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ABSTRACT

Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincaré groups, and a review of some basic rela-

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical Maxwell’s equations in a moving medium or at

rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum

tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its

connection with the Pauli-Lubański vector from the viewpoint of the complex electromag-

netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used.

Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s

equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell

and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubański vector and the Casimir

operators of the Poincaré group. A connection between the spin of a particle/field and

consistency of the corresponding overdetermined system is emphasized in the massless

case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which

is a Schrödinger equation with a time-varying quadratic Hamiltonian operator. The time

evolution of exact wave functions of the generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is

shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem

for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the

methods introduced in Chapter 5 a model for the quantization of an electromagnetic field

in a variable media is analyzed. The concept of quantization of an electromagnetic field

in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode

of radiation for this model is used to find time-dependent photon amplitudes in relation

to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the

uncertainty relation, are explicitly given in terms of the Ermakov-type system.
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“Physical laws should have mathematical beauty.” — P. A. M. Dirac
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Chapter 1

INTRODUCTION

In this chapter we will briefly review some important topics that are relevant to this

dissertation. No attempt has been made to give a complete and detailed description of each

area, but instead to just introduce and discuss certain aspects of the theories that will be

most relevant in the work to follow.

In section 1.1, we introduce some notations that will be used throughout. In section

1.2, we will briefly review some important fundamentals of quantum mechanics including:

Hamiltonians, the Schrödinger equation, the Heisenberg uncertainty principle, Ehrenfest’s

Theorem, and the unitary transformation between the Schrödinger and Heisenberg pictures

of quantum mechanics. In section 1.3, the representation theory of the Poincaré and Lorentz

groups will be discussed. This will be very important in the sections on relativistic wave

equations and spin and angular momentum of elementary particles. Section 1.4 gives a

brief review of several fundamental relativistic wave equations that will be visited again in

relation to the Pauli-Lubański vector and the representation theory of the Poincaré group in

a later chapter.

In Chapter 2, a complex version of electrodynamics is introduced. We discuss a com-

plex covariant form of the classical Maxwell’s equations, in a moving medium or at rest. A

compact, Lorentz invariant, form of the energy-momentum tensor is derived.

Chapter 3 addresses a common misconception in the literature and the standard quan-

tum field theory textbooks on an operator relation used to define helicity of massless parti-

cles. In accomplishing this, it is shown that Maxwell’s equations in vacuum can, in fact, be

derived through the representation theory of the Poincaré group with the help of the Pauli-

Lubański vector. The definition of helicity, as it is traditionally given in particle physics, is

1



discussed and the simplest covariant helicity states are constructed. The chapter concludes

with some remarks regarding polarized waves and a discussion on the complex Maxwell

equations in vacuum and discrete transformations.

Chapter 4 emphasizes the role of the Pauli-Lubański vector for several major relativistic

wave equations. The work in this chapter was motivated by a result of Chapter 3, that

Maxwell’s equation can be derived through the representation theory of the Poincaré group

with the help of the Pauli-Lubański vector. The chapter begins by introducing a variant

version of Dirac’s equation, which takes the form of a certain overdetermined system of

partial differential equations. Next, there is a discussion on the Pauli-Lubański vector and

Dirac’s equation in vacuum, and lastly the relativistic definition of spin for Dirac particles.

The chapter continues on to cover, in a similar manner, the Weyl, Proca, Maxwell, and

Fierz-Pauli equations. In addition, the spinor form of Maxwell’s equations is mentioned in

a covariant form, along with its traditional form.

In Chapter 5, we change gears to discuss the exact wave functions for a generalized

harmonic oscillator, which is a Schrödinger equation whose Hamiltonian is a general time-

dependent quadratic operator of position and momentum. Green’s function is found with

help from the Ermakov-type system, which is also introduced in this chapter. The chapter

concludes by outlining Ehrenfest’s theorem and how it relates to the generalized harmonic

oscillators.

Lastly, in Chapter 6, an application of the results from Chapter 5 helps to study a certain

model for the quantization of an electromagnetic field in variable media. The exact wave

function for the model is found, the uncertainty relation and squeezed states are discussed,

and lastly the photon statistics are explicitly given.

1.1 Notation

• Natural units, where the fundamental constants c = h̄ = 1, will generally be used.

2



• Latin indices i, j,k, ... run over spatial coordinate labels, i, j,k = 1,2,3.

• Greek indices µ,ν ,ρ, ... run over the four spacetime coordinate labels µ,ν ,ρ =

0,1,2,3.

• The flat Minkowski spacetime metric tensor is denoted ηµν = diag(1,−1,−1,−1).

• The curved spacetime metric tensor is denoted gµν , but in most places we are work-

ing in flat spacetime where this notation is used to indicate the Minkowski metric

instead. Any place such a notation is used it will be indicated.

• The the totally anti-symmetric Levi-Civita symbol in three and four dimensions is

denoted by epqr and eµνστ , respectively. The convention e123 = +1 and e0123 = +1

is used.

• Three-dimensional spatial vectors are indicated by a boldface letter, e.g. A.

• A contravariant four-vector is denoted with an upper index xµ and a covariant four-

vector with a lower index xµ .

• The relation between contravariant and covariant vectors is given by the metric ten-

sor, xµ = ηµνxν .

• The spacetime interval ds2 = dxµdxµ = dt2−dx2−dy2−dz2.

• The four-gradient operator is denoted ∂µ =
(

∂

∂ t ,∇
)
=
(

∂

∂ t ,
∂

∂x ,
∂

∂y ,
∂

∂ z

)
.

• For the contravariant four-gradient ∂ µ = ηµν∂ν =
(

∂

∂ t ,−∇

)
.

• The d’Alembert operator is �= ηµν∂µ∂ν = ∂µ∂ µ = ∂ 2.

• The four-momentum of a particle is given by pµ = (E,p).

• Sometimes the notation p · x = px = pµxµ = Et−p ·x is used.

3



1.2 A Brief Discussion on Quantum Mechanics

In classical mechanics, the Hamiltonian,

H(p,x) = T +V where T = T (p) =
p2

2m
and V =V (x), (1.1)

represents the total energy of a closed system. Here the functions T (p) and V (x) represent

the kinetic and potential energies respectively. The variable p represents the generalized

momenta and x the generalized coordinates. These state variables depend on time and the

time evolution of the system is given by the Hamilton equations,

ẋ =
∂H
∂ p

=
p
m

(1.2)

ṗ =−∂H
∂x

=−dV (x)
dx

. (1.3)

The variables p and x completely describe the state of the system. The equations (1.2)-

(1.3) are derived from the Lagrangian formalism of classical mechanics, see any standard

classical mechanics text for details.

In quantum mechanics, the Hamiltonian is obtained by replacing the variables p and

x by the operators p̂= h̄
i

∂

∂x and x̂= x. These are operators on an infinite dimensional Hilbert

space, which is the setting of quantum mechanics. It is a postulate of quantum mechanics

that the state of the quantum system at time t is given by a wavefunction ψ (x, t), which is

represented by a vector in an infinite dimensional Hilbert space. The time evolution of the

quantum system is given by the Schrödinger equation,

ih̄
∂ψ (x, t)

∂ t
= Ĥψ (x, t) where Ĥ =

p̂2

2m
+V (x̂). (1.4)

Here the kinetic and potential energies are given in terms of the operators p̂ and x̂.

4



A general variable quadratic Hamiltonian,

Ĥ = a(t)p̂2 +b(t)x̂2 + c(t)x̂ p̂− id(t)− f (t)x̂−g(t)p̂, (1.5)

where a, b, c, d, f and g are suitable real-valued functions of time t only, will be discussed

later. In most places it will be clear from the context when we are dealing with an opera-

tor and for this reason the hat, Ô, above operators will usually be left out. A measurable

quantity, often called an observable, in quantum mechanics corresponds to a self-adjoint

operator, and the possible outcomes of measurements to values in the spectrum of the oper-

ator. The action of an operator on a wave function yields an eigenvalue, when it exists, that

corresponds to the particular quantity being measured. Examples of such operators include

the position, momentum, and energy operators. The expectation value of an operator with

respect to a normalized quantum state ψ gives the statistical mean of the measurements

performed on ψ:

〈A〉=
∞∫
−∞

ψ
∗AψdV.

The Heisenberg uncertainty principle is of great importance to quantum mechanics, in gen-

eral: given two non-commuting self-adjoint operators A and B such that [A,B] = ih̄, the

following inequality is satisfied

〈∆A〉〈∆B〉 ≥ h̄/2, (1.6)

where 〈∆A〉=
√
〈A2〉−〈A〉2 and 〈∆B〉=

√
〈B2〉−〈B〉2 is the uncertainty, or standard de-

viation, of the respective operators. Typically, this statement is given for the position A = x̂

and momentum B = p̂ operators; although, this relation holds true for any conjugate oper-

ators that satisfy the given hypothesis. As a result, this statement says that if the measured

value of one of the operators, say A, is known precisely, then the value of the operator B

is infinitely uncertain. There are especially important quantum states that minimize the

relation (1.6), known as coherent states or, more generally, squeezed coherent states. The

5



term squeezed is used to described the coherent states whose oscillating variances
〈
(∆A)2〉

and
〈
(∆B)2〉 become smaller than the ’static’ vacuum state, for which

〈
(∆A)2〉 =

〈
(∆B)2〉

= h̄/2. The Ehrenfest theorem gives the time-evolution of the expectation value of an oper-

ator, A, according to the formula

d
dt
〈A〉= 1

ih̄
〈[A,H]〉+

〈
∂A
∂ t

〉
.

Finally, one may move back and forth between the Schrödinger and Heisenberg pictures of

quantum mechanics, transferring the time-dependence from the wave functions to the op-

erators or vice versa, using a unitary transformation. The equivalence of these two pictures

of quantum mechanics will be useful below when calculating the photon statistics. In the

Heisenberg picture of quantum mechanics the state vectors are time-independent, while the

observable operators instead depend on time and satisfy the Heisenberg equation of motion

d
dt

A(t) =
i
h̄
[H,A(t)]+

(
∂A
∂ t

)
H
. (1.7)

The subscript on the last term, ∂A
∂ t indicates that it has undergone the unitary transformation

along with the operator A

A(t) = eiHt/h̄Ae−iHt/h̄,

for a time-independent Hamiltonian. For a time-dependent Hamiltonian a more general

unitary operator should be used, see [118]. Note that taking the expectation value of the

Heisenberg equation yields the Ehrenfest theorem.

1.3 Representation Theory and the Lorentz and Poincáre Groups

The purpose of this section is to introduce some notations that will be used in the work

to follow, along with a brief review of some important topics regarding the Lorentz and

Poincaré groups and their representations. The main body of work takes place in the

Minkowski space MMM = (R4,g), where g = gµν = diag(1,−1,−1,−1) is the Minkowski
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metric. When working in a curved spacetime we instead reserve the symbol g for the met-

ric tensor and use instead the symbol η for the Minkowski metric. A reminder of many of

the notations will be given in the sections as they are needed, although a list has already

been provided in the introduction. A classification program for relativistic wave equa-

tions through the representation theory of the inhomogeneous Lorentz (Poincaré) group was

started by Bargmann and Wigner in 1948, [12]. Chapter 4 follows the work of Bargmann

and Wigner with a classification program of relativistic wave equations from the represen-

tation theory of the Poincaré group, where these equations appear in this framework as a

statement of consistency of certain overdetermined systems of partial differential equations.

In particular Dirac’s equation, Weyl’s two-component equation for massless neutrinos, and

the Proca, Maxwell and Fierz-Pauli equations are studied from the viewpoint of the Pauli-

Lubański vector.

1.3.1 Homogeneous Lorentz Group

The Lorentz group O(1,3) is the group of all linear transformations of R4 that preserve

the Lorentz inner product xµyµ = gµνxνyµ . That is, given Λ ∈ O(1,3):

(Λx)µ(Λy)µ = gµν (Λ
ν
σ xσ )

(
Λ

µ

κ yκ
)
= xµyµ for all x,y. (1.8)

Or in matrix form,

Λ
†gΛ = g, (1.9)

where g is the Minkowski metric. The group O(1,3) has four connected components, which

can be seen by the following. Taking the determinant on both sides of the equation (1.9) it

is clear that detΛ = ±1. If detΛ = 1, the element Λ is called special. The equation (1.8)

implies that

Λ
µ

κ gµνΛ
ν
σ = gκσ , (1.10)
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and setting κ = σ = 0 one gets

(Λ0
0)

2 = 1+
3

∑
j=1

(Λ
j
0)

2 ≥ 1. (1.11)

This shows that we either have Λ0
0 ≥ 1 or Λ0

0 ≤ −1. The transformations Λ ∈ O(1,3)

such that Λ0
0 ≥ 1 are called orthochronous, meaning that they do not change the direction

of time. A special orthochronous Lorentz transformation is called proper. The set of

special transformations forms the special Lorentz group, denoted SO(1,3), and the set of

orthochronous transformations forms the orthochronous Lorentz group, O+(1,3). Then the

restricted Lorentz group (or proper Lorentz) group,

SO+(1,3) = SO(1,3)∩O+(1,3), (1.12)

is the connected component of the identity in O(1,3). The Lorentz group is a six-dimensional

Lie group and local coordinates may be introduced in it with the exponential map

Λ = exp
(

θλ µmλ µ/2
)
, (1.13)

where θλ µ is an anti-symmetric 4x4 matrix and the infinitesimal generators,(
mλ µ

)α

β
= gµα

δ
λ

β
−gλα

δ
µ

β
, mλ µ =−mµλ , (1.14)

satisfy the Lie algebra

[mλ µ ,mρσ ] = gλρmµσ −gµρmλσ +gµσ mλρ −gλσ mµρ . (1.15)

The universal covering of SO+(1,3) is a two-valued complex representation, denoted SL(2,C),

which is a connected Lie group. Representations of connected Lie groups can be studied

by algebraic methods. If T is any representation of SO+(1,3), where the elements of the

group have the form (1.13),

T (Λ) = exp
(

iθλ µXλ µ/2
)
, (1.16)
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the linear operators Xλ µ = −X µλ are called the generators of the representation T , and

they satisfy the commutation relation of the Lie algebra,

[Xλ µ ,Xρσ ] =−i
(

gλρX µσ −gµρXλσ +gµσ Xλρ −gλσ X µρ

)
. (1.17)

Finding all representations of the commutation rule (1.17) is equivalent to finding the

representations of the restricted Lorentz group, SO+(1,3). The restricted Lorentz group

has finite dimensional and infinite dimensional representations; however, it has no finite-

dimensional unitary representations other than the identity representation T (Λ) ≡ 1. In

the work to follow, we only concern ourselves with the finite-dimensional representa-

tions (four-vector, spinor, bispinor, four-tensor, etc...) of SO+(1,3), which act on finite-

dimensional vector spaces; elements of these spaces transform according to the correspond-

ing representation.

1.3.2 Inhomogeneous Lorentz (Poincaré) Group

The Poincaré group is the set of all homogeneous Lorentz transformations, O(1,3)

together with the group of translations, R4. That is, the ten-dimensional Lie group

P = R4 oO(1,3), (1.18)

which is why it is sometimes referred to as the inhomogeneous Lorentz group. The action

of an element (a,Λ) ∈P on x ∈ R4 is given by,

x
′µ = Λ

µ

ν xν +aµ . (1.19)

As with the Lorentz group, the Poincaré group also has four connected components. Similar

to the Lorentz group the component of the identity is

R4 oSO+(1,3), (1.20)

9



and the covering group is R4oSL(2,C). In addition to the generators in the Lie algebra for

the Lorentz group, the generator of translation, Pµ must be added to give the Lie algebra

of the Poincaré group:

[Xλ µ ,Xρσ ] =−i
(

gλρX µσ −gµρXλσ +gµσ Xλρ −gλσ X µρ

)
, (1.21)

[Pµ ,Pν ] = 0, (1.22)

[X µν ,Pσ ] = i(gνσ Pµ −gµσ Pν) . (1.23)

The classification of all the irreducible unitary representations of the inhomogeneous Lorentz

group can be formulated in terms of finding the all representations of the commutation rules

of this algebra by self-adjoint operators, see for example [231]. For more details on the

Lorentz and Poincaré groups, see [15], [29], [187].

1.4 A Brief Review of Some Relativistic Wave Equations

1.4.1 Klein-Gordon-(Fock) Equation

The Klein-Gordon equation describes particles with no spin, which are called scalar

particles. We denote such a particle by φ , which has only one component. The Klein-

Gordon equation can be derived starting from the relativistic energy-momentum relation

(in units with h̄ = c = 1),

E2−p2 = m2. (1.24)

Substituting the differential operators E → i ∂

∂ t and p→−i∇ in (1.24) and operating on φ

we obtain the Klein-Gordon equation,(
∂ 2

∂ t2 −∇
2
)

φ +m2
φ = 0, (1.25)

or in covariant form (
�+m2)

φ = 0. (1.26)
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It should also be noted here, that since the Klein-Gordon equation expresses the relativistic

relation between energy, momentum, and mass, it must hold for particles of any spin. An-

other interesting fact is that the well-known Schrödinger equation, from quantum mechan-

ics, is the non-relativistic approximation to the Klein-Gordon equation, see for example

[184]. The four-vector jµ = (ρ, j), satisfies the continuity equation

∂µ jµ =
∂ρ

∂ t
+div j = 0, (1.27)

where

ρ =
i

2m

(
φ
∗∂φ

∂ t
− ∂φ∗

∂ t
φ

)
(1.28)

j =
1

2im
(φ∗∇φ − (∇φ)∗φ) , (1.29)

where the asterisk ∗ stands for complex conjugation. Here, we consider φ to be complex-

valued, which corresponds to charged particles. If instead φ were real-valued, (1.28)-(1.29)

would be identically zero. Real-valued φ corresponds instead to electrically neutral parti-

cles. However, the major problem here is that the quantity (1.28) is not positive-definite

since one can choose initial conditions on φ and ∂φ/∂ t to make it negative. Alternatively,

to see this, one may substitute a plane-wave φ = Ne−ipµ xµ

= Ne−i(Et−p·x) in (1.28) to find

that

ρ = 2|N|2E, (1.30)

from which it follows ρ may take negative values, since the energy E in (1.24) can be

positive or negative. Hence ρ cannot be interpreted as a probability density and one can

no longer interpret the Klein-Gordon equation as an equation for a single particle, [184].

This trouble with the Klein-Gordon equation is resolved by reinterpreting it instead as a

field equation for a field φ instead of a single particle. Upon quantization of the field

a successful particle theory may be recovered. The problem of negative energy, which
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becomes a severe problem for an interacting particle, is also overcome by treating φ as a

quantum field.

1.4.2 Dirac Equation

The Dirac equation is a relativistic wave equation that was derived by Paul Dirac in

1928. The Dirac equation describes massive spin-1/2 particles such as, for example, elec-

trons, protons, and quarks. In its covariant form the Dirac equation is written

iγµ
∂µψ−mψ = 0. (1.31)

Here the Dirac/gamma matrices are γµ =
(
γ0,γγγ

)
, γµ = gµνγν =

(
γ0,−γγγ

)
, and γ5 =

−γ5 = iγ0γ1γ2γ3, where

γγγ =

 0 σσσ

−σσσ 0

 , γ
0 =

 I 0

0 −I

 , γ
5 =

 0 I

I 0

 (1.32)

and σσσ = (σ1,σ2,σ3) are the standard 2×2 Pauli matrices [168], [214]. The familiar anti-

commutation relations,

γ
µ

γ
ν + γ

ν
γ

µ = 2gµν , γ
µ

γ
5 + γ

5
γ

µ = 0 (µ,ν = 0,1,2,3) , (1.33)

hold. (Most of the results here will not depend on a particular choice of gamma matrices,

but it is always useful to have an example in mind.) The four-vector notation, xµ = (t,r) ,

∂µ = ∂/∂xµ , and ∂ α = gαµ∂µ in natural units c = } = 1 with the standard metric, gµν =

gµν = diag(1,−1,−1,−1) , in the Minkowski space-time (R4 ,g) are utilized throughout,

see [19], [28], [29], [157], [21].

In this notation, the transformation law of a bispinor wave function,

ψ (x) =



ψ1

ψ2

ψ3

ψ4


∈ C4 , (1.34)
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under a proper Lorentz transformation, is given by

ψ
′ (x′)= SΛψ (x) , x′ = Λx, (1.35)

together with the rule,

S−1
Λ

γ
µSΛ = Λ

µ

νγ
ν , (1.36)

for the sake of covariance of the Dirac equation (1.31).

As is well known, a general solution of the latter matrix equation has the form

S = SΛ = exp
(
−1

4
θµνΣ

µν

)
, θµν =−θνµ , (1.37)

Σ
µν = (γµ

γ
ν − γ

ν
γ

µ)/2.

For the conjugate bispinor,

ψ (x) = ψ
† (x)γ

0, ψ
′ (x′)= ψ (x)S−1

Λ
, x′ = Λx, (1.38)

the Dirac equation (1.31) takes the form

i∂µψγ
µ +mψ = 0. (1.39)

(For more details see classical accounts [6], [19], [28], [71], [99], [158], [173], [184], [187],

[21], [226].) Using the two equations (1.31) and (1.39) on can easily show that the Dirac

current is conserved. Indeed, for the Dirac current jµ = ψγµψ = (ρ, j) one has

∂µ jµ = (∂µψ)γµψ +ψγµ(∂µψ)

= imψψ− imψψ = 0.

Thus showing the probability density and probability current are conserved for the Dirac

equation. A more general discussion of the conservation laws is given in Chapter 5. Note

that in the Dirac equation the probability density is positive,

ρ = j0 = ψγ
0
ψ = ψ

†
ψ =

4

∑
i=1
|ψi|2 > 0.
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However, the energy may still take positive or negative values in the Dirac equation. This

predicted the existence of an electron with positive charge called a positron, the antiparticle

of an electron, which was eventually discovered. Actually, Dirac’s theory predicted the

existence of antiparticles for all spin-1/2 particles. The existence of these antiparticles

necessitated the abandonment of the Dirac equation as a single-particle equation and for it

to instead be interpreted as a field equation, [184].

1.4.3 Weyl Equation

The Dirac equation can be written in terms of two Weyl spinors, φ and χ , under the

transformation,

γ
µ → γ

′µ = Uγ
µU−1, ψ → ψ

′ =

 φ

χ

=Uψ, (1.40)

U =
1√
2

 I I

I −I

=U−1.

