(s+ z)m

s

[
100

s+ 100

]m
(4.30)

Because the rear wheel drive vehicle will have the same rear wheel speed, Kinner

will be the same for driving two DC motors.

Then, we are going to design for a phase margin (PM) of 60 deg and unity-gain

crossover frequency (ωg) of 3 rad/sec. The open loop transfer function L is given by

L = PlonginnerKinner =
g(s+ z)m

s

[
0.146(s+ 14.53)

(s+ 0.1116)(s+ 16.67)

] [
100

s+ 100

]m
(4.31)

According to the phase margin PM = 180◦ + ∠L(jωg), we can compute the z

value, i.e.

PM = 180◦ − 90◦ +mtan−1(
ωg

z
) + tan−1(

ωg

14.53
)− tan−1(

ωg

0.1116
)− tan−1(

ωg

16.67
)−mtan−1(

ωg

100
) = 60◦ (4.32)

58

As a result

tan−1(
3

z
) = 58.12◦ (4.33)

z = 1.87 (4.34)

Now after getting z, we obtain g by knowing that |L(jωg)| = 1.

0.146g
√
ω2
g + z2

√
ω2
g + 14.532

ωg
√
ω2
g + 0.11162

√
ω2
g + 16.672

= 1 (4.35)

g = 19.9 (4.36)

This values of g and z yields

Φactual(s) ≈ s(s+ 0.1116)(s+ 16.67) + 0.146g(s+ z)(s+ 14.53) (4.37)

A reference command pre-filter

W =
z

s+ z
(4.38)

The final g and z we have chosen are g = 11.68 , z = 02.02.

The pre-filter W will ensure that the overshoot to a step reference command

approximates that dictated by the second order theory.

4.6.2 On Ground Longitudinal Model

Actually, there is a slightly difference between the actual vehicle longitudinal on

ground model with the model we have calculated.

59

Here is the on-ground longitudinal plant, we can see that the hardware result and

simulation result are matched:

Plong =
vx
ea

=
0.3274

(s+ 1.176)
(4.39)

Longitudinal Plant ea to vx Step Response

Time(seconds)
0 1 2 3 4 5 6 7 8 9 10

T
ra

n
s
la

ti
o

n
 V

e
lo

c
it
y
 (

m
/s

e
c
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Longitudinal Plant ea to vx Step Response

Simulation

Hardware

Figure 4.10: Longitudinal Plant ea to vx Step Response

• steady state is 0.35 m/s

• peak-peak ripple is 0.06 m/s

When we design the controller, settling time is set to 2 seconds and damping

ratio is set to 0.9 (omega n is set to 2.78 rad/s and overshoot is around 0.15%) , PI

controller parameters are g = 11.68 and z = 2.02.

Then we have Try:

Try = WPK(1 + PK)−1 (4.40)

Try =
7.716

ss + 5s+ 7.716
(4.41)

Finally we do the longitudinal inner loop performance studies:

60

Try (Vref to V) Hardware and Simulation Result

Figure 4.11: Try (Vref to V) Hardware and Simulation Result

• steady state is 0.5m/s, which is desired linear velocity

• peak-peak ripple is 0.06m/s

Tru (Vref to DC motor input voltage ea) Hardware and Simulation Result

Time(seconds)

0 2 4 6 8

V
o
lt
a
g
e
(V

)

0

2

4

6

8

Control output response v
ref

 to e
a

Simulation

Hardware

Figure 4.12: Longitudinal Plant ea to vx Step Response

• steady state of hardware result is 1.7 V

61

• peak-peak ripple of hardware result is 0.7 V

• simulation and hardware result are matched

We can draw a brief conclusion from the plots above that the simulation and

hardware results are matched well.

4.6.3 Longitudinal Model Inner Loop PI Controller Trade Studies

In what follows, L = PK = KP denotes the open loop transfer function, S =

(1+L)−1 denotes the closed loop sensitivity transfer function. T = L(1+ l)−1 denotes

the closed loop complementary sensitivity transfer function, KS denotes the transfer

function from (unfiltered) reference commands to controls (DC motor voltages ea),

and SP denotes the transfer function from input disturbances to the wheel speeds.

We now examine trade studies for gain g and zero z variations.

From Reference Command to Output Try: Magnitude Responses

When g is varied (g is from 1 to 17, z = 0.5), one obtains the closed loop Try magnitude

responses in Figure 4.13 and Figure 4.14 contains magnitude responses for z variations

(g = 9 and z is from 0.3 to 0.7). In this case, the pre-filter has been implemented.

62

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−250

−200

−150

−100

−50

0

50

 (
d

B
)

Bode Magnitudes for T (With Pre−Filter and g = 1−17, z = 0.5)

 (rad/s)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.13: Bode Magnitudes for Try (With Pre-Filter and g = 1-17, z = 0.5)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−250

−200

−150

−100

−50

0

50

 (
d

B
)

Bode Magnitudes for T (With Pre−Filter and g = 9, z = 0.1−0.9)

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.14: Bode Magnitudes for Try (With Pre-Filter and g = 9, z = 0.1-0.9)

From Figure 4.13 & 4.14, we observe the following:

• System bandwidth increases with increasing g or z

• Increasing z increases all peak magnitudes, peak magnitudes do not increase

with a increasing g

63

Open Loop L Analysis

Figures 4.15 & 4.16 show the bode plots of L = PK for specific (g, z) variations.

−150

−100

−50

0

50

100

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot for L (g = 1−17, z = 0.5)

 (rad/s)
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−180

−135

−90

 (
d

e
g

)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.15: Bode Magnitudes for L and g = 1-17, z = 0.5

−150

−100

−50

0

50

100

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot for L (g = 9, z = 0.1−0.9)

 (rad/s)
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−180

−135

−90

−45

 (
d

e
g

)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.16: Bode Magnitudes for T (With Pre-Filter and g = 1-17, z = 0.5)

We observe that low frequency reference command r will be followed, low fre-

quency output disturbances do will be attenuated and high frequency sensors noise n

64

will be attenuated too. Besides, the phase margin increases as the g is increasing.

Sensitivity (Longitudinal Decoupled Model)

Figures 4.17 & 4.18 contain sensitivity S bode-magnitude values for specific (g , z)

variations.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

 (
d

B
)

Bode Magnitudes for Sensitivity, g = 1−17, z = 0.5)

 (rad/s)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.17: Bode Magnitudes for Sensitivity, g = 1-17, z = 0.5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

 (
d

B
)

Bode Magnitudes for Sensitivity, g = 9, z = 0.1−0.9)

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.18: Bode Magnitudes for Sensitivity, g = 9, z = 0.1-0.9

65

From Figure 4.17 & 4.18, we make the following observations:

• Increasing g results in smaller sensitivities at low frequencies and a slightly

larger peak sensitivity.

• Increasing z results in smaller sensitivity at low frequencies but increases peak

sensitivities somewhat (since it gives ”less lead near crossover”).

Complementary Sensitivity

Figures 4.19 & 4.20 contain complementary sensitivity bode magnitude values for

specific (g, z) variations.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−140

−120

−100

−80

−60

−40

−20

0

 (
d

B
)

Bode Magnitudes for Complementary Sensitivity T, g = 1−17, z = 0.5

 (rad/s)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.19: Bode Magnitudes for Complementary Sensitivity T, g = 1-17, z = 0.5

66

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

0

20

 (
d

B
)

Bode Magnitudes for Complementary Sensitivity T, g = 9, z = 0.1−0.9

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.20: Bode Magnitudes for Complementary Sensitivity T, g = 9, z = 0.1-0.9

• Increasing g will result in a larger bandwidth and a smaller peak complementary

sensitivity T , (but worse high frequency noise attenuation; a trade-off here must

be made).

• Increasing z will result in larger bandwidth and a larger peak complementary

sensitivity T . High frequency noise attenuation is the same for different z values.

Reference to Control (Unfiltered)

Figure 4.21 & 4.22 contain (unfiltered) reference to control bode magnitude plot for

specific (g, z) variations. As the plots above, these plots are for the reference cruise

speed vx to DC Motor input voltage ea longitudinal speed control system. As such,

they tell us what control responses result from desired ωrearwheel commands. This is

addressed below.

67

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0

10

20

30

 (
d

B
)

Bode Magnitude Plot for Tru , g = 1−17, z = 0.5

 (rad/s)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.21: Bode Magnitude plot for Tru , g = 1-17, z = 0.5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−20

−15

−10

−5

0

5

10

15

20

25

30

 (
d

B
)

Bode Magnitude Plot for Tru , g = 9, z = 0.1−0.9

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.22: Bode Magnitude plot for Tru , g = 9, z = 0.1-0.9

• Increasing g or z increases the peak Tru at all except low frequencies.

• Increasing g increases peak Tru

• Increasing z increases peak Tru

68

Reference to Control (Filtered)

As discussed above, a command pre-filter can significantly help with control action.

We therefore use a command pre-filter W = z
s+z

on the reference command. Figures

4.23 & 4.24 contain (filtered) reference to control bode magnitudes for specific (g,

z) variations. Here the reference command is desired robot cruise speed vx and the

control value stands for the input voltage ea to the rear wheel DC motors.

Bode Magnitude Plot for W*Tru , g = 1−17, z = 0.5

 (rad/s)
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−120

−100

−80

−60

−40

−20

0

20

 (
d

B
)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.23: Bode Magnitude plot for TruW , g = 1-17, z = 0.5

69

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

0

20

 (
d

B
)

Bode Magnitude Plot for W*Tru , g = 9, z = 0.1−0.9

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.24: Bode Magnitude plot for TruW , g = 9, z = 0.1-0.9

• Increasing g or z increases the size of WTru at all but low frequencies.

• Increasing g increases the peak WTru only slightly.

• Increasing z increases the peak WTru, but it does not impact WTru at low

frequencies.

The above plots suggest that overshoot and saturation due to filtered vx commands

reference command should not be too much of an issue - unless, of course, very large

reference commands are issued to the inner-loop control system.

Input Disturbance to Output Tdiy Figures 4.25 & 4.26 contain input distur-

bance to control singular values for specific (g, z) variations. As such, they tell us

what cruise speed vx responses result from input (DC motor input voltage ea) distur-

bances.

Figures 4.25 & 4.26 contain the bode magnitude values for Tdiy for specific (g, z)

variations. We make the following observations:

70

10
−2

10
−1

10
0

10
1

10
2

10
3

−80

−70

−60

−50

−40

−30

−20

−10

0

 (
d

B
)

Bode Magnitude Plot for Tdiy , g = 1−17, z = 0.5

 (rad/s)

g=1 z=0.5

g=5 z=0.5

g=9 z=0.5

g=13 z=0.5

g=17 z=0.5

Figure 4.25: Bode Magnitude plot for Tdiy , g = 1-17, z = 0.5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−80

−70

−60

−50

−40

−30

−20

−10

 (
d

B
)

Bode Magnitude Plot for Tdiy , g = 9, z = 0.1−0.9

 (rad/s)

g=9 z=0.1

g=9 z=0.3

g=9 z=0.5

g=9 z=0.7

g=9 z=0.9

Figure 4.26: Bode Magnitude plot for Tdiy , g = 9, z = 0.1-0.9

From Figures 4.25 & 4.26, we make the following observations.

• peak Tdiy decreases with increasing g (z has little impact on peak)

• increasing g reduces Tdiy at all frequencies except at high frequencies

71

• increasing z reduces Tdiy at low frequencies.

• frequency at which peak Tdiy occurs increases with increasing g (also with in-

creasing z but to a lesser extant)

4.6.4 Lateral Inner Loop Controller Design

Lateral Inner Loop Controller Design: PI With One Pole Roll-Off and Command

Pre-filter base on the lateral model we’ve gotten in section 4.3.

Robot Lateral Model Inner Loop Controller Design

Figure 4.27: Block Diagram for Robot Lateral Model Inner Loop Control

Front Wheels Steering DC Servo Dynamics

Figure 4.28: Front Wheels Steering DC Servo Dynamics

The Plot above is a complete model for the robot lateral dynamics. Actually we

can control the steering angle of the DC Servo directly using Arduino Uno servo.write

digital write command. In other word, we can control the parameter front wheel

steering angle δf directly, as a result, DC motor dynamics was not carefully analysed

72

in this chapter. Besides, because the response for front wheel steering DC Servo

Dynamics is fast, the ServoDynamics block can be estimated as a constant number

block 1.

Robot Lateral Plant:

when vx is 0.1 m/s

PLateral =
ψ̇

δf
=

[
0.368(s+ 0.484)

(s+ 1.077)(s+ 0.457)

]
(4.42)

Due to the integrator down there, it is not appropriate for us to implement a PI

controller in this case. There are basically two ways to design the inner loop controller

for this lateral model: The first choice is using a simple PI controller and the second

option is implementing a model-based phase-lead compensator.

Let’s talk about the simple PI controller (with high frequency roll-off and pre-

filter) design first. The PI controller has the form:

Klateral =
g(s+ z)m

s

[
100

100 + s

]m+1

(4.43)

Then, we are going to design for a phase margin (PM) of 60 deg and unity-gain

crossover frequency (ωg) of 5 rad/sec. The open loop transfer function L is given by

L = PlateralKlateral =
g(s+ z)m

s

[
0.368(s+ 0.484)

(s+ 1.077)(s+ 0.457)

] [
100

100 + s

]m+1

(4.44)

In this case, Kp = g and Ki = gz

Lastly, we compute the ideal g and z here. In my design, g = 18, z = 1.2.

W =
z

s+ z
(4.45)

73

Here, pre-filter W will ensure that the overshoot to a step reference command

approximates that dictated by the second order theory.

4.6.5 Lateral Model Inner Loop PI Controller frequency and Time Domain Studies

In what follows, L = PK = KP denotes the open loop transfer function, S =

(1+L)−1 denotes the closed loop sensitivity transfer function. T = L(1+ l)−1 denotes

the closed loop complementary sensitivity transfer function, KS denotes the transfer

function from (unfiltered) reference commands to controls (front wheel steering an-

gle δf), and SP denotes the transfer function from input disturbances to the wheel

speeds. We now examine studies for this system in both frequency and time domain.

Open Loop L Frequency Domain Analysis

Figure 4.29 show the bode plot for L = PK for designed g and z.

−100

−80

−60

−40

−20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot for Open Loop L
lateral

 (rad/s)
10

−1
10

0
10

1
10

2
10

3
10

4
−180

−135

−90

 (
d

e
g

)

g=18, z=1.2

Figure 4.29: Bode Plot for Open Loop Llateral

From Figure 4.29, we observe the following:

We observe that low frequency reference command r will be followed, low frequency

74

output disturbances do will be attenuated and high frequency sensors noise n will be

attenuated too.

With the PI controller g = 18 and z = 1.2, the crossover frequency of open loop L

is 6.63 rad/s with a phase margin (PM) equals 84.9◦. This means the open loop L

is stable and the system is relatively faster than the longitudinal open loop system,

which reflect the hardware performances.

Try without a pre-filter W

Figure 4.30 shows the frequency response for Try without a pre-filter (1.2
s+1.2

). System

should be fast but not that robust like the system with a pre-filter.

Bode Magnitude Plot for T
ry

 without prefilter W

 (rad/s)
10

−1
10

0
10

1
10

2
10

3
10

4
−100

−80

−60

−40

−20

0

20

 (
d

B
)

g=18, z=1.2

Figure 4.30: Bode Magnitude Plot for Try without Prefilter W

From Figure 4.24, we can observe that the (−3dB) bandwidth is 7.26 rad/s.

Try with a pre-filter W

Figure 4.31 shows the frequency response for Try with implementing a pre-filter

(1.2
s+1.2

). As expected, the system is more robust but the low frequency pole (comes

with the pre-filter W) reduces the bandwidth. Please see time domain analysis section

75

for more details.

Bode Magnitude Plot for T
ry

 with prefilter W

 (rad/s)
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

 (
d

B
)

g=18, z=1.2

Figure 4.31: Bode Magnitude Plot for Try with Pre-Filter W

4.6.6 Time Domain Analysis for Robot Lateral Model

Step Response for Try without pre-filter W

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response for T
ry

 without prefilter W

 (seconds)

g=18, z=1.2

Figure 4.32: Step Response for Try without Pre-Filter W

As we observe from Figure 4.32, the output angular velocity ψ̇ follows reference

76

command ψ̇ref very well with a 1 % overshoot and 1.2s settling time.

Step Response for Try with pre-filter W

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response for T
ry

 with prefilter W

 (seconds)

g=18, z=1.2

Figure 4.33: Step Response for Try with Pre-Filter W

As we observe from Figure 4.33 , the output angular velocity ψ̇ follows reference

command ψ̇ref very well with no overshoot and a relatively larger settling time, which

is 5.9 seconds. Compared to the step response for Try without a pre-filter W , the

system is slower but more robust (no overshoot).

4.6.7 On Ground Lateral Model

Actually, there is a slightly difference between the actual vehicle on ground lateral

model with the numerical model we have calculated. Here is the on-ground lateral

plant, we can see that the hardware result and simulation result are matched:

77

Figure 4.34: On Ground Lateral Plant

• Through system ID method (robot on-ground test), the linearized lateral plant

can be estimated as a first order system

• step response steady state of hardware result is 0.38 rad/sec

• peak-peak ripple of hardware result is 0.27 rad/sec

To design the PI controller (for rapid response and zero steady state error), we

set the desired settling time Ts = 1.5s (ωn is set to 3.8 rad/s which is less than 4

rad/s ZOH bandwidth limitation). Then, set damping ratio to 0.886 (which means

the step response of the system will roughly have a 0.4 % overshoot).

Here we design the PI controller: g = 1.38 z = 3.53.

Finally, we have Try (ωref to ω) here:

Try =
14.8

s2 + 6.67s+ 14.8
(4.46)

78

Figure 4.35: Lateral On Ground Inner Loop Try

And then Tru, which is the ωref to steer angle δf response.

Tru =
5.12(s+ 2.66)

s2 + 6.67s+ 14.82
(4.47)

Figure 4.36: Lateral On Ground Inner Loop Tru

4.7 Outer Loop: (v, θ) Cruise Control Along Line - Design and Implementation

In this section, we examine (v, θ) cruise control along a line. This outer-loop

control law can be visualized as shown in Figure 4.37.

79

Figure 4.37: Visualization of Cruise Control Along a Line

Here, (v, θ) are commanded. v is calculated based on wheel encoders. For cruise

control along a line, vref = constant, ωref = 0 are commanded. For cruise control

along a line, θ is calculated based on integrating ω measured by the IMU (i.e. θ =

θprevious + ωT , T = 0.1 sec).

The use of a proportional gain controller is justified because the map from the

references vref and ωref to the actual speeds v and ω looks like a diagonal system

diag(a
s+a

, b
s+b

) (at low frequencies). This is a consequence of a well-designed inner-

loop (see above). The outer-loop θ controller therefore sees b
s(s+b)

. From classical root

locus ideas, a proportional controller is therefore justified - provided that the gain

is not too large. If the gain is too large, oscillations will be expected in θ. A PD

controller with roll off would help with this issue.

Figure 4.38 shows both simulation and hardware implementation results for robot

going along a straight line. As we can observe, the trajectory error increases while

robot goes further. This error majorly comes from dead reckoning error.

80

Figure 4.38: Robot Trajectory - Go Along a Line

Figure 4.39: Orientation Error - Go Alone a Line

81

4.8 Outer Loop: Planar (x, y) Cartesian Stabilization - Design and Implementation

In this section, we discuss the planar (x, y, θ) outer-loop control law. It can be

visualized as shown in Figure 4.40.

Figure 4.40: Visualization of Planar (xy) Cartesian Stabilization Control System

Here, θ is calculated based on ω information from IMU (i.e. θ = θprevious+ωT , T = 0.1

sec). X and Y position is estimated using dead reckoning based on wheel encoders.

That is, x = xprevious + vxT , y = yprevious + vyT , vx = v cos θ, vy = v sin θ;

The nonlinear kinematic model can be usefully rewritten in terms of angular and

linear displacements. For this transformed system, a simple control law v = kses,

ω = kθeθ results in an error dynamics matrix (after linearization) that is Hurwitz

when kθ > ks > 0 A drawback of this control law (consistent with the Brockett 1983

result is that it can only get the system arbitrarily close to the desired (xref , yref , θref)

. To precisely achieve the objective, one would have to switch control laws. These

ideas are used to motivate a simple proportional control law for the planar (x, y)

outer-loop position control that was implemented for the rear-wheel drive vehicle.

82

Figure 4.41: Visualization of Longitudinal Distance to Target es = ∆λ and Angular

Error eθ = ∆φ

It is now useful to present some of the key ideas Cartesian stabilization. Let

es = ∆λ denote the projection of the vehicle-to-target vector onto the longitudinal

body axis of the vehicle. φ is defined as the angle which binds (xref , yref) and (x, y).

It is called the pointing angle.

From Figure 4.41, we have:

φ = tan−1

(
yref − y
xref − x

)
(4.48)

eθ = φ− θ (4.49)

es = ∆λ = ∆l cos ∆φ (4.50)

The structure of the control law is as follows - a proportional control law:

v = kses ω = kθeθ (4.51)

83

Figure 4.42: Robot Position Control in xy Plane - Cartesian Stabilization (small Kθ

= 0.8

Figure 4.43: Robot Position Control in xy Plane - Cartesian Stabilization (large Kθ

= 2

84

From Figure 4.42 and 4.43, we can make the following observations:

• With small Kθ, the trajectory is less directionally aggressive.

