

Instrumentation and Coverage Analysis of Cyber Physical System Models

by

Rahul Thekkalore Srinivasa

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved June 2016 by the

Graduate Supervisory Committee:

Georgios Fainekos, Chair

Abdel Ra’ouf Mayyas

Hessam Sarjoughian

ARIZONA STATE UNIVERSITY

August 2016

i

ABSTRACT

A Cyber Physical System consists of a computer monitoring and controlling

physical processes usually in a feedback loop. These systems are increasingly becoming

part of our daily life ranging from smart buildings to medical devices to automobiles. The

controller comprises discrete software which may be operating in one of the many

possible operating modes and interacting with a changing physical environment in a

feedback loop. The systems with such a mix of discrete and continuous dynamics are

usually termed as hybrid systems. In general, these systems are safety critical, hence their

correct operation must be verified. Model Based Design (MBD) languages like Simulink

are being used extensively for the design and analysis of hybrid systems due to the ease

in system design and automatic code generation. It also allows testing and verification of

these systems before deployment. One of the main challenges in the verification of these

systems is to test all the operating modes of the control software and reduce the amount

of user intervention.

This research aims to provide an automated framework for the structural analysis

and instrumentation of hybrid system models developed in Simulink. The behavior of the

components introducing discontinuities in the model are automatically extracted in the

form of state transition graphs. The framework is integrated in the S-TaLiRo toolbox to

demonstrate the improvement in mode coverage.

ii

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my advisor and committee

chair, Dr. Georgios Fainekos, for giving me an opportunity to work on this exciting topic

and for providing his valuable ideas, support and patience in overseeing my research. I

would like to thank my committee members, Dr. Hessam Sarjoughian and Dr. Abdel

Mayyas for their insightful comments and feedbacks. I thank my fellow labmates Adel

Dokhanchi, Erkan Tuncali, Bardh Hoxa, Kanjin Kim and Wei Wei for the stimulating

discussions. Finally, I would like to express my profound gratitude to my parents for

providing me with unfailing support and continuous encouragement through the process

of researching and writing this thesis.

 This thesis has been partially supported by NSF IIP-1361926 and NSF CNS-

1319560, and Bosch and Toyota through the NSF I/UCRC Center for Embedded Systems.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation, Bosch, Toyota or the Center for Embedded Systems.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION .. 1

1.1 Motivation and Challenges ... 1

1.2 Contributions... 4

2 BACKGROUND .. 5

2.1 Convex Set Theory ... 5

2.2 Model Based Design (MBD) using Simulink 7

2.2.1 Model Flattening .. 9

2.3 S-TaLiRo Review ... 10

3 PROBLEM DESCRIPTION ... 17

3.1 Problem Overview .. 17

3.2 Solution Overview .. 19

4 RELATED WORK ... 21

5 MODEL INSTRUMENTATION WORKFLOW... 23

5.1 Model Flattening ... 23

5.2 Model Analysis ... 23

iv

CHAPTER Page

5.3 Block Instrumentation ... 26

5.3.1 Switch Instrumentation .. 26

5.3.2 Saturation Instrumentation ... 32

5.3.3 Avoiding Redundancy during Instrumentation 33

5.3.4 Selection of Blocks for Instrumentation 33

5.4 State Transition Graph Generation ... 34

5.5 Black Box File Interface ... 40

6 EXPERIMENTS AND RESULTS ... 43

6.1 Experimental Results for Powertrain Control Benchmark 43

6.1.1 Model Modification ... 43

6.1.2 Model Instrumentation Results .. 44

6.1.3 Integration in S-TaLiRo for Mode Coverage....................... 52

6.2 Coverage Guided Falsification ... 54

7 CONCLUSION AND FUTURE WORK ... 58

REFERENCES ... 61

v

LIST OF TABLES

Table Page

1 Mapping of Predicates to the Corresponding Boolean Literal 38

2 Mapping of Fig. 36 to Fig. 42 to the Corresponding Black Box File Section 48

3 Mode Coverage Comparison between Uniform Random Sampling and

Robustness Guided Approach on the AbstarctFuelControl Model 53

4 Falsification Results with and Without Coverage Guidance 57

vi

 LIST OF FIGURES

Figure Page

1 Architecture of a Cyber Physical System ... 1

2 A Hyperplane Defined by 𝒂T x = b ... 6

3 Polyhedron P is the Intersection of Five Halfspaces .. 6

4 Simulink Switch Block ... 8

5 Simulink Saturation Block .. 8

6 Model Flattening ... 9

7 FSM Representation of a Thermostat System .. 11

8 Switch Block Example to Demonstrate the Computation of Sets YA and YF 12

9 Navigation Benchmark to Demonstrate Distance Computation 14

10 Robustness Landscape for the Specification G[0,2] ¬a .. 16

11 Scenario 1: Left – Switch Block Before Instrumentation. Right – Switch

Block After Instrumentation. .. 17

12 The FSM that Corresponds to the Switch Block S1 in Fig. 11. State B

Corresponds to Signal B and State A Corresponds to Signal A Selection. 18

13 Scenario 2: Left - Switch Block Before Instrumentation. Right - Switch Block

After Instrumentation .. 18

14 The FSM that Corresponds to the Switch Block S2 in Fig. 13. State B

Corresponds to Signal B and State A Corresponds to Signal A Selection 18

15 Workflow for Model Instrumentation Along with MATLAB m-Functions

Implementing Each Step of the Process.. 20

16 Switch Block Triggered by Constant Value ... 24

vii

Figure Page

17 Switch with Delay Block (from [24]) ... 24

18 Simulation Trace of the Hysteresis Subsystem ... 25

19 Stateflow that Corresponds to ‘hysterisis_switch’ in Fig. 17. Mode 2 Corresponds

to Input Value of 90 and Mode 1 Corresponds to Input Value of 40. 25

20 Switch Block Triggered by Double-Precision Input (Already Instrumented) 27

21 Example of Switch Block Triggered by a Boolean Function 28

22 Expression Tree for the Boolean Formula ‘(p1 | | p2) && (p3 | | p4)’ 30

23 Intermediate Step of DNF Conversion Algorithm .. 31

24 Final Expression Tree in DNF .. 31

25 Saturation Block Instrumentation ... 32

26 Left: Double Precision Input Value Triggered Switch Block; Right: the

Corresponding FSM Where State 2 Corresponds to Signal B and State 1

Corresponds to Signal A Selection ... 35

27 Switch Block S3 Triggered by Boolean Value Input.. 37

28 The FSM that Corresponds to the Switch Block S3 Shown in Fig. 25 38

29 Black Box File Structure ... 40

30 Modified Hysteresis Subsystem .. 44

31 Double Precision Input Value Triggered Switch Block with the Added Output

Ports Indicated by Blue Lines ... 45

32 A Boolean Value Triggered Switch Block ... 45

33 An Equivalent Visualization of the Switch in Fig. 31 After Flattening with the

Added Output Ports Indicated by Blue Lines ... 46

viii

Figure Page

34 Two Saturation Blocks Chosen for Instrumentation with the Added Output Ports

Indicated by Blue Lines .. 47

35 Auxiliary Output Ports Added at the Top Layer of the Instrumented Model 47

36 State Transition Guard Representation for Double Precision Input Value

Triggered Switch_1 Block in Fig. 31 Which Capture the Equations ‘sw_out-1 ≥

0.5’ and ’ sw_out-1 ≤ 0.5’. .. 49

37 State Transition Guard Representation of Switch_2 Block Shown in Fig. 32

Which Capture the Equations ‘sw_out-3 - sw_out-2 ≤ 0 ’ and ’ sw_out-2 -

sw_out-2 ≤ 0’ ... 49

38 State Transition Guard Representation of Saturation_1 Block in Fig. 34 Which

Capture the Equations ‘0 ≤ sat_out-1≤ ∞’, ‘sat_out-1 ≤ 0’ and ‘sat_out-1 ≥ ∞’

... 49

39 State Transition Guard Representation of Saturation_2 Block in Fig. 34 Which

Capture the Equations ‘0 ≤ sat_out-2≤ ∞’, ‘sat_out-2 ≤ 0’ and ‘sat_out-2 ≥ ∞’

... 50

40 Simulation of Instrumented Model ... 50

41 Compute the Mode History for Switch_1 and Switch_2 Blocks from the Output

Trajectories ... 51

42 Compute the Mode History for Saturation_1 and Saturation_2 Blocks from

Output Trajectories ... 51

43 Coverage Analysis of a Sample Location of the Switch and Saturation Block

Explained in Section 6.1.2 .. 52

ix

Figure Page

44 Example Model to Illustrate Coverage Guided Falsification (Provided by Toyota)

... 55

45 Trajectory of the Signal A and Signal B (Provided by Toyota) 56

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and Challenges

A Cyber Physical System (CPS) consists of a computer monitoring and

controlling physical processes usually in a feedback loop. These systems are increasingly

becoming part of our daily life ranging from smart buildings to medical devices to

automobiles. In general, these systems have hard real time constraints and are safety

critical. It is essential that these systems work correctly as failure can lead to catastrophic

events and even loss of human life. Imagine a malfunction of a cruise control in an

automobile or a failure in a flight control system which can have devastating effects.

Hence it is of paramount importance to ensure their safe operation. Sometimes, specific

system behavior is imposed by mandatory government regulations.