Through this transformation Dirac’s equation (1.31) takes a familiar block form,

i

 0 ∂0−σσσ ·∇

∂0 +σσσ ·∇ 0


 φ

χ

= m

 φ

χ

 (1.41)

(see, for example, [71], [158], and [173]). In the massless limit m→ 0, this system decou-

ples,

∂0φ +(σσσ ·∇)φ = 0, ∂0χ− (σσσ ·∇)χ = 0, (1.42)

resulting in Weyl’s two-component equations for massless neutrinos. This eponymous

equation was introduced by Hermann Weyl in 1929 to describe massless spin-1/2 parti-

cles, [187], [228]. Weyl’s equation was rejected because it was incompatible with parity

conservation, which reverses the sign of helicity, [99]. Later this objection was deemed

not serious since neutrinos are involved in weak interactions which do not conserve parity,
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[131], [234]. It should be noted that the 2015 Nobel Prize in Physics was award to Arthur

B. McDonald and Takaaki Kajita for the discovery of neutrino oscillations, which shows

that neutrinos do have mass, see [149], [105], and [175] by Pontecorvo for the original

work on neutrino physics.

The Weyl equation can be written in a familiar covariant form, see [173], [187], [173],

by setting σ µ = (σ0 = I,σ1,σ2,σ3) and σ̄ µ = (σ0 = I,−σ1,−σ2,−σ3) , to cast (1.42) into

the form:

σ
µ

∂µφ = 0, σ̄
µ

∂µφ = 0. (1.43)

Here, the Weyl spinors,

φ (x) =

 φ1

φ2

 ∈ C2 , (1.44)

transform under the proper orthochronous Lorentz group as follows

φ
′ (x′)= SΛφ (x) , x′ = Λx, SΛσ

µS−1
Λ

= Λ
µ

ν σ
ν , (1.45)

to ensure the covariance of the Weyl equation (1.43).

1.4.4 Maxwell Equation

In 1861, James Clerk Maxwell published his famous equations that now go by his name.

Maxwell’s equations together with the Lorentz force law form the foundation of classical

electrodynamics. In their 3D vector form Maxwell’s vacuum equations are given by

divB = 0, curlE+
∂B
∂ t

= 0 (1.46)

divE = ρ, curlB− ∂E
∂ t

= j, (1.47)

where we have used Heaviside-Lorentz rationalized units. In this section we show how

Maxwell’s equations can be written in covariant form by following to some extent the

treatment in the quantum field theory textbook by Lewis H. Ryder, [184]. The divergence
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equation in the homogeneous Maxwell equations (1.46) is a statement that there are no

magnetic charges and the second equation known as Faraday’s Law says that a changing

magnetic field induces an electric field. The divergence equation in the pair of inhomoge-

neous Maxwell equations (1.47), known as Gauss’s Law, says that the total charge inside a

closed surface may be obtained by integrating the normal component of E over the surface.

The second equation states that a current or a changing electric field generates a magnetic

field; this equation is Ampere’s Law with an additional time-derivative of E introduced by

Maxwell.

It is convenient to introduce the scalar potential φ and vector potential A that satisfy

B = curlA, E =−∂A
∂ t
−∇φ , (1.48)

and by which the homogeneous Maxwell equations (1.46) are automatically satisfied. Com-

bining these into the four-vector Aµ = (φ ,A) and defining

Fµν =−Fνµ = ∂
µAν −∂

νAµ , (1.49)

one can verify that Fµν has the following block matrix form

Fµν =

 0 −E p

Eq −epqrBr

 (1.50)

or

Fµν =



0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


,

where p,q,r = 1,2,3 and epqr = epqr is the three-dimensional totally anti-symmetric Levi-

Civita symbol with e123 = 1. The electromagnetic field tensor Fµν transforms under

Lorentz transformations as a second rank tensor:

F ′µν = Λ
µ

σ Λ
ν
τ Fστ . (1.51)
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Note also that Maxwell’s equations are invariant under the gauge transformation

Aµ → Aµ +∂ µ χ , where χ is a scalar function, which can be checked using (1.48) or (1.49).

The set of four equations (1.46)-(1.47) can be written as a pair of covariant tensorial equa-

tions; one is written in terms of the electromagnetic field tensor and the other one in terms

of its corresponding dual four-tensor which is defined by

F̃µν =
1
2

eµνστFστ =

 0 −Bp

Bq −epqrEr

 , (1.52)

where µ,ν ,σ ,τ = 0,1,2,3 and eµνστ =−eµνστ is the four-dimensional totally anti-symmetric

Levi-Civita symbol with e0123 = 1. Note that the dual four-tensor F̃µν may be obtained

from Fµν by substituting E→ B and B→−E. In covariant form, Maxwell’s equations are

given by

∂µFµν = jν (1.53)

∂µ F̃µν = 0, (1.54)

where jν = (ρ, j) is the four-current density. The equations (1.53) and (1.54) contain the

inhomogeneous (1.47) and homogeneous (1.46) Maxwell equations, respectively. Note that

in light of the antisymmetry of the Levi-Civita symbol, the equation (1.54) implies

∂
λ Fµν +∂

µFνλ +∂
νFλ µ = 0, (1.55)

It can be checked that this latter equation follows directly from (1.49). The familiar wave

equation for the four-potential Aµ under the choice of the Lorenz gauge, ∂µAµ = 0,

�Aν = jν , (1.56)

is obtained by substituting (1.49) in (1.53).

1.4.5 Proca Equation

The Proca equations were introduced by Alexandru Proca in 1936, [176], to describe

massive spin-1 particles called massive vector bosons. The intermediate force particles
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of the weak interaction, the W and Z bosons, are an example of such particles. Proca’s

equations generalize Maxwell’s equations and are given by

Fµν =−Fνµ = ∂
µAν −∂

νAµ , ∂µFµν +m2Aν = jν , (1.57)

where jν = (ρ, j) is the four-current density. Proca’s equation is not invariant under the

gauge transformation, Aµ → Aµ + ∂ µ χ , where χ is a scalar function, as can be seen from

the mass term in (1.57). This gauge invariance is restored in the massless limit, m→ 0,

by which Proca’s equations are reduced to Maxwell’s equations. In addition, for the Proca

field, the Lorenz gauge condition,

∂µAµ = 0, (1.58)

always holds due to the antisymmetry of the electromagnetic field tensor and the conserva-

tion of four-current, ∂ν jν = 0. In light of this fact, one may combine equations (1.57) to

obtain:

�Aν +m2Aν = jν , (1.59)

where � = ∂µ∂ µ = ∂ 2

∂ t2 −∇2, is the d’Alembert operator. Once again, in the limit m→ 0,

this yields the equation (1.56). The condition (1.58) reduces the degrees of freedom by one

therefore leaving the four component potential Aµ with three independent components,

which one would expect for a massive particle.

1.4.6 Einstein Equation

In 1915, Albert Einstein first published his famous field equations and theory of general

relativity [59]. Einstein’s equation is a nonlinear tensorial equation that relates the curvature

of space-time to the energy-momentum tensor of matter in space-time:

Rµν −
1
2

gµνR = 8πGTµν . (1.60)

Here, gµν is the symmetric metric tensor on a curved spacetime manifold, Tµν is the energy-

momentum tensor, Rµν the Ricci tensor, and R = gµνRµν is the Ricci scalar (the trace of
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the Ricci tensor), for more details see, for example, [36], [37], [157]. Another useful form

of Einstein’s equation is obtained by taking the trace of (1.60) which yields R = −8πGT ,

so that

Rµν = 8πG
(

Tµν −
1
2

T gµν

)
. (1.61)

It follows from this that Einstein’s equation takes the following simple form in vacuum,

when Tµν = 0:

Rµν = 0. (1.62)

Note that in this section g refers to the metric tensor on a curved manifold, whereas η

will refer to the metric tensor ηµν = diag(1,−1,−1,−1) of the flat Minkowski spacetime.

This notation is useful when one wishes to linearize the Einstein equation about the flat

Minkowski spacetime metric – to analyze, for example, the Einstein equation in a weak

gravitational field. By considering only the first-order term in a series expansion of the

metric tensor gµν ,

gµν = ηµν +hµν , (1.63)

one obtains the linearized Einstein equation in vacuum

∂µ∂
σ hσν +∂ν∂

σ hσ µ −∂µ∂νh (1.64)

−∂
2hµν −ηµν

(
∂σ ∂τhστ −∂

2h
)
= 0.

General relativity theory predicts the existence of gravitational waves, which can seen by

solving the linearized Einstein equation, [36]. In fact, the gravitational waves produced

from a binary black hole merger have recently been detected at LIGO, [1]. One should also

consider the massless spin-2 hypothetical particle, called the graviton, that corresponds to

gravitational waves. To describe such a particle a symmetric second rank tensor is needed.

A discussion for a massive spin-2 particle and its relation to the Einstein equation is pro-

vided in Chapter 5.
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Chapter 2

COMPLEX ELECTRODYNAMICS

Although a systematic study of electromagnetic phenomena in media is not possi-

ble without methods of quantum mechanics, statistical physics and kinetics, in practice

a standard mathematical model based on phenomenological Maxwell’s equations provides

a good approximation to many important problems. As is well-known, one should be able

to obtain the electromagnetic laws for continuous media from those for the interaction of

fields and point particles [49], [47], [107], [124], [137], [155], [210]. As a result of the

hard work of several generations of researchers and engineers, the classical electrodynam-

ics, especially in its current complex covariant form, undoubtedly satisfies Dirac’s criteria

of mathematical beauty, being a state of the art mathematical description of nature.

In macroscopic electrodynamics, the volume (mechanical or ponderomotive) forces,

acting on a medium, and the corresponding energy density and energy flux are introduced

with the help of the energy-momentum tensors and differential balance relations [63], [87],

[124], [170], [205], [210]. These forces occur in the equations of motion for a medium or

individual charges and, in principle, they can be experimentally tested [88], [164], [174],

[211] (see also the references therein). But interpretation of the results should depend on

the accepted model of the interaction between the matter and radiation.

In this chapter, an original complex version of Minkowski’s phenomenological elec-

trodynamics (at rest or in a moving medium) is presented without assuming any particular

form of material equations as far as possible. A compact covariant derivation of the energy-

momentum balance equation and the angular momentum balance equations are introduced

and may be important for future research, such as the covariant quantization of radiation

in a non-uniform medium/cavity, as well as for pedagogical purposes. The conservation
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laws and quantization of the electromagnetic field will be discussed in this covariant ap-

proach elsewhere. Lorentz invariance of the corresponding differential balance equations is

emphasized in view of long-standing uncertainties about the electromagnetic stresses and

momentum density, the so-called “Abraham-Minkowski controversy” (see, for example,

[13], [33], [52], [60], [63], [86], [87], [88], [47], [98], [124], [145], [146], [161], [163],

[164], [170], [171], [174], [178], [193], [204], [208], [211], [215], [216], [217] and the

references therein).

The chapter is organized as follows. In sections 2 to 4, we describe the 3D-complex

version of Maxwell’s equations and derive the corresponding differential balance density

laws for the electromagnetic fields. Their covariant extensions are given in sections 5 to

9. The case of a moving medium is discussed in section 10 and complex Lagrangians are

introduced in section 11. Some useful tools are collected in sections (2.12)-(2.14) for the

reader’s benefit.

2.1 Maxwell’s Equations in 3D-Complex Form

Traditionally, the macroscopic Maxwell equations in a fixed frame of reference are

given by

curlE =−1
c

∂B
∂ t

(Faraday) , divB = 0 (no magnetic charge) (2.1)

curlH =
1
c

∂D
∂ t

+
4π

c
jfree (Biot&Savart) , divD = 4πρfree (Coulomb)1. (2.2)

Here, E is the electric field, D is the displacement field; H is the magnetic field, B is the in-

duction field. These equations, which are obtained by averaging of microscopic Maxwell’s

equations in the vacuum, provide a good mathematical description of electromagnetic phe-

nomena in various media, when complemented by the corresponding material equations.

1From this point, we shall write ρfree = ρ and jfree = j. A detailed analysis of electromagnetic laws for

continuous media from those for point particles is given in [47] (statistical description of material media).
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In the simplest case of an isotropic medium at rest, one usually has

D = εE, B = µH, j = σE, (2.3)

where ε is the dielectric constant, µ is the magnetic permeability, and σ describes the con-

ductivity of the medium (see, for example, [3], [14], [18], [33], [34], [49], [58], [62], [81],

[47], [100], [124], [137], [165], [170], [197], [205], [207], [209], [210] for fundamentals

of classical electrodynamics).

Introduction of two complex fields

F = E+ iH, G = D+ iB (2.4)

allows one to rewrite the phenomenological Maxwell equations in the following compact

form
i
c

(
∂G
∂ t

+4πj
)
= curlF, j = j∗, (2.5)

divG = 4πρ, ρ = ρ
∗, (2.6)

where the asterisk stands for complex conjugation (see also [14], [115] and [188]). As we

shall demonstrate, different complex forms of Maxwell’s equations are particularly conve-

nient for study of the corresponding “energy-momentum” balance equations for the elec-

tromagnetic fields in the presence of the “free” charges and currents in a medium.

2.2 Hertz Symmetric Stress Tensor

We begin from a complex 3D-interpretation of the traditional symmetric energy-momentum

tensor [170]. By definition,

Tpq =
1

16π

[
FpG∗q +F∗p Gq +FqG∗p +F∗q Gp (2.7)

− δpq (F ·G∗+F∗ ·G)
]
= Tqp (p,q = 1,2,3)
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and the corresponding “momentum” balance equation,(
ρE+

1
c

j×B
)

p
+

∂

∂ t

[
1

4πc
(D×B)

]
p

(2.8)

=
∂Tpq

∂xq
+

1
16π

[curl(F×G∗+F∗×G)]p

+
1

16π

(
Fq

∂G∗q
∂xp
−Gq

∂F∗q
∂xp

+F∗q
∂Gq

∂xp
−G∗q

∂Fq

∂xp

)
,

can be obtained from Maxwell’s equations (2.5)–(2.6) as a result of elementary but rather

tedious vector calculus calculations usually omitted in textbooks. (We use Einstein sum-

mation convention unless otherwise stated.)

Proof. Indeed, in a 3D-complex form,

∂

∂xq

(
FpG∗q +FqG∗p−δpqF ·G∗

)
(2.9)

=
∂Fp

∂xq
G∗q +Fp

∂G∗q
∂xq

+
∂Fq

∂xq
G∗p +Fq

∂G∗p
∂xq
− ∂

∂xp

(
FqG∗q

)
= Fq

(
∂G∗p
∂xq
−

∂G∗q
∂xp

)
+

(
∂Fp

∂xq
−

∂Fq

∂xp

)
G∗q

+Fp divG∗+G∗p divF

= Fp divG∗− (F× curlG∗)p +G∗p divF−(G∗× curlF)p

in view of an identity [205]:

(A× curlB)p = Aq

(
∂Bq

∂xp
−

∂Bp

∂xq

)
. (2.10)

Taking into account the complex conjugate, we derive

1
2

∂

∂xq

[
FpG∗q +F∗p Gq +FqG∗p +F∗q Gp−δpq (F ·G∗+F∗ ·G)

]
(2.11)

=
1
2
(FdivG∗−G∗× curlF+F∗ divG−G× curlF∗)p

+
1
2
(GdivF∗−F∗× curlG+G∗ divF−F× curlG∗)p

as our first important fact.
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On the other hand, in view of Maxwell’s equations (2.5)–(2.6), one gets

FdivG∗−G∗× curlF (2.12)

= 4πρF+
i
c

(
∂G
∂ t
×G∗+4πj×G∗

)
and, with the help of its complex conjugate,

FdivG∗−G∗× curlF+F∗ divG−G× curlF∗ (2.13)

= 4πρ (F+F∗)+
i
c

∂

∂ t
(G×G∗)+

4πi
c

j×(G∗−G) ,

or

1
2
(FdivG∗−G∗× curlF+F∗ divG−G× curlF∗) (2.14)

= 4π

(
ρE+

1
c

j×B
)
+

1
c

∂

∂ t
(D×B) ,

providing the second important fact. (Up to the constant, the first term in the right-hand

side represents the density of Lorentz’s force acting on the free charges and currents in the

medium under consideration [204], [205].)

In view of (2.14) and (2.11), we can write

4π

(
ρE+

1
c

j×B
)

p
+

1
c

∂

∂ t
(D×B)p (2.15)

=
1
2

∂

∂xq

[
FpG∗q +F∗p Gq +FqG∗p +F∗q Gp−δpq (F ·G∗+F∗ ·G)

]
− 1

2
(GdivF∗−F∗× curlG+G∗ divF−F× curlG∗)p

=
1
4

∂

∂xq

[
FpG∗q +F∗p Gq +FqG∗p +F∗q Gp−δpq (F ·G∗+F∗ ·G)

]
− 1

4
(GdivF∗−F∗× curlG+G∗ divF−F× curlG∗)p

+
1
4
(FdivG∗−G∗× curlF+F∗ divG−G× curlF∗)p

= 4π
∂Tpq

∂xq
+

1
4
(FdivG∗−G∗ divF+F∗ divG−GdivF∗)p

+
1
4
(F× curlG∗−G∗× curlF+F∗× curlG−G× curlF∗)p .
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Finally, in the last two lines, one can utilize the following differential vector calculus iden-

tity,

[AdivB−BdivA+A× curlB−B× curlA− curl(A×B)]p (2.16)

= Aq
∂Bq

∂xp
−Bq

∂Aq

∂xp
,

see (2.123), with A = F, B = G∗ and its complex conjugates, in order to obtain (2.8) and/or

(2.22), which completes the proof. (An independent proof will be given in section 7.)

Derivation of the corresponding differential “energy” balance equation is much simpler.

By (2.5),

F · ∂G∗

∂ t
+F∗ · ∂G

∂ t
+4πj · (F+F∗) =

c
i

div(F×F∗) (2.17)

in view of a familiar vector calculus identity (2.119):

div(A×B) = B · curlA−A · curlB. (2.18)

In a traditional form,

1
4π

(
E · ∂D

∂ t
+H · ∂B

∂ t

)
+ j ·E+div

( c
4π

E×H
)
= 0 (2.19)

(see, for example, [49], [205]), where one can substitute

E · ∂D
∂ t

+H · ∂B
∂ t

=
1
2

∂

∂ t
(E ·D+H ·B) (2.20)

+
1
2

(
E · ∂D

∂ t
−D · ∂E

∂ t
+H · ∂B

∂ t
−B · ∂H

∂ t

)
.

As a result, 3D-differential “energy-momentum” balance equations are given by

∂

∂ t

(
E ·D+H ·B

8π

)
+div

( c
4π

E×H
)
+ j ·E (2.21)

+
1

8π

(
E · ∂D

∂ t
−D · ∂E

∂ t
+H · ∂B

∂ t
−B · ∂H

∂ t

)
= 0
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and

− ∂

∂ t

[
1

4πc
(D×B)

]
p
+

∂Tpq

∂xq
−
(

ρE+
1
c

j×B
)

p
(2.22)

+
1

8π
[curl(E×D+H×B)]p

+
1

8π

(
E · ∂D

∂xp
−D · ∂E

∂xp
+H · ∂B

∂xp
−B · ∂H

∂xp

)
= 0,

respectively (see also [88], [145]). The real form of the symmetric stress tensor (2.7),

namely,

Tpq =
1

8π

[
EpDq +EqDp +HpBq +HqBp (2.23)

−δpq (E ·D+H ·B)
]

(p,q = 1,2,3) ,

is due to Hertz [170].

Equations (2.21)–(2.22) are related to a fundamental concept of conservation of me-

chanical and electromagnetic energy and momentum. Here, these balance conditions are

presented in differential forms in terms of the corresponding local field densities. They can

be integrated over a given volume in R3 in order to obtain, in a traditional way, the corre-

sponding conservation laws of the electromagnetic fields (see, for example, [122], [124],

[207], [209], [210]). These laws made it necessary to ascribe a definite linear momentum

and energy to the field of an electromagnetic wave, which can be observed, for example, as

the light pressure.

Note. At this point, the Lorentz invariance of these differential balance equations is not

obvious in our 3D-analysis. But one can introduce the four-vector xµ = (ct,r) and try to

match (2.21)–(2.22) with the expression,

∂

∂xν
T ν

µ =
∂T 0

µ

∂x0
+

∂T q
µ

∂xq
(µ,ν = 0,1,2,3; p,q = 1,2,3) , (2.24)

as an initial step, in order to guess the corresponding four-tensor form. An independent

covariant derivation will be given in section 7.
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Note. In an isotropic nonhomogeneous variable medium (without dispersion and/or com-

pression), when D = ε (r, t)E and B = µ (r, t)H, the “ponderomotive forces” in (2.21) and

(2.22) take the form [205]:

E · ∂D
∂xν
−D · ∂E

∂xν
+H · ∂B

∂xν
−B · ∂H

∂xν
(2.25)

=
∂ε

∂xν
E2 +

∂ µ

∂xν
H2 =


1
c

(
∂ε

∂ t
E2 +

∂ µ

∂ t
H2
)

E2∇ε +H2∇µ

 ,

which may be interpreted as a four-vector “energy-force” acting from an inhomogeneous

and time-variable medium. Its covariance is analyzed in section 7.

2.3 “Angular Momentum” Balance

The 3D-“linear momentum” differential balance equation (2.22), can be rewritten in a

more compact form,

∂Tpq

∂xq
= Fp +

∂Gp

∂ t
,

−→
G =

1
4πc

(D×B) , (2.26)

with the help of the Hertz symmetric stress tensor Tpq = Tqp defined by (2.23). A “net

force” is given by

Fp =

(
ρE+

1
c

j×B
)

p
− 1

8π
[curl(E×D+H×B)]p (2.27)

− 1
8π

(
E · ∂D

∂xp
−D · ∂E

∂xp
+H · ∂B

∂xp
−B · ∂H

∂xp

)
.

In this notation, we state the corresponding differential balance equation as follows

∂Mpq

∂xq
= Tp +

∂Lp

∂ t
,

−→
L = r×

−→
G ,

−→
T = r×

−→
F , (2.28)

where the “field angular momentum density” is defined by

−→
L =

1
4πc

r×(D×B) (2.29)
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and the “flux of angular momentum” is described by the following tensor [100]:

Mpq = eprsxrTsq. (2.30)

(Here, epqr is the totally anti-symmetric Levi-Civita symbol with e123 =+1). An elemen-

tary example of conservation of the total angular momentum is discussed in [205].

Proof. Indeed, in view of (2.26), one can write

∂Mpq

∂xq
= eprsTsr + eprsxr

∂Tsq

∂xq
(2.31)

= epqrxqFr +
∂

∂ t

(
epqrxqGr

)
,

which completes the proof.

Note. Once again, in 3D-form, the Lorentz invariance of this differential balance equation

for the local densities is not obvious. An independent covariant derivation will be given in

section 8.

2.4 Complex Covariant Form of Macroscopic Maxwell’s Equations

With the help of complex fields F=E+ iH and G=D+ iB, we introduce the following

anti-symmetric four-tensor,

Qµν =−Qνµ =



0 −G1 −G2 −G3

G1 0 iF3 −iF2

G2 −iF3 0 iF1

G3 iF2 −iF1 0


(2.32)

and use the standard four-vectors, xµ =(ct,r) and jµ =(cρ, j) for contravariant coordinates

and current, respectively.