• With large Kθ, robot moves more directly towards the target

4.9 Outer Loop Vision Based (vx, θ) Control - Finish the Oval Track

Block Diagram For Black Line Guidance Robot Lateral Model Outer Loop

Design

Figure 4.44: Visualization for Vision Based Outer Loop Control System Block Dia-

gram

Vision subsystem is feeding back eψ

In this case, eψ denotes the angle deviation between the black track (center of gravity

of the black area in camera’s region of interest) and the orientation of the robot. In

this case, we can obtain eψ directly from vision subsystem.

eψ = ψref − ψ (4.52)

85

Figure 4.45: Feedback Black Line Tracking Error in Degrees

Simplified Block Diagram for Vision Based Lateral Outer Loop Control

Figure 4.46: Simplified Block Diagram for Vision Based Lateral Outer Loop Control

Transfer Functions

Transfer Function from ˙ψref to ψ̇ (without pre-filter W):

Try =
ψ̇

ψ̇ref
=

[
662.4(s+ 1.2)(s+ 0.484)

(s+ 92.88)(s+ 6.94)(s+ 1.229)(s+ 0.4857)

]
(4.53)

=
662.4s2 + 1115s+ 384.7

s4 + 101.5s3 + 816.3s3 + 1165s+ 384.7
(4.54)

86

Plant for Outer Loop Controller Design

Tplant =
ψ

ψ̇ref
(4.55)

=

[
662.4(s+ 1.2)(s+ 0.484)

s(s+ 92.88)(s+ 6.94)(s+ 1.229)(s+ 0.4857)

]
(4.56)

Known the plant we have, we can now design a plant based outer loop controller.

First, we put the inverse of the plant in controller K

K = GAIN
(s+ 92.88)(s+ 6.94)(s+ 1.229)(s+ 0.4857)

(s+ 1.2)(s+ 0.484)
(4.57)

Here we design a P controller with roll-off and pre-filter. The controller has the

form (P plus 3rd order roll-off):

Kouter = g
(s+ 92.88)(s+ 6.94)(s+ 1.229)(s+ 0.4857)

(s+ 1.2)(s+ 0.484)

[
100

s+ 100

]3

(4.58)

Kouter ≈ 100g(s+ 6.94)

[
100

s+ 100

]2

(4.59)

Because we are using P controller here, notice that Kp = g. Actually, after

pole-zero cancellation, the controller K can be approximated to be a standard PD

controller.

87

4.9.1 Vision Based Black Line Guidance Outer Loop PD Controller Trade Studies

In what follows, L = PK = KP denotes the open loop transfer function, S =

(1 + L)−1 denotes the closed loop sensitivity transfer function. T = L(1 + l)−1 de-

notes the closed loop complementary sensitivity transfer function, KS denotes the

transfer function from (unfiltered) reference commands ψ̇ref to controls ψref (which

is the reference command for lateral inner loop model) , and SP denotes the transfer

function from input disturbances to the robot orientation ψ. Because we are using P

controller here, we now only examine trade studies for gain g variations.

First, let us analysis the open loop transfer function L = PK. When g is

varied (g is from 0.001-0.005), we make the following observations:

−140

−120

−100

−80

−60

−40

−20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot for Open Loop L

 (rad/s)
10

−1
10

0
10

1
10

2
10

3
−360

−315

−270

−225

−180

−135

−90

 (
d

e
g

)

g = 0.001

g = 0.002

g = 0.003

g = 0.004

g = 0.005

Figure 4.47: Bode Plot for Open Loop L

From Figure 4.47, we can make the following analyses:

• when controller gain g = 0.001, we have a proper 0dB crossover frequency which

is around 0.662 rad/s. Using the relationship f = 2πω, the open loop system

88

has a frequency of 4.16 Hz, which matches the hardware bandwidth limitations

we have mentioned in the obvious chapter (pi camera vision subsystem has a

maximum bandwidth of 8.1 Hz, this is the main restriction here).

• The bandwidth of the system increases while the gain g is increasing

From Reference Command to Output Try: Magnitude Responses

When g is varied (g is from 0.001-0.005), Figure 1.32 obtains the closed loop Try bode

magnitude responses.

10
−2

10
−1

10
0

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

−20

0

 (
d

B
)

Bode Magnitude Plot for Outerloop T
ry

 (rad/s)

g = 0.001

g = 0.002

g = 0.003

g = 0.004

g = 0.005

Figure 4.48: Bode Magnitude Plot for Outerloop Try

From figure 4.48, we can make the following observations:

• System bandwidth increases with a increasing g

• when g is 0.001, system has bandwidth of 0.67 rad/s, which matches the hard-

ware result

From Reference Command to Output Try: Time domain step Responses

When g is varied (g is from 0.001-0.005), one obtains the closed loop Try step responses

in Figure 1.33.

89

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response for Outerloop T
ry

 (seconds)

g = 0.001

g = 0.002

g = 0.003

g = 0.004

g = 0.005

Figure 4.49: Step Response for Outerloop Try

From the step response Figure 4.49, here we make the following observations:

• With controller proportional gain g increasing, the step responses do not have

any overshot

• Settling time decreases as the gain g increasing

• With a g of value 0.001, settling time to with 10% is 3.2s

From Reference Command ψref to control ψ̇ref - Tru: Magnitude Re-

sponses

When g is varied (g is from 0.001-0.005), Figure 4.50 obtains the closed loop Tru bode

magnitude responses.

90

Bode Magnitude Plot for Outerloop T
ru

 (rad/s)
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−50

−40

−30

−20

−10

0

10

20

30

 (
d

B
)

g = 0.001

g = 0.002

g = 0.003

g = 0.004

g = 0.005

Figure 4.50: Bode Magnitude Plot for Outerloop Tru

From the step response Figure 4.50, here we make the following observations:

• Increasing gain g will increase the peak Tru at all except low frequencies

• Increasing g increases peak Tru: 13.7 (g =0.001), 27.7dB (g = 0.005)

Sensitivity Figures 4.51 contains sensitivity bode magnitude values for specific

g variations.

91

10
−2

10
−1

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

10

 (
d

B
)

Bode Magnitude Plot for Sensitivity S

 (rad/s)

g = 0.001

g = 0.002

g = 0.003

g = 0.004

g = 0.005

Figure 4.51: Bode Magnitude Plot for Sensitivity S

From the sensitivity S bode magnitude values, here we make the following obser-

vations:

• Increasing g results in smaller sensitivity at low frequencies and a slightly larger

peak sensitivity.

• peak sensitivities do not change much with increasing g: 0.705 dB (g = 0.005),

0.155 dB (g = 0.001)

4.9.2 On Ground Lateral Model Outer Loop Controller Design

This outer loop design is based on on ground lateral model inner loop design.

After implementing PI controller, lateral inner loop Try has two complex poles which

are near real pole (s = −3.3). To simplify the problem, we estimate lateral inner loop

Try as standard first order system. In the aspect of outer loop, outer loop plant can

be estimated as lateral inner loop Try with an integrator.

92

Tplantest ≈
3.3

s(s+ 3.3)
(4.60)

To meet the need of rapid response of the system, we used root locus approach to

design a PD controller. We put a zero at z = -2. Here is the PD controller: Kp =

1.2, Kd = 0.6 (which means g = 1.2 z = 2).

After closing the loop, we have Try and Tru for closed lateral outer loop system:

Try =
1.98(s+ 2)

(s+ 0.9)(s+ 4.375)
(4.61)

Figure 4.52: Try for Lateral Outer Loop

• ωn of outer loop is around 0.8 rad/s, which is smaller than inner loop bandwidth

Tru =
0.6(s+ 3.3)(s+ 2)

(s+ 0.9)(s+ 4.375)
(4.62)

93

Figure 4.53: Tru for Lateral Outer Loop

• steady state of Tru is 1.08

• settling time of simulated Tru is 5 seconds (which means this step response is

slow). However, with this big settling time, robot can still finish track following

tasks, so the outer loop comptroller design is successful

4.10 Complete Lateral Model for FreeSLAM Robot - Lateral Model with Pi

Camera Vision Subsystem

First of all, let us recall the complete model we’ve mentioned in Chapter 3.

ẋ = Ax+Bu+ Eω (4.63)

y = Cx+Du+ Fω (4.64)

The state x = [vy, ψ̇, yL, εL]T and control input u = δf , and disturbance ω = KL.

Here is the state space equations for the complete dynamic model:

94

v̇y

ψ̈

ẏL

ε̇L

=

− cf+cr
mvx

−vx +
crlr−cf lf
mvx

0 0

−lf cf+lrcr
Iψvx

− l2f cf+l2rcr

Iψvx
0 0

−1 −L 0 vx

0 −1 0 0

vy

ψ̇

yL

εL

+

cf
m

lfcf
Iψ

0

0

δf +

0

0

0

vx

KL

There are two subsystems in this whole complete model. The first one is the on-

board vehicle sensors subsystem, where inertial sensors (9 DOF IMU and encoders)

are used for measuring lateral acceleration ÿ = (v̇y + vxψ̇) and the yaw rate ψ̇. Mean-

while, the vision subsystem estimates yL and εL. The road curvature KL is working

as a exogenous disturbance signal.

The output equations have following form:

y =

− cf+cr
mvx

crlr−cf lf
mvx

0 0

0 1 0 0

0 0 1 0

0 0 0 1

vy

ψ̇

yL

εL

+

cf
m

0

0

0

δf

4.11 Plot Analysis

Like what we have done in Chapter 3, the core of the Matlab plot analysis lies

in the understanding of the behavior of the vehicle at various speeds (the complex

nonlinear model can be linearized at different cruise speed Vx), under various road con-

ditions. Then, we analysed how different look-ahead distance L affects the dynamic

behavior of the vehicle. Besides, the delay of vision subsystem is very important too.

95

4.11.1 Main Open Loop Transfer Functions

Here are our FreeSLAM Robot’s working condition when it’s performing wireless

mapping: ideally, the cruise speed of robot vx is 0.1 m/s with a fixed pi camera

look-ahead distance L which is roughly 0.1 m (10cm). Besides, in the situation we’re

talking about here, the process delay of camera vision subsystem is not taken into

consideration.

So in this situation, the main transfer functions are:

Transfer function V1(s) and V2(s) are sharing the same denominator P (s).

Pfs(s) = 0.0002205s4 + 0.0003381s3 + 0.0002708s2 (4.65)

V1fs(s) =
yL
δf

=
0.06183s2 + 0.04275s+ 0.01781

s4 + 1.534s3 + 1.228s2
(4.66)

V2fs(s) =
εL
δf

=
0.368s+ 0.1781

s3 + 1.5342 + 1.228s
(4.67)

According to the transfer functions above, in the next secsection, we are going to

talk about the Matlab Plot Analysis.

96

4.11.2 Line Tracking Performance Impact Factors

Robot cruise speed Vx

−1 −0.5 0 0.5
−6

−4

−2

0

2

4

6
0.020.0440.070.1050.15

0.21

0.32

0.55

0.020.0440.070.1050.15

0.21

0.32

0.55

1

2

3

4

5

6

1

2

3

4

5

6

Root Locus of V1(s) for Velocity vx = 0.1,0.2,0.3,0.4,0.5 m/s and Fixed Look−ahead Distance L = 0.1m

 (seconds
−1

)

 (
s
e

c
o

n
d

s
−

1
)

vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.54: Root Locus of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 0.1m

Figure 4.54 Analysis: As the root locus of V 1(s) shows, overall, the double inte-

grator at the origin corresponds to the integration action between lateral acceleration

and position at the look-ahead. The two poles and zeros in the left half plane char-

acterize the vehicle dynamics.

By increasing the cruise speed Vx, both two poles and two zeros in the left half plane

are moving towards to the imaginary axis.

97

−100

−50

0

50

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot V1(s) for Varying Velocity vx = 0.1,0.2,0.3,0.4,0.5 m/s and Fixed Look−ahead Distance L = 0.1m

 (rad/s)
10

−2
10

−1
10

0
10

1
10

2
−180

−135

−90

−45

 (

d
e

g
)

vx = 0.1m/s

vx = 0.2m/s

vx = 0.3m/s

vx = 0.4m/s

vx = 0.5m/s

Figure 4.55: Bode Plot of V1(s) for Varying Cruise Speed Vx and Fixed Look-Ahead

Distance L = 0.1m

Figure 4.55: Bode plot V1(s) for varying cruise speed Vx = 0.1,0.2,0.3,0.4 and 0.5

m/s with a fixed camera look-ahead distance 0.1m and no vision subsystem delay.

It shows that increasing the cruise speed Vx will decrease the Phase Margin (PM).

Under the condition that cruise speed Vx = 0.5m/s (maximum speed in the plot), the

Phase Margin (PM) is only 0.774 degrees which is not good.

98

Hardware Result

We collect the cruise speed V of robot by using encoders (0.06 m/s resolution) and

orientation of robot by 9 dof IMU (0.01 rad resolution).

By using real-wheel drive kinematic model,

Vx = V ∗ cos(θ); (4.68)

Vy = V ∗ sin(θ); (4.69)

I integrated the Vx and Vy Speeds to get the position information (X,Y). then

plot (X,Y) to get the real trajectory plot as follows:

Figure 4.56: Robot Goes Off the Track Due to Too High Speed

As Figure 4.56 shows, with a commanded cruise speed of 0.7 m/s, robot goes off

the track because of the too high commanded cruise speed Vx.

99

Camera Fixed Look-Ahead Distance L

−1 −0.5 0 0.5
−6

−4

−2

0

2

4

6
0.020.0440.070.1050.15

0.21

0.32

0.55

0.020.0440.070.1050.15

0.21

0.32

0.55

1

2

3

4

5

6

1

2

3

4

5

6

Root Locus of V1(s) for Varing Look−ahead Distance L = 0.1,0.2,0.3,0.4,0.5 m and Fixed Velocity xv = 0.1 m/s

 (seconds
−1

)

 (
s
e

c
o

n
d

s
−

1
)

L=0.1m

L=0.2m

L=0.3m

L=0.4m

L=0.5m

Figure 4.57: Root Locus of V1(s) for Varying Look-Ahead Distance L and Fixed

Cruise Speed Vx = 0.1 m/s

−100

−50

0

50

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Plot V1(s) for Varing Look−ahead Distance L = 0.1,0.2,0.3,0.4,0.5 m and Fixed Velocity xv = 0.1 m/s

 (rad/s)
10

−2
10

−1
10

0
10

1
10

2
−180

−135

−90

 (
d

e
g

)

L=0.1m

L=0.2m

L=0.3m

L=0.4m

L=0.5m

Figure 4.58: Bode Plot of V1(s) for Varying Look-Ahead Distance L and Fixed Cruise

Speed Vx = 0.1 m/s

100

Figure 4.58 Analysis: As we can observe here, the farther the pi camera looks, the

more Phase Margin (PM) the vision lateral system will increase, as a result, the whole

system is becoming more stable. With a cruise longitudinal speed vx = 0.1m/s and

camera look-ahead distance is 0.5m , the lateral system’s phase margin will increase

to 36.6 degrees which is good to our system.

Hardware Result Here we generate the trajectory of robot when it is applied a

small camera look-ahead distance L = 0.1m.

Figure 4.59: Trajectory of Robot When Small L is Applied

As we can see, robot has the ability to follow the track well at the very beginning,

but it goes off the track in the end because of the too small camera look-ahead dis-

tance L.

Delay from Vision Subsystem Td

As we have mentioned in the simulations, one important parameter which will ef-

fect the overall system is the delay associated with the latency of visual process-

ing. As shown in the overall system block diagram, the component is a pure time

101

delay element e−Tds representing the latency Td of the vision subsystem. Using

PadeApproximation and this delay component becomes:

D(s) = e−Tds ≈ 2− Tds
2 + Tds

(4.70)

V1(s)D(s) demonstrate the effect of vision subsystem latency.

Under certain condition:

D(s) =
−0.5s+ 2

0.5s+ 2
(4.71)

And here is the nominal transfer function (using nominal parameters):

V1(s)D(s) =
yL
δf

=
−0.06183s3 + 0.2046s2 + 0.1532s+ 0.07124

s5 + 5.534s4 + 7.362s3 + 4.912s2
(4.72)

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

0

90

180

270

 (
de

g)

Bode Plot V1(s) for Fixed Cruise Speed Vx = 0.1m/s, Fixed Look−Ahead Distance L = 0.1m, Vision Subsystem Delay t = 0.5s,1.0s,1.5s,2.0s,2.5s

 (rad/s)

Td = 0.5s

Td = 1.0s

Td = 1.5s

Td = 2.0s

Td = 2.5s

Figure 4.60: Bode Plot of V1(s)D(s) for Cruise Speed Vx = 20m/s, Look-Ahead

Distance L = 15m and Vision Subsystem Delay t = 0.15s

We studied V 1(s)D(s) under the following situation, we fixed the cruise speed vx

with a fixed camera look-ahead distance and vary the delay of vision subsystem. As

we can observe above, at beginning, when the delay is as small as 0.5 seconds, the

102

plant has a phase margin of 4.82 degrees. However, when we start increase the delay,

the system is becoming unstable. For example, when delay has been increased to 2.5

seconds, the phase margin of the system is -8.82 degrees, which shows that the plant

is unstable.

Hardware Result Applying a delay Td = 0.1s for vision subsystem delay, we

can make the following observations:

Figure 4.61: Trajectory of Robot When Vision Delay is 0.1s

Implementing delay in vision subsystem means that we are lowering the lateral

outer loop frequency. In this case, by applying a delay of 0.1s, lateral outer loop

frequency has dropped from 7.5 Hz to 4.29Hz. That’s the main reason why robot

goes off the track.

When we increase the delay Td from 0.1s to 0.15s, we can make the following

observations:

103

Figure 4.62: Trajectory of Robot When Vision Delay is 0.15s

To be more specific, when we apply 0.15s delay to the vision system, the lateral

outer loop frequency has dropped from 7.5Hz to 3.53Hz, which makes the system

stability worse (phase margin is negative). That’s the main reason why robot goes

off the track at the very beginning.

4.12 Finish the Track in Minimum Time - With/Without Pan Servo

As we know, camera losing track is the one of the key reasons that cause robot

loses the track. Here we introduce a pan-tilt structure. In this case, under the cir-

cumstances that robot is trying to turn sharp curves (ψerror) is too large, the pan

servo (controlled by P controller) will pan the camera to reduce ψerror to make the

system remain stable.

The followings are the trajectories for robot finish the track without and with pan

servo.

Robot Finish the Track without Pan Servo

Robot Finish the Track without Pan Servo with a minimum time of 24.3 seconds.

104

Figure 4.63: Robot Finish the Track without Pan Servo in 24s

Here is the plot for ψerror changing:

Figure 4.64: ψerror Changing with Time without Implementing Pan Servo

we can make the following observations: when robot is trying to turn sharp turns,

the ψerror obtained from vision subsystem can reach a maximum of 35 degrees. This

phenomenon can cause track losing easily. so a pan servo implementation is necessary.

Robot Finish the Track with Pan Servo with a minimum time of 19.8 seconds.

105

Figure 4.65: Robot Finish the Track with Pan Servo in 20s

Here is the plot for ψerror changing and pan servo steering performance along with

time:

Figure 4.66: Yaw Error and Pan Servo Steer Changing with Time with Implementing

Pan Servo

We can make the following observations according to the plot above. After im-

plementing the pan servo, ψerror can be easily controlled to around 0 degrees (with a

106

max ripple of 3 degrees). To draw a brief conclusion, the pan structure contributes

to the stabilization of the whole vision based system.

4.13 Summary and Conclusion

This chapter has provided a comprehensive case study for our enhanced rear-

wheel drive FreeSLAM vehicle. Both simulation and hardware results were presented.

Many demonstrations were thoroughly discussed. All control law developments were

supported by theory. Differences between hardware results and simulation results

were also addressed. Particular focus was placed on the fundamental limitations

impose by system components/subsystems.

107

Chapter 5

SLAM WITH LIDAR SCAN DATA ONLY - HECTOR MAPPING

5.1 Introduction to SLAM (Simultaneous localization and mapping)

Definition of SLAM problem SLAM is the abbreviation for Simultaneous

Localization And Mapping.

Mapping is the problem of integrating the information gathered with the robot’s

sensors into a given representation. It can be described by the question “What does

the world look like?” Central aspects in mapping are the representation of the envi-

ronment and the interpretation of sensor data. In contrast to this, localization is the

problem of estimating the pose of the robot relative to a map. In other words, the

robot has to answer the question, “Where am I?” Typically, one distinguishes between

pose tracking, where the initial pose of the vehicle is known, and global localization,

in which no a priory knowledge about the starting position is given.

Simultaneous localization and mapping (SLAM) is therefore defined as the prob-

lem of building a map while at the same time localizing the robot within that map.

In practice, these two problems cannot be solved independently of each other. Before

a robot can answer the question of what the environment looks like given a set of ob-

servations, it needs to know from which locations these observations have been made.

At the same time, it is hard to estimate the current position of a vehicle without a

map. Therefore, SLAM is often referred to as a chicken and egg problem: A good

map is needed for localization while an accurate pose estimate is needed to build a

map.

So, why is SLAM problem hard?

108

It’s a chicken and egg problem

• a map is needed to localize the robot

• a pose estimate is needed to build a map

Mathematical Expression of SLAM Problem

To estimate the pose and the map of a mobile robot at the same time

p(x,m|z, u) (5.1)

where x denotes the estimated pose of the robot, m is the grid map. z represents

the observations (in this case it is the LIDAR scan data) and u denotes controls.