Figure 1 Architecture of a Cyber Physical System

The general architecture of a CPS is shown in Fig. 1 which is based on the figure

2

presented in [1]. The system consists of the following three main parts:

 Physical plant: it constitutes the physical environment part of the system

and may include mechanical parts or human operators.

 Computation Platform: they are comprised of computers, sensors and

actuators. They monitor the physical environment through sensors and

based on the data may implement a control law that determines actions

issued to the actuator.

 Network fabric: they enable communication between the computers in the

system.

A CPS requires the combined understanding of the cyber and physical space

interaction. The controller comprises discrete software which may be operating in one of

the many possible operating modes and interacting with a changing physical environment

in a feedback loop. The systems with such a mix of discrete and continuous dynamics are

termed as hybrid systems. [1]

Although CPS have been in use for long, the recent advances in computing power,

wireless communication and sensor technologies have enabled their deployment at low

costs. The design, verification and validation of these has attracted immense research

interests and has led to the formation of a separate academic discipline.

There has been progress in the control synthesis of hybrid systems [2] but in

practice the problem still remains challenging. These systems are characterized by a large

number of continuous state variables and interconnected components which may not be

available for symbolic analysis. Currently, these methods are used for certain operating

modes of the system. Rule tables and engineering experience is used to combine the

3

different operating modes. This specific combination approach is error prone and has

resulted in recalls of many safety critical systems [3].

Hybrid system verification is seen as a potential alternative to the problem. The

aim is to prove that no bad behaviors are possible to occur defined by the user. Some of

the methods like reachability analysis [4, 5] and theorem provers [6] have been developed

to address the problem. These methods can only be applied to large linear hybrid systems

or in specific applications [7] and they cannot be extended in an automated manner to

industrial size problems.

Alternatively, simulation guided methodologies [8] have been promising in

analyzing and detecting errors in industrial size problems and complexity [9,10,11].

Specification robustness guided falsification is one specific class of such methods [12]

[13] where carefully chosen tests are executed to violate a formal specification. The

robustness semantics evaluate to positive values if the trajectory satisfies the specification

and negative if it violates the specification. In other words, robustness is a measure of

how well the behavior satisfies or violates the specification. A falsification algorithm

essentially tries to generate tests that result in negative robustness values through the

application of stochastic or deterministic optimization algorithms [11, 12].

 In theory, the above technique is guaranteed to detect the system error but the

number of tests required depends on the robustness landscape over the search space of the

hybrid system. The discontinuities induced by the hybrid system make it hard to locate

the regions of interest. However, the information about potential discontinuities in the

hybrid system can be extracted and use it to narrow the search to such regions.

4

1.2 Contributions

This research aims to analyze and extract the discontinuities induced in hybrid

systems models in the form of nonlinear blocks. The central focus of this work is to

develop an automated framework to identify the nonlinear components and extract their

behavior in the form of state transition graphs. Currently, the tool supports switch and

saturation blocks but the modular workflow can be easily used to extend support for other

blocks. Additionally, the framework is integrated with S-TaLiRo [14] for performing

mode coverage and provide a platform for coverage based falsification. We

experimentally demonstrate that coverage based testing can be achieved for closed loop

systems.

 Preliminary results of this thesis were published in [15]:

 A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan and G.

Fainekos, "Requirements Driven falsification with coverage metrics," in

Embedded Software (EMSOFT), 2015.

5

CHAPTER 2

BACKGROUND

This chapter reviews some of the background concepts, definitions and notations

based on which the thesis is built. The notations and terminologies will remain constant

throughout the thesis. The thesis is built to be interfaced in a specification robustness

guided testing framework. Hence, some concepts pertaining to convex optimization theory

and requirement specification will be discussed to form a complete picture of the work.

2.1 Convex Set Theory

A set C is convex if the line segment between any two points in C lies in C, i.e., if

for any x1, x2 ∈ C and any 𝜃 with 0 ≤ 𝜃 ≤ 1, we have

𝜃x1 + (1- 𝜃x2) ∈ C

The convex hull of a set C, denoted by conv C, is the set of all convex

combinations of the points in C:

conv C = { 𝜃1x1 + … + 𝜃kxk | xi ∈ C, 𝜃i ≥ 0, i = 1,….,k, 𝜃1 +….+ 𝜃k = 1}

The convex hull conv C is the smallest convex set that contains C.

A hyperplane is a set of the form

{x | 𝑎T x = b},

where 𝑎 ∈ 𝑅n, 𝑎 ≠ 0, and b ∈ 𝑅. Here, 𝑅 is the set of real numbers. Geometrically a

hyperplane can be interpreted as the set of points with a constant inner product to a given

vector 𝑎.

6

A hyperplane divides 𝑅n into two halfspaces. A halfspace is a set of the form

{x | 𝑎T x ≤ b},

where 𝑎 ≠ 0, i.e., the solution set of one linear inequality. The halfspaces are convex but

not affine. Figure 2 is presented to illustrate further based on the figure provided in [16].

The halfspace determined by 𝑎T x ≥ b is the halfspace extending in the direction of the

vector 𝑎. The shaded halfspace determined by 𝑎T x ≤ b in the direction – a.

Figure 2 A Hyperplane Defined by 𝒂T x = b

A polyhedron is defined as the solution of a finite number of linear equalities and

inequalities:

Ƥ = { x | 𝑎j
T x ≤ bj, j= 1, . . ., m, 𝑐j

T x = 𝑑j, , j= 1, . . ., p}

Figure 3 Polyhedron P is the Intersection of Five Halfspaces

7

In other words, polyhedron is the intersection of finite number of halfspaces and

hyper planes. It can be seen that polyhedral sets are convex sets. A bounded polyhedron

is termed as a polytope. A polyhedron formed by the intersection of five halfspaces is

shown in Fig. 3 which is presented based on the figure provided in [16].

Alternatively, the polyhedron can be conveniently represented using the notation

Ƥ = { x | 𝐴 x ≼ 𝑏, 𝐶 x = 𝑑}

where 𝐴 =[𝑎1
T 𝑎m

T]T, 𝐶 =[𝑐1
T 𝑐p

T] T and the symbol ≼ denotes component

wise inequality in 𝑅m

2.2 Model Based Design (MBD) using Simulink

MATLAB Simulink is a popularly used MBD tool in industry for the modelling

and simulation of industrial control systems like automotive systems. The Simulink IDE

make use of blocks to model the discrete and continuous parts of the hybrid models. The

discrete components can be modelled using the Simulink Stateflow. The continuous part

of the system can be discretized using sampling intervals. When the expected results are

met by the simulations, a Real time workshop code generator can be used to obtain the

implementation with certified code.

For the purpose of this thesis, the details of the switch and saturation blocks are

highlighted in Fig. 4 and Fig. 5. These two blocks model if – else branching structure in

the model. The terminologies corresponding to these blocks are introduced formally and

will remain consistent throughout the thesis.

8

Figure 4 Simulink Switch Block

In Fig. 4 a switch block used in Simulink model is shown. The switch block has

three inputs. The second input to switch decides which of the input is passed to the output

of the switch. In this instance, if the output of the product block is greater than or equal to

0.5 the signal B is passed and for other case the signal A is passed. These two possible

signals are termed as the operating mode or location of the switch. When the signal A is

passed, the switch is said to be in mode (location) one and signal B corresponds to the

mode (location) two.

Figure 5 Simulink Saturation Block

 In Fig. 5 the saturation block used in Simulink is illustrated. The block limits the

input signal between a low threshold value and a high threshold value. Thus the

9

saturation block has three operating modes. The mode one corresponds to the low

threshold value, mode 2 corresponds to the input signal and mode three corresponds to

the high threshold value. At any given point the saturation block is operating in one these

three modes.

2.2.1 Model Flattening

Figure 6 Model Flattening

10

The instrumentation framework developed in this work utilizes model flattening

implemented using the tools in [22]. In their tool, the Simulink model to be flattened is

loaded and all the block specific information like block type, parents and connectivity

information is read. This information is used to identify blocks in sub systems and bring

them out of their super blocks. The ‘Goto’- ‘From’ Tags and the redundant input and

output ports of the subsystems are discarded from the list of blocks. A new list consisting

of only main blocks is generated as shown in Fig. 6 created based on their work.

 The flattened version of the model is captured in the form of a directed graph

where a directed edge represents a connection from a source block to destination block.

The implementation is adopted with minor changes and integrated in the model

instrumentation architecture.

2.3 S-TaLiRo Review

Simulink blocks have branching behaviors in the form of if- else constructs can be

modeled as a Finite State Machine (FSM). A FSM, M is defined as a five tuple {I, O, S,

Init, G} where

 S is a set states,

 I is a set of input valuations,

 O is a set of output valuations,

 Init is the set of initial states where Init ⊆ S

 G is a transitional relation, G: S x I → S x O

11

Figure 7 FSM Representation of a Thermostat System

An FSM can be represented using a graph where the vertices of the graph

correspond to symbolic states and directed arcs corresponds to the transition relation G.

Consider the Fig. 7 that illustrates an FSM representation of a simple thermostat system.

The input to the system is temperature and the outputs are ‘heatOn’ and ‘heatOff’ which

are Boolean signals. The system operates in any of the possible states – cooling and

heating. The Guard set G determines the transition from the cooling state to heating state

and vice versa. For this example, when the temperature is less than or equal to 18, there is

a transition from the cooling state to heating state and the output ‘heatOn’ signal is true.