Maxwell’s equations then take the covariant form [115], [128]:

∂

∂xν
Qµν =− ∂

∂xν
Qνµ =−4π

c
jµ (2.33)
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with summation over two repeated indices. Indeed, in block form, we have

∂Qµν

∂xν
=

∂

∂xν

 0 −Gq

Gp iepqrFr

=

 −divG =−4πρ

1
c

∂G
∂ t

+ icurlF =−4π

c
j

 , (2.34)

which verifies this fact. The continuity equation,

0≡ ∂ 2Qµν

∂xµ∂xν
=−4π

c
∂ jµ

∂xµ
, (2.35)

or in the 3D-form,
∂ρ

∂ t
+div j = 0, (2.36)

describes conservation of the electrical charge. The latter equation can also be derived in

the complex 3D-form from (2.5)–(2.6).

Note. In vacuum, when G = F and ρ = 0, j = 0, one can write

Qµν = Fµν − i
2

eµνστFστ , gµσ gντQστ = Qµν . (2.37)

As a result, the following self-duality property holds

eµνστQστ = 2iQµν , 2iQµν = eµνστQστ (2.38)

(see, for example, [27], [117] and section (2.13)). Two covariant forms of Maxwell’s equa-

tions are given by

∂νQµν = 0, ∂
νQµν = 0, (2.39)

where ∂ ν = gνµ∂µ , ∂µ = ∂/∂xµ and gµν = gµν =diag(1,−1,−1,−1) . The last equation

can be derived from a more general equation, involving a rank three tensor,

gααeαµντ∂
νQτβ −gααeβ µντ∂

νQτα =−i∂µQαβ (2.40)

(α,β = 0,1,2,3 are fixed; no summation is assumed over these two indices), which is

related to the Pauli-Lubanski vector from the representation theory of the Poincaré group

[115]. Different spinor forms of Maxwell’s equations are analyzed in [117] (see also the

references therein).

29



2.5 Dual Electromagnetic Field Tensors

Two dual anti-symmetric field tensors of complex fields, F = E+ iH and G = D+ iB,

are given by

Qµν =



0 −G1 −G2 −G3

G1 0 iF3 −iF2

G2 −iF3 0 iF1

G3 iF2 −iF1 0


= Rµν + iSµν (2.41)

=



0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0


+ i



0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


and

Pµν =



0 F1 F2 F3

−F1 0 iG3 −iG2

−F2 −iG3 0 iG1

−F3 iG2 −iG1 0


= Fµν + iGµν (2.42)

=



0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


+ i



0 H1 H2 H3

−H1 0 D3 −D2

−H2 −D3 0 D1

−H3 D2 −D1 0


.

The real part of the latter represents the standard electromagnetic field tensor in a medium

[14], [170], [210]. As for the imaginary part of (2.41), which, ironically, Pauli called an

“artificiality” in view of its non-standard behavior under spatial inversion [170], the use of

complex conjugation restores this important symmetry for our complex field tensors.
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The dual tensor identities are given by

eµνστQστ = 2iPµν , 2iQµν = eµνστPστ . (2.43)

Here eµνστ =−eµνστ and e0123 =+1 is the Levi-Civita four-symbol [82]. Then

6i
∂Qµν

∂xν
= eµνλσ

(
∂Pλσ

∂xν
+

∂Pνλ

∂xσ
+

∂Pσν

∂xλ

)
(2.44)

and both pairs of Maxwell’s equations can also be presented in the form [115]

∂Pµν

∂xλ
+

∂Pνλ

∂xµ
+

∂Pλ µ

∂xν
=−4πi

c
eµνλσ jσ (2.45)

in addition to the one given above

∂Qµν

∂xν
=−4π

c
jµ . (2.46)

The real part of the first equation traditionally represents the first (homogeneous) pair of

Maxwell’s equation and the real part of the second one gives the remaining pair. In our

approach both pairs of Maxwell’s equations appear together (see also [14], [27], [26], [128],

and [206] for the case in vacuum). Moreover, a generalization to complex-valued four-

current may naturally represent magnetic charge and magnetic current not yet observed in

nature [188].

An important cofactor matrix identity,

PµνQνλ = (F ·G)δ
λ
µ =

1
4
(PστQτσ )δ

λ
µ , (2.47)

was originally established, in a general form, by Minkowski [154]. Once again, the dual

tensors are given by

Pµν =

 0 Fq

−Fp iepqrGr

 , Qµν =

 0 −Gq

Gp iepqrFr

 , (2.48)

in block form. A complete list of relevant tensor and matrix identities is given in section

(2.13).
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2.6 Covariant Derivation of Energy-Momentum Balance Equations

2.6.1 Preliminaries

As has been announced in [115] (see also [117]), the covariant form of the differential

balance equations can be presented as follows

∂

∂xν

[
1

16π

(
P∗

µλ
Qλν +Pµλ

∗
Qλν

)]
(2.49)

+
1

32π

P∗στ

∂Qτσ

∂xµ
+Pστ

∂

∗
Qτσ

∂xµ


=−1

c
Fµλ jλ =

 −j ·E/c

ρE+ j×B/c

 .

In our complex form, when F = E+ iH and G = D+ iB, the energy-momentum tensor is

given by

16πTµ
ν = P∗

µλ
Qλν +Pµλ

∗
Qλν (2.50)

=

 F ·G∗+F∗ ·G 2i(F×F∗)q

−2i(G×G∗)p 2
(
FpG∗q +F∗p Gq

)
−δpq (F ·G∗+F∗ ·G)

 .

Here, we point out for the reader’s convenience that

i(F×F∗) = 2(E×H) , i(G×G∗) = 2(D×B) , (2.51)

F ·G∗+F∗ ·G = 2(E ·D+H ·B)

and, in real form,

4πTµ
ν =

 (E ·D+H ·B)/2 (E×H)q

−(D×B)p EpDq +HpBq−δpq (E ·D+H ·B)/2

 . (2.52)
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The covariant form of the differential balance equation allows one to clarify the mean-

ings of different energy-momentum tensors. For instance, it is worth noting that the non-

symmetric Maxwell and Heaviside form of the 3D-stress tensor [170],

T̃pq =
1

4π

(
EpDq +HpBq

)
− 1

8π
δpq (E ·D+H ·B) , (2.53)

appears here in the corresponding “momentum” balance equation [205]:

− ∂

∂ t

[
1

4πc
(D×B)

]
p
+

∂ T̃pq

∂xq
−
(

ρE+
1
c

j×B
)

p
(2.54)

+
1

8π

(
E · ∂D

∂xp
−D · ∂E

∂xp
+H · ∂B

∂xp
−B · ∂H

∂xp

)
= 0.

At the same time, in view of (2.22), use of the form (2.53) differs from Hertz’s symmetric

tensors in (2.7) and (2.23) only in the case of anisotropic media (crystals) [170], [204].

Indeed,

8π
∂

∂xq

(
T̃pq−Tpq

)
= [curl(E×D+H×B)]p . (2.55)

Moreover, with the help of elementary identities,

[curl(A×B)]p =
∂

∂xq

(
ApBq−AqBp

)
(2.56)

and

2
∂

∂xq

(
ApBq

)
=

∂

∂xq

(
ApBq +AqBp

)
+[curl(A×B)]p , (2.57)

one can transform the latter balance equation into its “symmetric” form, which provides an

independent proof of (2.22).

2.6.2 Proof

The fact that Maxwell’s equations can be combined in a simple form using a complex

second rank (anti-symmetric) tensor allows us to utilize the standard Sturm-Liouville type
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argument in order to establish the energy-momentum differential balance equations in co-

variant form. Indeed, by adding matrix equation

P∗
µλ

(
∂Qλν

∂xν
=−4π

c
jλ

)
(2.58)

and its complex conjugate

Pµλ

∂

∗
Qλν

∂xν
=−4π

c
jλ

 (2.59)

one gets

P∗
µλ

∂Qλν

∂xν
+Pµλ

∂

∗
Qλν

∂xν
=−8π

c
Fµλ jλ . (2.60)

A simple decomposition,

f
∂g
∂x

=
1
2

∂

∂x
( f g)+

1
2

(
f

∂g
∂x
− ∂ f

∂x
g
)

(2.61)

with f = P∗
µλ

and g = Qλν (and their complex conjugates), results in

∂

∂xν

[
1

16π

(
P∗

µλ
Qλν +Pµλ

∗
Qλν

)]
(2.62)

+
1

16π

[(
P∗

µλ

∂Qλν

∂xν
−

∂Pµλ

∂xν

∗
Qλν

)
+(c.c.)

]
=−1

c
Fµλ jλ .

By a direct substitution, one can verify that

Zµ = P∗
µλ

∂Qλν

∂xν
−

∂Pµλ

∂xν

∗
Qλν =

1
2

P∗στ

∂Qτσ

∂xµ
(2.63)

=−1
2

∗
Qστ ∂Pτσ

∂xµ
= F∗ · ∂G

∂xµ
−G∗ · ∂F

∂xµ
.

(An independent covariant proof of these identities is given in section (2.14)) Finally, in-

troducing

16πXµ = Zµ +Z∗µ , (2.64)

we obtain (2.49) with the explicitly covariant expression for the ponderomotive force (2.25),

which completes the proof.
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As a result, the covariant energy-momentum balance equation is given by

∂

∂xν
Tµ

ν +Xµ =−1
c

Fµλ jλ , (2.65)

in a compact form. If these differential equations are written for a stationary medium,

then the corresponding equations for moving bodies are uniquely determined, since the

components of a tensor in any inertial coordinate system can be derived by a proper Lorentz

transformation [170].

2.7 Covariant Derivation of Angular Momentum Balance

By definition, xµ = gµνxν =(ct,−r) and Tµλ =Tµ
νgνλ , where gµν =diag(1,−1,−1,−1)

= ∂xµ/∂xν . In view of (2.65), we derive

∂

∂xν

(
xλ Tµ

ν − xµTλ
ν
)
=
(
Tµλ −Tλ µ

)
(2.66)

−
(
xλ Xµ − xµXλ

)
− 1

c

(
xλ Fµν − xµFλν

)
jν

as a required differential balance equation.

With the help of familiar dual relations (2.127), one can get another covariant form of

the angular momentum balance equation:

∂

∂xν

(
eµλστxσ Tτ

ν

)
+ eµλστTστ (2.67)

+ eµλστxσ Xτ +
1
c

eµλστxσ Fτν jν = 0µλ .

In 3D-form, the latter relation can be reduced to (2.28)–(2.30).

Indeed, when µ = 0 and λ = p = 1,2,3, one gets

− 1
4πc

∂

∂ t

[
epqrxq (D×B)r

]
+

∂

∂xs

(
epqrxqT̃rs

)
(2.68)

+ epqrT̃qr + epqrxq (Xr +Yr) = 0,

where−Y= ρE+j×B/c is the familiar Lorentz force. Substitution, T̃rs =Trs+
(

T̃rs−Trs

)
,

results in (2.28) in view of identity (2.55). The remaining cases, when µ,ν = p,q = 1,2,3,
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can be analyzed in a similar fashion. In 3D-form, the corresponding equations can be

reduced to (2.21) and (2.54). Details are left to the reader.

Thus the angular momentum law has the form of a local balance equation, not a con-

servation law, since in general the energy-momentum tensor will not be symmetric [47].

Due to the asymmetry of this energy-momentum tensor a torque, for instance, may occur,

which cannot be compensated for by a change in the electromagnetic angular momentum.

Although this result may perhaps seem peculiar it is not in contradiction with experiment

according to [170].

2.8 Transformation Laws of Complex Electromagnetic Fields

Let v be a constant real velocity vector representing uniform motion of one frame of

reference with respect to another one. Let us consider the following orthogonal decompo-

sitions,

F = F‖+F⊥, G = G‖+G⊥, (2.69)

such that our complex vectors
{

F‖,G‖
}

are collinear with the velocity vector v and {F⊥,G⊥}

are perpendicular to it (Figure 1). The Lorentz transformation of electric and magnetic

fields {E,D,H,B} take the following complex form

F′‖ = F‖, G′‖ = G‖ (2.70)

and

F′⊥ =
F⊥−

i
c
(v×G)√

1− v2/c2
, G′⊥ =

G⊥−
i
c
(v×F)√

1− v2/c2
. (2.71)

Although this transformation was found by Lorentz, it was Minkowski who realized that

this is the law of transformation of the second rank anti-symmetric four-tensors [138],

[154]; a brief historical overview is given in [170].) This complex 3D-form of the Lorentz

transformation of electric and magnetic fields was known to Minkowski (1908), but appar-
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ently only in vacuum, when G = F (see also [207]). Here, in the same notation [170],

r′‖ =
r‖−vt√
1− v2/c2

, r′⊥ = r⊥, t ′ =
t− (v · r)/c2√

1− v2/c2
, (2.72)

for the reader’s convenience. Equations (2.72) can be rewritten as follows

r′ = r+
[
(γ−1)

v · r
v2 − γt

]
v, t ′ = γ

(
t− v · r

c2

)
, (2.73)

where γ =
(
1− v2/c2)−1/2

.

In a similar fashion,

F′ = γ

(
F− i

c
v×G

)
− (γ−1)

v ·F
v2 v (2.74)

and

G′ = γ

(
G− i

c
v×F

)
− (γ−1)

v ·G
v2 v, (2.75)

for the complex electromagnetic fields.

Figure 2.1: Complex electromagnetic fields decomposition.

In complex four-tensor form,

Q′ µν (x′)= Λ
µ

σ Λ
ν
τQστ (x) , x′ = Λx. (2.76)

Although Minkowski considered the transformation of electric and magnetic fields in a

complex 3D-vector form, see Eqs. (8)–(9) and (15) in [154] (or Eqs. (25.5)–(25.6) in

[122]), he seems never to have combined the corresponding four-tensors into the com-

plex forms (2.41)–(2.42). In the second article [155], Max Born, who used Minkowski’s

notes, didn’t mention the complex fields. As a result, the complex field tensor seems
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only to have appeared, for the first time, in [128] (see also [206]). The complex identity,

F ·G = invariant under the similarity transformation, follows from Minkowski’s determi-

nant relations (2.146)–(2.148).

Figure 2.2: Example of moving frame velocity.

Example. Let {ek}3
k=1 be an orthonormal basis in R3 . We choose v = ve1 and write

x′µ = Λ
µ

νxν with

Λ
µ

ν =



γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1


, β =

v
c
, γ =

1√
1−β 2

(2.77)

for the corresponding Lorentz boost (Figure 2). In view of (2.76), by matrix multiplication
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one gets

γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1





0 −G1 −G2 −G3

G1 0 iF3 −iF2

G2 −iF3 0 iF1

G3 iF2 −iF1 0





γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



=



0 −G1 −γG2− iβγF3 −γG3 + iβγF2

G1 0 βγG2 + iγF3 βγG3− iγF2

γG2 + iβγF3 −βγG2− iγF3 0 iF1

γG3− iβγF2 −βγG3 + iγF2 −iF1 0


. (2.78)

Thus G′1 = G1 and

G′2 = γG2 + iβγF3 =
G2 + i(v/c)F3√

1− v2/c2
=

G2−
i
c
(v×F)2√

1− v2/c2
, (2.79)

G′3 = γG3− iβγF2 =
G3− i(v/c)F2√

1− v2/c2
=

G3−
i
c
(v×F)3√

1− v2/c2
.

In a similar fashion, F ′1 = F1 and

F ′2 = γF2 + iβγG3 =
F2−

i
c
(v×G)2√

1− v2/c2
, (2.80)

F ′3 = γF3− iβγG2 =
F3−

i
c
(v×G)3√

1− v2/c2
.

The latter relations are in agreement with the field transformations (2.70)–(2.71).
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In block form, one gets

F ′1

F ′2

G′3

G′2

F ′3

G′1


=



1 0 0 0 0 0

0 cos(iθ) sin(iθ) 0 0 0

0 −sin(iθ) cos(iθ) 0 0 0

0 0 0 cos(iθ) sin(iθ) 0

0 0 0 −sin(iθ) cos(iθ) 0

0 0 0 0 0 1





F1

F2

G3

G2

F3

G1


, (2.81)

where, by definition,

cos(iθ) = γ =
1√

1−β 2
, sin(iθ) = iβγ =

iβ√
1−β 2

, β =
v
c
. (2.82)

As a result, the transformation law of the complex electromagnetic fields {F,G} under

the Lorentz boost can be thought of as a complex rotation in C6 , corresponding to a re-

ducible representation of the one-parameter subgroup of SO(3,C) . (Cyclic permutation of

the spatial indices cover the two remaining cases; see also [207].)

2.9 Material Equations, Potentials, and Energy-Momentum Tensor for Moving Isotropic

Media

Electromagnetic phenomena in moving media are important in relativistic astrophysics,

the study of accelerated plasma clusters and high-energy electron beams [33], [34], [78],

[210].

2.9.1 Material Equations

Minkowski’s field- and connecting-equations [154], [155] were derived from the corre-

sponding laws for the bodies at rest by means of a Lorentz transformation (see [33], [49],

[47], [124], [161], [170], [210]). Explicitly covariant forms, which are applicable both in

the rest frame and for moving media, are analyzed in [33], [34], [47], [101], [102], [161],

40



[166], [170], [182], [183], [207], [210] (see also the references therein). In standard nota-

tion,

β = v/c, γ =
(
1−β

2)−1/2
, v = |v| , κ = εµ−1, (2.83)

one can write [33], [34], [49], [210]:

D = εE+
κγ2

µ

[
β

2E− v
c2 (v ·E)+

1
c
(v×B)

]
, (2.84)

H =
1
µ

B+
κγ2

µ

[
−β

2B+
v
c2 (v ·B)+

1
c
(v×E)

]
.

In covariant form, these relations are given by

Rλν = ε
λνστFστ =

1
2

(
ε

λνστ − ε
λντσ

)
Fστ (2.85)

=
1
4

(
ε

λνστ − ε
λντσ + ε

νλτσ − ε
νλστ

)
Fστ

(see [32], [33], [34], [101], [102], [182], [183], [210] and the references therein). Here,

ε
λνστ =

1
µ

(
gλσ +κuλ uσ

)
(gντ +κuνuτ) = ε

νλτσ (2.86)

is the four-tensor of electric and magnetic permeabilities and

uλ = (γ,γv/c) , uλ uλ = 1 (2.87)

is the four-velocity of the medium ([182], [183], a computer algebra verification of these

relations is given in [127]). In a complex covariant form,(
Qµν +

∗
Qµν

)
= ε

µνστ

(
Pστ +

∗
Pστ

)
. (2.88)

In view of (2.85) and (2.128)–(2.129), we get

Qµν =

(
ε

µνστ − i
2

eµνστ

)
Fστ , Pµν =

(
δ

λ
µ δ

ρ

ν −
i
2

eµνστε
στλρ

)
Fλρ , (2.89)

in terms of the real-valued electromagnetic field tensor.
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2.9.2 Potentials

In practice, one can choose

Fστ =
∂Aτ

∂xσ
− ∂Aσ

∂xτ
, (2.90)

for the real-valued four-vector potential Aλ (x) . Then

∂νQλν = ε
λνστ

∂ν (∂σ Aτ −∂τAσ )−
i
2

eλνστ
∂ν (∂σ Aτ −∂τAσ )

=
1
µ

(
gλσ +κuλ uσ

)
(gντ +κuνuτ)∂ν (∂σ Aτ −∂τAσ )

by (2.86). Substitution into Maxwell’s equations (2.46) or (2.45) results in(
gλσ +κuλ uσ

){
−
[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Aσ (2.91)

+∂σ (∂ τAτ +κuνuτ
∂νAτ) }=−

4πµ

c
jλ ,

where −∂ τ∂τ = −gστ∂σ ∂τ = ∆− (∂/c∂ t)2 is the D’Alembert operator. In view of an

inverse matrix identity,(
gλρ −

κ

1+κ
uλ uρ

)(
gλσ +κuλ uσ

)
= δ

σ
ρ , (2.92)

the latter equations take the form2

[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Aσ −∂σ (∂ τAτ +κuνuτ
∂νAτ) (2.93)

=
4πµ

c

(
gσλ −

κ

1+κ
uσ uλ

)
jλ .

Subject to the subsidiary condition,

∂
τAτ +κuνuτ

∂νAτ = (gντ +κuνuτ)∂νAτ = 0, (2.94)

these equations were studied in detail for the sake of development of the phenomenological

classical and quantum electrodynamics in a moving medium (see [31], [32], [33], [34],
2Equations (2.90) and (2.93), together with the gauge condition (2.94), may be considered as the funda-

mentals of the theory [101]. Our complex fields are given by (2.89).
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[166], [182], [177], [183], [210] and the references therein). In particular, Green’s functions

of the photon in a moving medium was studied in [101], [182], [177] (with applications to

quantum electrodynamics).

2.9.3 Hertz’s Tensor and Vectors

We follow [33], [34], [210] with somewhat different details. The substitution,

Aµ (x) =
(

κ

1+κ
uµuλ −δ

µ

λ

)
∂σ Zλσ (x) (2.95)

(a generalization of Hertz’s potentials for a moving medium [33], [210]), into the gauge

condition (2.94) results in Zλσ =−Zσλ , in view of(
gνµ +κuνuµ

)
∂

νAµ

=
(
gνµ +κuνuµ

)( κ

1+κ
uµuλ −δ

µ

λ

)
∂

ν
∂σ Zλσ

=−gνλ ∂
ν
∂σ Zλσ =−∂λ ∂σ Zλσ ≡ 0.

Then, equations (2.93) take the form[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

∂σ Zλσ =−4πµ

c
jλ . (2.96)

Indeed, the right-hand side of (2.93) is given by[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Aσ =
[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

gσ µAµ

=
[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

gσ µ

(
κ

1+κ
uµuλ −δ

µ

λ

)
∂σ Zλσ

=
[
∂

τ
∂τ +κ (uτ

∂τ)
2
](

κ

1+κ
uσ uλ −gσλ

)
∂σ Zλσ

=
4πµ

c

(
gσλ −

κ

1+κ
uσ uλ

)
jλ

and the matrix is invertible.

Finally, with the help of the standard substitution,

jλ = c∂σ pλσ , pλσ =−pσλ (2.97)
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(in view of ∂λ jλ = c∂λ ∂σ pλσ ≡ 0), we arrive at[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Zλν =−4π pλν . (2.98)

Here, by definition,

pλν =



0 p1 p2 p3

−p1 0 −m3 m2

−p2 m3 0 −m1

−p3 −m2 m1 0


(2.99)

is an anti-symmetric four-tensor [33], [34], [210]. The “electric” and “magnetic” Hertz

vectors, Z(e) and Z(m), are also introduced in terms of a single four-tensor,

Zλν =



0 Z(e)
1 Z(e)

2 Z(e)
3

−Z(e)
1 0 −Z(m)

3 Z(m)
2

−Z(e)
2 Z(m)

3 0 −Z(m)
1

−Z(e)
3 −Z(m)

2 Z(m)
1 0


. (2.100)

In view of (2.95), for the four-vector potential, Aλ = (ϕ,A) , we obtain

ϕ =−
(

1− κγ2

1+κ

)
∇ ·Z(e)+

κγ2

(1+κ)c
v ·

(
∂Z(e)

c∂ t
+∇×Z(m)

)
(2.101)

and

A =
∂Z(e)

c∂ t
+∇×Z(m) (2.102)

+
κγ2v

(1+κ)c2

[
c∇ ·Z(e)+

∂

c∂ t

(
v ·Z(e)

)
+v ·

(
∇×Z(m)

)]
.