5.2 System Overview

The ability to learn a model of the environment and to localize itself is one of the

most important abilities of truly autonomous robots able to operate within real world

environments. In this chapter, we present a flexible and scalable system for solving

the SLAM (Simultaneous Localization and Mapping) problem that has successfully

been used on unmanned ground vehicles (UGV). Our approach uses the ROS jade

operating system as middle-ware and is available as open source software. It honors

the API of the the ROS navigation stack and thus can easily be interchanged with

other SLAM approaches available in the ROS ecosystem.

• 360 RP LiDAR

The RPLIDAR 360 Laser Scanner is a low cost 360 degree 2D scanner (LIDAR)

solution. It preforms 360 degree laser scanning with more than 6 meters distance de-

tection range. The produced 2D point cloud data can be used in mapping, localization

(SLAM) and object/ environment modeling.

109

RPLIDAR emits a modulated infrared laser signal and the laser signal is then

reflected by the object to be detected. The returning signal is sampled by vision

acquisition in RPLIDAR and the DSP embedded in RPLIDAR starts processing

the sample data, output distance value and angle value between the object and the

RPLIDAR. Through processing the sample data is output through a communication

interface.

• ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software.

It is a collection of tools, libraries, and conventions that aim to simplify the task of

creating complex and robust robot behavior across a wide variety of robotic platforms.

As a result, ROS was built from the ground up to encourage collaborative robotics

software development. For example, one laboratory might have experts in mapping

indoor environments, and could contribute a world-class system for producing maps.

Another group might have experts at using maps to navigate, and yet another group

might have discovered a computer vision approach that works well for recognizing

small objects in clutter. ROS was designed specifically for groups like these to col-

laborate and build upon each other’s work, as is described throughout this site.

• ROS node

A node is a process that performs computation. Nodes are combined together into

a graph and communicate with one another using streaming topics, RPC services,

and the Parameter Server. These nodes are meant to operate at a fine-grained scale;

a robot control system will usually comprise many nodes. For example, one node

controls a laser range-finder, one Node controls the robot’s wheel motors, one node

performs localization, one node performs path planning, one node provide a graphical

view of the system, and so on.

110

5.3 Hector SLAM Approach

5.3.1 Hector SLAM Requirements

Generally speaking, Hector SLAM includes the following four aspects: (1) Map

the unknown environment, (2) Localize robot simultaneously, (3) Real-time capable,

(4) Saving GeoTiff maps.

5.3.2 Hector Mapping-ROS API

The main SLAM node I am using is Hector Mapping.

• Main inputs

There are two main inputs:the first is wireless transported LiDAR scan data on the

”/scan” topic. The second is transformed data via node tf.

• Main outputs

There are two main outputs: the first is map on the ”/map” topic, while the

other one is real-time position of robot in the map(using tf node ”map”→”odom”

transform)

5.3.3 Whole picture of Hector SLAM

Figure 5.1 shows ROS nodes connections and communication. When robot per-

forms indoor SLAM, ROS nodes, topics and services are well visualized in the follow-

ing figure:

111

Figure 5.1: Big Picture Of Hector SLAM

5.3.4 Coordinate Frames

map

The coordinate frame called map is a world fixed frame, with its Z-axis pointing

upwards. The pose of a mobile platform, relative to the map frame, should not sig-

nificantly drift over time. The map frame is not continuous, meaning the pose of a

mobile platform in the map frame can change in discrete jumps at any time.

In a typical setup, a localization component constantly re-computes the robot

pose in the map frame based on sensor observations, therefore eliminating drift, but

causing discrete jumps when new sensor information

arrives.

The map frame is useful as a long-term global reference, but discrete jumps make

it a poor reference frame for local sensing and acting.

112

odom

The coordinate frame called odom is a world-fixed frame. The pose of a mobile

platform in the odom frame can drift over time, without any bounds. This drift makes

the odom frame useless as a long-term global reference. However, the pose of a robot

in the odom frame is guaranteed to be continuous, meaning that the pose of a mobile

platform in the odom frame always evolves in a smooth way, without discrete jumps.

In a typical setup the odom frame is computed based on an odometry source, such

as wheel odometry, visual odometry or an inertia measurement unit.

The odom frame is useful as an accurate, short-term local reference, but drift

makes it a poor frame for long-term reference.

base link

The coordinate frame called base link is rigidly attached to the mobile robot base.

The base link can be attached to the base in any arbitrary position or orientation;

for every hardware platform there will be a different place on the base that provides

an obvious point of reference. Note that REP 103 [1] specifies a preferred orientation

for frames.

Relations Between Frames

We have chosen a tree representation to attach all coordinate frames in a robot

system to each other. Therefore each coordinate frame has one parent coordinate

113

frame, and any number of child coordinate frames. The frames described in this REP

are attached as follows:

map − > odom − > base link

The map frame is the parent of odom, and odom is the parent of base link. Al-

though intuition would say that both map and odom should be attached to base link,

this is not allowed because each frame can only have one parent.

Figure 5.2: Big Picture Of Hector SLAM

• ”/odom” frame is not needed, which is mainly for compatibility with ROS

gmapping

• ”/base stabilized” frame is needed for transformation of LIDAR data

• height estimation is not trivial

114

5.4 Definitions and Extended Kalman Filter Implementation

5.4.1 SLAM Problem Model and Parameters Definition

What have been given

The robot’s controls

u1:T = u1, u2, u3..., uT (5.2)

Here we introduce the Standard OdometryModel. Say we have a robot moving

from (x̄, ȳ, θ̄) to (ā′, ȳ′, θ̄′), we are using (x̄, ȳ, θ̄) here because the (x, y) coordinates

and the orientation of the robot are estimated.

Figure 5.3: Standard Odometry Model

Then here we have the Odometry Information u = (δrot1, δtrans, δrot2) and the

following equations:

δtrans =
√

(x̄′ − x̄)2 + (ȳ′ − ȳ)2 (5.3)

δrot1 = atan2(ȳ − ȳ′, x̄′ − x̄)− θ̄ (5.4)

δrot2 = θ̄′ − θ̄ − δrot1 (5.5)

Robot Observations

z1:T = z1, z2, z3..., zT (5.6)

115

Here we have the observation or sensor (encoder, IMU or LIDAR) model with the

robot’s pose.

p(zt | xt) (5.7)

What do we want finally: map of the environment m.

Path (Trajectory) of the robot

x0:T = x1, x2.x3..., xT (5.8)

Then finally we estimate the robot’s trajectory and the grid map.

p(x0:T ,m1:T , u1:T) (5.9)

Figure 5.4: Graphic Model of SLAM Problem Approach

Platform Full 3D State

We define the navigation coordinate system as a right handed system having the

origin at the starting point of the platform with the z axis pointing upwards and the

116

x axis pointing into the yaw direction of the platform at beginning. The full 3D state

is represented by

x = (ΩT + pT + vT)T (5.10)

where Ω = (φ, ϑ, ψ)T are row, pitch and yaw angles, P = (px, py, pz)
T and v =

(vx, vy, vz)
T are the position and velocity of the platform expressed in the navigation

frame.

5.4.2 Extended Kalman Filter Implementation in Hector Mapping

Figure 5.5: Complete Model with Extended Kalman Filter Implementation

The dynamic model can be described as the following:

X(k) = AX(k − 1) +BU(k) + ∆(k) (5.11)

Z(k) = HX(k) + Θ(k) (5.12)

In those equations, besides the parameters (X, Z, U) we have mentioned above,

A and B are system parameters,H is the observation system parameter, in this case,

117

they are metrics. ∆ and are the noise of process (input noise) and observation

(output noise), in assumption they are Gaussian noise and their covariances are Q

and R.

Kalman Filter Equations can be represented in the following equations:

X(k | k − 1) = AX(k − 1 | k − 1) +BU(k) (5.13)

P (k | k − 1) = AP (k − 1 | k − 1)A
′
+Q (5.14)

X(k | k) = X(k | k − 1) +Kg(k)(Z(k)−HX(k | k − 1)) (5.15)

Kg(k) = P (k | k − 1)H
′
/(HP (k | k − 1)H

′
+R) (5.16)

P (k | k) = (I −Kg(k)H)P (k | k − 1) (5.17)

Analysis:

As we can see from the equations above, Kalman Gain Kg(k) increases with a de-

creasing observe noise covariance R. When the current estimation error covariance

decreases, Kg(k) gets larger. To draw a brief conclusion, Kalman gain Kg(k) repre-

sents the weight of observe information (for example the laser scan range information

from LIDAR or the angular velocity detected by wheel encoders) during the up-

date process. In this case, when the observe noise is smaller, Z(k) gets bigger and

HX(k | k − 1) gets smaller.

Kalman Filter Algorithms Process

1. Set initial system state X(0) and its error covariance P (0), then set noise co-

variance Q0, R0.

118

2. Using the equations above, calculate estimated state of the system X(k | k− 1)

and estimated covariance P (k | k − 1)

3. According to the updated equations, calculate the kalman gain and updated

state estimation X(k | k − 1) and P (k | k − 1)

4. repeat step (2) and step (3).

5.4.3 Vectors Used in EKF Implementation

robot current state x

Robot’s state can be shown as the following vector:

x =

X

Y

Ψ

 (5.18)

To recall the vehicle’s kinematics

ẋ = vcosΨ

ẏ = vsinΨ

Ψ̇ =
vtanΨ

L

So to analysis this discrete system with a fixed sampling time ∆t, the increasement

of robot’s odometry (∆X ∆Y ∆Ψ) are:

∆X = vcosΨ∆t (5.19)

∆Y = vsinΨ∆t (5.20)

119

∆Ψ =
vtanΨ

L
∆t (5.21)

All the information above is supposed to be generate by the wheel encoder (Hall

Effect Sensor with 10 small magnets) and IMU (BON055).

Then, we can have a updated state x
′
:

x
′
=

X
′

Y
′

Ψ
′

 = x+

∆X = vcosΨ∆t

∆Y = vsinΨ∆t

∆Ψ = vtanΨ
L

∆t

(5.22)

The Kalman Gain Kg The Kalman gain Kg is computed to find out how much

we should trust the observed landmarks and as such how much we want to gain from

the new information they provide. If we can see from the odometry reading that the

robot was moved 2cm to the left, according to the observed landmarks we’ll use the

Kalman Gain Kg to find out how much we should trust the LIDAR range readings.

Finally, it may turn out to be 1 cm cause we do not the landmarks completely. If

the range measurement device is really bad compared to the odometry performance

of the robot, the Kalman Gain will decrease, otherwise it will increase.

The Jacobian of the measurement model H

The Jacobian of the measurement model is closely related to the measurement

model. The measurement model defines how to compute an expected range and

bearing of the measurements (observed landmark positions). It is done using the

following formula:

120

[
RangeBearing

]
=

√(λx − x)2 + (λy − y)2 + θrange

tan−1(λy−y
λx−x)− ψ + θangle

 (5.23)

where λx is the x position of the landmark, x is the current estimated robot x

position, λy is the y position of the landmark and y is the current estimated robot y

position. ψ is the robot’s yaw angle and θ is the LIDAR data observe noise.

This will give us the predicted measurement of the range and bearing to the landmark.

The Jacobian of this matrix with respect to x, y, and θ, then the H is:

x−λxr y−λy
r

0

λy−y
r2

λx−x
r2

−1

 (5.24)

To draw a brief conclusion, H shows us how much the range and bearing changes

as x, y and θ changes.

The Jacobian of the prediction model: A Matrix

Like H, the Jacobian of the prediction model is closely related to the prediction

model, of course, so lets go through the prediction model first. The prediction model

defines how to compute an expected position of the robot given the old position and

the control input.

Jacobian A yieldingL

A =

1 0 −∆tsinθ

0 1 ∆tcosθ

0 0 1

 (5.25)

The SLAM specific Jacobians : Jxr and Jz

When doing SLAM there are some Jacobians which are only used in SLAM. This

is of course in the integration of new features, which is the only step that differs

121

from regular state estimation using EKF. The first is Jxr. It is basically the same as

the jacobian of the prediction model, except that we start out without the rotation

term. It is the jacobian of the prediction of the landmarks, which does not include

prediction of theta, with respect to the robot state [x, y, theta] from X

Jxr = Jxr =

1 0 −∆tsinθ

0 1 ∆tcosθ

 (5.26)

The jacobian Jz is also the jacobian of the prediction model for the landmarks,

but this time with respect to [range, bearing]. This in turn yields:

Jz =

cos(θ + ∆θ) −∆tsin(θ + ∆θ)

sin(θ + ∆θ) ∆tcos(θ + ∆θ)

 (5.27)

5.4.4 2D SLAM Visualization in RVIZ

In this section, we describe how to draw the 2D map of unknown environment

using hector SLAM. Bilinear filtering, as the major algorithm, is used to solve this

problem.

• Map Access - Grid Map

Grid Map

1. Grid maps are a discretization of the environment into free and occupied cells

2. Mapping with known robot poses is easy. So within this thesis, SLAM approach

can be divided into to to steps: The first step is navigation: we estimate the

pose of robot accurately by using majorly 2 kinds of low-pass filters(Kalman

Filter for Gaussian noise and Particle Filter, which is a beyes filter, for filtering

non-Gaussian noise) The localization and mapping problem are combined but

122

we’re supposed to solve localization problem first and then focus on mapping

problem.

Figure 5.6: 2D Grid Map

grid map is used to represent arbitrary environments. Because LIDAR platform

can exhibit6 DOF motion, the scan has to be transformed into a local stabilized co-

ordinate frame usingthe estimated attitude of the LIDAR system.

In this case, the scan is converted into a point cloud of scan endpoints. This point

cloud can be preprocessed, for example by down-sampling the number of points or

removal of outliers.

Given a continuous map coordinate Pm, the occupancy value M(Pm) as well as

the gradient 5M(Pm) = (∂M
∂x

(Pm), ∂M
∂y

(Pm)) can be approximated by using the four

closest integer P00, P01, P10 and P11. Linear interpolation along the xaxis and yaxis

then yields:

M(Pm) ≈
y − y0
y1 − y0

(
x1 − x
x1 − x0

M(P11) +
x1 − x
x1 − x0

M(P01)) +
y1 − y
y1 − y0

(
x− x0
x1 − x0

M(P10) +
x1 − x
x1 − x0

M(P00)) (5.28)

The derivatives can be approximated by:

∂M

∂x
≈ y − y0

y1 − y0

(M(P11)−M(P01)) +
y1 − y
y1 − y0

(M(P10)−M(P00)) (5.29)

123

∂M

∂y
≈ x− x0

x1 − x0

(M(P11)−M(P10)) +
x1 − x
x1 − x0

(M(P01)−M(P00)) (5.30)

In this situation, we should point out that the sample points cells are situated on

a regular grid with distance 1 (in map coordinates) from each other, so in this case

y−y0
y1−y0 and x−x0

x1−x0 in the equations above approximately equal 1, which simplifies the

presented equations for the gradient approximation.

Figure 5.7: Bilinear Filtering Part 1

124

Figure 5.8: Bilinear Filtering of Occupancy Grid Map

To draw a brief conclusion, in hector SLAM, 2D map is represented by a 2D grid

holding probability Pxy of cell occupancy. It should be noticed that this probability

is represented by log odds. Obviously, This method does have pros and cons : the

advantage is that this method is relatively fast, meanwhile the cons is the result is

only approximate which can not be really accurate.

5.4.5 Hector Mapping Node Implementation

• ls /dev ttyUSB0

To specify ttyUSB0 (UART connecting to vx 11 LIDAR) in Linux

• roscore

start pre-requisites of a ROS-based system

• sudo chmod 666 /dev/ttyUSB0

enable USB0 (LIDAR data reading)

• cd catkin ws

path to catkin workspace

125

• source devel/setup.bash

source the setup file

• rosrun xv 11 laser driver neato laser publisher port:

=devttyUSB0 firmware version:=2

run LIDAR scan data and the publisher generated

• rostopic echo /scan

visualization of LIDAR raw data

Initialize the final ROS launch file

• cd catkinws/

path to catkin workspace

• cd xv11-hector-slam-roslaunch-master/

cd to ROS launch file

• roslaunch wireless mapping.launch

run ROS hector mapping launch file

126

Figure 5.9: LIDAR Point Cloud Feature Detect

This experiment was held in Center Point Computer Science building. Obviously

in the plot, there are features(walls) and some discrete features(like my legs and some

obstacles on the ground).

We can observe different colors of those features, those colors stand for the laser

intensities. Intensity only affect the color of the point, and the intensity channel

uses 4 values to compute the final color of the point: (1) Min Intensity mini, (2)Max

Intensity max, (3)Min Color minc, (4) Max Color maxc.

For each point, to compute the color value, we first compute a normalized intensity

value based on min i and max i:

norm i = (i−min i)/(max i−min i) (5.31)

127

Then to compute the color from that normalized intensity:

final c = (norm imax c) + ((1− norm i)min c) (5.32)

5.5 EKF SLAM Implementation Results and Analysis

Manually Remote Controlled Robot to Perform Indoor SLAM

Figure 5.10: Unknown Environment 2D Map Representation

Description Robot map the room (10 meters length and 9.2 meters width) in 2

minutes. SLAM has been done wireless and a GUI was implemented. In this GUI,

you can control the robot manually like going straight (just click the forward bottom)

and turns (by clicking left/right turn bottoms). Besides, as we can see, the wheel

encoder readings have been presented on the bottom of the GUI.

For full access to the indoor SLAM demo video, it has been uploaded to youtube:

https://www.youtube.com/watch?v=750z3U4tSAA

128

Autonomously line guided robot to perform indoor SLAM Besides robot can

be controlled manually to perform SLAM, autonomously line guided robot perform-

ing indoor SLAM is of great importance.

First, we build a self-designed indoor area to perform SLAM, here is what this

area looks like:

Figure 5.11: Self Designed Area for Mapping

Comparison between generated 2D grid map and real floor plan of that area.

129

Figure 5.12: Comparison Between Generated Map and Real Floor Plan

Robot finished mapping the area in 38 seconds.

Map Accuracy

• Horizontal Accuracy

Length of the real mapped area is 30.48cm × 34 = 1036.32cm = 10.36m. In

generated 2D grid map, the length of the map is 9.80m. In this case, the

horizontal accuracy is:

map horizontal accuracy =
10.36m− 9.80m

10.36m
× 100% = 5.40% (5.33)

• Vertical Accuracy

Width pf the real mapped area is 30.48cm× 8+25cm = 268.8cm ≈ 2.69m. In

generated 2D grid map, the length of the map is 2.77m. In this case, the vertical

accuracy is:

map vertical accuracy =
2.77m− 2.69m

2.69m
× 100% = 2.97% (5.34)

130

Relationship Between Nodes

Figure 5.13: Node rqt Graph

Description Figure 5.13 shows the relationship between different running nodes.

This rqt graph was generated when I was using robot to wirelessly map the room

GWC 379C.

The basic data flow is :

1. Wirelessly received date stored in ROS TOPIC /scan

2. Change ROS TOPIC /scan to a ROS PUBLISHER, data stored in this topic

was broadcasting to all the running nodes

3. After receiving the published LIDAR data packages, node hectormapping is

responsible for 2D map representation and node hectortrajectory is calculation

the estimated real time pose of robot using EKF

4. All these nodes are connected by node tf

131

Connections between ROS frames

Figure 5.14: ROS tf Frames

tf is a package that lets the user keep track of multiple coordinate frames over

time. tf maintains the relationship between coordinate frames in a tree structure

buffered in time, and lets the user transform points, vectors, etc between any two

coordinate frames at any desired point in time.

In this case, the tfframe graph shows the connections between different frames

ROS was using while the robot was performing indoor SLAM.

132

Wireless SLAM in Room GWC 379C (5x3meters Room)

Figure 5.15: Wireless SLAM in Room GWC 379C (5x3meters Room)

Description. 2D grid map for room GWC 379C (5x3 meters) was generated in 18

seconds. Most errors and mismatches came from wireless LIDAR data transmission

package loss. Using better router and WiFi adapter or replace TCP/IP protocol may

solve the problem.

When LIDAR scan frequency is too low

Figure 5.16 shows the result when robot perform SLAM on 4th floor of Center Point

Computer Science Engineering building. After mapped the room (on the right), robot

went through the door and then went alone a hall way. Finally, it made a left turn

and mapped the rest small room (which is on the left).

The second step is that robot made a sharp U-turn and started re-mapping the area.

To be more precise, robot turned 180◦ in 2 seconds (a sharp U-turn). The generated

maps (before and after sharp U-turn) are not matched.

133

Figure 5.16: LIDAR Scan Frequency is Too Low

5.6 Summary and Conclusion

In this chapter, we well discussed how to implement Hector Mapping algorithm

using ROS to perform indoor unknown environment mapping. Detailed setup in-

structions were provided. Both manually remote controlled robot to perform indoor

SLAM and autonomously line guided robot to perform indoor SLAM have been well

explained.

Real floor plan has been compared to the 2D grip map we have generated. To

draw a brief conclusion, our FreeSLAM robot has the ability to perform SLAM in

indoor unknown environment.

134

Chapter 6

SLAM WITH SENSOR FUSION OF ODOMETRY AND LIDAR SCAN DATA -

GMAPPING

6.1 Introduction and Overview

When Input and Observation Noises are Non-Gaussian

Recently Rao-Blackwellized particle filters have been introduced as effective means

to solve the simultaneous localization and mapping (SLAM) problem. This approach

uses a particle filter in which each particle carries an individual map of the environ-

ment. Accordingly, a key question is how to reduce the number of particles. We

present adaptive techniques to reduce the number of particles in a Rao- Blackwellized

particle filter for learning grid maps. We propose an approach to compute an accu-

rate proposal distribution taking into account not only the movement of the robot but

also the most recent observation. This drastically decrease the uncertainty about the

robot’s pose in the prediction step of the filter. Furthermore, we apply an approach

to selectively carry out re-sampling operations which seriously reduces the problem

of particle depletion.