Similarly there is a transition from heating to cooling state when the input temperature is

less than or equal to 22 and the ‘heatOff’ is signal is true.

The FSM representation of the switch and saturation blocks are employed in S-

TaLiRo during the test generation process. The details of this representation will be

presented in the thesis and will be explained in Section 5.4 of Chapter 5.

For the purpose of this discussion, we will use the following notation:

Let R be the set of real numbers. A system ∑ is viewed as a mapping from initial

conditions 𝑋0, system parameters P and input signals UR to output signals YR. The output

12

space Y of the system ∑ comprises of the original output space Y∑ of the system, an

auxiliary output space YA and a finite space YF, i.e., Y = Y∑ x YA x YF. The output

spaces YA and YF are introduced by the model instrumentation framework developed as

part of this thesis and will be explained in Section 5.3 of Chapter 5. The output space YF

captures the internal state of important components in the system. For instance, it can

capture the state of switch/saturation blocks and state of state machines. The coverage

metrics in this thesis are defined over space YF.

Figure 8 Switch Block Example to Demonstrate the Computation of Sets YA and YF

A simple illustration of the sets YA and YF for Simulink blocks is shown in Fig. 8.

In Fig. 8, a simple switch block is presented which is an open loop system. The output

port ‘Out1’ is part of the original output space Y∑. The output ports ‘Out6’ and ‘Out7’

are added to the system through instrumentation. Based on the result of the comparison of

output port ‘Out6’ with the constant value 20, the corresponding state of the switch block

is enabled. The value of ‘Out6’ is used to guide the search to the desired mode of the

switch block. It is part of the set YA. The value of ‘Out7’ directly captures the current

13

state of the switch block and is part of the set YF. The same explanation can be extended

to other Simulink blocks as well. In general, the output ports used for guiding the search

to desired modes form the elements of the set YA. The output ports used only to obtain

the mode information of the blocks are part of the set YF.

Using a metric d [17], a distance function can be defined that captures how far

away a point y ∈ Y is from a set S ⊆ Y. The details of metric d are discussed in [11, 18].

When Y is a hybrid space, i.e., Y = 𝑅n x Q with Y∑ = 𝑅n and YF = Q, where Q is the set

of states of single state chart in the model, then the generalized quasi-metric [11] dh is

defined as:

dh(〈𝑥, 𝑞〉, 〈𝑥′, 𝑞′〉) = {

〈0, 𝑑(𝑥′, 𝑞′)〉 𝑖𝑓 𝑞 = 𝑞′

〈𝜋(𝑞, 𝑞′), min

𝑞→𝑞"

 𝜋(𝑞,𝑞′)−1
→ 𝑞′

𝑑𝑖𝑠𝑡 (𝑥, 𝐺(𝑡)(𝑞, 𝑞′′))〉 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝜋 is the shortest path metric on a graph, G(t) denotes the guard set that activates

the transition from state 𝑞 to state 𝑞′ in the state chart. The min operator quantifies over

all neighboring states 𝑞′′ of 𝑞 that are on the shortest path from 𝑞 to 𝑞′. A more detailed

discussion can be found in [11].

 The idea behind the distance metric can be illustrated using an example on the

Navigation benchmark [19]. Consider the example shown in Fig. 9. An automaton with

nine states is considered where each cell corresponds to each state of the automaton. The

variables x1 and x2 are the state variables corresponding to each state. Assume that the

guards are simply the solid lines between each cell. The transitions are allowed from one

cell to another in only orthogonal directions.

14

Figure 9 Navigation Benchmark to Demonstrate Distance Computation

 Consider a point ‘f’ in the cell two with value x1 = 1.75 and x2 = 2.5. Let the

unsafe set be present in the cell six (shaded grey in Fig. 9). The distance from ‘f’ to the

unsafe state is the path distance between the two states weighted by the distance to the

closest guard that will enable the transition to the next state. In this example, the path

distance is two corresponding to the two highlighted paths in Fig. 9. The closest guard of

all the paths with the same shortest path distance is the transition to cell three. Thus, the

distance dh is computed as (2, 0.25) where 2 is the path distance and 0.25 is the guard

distance that enables a transition to the next state that reduces the path distance. This is

essentially a heuristic that gives preference to shortest paths.

Metric Temporal Logic (MTL) Syntax: Let AP be the set of atomic

propositions and 𝐼 be any non-empty interval of ℝ+. The set MTL of all well formed

15

MTL formulas is inductively defined as 𝜑 ∷= 𝑇 | 𝜋 |¬ 𝜑 |𝜑 ˅ 𝜑 |𝜑 𝑈I𝜑 , where 𝜋 ∈ AP

and T is true.

The MTL is a popular formal language used to state formal requirements for real

time systems. Real time systems are characterized by quantitative temporal properties.

We make use of metric temporal operators to express properties about the real time

systems using MTL. A more detailed and formal discussion can be found in [20].

 The formal specifications valuate using quantitative multi valued semantics.

Given a system trajectory, the robust semantics evaluate to positive values if the

trajectory satisfies the specification and to negative values if the trajectory violates the

specification. The magnitude of the robust evaluations is a measure of how robustly the

behavior satisfies or violates the specification.

MTL Falsification: For an MTL specification 𝜑, the MTL falsification problem

consists of finding an output signal y of the system ∑ starting from some valid initial

state from the set 𝑋0 under a parameter vector p and an input signal u such that y does not

satisfy 𝜑 . The test generation process makes use of the stochastic or deterministic

optimization algorithms for the falsification problem [11, 12].

 The above concepts can be further illustrated using a simple example. Consider a

system defined by the differential equations:

𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑦 + 0.1𝑡

𝑑𝑦

𝑑𝑡
= 𝑦 cos(2𝜋𝑦) − 𝑥𝑠𝑖𝑛(2𝜋𝑥) + 0.1𝑡

16

Let the initial conditions be the set [-1, 1] x [-1, 1] and the specification to be falsified be

G[0,2] ¬a where O(a) = [-1.6, -1.4] x [-1.1, -0.9]. The specification is read as “Always

Not a”. This essentially captures the requirement of staying away from the unsafe set

O(a).

Figure 10 Robustness Landscape for the Specification G[0,2] ¬a

 The robustness landscape generated during the falsification of the above MTL

formula is shown in Fig. 10. Here the system tries the generate tests that would guide the

system trajectory to the unsafe set [-1.6, -1.4] x [-1.1, -0.9]. The positive values of the

robustness indicate the specification is not falsified (did not enter unsafe set). The

negative robustness shown as the blue region in the figure implies that the specification is

falsified for the corresponding inputs, x1 and x2.

17

CHAPTER 3

PROBLEM DESCRIPTION

In this section, the problem is described formally and a brief solution overview is

provided.

3.1 Problem Overview

This research aims to provide an automated framework for analyzing and

extracting information about the blocks that introduce nonlinearities, e.g., switch and

saturation blocks in Simulink models. A secondary goal is perform test generation for

coverage analysis of these blocks with an existing specification guided testing framework,

for example, S-TaLiRo [14].

In essence, the problem can be formulated as: Given a Simulink model:

 Identify the blocks with branching structure in the model and introduce output

ports that become part of the auxiliary output space of the system YA.

 Automatically extract the state transition graphs for the branching blocks

which will be utilized by S-TaLiRo.

 Integrate this framework in S-TaLiRo and use the S-TaLiRo test generation

process to perform coverage analysis.

Figure 11 Scenario 1: Left – Switch Block Before Instrumentation. Right – Switch

Block After Instrumentation.

18

Figure 12 The FSM that Corresponds to the Switch Block S1 in Fig. 11. State B

Corresponds to Signal B and State A Corresponds to Signal A Selection.

An instance of the problem is illustrated in Fig. 11. The switch block chooses

either signal A or signal B based on the switching condition provided in the middle port. A

framework is to be developed that can introduce the output port ‘Out5’ to the set YA for

the switch block shown in Fig. 11. Additionally in an outer harness, the value of ‘Out5’ is

used to compute the current mode information and used in the set YF. The corresponding

statechart (Fig. 12) is to be extracted automatically from the the model.

Figure 13 Scenario 2: Left - Switch Block Before Instrumentation. Right - Switch Block

After Instrumentation

Figure 14 The FSM that Corresponds to the Switch Block S2 in Fig. 13. State B

Corresponds to Signal B and State A Corresponds to Signal A Selection

19

Another example of the problem is depicted in Fig. 13. The framework is required

to introduce the output ports ‘Out6’ and ‘Out7’. The output port ‘Out6’ along with the

state chart in Fig. 14 can be used to compute the distance metric dh. The output port

‘Out6’ is part of the auxiliary output space YA. The output port ‘Out7’ forms an element

of the set YF. It can be seen that the value of output port ‘Out7’ captures the state of the

switch block.

In both state charts presented, the switch block is in state B when the input signal

B is chosen and it is in state A, if signal A is chosen. State B corresponds to mode

(location) two and state A corresponds to mode one of the switch.

The problem of coverage analysis is to determine the possibility of accessing the

different modes (Signal A or Signal B in Fig. 11 and Fig. 13) using specification guided

falsification performed by S-TaLiRo [20]. In a way, part of this problem relates to the

branch and condition coverage criteria of software testing [21]. A similar problem

description holds for any other blocks that introduce branching behaviors in the model,

e.g., saturation blocks, statecharts, etc.