Then, equations (2.98) take the form[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Z(e) =−4πµp,
[
∂

τ
∂τ +κ (uτ

∂τ)
2
]

Z(m) =−4πµm (2.103)

and, for the four-current, jλ = (cρ, j) , one gets

ρ =−∇ ·p, j =
∂p
∂ t

+ c∇×m (2.104)
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(see [33], [34], [210] for more details).

The Hertz vector and tensor potentials, for a moving medium and at rest, were utilized

in [33], [34], [67], [81], [106], [205], [210], [218] (see also the references therein). Many

classical problems of radiation and propagation can be consistently solved by using these

potentials.

2.9.4 Energy-Momentum Tensor

In the case of the covariant version of the energy-momentum tensor given by (2.50),

the differential balance equations under consideration are independent of the particular

choice of the frame of reference. Therefore, our relations (2.89) are useful for derivation of

the expressions for the energy-momentum tensor and the ponderomotive force for moving

bodies from those for bodies at rest which were extensively studied in the literature. For

example, one gets

4πTµ
ν = Fµλ ε

λνστFστ +
1
4

δ
ν
µ Fστε

στλρFλρ (2.105)

with the help of (2.85) and (2.137).

2.10 Real vs Complex Lagrangians

In modern presentations of the classical and quantum field theories, the Lagrangian

approach is usually utilized.
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2.10.1 Complex Forms

We introduce two quadratic “Lagrangian” densities

L0 = L ∗
0 =

1
2

(
PστQτσ +P∗στ

∗
Qτσ

)
(2.106)

=
i
4

eστκρ

(
PστPκρ −P∗στP∗κρ

)
= FστRτσ −GστSτσ = 2FστRτσ

= 4(E ·D−H ·B)

and

L1 =−L ∗
1 = P∗στQτσ =

1
2

(
P∗στQτσ −Pστ

∗
Qτσ

)
(2.107)

=
i
2

eστκρPστP∗κρ = 4i(E ·B−H ·D) .

Then, by formal differentiation,

∂L0

∂Pαβ

= Qβα ,
∂L0

∂P∗
αβ

=
∗

Qβα (2.108)

and
∂L1

∂P∗
αβ

= Qβα ,
∂L ∗

1
∂Pαβ

=
∗

Qβα (2.109)

in view of (2.130).

The complex covariant Maxwell equations (2.33) take the forms

∂

∂xν

(
∂L0

∂Pνµ

)
=−4π

c
jµ ,

∂

∂xν

(
∂L1

∂Pνµ

)
=

4π

c
jµ (2.110)

and the covariant energy-momentum balance relations (2.49) are given by

∂

∂xν

[
1

16π

(
P∗

µλ

∂L0

∂Pνλ

+Pµλ

∂L0

∂P∗
νλ

)]
(2.111)

+
1

32π

[
P∗στ

∂

∂xµ

(
∂L0

∂Pστ

)
+Pστ

∂

∂xµ

(
∂L0

∂P∗στ

)]
=−1

c
Fµλ jλ
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and

∂

∂xν

[
1

16π

(
Pµλ

∂L1

∂Pνλ

+P∗
µλ

∂L ∗
1

∂Pνλ

)]
(2.112)

+
1

32π

[
Pστ

∂

∂xµ

(
∂L1

∂Pστ

)
+P∗στ

∂

∂xµ

(
∂L ∗

1
∂P∗στ

)]
=

1
c

Fµλ jλ

in terms of the complex Lagrangians under consideration, respectively.

Finally, with the help of the following densities,

L0 = L0−
4π

c
jνAν , L1 = L1 +

4π

c
jνAν , (2.113)

one can derive analogs of the Euler-Lagrange equations for electromagnetic fields in media:

∂

∂xν

(
∂L0,1

∂Pνµ

)
−

∂L0,1

∂Aµ

= 0. (2.114)

In the case of a moving isotropic medium, a relation between Pνµ and Aµ is given by our

equations (2.89)–(2.90).

2.10.2 Real Form

Taking the real and imaginary parts, Maxwell’s equations (2.46) can be written as fol-

lows

∂νRµν =−4π

c
jµ , ∂νSµν = 0. (2.115)

Here,

−6∂νSµν = eµνλσ (∂νFλσ +∂σ Fνλ +∂λ Fσν)≡ 0,

with the help of (2.44) and (2.90). Thus the second set of equations is automatically satis-

fied when we introduce the four-vector potential. For the inhomogeneous pair of Maxwell’s

equations, the Lagrangian density is given by

L =
1
4

FστRτσ − 4π

c
jσ Aσ (2.116)

=
1
4

Fστε
τσλρFλρ −

4π

c
jσ Aσ ,
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in view of (2.85). Then, for “conjugate momenta” to the four-potential field Aµ , one gets

∂L
∂
(
∂νAµ

) = ∂L
∂Fστ

∂Fστ

∂
(
∂νAµ

) = Rµν (2.117)

and the corresponding Euler-Lagrange equations take a familiar form

∂ν

(
∂L

∂
(
∂νAµ

))− ∂L
∂Aµ

= 0. (2.118)

The latter equation can also be derived with the help of the least action principle [170],

[207], [209]. The corresponding Hamiltonian and quantization are discussed in [94], [101],

[182] among other classical accounts.

In conclusion, it is worth noting the role of complex fields in quantum electrodynam-

ics, quadratic invariants and quantization (see, for instance, [4], [27], [26], [54], [101],

[102], [110], [114], [182], [177], [183], [209], [223]). The classical and quantum theory of

Cherenkov radiation is reviewed in [5], [30], [31], [87], [204]. For paraxial approximation

in optics, see [81], [112], [143], [142] and the references therein. Maxwell’s equations in

the gravitational field are discussed in [36] [82]. One may hope that our detailed mathe-

matical consideration of several aspects of macroscopic electrodynamics will be useful for

future investigations and pedagogy.

2.11 Formulas from Vector Calculus

Among useful differential relations are

∇ · (A×B) = B · (∇×A)−A · (∇×B) . (2.119)

∇ · ( f A) = (∇ f ) ·A+ f (∇ ·A) . (2.120)

∇× ( f A) = (∇ f )×A+ f (∇×A) . (2.121)

A · (∇× ( f ∇×B))−B · (∇× ( f ∇×A)) (2.122)

= ∇ · ( f (B× (∇×A)−A× (∇×B))) .
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A(∇ ·B)−B(∇ ·A)+A× (∇×B)−B× (∇×A) (2.123)

−∇× (A×B) =
3

∑
α=1

A2
α∇

(
Bα

Aα

)
=−

3

∑
α=1

B2
α∇

(
Aα

Bα

)
.

(See also [3], [188] and [209].)

2.12 Dual Tensor Identities

In this chapter, eµνστ = −eµνστ and e0123 = +1 is the Levi-Civita four-symbol [82]

with familiar contractions:

eµνστeµκλρ =−

∣∣∣∣∣∣∣∣∣∣
δ ν

κ δ ν

λ
δ ν

ρ

δ σ
κ δ σ

λ
δ σ

ρ

δ τ
κ δ τ

λ
δ τ

ρ

∣∣∣∣∣∣∣∣∣∣
, (2.124)

eµνστeµνλρ =−2

∣∣∣∣∣∣∣
δ σ

λ
δ σ

ρ

δ τ

λ
δ τ

ρ

∣∣∣∣∣∣∣=−2
(

δ
σ

λ
δ

τ
ρ −δ

σ
ρ δ

τ

λ

)
, (2.125)

eµνστeµνσρ =−6δ
τ
ρ , eµνστeµνσρ =−24. (2.126)

Dual second rank four-tensor identities are given by [82]:

eµνστAστ = 2Bµν , eµνστBστ = Aνµ −Aµν . (2.127)

In particular,

Qµν = Rµν + iSµν = Rµν − i
2

eµνστFστ , (2.128)

Pµν = Fµν + iGµν = Fµν −
i
2

eµνστRστ . (2.129)

eµνστQστ = 2iPµν , 2iQµν = eµνστPστ . (2.130)

2Rµν = eµνστGστ , −2Sµν = eµνστFστ . (2.131)

2Gµν =−eµνστRστ , 2Fµν = eµνστSστ . (2.132)
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PµνQµν = 2FµνRµν − i
2
(
eµνστFµνFστ + eµνστRµνRστ

)
. (2.133)

By direct calculation,

FµνRµν = 2(H ·B−E ·D) , (2.134)

eµνστFµνFστ = 8E ·B, eµνστRµνRστ = 8H ·D. (2.135)

As a result,
1
4

PµνQµν = H ·B−E ·D− i(E ·B+H ·D) . (2.136)

An important decomposition,

P∗
µλ

Qλν +Pµλ

∗
Qλν = 2

(
Fµλ Rλν +Gµλ Sλν

)
(2.137)

= 4Fµλ Rλν +δ
ν
µ FστRστ

= 4Fµλ Rλν −2δ
ν
µ (E ·D−H ·B) ,

is complemented by an identity,

Pµλ Qλν +P∗
µλ

∗
Qλν =

1
4

(
PστQτσ +P∗στ

∗
Qτσ

)
δ

ν
µ (2.138)

=
1
2
(E ·D−H ·B)δ

ν
µ .

In matrix form,

PQ = (F + iG)(R+ iS) = (FR−GS)+ i(FS+GR) , (2.139)

P∗Q = (F− iG)(R+ iS) = (FR+GS)+ i(FS−GR) . (2.140)

Here,

FS =
1
4

Tr(FS) I = (E ·B) I, (2.141)

GR =
1
4

Tr(GR) I = (H ·D) I. (2.142)

FR−GS =
1
2

Tr(FR) I = (E ·D−H ·B) I, (2.143)

50



FR+GS = 2FR− 1
2

Tr(FR) I (2.144)

= 2FR− (E ·D−H ·B) I.

Tr(FR+GS) = 0, (2.145)

where I =diag(1,1,1,1) is the identity matrix.

Also,

PQ = QP = (F ·G) I, (2.146)

detP = detQ =−(F ·G)2 (2.147)

and

F ·G = (E+ iH) · (D+ iB) (2.148)

= (E ·D−H ·B)+ i(E ·B+H ·D) .

Other useful dual four-tensor identities are given by [82]:

eµνστAνστ = 6Bµ , Aµνλ = eµνλσ Bσ . (2.149)

In particular,

6i
∂Qµν

∂xν
= eµνλσ

(
∂Pλσ

∂xν
+

∂Pνλ

∂xσ
+

∂Pσν

∂xλ

)
, (2.150)

and
∂Pµν

∂xλ
+

∂Pνλ

∂xµ
+

∂Pλ µ

∂xν
= ieµνλσ

∂Qστ

∂xτ
(2.151)

(see also [115]).

2.13 Proof of Identities (2.63)

In view of (2.43), or (2.130), and (2.151), we can write(
∂Pµν

∂xλ
+

∂Pνλ

∂xµ
+

∂Pλ µ

∂xν
= ieµνλσ

∂Qστ

∂xτ

) ∗
Qλν , (2.152)
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or

2
∗

Qλν
∂Pµν

∂xλ
+

∗
Qλν ∂Pνλ

∂xµ

= i

(
eµνλσ

∗
Qλν

)
∂Qστ

∂xτ
=−2P∗µσ

∂Qστ

∂xτ

by (2.130). Therefore,

P∗
µλ

∂Qλν

∂xν
−

∂Pµλ

∂xν

∗
Qλν =−1

2

∗
Qστ ∂Pτσ

∂xµ
. (2.153)

In addition, with the help of (2.130) one gets

2i
(

P∗στ

∂Qτσ

∂xµ

)
= P∗στeτσλν ∂Pλν

∂xµ

= eστνλ P∗στ

∂Pλν

∂xµ
=−2i

( ∗
Qστ ∂Pτσ

∂xµ

)
,

which completes the proof.
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Chapter 3

THE PAULI-LUBANSKI VECTOR AND PHOTON HELICITY

In this chapter, a classical concept of photon helicity is investigated from the viewpoint

of the Pauli-Lubański vector. This problem is considered from first principles of the repre-

sentation theory of the Poincaré group. In particular, a misconception in the definition of

helicity for a massless particle, in which a linear relation, w = λ p, is used in standard quan-

tum field theory textbooks is discovered. In addition, as a result, this analysis also leads to

a new approach, introduced here, for the derivation of Maxwell’s equations in vacuum. All

physically interesting unitary ray representations of the proper orthochronous inhomoge-

neous Lorentz group (known nowadays as the Poincaré group) were classified by Wigner

[231] and, since then, this approach has been utilized for the mathematical description of

mass and spin of an elementary particle. By definition, the Pauli-Lubański pseudo-vector1

is given by

wµ =
1
2

eµνστ pνMστ , pµwµ = 0, (3.1)

where pµ is the relativistic linear momentum operator and Mστ are the corresponding an-

gular momentum operators. The mass and spin of a particle are defined in terms of two

quadratic invariants (Casimir operators of the Poincaré group) as follows

p2 = pµ pµ = m2, w2 = wµwµ =−m2s(s+1) , m > 0 (3.2)

(see, for example, [11], [12], [29], [121], [133], [139], [140], [141], [181], [184], [185],

[187] and the references therein; we use the standard notations that were mentioned in the

introduction and are repeated here for convenience).
1The pseudo-vector nature can be seen by the fact that w′µ = det(Λ)Λσ

µ wσ , which follows from

p′ν = Λν
κ pκ , M′στ = Λσ

α Λτ

β
Mαβ , and the determinant identity det(Λ)eκγαβ = eµνστ Λ

µ

κ Λν
γ Λσ

α Λτ

β
.
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For the massless fields, when m= 0, one gets w2 = p2 = pw= 0, and the Pauli-Lubański

vector should be proportional to p : 2

wµ = λ pµ (3.3)

(acting on the corresponding eigenstates [160], [184]). The number λ is called the helicity

of the representation and the value s = |λ | is sometimes called the spin of a particle with

zero mass [29], [184], [185], [187]. One of the goals of this chapter is to show that, in the

case of the electromagnetic field, the sign of the constant λ in the latter equation is fixed

by the condition that the classical Maxwell equations hold.

As a result, instead of being given by the constant of proportionality in relation (3.3),

the helicity of the photon should be defined, as it is traditionally done in particle physics, by

λ = k ·M/k0, where k = (k0,k) and M is the photon angular momentum (k2 = k2
0−k2 = 0).

But one needs a proper realization of the action of these operators on the photon field tensor

in covariant form [154], [155]; or, in 3D-form, on the complex electromagnetic field vector

F = E+ iH discussed in [14], [16], [24], [26], [122], [128], [154], [181], [188], [191],

[192], [206], [224]. The sign of the constant λ = ±1 is fixed then by a “continuity”, in

view of the invariance of the upper(lower) light cone under a proper Lorentz transformation

(see, for example, [29], [121] and [212]).

3.1 Transformation Laws and Generators

Under the Lorentz transformation [29], [154], [157], [181],

U (Λ)Qµν (xρ) := Q′µν

(
Λ

κ
ρxρ

)
= Λ

µ

σ Λ
ν
τ Qστ (xρ) , (3.4)

2This assumption was made by Bargmann and Wigner [12] for the massless limit of the spinor wave

equation for particles with an arbitrary integer or half-integer spin proposed by Dirac [51] (see also [74],

[75], [113], [169], [48] and the references therein). The pseudo-vector (3.1) was introduced, in a slightly

different notation, by Eqs. (4.a)–(4.b) of Ref. [12].
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where the summation is assumed over any two repeated indices3. We shall use the follow-

ing six 4×4 matrices (α,β = 0,1,2,3 are fixed):

Λ
(
θαβ

)
= exp

(
−θαβ mαβ

)
, mαβ =−mβα , (3.5)(

mαβ

)µ

ν
= gαµ

δ
β

ν −gβ µ
δ

α
ν .

for the corresponding one-parameter subgroups of the proper Lorentz group [29], [157],

[187] with the standard metric, gµν = gµν =diag(1,−1,−1,−1) , in the Minkowski space-

time. The 4-angular momentum operators,

Mαβ = xβ
∂

α − xα
∂

β , ∂
α = gακ

∂κ , (3.6)

can be derived as follows

Mαβ Qµν :=−
[

d
dθαβ

Qµν

(
Λ

κ
ρ

(
θαβ

)
xρ

)]∣∣∣∣
θαβ=0

(3.7)

=
(

mαβ

)µ

σ
Qσν +Qµτ

(
mαβ

)ν

τ

with (
mαβ

)µ

ν
=−

dΛ
µ

ν

(
θαβ

)
dθαβ

∣∣∣∣∣
θαβ=0

= gαµ
δ

β

ν −gβ µ
δ

α
ν . (3.8)

In matrix form,

Mαβ Q = mαβ Q+Q
(

mαβ

)T
, (3.9)

where Q = Qµν and mT is the transposed matrix. The latter equations (3.7), (3.8), and (3.9)

define the action of the infinitesimal operators on the complex field tensor,

MστQαβ = gσαQτβ −gταQσβ +gσβ Qατ −gτβ Qασ , (3.10)
3Although Minkowski considered the transformation of electric and magnetic fields in a complex 3D

vector form, see Eqs. (8)–(9) and (15) in [154] (or Eqs. (25.5)–(25.6) in [122]), he seems never to have

combined the corresponding 4-tensors into the complex forms (2.41)–(2.42). In the second article [155],

Max Born, who used Minkowski’s notes, didn’t mention the complex fields. As a result, the complex field

tensor seems only to have appeared, for the first time, in [128] (see also [206]).
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in the form that is required in equation (3.15) below.

In a similar fashion, for the products of the generators,

Mαβ Mγδ Qµν =
(

mγδ

)µ

κ

(
mαβ

)κ

σ
Qσν +

(
mαβ

)µ

σ

(
mγδ

)ν

ρ
Qσρ (3.11)

+
(

mγδ

)µ

κ

(
mαβ

)ν

τ
Qκτ +

(
mγδ

)ν

ρ

(
mαβ

)ρ

τ
Qµτ ,

or, in matrix form,

Mαβ Mγδ Q =
(

mγδ mαβ

)
Q−

((
mγδ mαβ

)
Q
)T

(3.12)

+mαβ Q
(

mγδ

)T
−
(

mαβ Q
(

mγδ

)T
)T

.

As a result, [
Mαβ , Mγδ

]
:= Mαβ Mγδ −Mγδ Mαβ (3.13)

= gαγMβδ −gαδ Mβγ +gβδ Mαγ −gβγMαδ ,

which follows from (3.7)–(3.8) and can be verified, once again, by using (3.6).

Finally, introducing the infinitesimal operators M =
(
M23,M31,M12) and

N =
(
M01,M02,M03) for the rotations and boosts, respectively, one can get

N2Q =−M2Q = 2Q, (M ·N)Q =−2iQ. (3.14)

The Casimir operators of the proper Lorentz group are given by (M+ iN)2 /4 = 0 and

(M−iN)2 /4 =−2 in the space of complex anti-symmetric tensors under consideration. In

view of M2 = −s(s+1) = −2, we may say that the spin of the photon is equal to one.

(Here, we have chosen real-valued generators; see also [10], [12], [85], [181], [187] and

[226] for more details on the Lorentz group representations.)

3.2 The Pauli-Lubański Vector and Maxwell’s Equations in Vacuum

As follows from the representation theory of the Poincaré group [12], [29] and the

geometry of the Minkowski space-time [156], [160], for the case of massless particles, the
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Pauli-Lubański vector should be collinear to the operator of the 4-linear momentum. For a

classical electromagnetic field, this relation takes the form

1
2

eµνστ∂
ν

(
MστQαβ

)
=−i∂µQαβ , (3.15)

and by (3.10), we find that

gααeαµντ∂
νQτβ −gββ eβ µντ∂

νQτα =−i∂µQαβ (3.16)

(α,β = 0,1,2,3 are fixed; no summation is assumed over these two indices). By a direct,

but rather tedious evaluation, one can verify that the latter equation, which is written in

terms of a third rank 4-tensor, is equivalent to the original system of Maxwell equations in

vacuum, ∂νQµν = 0. As a result, the helicity of the photon4, or a harmonic circular classical

electromagnetic wave, cannot be defined as an undetermined sign, or an extra ±1 factor, in

the right hand side of equation (3.15) as it is stated in standard textbooks on the quantum

field theory [12], [29], [184], [185], [187].

In view of (3.15), for the rotations and boosts, M =
(
M23,M31,M12) and

N =
(
M01,M02,M03) , respectively, the following standard equations hold

(∇ ·M)Q = i∂0Q, ∂0 =
1
c

∂

∂ t
(3.17)

and

∂0MQ+(∇×N)Q = i∇Q, (3.18)

where Q = Qαβ =−Qβα is the complex field tensor and the actions of operators M and N

on this tensor are explicitly defined by (3.10).

Note. In vacuum, when G=F and ρ = 0, j= 0, two different covariant forms of Maxwell’s

equations are given by

∂νQµν = 0, ∂
νPµν = 0, (3.19)

4Multiple meanings of the word “photon” are analyzed in [111].

57



where ∂ ν = gνµ∂µ = gνµ∂/∂xµ . The second equation follows from (3.16), when one takes

µ = β and sums over β = 0,1,2,3 with the help of (2.43). As another useful consequence

of our equation (3.16), one can directly show that the d’Alembert operator annihilates any

component of the complex field tensor in vacuum,

∂
µ

∂µQαβ =

(
1
c2

∂ 2

∂ t2 −∆

)
Qαβ =�Qαβ = 0, (3.20)

thus de-coupling the system. It is worth noting that, in covariant form, our derivation does

not require any formula of 3D-vector calculus. (The general theory of relativistic-invariant

equations is studied in classical accounts [12], [22], [50], [51], [74], [75], [85], [113], [144],

[169], [176]; see also [27], [89], [139], [140], [141], [48] and the references therein.)