To draw a brief conclusion of particle filter:

what is a particle filter Briefly, particle filter is a Bayes Filter. Besides, it’s a way to

efficiently represent non-Gaussian distribution. As mentioned in Chapter 4, Kalman

Filter is the best low pass filter when input noises are Gaussian. So in the case that

those input noises are non-Gaussian, particle filter can be a way to choose from those

low-pass filters.

135

6.2 Detailed Modeling for Gmapping SLAM Approach

Definitions

• f - motion equation

• u - control inputs

• w - input noise

• g - observation equation

• y - observation data

• n - observation noise

Motion Model

The motion model describes the relative motion of the robot:

p(xt | xt−1, ut) (6.1)

Estimated Robot Pose includes X and Y position information and robot’s orien-

tation ψ

Pose : xt = [x, y, ψ]k (6.2)

Motion Equation f :

xk+1 = xk + ∆xk + wk (6.3)

In this chapter, we assume that both input noise (wk) and observation noise (nk)

are Non-Gaussian noise. As a result, Extended Kalman Filter will not be a good

choice. The most common Non-Gaussian noise is salt and pepper noise.

Observation Model

The observation or sensor model relates measurements with the robot’s estimated

136

pose:

p(zt | xt) (6.4)

Lk = [Lk,x, Lk,y] is a 2D landmark. Landmark can be selected automatically by

computer, usually it is supposed to be a corner or a object observed in the mapping

area.

Lk = [Lk,x, Lk,y]k (6.5)

Observation Equation g:r
θ

k

=

√
‖xk − Lk‖2

tan−1 Lk,y−xk,y
Lk,x−xk,x

+ nk (6.6)

Obviously the observation equation above is non-linear.

6.3 Probabilistic Laws

Mathematical Expression of SLAM

To recall what has been mentioned in Chapter 4, the representation of SLAM is as

follows:

p(x,m|z, u) (6.7)

where x denotes the pose of the robot, m is the grip map and x represents the

observations and movements.

Environment Measurement Data

zt1:t2 = zt1 , zt1+1, zt1+2, · · ·, zt2 (6.8)

denotes the set of all measurements acquired from time t1 to time t2, for t1 ≤ t2

137

Control Data

An alternative source of control data are odometers.

We will denote sequences of control data by

ut1:u2 = ut1 , ut1+1, ut1+2, · · ·, ut2 (6.9)

Probabilistic Generative Laws

The evolution of state and measurements is governed by probabilistic laws. In general,

the state xt is generated from the state xt−1. Hence, the probabilistic law character-

izing the evolution of state by a probabilistic distribution of the following form:

p(xt | x0:t−1, z1:t−1, u1:t) (6.10)

We assume that the robot executes a control action u1 first, and then takes a mea-

surement z1.

p(xt | x0:t−1, z1:t−1, u1:t) = p(xt | xt−1, ut) (6.11)

This property is called conditional independence. It states that certain variables

are independent of others if one knows that values of a third group of variables, the

conditioning variables.

p(zt | x0:t, z1:t−1, u1:t) = p(zt | xt) (6.12)

138

Figure 6.1: The Dynamic Bayes Network that Characterized the Evolution of Con-

trols, States, and Measurements

This property shows that the state xt is sufficient to predict the measurement z1.

Any other variables, such as past measurements, controls and states, is irrelevant if

xt is complete.

6.4 Sample Base Localization

The basic principle of implementing particle filter in Gmapping node: First, to set

the state hypotheses (which are the ”particles”). Of course we can set the number of

the particles. the more particles we set, the more accuracy of state estimation we’ll

get. but meanwhile it will require more computational complicity and time. Second

step, is that we use the combination of LIDAR processed data and odometry data to

find those Survival-of-the-fittest particles, which are the accurate estimation of real

time robot’s pose.

Set of weighted samples

S =
{
< s(i), w(i) > |i = 1, 2, ...N

}
(6.13)

In the equation above, s(i) denotes the state hypothesis and w(i) means the Importance

weight of each particle.

139

The samples represent the posterior

P (x) =
N∑
i=1

wi · δs(i)(x) (6.14)

From Sampling to a Particle Filter

• Set of samples describes the posterior

• Updates are based on actions (control of DC motors and steering servo) and

observations (LIDAR observations and encoder, IMU readings)

Three sequential steps:

1. Sampling from the proposal distribution (Bayes filter: prediction step)

2. Compute the particle weight (Bayes filter: correction step)

3. Resampling

Monte-Carlo Localization

• For each motion δ (each movement of robot) do sampling: Generate from each

sample in a new sample according to the motion model.

x(i) ← x(i) + ∆
′

(6.15)

• For each observation(LIDAR data and odometry readings) do:Weight the sam-

ples with the observation likelihood

w(i) ← p(z|m,x(i)) (6.16)

• Re-sampling

140

As a result, using all the information we’ve used above, we can basically conclude

the particle filter solution to the SLAM problem:

1. Use a particle filter to represent potential trajectories of the robot

2. Each particle carries its own map

3. Each particle survives with a probability proportional to the likelihood of the

observations relative to its own map

4. We have a joint posterior about the poses of the robot and the map

6.5 Summary and Conclusion

As we have discussed in Chapter 5, Extended Kalman Filter is one of the best

filter under Gaussian noise. In this chapter, we introduced another filter: Particle

Filter (PF) which may have better performance under LIDAR measurement non-

Gaussian noise. More detailed algorithms and implementations will be addressed in

future works and researches.

141

Chapter 7

SUMMARY AND FUTURE DIRECTIONS

7.1 Summary of Work

This thesis addressed many design, analysis, control and LIDAR mapping issues

that are critical to achieve the longer term FAME objective. The following summa-

rizes key themes within the thesis.

1. Self-Designed Rear Wheel Drive FAME Mobile Robot Platform. In

Lin’s thesis, it was shown how off-the-shelf components could be used to build

a low-cost multi-capability ground vehicle that can be used for serious robotics

research. In this thesis, more expensive and selected components were used.

While our enhanced FreeSLAM robot (with 360 RP LIDAR, wheel encoders,

a 9 dof IMU, Arduino Uno, Raspberry PI III, camera, video WiFi link, pan-

tilt servo) cost less than 610, it offer the capabilities of a self-driving robot

costing more than 3000. Instructions for enhancement/building were included

(see Appendix).

2. FAME Architecture. A general FAME architecture has been described

one that can accommodate a large fleet of vehicles and those can finish tasks

cooperatively. For example, platooning of a fleet of robots and a group of robots

build a map of a room together.

3. Literature Survey A fairly comprehensive literature survey of relevant work

was presented.

142

4. Modeling Kinematic and dynamic models for rear wheel drive robot were

presented and analyzed to understand the full utility of each model. A nonlinear

dynamical model (with motor dynamics) for the rear-wheel drive was used to

conduct linear trade studies whose are useful for the development of cruise

controllers.

5. Control Both inner-loop and outer-loop control designs were discussed in the

context of of an overall hierarchical control inner-outer loop framework. This

framework lends itself to accommodate multiple modes of operations; e.g. cruise

control along a line/curve, position control along a line/curve, planar xy-Cartesian

stabilization, etc.

A great deal of effort was spent on discussion fundamental performance limita-

tions. Attention was spent on static (steady state, accuracy related) limitations

as well as dynamics (bandwidth) limitations. Encoder, IMU, camera (wireless

vedio streaming and), and A-to-D (zero order hold half sample) limitations

were particularly emphasized. This shall be very useful to researchers pursing

future FAME developments.

7.2 Directions for Future Research

• Localization. Development of a lab-based localization system using a variety

of technologies (e.g. USB cameras, depth sensors, LIDAR, ultrasonic, etc.).

Localization is essential for multi-robots cooperating. Once each robot knows

where it is and where the other robots are, more complected robot cooperation

can be performed.

• On-board Sensing. Addition of multiple on board sensors; e.g. additional

ultrasonics, depth sensors(Kinect), 3D LIDAR, GPS & cameras.

143

• Advanced Image Processing. Use of advanced image processing and opti-

mization algorithms; e.g. Implementations of OpenCV and OpenGL and vision

based mapping and localization.

• Multi-Vehicle Cooperation. Cooperation between ground, air, and sea ve-

hicles - including quadrotors, micro-air vehicles; e.g. nano-air vehicles landing

on large ground robot, platooning of a fleet of ground robots and multi-robots

solving indoor and outdoor SLAM problems.

• Parallel On-board Computing. Use of multiple processors on a robot for

computationally intense work; e.g. multi-robots solving indoor unknown en-

vironment mapping, they have the ability to communicate to each other and

divide the grid map of the room into some categories, which can significantly

save time.

• 3D Unknown Environment Reconstruction. In this thesis, the 2D indoor

unknown environment mapping was welly discussed. In the future, we can

achieve 3D indoor and outdoor unknown environment reconstruction using 3D

LIDAR, depth sensors and cameras.

• Modelling and Control. More accurate dynamic models and controls laws.

This can include the development of multi-rate control laws that can signifi-

cantly lower sampling requirements.

• Control-Centric Vehicle Design. Understanding when simple control laws

are possible and when complex control laws are essential. This includes un-

derstanding how control-relevant specifications impact the design of a vehicle

robot.

144

REFERENCES

[1] Stefan Kohlbrecher, Johannes Meyer, et al, “A Flexible and Scalable SLAM Sys-
tem with Full 3D Motion Estimation,” Proceedings of the 2011 IEEE International
Symposium on Safety,Security and Rescue Robotics ,769-6, 2011.

[2] A.HEMAMI, “Steering control problem formulation of low-speed tricycle-model
vehicles,” International Journal of Control, 61:4, 783-790.

[3] Jana Kosecka, “Vision-Based Lateral Control of Vehicles: Look-ahead and Delay
Issues”, 1996.

[4] Safdar Zaman, Wolfgang Slany, Gerald Steinbauer, ”ROS-based Mapping, Local-
ization and Autonomous Navigation using a Pioneer 3-DX Robot and their Rele-
vant Issues” Electronics, Communications and Photonics Conference (SIECPC),
2011 Saudi International, 2011.

[5] Quigley, Morgan, et al. “ROS: an open-source Robot Operating System.” ,” ICRA
workshop on open source software, Vol. 3. No. 3.2. 2009.

[6] Grisetti, Giorgio, Cyrill Stachniss, and Wolfram Burgard. “Improved techniques
for grid mapping with rao-blackwellized particle filters.” Robotics, IEEE Trans-
actions, on 23.1 (2007): 34-46.

[7] Grisetti, Giorgio, Cyrill Stachniss, and Wolfram Burgard. “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” Robotics and Automation, 2005. ICRA 2005. , Proceedings of the
2005 IEEE International Conference on. IEEE, 2005.

[8] Fierro, Rafael, and Frank L. Lewis. “Control of a nonholonomic mobile robot:
backstepping kinematics into dynamics,” Decision and Control, 1995., Proceed-
ings of the 34th IEEE Conference on. Vol. 4. IEEE, 1995.

[9] Kmmerle, Rainer, et al. “On measuring the accuracy of SLAM algorithms.” Au-
tonomous Robots 27.4 (2009): 387-407.

[10] Ganeshmurthy, M. S., and G. R. Suresh. “Path planning algorithm for au-
tonomous mobile robot in dynamic environment,” Signal Processing, Commu-
nication and Networking (ICSCN),, 2015 3rd International Conference on. IEEE,
2015.

[11] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. “Probabilistic robotics,”
MIT press,, 2005.

[12] Martinez, Aaron, and Enrique Fernndez, “ Learning ROS for robotics program-
ming,” Packt Publishing Ltd, 2013.

[13] Riisgaard, Sren, and Morten Rufus Blas. “SLAM for Dummies,” A Tutorial
Approach to Simultaneous Localization and Mapping ., 22.1-127 (2003): 126. APA

145

[14] Gary Bradski, Adrian Kaehler. “Learning OpenCV Computer Vision with the
OpenCV Library.” , O’Reilly Media

[15] Rodriguez, A.A., Analysis and Design of Multivariable Feedback Control Systems,
Control3D, L.L.C., Tempe, AZ, 2002.

[16] Rodriguez, A.A., Linear Systems: Analysis and Design, Control3D,L.L.C.,
Tempe, AZ, 2002.

[17] Susnea, I., Filipescu, A., Vasiliu, G., et al., “Path following, real-time, embedded
fuzzy control of a mobile platform wheeled mobile robot,” IEEE International
Conference on Automation and Logistics (ICAL), pp. 268-272, 2008.

[18] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning,
Instrument Society of America, Research Triangle Park, North Carolina, 1995.

[19] Arduino Uno description, https://www.arduino.cc/en/Main/arduinoBoardUno.

[20] Introducing the Raspberry Pi 2 - Model B - Adafruit Learning.
https://learn.adafruit.com/introducing-the-raspberry-pi-2-model-b/overview

[21] Rodriguez, A., EEE481: Computer Control Systems, course notes, 2014.

[22] Amir M Y, Abbass V., “Modeling of quadrotor helicopter dynamics,” Interna-
tional Conference on Smart Manufacturing Application, ICSMA 2008, IEEE 2008:
100-105.

[23] Kaplan, Elliott, and Christopher Hegarty, eds., “Understanding GPS: principles
and applications.” Artech house, 2005.

[24] Raspberry Pi 5MP camera datasheet.
https://www.raspberrypi.org/documentation/hardware/camera.md

[25] Research robots, http://www.mobilerobots.com/ResearchRobots.aspx

[26] Lidar, https://en.wikipedia.org/wiki/Lidar

[27] 9 dof IMU BNO055 library https://github.com/adafruit/AdafruitBNO055

[28] Rodriguez, A.A., Analysis and Design of Multivariable Feedback Control Systems,
Control3D, L.L.C., Tempe, AZ, 2002.

[29] Rodriguez, A.A., Linear Systems: Analysis and Design, Control3D,L.L.C.,
Tempe, AZ, 2002.

146

147

APPENDIX A

MATLAB CODE

148

1 %************DC Motor Dynamics Simulation************
2

3 %parameters
4 Ra = 2.523; %ohm resistant
5 La = 0;% armature inductance, which is neglected
6 Kt = 0.004; % torque constant
7 Kb = 0.004; %Back EMF constant
8 J = 2.96*10ˆ−6; % Load moment of inertia
9 B = 4.3*10ˆ−5; % Damping constant

10

11 % Here is the transfer function from Ea to angular velocity
12 s = tf('s');
13 Simulation = Kt/(La*J*sˆ2+(La*B+Ra*J)*s+Kt*Kb+Ra*B);
14 %step(Simulation,5,'r');
15

16 %Transfer function from Ea to Tau
17 H1 = (1/(La*s+Ra))*Kt;
18 H2 = (Kb*(1/(J*s+B)));
19 H3 = H1/(1+H1*H2);
20 zpk(H3)
21

22 %************END DC Motor Dynamics Simulation END************

1 %*****State Space Representation for******
2 %******Vision Based Complete Lateral Model*******
3 close all
4 clear all
5 clc
6

7 % Parameters of Lateral Dynamics
8 SIM cf=120000; %lb/rad stiffness of front wheel
9 SIM cr=100000; %lb/rad stiffness of rear wheel

10 SIM I psi = 2753; %slug ftˆ2
11 SIM m = 1573; %slugs , 1 slug = 14.593903 kg
12 SIM ca = 1.44; %aerodynamics drag coefficient
13 SIM lr = 1.53; %distance from rear axle to cg
14 SIM lf = 1.137; %distance from front axle to cg
15 SIM l=SIM lr+SIM lf; %full length of the vehicle
16 SIM L = 15; % 15m look ahead distance by raspberry pi camera
17 SIM vx = 20; % m/s cruise speed of the robot
18 SIM Td = 0.15; %s vision subsystem delay
19

20 %*********State Space Representation
21

22 syms m I psi lf lr l cf cr L vx s
23

24 % Matrix A
25 a11 = −(cf+cr)/(m*vx);
26 a12 = −vx + (cr*lr − cf*lf)/(m*vx);
27 a13 = 0;
28 a14 = 0;
29

30 a21 = (−lf*cf + lr*cr)/(I psi*vx);
31 a22 = −((lfˆ2)*cf + (lrˆ2)*cr)/(I psi*vx);
32 a23 = 0;
33 a24 = 0;

149

34

35 a31 = −1;
36 a32 = −L;
37 a33 = 0;
38 a34 = vx;
39

40 a41 = 0;
41 a42 = −1;
42 a43 = 0;
43 a44 = 0;
44

45 A=[a11 a12 a13 a14;
46 a21 a22 a23 a24;
47 a31 a32 a33 a34;
48 a41 a42 a43 a44];
49

50 %***********
51 %Matrix B
52

53 b11 = cf/m;
54 b21 = (lf*cf)/I psi;
55 b31 = 0;
56 b41 = 0;
57

58 B = [b11
59 b21
60 b31
61 b41];
62

63 %*************
64 %Matrix C
65 c11 = −(cf+cr)/(m*vx);
66 c12 = (cr*lr − cf*lf)/(m*vx);
67 c13 = 0;
68 c14 = 0;
69

70 c21 = 0;
71 c22 = 1;
72 c23 = 0;
73 c24 = 0;
74

75 c31 = 0;
76 c32 = 0;
77 c33 = 1;
78 c34 = 0;
79

80 c41 = 0;
81 c42 = 0;
82 c43 = 0;
83 c44 = 1;
84

85 C=[c11 c12 c13 c14;
86 c21 c22 c23 c24;
87 c31 c32 c33 c34;
88 c41 c42 c43 c44];
89

90 %****************

150

91 %Matrix D
92 d11 = cf/m;
93 d21 = 0;
94 d31 = 0;
95 d41 = 0;
96

97 D = [d11
98 d21
99 d31

100 d41];
101 %%
102 %Plant Simbolic
103 X = (C/(s*eye(4)−A)*B+D);
104

105 I4=eye(4);
106 P=C/(s*I4−A)*B+D;
107 pretty(simplify(P))
108 %Plug in numbers
109

110 %*******Simulation model
111

112 SIM A = double(subs(A,{cf cr m vx lr lf I psi L },...
113 {SIM cf SIM cr SIM m SIM vx SIM lr SIM lf SIM I psi SIM L}));
114

115 SIM B = double(subs(B,{cf m lf I psi},...
116 {SIM cf SIM m SIM lf SIM I psi}));
117

118 SIM C = double(subs(C,{cf cr m vx lr lf},...
119 {SIM cf SIM cr SIM m SIM vx SIM lr SIM lf}));
120

121 SIM D = double(subs(D,{cf m},{SIM cf SIM m}));
122

123 SIM SS=ss(SIM A,SIM B,SIM C,SIM D);
124 %%
125 % SIM X = (SIM C/(s*eye(4)−SIM A)*SIM B+SIM D);
126 %%
127 SIM SS(3,1)
128 figure(1);
129 bode(SIM SS(3,1))
130 grid on;
131 hold on;

1 %******Longitudinal Inner Loop PI Controller Trade Study*****
2

3 clc
4 %PI Controller Parameters
5 z = 0.5;
6 g = 9;
7

8 %Varying g and z
9

10 %for g = 1:4:17
11 for z = 0.1:0.2:0.9
12

13 Ki = 4.5;
14 g = Kp;

151

15 z = Ki/Kp;
16

17 s = tf('s');
18 %winit = −1;
19 %wfin = 2;
20 %nwpts = 300;
21 %w = logspace(winit,wfin,nwpts);
22

23 K = ((g*(s+z))/s)*(100/(s+100));
24 %The PI controller with high−freq roll−off
25

26 W = z/(s+z); %The pre−filter
27

28 % Longitudinal Plant Representation
29

30 P = 0.146*(s+14.53)/((s+0.1116)*(s+16.67));
31

32 %Form Open Loop Singular Values
33 L = P * K;
34

35 %Open Loop Frequency Response
36 figure(1);
37 %bode(L)
38

39 %Form Closed Loop Transfer Functions
40 figure(2)
41

42 tr2y = W*L/(1+L); % Try
43 bodemag(tr2y)
44 %step(tr2y,50)
45 hold on
46 grid
47

48 figure(3)
49 tru = K/(1+L); % Tru without W
50 tru W = W*K/(1+L); % Tru with W
51 bodemag(tru W)
52 bodemag(tru filter)
53 step(tr2u);
54

55 %bodemag(tr2u)
56 hold on;
57 grid on;
58 %
59 S = 1/(1+L); %Sensitivity
60 bodemag(S)
61

62 %
63 T = L/(1−L); %Complementary Sensitivity
64 bodemag(T)
65

66 %Implementing the Filter:
67

68 figure(4)
69 step(tr2y)
70 hold on
71 grid

152

72

73 figure(5)
74 step(tr2u)
75 hold on
76 grid
77

78 tdiy = P/(1+L); % Tdiy
79 bodemag(tdiy)
80

81 tdi2u = −PK/(1+PK); % Tdiu
82

83 %Determine Closed Loop Poles
84 clp long = pole(1/(1+PK));
85

86 %Stability Robustness
87 allmargin(PK);
88

89 %Closed Loop Transfer Functions
90 zpk tr2y = minreal(zpk(tr2y));
91 zpk tr2u = minreal(zpk(tr2u));
92 zpk tdi2y = minreal(zpk(tdi2y));
93 zpk tdi2u = minreal(zpk(tdi2u));
94 %
95 %Plots Settings
96 grid on;
97 set(findobj(gca,'type','line'), 'LineWidth', 2);
98 h = findobj(gcf, 'type', 'line');
99 set(h, 'LineWidth', 3);