3.2 Solution Overview

Figure 15 shows the workflow of the model instrumentation framework proposed

as a solution to the problem described above. A modular approach is used to develop the

solution which enables easy maintenance and simple to incorporate future extensions.

The first component is Model Flattening which produces a directed graph with the block

connectivity information. Subsequently the Model Analysis component annotates the

model and identifies the blocks with branching behaviors. Once the blocks are identified

the block specific instrumentation module performs the instrumentation of these blocks.

20

The current framework supports instrumentation of switch and saturation blocks. The

approach can be extended to other blocks. The instrumented blocks are represented as

FSM. Finally the information is written in a MATLAB file as a set of commands to form

the black box file interface to S-TaLiRo. The detailed implementation of these modules

is described in Chapter 5. Further details can also be found in the help files of the m-

functions distributed with S-TaLiRo [14].

Figure 15 Workflow for Model Instrumentation Along with MATLAB m-Functions

Implementing Each Step of the Process

21

CHAPTER 4

RELATED WORK

Simulation guided technologies is an emerging field for testing and it has attracted

immense research interest. S-TaLiRo [14] is one such tool that it has been the focus of

this work. Additionally, there are many other tools that focus on simulation guided

testing which are similar to S-TaLiRo in some ways and differ in some other ways [29].

This section discusses some of the emerging tools for testing.

In [13], the authors present Breach - a MATLAB toolbox which aims to provide

simulation based techniques to analyze models of hybrid systems. It performs

approximate reachability analysis and parameter synthesis using sensitivity information

for parameter variations. The tool uses Signal Temporal Logic (STL) for specifying the

requirements. The tool makes use of a nonlinear optimizer based on the Nelder-Mead

algorithm whereas S-TaLiRo makes use of a number of different optimization algorithms.

Moreover, Breach does not support hybrid metrics that were first presented in [30].

In [25], a testing framework based on the rapidly exploring Random Trees (RRT)

algorithm (popular motion planning algorithm) is proposed. A star discrepancy notion is

used as a measure of test coverage for the continuous state space of a CPS. The approach

is orthogonal to the coverage based testing employed in the S-TaLiRo [14]. The tool is

still under development and its applicability to industrial size models is yet to be

determined.

The Simulink Design Verifier from Mathworks [26] uses SAT- solving

techniques to generate test inputs to maximize coverage criteria. The tool is useful for

22

open loop analysis of discrete time models and it does not support continuous closed -

loop models. Tools like SpaceEX [5] and UPAAL [27] can perform exhaustive

verification rather than test generation, but they can verify only certain classes of hybrid

systems.

Another promising falsification based approach for closed loop systems is

proposed in [28]. A technique called trajectory splicing is used which uses local

optimization to minimize the gap between disconnected trajectory segments, in essence,

splicing the trajectories to form a concrete trajectory. The initial results seem promising

on the benchmark applications but their application on practical Simulink models is still

under development.

23

CHAPTER 5

MODEL INSTRUMENTATION WORKFLOW

In this section, each component of the model instrumentation framework

introduced in the previous chapter is discussed in detail.

5.1 Model Flattening

The first and foremost step is to flatten the given Simulink model. The model

flattening is discussed in Section 2.2.1. The implementation is adopted from [22] with

minor changes and integrated in the model instrumentation architecture. The Simulink

model to be instrumented is provided as the input and a new list containing of only main

blocks is generated. This list is used to form a directed graph that captures the flattened

version of the model where a directed edge represents a connection from a source block

to destination block.

5.2 Model Analysis

This component identifies blocks with branching structure present in the model.

Currently, model analysis annotates the model for switch and saturation blocks. Since

there can be a large number of switch and saturation blocks and all of them might not be

significant for coverage analysis, some of them have to be excluded. The module is

designed to accept a list of blocks that are to be excluded from the instrumentation and

coverage analysis. Additionally, model analysis automatically excludes switch blocks

that are not good candidates for the coverage problem. For example, one such scenario is

illustrated in Fig. 16.

24

Figure 16 Switch Block Triggered by Constant Value

In Fig. 16, the switch block is triggered by a constant value. This implies that at

all times only one of the possible modes is enabled. This type of hard coded values are

often used by designers to manually activate only certain behaviors and such blocks add

no value to the coverage problem. Hence, such blocks must be excluded from being

further considered for instrumentation.

Figure 17 Switch with Delay Block (from [24])

There can be other scenarios for block exclusion as for example in Fig. 17. The

subsystem models a hysteresis loop for the throttle angle. A simulation trace of the

subsystem is shown in Fig. 18. The hysteresis range is determined by the sum of the base

25

constant value (40) and the hysteresis constant value (90). Initially the delay value is zero

and the third input of the switch block, i.e., the value 90 is passed to the comparator block.

When the throttle angle is greater than equal or equal to 90, the ‘power_on’ signal

evaluates to one. Consequently, after the time delay specified by the delay block, the first

input of the switch is passed to the comparator block. During this delay time, any change

in the throttle angle input will not change the mode of the switch. After the delay time,

the first input of the switch, i.e., the value 40 is passed to the comparator block. Now,

when the throttle angle goes below 40, the new hysteresis constant of 90 is passed to the

comparator after the delay time and the cycle continues.

Figure 18 Simulation Trace of the Hysteresis Subsystem

Figure 19 Stateflow that Corresponds to ‘hysterisis_switch’ in Fig. 17. Mode 2

Corresponds to Input Value of 90 and Mode 1 Corresponds to Input Value of 40.

26

The FSM that corresponds to ‘hysterisis_switch’ is shown in Fig. 19. The State

mode1 corresponds to the input value of 40 and the State mode2 corresponds to the input

value of 90.

As such, it is not meaningful to instrument the switch block for coverage guidance.

However, note that the comparator block in Fig. 17 should be instrumented if it is

controlling another switch block downstream. The subsystem can be supported if the

FSM corresponding to the hysteresis loop is provided. The key to analyzing such

components is that either they need to be modeled as Stateflow charts or we need to

develop model analysis tools that extract such information. The latter is not a trivial task.

The model analysis component is designed with the user interface in mind. It can

be called independently out of the model instrumentation framework to obtain useful

information about the model before running a full blown coverage analysis on the model.

In Chapter 6, potential extensions for model analysis are discussed which enable the user

to have vital block information in the model.

5.3 Block Instrumentation

The block instrumentation module performs the instrumentation of the blocks

with branching behavior identified by the model analysis section. Currently, only switch

and saturation blocks are supported and the approach can be extended to other blocks.

The instrumentation of the switch and saturation blocks is handled separately due to the

different scenarios that decide their behavior.

5.3.1 Switch Instrumentation

The instrumentation of switch blocks was briefly introduced in the problem

statement of Chapter 3. The two broad scenarios illustrated in Section 3.1 are reviewed

27

here for a more detailed discussion. The switch block in Fig. 20 is triggered by a real

valued (double precision variable) input and the one in Fig. 21 is triggered by a Boolean

value. These two cases are handled separately as the methodology of their analysis differs

slightly.

Figure 20 Switch Block Triggered by Double-Precision Input (Already Instrumented)

The switch blocks which are triggered by double-precision input signal variables

are trivial to handle. Consider Fig. 20 which shows the switch block after instrumentation.

The output port ‘Out5’ is automatically added by the instrumentation process. The output

port ‘Out5’, which is part of the set YA, is utilized to compute the distance metric used in

the optimization engine of S-TaLiRo. In this particular example, the value of ‘Out5’ can

be compared with the threshold value of the switch, which in this case is 0.5. The

difference between these two values provides a measure of how far or near we are to each

of the state. This output port value forms the crux for obtaining the state transition graph

of the above switch block. A more detailed explanation on the generation of state

transition graph is provided in the next section (Section 5.4).

The switch blocks triggered by Boolean input values are analyzed more

rigorously. The Boolean input to the middle port of the switch blocks maybe the output of

a Boolean circuit. An example is illustrated in Fig. 21. In this case, the Boolean circuit

28

consists of four compare blocks and three logical operators. The output of the comparison

blocks are the result of the comparison made between the input block and the constant

blocks present in the left end of Fig. 21. These outputs are evaluated by a Logical OR

block and then by a Logical AND block to determine the trigger input to the switch block.

When the output of the ‘AND’ block evaluates to ‘TRUE’, signal B (mode 2) is passed.

Similarly, signal A (mode 1) is passed when the output is ‘FALSE’.

Figure 21 Example of Switch Block Triggered by a Boolean Function

It can be seen that mode coverage of the switch block can be obtained by the

conditional coverage of the Boolean circuit. Hence, the auxiliary output ports are added

at the relation operator blocks which can be used to compute the distance metric dh.

These outputs are termed as numerical output ports and are part of the set YA. These

29

output ports will be used in formulating the guards for the state transition of the switch.

Additionally, an output port is added at the trigger port of the switch to determine

whether the switch is in state A or B. The latter output ports are termed “location output

ports” and are part of the set YF.