3.3 Examples

In a matrix form, equation (3.17) can be rewritten as follows

0 −∂2G3 +∂2G3 ∂1G3−∂3G1 −∂1G2 +∂2G1

∂2G3−∂2G3 0 i(∂1F2−∂2F1) i(∂1F3−∂3F1)

−∂1G3 +∂3G1 −i(∂1F2−∂2F1) 0 i(∂2F3−∂3F2)

∂1G2−∂2G1 −i(∂1F3−∂3F1) −i(∂2F3−∂3F2) 0



=+
i
c

∂

∂ t



0 −G1 −G2 −G3

G1 0 iF3 −iF2

G2 −iF3 0 iF1

G3 iF2 −iF1 0


, (3.21)

or  0 −(curlG)q

(curlG)p iepqr (curlF)r

=
i
c

∂

∂ t

 0 −Gq

Gp iepqrFr

 , (3.22)
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in a more compact block form. In vacuum, G = F and this matrix relation implies the

single complex Maxwell equation, curlF = (i/c)∂F/∂ t. In a similar fashion, for the first

component of (3.18), namely, ∂0M1Q+(∂2N3−∂3N2)Q = i∂1Q, we obtain,

∂0



0 0 G3 −G2

0 0 iF2 iF3

−G3 −iF2 0 0

G2 −iF3 0 0


(3.23)

+



0 i(∂2F2 +∂3F3) −i∂2F1 −i∂3F1

−i(∂2F2 +∂3F3) 0 −∂3G1 ∂2G1

i∂2F1 ∂3G1 0 ∂2G2 +∂3G3

i∂3F1 −∂2G1 −∂2G2−∂3G3 0



=+i∂1



0 −G1 −G2 −G3

G1 0 iF3 −iF2

G2 −iF3 0 iF1

G3 iF2 −iF1 0


.

Once again, in vacuum, G = F and this matrix relation is satisfied in view of the pair of

complex Maxwell equations, curlF = (i/c)∂F/∂ t and divF = 0. (Cyclic permutations of

the spatial indices cover the two remaining components.)

One can clearly see that there is no chance of changing the sign + into − in the right

hand side without a violation of Maxwell’s equations. Indeed, let us pick just one of the

matrix elements from both sides, say, ∂2F2 +∂3F3 = −∂1G1, which indicates also that the

left and right hand sides are coming from the different pairs of Maxwell’s equations (2.5)–

(2.6).

Note. In the case of Weyl’s two-component wave equation for massless neutrinos, one can
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choose

φ =

 φ1

φ2

 ∈ C2 (3.24)

and, in block form,

Mαβ =−Mβα =

 0 ±iσq

∓iσp epqrσr

 , (3.25)

where σ1, σ2, σ3 are the standard 2×2 Pauli matrices with the products given by σpσq =

iepqrσr +δpq (see, for example, [187]). As a result, Eqs. (3.3) are satisfied provided that

∂0φ =±σσσ ·∇φ , λ =±1
2
, (3.26)

respectively (details are left to the reader). Thus, the relativistic Weyl equation for a mass-

less particle with the spin 1/2 can be derived from the representation theory of the Poincaré

group.

3.4 Helicity

In particle physics [19], [181], [187], [212], the helicity is defined as the projection of

the angular momentum M on the direction of motion p :

λ =
p ·M
|p|

=−w0

|p|
. (3.27)

The helicity states are eigenstates of the operator:

Λ |p,λ 〉= p ·M
|p|
|p,λ 〉= λ |p,λ 〉 . (3.28)

For massless particles one can define the spin as s = |λ | and, if the parity is conserved, the

particle will have only two independent helicity eigenstates |p,λ = s〉 and |p,λ =−s〉 .

In the case of the classical electromagnetic field, equations (3.17) and/or (3.22) show

that the helicity operator is proportional to the “energy operator”:

Λ =
i

c |k|
∂

∂ t
. (3.29)
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As a result, these two operators have common eigenstates, |k,λ 〉 = Qµν , in the space of

complex anti-symmetric 4-tensors of the second rank. (The simplest covariant helicity

states will be constructed in the next section.)

On the other hand, in 3D-complex electrodynamics, one can take the complex vector

field |k,λ 〉= F = E+ iH and choose the following real-valued spin matrices [214]:

s1 =


0 0 0

0 0 −1

0 1 0

 , s2 =


0 0 1

0 0 0

−1 0 0

 , s3 =


0 −1 0

1 0 0

0 0 0

 , (3.30)

such that
[
sp,sq

]
= spsq− sqsp = epqrsr and s2

1 + s2
2 + s2

3 =−2. Then

(∇ · s)F := ∂1 (s1F)+∂2 (s2F)+∂3 (s3F) (3.31)

= ∂1


0 0 0

0 0 −1

0 1 0




F1

F2

F3

+∂2


0 0 1

0 0 0

−1 0 0




F1

F2

F3



+∂3


0 −1 0

1 0 0

0 0 0




F1

F2

F3

=


∂2F3−∂3F2

∂3F1−∂1F3

∂1F2−∂2F1

= curlF.

Once again, our representation (3.29) for the helicity operator holds in view of the Maxwell

equation in vacuum, curlF = (i/c)∂F/∂ t.

Note. In view of (3.29), the traditional definition of helicity (3.28) is related to separation

of variables in Maxwell’s equations. Letting Qµν = q(t)Zµν (r) , one gets

0 =
∂Qµν

∂xν
=

1
c

∂Qµ0

∂ t
+

∂Qµ p

∂xp
=

1
c
·
q(t)Zµ0 (r)+q(t)

∂Zµ p (r)
∂xp

, (3.32)

or

−
·
q
cq

Zµ0 =
∂Zµ p

∂xp
, q = e−iωt , (3.33)
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where ω must be a real-valued constant of the separation of variables in order to have

bounded solutions. As a result,
∂Zµ p

∂xp
= i

ω

c
Zµ0, (3.34)

thus giving a covariant form of the corresponding eigenvalue problems in different curvi-

linear coordinates [209], [214].

3.5 Covariant Harmonic Wave Solutions

In vacuum, ∂νQµν = 0, where

Qµν =

 0 −Fq

Fp iepqrFr

 , F = fei(ωt−k·r) = E+ iH. (3.35)

Here, f =constant is a complex polarization vector to be determined and

xµ = (ct,r) , kµ = (ω/c,−k) , kx = kµxµ = ωt−k · r. (3.36)

In a compact form, Qµν = Aµνeikx and Aµνkν = 0µ , where

Aµν =

 0 − fq

fp iepqr fr

= constant. (3.37)

This tensor is an eigenfunction of the 4-gradient, i−1∂αQµν = kαQµν .

As a result, 

0 − f1 − f2 − f3

f1 0 i f3 −i f2

f2 −i f3 0 i f1

f3 i f2 −i f1 0





ω/c

−k1

−k2

−k3


=



0

0

0

0


(3.38)

and detA =−(f · f)2 = 0 (Lorentz invariant by Minkowski [154]). The complex invariant,

F2 = (E+ iH)2 = 0, results in E2 = H2 and E ·H = 0, as required [122].
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In 3D-form, the latter system of linear equations gives an eigenvalue problem:

ik× f =
ω

c
f, f · f = 0. (3.39)

The eigenvalues are∣∣∣∣∣∣∣∣∣∣
−ω/c −ik3 ik2

ik3 −ω/c −ik1

−ik2 ik1 −ω/c

∣∣∣∣∣∣∣∣∣∣
=

ω

c

(
k2

1 + k2
2 + k2

3−
ω2

c2

)
= 0. (3.40)

The case ω = 0, when f = k, does not satisfy the second condition f2 = 0 unless k = 0.

Therefore, there are only two eigenvectors {f, f∗}, corresponding to ω/c = ±k =

±
√

k2
1 + k2

2 + k2
3 :

f =
k× (lll×k)+ ik (k× lll)

k
√

2 |k× lll|
, f∗ = f|k→−k , (3.41)

respectively [26]. Here, lll is an arbitrary real vector that is not collinear to k (k 6=constant lll)

and f · f∗ = 1. (A similar eigenvalue problem occurs in the mean magnetic field generation,

called αΩ-dynamo, in cosmic astrophysics [78].)

Example. Let {ek}3
k=1 be an orthonormal basis in R3 . One can choose lll = e1 and k = ke3.

Then

f =
e1 + ie2√

2
, f∗ =

e1− ie2√
2

(3.42)

(see [26], [122], and [209] for more details).

3.6 Discrete Transformations and Polarization

The complex Maxwell equations in vacuum,

i
c

∂F
∂ t

= curlF, divF = 0, (3.43)

are invariant under the following discrete transformations: spatial inversion P: F(r, t)→

F∗ (−r, t) ; time reversal T: F(r, t)→ F∗ (r,−t) ; and space-time inversion PT: F(r, t)→
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F(−r,−t) . They, together with the identity transformation, correspond to the four con-

nected components of the Poincaré group. These transformations form the so-called Klein

group {Identity,P,T,PT} , with the following Cayley table.

* I P T PT

I I P T PT

P P I PT T

T T TP I P

PT PT T P I

The action of this group generates the following four circularly polarized waves (ω =

+ck):

F1 = fei(k·r−ωt), F2 = f∗e−i(k·r+ωt) = F∗1|t→−t = TF1 (3.44)

and

F3 = fe−i(k·r−ωt) = F1|r→−r,t→−t = (PT)F1, (3.45)

F4 = f∗ei(k·r+ωt) = F∗3|t→−t = TF3 = PF1.

They represent right- and left-handed circularly polarized waves moving along the vector

k in opposite directions. One can easily verify that the solutions {F1,F2} correspond to

λ =+1 and {F3,F4} have λ =−1. Also, F1 ·F3 = f2 = 0 and F2 ·F4 =
(
f2)∗ = 0. These

four solutions are linearly independent.

Example. The standard circular, elliptic, and linear polarizations of the classical electro-

magnetic waves occur as a result of superposition of the complex solutions under consid-

eration. With the help of the polarization vectors (3.42), one gets

F = c1
F1 +F3

2
+ c2

F1−F3

2
= E+ iH (3.46)

= c1e1 cos(k · r−ωt)− c2e2 sin(k · r−ωt)

+ i
[
c2e1 cos

(
k · r−ωt− π

2

)
− c1e2 sin

(
k · r−ωt− π

2

)]
,
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where c1 = c∗1 and c2 = c∗2. For the elliptic polarization, we choose |c1| > |c2| or |c1| <

|c2| ; the linear polarization arises, for instance, if c1 6= 0 and c2 = 0 (see [122] and [209],

problems 2.128–2.134, for more details).

In conclusion, it is worth noting that, here, we have only discussed the classical electro-

magnetic field in vacuum. Different aspects of the “photon paradigm” are emphasized in

[111]. The photon wave functions are dealt with in [6], [19], [23], [24], [57], [80], [187].

For quantization in the complex form, see [23], [25], [27], [26] and the references therein.

(General quantization procedures are discussed, for example, in [27], [29], [110], [114],

[118], [158], [159], [184], [185], [187], [189], [209].) Coherent states of light and dynam-

ical invariants are reviewed in [53], [54], [55], [110], [189]. The squeezed states of the

photons and atoms in a cavity and their relations with so-called “missing” solutions for the

harmonic oscillator are analyzed in [119], [134], [136]. Professor Toptygin kindly pointed

out an intrinsic importance of the helicity concept from the sub-atomic world (parity viola-

tion in beta decay [180], [234]) to cosmic astrophysics (possible amplification of galactic

magnetic fields by the turbulent dynamo mechanism [17], [78], [213]). Last but not least,

organic compounds appear often in the form of only one of two stereoisomers. As a result,

in optically active biological substances, these molecules rotate polarized light to the left

[93], thus creating another old unexplained puzzle.
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Chapter 4

PAULI-LUBANSKI VECTOR AND RELATIVISTIC WAVE EQUATIONS

Inspired by the results from the previous chapter, we continue with a study of the role of

the Pauli-Lubański vector for other major relativistic wave equations, including the Dirac,

Weyl, Proca, Fierz-Pauli, and once again Maxwell equations. Different realizations of these

equations are also given. The relativistic definition of spin is analyzed in this framework

as a statement of the consistency of certain overdetermined systems of partial differential

equations. Another important result that follows is a new linear relation related to Dirac’s

equation that is discussed here and introduced in the article [117] of which this chapter is

based. This linear relation provides a means by which the spin of a Dirac particle can be

introduced in a covariant form using the second Casimir operator of the Poincaré group.

Here it is reiterated that all physically interesting representations of the proper or-

thochronous inhomogeneous Lorentz group (known nowadays as the Poincaré group) were

classified by Wigner [231] and, since then, this approach has been utilized for the mathe-

matical description of mass and spin of an elementary particle. To this end, once again, the

Pauli-Lubański pseudo-vector is used,

wµ =
1
2

eµνστ pνMστ , pµwµ = 0, (4.1)

where pµ is the relativistic linear momentum operator and Mστ are the angular momen-

tum operators, or generators of the proper orthochronous Lorentz group, with summation

over repeated indices. (We use Einstein summation convention unless stated otherwise.)

The mass and spin of a particle are defined in terms of two quadratic invariants (Casimir

operators of the Poincaré group) as follows

p2 = pµ pµ = m2, w2 = wµwµ =−m2s(s+1) , (4.2)
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when m > 0 (see, for example, [11], [12], [15], [29], [139], [140], [141], [181], [184],

[185], [187], [194] and the references therein; throughout the chapter we use the standard

notations in the Minkowski space-time R4 and the natural units c = }= 1).

For the massless fields, when m= 0, one gets w2 = p2 = pw= 0, and the Pauli-Lubański

vector should be proportional to p : 1

wµ = λ pµ (4.3)

(acting on common eigenstates [160], [184]). The number λ is sometimes called the helic-

ity of the representation and the value s = |λ | is called the spin of a particle with zero mass

[29], [184], [185], [187]. Although the concept of helicity is discussed in most textbooks

on quantum field theory, a practical implementation of this definition of the spin of a mass-

less particle deserves a certain clarification. As is shown in the previous chapter, in the

case of the electromagnetic field in vacuum, the sign of the constant λ in the latter equation

is fixed, otherwise violating the classical Maxwell equations. Thus, for the photon, or a

harmonic circular classical electromagnetic wave2, the latter equation allows one to intro-

duce the field equations and spin, but not the helicity, when a certain choice of eigenstates

is required. A similar situation occurs in the case of Weyl’s equation for massless neutri-

nos. (In Ref. [115], we do not discuss the equation for a graviton, another massless spin-2

particle; it will be analyzed elsewhere; cf. [108], [157], [159], [170] and our discussion in

section 7.)

The theory of relativistic-invariant wave equations is studied, from different perspec-

tives, in numerous classical accounts [12], [15], [22], [50], [51], [74], [75], [85], [113],
1This assumption was made by Bargmann and Wigner [12] for the massless limit of the spinor wave

equation for particles with an arbitrary integer or half-integer spin proposed by Dirac [51] (see also [74],

[75], [113], [169] and the references therein). The pseudo-vector (4.1) was introduced, in a slightly different

notation, by Eqs. (4.a)–(4.b) of Ref. [12].
2Multiple meanings of the word “photon” are analyzed in [111].
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[144], [169], [176], [228] (see also [27], [139], [140], [141] and the references therein).

Nonetheless, in our opinion, the importance of the Pauli-Lubański vector for conventional

relativistic equations, which allows one to derive all of them directly from the postulated

transformation law of the corresponding classical field in pure group-theoretical terms,

is not fully appreciated. In this chapter, we would like to start from Dirac’s relativistic

electron, or any free relativistic particle with a nonzero mass and spin 1/2, which can be

described by a bispinor wave function. Our analysis shows that an analog of the linear

operator relation (4.3) takes the form,

wµ =
1
2
(

pµ +mγµ

)
γ5, (4.4)

provided that the Dirac equation,
(
γµ pµ −m

)
ψ = 0, holds, when the corresponding overde-

termined system of equations is consistent. This automatically implies that s = 1/2, in the

covariant form, by definition (4.2). (We were not able to find the operator relation (4.4) in

the extensive literature on Dirac’s equation.)

In the rest of the chapter, a similar program is utilized, in a systematic way and from

first principles, for other familiar relativistic wave equations. Once again, we postulate the

transformation law of the field in question (a law of nature) and, with the help of the corre-

sponding Lorentz generators, evaluate the action of the Pauli-Lubański vector on the field in

order to compute, eventually, not one, but both Casimir operators (4.2). If a linear relation,

similar to (4.3) or (4.4), does exist, one obtains an overdetermined PDE system, which can

be reduced to the corresponding relativistic wave equation by a matrix version of Gaussian

elimination [84]. We show that this approach allows one to derive equations of motion for

the most useful classical fields, including the Weyl, Proca, Fierz-Pauli, and Maxwell equa-

tions in vacuum, as a statement of consistency for the original overdetermined systems. At

the moment, we shall not discuss relativistic wave equations for particles with an arbitrary

spin, such as the Bargmann-Wigner equations, Majorana equations, and/or the (first order)
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Duffin-Kemmer equations which also describe spin-0 and spin-1 fields (see, for example,

[15], [28], [90] and [21] for more details; the case of the Klein-Gordon equation, or the

relativistic Schrödinger equation [186], is, of course, obvious).

We have also entirely concentrated on four dimensions. A more general group-theoretical

approach to the relativistic wave equations, which allows one to include higher dimensions

and spins, is formulated in [15] with the help of induced representations of the semi-direct

products of separable, locally compact groups. Spinors in arbitrary dimensions are also

discussed in [194].

4.1 Dirac Equation

In this section, for the reader’s convenience, we summarize once again some basic facts

about Dirac’s equation and then discuss its relation with the Pauli-Lubański vector (4.4).

To this end, a familiar bispinor representation of the proper orthochronous Lorentz group

SO+ (1,3) is used.

4.1.1 Gamma Matrices, Bispinors, and Transformation Laws

We shall use the following Dirac matrices: γµ =
(
γ0,γγγ

)
, γµ = gµνγν =

(
γ0,−γγγ

)
, and

γ5 =−γ5 = iγ0γ1γ2γ3, where

γγγ =

 0 σσσ

−σσσ 0

 , γ
0 =

 I 0

0 −I

 , γ
5 =

 0 I

I 0

 (4.5)

and σσσ = (σ1,σ2,σ3) are the standard 2×2 Pauli matrices [168], [214]. The familiar anti-

commutation relations,

γ
µ

γ
ν + γ

ν
γ

µ = 2gµν , γ
µ

γ
5 + γ

5
γ

µ = 0 (µ,ν = 0,1,2,3) , (4.6)

hold. (Most of the results here will not depend on a particular choice of gamma matrices,

but it is always useful to have an example in mind.) The four-vector notation, xµ = (t,r) ,
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∂µ = ∂/∂xµ , and ∂ α = gαµ∂µ in natural units c = } = 1 with the standard metric, gµν =

gµν = diag(1,−1,−1,−1) , in the Minkowski space-time R4 are utilized throughout the

chapter [19], [28], [29], [157], [21].

In this notation, the transformation law of a bispinor wave function3,

ψ (x) =



ψ1

ψ2

ψ3

ψ4


∈ C4 , (4.7)

under a proper Lorentz transformation, is given by

ψ
′ (x′)= SΛψ (x) , x′ = Λx, (4.8)

together with the rule,

S−1
Λ

γ
µSΛ = Λ

µ

νγ
ν , (4.9)

for the sake of covariance of the celebrated Dirac equation,

iγµ
∂µψ−mψ = 0. (4.10)

As is well known, a general solution of the latter matrix equation has the form

S = SΛ = exp
(
−1

4
θµνΣ

µν

)
, θµν =−θνµ , (4.11)

Σ
µν = (γµ

γ
ν − γ

ν
γ

µ)/2

(with summation over every two repeated indices; see, for example, [99], [158]) and, in

turn,

S−1
Λ

Σ
µνSΛ = Λ

µ

σ Λ
ν
τΣ

στ . (4.12)

3The relativistic wave equation for a massive spin 1/2 particle was proposed by Dirac [50], when only

tensor representations of the Lorentz group were known. Thus, the problem of covariance of Dirac’s equation

gave rise to a new class of representations of the Lorentz group, namely, the spinor representations [15].
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In explicit form,

Σ
µν =

1
2
(γµ

γ
ν − γ

ν
γ

µ) =

 0 αq

−αp −iepqrΣr

 (4.13)

=



0 α1 α2 α3

−α1 0 −iΣ3 iΣ2

−α2 iΣ3 0 −iΣ1

−α3 −iΣ2 iΣ1 0


,

where, by definition,

ΣΣΣ =

 σσσ 0

0 σσσ

 , ααα =

 0 σσσ

σσσ 0

 . (4.14)

Their familiar product identities,

ΣpΣq = iepqrΣr +δpq, αpαq = iepqrΣr +δpq, (4.15)

αpΣq = Σpαq = iepqrαr +δpqγ
5,

hold.

Setting nnn = {e1,e2,e3} for each of the unit vectors in the directions of the mutually

orthogonal coordinate axes, one can write in compact form:

SR = eiθ(nnn···ΣΣΣ)/2 = cos
θ

2
+ i(nnn ···ΣΣΣ)sin

θ

2
, (nnn ···ΣΣΣ)2 = I (4.16)

and

SL = e−ϑ(nnn···ααα)/2 = cosh
ϑ

2
− (nnn ···ααα)sinh

ϑ

2
, (nnn ···ααα)2 = I (4.17)

with tanhϑ = v, in the cases of rotations and boosts, respectively [15], [158].

The important dual four-tensor identities,

ieµνστΣ
στ = 2γ5Σµν , ieµνστ

γ5Σµν = 2Σ
στ , (4.18)
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can be directly verified. Here, eµνστ = −eµνστ and e0123 = +1 is the Levi-Civita symbol

[29], [82].

For the conjugate bispinor,

ψ (x) = ψ
† (x)γ

0, ψ
′ (x′)= ψ (x)S−1

Λ
, x′ = Λx, (4.19)

the Dirac equation (4.10) takes the form

i∂µψγ
µ +mψ = 0. (4.20)

(For more details see classical accounts [6], [19], [28], [71], [99], [158], [173], [184], [187],

[21], [226].)

Examples. In particular, for the boost in the plane
(
x0,x1) , when

SL = e−(ϑ/2)Σ01
= e−(ϑ/2)α1 = cosh

ϑ

2
−α1 sinh

ϑ

2
(4.21)

with tanhϑ = v, one can easily verify by matrix multiplication that

e(ϑ/2)α1



γ0

γ1

γ2

γ3


e−(ϑ/2)α1 =



coshϑ −sinhϑ 0 0

−sinhϑ coshϑ 0 0

0 0 1 0

0 0 0 1





γ0

γ1

γ2

γ3


. (4.22)

In a similar fashion, for the rotation in the plane
(
x1,x2) :

SR = e−(θ/2)Σ12
= ei(θ/2)Σ3 = cos

θ

2
+ iΣ3 sin

θ

2
(4.23)

and

e−i(θ/2)Σ3



γ0

γ1

γ2

γ3


ei(θ/2)Σ3 =



1 0 0 0

0 cosθ sinθ 0

0 −sinθ cosθ 0

0 0 0 1





γ0

γ1

γ2

γ3


. (4.24)

(See [15], [158] for further details.)
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4.1.2 Generators and Commutators

In the fundamental representation of the proper orthochronous Lorentz group, we shall

choose the following six 4× 4 real-valued matrices (α,β = 0,1,2,3 are fixed with no

summation):

Λ
(
θαβ

)
= exp

(
−θαβ mαβ

)
, mαβ =−mβα , (4.25)(

mαβ

)µ

ν
= gαµ

δ
β

ν −gβ µ
δ

α
ν

for the corresponding one-parameter subgroups of rotations and boosts [29], [115], [157],

[187]. Then, differentiation of a particular expression (for the corresponding tensor opera-

tor [15]),

eθαβ Σαβ /2
γ

µe−θαβ Σαβ /2 =
(

e−θαβ mαβ
)µ

ν
γ

ν , (4.26)

at θαβ = 0 results in

[
Σ

αβ , γ
µ

]
:= Σ

αβ
γ

µ − γ
µ

Σ
αβ = 2

(
gβ µ

γ
α −gαµ

γ
β

)
, (4.27)

which can be independently verified with the help of (4.6).