100 a = findobj(gcf, 'type', 'axes');
101 set(a, 'linewidth', 6);
102 set(a, 'FontSize', 14);
103 xlabel('', 'FontSize', 24);
104 ylabel('', 'FontSize', 24);
105 hold on;
106 end
107

108 %Trade Studies Titles and Legends
109

110 %Try changing g
111 title('Frequency Response T (With Pre−Filter & g = 1−17, z = 0.5)')
112 legend('g=1 z=0.5','g=5 z=0.5','g=9 z=0.5','g=13 z=0.5','g=17 z=0.5')
113

114 %Try changing z
115 title ('Bode Magnitudes for T (With Pre−Filter and g = 9, z = 0.1−0.9)')
116 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
117

118 %L changing g
119 title ('Bode Plot for L (g = 1−17, z = 0.5)')
120 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')
121

122 %L changing z
123 title ('Bode Plot for L (g = 9, z = 0.1−0.9)')
124 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
125

126 %S changing g
127 title ('Bode Magnitudes for Sensitivity, g = 1−17, z = 0.5')
128 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')

153

129

130 %S changing z
131 title ('Sensitivity, g = 9, z = 0.1−0.9', 'FontSize', 24)
132 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
133

134 %T changing g
135 title ('Complementary Sensitivity T, g = 1−17, z = 0.5', 'FontSize', 24)
136 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')
137

138 %T changing z
139 title ('Complementary Sensitivity T, g = 9, z = 0.1−0.9', 'FontSize', 24)
140 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
141

142 Tru without prefilter changing g
143 title ('Bode Magnitude Plot for Tru , g = 1−17, z = 0.5', 'FontSize', 24)
144 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')
145

146 Tru without prefilter changing z
147 title ('Bode Magnitude Plot for Tru , g = 9, z = 0.1−0.9', 'FontSize', 24)
148 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
149

150 Tru W with pre−filter changing g
151 title ('Bode Magnitude Plot for W*Tru , g = 1−17, z = 0.5', 'FontSize', 24)
152 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')
153

154 Tru W with pre−filter changing z
155 title (' W*Tru , g = 9, z = 0.1−0.9', 'FontSize', 24)
156 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')
157

158 Tdiy changing g
159 title ('Bode Magnitude Plot for Tdiy , g = 1−17, z = 0.5', 'FontSize', 24)
160 legend ('g=1 z=0.5', 'g=5 z=0.5', 'g=9 z=0.5', 'g=13 z=0.5', 'g=17 z=0.5')
161

162 Tdiy changing z
163 title ('Bode Magnitude Plot for Tdiy , g = 9, z = 0.1−0.9', 'FontSize', 24)
164 legend ('g=9 z=0.1', 'g=9 z=0.3', 'g=9 z=0.5', 'g=9 z=0.7', 'g=9 z=0.9')

1 %***Onground Model Longitudinal PI Controller Implementation***
2

3 % PI control mode verify
4 clear all
5 % close all
6 clc
7 % Load Nominal Model
8 % input voltage 2 angular speed
9 Plant = tf([0.3274],[1 1.176]);

10 %% Global Variable List
11 % create global vars list
12 Ts =0.1;
13 RUNTIME = 8.9;
14 BV = 8;
15

16 % Always check what inside
17

18 % PI control parameter loading
19 % Prepare PID table in advance

154

20 % put your (g,z) trade off study here
21

22 % in matrix each col corresponding to one z value
23 % in matrix each row corresponding to one g value
24 % plots in column−wise from reshaped(mat,#row*#col,1)
25

26 % ts = 1.5
27 % g vec = [0.073]; z vec = [0.194/0.073]; raw file name = 'out1 2.mat';
28 % g vec = [0.096]; z vec = [0.519/0.096]; raw file name = 'out2 2.mat';
29 g vec = [11.68]; z vec = [2.02];
30

31 g len = length(g vec);
32 z len = length(z vec);
33

34 S PI= PID Table Generator 0702(g vec,z vec);
35 %% Prepare Data and Initializing For Later Mfiles
36 % Hardware data loading
37 % with prefilter
38 % Check and Edit This File Before you run following Code
39 % G wF = DataImport Log PID 0707(raw file name)
40

41 Hw= [0 0
42 0.00 15
43 0.00 53
44 0.00 91
45 0.06 107
46 0.13 112
47 0.19 117
48 0.25 113
49 0.28 118
50 0.38 101
51 0.44 79
52 0.47 72
53 0.53 49
54 0.57 31
55 0.53 37
56 0.53 38
57 0.57 22
58 0.53 26
59 0.47 50
60 0.44 67
61 0.47 61
62 0.50 49
63 0.53 37
64 0.53 31
65 0.50 42
66 0.50 43
67 0.50 42
68 0.53 31
69 0.53 25
70 0.50 36
71 0.50 37
72 0.47 47
73 0.47 53
74 0.53 31
75 0.53 23
76 0.53 24

155

77 0.53 19
78 0.47 40
79 0.47 48
80 0.50 35
81 0.50 34
82 0.50 35
83 0.50 34
84 0.47 45
85 0.44 61
86 0.50 45
87 0.53 27
88 0.50 37
89 0.53 28
90 0.50 31
91 0.47 49
92 0.50 39
93 0.50 36
94 0.50 38
95 0.50 36
96 0.50 37
97 0.50 36
98 0.50 36
99 0.50 36

100 0.50 36
101 0.50 35
102 0.50 35
103 0.47 46
104 0.47 52
105 0.50 41
106 0.50 39
107 0.50 40
108 0.50 39
109 0.50 39
110 0.50 38
111 0.50 38
112 0.47 49
113 0.47 55
114 0.50 43
115 0.50 41
116 0.53 31
117 0.53 25
118 0.50 36
119 0.50 37
120 0.50 36
121 0.50 36
122 0.50 36
123 0.50 36
124 0.47 46
125 0.47 52
126 0.50 41
127 0.50 39
128 0.50 40
129 0.50 39
130 0.47 50];
131

132 hw time = 0:0.1:8.9;
133 G wF.time = hw time;

156

134 G wF.PWMR = Hw(:,2);
135 G wF.LinearV = Hw(:,1);
136

137 disp('Hardware data loading finished ')
138

139 %% Generate Simulation Transfer Functions
140 %Try(wR ref,wL ref)−>(wR,wL)
141 %Tru(wR ref,wL ref)−>(ea R,ea L)
142 % reference cmd; v ref = 0.5;
143 reference factor = 0.5;
144 pwm voltage factor = 255/BV;
145 set size = length(S PI.PI cell);
146

147 % Generate Transfer Functions for different g z
148 % Store them in Transfer Function Cell
149 % Creat Cells
150 Try cell wF = cell(set size,1);
151 Tru cell wF = cell(set size,1);
152

153 for ii =1
154 g = S PI.gz cell{ii}(1)
155 z = S PI.gz cell{ii}(2)
156 P = Plant
157 K = tf([g g*z],[1 0]);
158 rf = tf([100],[1 100]);
159 % rf = tf(1);
160 K = series(K,rf)
161 W = tf([z],[1 z]); % pre−filter
162 H = tf([20],[1 20]);
163 S = siso tf generator 0702(W,P,K,H);
164

165 % S = siso tf generator 0702(W,P,K,H);
166 disp(' ')
167 dispstr = sprintf('********** Start with g %.3f and z %.3f', g,z);
168 disp(dispstr);
169 K = zpk(K)
170 zpk(S.L)
171 S.Try;
172 zpk(minreal(S.Tru))
173

174 % num wF = Try wF.num{1};
175 % den wF = Try wF.den{1};
176 % disp('damping coefficient calculation ')
177 % xi = den(2)/(2*sqrt(den(3))) % damping coefficient calculation
178 % overshoot = exp(−xi*pi/sqrt(1−xiˆ2))*100
179

180 Try cell wF{ii} = S.Try;
181 Tru cell wF{ii} = S.Tru;
182 S wF = stepinfo(S.Try); % Get Steady State Info
183

184 g list(ii) = g;
185 z list(ii) = z;
186

187 dispstr = sprintf('########## End with g %.3f and z %.3f',g,z);
188 % disp(dispstr);
189 dispstr = sprintf('%s Peak Value %.3f',dispstr,S wF.Peak);
190 disp(dispstr);

157

191

192 disp(' ');
193 disp(' ')
194 end
195 disp('Simulation Transfer Functions Ready ')
196

197 %% Simulation and Hardware Comparison Try(v)
198

199 for ii =1
200 fig = figure(ii+20);
201

202 [Y Sim wF,T Sim wF] = step(Try cell wF{ii},RUNTIME);
203 Y Sim wF = Y Sim wF* reference factor; % output v simulation
204

205 % hardware
206 time wF = G wF.time;
207 LinearV = G wF.LinearV;
208 zero output = zeros(length(time wF),1);
209

210 plot (T Sim wF,Y Sim wF,time wF,LinearV);
211

212 h line = findobj(gcf, 'type', 'line');
213 set(h line, 'LineWidth', 3);
214 h axes = findobj(gcf, 'type', 'axes');
215 set(h axes, 'linewidth', 2);
216 set(h axes, 'FontSize', 15);
217

218 hold on;grid on;
219 title ('Output response v {ref} to v','FontSize',24);
220

221 legend('Simulation','Hardware','Location','NorthEast');
222 xlabel('Time(seconds)');
223 ylabel('Translation Speed of Vehicle (m/sec)');
224 axis([0 max(time wF) 0 0.8]);
225 end
226

227 %% Simulation and Hardware Comparison Tru
228 PWM2Voltage Gain = BV./255;
229 % Tru(wR,wL)
230 % input: linear velocity referece
231 % output voltage
232

233 for ii =1
234 fig = figure(ii+30);
235

236 [Y Sim wF,T Sim wF] = step(Tru cell wF{ii},RUNTIME);
237 Y Sim wF = Y Sim wF* reference factor;
238

239 % hardware
240 time wF = G wF.time;
241 eaR = G wF.PWMR.*PWM2Voltage Gain;
242 zero output = zeros(length(time wF),1);
243

244 plot (T Sim wF,Y Sim wF,time wF,eaR);
245

246 h line = findobj(gcf, 'type', 'line');
247 set(h line, 'LineWidth', 3);

158

248 h axes = findobj(gcf, 'type', 'axes');
249 set(h axes, 'linewidth', 2);
250 set(h axes, 'FontSize', 15);
251

252 hold on;grid on;
253 title ('Control output response v {ref} to e a','FontSize',24);
254

255 legend('Simulation','Hardware','Location','NorthEast');
256 xlabel('Time(seconds)');
257 ylabel('Voltage(V)');
258 axis([0 max(time wF) 0 BV]);
259

260 end

1 %*****Lateral Model Inner Loop PI Controller Trade Study*****
2 %%
3 clear all
4 %%
5 Kp = 18;
6 Ki = 21.6;
7 s = tf('s');
8 %K = Kp + Ki/s; %The PI controller
9 %controller parameters

10 g = 18;
11 z = 1.2;
12 %for
13 K = ((g*(s+z))/s)*(100/(s+100)); %The PI controller with
14 %high−freq roll−off
15 W = z/(s+z); %The pre−filter
16

17 % lateral inner loop Plant representation
18

19 P = (0.368*(s+0.484))/((s+1.077)*(s+0.457));
20

21 %Form Open Loop Transfer Function
22 L = P * K;
23

24 %Open Loop Frequency Response
25 figure(1)
26 %bode(L);
27 %
28 % hold on
29 % grid
30 % %xlabel('Frequency (rad/sec)')
31 % %ylabel('Magnitude (dB)')
32 % title('lateral Plant Open Loop Magnitude and Phase Response')
33 %
34 % %Form Closed Loop Transfer Functions
35 % figure(2)
36

37 T ry = L/(1+L); %without pre−filter
38 zpk(minreal(T ry))
39 T ry W = W*L/(1+L); % Try
40 step(T ry,7)
41 bodemag(T ry W)
42 step(T ry W,10)

159

43

44 bode(tr2y)
45 hold on;
46 grid on;
47

48 tr2u = K/(1+PK); % Tru
49 figure(3)
50 bode(tr2u)
51 hold on
52 grid
53

54 tdi2y = P/(1+PK); % Tdiy
55 tdi2u = −PK/(1+PK); % Tdiu
56

57 grid on;
58 set(findobj(gca,'type','line'), 'LineWidth', 2);
59 h = findobj(gcf, 'type', 'line');
60 set(h, 'LineWidth', 3);
61 a = findobj(gcf, 'type', 'axes');
62 set(a, 'linewidth', 6);
63 set(a, 'FontSize', 14);
64 xlabel('', 'FontSize', 24);
65 ylabel('', 'FontSize', 24);
66 hold on;
67

68 %end
69 % open loop L bode
70 title ('Bode Plot for Open Loop L {lateral}', 'FontSize', 24)
71 legend ('g=18, z=1.2')
72

73 %close loop Try without prefilter
74 title (' T {ry} without prefilter W', 'FontSize', 24)
75 legend ('g=18, z=1.2')
76

77 %Try without prefilter
78 title ('Step Response for T {ry} without prefilter W', 'FontSize', 24)
79 legend ('g=18, z=1.2')
80

81

82 %Try bode with a pre−filter
83 title ('Bode Magnitude Plot for T {ry} with prefilter W', 'FontSize', 24)
84 legend ('g=18, z=1.2')
85

86 %Try step response with a pre−filter W
87 title ('Step Response for T {ry} with prefilter W', 'FontSize', 24)
88 legend ('g=18, z=1.2')

1 %********On Ground Vehicle Lateral Model********
2 %%
3 load('lateral model.mat')
4 %%
5

6 umax = 8.2;
7 % PWM = 40;
8

9 w vec = yaw diff;

160

10 T hw = time;
11 u vec = 20/180*pi.*ones(length(time), 1);% delta f
12

13 w vec = [0; w vec];
14 T hw = [0; T hw];
15 u vec = [0; u vec];
16

17 plant lat = tf([2.892],[1 2.659]);
18 %
19 radius = 0.024;
20

21 [Y sim,T sim] = step(plant lat, max(T hw));
22 Y sim = Y sim .* max(u vec);
23

24 fig1 = figure(1);
25 plot(T sim,Y sim,T hw,w vec)
26 legend('Simulation','Hardware')
27 title(' \delta f to Angular Velocity Step Response', 'FontSize', 24)
28 xlabel('Time(seconds)','FontSize', 24)
29 ylabel('Angular Velocity (rad/sec)', 'FontSize', 24);
30 hold on;grid on;
31 %
32 h line = findobj(gcf, 'type', 'line');
33 set(h line, 'LineWidth', 3);
34 h axes = findobj(gcf, 'type', 'axes');
35 set(h axes, 'linewidth', 2);
36 set(h axes, 'FontSize', 15);

1 %**************Onground Lateral Model PI Controller Implementation*******
2 %%
3 clear all
4 clc
5 close all
6 %%
7

8 %% longitudinal
9 plant long = tf(0.3274,[1 1.176]);

10 % PI inner loop v
11 ts = 2;
12 zeta = 0.9; % almost no overshoot
13

14 % inner loop longitudinal
15 [S1 S2 S3] = Innerloop design standard2nd System(plant long,ts,zeta);
16

17 wn = 2.7778; %Lateral Inner Loop Bandwidth
18

19 Mp = 0.0015;
20

21 g = 11.6799; % Choose Kp and Ki
22

23 z = 2.0178;
24

25 % No outerloop for longitudinal
26 %% lateral
27

28 plant lat = tf(2.892,[1 2.659]);

161

29 % function S = siso tf generator(W,P,K)
30

31 % inner loop P
32 S4 = siso tf generator(1,plant lat,2);
33

34 % outer loop PD
35

36 Integrator = tf([1],[1 0]);
37

38 plant lat out = series(S4.Try,Integrator);
39

40 g vec =[1 2 3];
41

42 z = 3;
43

44 N = 100;
45

46 [K cell,pid cell] = platoon pd controller fixed zero 0707 ...
47 (plant lat out,g vec,z,N,1)
48

49 % Select Kp = 6; Kd = 2;
50

51 %%
52 K lat out = K cell{2};
53

54 S5 = siso tf generator(1,plant lat out,K lat out);
55 %Plotting Try
56 S5.Try;

1 %***********Lateral Outer Loop PD Controller Trade Studies**********
2 %%
3 clear all;
4 s = tf('s');
5 K = Kp + Ki/s; %The PI controller
6 z = 6;
7 controller parameters
8 g = 18;
9 %%

10

11 for g = 0.001:0.001:0.005
12

13 %K is the Inverse of the Plant with Gain
14 K = g*(s+92.88)*(s+6.94)*(s+1.229)*(s+0.4857)/ ...
15 ((s+1.2)*(s+0.484))*(100/(s+100))ˆ3;
16

17

18 W = z/(s+z); %The pre−filter
19

20 %Lateral Inner Loop Plant Representation
21

22 P = (662.4*(s+1.2)*(s+0.484))/(s*(s+92.88)*(s+6.94)*(s+1.229)*(s+0.4857));
23

24 %Form Open Loop Transfer Function
25 L = P * K;
26

27 %Open Loop Frequency Response

162

28 figure(1)
29 %bode(L);
30

31 hold on
32 grid
33 xlabel('Frequency (rad/sec)')
34 ylabel('Magnitude (dB)')
35 title('lateral Plant Open Loop Magnitude and Phase Response')
36

37 %Form Closed Loop Transfer Functions
38 figure(2)
39

40 T ry = L/(1+L); %without pre−filter
41 S = 1/(1+L); %Sensitivity
42 bodemag(S)
43 bodemag(T ry)
44 step(T ry)
45

46 zpk(minreal(T ry))
47 T ry W = W*L/(1+L); % Try
48 step(T ry,7)
49 bodemag(T ry W)
50 step(T ry W,10)
51

52 bode(tr2y)
53 hold on
54 grid
55

56 T ru = K/(1+L); % Tru
57 figure(3)
58 bodemag(T ru);
59 step(T ru);
60 hold on;
61 grid;
62

63 tdi2y = P/(1+PK); % Tdiy
64 tdi2u = −PK/(1+PK); % Tdiu
65

66 grid on;
67 set(findobj(gca,'type','line'), 'LineWidth', 2);
68 h = findobj(gcf, 'type', 'line');
69 set(h, 'LineWidth', 3);
70 a = findobj(gcf, 'type', 'axes');
71 set(a, 'linewidth', 6);
72 set(a, 'FontSize', 14);
73 xlabel('', 'FontSize', 24);
74 ylabel('', 'FontSize', 24);
75 hold on;
76

77 end
78 %Open Loop L
79 title ('Bode Plot for Open Loop L ', 'FontSize', 24)
80 legend ('g = 0.001','g = 0.002','g = 0.003','g = 0.004','g = 0.005')
81

82 %Try outerloop
83 title ('Bode Magnitude Plot for Outerloop T {ry} ', 'FontSize', 24)
84 legend ('g = 0.001','g = 0.002','g = 0.003','g = 0.004','g = 0.005')

163

85

86 %step response Try
87 title ('Step Response for Outerloop T {ry} ', 'FontSize', 24)
88 legend ('g = 0.001','g = 0.002','g = 0.003','g = 0.004','g = 0.005')
89

90 %Tru Bode
91 title ('Bode Magnitude Plot for Outerloop T {ru} ', 'FontSize', 24)
92 legend ('g = 0.001','g = 0.002','g = 0.003','g = 0.004','g = 0.005')
93

94 %Sensitivity S
95 title ('Bode Magnitude Plot for Sensitivity S ', 'FontSize', 24)
96 legend ('g = 0.001','g = 0.002','g = 0.003','g = 0.004','g = 0.005')

1 %*************Go Along a Line Outer Loop (v, theta) Control**************
2 %*************Hardware Simulation Analysis***************
3

4 data get = csvread ('v yaw servo.txt');
5 %%
6 V = data get(:,1)./2;
7 yaw = data get(:,2).*2.*pi./180;
8 Td = 0.100; %sampling time
9 X p = 0;

10 Y p = 0;
11 X = [];
12 Y = [];
13 V x = V .* cos(yaw);
14 V y = V .* sin(yaw);
15 %%
16 figure(1);
17 time = linspace(0,7,69);
18 %plot(time,speed);
19 plot(time,−yaw);
20 axis([0 7 −1 1]);
21 grid on;
22 hold on;
23 title('Robot Orientation − Go Straight','FontSize', 24);
24 legend('Robot Orientation');
25 xlabel('Time (seconds)','FontSize', 24)
26 ylabel('\psi {error} (degrees)', 'FontSize', 24);
27 %%
28 figure(2);
29 for n = 1:1:69
30 X(n) = X p + V x(n) .* Td;
31 X p = X(n);
32

33 Y(n) = Y p + V y(n) .*Td;
34 Y p = Y(n);
35 end;
36 plot(X,Y,'r*');
37 hold on;
38 x1 = linspace(0,2.9,10);
39 y1 = linspace(0,0,10);
40 plot(x1,y1);
41 hold on;
42 axis([0 2.9 −2 2]);
43 %axis equal;

164

44 %hold on;
45

46 %%
47 h line = findobj(gcf, 'type', 'line');
48 set(h line, 'LineWidth', 3);
49 h axes = findobj(gcf, 'type', 'axes');
50 set(h axes, 'linewidth', 2);
51 set(h axes, 'FontSize', 15);
52