Once the output ports have been added, the instrumentation process also

automatically extracts the Boolean function that decides the state of the switch. The

graph information obtained from the model flattening is used for this process. It is

possible that the Boolean function may be implemented in a separate subsystem and

failure to flatten the model may lead to improper instrumentation. From the main

flattened graph, a small subset graph establishing the connectivity information of the

switch block is obtained. A DFS search is performed on this graph to identify the

relational blocks and Logical blocks and the Boolean function is extracted in the form of

a string. For the above example, the instrumentation will produce a string as:

((𝑂1 < 90) | | (𝑂2 > 10)) && ((𝑂3 < 90) | | (𝑂4 > 10))

Then, the string is processed to obtain a mapping of the predicates to Boolean

literals. The predicates (O1 < 90), (O2 > 10), (O3 < 90) and (O4 > 10) are replaced by

Boolean literals, say p1, p2, p3 and p4 respectively and the Boolean string ‘(p1 | | p2) &&

(p3 | | p4)’ is used for further analysis. A predicate table is generated with the mapping

information of the predicates and the corresponding Boolean literals. However, note that

the Boolean function may not be in a Disjunctive Normal Form (DNF). The DNF

representation is convenient for obtaining the state machine representation of the switch

and, consequently, it is easier to perform distance computation under the metric dh [15].

Hence, the Boolean formula is converted to its equivalent DNF representation.

30

5.3.1.1 DNF Conversion Methodology

A Boolean formula is in Disjunctive Normal Form (DNF) if it is a disjunction of

conjunctive clauses or, in other words, if it is in Sum of Products (SOP) form. When any

one of the conjunctive clauses is evaluated to true, the whole Boolean formula evaluates

to true value. Now each of the conjunctive clauses provides a sense of distance from the

transition state A to state B of the switch (Fig. 21). Hence the conditional coverage on the

conjunctive clauses will result in mode coverage of the switch.

The main steps involved in the DNF conversion are illustrated through an

example for the switch block shown Fig. 21. First, an expression tree is built for the

formula ‘(p1 | | p2) && (p3 | | p4)’ using a stack based approach as shown in Fig. 22. The

Boolean literals form the leaves of the tree data structure and the Boolean operators ‘| |

‘and ‘&&’ constitute the parent nodes.

Figure 22 Expression Tree for the Boolean Formula ‘(p1 | | p2) && (p3 | | p4)’

The formula is converted to DNF by iteratively applying logical equivalences,

such as double negation elimination, De Morgan’s law and the distributive law

throughout the tree [23]. The steps involved in the conversion can be summarized as:

31

 The negation is moved inwards recursively. In the process, De Morgan’s law and

double negation are applied.

 The AND operator is distributed over the OR operator recursively in the tree.

 The clauses that always evaluate to false, if any are removed.

The above steps are applied to the tree shown in Fig. 22. The result of the

algorithm is shown in Fig. 23 and Fig. 24. Figure 23 illustrates the intermediate step

where the ‘&&’ (AND) operator is distributed over the ‘| |’ (OR) operator. Finally, Fig.

24 illustrates the tree in DNF after recursively applying the algorithm.

Figure 23 Intermediate Step of DNF Conversion Algorithm

Figure 24 Final Expression Tree in DNF

32

The tree in DNF representation is read in infix order to obtain the Boolean

formula in its equivalent DNF. Hence, the conversion of the formula ‘(p1 | | p2) && (p3 |

| p4)’ results in ‘(p1 && p3) | | (p1 && p4) | | (p2 && p3) | | (p2 && p4)’. Similarly, the

negation of the formula after conversion results in ‘(!p1 && !p2) | | (!p3 && !p4) ’.

The Boolean formula in DNF along with the predicate mapping are used to develop the

state transition graph for the switch. The details are discussed in the state transition graph

generation section (Section 5.4). The complete implementation is done in C language and

interfaced with MATLAB using the MEX compiler.

5.3.2 Saturation Instrumentation

Figure 25 Saturation Block Instrumentation

 A saturation block imposes upper and lower limits on the input signal. The input

signal is passed to the output of the block when it falls between the lower and upper

limits. In this case, there are three possible modes that the block may operate at any given

point in time: lower saturation, upper saturation or no saturation. The instrumentation of

the saturation blocks is similar to the switch blocks triggered by double precision valued

input signals. Figure 25 shows the instrumentation of a saturation block. The output port

33

‘Out1’ is added at the input port of the block. The value of the output port ‘Out1’ can be

used to compute the distance from the different operating modes of the saturation block

and it is part of the set YA. Additionally, in an outer harness the value of ‘Out1’ can be

used to determine the mode of the saturation block which is added to set YF.

 Remark: It must be noted that these blocks with branching structure maybe

present inside subsystems of the model. The instrumentation is performed recursively and

the output ports are brought to the upper most layer of the model.

5.3.3 Avoiding Redundancy during Instrumentation

 During the instrumentation of a block, it is possible that the output port already

exists and the addition of a new output port can result in redundancy. The block

instrumentation takes into account this possibility by checking for the existence of the

output port. In case the output port already exists, it simply returns the id of the existing

output port which can be used when generating the corresponding FSM. In essence, there

is no duplication in the sets Y ∑ , YA and YF. The instrumentation fails to avoid

redundancy when the existing output port in a subsystem is brought out to the upper most

layer of the model with a different name. In this case, the instrumentation issues a

warning and adds a redundant output port in either of the set YA or YF. It must be noted

that the redundancy does not affect the correctness of the framework.

5.3.4 Selection of Blocks for Instrumentation

 The current framework performs instrumentation of all the supported blocks with

branching behavior. This may not be a practically scalable approach as the combinations

for the mode coverage increase exponentially. The current methodology relies on some

34

inputs from the user to exclude some blocks from the instrumentation process. In addition,

few redundant blocks are identified automatically and excluded from the instrumentation

as described in Section 5.2. In general, certain heuristics must be developed that can

disregard blocks that need not be considered for instrumentation to address this issue.

This is left as future work.

5.4 State Transition Graph Generation

The automatic extraction of the FSM for the blocks is the most important aspect

of the automation process. Prior to implementation of this framework, the user had to

manually go through the model to identify the branching blocks and analyze them to

obtain their FSM. This entire process can now be done at the click of a button.

This module obtains the state transition graph for the instrumented switch and

saturation blocks. In particular, a switch block can be modeled as a finite state machine

with two states s1 and s2 and a transition guard G(s1, s2) ⊆ 𝑅n = Y, where Y is the output

space of the system ∑. A transition from s1 to s2 is enabled if and only if y(t) ∈ G(s1, s2).

In S-TaLiRo, a data structure called “Guard” is used to capture the FSM representation.

The Guard which captures the transition relation G, captures the inequality form 𝐴 y ≼ 𝑏

where y is vector of the output space of ∑ of size #(Y∑) + #(YA) where #(Y) indicates

the dimensionality of the space Y and A is a matrix of size m x (#(Y∑) + #(YA)) where m

is the number of constraints that define the polyhedron G(s1,s2). In addition to the Guard

structure, an adjacency graph structure ‘CLG’ (Control Location Graph) is used to

represent the possible transitions from a given state to another.

35

The details of obtaining the ‘Guard’ and ‘CLG’ structure are illustrated in this

section. First, a simple example of a double precision input triggered switch block is

presented. Then, a slightly complex example of a Boolean value triggered switch block

will be discussed.

For convenience, the switch block shown in Fig. 11 and its FSM representation

are reproduced from Section 3.1. The FSM is depicted with state numbers one and two

according to the convention introduced in Section 3.1. State 1 corresponds to operating

mode one of the switch block where signal A is passed to the output. State 2 corresponds

to the mode two of the switch block where signal B is passed.

Figure 26 Left: Double Precision Input Value Triggered Switch Block; Right: the

Corresponding FSM Where State 2 Corresponds to Signal B and State 1 Corresponds to

Signal A Selection

It can be seen that the guard relation for the transition from State 1 to 2 is

captured by the equation ‘Out5 ≥ 0.5’. The ‘Guard’ structure employed in S-TaLiRo uses

the matrices ‘A’ and ‘b’ to capture the transition relation. For this example the ‘Guard’ is

formulated as:

Guard (1, 2). A = [0 0 0 0 -1 0 0] Guard (1, 2). b = - 0.5

36

where A is row vector of size #(Y∑) + #(YA), i.e., the original output ports plus the

auxiliary output ports added by instrumentation.

 The matrix A has a value -1 in the fifth position and the value of b is -0.5 which

represents the guard relation in the form ‘- Out5 ≤ - 0.5’ which is equivalent to the

equation ‘Out5 ≥ 0.5’ since it is the convention to represent the guards in 𝐴 y ≼ 𝑏 form.

 Similarly the guard relation for the transition from state 2 to 1 based on the

equation ‘Out5 < 0.5’ is obtained as:

Guard (2, 1). A = [0 0 0 0 1 0 0] Guard (1, 2). b = 0.5

Remark: The data structure “Guard” actually captures the inequality “Out5 ≤ 0.5”

and not “Out5 < 0.5”. However, this is not an issue since the guard is used to compute the

robustness value and not whether the guard is activated. For example, when Out5 = 0, the

robustness of both “Out5 ≤ 0.5” and “Out5 < 0.5” is the same, i.e., 0.5.