In a similar fashion, the action of four-angular momentum operators4,

Mαβ = xβ
∂

α − xα
∂

β , ∂
α = gακ

∂κ , (4.28)

on Dirac’s bispinors (4.7) can be derived directly from the transformation law as follows

Mαβ
ψ :=−

[
d

dθαβ

ψ
′ (

Λ
µ

ν

(
θαβ

)
xν
)]∣∣∣∣

θαβ=0
(4.29)

=−
(

d
dθαβ

e−θαβ Σαβ /2
)∣∣∣∣

θαβ=0
ψ (x) =

1
2

Σ
αβ

ψ

4We follow [115]. Traditionally, the four-angular momentum used here is replaced as follows

Mαβ →−iMαβ , to make it Hermitian; see, for example, [29].
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(see also [99] for a slightly different derivation). A familiar commutator,

[
Σ

αβ , Σ
στ

]
= 2

(
gβσ

Σ
ατ −gβτ

Σ
ασ +gατ

Σ
βσ −gασ

Σ
βτ

)
, (4.30)

can be readily verified with the help of (4.27) and/or independently derived from (4.12).

These results are independent of our choice of the gamma matrices representation.

4.1.3 Balance Conditions and Energy-Momentum Tensors

We shall use a familiar notation for the partial derivatives [29],

D p
ψ (x) :=

∂ p0+p1+p2+p3

∂xp0
0 ∂xp1

1 ∂xp2
2 ∂xp3

3
ψ (x0,x1,x2,x3) , D0

ψ (x) := ψ (x) (4.31)

where p= (p0, p1, p2, p3) is an ordered set of non-negative integers pµ ≥ 0. It follows from

the Dirac equations (4.10) and (4.20) that

∂µ [(D
p
ψ (x))γ

µ (Dq
ψ (x))] = 0, (4.32)

or, for a finite multi-sum,

∂µ

[
∑
p,q

cp,qD
p
ψγ

µDq
ψ

]
= 0, (4.33)

which can be thought of as a “master” differential balance condition set.

Indeed, in view of D r∂µ = ∂µD r, one gets

iγµ
∂µ (D

q
ψ) = m(Dq

ψ) , i∂µ (D
p
ψ)γ

µ =−m(D p
ψ) . (4.34)

Let us multiply the first (second) equation by D pψ (Dqψ) from the left (right) and add the

results. Then

i∂µ (D
p
ψγ

µDq
ψ) = i∂µ (D

p
ψ)γ

µDq
ψ + iD p

ψγ
µ

∂µ (D
q
ψ)

= m(−D p
ψDq

ψ +D p
ψDq

ψ)≡ 0.
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Among important special cases of (4.32) are the following important identities:

∂µ jµ (x) = 0, jµ (x) = ψ (x)γ
µ

ψ (x) , (4.35)

corresponding to the total charge conservation, and

∂µ [ψ (x)γ
µ

∂νψ (x)] = 0, ∂µ [∂νψ (x)γ
µ

ψ (x)] = 0. (4.36)

Therefore, one can introduce the energy-momentum tensor, such that ∂µT µ

ν (x) = 0, in two

different forms

T µ

ν := iψγ
µ

∂νψ, T µ

µ = mψψ (4.37)

and/or

T µ

ν :=
i
2
[ψγ

µ (∂νψ)− (∂νψ)γ
µ

ψ ] , T µ

µ = mψψ. (4.38)

As is well-known, all quantities of physical interest can be derived from the energy-momentum

tensor [28], [187].

4.1.4 Variants of Dirac’s Equation

In view of (4.10) and (4.6),

iγµ
γ

ν
∂νψ = mγ

µ
ψ, (4.39)

γ
µ

γ
ν =

1
2
(γµ

γ
ν − γ

ν
γ

µ)+
1
2
(γµ

γ
ν + γ

ν
γ

µ) = Σ
µν +gµν ,

and, as a result, we obtain an overdetermined but very convenient form of Dirac’s system:

i(Σµν +gµν)∂νψ = mγ
µ

ψ. (4.40)

On the one hand, in a 3D “vector” form,

i∂0ψ = (−iααα ·∇+mβ )ψ, β = γ
0 (}= c = 1, ∂0 = ∂/∂ t) (4.41)

and

−i∂0αααψ +(∇×ΣΣΣ)ψ = (i∇+mγγγ)ψ. (4.42)
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It is worth noting that the latter vectorial equation in our overdetermined system (4.41)–

(4.42) can be obtained by matrix multiplication, from the first one, in view of familiar

relations:

αpαq = iepqrΣr +δpq, αααβ =−γγγ. (4.43)

On the other hand, by letting pµ = i∂µ , one gets

(Σµν +gµν) pνψ = mγ
µ

ψ (4.44)

and applying the momentum operator pµ to the both sides:

p2
ψ = (Σµν +gµν) pµ pνψ = mγ

µ pµψ, (4.45)

in view of Σµν pµ pν = 0. If p2ψ = m2ψ, we derive, once again, that γµ pµψ = mψ. There-

fore both forms of the Dirac system, (4.10) and (4.40), are equivalent and every component

of the bispinor (4.7) does satisfy the d’Alembert equation,

(
∂

µ
∂µ +m2)

ψ =
(
∂

2
tt −∆+m2)

ψ =
(
�+m2)

ψ = 0, (4.46)

as required by (4.2).

In a similar fashion, for the conjugate bispinor (4.19) one can obtain

i∂νψ (Σµν −gµν) = mψγ
µ (4.47)

and our equations (4.40) and (4.47) results in the following balance relation:

i∂ν (ψΣ
µν

ψ)+ i [ψ∂
µ

ψ− (∂ µ
ψ)ψ ] = 2mψγ

µ
ψ, (4.48)

which, in turn, implies a familiar conservation law, ∂µ jµ (x) = 0, for the four-current,

jµ (x) = ψ (x)γµψ (x) , in view of ∂µ∂ν (ψΣµνψ) ≡ 0 and ∂µ [ψ∂ µψ− (∂ µψ)ψ ] ≡ 0.

(The latter equation gives a differential balance condition on its own.)

The following identity,

i∂ν

(
ψΣ

µν
γ

λ
ψ

)
= 2iψγ

µ
∂

λ
ψ− i

[
ψγ

λ
∂

µ
ψ− (∂ µ

ψ)γ
λ

ψ

]
, (4.49)
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can be obtained with the help of (4.40), (4.47) and (4.27). The latter shows how the differ-

ence between two forms of the energy-momentum tensor (4.37) and (4.38) can be written

as the four-divergence of a given tensor. Moreover, one can write

T µν := iψγ
µ

∂
ν
ψ = mgµν

ψψ +mψΣ
µν

ψ− iψγ
µ

Σ
νλ

∂λ ψ (4.50)

and

T µν :=
i
2
[ψγ

µ (∂ ν
ψ)− (∂ ν

ψ)γ
µ

ψ ] (4.51)

= mgµν
ψψ− i

2

[
ψγ

µ
Σ

νλ
∂λ ψ +(∂λ ψ)Σ

νλ
γ

µ
ψ

]
in view of (4.40) and (4.47).

4.1.5 Covariance and Transformation of Generators

The relativistic invariance of the Dirac equation is a fundamental consequence of (4.8)–

(4.10); see for example, [19], [28], [99], [158], [21] and [187]. Covariance of system (4.40)

can be derived, in a similar fashion, by invoking (4.12). The details are left to the reader

(see also section 5.3).

It is worth noting that from the four-tensor character of Σµν , in (4.12), follow the trans-

formation laws for the generators of rotations and boosts. Let us assume that the velocity

vector vvv, for going over to a moving frame of reference, has the direction of one of the co-

ordinate axes, say {ea}a=1,2,3 . Consider also “orthogonal decompositions”, ΣΣΣ = ΣΣΣ‖+ΣΣΣ⊥

and ααα = ααα‖+ααα⊥, in the corresponding parallel and perpendicular directions, respectively.

Then, under the Lorentz transformation,

S−1
Λ

ΣΣΣ‖SΛ = ΣΣΣ‖, S−1
Λ

ααα‖SΛ = ααα‖ (4.52)

and

S−1
Λ

ΣΣΣ⊥SΛ =
ΣΣΣ⊥− i(vvv×ααα)√

1− v2
, S−1

Λ
ααα⊥SΛ =

ααα⊥− i(vvv×ΣΣΣ)√
1− v2

, (4.53)
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by analogy with the transformations of electromagnetic fields in classical electrodynamics

[115], [116], [21], [209].

The corresponding invariants [158] are given by

I1 = ΣµνΣ
µν =−2

(
ααα

2 +ΣΣΣ
2)=−12 (4.54)

and

I2 = eµνστΣ
µν

Σ
στ =−8iααα ·ΣΣΣ =−2iΣµν

Σµνγ5 =−2iI1γ5 = 24iγ5, (4.55)

in view of the first identity (4.18). The invariant nature of the helicity and relativistic

rotation of the particle spin [158] can be naturally explained from these transformations.

Example. If vvv = ve1, we set ΣΣΣ‖ = Σ1, ΣΣΣ⊥ = {Σ2,Σ3} and ααα‖ = α1, ααα⊥ = {α2,α3} for

the boost SL given by (4.21). By the transformation law (4.52), one gets S−1Σ1S = Σ1,

S−1α1S = α1, which is evident. In view of (4.53), the following matrix identities,

S−1
Σ2S =

Σ2 + ivα3√
1− v2

, S−1
Σ3S =

Σ3− ivα2√
1− v2

(4.56)

and

S−1
α2S =

α2 + ivΣ3√
1− v2

, S−1
α3S =

α3− ivΣ2√
1− v2

, (4.57)

hold. Indeed, in the first relation,

S−1
Σ2S =

(
cosh

ϑ

2
+α1 sinh

ϑ

2

)
Σ2

(
cosh

ϑ

2
−α1 sinh

ϑ

2

)
= Σ2 cosh2 ϑ

2
+(α1Σ2−Σ2α1)cosh

ϑ

2
sinh

ϑ

2
−α1Σ2α1 sinh2 ϑ

2

= Σ2 coshϑ + iα3 sinhϑ =
Σ2 + ivα3√

1− v2
,

provided tanhϑ = v. Verifications of the remaining identities are similar.
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4.1.6 Hamiltonian and Energy Balance

The energy-momentum (density) four-vector is given by T 0ν and, in view of (4.50) and

(4.41), one gets

T 00 = iψγ
0
∂

0
ψ = mψψ− iψγ

0
Σ

0p
∂pψ (4.58)

= ψ
† (−iααα ·∇+mβ )ψ = ψ

†Hψ.

Here,

i∂0ψ = Hψ, H =−iααα ·∇+mβ , (4.59)

which presents a familiar Hamiltonian form of the Dirac equation. The differential balance

equation take the form

∂0

(
ψ

†Hψ

)
+div

(
ψ

†
αααHψ

)
= 0, (4.60)

where αααH = ∇×ΣΣΣ− i∇−mγγγ in view of (4.43).

4.1.7 The Pauli-Lubański Vector and Dirac’s Equation for a Free Particle

One can easily see that equation (4.40) is related to the Pauli-Lubański vector in view

of the dual identities (4.18). Indeed,

Σ
µν =

i
2

eµνστ (γ5Σστ) , γ5Σστ = Σστγ5, (4.61)

and
i
2

eµνστ
γ5Σστ pνψ =−gµν (pν −mγν)ψ.

By “index manipulations”,

1
2

eµνστ (i∂ ν)(−iΣστ)ψ =
1
2

eµνστ∂
ν
Σ

στ
ψ (4.62)

= γ5
(
i∂µ −mγµ

)
ψ =

(
i∂µ +mγµ

)
γ5ψ
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with the help of familiar properties of the gamma matrices, namely, γ2
5 = I and γ5γµ =

−γµγ5. As a result, we arrive at the following equations,

1
2

eµνστ∂
ν (γσ

γ
τ
ψ) =

(
i∂µ +mγµ

)
γ5ψ, (4.63)

with summation over any two repeated indices.

The latter equation can also be obtained in view of (4.29), by letting pµ = i∂µ in oper-

ator relation (4.4). Once again, our goal is to emphasize that both overdetermined systems

(4.40) and (4.63), which are related to the Pauli-Lubański vector, are equivalent to Dirac’s

equation in vacuum (4.10).

In components, by (4.63), for the rotations ΣΣΣ and boosts ααα the following standard equa-

tions hold

i(∇ ·ΣΣΣ)ψ = (i∂0 +mγ0)γ5ψ (4.64)

and

i∂0ΣΣΣψ− (∇×ααα)ψ = (i∇−mγγγ)γ5ψ, (4.65)

respectively. Once again, this system is overdetermined and by a proper matrix multiplica-

tion, each of the four equations (4.64)–(4.65) can be reduced to a single Dirac’s equation.

We leave the details to the reader.

4.1.8 Relativistic Definition of Spin for Dirac Particles

In view of (4.4) and (4.2), one gets

4wµwµ =
(

pµ +mγµ

)
γ5 (pµ +mγ

µ)γ5

=
(

pµ +mγµ

)
γ

2
5 (pµ −mγ

µ)

= pµ pµ −m2
γµγ

µ =−3m2,

where s(s+1) = 3/4, or s = 1/2, in covariant form.
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On the other hand, introducing the familiar generators MMM = (i/2)ΣΣΣ and NNN = (1/2)ααα

for the rotations and boosts, respectively, one gets

NNN2 =−MMM2 = 3/4, MMM ·NNN = i(3/4)γ
5. (4.66)

In view of ΣΣΣγ5 = γ5ΣΣΣ = ααα , in the complex space of the bispinors under consideration, we

arrive at

MMM±iNNN ===
i
2
(1∓ γ5)ΣΣΣ (4.67)

and the Casimir operators of the proper orthochronous Lorentz group are given by

(MMM±iNNN)2 /4 = −3(1∓ γ5)
2 /16 = −3(1∓ γ5)/8. Here, MMM2 = −s(s+1) = −3/4, which

implies, once again, that the spin is equal to 1/2 (we have chosen real-valued boost gen-

erators; see also [10], [12], [15], [29], [85], [181], [187] and [226] for more details on the

Lorentz group representations).

Miscellaneous. In addition,

1
2

eµνστ∂
ν (γµ

γ
σ

γ
τ
ψ) = 3iγ5

γν∂
ν
ψ = 3mγ

5
ψ, (4.68)

in view of familiar relations:

γ
5 =

i
4!

eµνστγ
µ

γ
ν
γ

σ
γ

τ , γ
5
γµ =

i
3!

eµνστγ
ν
γ

σ
γ

τ (4.69)

(see, for example, [158]).

4.2 Weyl Equation for Massless Neutrinos

The complex unimodular matrix group SL(2,C) is a two-fold universal covering group

of the Lorentz group SO(1,3) (see, for example, [15], [29], [85], [181]). In this section,

we shall use this connection in order to analyze the two-component spinor field associated

with Weyl’s equation.
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4.2.1 Rotations, Boosts, and their Generators

Let us consider the fundamental representation of SL(2,C) , namely, we take a spinor

field,

φ (x) =

 φ1

φ2

 ∈ C2 , (4.70)

and postulate the transformation law under the proper orthochronous Lorentz group as

follows

φ
′ (x′)= SΛφ (x) , x′ = Λx, SΛ = exp

(
1
4

θµνΣ
µν

)
. (4.71)

Explicitly, these transformations include rotations,

SR = eiθ(nnn···σσσ)/2 = cos
θ

2
+ i(nnn ···σσσ)sin

θ

2
, (nnn ···σσσ)2 = I (4.72)

about the coordinate axes nnn = {e1,e2,e3} , and boosts,

SL = e−ϑ(nnn···σσσ)/2 = cosh
ϑ

2
− (nnn ···σσσ)sinh

ϑ

2
, nnn =

vvv
v

(4.73)

in the directions nnn = {e1,e2,e3} , respectively, when the familiar relations,

v = tanhϑ , coshϑ =
1√

1− v2
, sinhϑ =

v√
1− v2

(c = 1) , (4.74)

hold. (Here, σ1, σ2, σ3 are the Pauli matrices with the products given by σpσq = iepqrσr +

δpq and {ea}a=1,2,3 is an orthonormal basis in R3 .)

The action of the generators Mαβ = xβ ∂ α − xα∂ β takes the form

Mαβ
φ (x) :=−

(
d

dθαβ

φ
′ (Λx)

)∣∣∣∣
θαβ=0

(4.75)

=−
(

dS
dθαβ

)∣∣∣∣
θαβ=0

φ (x) =−1
2

Σ
αβ

φ (x)

for the corresponding one-parameter subgroups: SΛ = exp
(

θαβ Σαβ/2
)
(α,β = 0,1,2,3

are fixed with no summation).
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In block form, the generators of this spinor representation are given by5

Σ
αβ =−Σ

βα =

 0 −σq

σp iepqrσr

=



0 −σ1 −σ2 −σ3

σ1 0 iσ3 −iσ2

σ2 −iσ3 0 iσ1

σ3 iσ2 −iσ1 0


(4.76)

and the following self-duality identity holds

eµνστΣ
στ = 2iΣµν = 2igµσ gντΣ

στ , (4.77)

where

Σαβ = gαµgβνΣ
µν =

 0 σq

−σp iepqrσr

=



0 σ1 σ2 σ3

−σ1 0 iσ3 −iσ2

−σ2 −iσ3 0 iσ1

−σ3 iσ2 −iσ1 0


(4.78)

stated here for the reader’s convenience.

4.2.2 The Pauli-Lubański Vector and Weyl’s Equation

Letting λ =−1/2 in (4.3), one gets

eµνστ (i∂ ν)(−iMστ)φ =−1
2

eµνστ∂
ν
Σ

στ
φ =−i∂µφ (4.79)

by (4.75). With the help of (4.77), we finally arrive at the following overdetermined system:

Σ
µν

∂νφ = ∂
µ

φ , (4.80)

which takes the explicit form,

−(σσσ ·∇)φ = ∂0φ , (4.81)

∂0σσσφ + i(∇×σσσ)φ =−∇φ .

5Another choice of the generators in the transformation laws (4.71)–(4.73), corresponds to ϑ →−ϑ ; see,

for example, [187].
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The latter vectorial equation can be obtained from the first one by matrix multiplication

with the help of familiar products of the Pauli matrices. Moreover, in (4.3), only the value

λ =−1/2 results in a consistent system, defining the spin as s = |λ |= 1/2.

Thus, the relativistic two-component Weyl equations for a massless particle with the

spin 1/2, namely, ∂0φ +(σσσ ·∇)φ = 0, can be derived from the representation theory of the

Poincaré group with the aid of the Pauli-Lubański vector6.

4.2.3 Covariance

Equations (4.80) are covariant under a proper Lorentz transformation. In view of the

laws (4.71) one gets

S−1
Λ

Σ
στSΛ = Λ

σ
µΛ

τ
νΣ

µν (4.82)

and
1
2

[
Σ

αβ , Σ
γδ

]
= gαγ

Σ
βδ −gαδ

Σ
βγ +gβδ

Σ
αγ −gβγ

Σ
αδ . (4.83)

(cf. Sections 5.2–5.3).

On the other hand, with the help of the Pauli-Lubański vector, from (4.79) one can get,

1
2

eµνστ∂
′ν

Σ
στ

φ
′ = i∂ ′µφ

′, (4.84)

in the new system of coordinates, when φ ′ (x′) = Sφ (x) and x′ = Λx. Let us multiply both

sides of the latter equation by S−1Λ
µ

λ
from the left and then use (4.82) together with the

two convenient transformations,

S∂λ φ = Λ
µ

λ
∂
′
µφ
′, ∂

′ν
φ
′ = Λ

ν
κS∂

κ
φ , (4.85)

6Some authors, see for example, [184], [185], suggest that an empirical condition is required in order to

quantize the value of spin for a massless particle by (4.3). As we have just demonstrated, for Weyl’s equation,

it is a misconception. Indeed, the full relativistic analysis automatically includes the quantization rule of the

corresponding spin and helicity as a consistency condition of the overdetermined system (4.80).
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which can be readily verified with the aid of

(
Λ
−1)λ

ν
Λ

ν
τ = δ

λ
τ ,

(
Λ
−1)λ

ν
= gλσ

Λ
µ

σ gµν . (4.86)

As a result,

(detΛ)eλκρχ∂
κ

Σ
ρχ

φ = i∂λ φ , (4.87)

in view of the following determinant identity [158]:

eµνστΛ
µ

λ
Λ

ν
κΛ

σ
ρΛ

τ
χ = (detΛ)eλκρχ . (4.88)

This consideration reveals the pseudo-vector character of the Pauli-Lubański operator.

Note. Weyl’s equation (4.81) was originally introduced in [228] and then quickly re-

jected [169], being “resurrected” only after the discovery of parity violation in beta decay

[180], [234]. (The experimentally detected oscillation among the different flavors of neu-

trinos leads us to believe that they are not massless after all [105], [149], [175].)

Let vvv, the velocity vector of the moving frame of reference, lie along one of the co-

ordinate axes, say {ea}a=1,2,3 . Also, let σσσ = σσσ‖+σσσ⊥ be the corresponding “orthogonal

decomposition” in parallel and perpendicular directions, respectively. These components

transform as,

S−1
Λ

σσσ‖SΛ = σσσ‖, S−1
Λ

σσσ⊥SΛ =
σσσ⊥− i(vvv×σσσ)√

1− v2
, (4.89)

under a Lorentz transformation, thus resembling the transformations of electromagnetic

fields in classical electrodynamics [115], [116], [154], [21], [209].

Example. Let vvv = ve1. Then σσσ‖ = σ1, σσσ⊥ = {σ2,σ3} and

SL = e−(ϑ/2)σ1 = cosh
ϑ

2
−σ1 sinh

ϑ

2
, S−1

L = e(ϑ/2)σ1 = cosh
ϑ

2
+σ1 sinh

ϑ

2
. (4.90)

By the transformation law (4.89), one should get S−1σ1S = σ1, which is obvious, and

S−1
σ2S =

σ2 + ivσ3√
1− v2

, S−1
σ3S =

σ3− ivσ2√
1− v2

(4.91)
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for the corresponding Lorentz boost. Let us directly verify, for instance, the first relation.