53 %%
54 title('Robot Trajectory − Go Straight','FontSize', 24);
55 legend('Robot Trajectory','Simulation');
56 xlabel('X(meters)','FontSize', 24)
57 ylabel('Y(meters)', 'FontSize', 24);

1 % ********Planar XY Cartesian Stabilization for Real Wheel Drive********
2 % ********Simulation and Hardware Result Match*********
3 %%
4 clear
5 clc
6 %%
7 X Y get = csvread ('xy raw data.txt');
8 X = X Y get(:,1);
9 Y = X Y get(:,2);

10

11 plot(X,Y,'*r');
12 hold on;
13

14 %%
15 xr=[];
16 yr=[];
17

18 %ks=1.5;
19 ktheta=2;%controller for x,y,angle
20 w=[];w(1)=0; %initial angular velocity rad/s
21 v=[];v(1)=0; %initial linear velocity m/s
22 wc=[]; %ellipse w
23 vc=[]; %ellipse v
24 theta(1)=0; %iniatial robot angle
25

26 x(1)=0; % initial condition
27 y(1)=0; % initial condition
28

29 xreal(1)=0;
30 yreal(1)=0;
31

32 for ks=0.55;
33 % when i increase by 1, meaning one loop time
34 %for ktheta=5:5:15
35 for i=1:1:70;
36

37 %p(i)=rx*ry/sqrt(ry?*cos(thetar(i))?+ ...
38 % rx?*sin(thetar(i))?);
39 xr(i)=1.52;
40 yr(i)=1.52;
41

165

42 x(i+1)=x(i)+v(i)*0.1*cos(theta(i));
43 y(i+1)=y(i)+v(i)*0.1*sin(theta(i));
44 theta(i+1)=theta(i)+w(i)*0.1;
45 thetaR(i)=atan2((yr(i)−y(i+1)),(xr(i)−x(i+1)));
46

47 e=[xr(i)−x(i+1),yr(i)−y(i+1),thetaR(i)−theta(i)];
48 es=sqrt(e(1)ˆ2+e(2)ˆ2)*cos(e(3));
49 w(i+1)=ktheta*e(3);
50 v(i+1)=ks*es;
51

52 xreal(i+1)=xreal(i)+v(i)*0.1*cos(theta(i));
53 yreal(i+1)=yreal(i)+v(i)*0.1*sin(theta(i));
54

55 end
56 %plot(xreal,yreal)
57 %plot(xreal)
58 %hold on
59 end
60 %end
61

62 plot(xreal,yreal)
63 axis([0,1.52,0,1.52])
64 %figure(2)
65 %plot(xreal)
66 hold on
67 grid on
68 %plot(yreal)
69 plot(0,0,'bo')
70 plot(1.52,1.52,'ro')
71

72 title('X Y Position Control for Small K {\theta} = 2','FontSize', 24)
73 legend('Hardware','Simulation','Starting Point', ...
74 'Target Point')
75

76 %%
77 h line = findobj(gcf, 'type', 'line');
78 set(h line, 'LineWidth', 3);
79 h axes = findobj(gcf, 'type', 'axes');
80 set(h axes, 'linewidth', 2);
81 set(h axes, 'FontSize', 15);
82 xlabel('X (meters)','FontSize', 24)
83 ylabel('Y (meters)', 'FontSize', 24);
84 %%

1 %************Hardware Data Visualization for Different Cases************
2 %************With/Without Pan Servo**************
3 %****Different Cruise Speed, Camera Fixed Look−Ahead L****
4 %****and Vision Subsystem Delay***
5

6 %Use csvread command to get raw data
7 clear all;
8 %%
9 X Y get = csvread ('X Y position.txt');

10 %%
11 V = 0.5.* X Y get(:,1);
12 yaw = X Y get(:,2);

166

13

14 Td = 0.100; %sampling time
15

16 %X p = zeros(285,1);
17 %Y p = zeros(285,1);
18 X p = 0;
19 Y p = 0;
20 X = [];
21 Y = [];
22

23 V x = V .* cos(yaw);
24 V y = V .* sin(yaw);
25 %%
26 for n = 1:1:285
27 X(n) = X p + V x(n) .* Td;
28 X p = X(n);
29

30 Y(n) = Y p + V y(n) .*Td;
31 Y p = Y(n);
32 end;
33 plot(X,Y);
34 hold on;
35

36 %%
37 %Plot oval
38 r =1 ;
39 theta=linspace(pi/2,pi*3/2,100);
40 x1=r*cos(theta)−1;
41 y1=r*sin(theta)+1;
42

43 plot(x1,y1);
44 hold on;
45

46 x2 = linspace(−1,1,100);
47 y2 = linspace(2,2,100);
48 plot(x2,y2);
49 hold on;
50

51 x3 = linspace(−1,1,100);
52 y3 = linspace(0,0,100);
53 plot(x3,y3);
54 hold on;
55

56 theta=linspace(−pi/2,pi/2,100);
57 x4=r*cos(theta)+1;
58 y4=r*sin(theta)+1;
59 plot(x4,y4);
60 hold on;
61

62 %%
63 figure(2);
64 X sim = [x1',x2',x3',x4'];
65 Y sim = [y1',y2',y3',y4'];
66 plot(X sim−0.3,Y sim,'b',X,Y,'r');
67 axis([−2.5 2 −0.2 2.2]);
68 hold on;
69

167

70 h line = findobj(gcf, 'type', 'line');
71 set(h line, 'LineWidth', 3);
72 h axes = findobj(gcf, 'type', 'axes');
73 set(h axes, 'linewidth', 2);
74 set(h axes, 'FontSize', 15);
75

76 title('Black Line Guidance Hardware Result − Without Pan Servo');
77 legend('Real Track','Hardware Result');
78 xlabel('X (meters)','FontSize', 24)
79 ylabel('Y (meters)', 'FontSize', 24);

168

APPENDIX B

CPP CODE

169

1 //Author: Xianglong Lu and Duo Lv
2 //This is a Wireless LIDAR data Receiver Cpp Code
3 //Through TCP Socket
4

5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <errno.h>
8

9 #include <sys/types.h>
10 #include <sys/socket.h>
11 #include <netinet/in.h>
12 #include <arpa/inet.h>
13

14 #include <ros/ros.h>
15 #include <sensor msgs/LaserScan.h>
16 #include <std msgs/UInt16.h>
17

18 using namespace std;
19

20 struct lidar data {
21

22 int32 t rpm[360];
23 int32 t ranges[360];
24 int32 t intensities[360];
25

26 };
27

28 void laser poll(int sockfd, sensor msgs::LaserScan
29 *scan, std msgs::UInt16 *rpms) {
30

31 int ret;
32 int i;
33

34 int offset = 0;
35 struct lidar data data;
36

37 memset(&data, 0, sizeof(struct lidar data));
38

39 while(offset < sizeof(struct lidar data)) {
40

41 ret = recv(sockfd, (char *)&data + offset,
42 sizeof(struct lidar data) − offset, 0);
43 if(ret <= 0) {
44 break;
45 } else {
46 offset += ret;
47 }
48 }
49

50

51 int32 t rpm = data.rpm[0];
52 rpms−>data = rpm;
53

54 scan−>angle min = 0.0;
55 scan−>angle max = 2.0*M PI;
56 scan−>angle increment = (2.0*M PI/360.0);
57 scan−>time increment = (rpm == 0 ? (1.0 / 360.0) :

170

58 (60.0 / rpm / 360.0));
59 scan−>scan time = (rpm == 0 ? 1 : 60.0 / rpm);
60 scan−>range min = 0.06;
61 scan−>range max = 5.0;
62 scan−>ranges.reserve(360);
63 scan−>intensities.reserve(360);
64

65 for(i = 0; i < 360; i++) {
66 float range = (data.ranges[i] < 0 ? 0 :
67 data.ranges[i] / 1000.0);
68 scan−>ranges.push back(range);
69 scan−>intensities.push back(data.intensities[i]);
70 }
71

72 // printf("Scan received!\n");
73 }
74

75

76 int main(int argc, char **argv) {
77

78 // roscpp init
79

80 ros::init(argc, argv, "xv 11 lidar socket driver");
81 ros::NodeHandle n;
82 ros::NodeHandle priv nh("˜");
83

84 printf("xv 11 lidar socket driver started.\n");
85

86 // configuration parameter
87 string address;
88 int port;
89 string frame id;
90

91 priv nh.param("address", address,
92 string("192.168.1.2"));
93 priv nh.param("port", port, 5000);
94 priv nh.param("frame id", frame id,
95 string("xv 11 lidar"));
96

97

98 // connect socket
99 int sockfd = −1;

100 struct sockaddr in serv addr;
101

102 if ((sockfd = socket(AF INET, SOCK STREAM,
103 0)) < 0) {
104 printf("Unable to create socket.\n");
105 return −1;
106 }
107

108 memset(&serv addr, 0, sizeof(serv addr));
109 serv addr.sin family = AF INET;
110 serv addr.sin port = htons(5000);
111

112 if (inet pton(AF INET, address.c str(),
113 &serv addr.sin addr) <= 0) {
114 printf("Invalid server address\n");

171

115 return −1;
116 }
117

118 if (connect(sockfd, (struct sockaddr *)
119 &serv addr, sizeof(serv addr))
120 < 0) {
121 printf("Connect failed.\n");
122 return −1;
123 }
124

125 printf("Connected to %s:%d\n",
126 address.c str(), port);
127

128

129 // publisher
130 ros::Publisher laser pub =
131 n.advertise<sensor msgs::LaserScan>("scan",
132 1000);
133 ros::Publisher motor pub =
134 n.advertise<std msgs::UInt16>("rpms", 1000);
135

136

137 while (n.ok()) {
138 sensor msgs::LaserScan scan;
139 std msgs::UInt16 rpms;
140 scan.header.frame id = frame id;
141 scan.header.stamp = ros::Time::now();
142 laser poll(sockfd, &scan, &rpms);
143 laser pub.publish(scan);
144 motor pub.publish(rpms);
145

146 }
147

148

149

150 return 0;
151 }

1 <?xml version="1.0"?>
2

3 //Establishing Connecting Between
4 //LIDAR and Linux PC through USB
5

6 <launch>
7 <node pkg="xv 11 laser driver"
8 type="neato laser publisher" name="xv 11 node">
9

10 <!−−<param name="port"
11 value="/dev/tty.usbserial−A9UXLBBR"/>−−>
12

13 <param name="port" value="/dev/ttyUSB0"/>
14 <param name="firmware version" value="2"/>
15 <param name="frame id" value="laser"/>
16 </node>
17

18 <node pkg="tf" type="static transform publisher"

172

19 name="base frame 2 laser"
20 args="0 0 0 0 0 0 /base frame /laser 100"/>
21

22 <node pkg="rviz" type="rviz"
23 name="rviz" args="−d rviz cfg.rviz"/>
24

25 <include file="default mapping.launch"/>
26 <include file="/home/jeffery/catkin ws/
27 src/hector slam/hector geotiff/launch/
28 geotiff mapper.launch"/>
29

30 </launch>

1 //This is a ROS launch file which setup
2 //key parameters like map frame, base frame etc
3 //Resolution and Other Key parameters of the map
4 //can be changed here
5

6 <?xml version="1.0"?>
7 <launch>
8

9 <node pkg="hector mapping" type="hector mapping"
10 name="hector mapping" output="screen">
11 <param name="use sim time" value="false"/>
12 <param name="pub map odom transform" value="true"/>
13 <param name="map frame" value="map"/>
14 <param name="base frame" value="base frame"/>
15 <param name="odom frame" value="base frame"/>
16 <param name="fixed frame" value="laser"/>
17

18 <param name="use tf scan transformation" value="true"/>
19 <param name="use tf pose start estimate" value="false"/>
20

21 <param name="map resolution" value="0.050"/>
22 <param name="map size" value="2048"/>
23 <param name="map start x" value="0.5"/>
24 <param name="map start y" value="0.5" />
25 <param name="map pub period" value="1.0" />
26 <param name="map multi res levels" value="2" />
27

28 <param name="update factor free" value="0.4"/>
29 <param name="update factor occupied" value="0.7" />
30 <param name="map update distance thresh" value="0.2"/>
31 <param name="map update angle thresh" value="0.9" />
32 <param name="laser max dist" value="6" />
33 <param name="laser z min value" value = "−1.0" />
34 <param name="laser z max value" value = "1.0" />
35

36 <param name="advertise map service" value="true"/>
37 <param name="scan subscriber queue size" value="5"/>
38 <param name="scan topic" value="scan"/>
39 <param name="tf map scanmatch transform frame name"
40 value="scanmatcher frame" />
41 </node>
42

43 </launch>

173

APPENDIX C

C CODE

174

1 //Author: Duo Lv, Xianglong Lu
2 //This C Code is running on Raspberry Pi
3 //It's dealing with LIDAR RPM Counting, LIDAR
4 //Raw Data Analysis and TCP Socket (Wireless SLAM)
5

6

7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>

10 #include <errno.h>
11 #include <stdint.h>
12

13 #include <sys/types.h>
14 #include <unistd.h>
15 #include <fcntl.h>
16 #include <termios.h>
17

18 #include <sys/types.h>
19 #include <sys/socket.h>
20 #include <netinet/in.h>
21 #include <arpa/inet.h>
22

23 #include <pthread.h>
24 #include <semaphore.h>
25

26 // uncomment this to debug reads
27 //#define SERIALPORTDEBUG
28

29 // takes the string name of the serial
30 port (e.g. "/dev/tty.usbserial","COM1")
31 // and a baud rate (bps) and connects
32 to that port at that speed and 8N1.
33 // opens the port in fully raw mode
34 so you can send binary data.
35 // returns valid fd, or −1 on error
36

37 int serialport init(const char* serialport, int baud) {
38 struct termios toptions;
39 int fd;
40

41 //fd = open(serialport, O RDWR | O NOCTTY | O NDELAY);
42 fd = open(serialport, O RDWR | O NONBLOCK);
43

44 if (fd == −1) {
45 perror("serialport init: Unable to open port ");
46 return −1;
47 }
48

49 //int iflags = TIOCM DTR;
50 //ioctl(fd, TIOCMBIS, &iflags); // turn on DTR
51 //ioctl(fd, TIOCMBIC, &iflags); // turn off DTR
52

53 if (tcgetattr(fd, &toptions) < 0) {
54 perror("serialport init: Couldn't
55 get term attributes");
56 return −1;
57 }

175

58 speed t brate = baud; // let you override
59 switch below if needed
60 switch (baud) {
61 case 4800:
62 brate = B4800;
63 break;
64 case 9600:
65 brate = B9600;
66 break;
67 #ifdef B14400
68 case 14400: brate=B14400; break;
69 #endif
70 case 19200:
71 brate = B19200;
72 break;
73 #ifdef B28800
74 case 28800: brate=B28800; break;
75 #endif
76 case 38400:
77 brate = B38400;
78 break;
79 case 57600:
80 brate = B57600;
81 break;
82 case 115200:
83 brate = B115200;
84 break;
85 }
86 cfsetispeed(&toptions, brate);
87 cfsetospeed(&toptions, brate);
88

89 // 8N1
90 toptions.c cflag &= ˜PARENB;
91 toptions.c cflag &= ˜CSTOPB;
92 toptions.c cflag &= ˜CSIZE;
93 toptions.c cflag |= CS8;
94 // no flow control
95 toptions.c cflag &= ˜CRTSCTS;
96

97 //toptions.c cflag &= ˜HUPCL; // disable
98 hang−up−on−close to avoid reset
99

100 toptions.c cflag |= CREAD | CLOCAL;
101 // turn on READ & ignore ctrl lines
102 toptions.c iflag &= ˜(IXON | IXOFF | IXANY);
103

104 // turn off s/w flow ctrl
105 toptions.c lflag &= ˜(ICANON | ECHO |
106 ECHOE | ISIG);
107 // make raw
108 toptions.c oflag &= ˜OPOST; // make raw
109

110 // see: http://unixwiz.net/techtips
111 /termios−vmin−vtime.html
112 toptions.c cc[VMIN] = 0;
113 toptions.c cc[VTIME] = 0;
114 //toptions.c cc[VTIME] = 20;

176

115

116 tcsetattr(fd, TCSANOW, &toptions);
117 if (tcsetattr(fd, TCSAFLUSH, &toptions)
118 < 0) {
119 perror("init serialport: Couldn't
120 set term attributes");
121 return −1;
122 }
123

124 return fd;
125 }
126

127 //
128 int serialport close(int fd) {
129 return close(fd);
130 }
131

132 //
133 int serialport write(int fd, char b) {
134 int n = write(fd, &b, 1);
135 if (n != 1)
136 return −1;
137 return 0;
138 }
139

140 //
141 int serialport write buff(int fd, const
142 char* buff, int n) {
143 int ret = write(fd, buff, n);
144 if (ret != n) {
145 perror("serialport write: couldn't
146 write whole string\n");
147 return −1;
148 }
149 return 0;
150 }
151

152 //
153 int serialport read until(int fd, char* buf,
154 char until, int buf max,
155 int timeout) {
156 char b[1]; // read expects an array,
157 so we give it a 1−byte array
158 int i = 0;
159 do {
160 int n = read(fd, b, 1);
161 // read a char at a time
162 if (n == −1)
163 return −1; // couldn't read
164 if (n == 0) {
165 usleep(1 * 1000);
166 // wait 1 msec try again
167 timeout−−;
168 continue;
169 }
170 #ifdef SERIALPORTDEBUG
171 printf("serialport read until:

177

172 i=%d, n=%d b='%c'\n",i,n,b[0]);
173 // debug
174 #endif
175 buf[i] = b[0];
176 i++;
177 } while (b[0] != until && i < buf max
178 && timeout > 0);
179

180 buf[i] = 0; // null terminate the string
181 return 0;
182 }
183

184 //
185 int serialport flush(int fd) {
186 sleep(2); //required to make flush
187 work, for some reason
188 return tcflush(fd, TCIOFLUSH);
189 }
190

191 #define NR PACKET 90
192 #define READING PER PACKET 4
193

194 #define LIDAR BUFF SIZE 4
195

196 // must be 22 bytes
197 struct lidar serial packet {
198

199 uint8 t start;
200 uint8 t index;
201 uint16 t speed;
202 uint8 t data[16];
203 uint16 t checksum;
204

205 };
206

207 struct lidar data {
208

209 int32 t rpm[NR PACKET *
210 READING PER PACKET];
211 int32 t distance[NR PACKET *
212 READING PER PACKET];
213 int32 t sig strength[NR PACKET *
214 READING PER PACKET];
215 };
216

217 struct lidar data lidar buff[LIDAR BUFF SIZE];
218 int lidar producer index = 0;
219 int lidar consumer index = 0;
220

221 sem t lidar sem;
222 int lidar listener = 0;
223

224

225 int get distance(struct lidar serial packet *p,
226 int index) {
227

228 if (index < 0 | | index > 3)

178

229 return −1;
230

231 uint8 t *cp = (uint8 t *) &(p−>data[index * 4]);
232

233 if ((cp[1] & 0x80) > 0)
234 return −1;
235 else
236 return (cp[1] & 0x3F) << 8 | cp[0];
237

238 }
239

240 int get sig strength(struct lidar serial packet *p,
241 int index) {
242

243 if (index < 0 | | index > 3)
244 return −1;
245

246 uint8 t *cp = (uint8 t *) &(p−>data[index * 4]);
247

248 return cp[3] << 8 | cp[2];
249

250 }
251

252 int get sig warning(struct lidar serial packet *p,
253 int index) {
254

255 if (index < 0 | | index > 3)
256 return −1;
257

258 uint8 t *cp = (uint8 t *) &(p−>data[index * 4]);
259

260 return cp[1] & 0x40;
261

262 }
263

264 void dump packet(struct lidar serial packet *p) {
265

266 int i = 0;
267 uint8 t *cp = (uint8 t *) p;
268

269 for (i = 0; i < sizeof(struct
270 lidar serial packet); i++) {
271 printf("%02x ", cp[i]);
272 }
273

274 printf("\n");
275

276 }
277

278 int skip read(int fd) {
279

280 int i;
281 int ret;
282 unsigned char c;
283 int distance = 0;
284

285 do {

179

286

287 ret = read(fd, &c, 1);
288 if (ret < 0) {
289 printf("Unable to read from
290 serial port!\n");
291 return −1;
292 }
293

294 if (ret == 0) {
295 sleep(1);
296 continue;
297 }
298

299 // printf("%02x ", c);
300

301 i++;
302 if (c == 0xFA) {
303 distance = i;
304 i = 0;
305 }
306

307 } while (distance != sizeof
308 (struct lidar serial packet));
309

310 for (i = 0; i < sizeof(struct
311 lidar serial packet) − 1; i++) {
312 ret = read(fd, &c, 1);
313 if (ret < 0) {
314 printf("Unable to read from
315 serial port!\n");
316 return −1;
317 }
318 // printf("%02x ", c);
319 }
320

321 // printf("\n");
322

323 return 0;
324 }
325

326 int read packet(int fd, struct lidar serial packet *p) {
327

328 int ret;
329 int offset = 0;
330

331 while (offset != sizeof(struct lidar serial packet)) {
332 ret = read(fd, (char *) p + offset,
333 sizeof(struct lidar serial packet) − offset);
334 if (ret < 0) {
335 printf("Unable to read from serial port!\n");
336 return −1;
337 } else if (ret == 0) {
338 sleep(1);
339 continue;
340 } else {
341 offset += ret;
342 }