The adjacency graph ‘CLG’ for the switch contains the possible transitions from

State 1 and the possible transitions from State 2. In case of a switch block, there is only

one possible transition that can be taken from a given state and the ‘CLG’ can be simply

expressed as:

CLG {1} = [2];

CLG {2} = [1];

In general, ‘CLG’ is a cell array whose length is equal to the number of states of

the automaton. The contents of each cell is a vector containing the possible transition

from that state. For a switch block, the only possible transition from state 1 is to state 2.

Hence, CLG{1} is single vector with value 2.

37

Now, a more complex switch block triggered by a Boolean value input is

considered for illustrating the process of obtaining the FSM. The switch block is the one

considered in Fig. 21 in Section 5.3.1. The figure is reproduced here for convenience (Fig.

27). The previous instrumentation module obtains the Boolean formula in DNF that

triggers the switch. For this example, the Boolean formula in DNF for the ‘TRUE’

condition (Signal A) is obtained as ‘(p1 && p3) || (p1&&p4) || (p2&&p3) || (p2&&p4)’

and the formula in DNF for the ‘FALSE’ condition (Signal B) is ‘(!p1 && !p2) ||

(!p3&&!p4)’. The Boolean literals, i.e., p1, p2, p3 and p4 are mapped to the predicates of

each compare block. For example, p1 corresponds to the predicate ‘Out1 < 90’. Table 1

shows the mapping of predicates to the corresponding Boolean literals.

Figure 27 Switch Block S3 Triggered by Boolean Value Input

38

Predicate in the model Boolean literal

Out1 < 90 p1

Out2 > 10 p2

Out3 < 90 p3

Out4 > 10 p4

Table 1 Mapping of Predicates to the Corresponding Boolean Literal

Figure 28 The FSM that Corresponds to the Switch Block S3 Shown in Fig. 27

The FSM for the switch block S3 is depicted in Fig. 28. The convention for the

state is the same as the one introduced in Section 5.3.1. The State 1 and 2 in the FSM

correspond to the signal A and signal B being passed to the output. The guard that

corresponds to the transition from mode one to two is given by the DNF formula when it

evaluates to ‘TRUE’. Hence the formula ‘(p1 && p3) || (p1&&p4) || (p2&&p3) ||

(p2&&p4)’ represents the guard for the transition from mode one to two. Similarly, the

guard for transition from mode two to one corresponds to the expression ‘(!p1 && !p2) ||

(!p3&&!p4)’.

The ‘Guard’ structure captures the transition relation corresponding to each of the

conjunctive clauses in the DNF expression. Consider the guard representation for the

39

transition from mode one to two and the corresponding first conjunction expression ‘(p1

&& p3)’. The structure is obtained as:

Guard (1, 2). A {1} = [
1 0 0 0 0 . . . 0
0 0 1 0 . . . 0

] Guard (1, 2). b {1} = [
90
90
]

Now the field ‘A’ is a cell vector with each cell corresponding to a disjunctive

clause in the expression (in this example there are 4 clauses). The first element in the cell

A, i.e., A{1} and in the cell b, i.e., b{1} capture the predicate ‘Out1 < 90’ (mapped as

p1). The second element captures the expression ‘Out3 < 90’. In essence, the Guard

shown above captures the information that the transition from mode one to two is enabled

when ‘Out1 < 90’ and ‘Out3 < 90’ simultaneously. In a similar way, the Guard data

corresponding to the other conjunctive clauses are obtained.

Along the same lines, the Guard for the transition from mode two to mode one

can be derived easily. In this case, the expression ‘(!p1 && !p2) || (!p3&&!p4)’ is utilized

to obtain the Guard. The size of the cell ‘A’ and ‘b’ will be two corresponding to the two

conjunctive clauses (!p1 && !p2) and (!p3&&!p4).

Each of the guards that correspond to an individual conjunctive clause in the DNF

formula represent a different set. The disjunction of the linear inequalities is used to set

up a convex optimization problem by the optimization engine of S-TaLiRo.

The same approach is employed for saturation blocks to obtain the equivalent

FSM. In this case there are three states s1, s2 and s3. The states s1 and s3 correspond to

the lower and upper threshold value of the saturation block. The Guard structure obtains

the transition relation between each of these states in the same manner as illustrated for

the switch blocks.

40

5.5 Black Box File Interface

The creation of the black box file is the final component of the model

instrumentation process. The black box file forms an interface to the S-TaLiRo test

engine. It is an executable MATLAB function file (m-function). The structure of the file

is shown in Fig. 29. The CLG and Guard structures corresponding to the instrumented

blocks obtained from the State Transition Generation module (Section 5.4) are written in

the first section of the file. However, the CLG and Guard structures can also be initialized

in advance rather than when the black box file is executed. The MATLAB class that

could be used for the advanced initialization is discussed in Chapter 7.

Figure 29 Black Box File Structure

 In the second section of the file, the commands corresponding to the simulation

of the new instrumented Simulink model are written. We simulate the system using the

MATLAB ‘sim’ function for Simulink models. When this file is executed, the new

instrumented model is simulated and the output trajectory of the system is obtained, i.e.,

system output trajectories and auxiliary outputs introduced by the instrumentation process.

41

In particular, this output trajectory will now also contain the information related to the

modes of the switch and saturation blocks (YF) due to the output ports added during the

instrumentation process.

In the third and final section of the black box file, the output ports corresponding

to the locations are separated from the output ports used for the computation of the

distance metric (YA). The values of the location output ports are used to determine the

modes of the block.

Let ‘sim_model’ is the model to be instrumented. Then, a black box m-file with

the name ‘BlackBox_sim_model’ is created with the following input- output interface:

[T, XT, YT, LT, CLG, Grd] = BlackBox_sim_model (simT, TU, U)

Inputs:

simT – simulation time for the model

TU – the discrete time steps in the simulation time ‘simT’

U – The control input to the system

Outputs:

T – Time vector returned from the MATLAB sim command

XT – The state returned from the MATLAB sim command

CLG – Control Location Graph possible state transition for each instrumented

block.

Grd – Guard structure of each instrumented block

LT – Location value of each instrumented block

YT – Output space after the location output ports are separated from the system

output space.

42

Hence, after the execution of the black box file in S-TaLiRo, the following three

pieces of information are obtained:

 The state transition graph and the guard relations for the blocks with branching

structure in the model.

 The mode (location) information of the blocks with branching structure, YF.

 The auxiliary output space of the system YA which is used to compute the

distance metric dh.

43

CHAPTER 6

EXPERIMENTS AND RESULTS

This chapter presents the results for two experiments that were conducted to

illustrate the model instrumentation framework. In the first experiment, model

instrumentation is performed on an air- fuel control system from the powertrain control

benchmark (AbstarctFuelControl) [24]. Then, the instrumented model is used to

demonstrate the mode coverage by integrating the framework in S-TaLiRo. In the second

experiment, a toy example is considered to demonstrate the usage of model

instrumentation and S-TaLiRO framework for coverage guided falsification.

6.1 Experimental Results for Powertrain Control Benchmark

In this section, two sets of results will be discussed. First, the output of running

the model instrumentation framework on the benchmark is illustrated in Section 6.1.2.

Second, a comparison is made between the uniform random sampling approach and the

specification guided approach for a particular example of mode coverage.

 The model is slightly modified, so that we can use it to demonstrate the mode

coverage. The minor modification is discussed first before presenting the experimental

results.

6.1.1 Model Modification

The hysteresis subsystem in the model is modified for the mode coverage

experiments. The modified subsystem is shown in Fig. 30. The ‘hysteresis’ constant

value is changed from 50 to 48 (highlighted blue in Fig. 30). In the original model, the

‘power_on’ signal is turned on only when the input throttle angle is greater than or equal

44

to 90. However, the input range for the throttle angle is the set [0, 90], i.e., the input value

of exactly 90 has to be chosen to activate the ‘power_on’ signal. It is practically

impossible for S-TaLiRo to choose this value from the search space. Since our aim is to

demonstrate mode coverage, we modify the ‘hysteresis’ constant value from 50 to 48.

Consequently, the ‘power_on’ signal is activated when input throttle angle is greater than

or equal to 88. This improves the sampling probability and enables us to demonstrate

mode coverage. An alternative would be to increase the input range to [-5, 95] and

saturate the input to the range [0, 90]. This would render the probability of sampling the

value 90 non zero.

Figure 30 Modified Hysteresis Subsystem

6.1.2 Model Instrumentation Results

The air-fuel control benchmark has two inputs: - pedal angle and engine rpm and

three verification measurements as outputs of the system. Additionally, the model

contains a total of four switch blocks and two saturation blocks which are potential

candidates for coverage analysis.

45

The model instrumentation algorithm disregards any switch block triggered by

constant value since it is useless to perform coverage on this block since only one mode

is activated at all times. In addition, another switch block triggered by delay block in

feedback is not considered for instrumentation as explained in Section 5.2 of Chapter 5.

Finally, two switch blocks and two saturation blocks are considered for instrumentation

shown in Fig. 31, Fig. 32 and Fig. 33 respectively.

Figure 31 Double Precision Input Value Triggered Switch Block with the Added Output

Ports Indicated by Blue Lines

Figure 32 A Boolean Value Triggered Switch Block

46

Figure 33 An Equivalent Visualization of Switch_2 in Fig. 32 After Flattening with the

Added Output Ports Indicated by Blue Lines

The basic steps are illustrated for the switch block triggered by a Boolean value

(Fig. 32). First the model flattening is performed and can be visualized as shown in Fig.