Indeed,

S−1
σ2S =

(
cosh

ϑ

2
+σ1 sinh

ϑ

2

)
σ2

(
cosh

ϑ

2
−σ1 sinh

ϑ

2

)
= σ2 cosh2 ϑ

2
+(σ1σ2−σ2σ1)cosh

ϑ

2
sinh

ϑ

2
−σ1σ2σ1 sinh2 ϑ

2

= σ2 coshϑ + iσ3 sinhϑ =
σ2 + ivσ3√

1− v2
,

provided that tanhϑ = v. The proof of the last identity is similar.

As is well-known, under spatial rotations the set of three Pauli matrices σσσ transform as

a 3D vector. For instance,

e−i(θ/2)σ3


σ1

σ2

σ3

ei(θ/2)σ3 =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1




σ1

σ2

σ3

 . (4.92)

4.2.4 An Alternative Derivation

Denoting, σ µ = (σ0 = I,σ1,σ2,σ3) , one can rewrite Weyl’s equation in a more familiar

form [173], [187]:

σ
µ

∂µφ = 0. (4.93)

Then, under the Lorentz transformations,

S†
Λ

σ
µSΛ = Λ

µ

νσ
ν (4.94)

and (
Σ

αβ

)†
σ

µ +σ
µ

Σ
αβ = 2

(
gβ µ

σ
α −gαµ

σ
β

)
, (4.95)

which also implies the covariance7.

7Relations of this spinor representation with Maxwell’s equations are discussed in section 6.2.
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Examples. In particular, one can easily verify that

e−(ϑ/2)σ1



σ0

σ1

σ2

σ3


e−(ϑ/2)σ1 =



coshϑ −sinhϑ 0 0

−sinhϑ coshϑ 0 0

0 0 1 0

0 0 0 1





σ0

σ1

σ2

σ3


, (4.96)

with tanhϑ = v, and

e−i(θ/2)σ3



σ0

σ1

σ2

σ3


ei(θ/2)σ3 =



1 0 0 0

0 cosθ sinθ 0

0 −sinθ cosθ 0

0 0 0 1





σ0

σ1

σ2

σ3


(4.97)

for the corresponding boost and rotation, respectively.

4.3 Proca Equation

The fundamental four-vector representation of the proper orthochronous Lorentz group

SO+ (1,3) is related to the relativistic wave equation for a massive particle with spin 1.

4.3.1 Massive Vector Field

The relativistic equation of motion for a real or complex four-vector field Aµ =
(
A0,A

)
with a positive mass m > 0 can be derived in a natural way with the help of the Pauli-

Lubański vector. By definition,

wµAα =
1
2

eµνστ∂
νMστAα =

1
2

eµνστ∂
ν

(
(mστ)α

ρ
Aρ

)
(4.98)

=
1
2

eµνστ∂
ν (gσαAτ −gταAσ ) =−gανeµνστ∂

σ Aτ ,

where the matrix form of the generators (4.25) has been used. The standard decomposition,

∂
µAν =

1
2
(∂ µAν −∂

νAµ)+
1
2
(∂ µAν +∂

νAµ) ,
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followed by the dual tensor relation,

Fµν = ∂
µAν −∂

νAµ , eµνστFστ =−2Gµν , (4.99)

gives the explicit action of the Pauli-Lubański operator on the four-vector field:

wµAα = gανGµν = gµνGνα , wµAα = Gµα . (4.100)

It is worth noting that this results in a second rank four-tensor.

In a similar fashion, for the squared operator,

w2Aα = wµ
(
wµAα

)
=

1
2

eµνστ∂
ν (MστGµα) . (4.101)

But, in view of (4.7) of [115],

MστGµα = gσ µGτα −gτµGσα +gσαGµτ −gταGµσ , (4.102)

and with the help of a companion dual tensor identity, eµνστGστ = 2Fµν , looking for a

spin-1 particle one gets

w2Aα = gσα
∂

ν
(
eνσ µτGµτ

)
= 2gσα

∂
ν (Fνσ ) = 2∂νFνα =−2m2Aα

as a consequence of (4.2). As a result, we have arrived at the Proca equation for a vector

particle with a finite mass [176],

∂νFνµ +m2Aµ = 0, Fµν = ∂
µAν −∂

νAµ , (4.103)

directly from the representation theory of the Poincaré group. In view of w2 =−m2s(s+1)

=−2m2, one concludes that the spin of the particle is equal to one.

Moreover,

∂µAµ = 0, �Aµ =−m2Aµ , m > 0, (4.104)

in view of

0≡ ∂µ∂νFνµ =−m2
∂µAµ (4.105)
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and

∂νFνµ = ∂ν (∂
νAµ −∂

µAν) = ∂ν∂
νAµ =−m2Aµ . (4.106)

The massless case of the Proca equation, m = 0, reveals a gauge invariance. If Aµ → A′µ =

Aµ +∂µ f , then F ′µν = ∂µ (Aν +∂ν f )−∂ν

(
Aµ +∂µ f

)
= Fµν .

4.3.2 An Alternative “Bispinor” Derivation

Let us consider a second rank bispinor of the form8 Q = Aλ γλ = Aλ γλ , where{
γλ

}
λ=0,1,2,3

are the standard gamma matrices. We shall use the following transformation

law for a proper Lorentz transformation,

Q′
(
x′
)
= SΛQ(x)S−1

Λ
, x′ = Λx, (4.107)

where the matrix SΛ is given by (4.11), as in the case of Dirac’s equation. Then Aλ must

be a four-vector. Indeed,

Q′ = Aλ δ
λ
σ

(
Sγ

σ S−1)= (gτλ Aλ Λ
ν
τ

)
gµν

[
Λ

µ

σ

(
Sγ

σ S−1)]= A′νγν , (4.108)

A′ν = Λ
ν
τAτ ,

in view of an “inversion” of (4.9), Λ
µ

σ

(
Sγσ S−1)= γµ , and the familiar property: AµBµ =

invariant or

gµνΛ
µ

σ Λ
ν
τgτλ = δ

λ
σ . (4.109)

In this “bispinor representation”, the action of generators of the corresponding one-

parameter subgroups is given by

Mαβ Q :=−
(

d
dθαβ

Q′ (Λx)
)∣∣∣∣

θαβ=0
=

1
2

(
Σ

αβ Q−QΣ
αβ

)
. (4.110)

By letting Q = γλ Aλ , one gets:

Mαβ Q =
(

gβλ
γ

α −gαλ
γ

β

)
Aλ ,

8This is the so-called “Feynman slash” notation from quantum electrodynamics [71].
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in view of the familiar commutator (4.27). As a result, we obtain wµQ = Gµτγτ for the

action of the Pauli-Lubański operator on the bispinor Q, which also follows from (4.100).

One gets, in a similar fashion, that

w2Q =
1
2

eµνστ∂
ν

(
MστGµλ

)
γλ , (4.111)

where equation (4.102) holds, once again, in view of the transformation law of the four-

tensor Gµλ . As a result, Proca’s equation follows.

4.3.3 Maxwell’s Equations vs Proca Equation

For the real-valued vector potential Aµ and m= 0, the Proca equation (4.103) is reduced

to the Maxwell equations in vacuum. Indeed, in view of the dual relation,

6∂νGµν =−eµνστ (∂νFστ +∂σ Fτν +∂τFνσ ) = 0, (4.112)

both pairs of Maxwell’s equations can be written together in the following complex form

∂νQµν = 0, Qµν = Fµν − i
2

eµνστFστ , (4.113)

with the help of a self-dual complex four-tensor [27], [115]:

2iQµν = eµνστQστ , eµνστQστ = 2iQµν . (4.114)

The corresponding overdetermined system of Maxwell’s equations in vacuum, which is

related to the Pauli-Lubański vector, is investigated in [115]; see equation (5.2) there and

section 5.5 below. (Two different spinor forms of Maxwell’s equation will be discussed in

section 6.)

4.4 Complex Vector Field

Finally, we would like to discuss the fundamental representation for the complex or-

thogonal group SO(3,C) in connection with Maxwell’s equations in vacuum.
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4.4.1 Vector Covariant Form

As is well-known, the transformation laws of the complex electromagnetic field F(rrr, t)=

E + iH ∈ C3 in vacuum can be written in terms of SO(3,C) rotations. In addition to

the standard rotations of the frame of reference, the Lorentz transformations are equiva-

lent to rotations through imaginary angles thus preserving the relativistic invariant F2 =

E2 +H2 + 2iE ·H, which can be thought of as a “complex length” of this vector [122],

[154]. In these transformations, F′ (x′) = SΛF(x) , x′ = Λx, (or F ′p (x
′) = apqFq (x) for a

given complex orthogonal matrix), one can choose SR = e−ω(n·s) and SL = e−iυ(n·s) for the

rotations and boosts, respectively. Here, n = {e1,e2,e3} , when {ea}a=1,2,3 is an orthonor-

mal basis in R3 , and s1, s2, s3 are the real-valued spin matrices [214]:

s1 =


0 0 0

0 0 −1

0 1 0

 , s2 =


0 0 1

0 0 0

−1 0 0

 , s3 =


0 −1 0

1 0 0

0 0 0

 , (4.115)

such that
[
sp,sq

]
= spsq− sqsp = epqrsr and s2

1 + s2
2 + s2

3 = −2. (In this representation the

matrices MMM = s and NNN = is obey the commutation law of the generators of the proper

orthochronous Lorentz group.)

It can be directly verified that the corresponding generators,

Σ
αβ =−Σ

βα =

 0 isq

−isp epqrsr

=



0 is1 is2 is3

−is1 0 s3 −s2

−is2 −s3 0 s1

−is3 s2 −s1 0


, (4.116)

form a self-dual four-tensor

2iΣµν = eµνστ
Σστ , eµνστΣ

στ = 2iΣµν . (4.117)

As a result, in this realization, Mαβ F = mαβ F and, in view of (4.3) and (4.117), we arrive

91



at the set of overdetermined equations:

(Σµν +gµν)∂νF = 0, (4.118)

where

S−1
Λ

Σ
µνSΛ = Λ

µ

σ Λ
ν
τΣ

στ , x′µ = Λ
µ

σ xσ , F′
(
x′
)
= SΛF(x) (4.119)

under a proper Lorentz transformation. Once again, the latter equations, that, as we shall

see later, determine the complete dynamics of the electromagnetic field in vacuum, are

obtained here by a pure group-theoretical consideration up to an undetermined sign of the

fixed constant in (4.3).

4.4.2 Commutators

For a one-parameter transformation in the plane (α,β ) , when

Λ
(
θαβ

)
= exp

(
−θαβ mαβ

)
,

(
mαβ

)µ

ν
= gαµ

δ
β

ν −gβ µ
δ

α
ν (4.120)

and

SΛ = exp
(
−θαβ Σ

αβ

)
, θαβ =−θβα (4.121)

(α,β = 0,1,2,3 are fixed), one gets

eθαβ Σαβ

Σ
µνe−θαβ Σαβ

= Λ
µ

σ

(
θαβ

)
Λ

ν
τ

(
θαβ

)
Σ

στ . (4.122)

The differentiation
(
d/dθαβ

)∣∣
θαβ=0 , results in a familiar law,

[
Σ

αβ , Σ
µν

]
:= Σ

αβ
Σ

µν −Σ
µν

Σ
αβ (4.123)

= gαν
Σ

β µ −gβν
Σ

αµ +gαµ
Σ

βν −gβ µ
Σ

αν ,

which can be directly verified in components with the help of commutators of the spin

matrices (4.115) that form the four-tensor (4.116).
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4.4.3 Lorentz Invariance

With the help of (4.118)–(4.119), under a Lorentz transformation,

S−1 [(
Σ
′µν +g′µν

)
∂
′
νF′
(
x′
)]

= 0, (4.124)

where Σ′µν = Σµν = inv and g′µν = gµν = inv. Then

0 =
[
S−1 (Σµν +gµν)S

]
S−1

∂
′
νF′
(
x′
)

(4.125)

= Λ
µ

σ (Σστ +gστ)S−1 [
Λ

ν
τ∂
′
νF′
(
x′
)]

= Λ
µ

σ (Σστ +gστ)S−1S∂τF(x)

by Λν
τ∂ ′νF′ (x′) = ∂τF(x) . Thus, our equation (Σµν +gµν)∂νF(x) = 0 preserves its covari-

ant form for all real and complex rotations S ∈ SO(3,C) .

4.4.4 Vector Covariant Form vs Traditional Form of Maxwell’s Equations

A vector form of (4.118) is given by

(∇ · s)F = i∂0F (4.126)

and

∂0s F+ i(∇× s)F = i∇F. (4.127)

As it has been pointed out in [115], equation (4.126) implies the complex Maxwell equa-

tion, curlF = i∂0F. The first component of (4.127) is given by ∂0s1F+ i(∂2s3−∂3s2)F =
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i∂1F, or

∂0


0 0 0

0 0 −1

0 1 0




F1

F2

F3

+ i∂2


0 −1 0

1 0 0

0 0 0




F1

F2

F3



− i∂3


0 0 1

0 0 0

−1 0 0




F1

F2

F3

= i∂1


F1

F2

F3


and

−i∂2F2− i∂3F3 = i∂1F1,

−∂0F3 + i∂2F1 = i∂1F2,

∂0F2 + i∂3F1 = i∂1F3.

As a result, divF= 0 and (curlF)2,3 = i∂0 (F)2,3 . (Cyclic permutations of the spatial indices

cover the two remaining cases.)

4.4.5 An Alternative Form of Maxwell’s Equations

Complex covariant form of Maxwell’s equations, which was introduced in [128] (see

also [115]) , can be presented as follows

(∂0,∂1,∂2,∂3)



0 −F1 −F2 −F3

F1 0 iF3 −iF2

F2 −iF3 0 iF1

F3 iF2 −iF1 0


= ( j0, j1, j2, j3) , (4.128)
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or ∂Q = j, by matrix multiplication. Here, ∂ = (∂0,∂1,∂2,∂3) , j = ( j0, j1, j2, j3) , and

J = (J1,J2,J3) such that

Q = F ·J = F1



0 −1 0 0

1 0 0 0

0 0 0 i

0 0 −i 0


(4.129)

+F2



0 0 −1 0

0 0 0 −i

1 0 0 0

0 i 0 0


+F3



0 0 0 −1

0 0 i 0

0 −i 0 0

1 0 0 0


.

These matrices are transformed as a dual complex vector in C3 ,

ΛJpΛ
T = aqpJq, (4.130)

under a proper Lorentz transformation. In infinitesimal form,

mαβ J+J
(

mαβ

)T
=
(

Σ
αβ

)T
J, (4.131)

which gives an alternative representation of the group SO(3,C) in a subspace of complex

4×4 matrices. (Details are left to the reader.)

As a result, ΛQΛT = Q′ and, in “new” coordinates, ∂ ′Q′ = j′, provided that ∂ ′ =

∂
(
Λ−1) and j′ = jΛT .

4.5 On Spinor Forms of Maxwell’s Equations

In conclusion, the complex matrix group SL(2,C) has a representation of the proper

orthochronous Lorentz group SO+ (1,3) by the second rank spinors.
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4.5.1 Spinor Covariant Form

The complex electromagnetic field in vacuum, F = E+ iH, can also be written in a

familiar form of the following 2×2 matrix:

Q = σσσ ·F = σ1F1 +σ2F2 +σ3F3 =

 F3 F1− iF2

F1 + iF2 −F3

 , (4.132)

where σ1, σ2, σ3 are the standard Pauli matrices. The corresponding transformation law,

Q′
(
x′
)
= SΛQ(x)S−1

Λ
, x′ = Λx, SΛ = exp

(
1
4

θµνΣ
µν

)
, (4.133)

under a proper Lorentz transformation preserves two invariants trQ = 0 and detQ = −F2.

Here, SΛσpS−1
Λ

= apqσq and F ′p (x
′) = apqFq (x) , with aqraqs = δrs for a given complex

orthogonal 3×3 matrix (see section 5.1).

In this “spinor” representation, one gets

Mαβ Q =−
(

d
dθαβ

Q′ (Λx)
)∣∣∣∣

θαβ=0
=−1

2

(
Σ

αβ Q−QΣ
αβ

)
(4.134)

for generators of the one-parameter subgroups. Here, as in the case of Weyl’s equation, the

matrices Σαβ are given by (4.76), but now, in view of (4.134), equation (4.3) with λ =−1

takes the form,
1
2
(
Σµν∂

νQ−∂
νQΣµν

)
= ∂µQ, (4.135)

when the self-duality property (4.77) is applied.

Equations (4.135), obtained with the aid of the Pauli-Lubański vector, are equivalent to

the system of complex Maxwell equations in vacuum,

divF = 0, curlF = i∂0F. (4.136)

Indeed, when µ = 0, with the help of (4.78) one gets

−1
2
(σp∂pQ−∂pQσp) = ∂0Q,
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or

−
(
σpσq−σqσp

)
∂pFq = 2∂0 (σrFr) ,

which gives the second complex Maxwell equation (4.136) in view of the commutation

relation,
[
σp,σq

]
= 2iepqrσr.

When µ = p = 1,2,3, in a similar fashion,

2∂pQ = ∂0Qσp−σp∂0Q+ iepqr
(
∂qQσr−σr∂qQ

)
, (4.137)

and letting Q = Fsσs, we obtain

2∂p (Fsσs) = (σsσp−σpσs)∂0Fs

+ iepqr (σsσr−σrσs)∂qFs.

Evaluation of the commutators,

σs∂pFs = iesplσl∂0Fs + epqreslrσl∂qFs, (4.138)

and a familiar identity,

epqreslr =

∣∣∣∣∣∣∣
δps δpl

δqs δql

∣∣∣∣∣∣∣= δpsδql−δplδqs, (4.139)

result in the system of Maxwell’s equations (4.136).

4.5.2 Traditional Spinor Form of Maxwell’s Equations

Equations (4.135), that are obtained here with the help of the Pauli-Lubański vector,

give an alternative (vacuum) version of the spinor form of Maxwell’s equations,

(∂0 +σσσ ·∇)(σσσ ·F) = j0 +σσσ · j, (4.140)
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or, explicitly, ∂0 +∂3 ∂1− i∂2

∂1 + i∂2 ∂0−∂3


 F3 F1− iF2

F1 + iF2 −F3

=

 j0 + j3 j1− i j2

j1 + i j2 j0− j3

 , (4.141)

which was originally established in [128] (see also [181]).

Let Q = σσσ ·F and D = σ µ∂µ , J = σ µ jµ , when DQ = J . Then SΛQSΛ−1 = Q′ and,

in view of (4.86) and (4.94), one gets

S†
Λ−1DSΛ−1 = D ′, S†

Λ−1J SΛ−1 = J ′ (4.142)

under a proper Lorentz transformation. In “new” coordinates, equation (4.141) should take

a compact form, D ′Q′ = J′. Thus(
S†

Λ−1DSΛ−1

)
SΛQSΛ−1 = S†

Λ−1J SΛ−1, (4.143)

or, S†
Λ−1 (DQ = J )SΛ−1, as a short proof of the covariance of Maxwell’s equations.

4.6 Massive Symmetric Four-tensor Field

4.6.1 Group-Theoretical Derivation

The relativistic wave equation for a massive particle of spin two, described by a real

or complex symmetric four-tensor field Aµν (x) = Aνµ (x) (see [74], [77], [76]), can be

obtained in a way that is similar to our study of the Proca equation in section 4. Once

again,

wµAαβ =
1
2

eµνστ∂
ν

(
MστAαβ

)
(4.144)

= −gανeµνστ∂
σ Aτβ −gβνeµνστ∂

σ Aτα

and

eµνστ∂
σ Aτβ =

1
2

eµνστFστβ =−G β

µν , (4.145)
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where, by definition, Fστβ = ∂ σ Aτβ −∂ τAσβ and eµνστFστβ =−2G β

µν . Thus

wµAαβ = gανG β

µν +gβνG α
µν , (4.146)

or

wµAαβ = Gµαβ +Gµβα , wµAαβ = Gµαβ +Gµβα (4.147)

and

w2Aαβ = wµ

(
wµAαβ

)
= wµGµαβ +wµGµβα . (4.148)

In a similar fashion, one can show that

wµGµαβ = 2∂νFναβ +∂νFνβα (4.149)

+∂
α

(
Fβστgστ

)
−gαβ

∂ν (Fνστgστ) ,

as a result of an elementary but rather tedious four-tensor algebra calculation with the help

of a familiar relation

eµνστeµκλρ =−

∣∣∣∣∣∣∣∣∣∣
δ ν

κ δ ν

λ
δ ν

ρ

δ σ
κ δ σ

λ
δ σ

ρ

δ τ
κ δ τ

λ
δ τ

ρ

∣∣∣∣∣∣∣∣∣∣
. (4.150)

For a massive spin-2 field, the second Casimir operator is equal to w2Aαβ =−6m2Aαβ ,

and we obtain

∂νFναβ +∂νFνβα − 2
3

gαβ
∂ν (Fνστgστ) (4.151)

+
1
3

∂
α

(
Fβστgστ

)
+

1
3

∂
β (Fαστgστ) =−2m2Aαβ ,

where

Fναβ = ∂
νAαβ −∂

αAνβ =−Fανβ , (4.152)

Fνστgστ = ∂
νA−∂τAντ , A = gστAστ ,

and Fαβγ +Fβγα +Fγαβ = 0 provided Aαβ = Aβα .
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In terms of potentials, one gets

∂
2Aαβ − 2

3

(
∂

α
∂νAνβ +∂

β
∂νAνα

)
+

1
3

∂
α

∂
β A (4.153)

−1
3

gαβ
(
∂

2A−∂µ∂νAµν
)
=−m2Aαβ ,

with ∂µ∂νAµν = 0, if m > 0, in view of

0≡ w2 (
∂µ∂νAµν

)
= ∂µ∂ν

(
w2Aµν

)
=−6m2

∂µ∂νAµν .

The same results can be derived by differentiation from (4.151) or, independently, with the

help of an operator identity

w2 =−1
2

∂
2 (MστMστ)−∂µ∂

ν (Mµσ Mσν) .

Moreover, equation (4.153) is reduced to

2
(

∂
α

∂νAνβ +∂
β

∂νAνα

)
−∂

α
∂

β A+gαβ
∂

2A = 0 (4.154)

with the help of the first Casimir operator, ∂ 2Aαβ =−m2Aαβ . Multiplication of (4.154) by

gαβ with contraction over two repeated indices results in ∂ 2A = 0. Then A = 0, due to

0 = ∂
2A = ∂

2 (gµνAµν
)
= gµν∂

2 (Aµν) =−m2A, m > 0.

Thus, the system of wave equations for a massive spin-2 particle has the form

∂
2Aµν +m2Aµν = 0, ∂

α

(
∂νAνβ

)
+∂

β (∂νAνα) = 0, (4.155)

subject to A = gµνAµν = ∂µ∂νAµν = 0. It is worth noting, once again, that we have derived

these equations by using the Pauli-Lubański vector and the relativistic definition of mass

and spin in terms of Casimir operators of the Poincaré group.