180

343 }
344

345 return 0;
346

347 }
348

349

350 void *lidar serial thread(void *para) {
351

352 int i = 0;
353 char *serial dev = "/dev/ttyUSB0";
354

355 // open serial port
356

357 if (para != NULL) {
358 serial dev = para;
359 }
360

361 int fd = serialport init(serial dev, 115200);
362 if (fd < 0) {
363 printf("Unable to open serial port \"%s\".\n", serial dev);
364 }
365

366 // read packet
367

368 struct lidar serial packet packet;
369

370 skip read(fd);
371

372 while (1) {
373

374 read packet(fd, &packet);
375

376 if (packet.start != 0xFA) {
377 printf("Unexpected protocol header!\n");
378 dump packet(&packet);
379 skip read(fd);
380 continue;
381 }
382

383 int index = packet.index − 0xA0;
384 float speed = packet.speed / 64.0;
385

386

387 printf("packet %d at RPM %.2f: ", index, speed);
388

389 for (i = 0; i < 4; i++) {
390

391 int distance = get distance(&packet, i);
392 int sig strength = get sig strength(&packet, i);
393 int warning = get sig warning(&packet, i);
394

395 if (warning == 0) {
396 printf("%d (%d)\t", distance, sig strength);
397 } else {
398 printf("%d (%d W)\t", distance, sig strength);
399 }

181

400

401 if(warning >= 0)
402 sig strength = −sig strength;
403

404 lidar buff[lidar producer index].
405 rpm[index * READING PER PACKET + i] = speed;
406 lidar buff[lidar producer index].
407 distance[index * READING PER PACKET + i] = distance;
408 lidar buff[lidar producer index].
409 sig strength[index * READING PER PACKET + i] = sig strength;
410

411 }
412

413 if(index == NR PACKET − 1) {
414 lidar producer index = (lidar producer index + 1)
415 % LIDAR BUFF SIZE;
416 sem post(&lidar sem);
417 }
418

419 printf("\n");
420 }
421

422 close(fd);
423

424 }
425

426 void *lidar socket thread(void *para) {
427

428 int error = 0;
429 int ret;
430 socklen t len;
431 int listenfd = 0, connfd = 0;
432 struct sockaddr in serv addr, client addr;
433

434 char client addr str[16];
435

436 if ((listenfd = socket(AF INET, SOCK STREAM, 0)) < 0) {
437 printf("Unable to create socket.\n");
438 return NULL;
439 }
440

441 memset(&serv addr, 0, sizeof(serv addr));
442 serv addr.sin family = AF INET;
443 serv addr.sin addr.s addr = htonl(192.168.0.1);
444 serv addr.sin port = htons(5000);
445

446 if (bind(listenfd, (struct sockaddr*)
447 &serv addr, sizeof(serv addr)) < 0) {
448 printf("Unable to bind to local
449 listening socket %s:%d\n",
450 inet ntoa(serv addr.sin addr),
451 ntohs(serv addr.sin port));
452 return NULL;
453 }
454

455 if (listen(listenfd, 10) < 0) {
456 printf("Unable to listen on %s:%d\n",

182

457 inet ntoa(serv addr.sin addr),
458 serv addr.sin port);
459 return NULL;
460 }
461

462 printf("Listening started.\n");
463

464

465

466 while (1) {
467 connfd = accept(listenfd, (struct sockaddr*)
468 &client addr, &len);
469 if(connfd < 0) {
470 printf("Accept failed.\n");
471 puts(strerror(errno));
472 return NULL;
473 }
474 inet ntop(AF INET, &client addr.sin addr,
475 client addr str,
476 sizeof(client addr str));
477 printf("Accept connection from %s.\n", client addr str);
478

479 while (error == 0) {
480

481 if(lidar consumer index == lidar producer index)
482 sem wait(&lidar sem);
483

484 int offset = 0;
485 char *p = (char *)&lidar buff[lidar consumer index];
486

487 while(offset < sizeof(struct lidar data)) {
488 ret = send(connfd, p + offset, sizeof
489 (struct lidar data) − offset, 0);
490 if(ret < 0) {
491 error = 1;
492 break;
493 }
494 }
495

496 lidar consumer index = (lidar consumer index + 1)
497 % LIDAR BUFF SIZE;
498

499 printf("Data sent.\n");
500

501 }
502

503 printf("%s disconnected.\n", client addr str);
504 error = 0;
505 close(connfd);
506 }
507

508 return NULL;
509 }
510

511

512 int main(int argc, char **argv) {
513

183

514

515

516 sem init(&lidar sem, 0, 0);
517

518 pthread t lidar socket thread tid;
519 pthread t lidar serial thread tid;
520

521

522 pthread create(&lidar socket thread tid, NULL,
523 lidar socket thread, NULL);
524 pthread create(&lidar serial thread tid, NULL,
525 lidar serial thread, NULL);
526

527

528 pthread join(lidar socket thread tid, NULL);
529 pthread join(lidar serial thread tid, NULL);
530

531 sem destroy(&lidar sem);
532

533

534 return EXIT SUCCESS;
535 }

184

APPENDIX D

PYTHON CODE

185

1

2 Author: Xianglong Lu 16/4/14
3

4 # stands for detailed commends
5

6 #Hardware: Raspberry Pi 2/3 + Raspberry
7 #pi camera module
8

9 #The goals of this code are:
10 #1.turning the image from color to grey, extract
11 #the black line by adjusting the threshold,
12 #then we find the line. Finally we calculate the
13 #mass center of this line in camera's region of interest,
14 # Then calculate angle between the oriantation
15 #of the robot and mass center of black line.
16

17 #2. Feedback the thetae to arduino (through serial
18 # port) for the purpose of controlling the
19 #robot's steering servo. In this case, robot can
20 #roughly track this black line.
21

22 #3. roughly calculate fps of the pi camera, which
23 #is super important
24

25

26 #import all the modules it needs. time and math
27 #modules have been installed already.
28 #cv2 and numpy are ready when you installed
29 #opencv. Other modules are supposed to be installed
30 #in python individually.
31

32

33 import cv2
34 from numpy import linalg as LA
35 import numpy as np
36 import io
37 import picamera
38 import serial
39 import matplotlib.pyplot as plt
40 import pylab as plab
41 import time
42 import math
43

44 #Here we start the code
45 #In this case, raspberry pi and arduino uno
46 #are communicating through serial port (the blue
47 #USB cable). Here we define port name is
48 #ttyACM0 and baud rate is 9600
49

50 ser = serial.Serial('/dev/ttyACM0', 9600)
51 ser.write('0 \n')
52

53 # Here we are trying to get the image(vedio
54 #stream or just jpeg images). The following lines
55 #help us get the images or vedio stream and
56 #store them in frame. This this the way to setup
57 # a pi camera

186

58

59 def getImage():
60 cap.capture(stream, format = 'jpeg', use video port = True)
61 frame = np.fromstring(stream.getvalue(), dtype = np.uint8)
62 stream.seek(0)
63 frame = cv2.imdecode(frame,1)
64 return frame
65

66 cap = picamera.PiCamera()
67

68 #flip the image horizontally or vertically if necessary
69

70 cap.vflip = True
71 cap.hflip = True
72 #resolution is set to 320x240 to get higher fps
73 cap.resolution = (320,240)
74

75

76 stream = io.BytesIO()
77

78 end = '\n'
79 comma = ','
80

81 #initialize angle thetae
82 #thetae is the angle between the oriantation
83 #of the robot and mass center of black line
84 #in region of interest
85

86 thetae p = 0
87

88

89 #main function begins:
90

91 while(1):
92

93 #start counting time(for fps calculating)
94 start time = time.time()
95

96 frame = getImage()
97 frame1 = np.array(frame)
98 #roi mean the region of interest, we do not
99 # need the whole frame of what camera captures

100 # we just need the area that we are interested in
101

102 roi = frame1[50:100,50:200]
103 #first number is horizontal
104 #second number is vertical
105

106 # Convert BGR to GRAY
107 gray = cv2.cvtColor(roi, cv2.COLOR BGR2GRAY)
108

109 # Threshold the HSV image to get only blue colors
110 ret, output2 = cv2.threshold(gray, 100,
111 255, cv2.THRESH BINARY INV)
112 output2 = cv2.GaussianBlur(output2,(5,5),0)
113 #roi = cv2.cvtColor(roi,cv2.COLOR BGR2HSV)
114 #output2 = cv2.inRange(roi,np.array((10,26,33)),

187

115 #np.array((10,26,35)))
116 erode = cv2.getStructuringElement(cv2.MORPH RECT,(5,5))
117 dilate = cv2.getStructuringElement(cv2.MORPH RECT,(6,6))
118

119 # Erode and dilate
120 output2 = cv2.erode(output2, erode, iterations = 3)
121 output2 = cv2.dilate(output2, dilate, iterations = 5)
122

123 #output2 is the contour
124 cv2.imshow('out', output2)
125 # Finding contours
126 ,contours, = cv2.findContours(output2,cv2.
127 RETR TREE,cv2.CHAIN APPROX SIMPLE)
128

129

130

131 #More Info: http://stackoverflow.com/questions/16538774/
132 #ealing−with−contours−and−bounding−rectangle−in−
133 #opencv−2−4−python−2−7
134

135 areas = [cv2.contourArea(c) for c in contours]
136

137 #if not not areas:
138

139 max index = np.argmax(areas)
140 cnt = contours[max index]
141

142 cv2.drawContours(roi, [cnt], 0, (0,0,255), 2)
143

144 m1 = cv2.moments(contours[max index])
145

146 #To calculate the mass center of black line
147

148 u1 = int(m1['m10']/m1['m00'])
149 #u1 is mass center horizontal
150 v1 = int(m1['m01']/m1['m00'])
151 #v1 is mass center vertical
152

153 #u1 v1 can be printed here(in python command line)
154 str1 = "u1 is %d"%u1
155 str2 = "v1 is %d"%v1
156 #print str1
157 #print str2
158

159

160 # To calculate thetae every iteration
161 thetae = int((math.atan2(u1−320,150))*180/3.1416)
162

163

164 # update thetae
165 thetae p = thetae
166

167

168 #print thetae
169 print "The vision feedback theta is %d"%(thetae)
170

171

188

172

173 sthetae = str(thetae)
174 string = sthetae + end
175 ser.write(string)
176

177

178

179 else:
180 ser.write('0 \n')
181 print 'a'
182

183 #show frame and roi windows in real time
184

185 cv2.imshow('frame',frame)
186 cv2.imshow('roi', roi)
187

188 # It's a way to roughly calculate fps of the
189 #camera,using pi 3 and pi camera, it should
190 #be around 10Hz.
191

192 print("%s Hertz"%(1/(time.time() − start time)))
193

194

195 #wait esc to kill all process
196 k = cv2.waitKey(1) & 0xFF
197 if k == 27:
198 break
199

200 cv2.destroyAllWindows()
201

202 ser.write('0 \n')
203 ser.close()
204 cap.close()

1 # HSV Color Filtering
2

3 import cv2
4 import numpy as np
5 import picamera
6 import io
7

8 def getImage():
9 cap.capture(stream, format = 'jpeg', use video port = True)

10 frame = np.fromstring(stream.getvalue(), dtype = np.uint8)
11 stream.seek(0)
12 frame = cv2.imdecode(frame,1)
13 return frame
14

15 def nothing(x):
16 pass
17

18

19 cap = picamera.PiCamera()
20 cap.vflip = True
21 cap.hflip = True
22 cap.resolution = (320,240)

189

23 cap.contrast = 0
24 cap.saturation = 0
25

26 stream = io.BytesIO()
27

28

29 cv2.namedWindow('result')
30

31 hmin,smin,vmin = 100,100,100
32 hmax,smax,vmax = 100,100,100
33

34

35 cv2.createTrackbar('hmin', 'result', 0, 179, nothing)
36 cv2.createTrackbar('smin', 'result', 0, 255, nothing)
37 cv2.createTrackbar('vmin', 'result', 0, 255, nothing)
38

39 cv2.createTrackbar('hmax', 'result', 0, 179, nothing)
40 cv2.createTrackbar('smax', 'result', 0, 255, nothing)
41 cv2.createTrackbar('vmax', 'result', 0, 255, nothing)
42

43 while (1):
44 frame = getImage()
45

46 hsv = cv2.cvtColor(frame, cv2.COLOR BGR2HSV)
47

48 hmin = cv2.getTrackbarPos('hmin','result')
49 smin = cv2.getTrackbarPos('smin','result')
50 vmin = cv2.getTrackbarPos('vmin','result')
51

52

53 hmax = cv2.getTrackbarPos('hmax','result')
54 smax = cv2.getTrackbarPos('smax','result')
55 vmax = cv2.getTrackbarPos('vmax','result')
56

57

58 lower blue = np.array([hmin,smin,vmin])
59 upper blue = np.array([hmax,smax,vmax])
60

61 mask = cv2.inRange(hsv, lower blue, upper blue)
62

63 result = cv2.bitwise and(frame, frame, mask = mask)
64

65 cv2.imshow('result', result)
66

67 k = cv2.waitKey(1) & 0xFF
68 if k == 27:
69 break
70

71 cap.close()
72 cv2.destroyAllWindows()

190

APPENDIX E

ARDUINO CODE

191

1 //This Arduino Code is for Longitudinal Inner Loop
2 //which is (Vdsr, V) Control
3

4 #include <Wire.h>
5 #include <Adafruit MotorShield.h>
6 #include "utility/Adafruit PWMServoDriver.h"
7 #include <math.h>
8 #include <Encoder.h>
9

10 Adafruit MotorShield AFMS = Adafruit MotorShield();
11 Adafruit DCMotor *rightMotor = AFMS.getMotor(2);
12 Adafruit DCMotor *leftMotor = AFMS.getMotor(1);
13

14 Encoder re(3,3);
15

16 double wR;
17 double wRp = 0;
18 double wRn;
19 double RdVal = 0;
20 double Radius = 0.024;
21

22 double vd = 0.5;
23 double vd p = 0;
24 double vdf;
25 double vdf p = 0;
26

27 double CR;
28 double CR p = 0;
29 double CR pp = 0;
30

31 double Rerror;
32 double Rerror p = 0;
33 double Rerror pp = 0;
34

35 int PWMR;
36

37 double kp = 11.68;
38 double ki = 23.36;
39

40 double alpha = 100;
41 double h = ki/kp;
42

43 long R;
44 long R last = 0;
45 unsigned long Time = 0;
46 unsigned long sample time = 100;
47 double td = 0.100; //
48

49 void setup()
50 {
51

52 AFMS.begin();
53 Serial.begin(9600);
54 leftMotor−>setSpeed(0);
55 rightMotor−>setSpeed(0);
56 leftMotor−>run(FORWARD);
57 rightMotor−>run(FORWARD);

192

58

59 leftMotor−>run(RELEASE);
60 rightMotor−>run(RELEASE);
61

62 delay(1000);
63 }
64

65 void loop()
66 {
67 if (millis()<10000)
68 {
69 if(millis() − Time > sample time)
70 {
71 Time = millis();
72 GetSpeeds();
73 }
74 }
75

76 else
77 {
78 rightMotor−>setSpeed(0);
79 leftMotor−>setSpeed(0);
80 }
81

82 }
83

84 void GetSpeeds()
85 {
86 //Prefilter
87 vdf = ((td*h)*vd + (td*h)*vd p − (td*h − 2)*vdf p)/(2 + td*h);
88

89 vdf p = vdf;
90 vd p = vd;
91

92 R = re.read();
93 RdVal = (double)(R − R last)/(td);
94 wR = RdVal*2*3.14159/48;
95 wRn = (wR + wRp)/2.0;
96

97 wRp = wR;
98

99 Rerror = vdf − wRn*Radius;
100 //Controller
101 CR = ((alpha*td*td*ki+2*alpha*td*kp)*Rerror +
102 (2*alpha*td*td*ki)*Rerror p + (alpha*td*td*ki−2*alpha*td*kp)
103 *Rerror pp + 8*CR p −
104 (4−2*alpha*td)*CR pp)/(2*alpha*td + 4);
105

106 CR pp = CR p;
107 CR p = CR;
108

109 Rerror pp = Rerror p;
110 Rerror p = Rerror;
111

112 PWMR = int(255.0*CR/7.8);
113

114 if (PWMR>=255) {PWMR=255;}

193

115 else if (PWMR<=0) {PWMR=0;}
116

117 leftMotor−>setSpeed(PWMR);
118 leftMotor−>run(FORWARD);
119 rightMotor−>setSpeed(PWMR);
120 rightMotor−>run(FORWARD);
121

122 R last = R;
123

124 Serial.print(" ");
125 Serial.print(wRn*Radius); //
126 Serial.print(" ");
127 Serial.println(PWMR); //
128

129 }

1 //Robot (v,theta) control
2 //Go Along a line
3

4 #include <Wire.h>
5 #include <SPI.h>
6 #include <Adafruit MotorShield.h>
7 #include <Servo.h>
8 #include <math.h>
9 #include <Adafruit Sensor.h>

10 #include <Adafruit BNO055.h>
11 #include <utility/imumaths.h>
12 //#include <Encoder.h>
13 #include "utility/Adafruit PWMServoDriver.h"
14

15 #define Center 20
16

17 Servo steer servo;
18

19 Adafruit BNO055 bno = Adafruit BNO055();
20

21 Adafruit MotorShield AFMS = Adafruit MotorShield();
22 Adafruit DCMotor *M1 = AFMS.getMotor(1);
23 Adafruit DCMotor *M2 = AFMS.getMotor(2);
24 #define MAG OUTPUT 3
25

26 int wheelServo;
27 int count;
28 int offset;
29 double radius = 0.024;
30 double L r = 0.134;
31 double pi = 3.14159;
32 double vx; //robot cruise speed
33 double vx p=0;
34 double vx filtered;
35 double theta;
36

37 unsigned long timeold;
38 imu::Vector<3> euler init;
39 imu::Vector<3> euler;
40

194

41 double servo kp = 2;
42 double servo kd = 2;
43 double theta p = 0;
44 double start time;
45

46 void setup() {
47 bno.begin();
48 steer servo.attach(9);
49 steer servo.write(Center);
50

51 delay(2000);
52

53 Serial.begin(115200); // Initialize serial port to
54 //send and receive at 115200 baud
55 AFMS.begin();
56

57 pinMode(MAG OUTPUT, INPUT PULLUP);// turn on inside
58 //pull−up resistor
59 attachInterrupt(MAG OUTPUT−2, pulseCNT, RISING);
60

61 double start time = millis();
62 }
63

64 double pd theta(double err, double err p, double Ts,
65 double Kp, double Kd){
66 double u = Kp*err+ Kd*(err−err p)/Ts;
67 // add roll off later
68 return u;
69 }
70

71 void loop() {
72 if(millis()−start time<10000){
73

74 get speed();
75 float theta raw = get theta();
76 theta = double(theta raw * 180/3.14);
77

78 if(theta<=360 && theta >= 330)
79 {theta = theta − 360;
80 }
81 Serial.print(vx filtered);
82 Serial.print(" , ");
83 Serial.print(theta);
84 //Serial.print(" , ");
85 //Serial.println(wheelServo);
86

87 if(abs(theta<30.00)){
88 M1−>run(FORWARD);
89 M2−>run(FORWARD);
90 M1−>setSpeed(55);
91 M2−>setSpeed(55);
92 }
93

94 else
95 { M1−>run(RELEASE);
96 M2−>run(RELEASE);
97 }

195

98

99 int wheelServo = Center;
100

101 if (abs(theta) > 3){
102 int u = pd theta(theta,theta p,0.1,servo kp,servo kd);
103 wheelServo = Center + u;
104

105 //Serial.print(" , ");
106 //Serial.println(wheelServo);
107 if(abs(u)>30)
108 {u = 0;}
109 else{
110 steer servo.write(wheelServo);
111 }
112 }
113

114 else{
115 steer servo.write(Center);
116 }
117

118 Serial.print(" , ");
119 Serial.println(wheelServo);
120

121 theta p = theta;
122

123 delay(100);
124 }
125 else{
126 M1−>run(RELEASE);
127 M2−>run(RELEASE);
128 }
129 }
130

131 void get speed(){
132 vx = (((double)count/12.0)*2.0*pi*radius)*
133 1000.0/(millis()−timeold);
134 vx filtered = (vx + vx p)/2;
135 timeold = millis();
136 count = 0;
137 vx p = vx;
138 }
139

140 void pulseCNT(){
141 //Serial.println(count);
142 count++;
143 //Each rotation, this interrupt function is run twice
144 }
145

146 float get theta(){
147 euler = bno.getVector(Adafruit BNO055::VECTOR EULER);
148 return (euler.x() − euler init.x()) * 3.14 / 180.0;
149

150 }

1 // Outer Loop XY Using IMU
2

196

3 #include <Adafruit Sensor.h>
4 #include <Adafruit BNO055.h>
5 #include <utility/imumaths.h>
6 #include <math.h>
7 #include <Wire.h>
8 #include <Adafruit MotorShield.h>
9 #include "utility/Adafruit PWMServoDriver.h"

10 #include <math.h>
11 #include <Encoder.h>
12 #include <TimerOne.h>
13 #include <SPI.h>
14 #include <Servo.h>
15 /* −−−−−−−−−−−−−−Hardware Setting−−−−−−−−−−−−−− */
16 // Create the motor shield object with the default I2C address
17 Adafruit MotorShield AFMS = Adafruit MotorShield();
18 Adafruit DCMotor *MotorR = AFMS.getMotor(2);
19 Adafruit DCMotor *MotorL = AFMS.getMotor(1);
20

21

22 const double xy eps = 0.15; // xy satisfying error region
23

24 // PID Setting
25 // Outer Loop P controller Two P controller for theta and dist
26 // Kp theta > Kp dist To be Stable
27 const double OuterLP PID Kp theta=10;
28 const double OuterLP PID Kp dist =0.3;
29