33. The blocks inside the power mode subsystem block are brought out and connected to

the corresponding blocks in the upper level of the model. The numerical output ports are

added to relational operator block and location output port is added at the trigger port of

the switch. The instrumentation is performed recursively as explained in Section 5.3.2

and the output ports are brought to the upper most layer of the model. The added output

ports are indicated by the blue lines in Fig. 33.

The two saturation blocks after instrumentation are shown in Fig. 34. The

saturation blocks are highlighted by the blue square boxes and the output ports added by

model instrumentation are shown using the blue lines. Similar to the switch blocks, the

output ports are recursively added to bring them to the upper most layer.

47

Figure 34 Two Saturation Blocks Chosen for Instrumentation with the Added Output

Ports Indicated by Blue Lines

The final instrumented model after recursive addition of output ports is shown in

Fig. 35. The output ports ‘sat_out-1’ and ‘sat_out-2’ correspond to the two saturation

blocks and the output ports ‘sw_out-1’ to ‘sw_out-4’ correspond to the switch blocks.

This instrumented model containing the discontinuities (switch and saturation blocks) is

used by the S-TaLiRo engine for simulation.

Figure 35 Auxiliary Output Ports Added at the Top Layer of the Instrumented Model

48

Black Box

File Section

Figure

Number

Description

1 36 State transition graph for switch_1

37 State transition graph for switch_2

38 State transition graph for saturation_1

39 State transition graph for saturation_2

2 40 Simulation of instrumented model

3 41 Separation of location output ports of switch blocks

42 Separation of location output ports of saturation blocks

Table 2 Mapping of Fig. 36 to Fig. 42 to the Corresponding Black Box File Section

The black box file generated by the model instrumentation framework is depicted

in Fig. 36 to Fig. 42. The mapping of these figures to the corresponding sections in the

block box file (Chapter 5, Section 5.5) is shown in Table 2.

The state transition graphs corresponding to the switch and saturation blocks are

shown in Fig. 36 to Fig. 39. In particular, consider the Boolean value triggered switch

block (see Fig. 32). The corresponding Boolean formula for the switch block is extracted

and the DNF conversion is performed resulting in the state transition graph representation

shown in Fig. 37. In this case, the Boolean function that triggers the switch block is

‘sw_out-3 – sw_out-2 < 0‘. This formula is captured with a value of ‘-1’ and ‘1’ in the

matrix A of the guard specifying the transition from mode one to two of the switch block.

Along the same lines the guards for the other blocks are specified.

49

Figure 36 State Transition Guard Representation for Double Precision Input Value

Triggered Switch_1 Block in Fig. 31 Which Capture the Equations ‘sw_out-1 ≥ 𝟎. 𝟓’ and

’ sw_out-1 ≤ 𝟎. 𝟓’

Figure 37 State Transition Guard Representation of Switch_2 Block Shown in Fig. 32

Which Capture the Equations ‘sw_out-3 - sw_out-2 ≤ 𝟎’ and ’ sw_out-2 - sw_out-2 ≤ 𝟎’

Figure 38 State Transition Guard Representation of Saturation_1 Block in Fig. 34 Which

Capture the Equations ‘0 ≤ sat_out-1≤ ∞’, ‘sat_out-1 ≤ 0’ and ‘sat_out-1 ≥ ∞’

50

Figure 39 State Transition Guard Representation of Saturation_2 Block in Fig. 34 Which

Capture the Equations ‘0 ≤ sat_out-2≤ ∞’, ‘sat_out-2 ≤ 0’ and ‘sat_out-2 ≥ ∞’

Figure 40 Simulation of Instrumented Model

The second section of the black box file sets up the simulation of the instrumented

model and captures the output values of the system (Fig. 40). It must be noted that as a

result of the model instrumentation, the output values now contain information about the

current status (mode) of the switch/saturation blocks and also the distance from a given

mode of any of the blocks. The structure YT shown in the figure corresponds to the

output trace of the systems which is essentially the set Y∑, YA and YF.

51

Figure 41 Compute the Mode History for Switch_1 and Switch_2 Blocks from the Output

Trajectories

Figure 42 Compute the Mode History for Saturation_1 and Saturation_2 Blocks from

Output Trajectories

52

Finally, the third section computes the location information, YF from the output

signals (YT) as shown in Fig. 41 and Fig. 42. The location values are obtained by

indexing into the corresponding rows of the output signal matrix (YT in Fig. 40). The

location information (LT in Fig. 40) forms the set YF which can be used to define the

coverage metrics. These location values are removed from YT to form the set Y∑ and YA

used to compute the distance metric dh.

6.1.3 Integration in S-TaLiRo for Mode Coverage

Figure 43 Coverage Analysis of a Sample Location of the Switch and Saturation Blocks

Explained in Section 6.1.2

 The model instrumentation package is integrated in S-TaLiRo [14] to completely

automate the process of instrumentation and test generation for mode coverage. In this

experiment setup, the coverage is performed to simultaneously reach location two of

switch block shown in Fig. 32 and location three of saturation block named ‘saturation_2’

in Fig. 34. This requirement corresponds to activating the power mode subsystem and

53

reaching the upper limit of the corresponding saturation block. The MTL specification 𝜑

= ¬ F (PDes) is automatically generated where F is the temporal operator “eventually” and

PDes corresponds to the desired location to be covered. The specification in natural

language means ‘do not eventually reach PDes’. The falsification of the specification will

result in the specific mode coverage of the blocks.

The result of the experiment of one of the falsifying runs is shown if Fig. 43. The

specification is falsified, i.e., the desired location is reached in 361 tests. Additionally, all

the other locations that were reached before falsifying the specification are also reported

as ‘List of all visited locations’. For this experiment, each run of S-TaLiRo executes up to

1000 tests. If the specification is not falsified within 1000 tests then the test is considered

to have failed. However, the smallest robustness value is reported to the user.

The robustness guided mode coverage is compared with the uniform random

sampling approach. The comparison is performed in order to demonstrate that the

instrumentation improves coverage. The robustness guided approach employs Simulated

Annealing to guide the test generation process based on the robustness value. In uniform

random sampling, each input sample for testing are independently chosen at random

without being guided by the robustness value. The results are shown in Table 3.

 Uniform random sampling Robustness Guided

Total Runs 30 30

No. of time mode was reached 20 30

Avg. tests for falsified cases 45 109

Table 3 Mode Coverage Comparison between Uniform Random Sampling and

Robustness Guided Approach on the AbstarctFuelControl Model

54

 It can be inferred from Table 2 that uniform random sampling approach falsifies

the specification only twenty out of thirty times, i.e., the modes of the switch and

saturation block could not be reached within 1000 tests. In comparison, the robustness

guided approach is able to falsify the specification for all the thirty runs and hence reach

the desired locations. The potential application of this mode coverage approach to verify

system requirements is discussed in Section 6.2 using a challenging toy model.

6.2 Coverage Guided Falsification

 In this section, a simple example is considered to illustrate the process of using

model instrumentation to perform coverage guided falsification. The model used for the

experiment is shown in Fig. 44 and it was provided by Toyota. The model consists of a

switch block triggered by a Boolean network. The output of the Boolean network is

determined by the comparison between the eight input blocks with the respective constant

values. When the Boolean formula evaluates to ‘TRUE’, Signal B is passed to the output

of the switch. Signal A is passed through when the formula evaluates to ‘FALSE’. The

Signals A and B correspond to the functions ‘𝑦 = 𝑥2 − 10’ and ‘𝑦 = 𝑥2’, respectively,

using the input nine shown in the top right side of Fig. 44. The inputs one to eight take

the values from the set [0,100] and the input nine takes the values from the set [-5,5].

Let an unsafe region be defined as one when the output of the switch is less than

minus eight, i.e., ‘Out1 < -8’, i.e., the area below the red dotted line in Fig. 45. It can be

seen from Fig. 45 that this unsafe region can be reached only when signal A (mode one of

switch) is passed to the output of the switch. This is the case when the Boolean formula

55

evaluates to ‘FALSE’. For this to happen, the input signals should satisfy the following

constraints:

In1, In3, In5, In7 ≥ 90 and In2, In4, In6, In8 ≤ 10

The probability for the above constraint is 10-8, which is very low. Hence, it is

practically impossible to reach the unsafe region by just random sampling. Falsification

of the requirement requires that the system is first guided to reach mode one of the switch

block and then eventually reach the unsafe region.

Figure 44 Example Model to Illustrate Coverage Guided Falsification (Provided by

Toyota)

56

Figure 45 Trajectory of the Signal A and Signal B (Provided by Toyota)

The idea is illustrated by performing two sets of experiments on the model. In the

first scenario, the falsification is performed without exposing the information related to

the switch block. The falsification process looks at the model as a black box with nine

inputs and an output with a requirement to be falsified. The algorithm tries to find the

input values that will make the output reach the unsafe set.

In the second scenario, model instrumentation is performed to expose the state of

the switch block. The compare blocks are instrumented and used to compute the distance

metric dh. Now the coverage metric is introduced in the falsification problem. The MTL

formula is formulated as

 𝜑′ = 𝜑 ⋁¬ 𝐹(𝑝𝐷𝑒𝑠)

Here, 𝜑 corresponds to the original specification to be falsified (Out1 < -8) and

the new atomic proposition 𝑝𝐷𝑒𝑠 corresponds to the desired combination of modes. In

this example, 𝑝𝐷𝑒𝑠 corresponds to the mode one of the switch block. Hence, the

falsification algorithm indirectly tries to push the system to go to the desired modes since

57

its robustness will be minimized as well. The falsification algorithm guides the system to

mode one of the switch block (signal A) and, in turn, it falsifies the original requirement.