30

31 // Inner Loop PI controller Incremental Method
32 const double InnerLP PID Kp =11.68;
33 const double InnerLP PID Ki =23.36; //This number is
34 //independent of Ts Ki c=Ki/Ts;
35 const double Prefilter Coeff=0.167;
36

37

38 // Servo Setting
39

40 Servo myservo;
41 Servo panservo;
42 #define servo center 10
43 #define panservo center 83
44 #define servo offset limit 30
45 double u wheelServo;
46 int wheelServo ;
47 int panServo;
48

49 //IMU object and Global Variable
50 Adafruit BNO055 bno = Adafruit BNO055();
51 imu::Vector<3> euler init;
52 imu::Vector<3> euler;
53

54 // PWM Control Related Terms
55 const int PWM Intitial=0;
56 const int PWM UpperLimit=150;
57 const int PWM LowerLimit=0;
58

59 // Encoder relevant variables for computing speed

197

60 Encoder EncR(3,3);
61

62

63 const int Enc CPT=48;// Count Per Turn of Encoder
64 volatile long EncR Ticks=0;// counter for Right wheel Encoder
65 volatile int Flag TimerUpdate =1;// Timer Flag to
66 //Control iterative Every Loop
67 long Timer Counter=0;
68

69 long EncR Ticks p=0; //RTick Record of last update
70

71

72 // Vehicle Basic Parameters
73 const double WheelRadius =0.024;
74

75

76

77

78 /* −−−−−−−−−−−−−−−−− Software Setting −−−−−−−−−−−−−−−−− */
79 // General Parameters
80 const double Time SamplingTime=0.1;// sampling time
81 //of timer1 period in seconds
82 const long Time StopTimeMS =7000;
83 const long SerialTimeOutMs =10000;
84 const int ledPIN=13;
85 long StartRunTime=0;
86

87

88 /* −−−−−−−−−−−− Other Function Global Variables −−−−−−−−−− */
89 // ctrl inner loop Global Variables
90

91 double wR=0;// angular velocity of right wheel
92

93

94 double v dsr=0;// set this variable up
95 double v;
96 double v dsr filtered p=0;// pre−filter
97 double Err v p=0;
98

99 int PWMR p = 0;
100 int PWML p = 0;
101 // OuterLP Global Vars
102

103

104 double x dsr=1.52;//
105 double y dsr=1.52;
106 double x=0;
107 double y=0;
108 double theta=0;
109

110 double x p=0;
111 double y p=0;
112

113 /* −−−−−−−−−−−− Other Function Global Variables −−−−−−−−−−− */
114 //Regulated outputs measured/estimated
115 //double LinearV; //linear speed of the vehicle
116 //double AngularV;//angular velocity of the vehicle

198

117 //w.r.t. instantaneous ICC
118

119 int TaskFinished Flag = 0;
120 // stop the motor and halt when current time reaches TimeMS
121 void test stop(long TimeMS){
122 if(millis()−StartRunTime>TimeMS | | TaskFinished Flag==1){
123 MotorL−>run(RELEASE); // turn off motor
124 MotorR−>run(RELEASE);
125 // digitalWrite(ledPIN,LOW);// turn off led light to
126 //indicate test is over
127 while(1);
128 }
129 }
130

131 // CTRL XY Global Variables
132 double LinearV dsr=0;
133 double AngularV dsr=0;
134

135 double LinearV=0;
136 double AngularV=0;
137 double theta dsr =0;
138

139

140 /* −−−−−−−−−− Other Function Global Variables −−−−−−−−−−− */
141 // Iteration according to Timer Flag
142 // Run Different Main Function According to mode setting
143 long time old = 0;
144 void iterative(int mode){
145 if(millis()−time old > 100){
146 enc update();
147 time old = millis();
148 }
149 if (Flag TimerUpdate){
150 // Main Function Upadates
151 get wheel speed();
152 switch(mode){
153 case 0:
154 ctrl inner loop();
155 break;
156 case 1:
157 // CTRL LineTracking();
158 break;
159 case 2:
160 ctrl planar stabilization();
161 break;
162 default:
163 // if nothing else matches, do the default
164 // default is optional
165 break;
166 }
167 Flag TimerUpdate=0;
168 }
169 }
170 // Update Encoder Register in interrupt
171 // when interrupt happens set Flag TimerUpdate
172 void enc update(){
173 EncR Ticks = EncR.read();

199

174 Flag TimerUpdate=1;// set flag for this
175 Timer Counter++;
176 //Serial.println("timer update");
177

178 // Remember to reset Encoder if Encoder CPT is high
179 }
180

181 // PWM Saturation Setting
182 int pwm saturation(int PWM In){
183 int PWM Out=PWM In;
184 if(PWM In>PWM UpperLimit){PWM Out=PWM UpperLimit;}
185 if(PWM In<PWM LowerLimit){PWM Out=PWM LowerLimit;}
186 return PWM Out;
187 }
188

189 // Motor Setting (Replace by Duo)
190 int motor set pwm(int PWML In,int PWMR In){
191 int PWML Out,PWMR Out;
192 PWML Out=pwm saturation(PWML In);
193 PWMR Out=pwm saturation(PWMR In);
194 MotorL−>setSpeed(PWML Out);
195 MotorR−>setSpeed(PWMR Out);
196 }
197

198

199

200 // compute angular velocity of each wheel through
201 //Encoder Measurement
202 //input : EncR Ticks,
203 //output : v
204 void get wheel speed(){
205 // Serial.print(" enc increment: ");
206 // Serial.print(EncR Ticks−EncR Ticks p);
207 // floating point operation on Arduino might cause
208 //real−time performance problem
209 wR=1.0*(EncR Ticks−EncR Ticks p)/Time SamplingTime*2*3.1416/Enc CPT;
210 // Iteration
211 EncR Ticks p =EncR Ticks;
212 v = wR*WheelRadius;
213

214 }
215

216

217 // PI controller Incremental Style
218 //input: u p,e,e p (Very Like to put u p inside but seems difficult)
219 //output: u
220 int ctrl pi controller(int u p,double Error, double Error p){
221

222 int u=0; // control input
223 double BV = 7.8;
224 double Kp=InnerLP PID Kp;
225 double Ki=InnerLP PID Ki;
226 double Ts=Time SamplingTime;
227 double delta u = (Kp*(Error − Error p) + Ki*Ts*Error)* (255.0/BV);
228

229 u = u p + (int)delta u;
230 return u;

200

231 }
232

233

234 void servo steer(){
235

236 wheelServo = servo center + u wheelServo;
237 myservo.write(wheelServo);
238 // servo saturation control
239 if(wheelServo > servo center+30)
240 {wheelServo= servo center+30; myservo.write(wheelServo);}
241 if(wheelServo < servo center−30)
242 {wheelServo= servo center−30; myservo.write(wheelServo);}
243

244 // Serial.print(" wheelServo ");
245 // Serial.print(wheelServo);
246 // Serial.print(" , ");
247 // myservo.write(wheelServo);
248 }
249

250

251 // Update desired angular velocity and use PI
252 //controller to generate control input
253 // Thus control inner loop (angular velocity)
254 // input: v dsr
255 // output:v
256 void ctrl inner loop(){
257

258 double v dsr filtered=Prefilter Coeff*v dsr+
259 (1−Prefilter Coeff)*v dsr filtered p;
260 //Error Variables error between measured output
261 //and desire value
262 double Err v = v dsr filtered − v;
263

264 // PI Inner loop Controller for v
265

266 int PWML=ctrl pi controller(PWML p,Err v,Err v p);
267 int PWMR=ctrl pi controller(PWMR p,Err v,Err v p);
268

269 // Set Control Input to Motor
270 //motor set pwm(55,55);
271 motor set pwm(PWML,PWMR);
272

273 // Iteration
274 PWMR p=PWMR;
275 PWML p=PWML;
276

277 v dsr filtered p = v dsr filtered;
278

279 // inner loop for lateral w
280 servo steer();
281

282 }
283

284

285

286 void imu setup() {
287

201

288 bno.begin();
289 delay(2000);
290 euler init = bno.getVector(Adafruit BNO055::VECTOR EULER);
291 // imu bno055.begin();
292 }
293

294 // Get Theta From IMU
295 double imu get theta(){
296 euler = bno.getVector(Adafruit BNO055::VECTOR EULER);
297 double raw degree = euler.x();
298 if (raw degree >= 180)
299 return (−(360−raw degree)*3.14/180);
300 else
301 return (raw degree*3.14/180);
302

303

304 // Serial.println(raw);
305

306

307 }
308

309

310 // Restriction Control Action
311 //input: In,Th(Threshold),Output UpperLimit Output LowerLimit
312 //output: Out
313 double dead zone saturation(double In,double Th, double Min,double Max){
314 double Out=In;
315 if(fabs(In) <= Th) {Out=0;} // threshold Means No response region is [−Th Th]
316 else if (In > Max){Out=Max;}
317 else if (In < Min){Out=Min;}
318 return Out;
319 }
320

321

322 // Drive Robot to Desired Position with Desired Orientation
323 // input x dsr, y dsr,
324 // output x , y , theta
325 void ctrl planar stabilization(){
326

327

328 double Kp theta = OuterLP PID Kp theta;
329 double Kp dist = OuterLP PID Kp dist;
330

331 double Ts = Time SamplingTime;
332 double phi = atan2((y dsr−y p),(x dsr−x p));
333 // test this function first
334

335 // double atan2 (double y , double x) // arc tangent of y/x
336 theta = imu get theta();
337 double Err dist = sqrt(pow((x dsr−x p),2)+pow((y dsr−y p),2));
338

339 if (Err dist < xy eps){
340 TaskFinished Flag=1;
341 Serial.println("Task Finished Reach Target!");
342 MotorL−>setSpeed(0);
343 MotorR−>setSpeed(0);
344 MotorL−>run(BACKWARD); // turn on motor

202

345 MotorR−>run(BACKWARD);
346 delay(300);
347 test stop(Time StopTimeMS);
348 }
349 double delta phi= phi+theta;
350 double Err s = Err dist*cos(delta phi);
351 //Serial.print(" Err dist ");
352 //Serial.print(Err dist);
353 //Serial.print(" phi: ");
354 //Serial.print(phi);
355 //Serial.print(" Err s ");
356 //Serial.print(Err s);
357 //Serial.print(" , ");
358 //Serial.print(" theta ");
359 //Serial.print(theta);
360 //Serial.print(" delta phi ");
361 //Serial.print(delta phi);
362

363 // P Control of Distance and Theta
364 AngularV dsr= dead zone saturation((Kp theta*delta phi)
365 , 0, −30, 30);
366 v dsr = dead zone saturation((Kp dist *Err dist)
367 , 0, 0.3, 0.75);
368

369 //Serial.print(" v dsr ");
370 //Serial.println(v dsr);
371 //v dsr = 0;
372 u wheelServo = AngularV dsr;
373 ctrl inner loop();
374 //motor set pwm(45,45);
375

376 //Serial.print(" u wheelServo ");
377 //Serial.println(u wheelServo);
378

379 // Dead Reckoning, Ts=0.1; May Cause Problem if Running Fast
380 //Serial.print(" v: ");
381 //Serial.print(v);
382 x = x p+(v*cos(−theta)*Ts);
383 y = y p+(v*sin(−theta)*Ts);
384

385 //Serial.print(" x ");
386 Serial.print(x);
387 Serial.print(",");
388 Serial.println(y);
389

390 //Iteration
391 x p=x;
392 y p=y;
393 #if defined(DEBUG FLAG) && defined(CTRL POSITION DISP)
394 //Serial.print("x p");
395 //Serial.print(x p);
396 //Serial.print("y p");
397 //Serial.println(y p);
398 #endif
399 }
400

401 void setup(){

203

402 myservo.attach(9);
403 //panservo.attach(10);
404 myservo.write(servo center);
405 //panservo.write(panservo center);
406

407 imu setup();
408 StartRunTime=millis();// record start time in mS
409 Serial.begin(115200);
410 AFMS.begin(); // create with the default frequency 1.6KHz
411 // Set the speed to start, from 0 (off) to 255 (max speed)
412 MotorL−>setSpeed(PWM Intitial);
413 MotorR−>setSpeed(PWM Intitial);
414 MotorL−>run(FORWARD); // turn on motor
415 MotorR−>run(FORWARD);
416 // Timer1.initialize(500000);//Timer1.initialize(microseconds);
417 //Set timer 100ms
418 // Timer1.attachInterrupt(enc update); //
419

420 }
421

422 void loop(){
423 test stop(Time StopTimeMS);
424 // void CTRL InnerLoop(double LinearV dsr, double AngularV dsr)
425 iterative(2); // Run in Mode 2−XY
426 //myservo.write(20);
427 //Serial.println("changing servo");
428 //delay(1000);
429 //myservo.write(6);
430 //delay(1000);
431 }

1 //Main Arduino Code for Track Following
2

3 #include <Wire.h>
4 #include <SPI.h>
5 #include <Adafruit MotorShield.h>
6 #include <Servo.h>
7 #include <math.h>
8 #include <Adafruit Sensor.h>
9 #include <Adafruit BNO055.h>

10 #include <utility/imumaths.h>
11 //#include <Encoder.h>
12 #include "utility/Adafruit PWMServoDriver.h"
13

14 #define servo center 6
15 #define panservo center 83
16 #define servo offset limit 30
17 Adafruit BNO055 bno = Adafruit BNO055();
18

19 Servo myservo;
20 Adafruit MotorShield AFMS = Adafruit MotorShield();
21 Adafruit DCMotor *M1 = AFMS.getMotor(1);
22 Adafruit DCMotor *M2 = AFMS.getMotor(2);
23 //Encoder R(3, 3);
24 #define MAG OUTPUT 3
25

204

26

27 //rear wheel velovities
28 int count;
29 double radius = 0.024;
30 double L r = 0.134;
31 double pi = 3.14159;
32 double vx; //robot cruise speed
33 double vx p=0;
34 double vx filtered;
35 unsigned long time stamp = 0;
36

37

38 int sampling time ms = 100;
39

40

41 imu::Vector<3> euler init;
42 imu::Vector<3> euler;
43

44 //Servo servo;
45 Servo servo pan;
46 //Servo servo tilt;
47

48 double servo kp = 0.6;
49 double servo kd = 0.05;
50 double theta cam p = 0;
51 double K pan = 0.12;
52

53 int wheelServo ;
54 int panServo;
55

56 const int NUMBER OF FIELDS = 2; // how many
57 //comma separated fields we expect
58 int fieldIndex = 0; // the current
59 //field being received
60 double values[NUMBER OF FIELDS]; // array
61 //holding values for all the fields
62 double theta cam;
63 double theta imu;
64 double timeold;
65

66 int FLAG; // normal case on track
67 int sign;
68

69

70 // function declaration
71 void get speed();
72 void pulseCNT();
73 void servo steer();
74 void longitudinal operation();
75 void status print();
76 double imu get theta();
77 double pd theta(double err, double err p,
78 double Ts, double Kp, double Kd);
79

80

81

82 // pid controller for steer servo

205

83 double pd theta(double err, double err p,
84 double Ts, double Kp, double Kd){
85 double u = Kp*err+ Kd*(err−err p)/Ts;
86 // add roll off later
87 return u;
88 }
89

90 void longitudinal operation(){
91 if(abs(theta cam)<50 && FLAG == 1){
92 // release motors if theta cam is too large or lose track
93

94 if(abs(theta cam) > 20){
95 M1−>run(FORWARD);
96 M2−>run(FORWARD);
97 M1−>setSpeed(35);
98 M2−>setSpeed(35);
99 }

100

101 else{
102 M1−>run(FORWARD);
103 M2−>run(FORWARD);
104 M1−>setSpeed(32);
105 M2−>setSpeed(32);
106 }
107 }
108 else{
109 M1−>run(RELEASE);
110 M2−>run(RELEASE);
111 }
112 }
113 void status print(){
114 // Serial.print(" vx: ");
115 Serial.print((millis()−timeold)/1000);
116 Serial.print(" , ");
117 Serial.print(vx filtered/2);
118 Serial.print(" , ");
119 //Serial.print(" theta imu: ");
120 Serial.print(theta imu);
121 Serial.print(" , ");
122 Serial.print(theta cam);
123 Serial.print(" , ");
124 Serial.println(K pan*theta cam);
125 }
126 void servo steer(){
127 //servo PD
128 if(abs(theta cam)>20)
129 {
130

131 int i = K pan*theta cam;
132 panServo = panservo center − i;
133

134 if(panServo > panservo center + 20)
135 {panServo= panservo center + 20; servo pan.write(panServo);}
136 if(panServo < panservo center − 20)
137 {panServo= panservo center + 20; servo pan.write(panServo);}
138

139 servo pan.write(panServo);

206

140 }
141 else{
142 servo pan.write(panservo center);
143 }
144

145

146 if (abs(theta cam) > 5){ // set deadzone
147 for straight line
148 //if(wheelServo > servo center+30)
149 //{wheelServo= servo center+30;}
150 //if(wheelServo < servo center−30)
151 //{wheelServo= servo center−30;}
152 double u = pd theta(theta cam,theta cam p,
153 0.1,servo kp,servo kd);
154 wheelServo = servo center − u;
155 myservo.write(wheelServo);
156 }
157

158 if (abs(theta cam) <= 5){
159 myservo.write(servo center);
160

161 }
162 // servo saturation control
163 if(wheelServo > servo center+30)
164 {wheelServo= servo center+30; myservo.write(wheelServo);}
165 if(wheelServo < servo center−30)
166 {wheelServo= servo center−30; myservo.write(wheelServo);}
167 //myservo.write(wheelServo);
168 //}
169 // iteration of theta cam
170 theta cam p = theta cam;
171

172 }
173

174 void get speed(){
175 vx = (((double)count/12.0)*2.0*pi*radius)*
176 1000.0/sampling time ms;
177 vx filtered = (vx + vx p)/2;
178 count = 0;
179 vx p = vx;
180 }
181

182 void pulseCNT(){
183 //Serial.println(count);
184 count++;
185 //Each rotation, this interrupt function is
186 //run once in rising edge
187 }
188

189 double imu get theta(){
190 euler = bno.getVector(Adafruit BNO055::VECTOR EULER);
191 double raw = (euler.x() − euler init.x()) * 3.14 / 180.0;
192 if (raw < 6.28)
193 return raw;
194 else
195 return (raw − 6.28);
196 }

207

197

198 void setup(){
199 myservo.attach(9);
200 servo pan.attach(10);
201 myservo.write(servo center);
202 servo pan.write(panservo center);
203 bno.begin();
204 delay(2000);
205 euler init = bno.getVector(Adafruit BNO055::VECTOR EULER);
206

207 Serial.begin(115200); // Initialize serial port
208 //to send and receive at 115200 baud
209 AFMS.begin();
210 pinMode(MAG OUTPUT, INPUT PULLUP);// turn on
211 //inside pull−up resistor
212 attachInterrupt(MAG OUTPUT−2, pulseCNT, RISING);
213 //M1−>setSpeed(25);
214 //M2−>setSpeed(25);
215 //M1−>run(FORWARD);
216 //M2−>run(FORWARD);
217 timeold = millis();
218 }
219 void loop()
220 { //servo pan.write(90);
221

222 if(Serial.available())
223 {
224 char ch = Serial.read();
225 if(ch >= '0' && ch <= '9') // is this an ascii digit
226 // between 0 and 9?
227 {
228 // yes, accumulate the value if the fieldIndex is within range
229 // additional fields are not stored
230 if(fieldIndex < NUMBER OF FIELDS)
231 {
232 values[fieldIndex] = (values[fieldIndex] * 10) + (ch − '0');
233 }
234 }
235 else if (ch == ',') // comma is our separator, so
236 //move on to the next field
237 {
238 values[fieldIndex] = values[fieldIndex] * sign;
239 fieldIndex++; // increment field index
240 sign = 1;
241 }
242 else if (ch== '−')
243 {
244 sign = −1;
245 }
246 else
247 {
248 // any character not a digit or comma ends the
249 // acquisition of fields
250 // in this example it's the newline character sent
251 //by the Serial Monitor
252 values[fieldIndex] = values[fieldIndex] * sign; //last number
253 // print each of the stored fields

208

254 theta cam = values[0]/100; //get degree error
255 FLAG = values[1]; //get FLAG
256

257 for(int i=0; i < min(NUMBER OF FIELDS, fieldIndex+1); i++)
258 {
259 //Serial.println(values[i]);
260 values[i] = 0; // set the values to zero, ready
261 //for the next message
262 }
263 fieldIndex = 0; // ready to start over
264 sign = 1;
265 //robot(Rtarget,Ltarget);
266 }
267 //theta cam = values[0]; //get degree error
268 //FLAG = values[1]; //get FLAG
269

270 //Serial.print("serial ch: ");
271 //Serial.print(ch);
272 //Serial.print("value0: ");
273 //Serial.print(values[0]);
274 //Serial.print(" value1: ");
275 //Serial.println(values[1]);
276

277 }
278

279 if(millis()−time stamp >= sampling time ms){// inner loop
280 //Serial.print("inner loop run");
281 //Serial.print(" theta cam: ");
282 //Serial.print(theta cam);
283 //Serial.print(" FLAG: ");
284 //Serial.println(FLAG);
285

286 // update and print status
287 get speed();
288 time stamp = millis(); //update current time
289

290

291 theta imu = imu get theta();
292 //status print();
293

294 // robot control
295 longitudinal operation();
296

297 servo steer();
298

299 // status print();
300 //
301 }
302 }

209