 Without Coverage Coverage guided

Total Runs 25 25

No. of falsifications 0 21

Avg. tests for falsified cases NA 540

Table 4 Falsification Results with and Without Coverage Guidance

Table 4 presents the results for falsification achieved with and without the

coverage guided approach. Each run of the falsification algorithm constitutes a maximum

of 1000 tests. It can be seen that without any coverage, S-TaLiRo fails to falsify in all the

25 runs whereas the coverage guided approach is able to falsify 21 out of 25 runs.

58

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, a MATLAB based package for automatic analysis and

instrumentation of industrial size Simulink models is presented. A hierarchical and a

modular approach is proposed to extract the blocks with branching behavior and obtain

their equivalent FSM representation. The framework is integrated in the robustness

guided falsification tool S-TaLiRo [14], and it is utilized in order to perform mode

coverage for CPS models. The robustness guided approach for mode coverage achieved

better performance compared to the uniform random sampling approach. In addition, the

potential for coverage guided falsification is illustrated on a challenging toy example.

However, the model instrumentation tool developed is still in its infancy.

Currently, the tool provides only a basic framework for analyzing selected blocks. There

are a few areas that can be explored in the future to further improve the effectiveness of

the tool for CPS testing.

Some of the future extensions can be carried in the following areas:

 The automated analysis support can be extended to more blocks like state

charts, Lookup tables, absolute value blocks etc. The challenge in the

automatic analysis of Stateflow diagrams lies in the fact that analysis

might be required to extract the guard transitions between the various

states. Stateflow allows for arbitrary program expressions to be stated

inside the Stateflow states and/or transitions. The current approach is to

manually analyze them and obtain their equivalent state machine

59

representation. An alternative would be to impose certain syntactic

restrictions on the allowed Stateflow charts in order to support automatic

instrumentation.

 The current approach performs instrumentation of all the branching blocks

identified in the model or indicated by the user. With an increasing

number of blocks, there is exponential increase in the combinations for

mode coverage. Some heuristics have to be explored to automatically

(without the user intervention) disregard certain blocks from the

instrumentation process. For example, one possible approach is to only

consider nonlinear blocks in the controller section and neglect the blocks

used to model the environment.

 The use of tools like Simulink Design Verifier (SDV) can be explored to

analyze the components that require discrete time domain analysis. SDV

performs well for open loop systems and fails for complex close loop

dynamics. The trajectory generated by SDV for an open loop system can

be used by S-TaLiRo for the test generation process of the closed loop

systems.

 In [15], coverage guided falsification is discussed in detail. The approach

is briefly illustrated on a toy example in Section 6.2. The approach needs

to be extensively studied on standard benchmarks to establish the

effectiveness of coverage guided falsification.

In addition to the above mentioned areas, changes in the interface can be done to

improve the model instrumentation tool. Currently, the state transition graph information

60

is written in the blackbox file. This can be provided to the user in the form of a

MATLAB class. The class termed as “blackbox” class in S-TaLiRo [14] has the

following fields:

 Model_fcnptr – MATLAB function pointer to the blackbox model file.

 CLG – adjacency graph corresponding to each branching structure

considered in the model instrumentation.

 GRD – The guard structure representing the transition relation from one

state to another.

The ‘blackbox’ class can be used to initialize the ‘Guard’ and ‘CLG’ structures in

advance before their execution in the blackbox file. This is particularly useful for models

in which the guards do not change with time. So the repeated execution of the

corresponding commands in blackbox file can be avoided for every simulation.

61

REFERENCES

[1] E. A. Lee and S.A. Seshia, “Introduction to embedded systems - A cyber-physical

systems approach,” [Online] Edition 1.5, LeeSeshia.org, 2014.

[2] P. Tabuada, “Verification and control of Hybrid Systems: A Symbolic Approach,”

Springer 2009.

[3] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk and J. Raman, “Analysis of Safety-Critical

Computer Failures in Medical Devices,” in IEEE Security & Privacy 11.4 (2013):

14-26.

[4] X. Chen , E. Abraham and S. Sankaranarayanan, “Flow: An Analyzer for non linear

hybrid systems,” in Computer Aided Verification, 2013.

[5] G. Frehse, C. L. Guernic, A. Donze, S. Cotton, R. Ray, O. Labeltel, R. Ripado, A.

Girard, T. Dang and O. Maler, “SpaceEx: Scalable verification of hybrid systems,”

in Computer Aided Verification, 2011.

[6] A. Platzer, “Logical Analysis of Hybrid Systems:Proving theorems for Complex

Dynamics,” Springer-Heidelberg, 2010.

[7] J. B. Jeanin , K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt and E. Z. A.

Platzer, “A formally verified hybrid systems for the next generation airborne

collision avoidance system,” in International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 21-36. Springer, 2015.

[8] G. Fainekos, S. Sankaranarayanan, K. Ueda and H. Yazarel, “Verification of

automotive control applications using s-taliro,” in American Control Conference,

2012.

[9] B. Hoxha, H. Abbas and G. Fainekos, “Using s-taliro on industrial size automotive

models,” in Applied Verification for Continous and Hybrid Systems, 2014.

[10] X. Jin, A. Donze, J. Deshmukh and S. Seshia, “Mining requirements from closed

loop control models,” in Hybrid Systems: Computation and Control. ACM Press,

2013.

[11] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic and A. Gupta,

“Probabilistic temporal logic falsification of cyber-physical systems,” in ACM

Transactions on Embedded Computing Systems (TECS), 12(s2), May 2103.

62

[12] Y. S. R. Annapureddy and G. E. Fainekos, “Ant Colonies for temporal logic

falsification of hybrid systems,” in 36th Annual Conference of IEEE Industrial

Electronics, pages 91-96, 2010.

[13] A. Donze, “Breach, a toolbox for verification and parameter synthesis of hybrid

systems,” in Computer Aided Verification , pages 167-170. Springer, 2010.

[14] “TaLiRo Tools,” [Online]. Available: https://sites.google.com/a/asu.edu/s-taliro/s-

taliro.

[15] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan and G. Fainekos,

“Requirements driven falsification with coverage metrics,” in Embedded Software

(EMSOFT), 2015.

[16] S. Boyd and L. Vandenberghe, “Convex Optimizations,” Cambridge university

press, 2004.

[17] A. K. Seda and P. Hitzler, “Generalised distance functions in the theory of

computation,” in The Computer Journal, 53(4): bxm108443-464, 2008.

[18] G. Fainekos and G. J. Pappas, “Robustness of Temporal Logic specifications for

continous-time signals,” in Theoretical Computer Science, 410(42):4262-4291,

2009.

[19] A. Fehnker and F. Ivančić, “Benchmarks for hybrid systems verification,” in

International Workshop on Hybrid Systems: Computation and Control (pp. 326-

341). Springer Berlin Heidelberg, 2004.

[20] R. Koymans, “Specifying real-time properties with metric temporal logic,” in Real-

time systems, 2(4), 255-299, 1990.

[21] P. Ammann and J. Offutt, “Introduction to Software Testing,” Cambridge University

Press, 2008.

[22] C. E. Tuncali, G. Fainekos and Y.-H. Lee, "Automatic Parallelization of Simulink

Models for Multi-core Architectures," in 2015 IEEE 12th International Conference

on Embedded Software and Systems (ICESS).

[23] S.J. Russell, P. Norvig, J. F. Canny, J. M. Malik, D.D. Edwards, “Artificial

intelligence: a modern approach,” Vol. 2. Upper Saddle River: Prentice hall, 2003.

63

[24] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda and K. Butts, “Powertrain Control

Verification Benchmark,” in the 17th international conference on Hybrid systems:

Computation and Control, 2014.

[25] T. Dang and T. Nahhal, “Coverage-guided test generation for continuous and hybrid

systems,” in Formal Methods in System Design, Volume 34, Issue 2, pp 183–213,

2009.

[26] F. Leitner and S. Leue, “Simulink Design Verifier vs. SPIN – a Comparative Case

Study,” in Formal Methods for Industrial Critical Systems, 2008.

[27] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi and M.

Hendriks, “UPPAAL 4.0,” in Third International Conference on the Quantitative

Evaluation of Systems - (QEST'06), 2006.

[28] A. Zutshi, S. Sankaranarayanan and J. Deshmukh, "A trajectory splicing approach to

concretizing counterexamples for hybrid systems," in 52nd IEEE Conference on

Decision and Control, pages 3918 - 3925, 2013.

[29] J. Kapinski, J. Deshmukh, X. Jin, H. Ito and K. Butts, “Simulation-guided

approaches for verification of automotive powertrain control systems,” in 2015

American Control Conference (ACC) (pp. 4086-4095). IEEE.

[30] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta and G.J.

Pappas, “Monte-carlo techniques for falsification of temporal properties of non-

linear hybrid systems,” in 2010 13th ACM international conference on Hybrid

Systems: Computation and Control (pp. 211-220).