In the massless limit m→ 0, instead of (4.155), one has ∂ 2Aµν = 0 and ∂ 2A = 0 subject

to

∂
α

(
∂νAνβ − 1

4
∂

β A
)
+∂

β

(
∂νAνα − 1

4
∂

αA
)
=

1
2

gαβ
∂µ∂νAµν , (4.156)
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in a similar fashion. Moreover, if m= 0, equation (4.151) is invariant under a familiar gauge

transformation Aαβ → A′
αβ

+∂α fβ +∂β fα provided that ∂ ν (∂ν fα −∂α fν) = 0 (Maxwell’s

equations in vacuum).

4.6.2 An Alternative Gauge Condition

In view of the following identity,

∂
α

(
∂νAνβ − 1

4
∂

β A
)
+∂

β

(
∂νAνα − 1

4
∂

αA
)

= ∂
α

∂νAνβ +∂
β

∂νAνα − 1
2

∂
α

∂
β A,

one can impose another condition,

4∂νAµν −∂
µA = 0, (4.157)

in order to simplify (4.153):

∂
2Aµν − 1

4
gµν

∂
2A =−m2Aµν . (4.158)

Moreover, by contraction,9

0≡ ∂
2A− 1

4
gµνgµν

∂
2A =−m2A, A = gστAστ = 0,

if m > 0. As a result, we obtain

∂
2Aµν +m2Aµν = 0, ∂νAµν = ∂νAνµ = 0. (4.159)

These equations were originally introduced by Fierz and Pauli [74], [77], [76] with the help

of a Lagrangian approach. It is worth noting that our equations (4.155) are necessary and

sufficient with the relativistic definition of mass and spin-2 of the field in question, whereas

traditional equations (4.159) give only sufficient conditions.

9Condition A = 0 is not required in the massless limit.
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In addition, it should be noted that from (4.155) subject to A= gµνAµν = ∂µ∂νAµν = 0,

it follows that

∂
2 (∂νAνµ)+m2 (∂νAνµ) = 0, ∂

α

(
∂ν∂β Aνβ

)
+∂

2 (∂νAνα) = 0.

Combining the latter equations, in turn, gives ∂νAνµ = 0 for m > 0. On the other hand,

if the original Fierz-Pauli equations (4.159) are satisfied, then the equations (4.155) also

hold.

4.6.3 Fierz-Pauli vs Maxwell’s Equations

When m = 0, one gets

∂νFµνα = ∂ν (∂
µAνα −∂

νAµα) = ∂
µ (∂νAνα)−∂

2Aµα = 0, (4.160)

subject to (4.159). In addition,

∂λ Fστα +∂σ Fτλα +∂τFλσα = 0, (4.161)

which follows from definition. These facts allow one to represent the massless Fierz-Pauli

equations in terms of the third rank field tensor, somewhat similar to classical electrody-

namics. Indeed, by analogy with Maxwell’s equations, we obtain

∂νFµνα = 0, ∂νGµνα = 0 (4.162)

in view of 2Gµνα =−eµνστF α
στ and

∂νGµνα =−1
6

eµνστ (∂νF α
στ +∂σ F α

τν +∂τF α
νσ ) = 0

(for every fixed α = 0,1,2,3).

Finally, both pairs of these equations can be combined together in the following com-

plex form

∂νQµνα = 0, Qµνα = Fµνα − i
2

eµνστF α
στ , (4.163)
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with the help of a self-dual complex four-tensor:

2iQµνα = eµνστQ α
στ , eµνστQστα = 2iQ α

µν . (4.164)

The covariant field “energy-momentum” tensor and the corresponding differential balance

equation,
∂

∂xν

(
Q∗

µλσ
Qλνσ +Qµλσ

∗
Qλνσ

)
= 0, (4.165)

can be derived in a complete analogy with complex electrodynamics [115], [116].

4.6.4 Fierz-Pauli vs Linearized Einstein’s Equations

In general relativity, the linearized equations for a weak gravitational field [61], [96],

namely,

∂µ∂
σ hσν +∂ν∂

σ hσ µ −∂µ∂νh (4.166)

−∂
2hµν −gµν

(
∂σ ∂τhστ −∂

2h
)
= 0,

describe small deviations from the flat Minkowski metric, gµν = diag(1,−1,−1,−1) , on

the pseudo-Riemannian manifold subject to a gauge condition

2∂
νhµν −∂µh = 0, h = gστhστ (4.167)

(see, for example, [46], [69], [76], [82], [97], [108], [122], [157], [167], [219], [220], [225],

[227], [229], [232], [237], and the references therein for more details).

Our calculations have shown that linearized Einstein’s equations (4.166) do not coin-

cide with the massless limit of the spin-2 particle wave equation (4.153). But they can be

reduced to the massless case of the Fierz-Pauli equations (4.159) in view of an additional

condition (4.167) on a certain solution set. In the literature, this fact is usually interpreted as

spin-2 for a graviton although, from the group-theoretical point of view, this massless limit

yet requires certain analysis of helicity, say similar to the one in electrodynamics [115],

which will be discuss elsewhere.
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4.7 Summary

In this chapter, we analyze kinematics of the fundamental relativistic wave equations, in

a traditional way, from the viewpoint of the representation theory of the Poincaré group. In

particular, the importance of the Pauli-Lubański pseudo-vector is emphasized here not only

for the covariant definition of spin and helicity of a given field but also for the derivation

of the corresponding equation of motion from first principles. In this consistent group-

theoretical approach, the resulting wave equations occur, in general, in certain overdeter-

mined forms, which can be reduced to the standard ones by a matrix version of Gaussian

elimination.

Although, mathematically, all representations of the Poincaré group are locally equiva-

lent [12], their explicit realizations in conventional linear spaces of four-vectors and tensors,

spinors and bispinors, etc. are quite different from the viewpoint of physics. This is why,

as the reader can see in the table below, the corresponding relativistic wave equations are

so different.

Classical field Transformation law (a law of nature) Wave Eqn.

Bispinor ψ ′ (x′) = SΛψ (x) , x′ = Λx; see (4.11) and (4.25) Dirac

Spinor ψ ′ (x′) = SΛψ (x) , x′ = Λx; see (4.71) and (4.25) Weyl

Four-vector A′µ (x′) = Λ
µ

νAν (x) ; see (4.25) Proca

“Feynman slash” Q′ (x′) = SΛQ(x)S−1
Λ

, x′ = Λx; see (4.107) Proca

Four-tensor Q′µν (x′) = Λ
µ

σ Λν
τQστ (x) , x′ = Λx; see (4.25) Maxwell

Complex 3D vector F′ (x′) = SΛF(x) , x′ = Λx; see Sect. 5.1, (4.25) Maxwell

Complex matrix Q′ (x′) = SΛQ(x)S−1
Λ

, x′ = Λx; see (4.133) Maxwell

Symmetric four-tensor A′µν (x′) = Λ
µ

σ Λν
τAστ (x) , x′ = Λx Fierz-Pauli
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Chapter 5

WAVE FUNCTIONS FOR GENERALIZED HARMONIC OSCILLATORS

In this chapter, the time-dependent Schrödinger equation for the most general variable

quadratic Hamiltonians is transformed into a standard autonomous form. As a result, the

time evolution of exact wave functions of generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. The Ermakov-type

system is introduced here (see also [125]) and has become a major mathematical tool for

paraxial optics and radiation field quantization in variable media with applications to quan-

tum optics and possibly to the study of gravitational wave detection. In addition, it is shown

that the classical Arnold transform is naturally connected with Ehrenfest’s theorem for gen-

eralized harmonic oscillators. Quantum systems with variable quadratic Hamiltonians are

called the generalized harmonic oscillators (see [20], [41], [53], [54], [68], [73], [92],

[129], [132], [148], [151], [233], [235], [238] and references therein). These systems have

attracted substantial attention over the years because of their great importance in many ad-

vanced quantum problems. Examples are coherent states and uncertainty relations, Berry’s

phase, quantization of mechanical systems and Hamiltonian cosmology. More applica-

tions include, but are not limited to charged particle traps and motion in uniform magnetic

fields, molecular spectroscopy and polyatomic molecules in varying external fields, crys-

tals through which an electron is passing and exciting the oscillator modes, and other mode

interactions with external fields. Quadratic Hamiltonians have particular applications in

quantum electrodynamics because the electromagnetic field can be represented as a set of

forced harmonic oscillators [73].

A goal of this chapter is to construct exact wave functions for generalized (driven) har-

monic oscillators [20], [39], [92], [129], [132], [233], [235], in terms of Hermite polyno-
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mials by transforming the time-dependent Schrödinger equation into an autonomous form

[238]. The relationship with certain Ermakov and Riccati-type systems, which seems to be

missing in the available literature in general, is investigated. A group theoretical approach

to a similar class of partial differential equations is discussed in Refs. [2], [38], [44], [83],

[153], [179] (see also [200], [201] and references therein). Some applications to the nonlin-

ear Schrödinger equation can also be found in Refs. [45], [103], [104], [109], [120], [172],

[199] and [203].

5.1 Transforming Generalized Harmonic Oscillators into Autonomous Form

We consider the one-dimensional time-dependent Schrödinger equation

i
∂ψ

∂ t
= Hψ, in (5.1)

where the variable Hamiltonian H = Q(p,x) is an arbitrary quadratic of two operators

p =−i∂/∂x and x, namely,

iψt =−a(t)ψxx +b(t)x2
ψ− ic(t)xψx− id (t)ψ− f (t)xψ + ig(t)ψx, (5.2)

(a, b, c, d, f and g are suitable real-valued functions of time only). We shall refer to

these quantum systems as the generalized (driven) harmonic oscillators. Some examples,

a general approach and known elementary solutions can be found in Refs. [39], [40], [41],

[43], [53], [70], [72], [73], [132], [135], [150], [198], [233] and [235]. In addition, a case

related to Airy functions is discussed in [126] and Ref. [42] deals with another special case

of transcendental solutions.

The following is our first result.

Lemma 5.1.1 The substitution

ψ =
ei(α(t)x2+δ (t)x+κ(t))√

µ (t)
χ (ξ ,τ) , ξ = β (t)x+ ε (t) , τ = γ (t) (5.3)
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transforms the non-autonomous and inhomogeneous Schrödinger equation (5.2) into the

autonomous form

−iχτ =−χξ ξ + c0ξ
2
χ (c0 = 0,1) (5.4)

provided that
dα

dt
+b+2cα +4aα

2 = c0aβ
4, (5.5)

dβ

dt
+(c+4aα)β = 0, (5.6)

dγ

dt
+aβ

2 = 0 (5.7)

and
dδ

dt
+(c+4aα)δ = f +2gα +2c0aβ

3
ε, (5.8)

dε

dt
= (g−2aδ )β , (5.9)

dκ

dt
= gδ −aδ

2 + c0aβ
2
ε

2. (5.10)

Here

α =
1

4a
µ ′

µ
− d

2a
. (5.11)

Proof Differentiating ψ = µ−1/2 (t)eiS(x,t)χ (ξ ,τ) with S = α (t)x2 + δ (t)x+κ (t) , ξ =

β (t)x+ ε (t) and τ = γ (t) yields

ie−iS
ψt =

1
√

µ

[
−
(
α
′x2 +δ

′x+κ
′)

χ + i
((

β
′x+ ε

′)
χξ + γ

′
χτ −

µ ′

2µ
χ

)]
, (5.12)

e−iS
ψx =

1
√

µ

[
i(2αx+δ )χ +β χξ

]
(5.13)

and

e−iS
ψxx =

1
√

µ

[(
2iα− (2αx+δ )2

)
χ +2i(2αx+δ )β χξ +β

2
χξ ξ

]
. (5.14)

Substituting into

iψt = −aψxx +
(
b− c0aβ

4)x2
ψ− icxψx− idψ (5.15)

−
(

f +2c0aβ
3
ε
)

xψ + igψx− c0aβ
2
ε

2
ψ + c0aβ

2
ε

2
ξ

2
ψ
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and using system (5.5)–(5.10), results in Eq. (5.4). A computer algebra proof is given in

[112].

Our transformation (5.3) provides a new interpretation to system (5.5)–(5.10) originally

derived in Ref. [39] when c0 = 0 by integrating the corresponding Schrödinger equation

via the Green function method (see also [202] for an eigenfunction expansion). Here, we

discuss the case c0 6= 0 as its natural extension.

The substitution (5.11), which has been already used in [39], appears here from a new

“transformation perspective”. It now reduces the inhomogeneous equation (5.5) to the

second order ordinary differential equation

µ
′′− τ (t)µ

′+4σ (t)µ = c0 (2a)2
β

4
µ, (5.16)

that has the familiar time-varying coefficients

τ (t) =
a′

a
−2c+4d, σ (t) = ab− cd +d2 +

d
2

(
a′

a
− d′

d

)
. (5.17)

(The reader should be convinced that this derivation is rather straightforward.)

When c0 = 0, equation (5.5) is called the Riccati nonlinear differential equation [222],

[230]; consequently, the system (5.5)–(5.10) shall be referred to as a Riccati-type system.

(Similar terminology is used in [201] for the corresponding parabolic equation.) Now if

c0 = 1, equation (5.16) can be reduced to a generalized version of the Ermakov nonlinear

differential equation (5.50) (see, for example, [41], [66], [130], [202] and references therein

regarding Ermakov’s equation) and we shall refer to the corresponding system (5.5)–(5.10)

with c0 6= 0 as an Ermakov-type system.

5.2 Green’s Function and Wavefunctions

Two particular solutions of the time-dependent Schrödinger equation (5.2) are useful

in physical applications. Using standard oscillator wave functions for equation (5.4) when
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c0 = 1 (for example, [79], [123] and/or [152]) results in the solution

ψn (x, t) =
ei(αx2+δx+κ)+i(2n+1)γ√

2nn!µ
√

π
e−(βx+ε)2/2 Hn (βx+ ε) , (5.18)

where Hn (x) are the Hermite polynomials [162], provided that the solution of the Ermakov-

type system (5.5)–(5.10) is available.

The Green function of generalized harmonic oscillators has been constructed in the

following fashion in Ref. [39]:

G(x,y, t) =
1√

2πiµ0 (t)
exp
[
i
(
α0 (t)x2 +β0 (t)xy+ γ0 (t)y2 +δ0 (t)x+ ε0 (t)y+κ0 (t)

)]
.

(5.19)

The time-dependent coefficients α0, β0, γ0, δ0, ε0, κ0 satisfy the Riccati-type system (5.5)–

(5.10) (c0 = 0) and are given as follows [39], [198], [202]:

α0 (t) =
1

4a(t)
µ ′0 (t)
µ0 (t)

− d (t)
2a(t)

, (5.20)

β0 (t) =−
λ (t)
µ0 (t)

, λ (t) = exp
(
−
∫ t

0
(c(s)−2d (s)) ds

)
, (5.21)

γ0 (t) =
1

2µ1 (0)
µ1 (t)
µ0 (t)

+
d (0)
2a(0)

(5.22)

and

δ0 (t) =
λ (t)
µ0 (t)

∫ t

0

[(
f (s)− d (s)

a(s)
g(s)

)
µ0 (s)+

g(s)
2a(s)

µ
′
0 (s)

]
ds

λ (s)
, (5.23)

ε0 (t) = −2a(t)λ (t)
µ ′0 (t)

δ0 (t)+8
∫ t

0

a(s)σ (s)λ (s)(
µ ′0 (s)

)2 (µ0 (s)δ0 (s)) ds (5.24)

+2
∫ t

0

a(s)λ (s)
µ ′0 (s)

(
f (s)− d (s)

a(s)
g(s)

)
ds,

κ0 (t) =
a(t)µ0 (t)

µ ′0 (t)
δ

2
0 (t)−4

∫ t

0

a(s)σ (s)(
µ ′0 (s)

)2 (µ0 (s)δ0 (s))
2 ds (5.25)

−2
∫ t

0

a(s)
µ ′0 (s)

(µ0 (s)δ0 (s))
(

f (s)− d (s)
a(s)

g(s)
)

ds
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(δ0 (0) = −ε0 (0) = g(0)/(2a(0)) and κ0 (0) = 0) provided that µ0 and µ1 are standard

solutions of equation (5.16) with c0 = 0 corresponding to the initial conditions µ0 (0) =

0, µ ′0 (0) = 2a(0) 6= 0 and µ1 (0) 6= 0, µ ′1 (0) = 0. (Proofs of these facts are outlined in

Refs. [39], [42] and [198]. See also important previous works [54], [148], [233], [235],

[238] and references therein for more details.)

Hence, the corresponding Cauchy initial value problem can be solved (formally) by the

superposition principle:

ψ (x, t) =
∫

∞

−∞

G(x,y, t)ψ (y,0) dy (5.26)

for some suitable initial data ψ (x,0) = ϕ (x) (see Refs. [39], [198] and [202] for further

details).

In particular, using the wave functions (5.18) we get the integral

ψn (x, t) =
∫

∞

−∞

G(x,y, t)ψn (y,0) dy, (5.27)

and this can be evaluated by

∫
∞

−∞

e−λ 2(x−y)2
Hn (ay) dy (5.28)

=

√
π

λ n+1

(
λ

2−a2)n/2
Hn

(
λax

(λ 2−a2)
1/2

)
, Reλ

2 > 0,

which is an integral transform equivalent to Eq. (30) on page 195 of Vol. 2 of Ref. [64] (the

Gauss transform of Hermite polynomials), or Eq. (17) on page 290 of Vol. 2 of Ref. [65].

5.3 Solution to Ermakov-type System

As shown in the previous section, the time evolution of the wave functions (5.18) is de-

termined in terms of the solution to the initial value problem for the Ermakov-type system.

In this section, formulas (5.18)–(5.19) and (5.27)–(5.28) shall be used in order to solve the

general system (5.5)–(5.10) when c0 6= 0 along with the uniqueness property of the Cauchy
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initial value problem. At this point, we must remind the reader how to handle the special

case c0 = 0 considered in [198].

Lemma 5.3.1 The solution of the Riccati-type system (5.5)–(5.10) (c0 = 0) is given by

µ (t) = 2µ (0)µ0 (t)(α (0)+ γ0 (t)) , (5.29)

α (t) = α0 (t)−
β 2

0 (t)
4(α (0)+ γ0 (t))

, (5.30)

β (t) =− β (0)β0 (t)
2(α (0)+ γ0 (t))

=
β (0)µ (0)

µ (t)
λ (t) , (5.31)

γ (t) = γ (0)− β 2 (0)
4(α (0)+ γ0 (t))

(5.32)

and

δ (t) = δ0 (t)−
β0 (t)(δ (0)+ ε0 (t))

2(α (0)+ γ0 (t))
, (5.33)

ε (t) = ε (0)− β (0)(δ (0)+ ε0 (t))
2(α (0)+ γ0 (t))

, (5.34)

κ (t) = κ (0)+κ0 (t)−
(δ (0)+ ε0 (t))

2

4(α (0)+ γ0 (t))
(5.35)

in terms of the fundamental solution (5.20)–(5.25) subject to the arbitrary initial data

µ (0) , α (0) , β (0) 6= 0, γ (0) , δ (0) , ε (0) , κ (0).

This solution can be verified by a direct substitution and/or by an integral evaluation.

This result can also be thought of as a nonlinear superposition principle for the Riccati-type

system and the continuity with respect to initial data holds [198].
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Hence, the solution (5.29)–(5.35) implies the following asymptotics established in [198]:

α0 (t) =
1

4a(0) t
− c(0)

4a(0)
− a′ (0)

8a2 (0)
+O (t) , (5.36)

β0 (t) =−
1

2a(0) t
+

a′ (0)
4a2 (0)

+O (t) , (5.37)

γ0 (t) =
1

4a(0) t
+

c(0)
4a(0)

− a′ (0)
8a2 (0)

+O (t) , (5.38)

δ0 (t) =
g(0)

2a(0)
+O (t) , ε0 (t) =−

g(0)
2a(0)

+O (t) , (5.39)

κ0 (t) = O (t) (5.40)

as t → 0 for sufficiently smooth coefficients of the original Schrödinger equation (5.2).

Therefore,

G(x,y, t) ∼ 1√
2πia(0) t

exp

[
i
(x− y)2

4a(0) t

]
(5.41)

×exp
[
−i
(

a′ (0)
8a2 (0)

(x− y)2 +
c(0)

4a(0)
(
x2− y2)− g(0)

2a(0)
(x− y)

)]
as t→ 0 (where f ∼ g as t→ 0, if limt→0 ( f/g) = 1). This corrects an errata in Ref. [39] .

Finally, we present the extension to a general case when c0 6= 0. Our main result is the

following. Computer algebra proofs of these results can be found in [112].

Lemma 5.3.2 The solution of the Ermakov-type system (5.5)–(5.10) when c0 = 1(6= 0) is

given by

µ = µ (0)µ0

√
β 4 (0)+4(α (0)+ γ0)

2, (5.42)

α = α0−β
2
0

α (0)+ γ0

β 4 (0)+4(α (0)+ γ0)
2 , (5.43)

β =− β (0)β0√
β 4 (0)+4(α (0)+ γ0)

2
=

β (0)µ (0)
µ (t)

λ (t) , (5.44)

γ = γ (0)− 1
2

arctan
β 2 (0)

2(α (0)+ γ0)
, a(0)> 0 (5.45)
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and

δ = δ0−β0
ε (0)β 3 (0)+2(α (0)+ γ0)(δ (0)+ ε0)

β 4 (0)+4(α (0)+ γ0)
2 , (5.46)

ε =
2ε (0)(α (0)+ γ0)−β (0)(δ (0)+ ε0)√

β 4 (0)+4(α (0)+ γ0)
2

, (5.47)

κ = κ (0)+κ0− ε (0)β
3 (0)

δ (0)+ ε0

β 4 (0)+4(α (0)+ γ0)
2 (5.48)

+(α (0)+ γ0)
ε2 (0)β 2 (0)− (δ (0)+ ε0)

2

β 4 (0)+4(α (0)+ γ0)
2

in terms of the fundamental solution (5.20)–(5.25) subject to the arbitrary initial data

µ (0) , α (0) , β (0) 6= 0, γ (0) , δ (0) , ε (0) , κ (0) .

Following are the steps to the sketch of the proof. Evaluate the integral (5.27) with the

help of (5.28) by completing the square and simplify. Use the uniqueness property of the

Cauchy initial value problem. One can also verify our solution by a direct substitution into

the system (5.5)–(5.10) when c0 = 1. These elementary but rather tedious calculations are

left to the reader (the use of a computer algebra system is helpful at certain steps).

Furthermore, the asymptotics (5.36)–(5.40) together with our formulas (5.42)–(5.48)

result in the continuity with respect to initial data:

lim
t→0+

µ (t) = µ (0) , lim
t→0+

α (t) = α (0) , etc. (5.49)

Thus the transformation property (5.42)–(5.48) allows us to find a solution of the initial

value problem in terms of the fundamental solution (5.20)–(5.25) and it may be referred to

as a nonlinear superposition principle for the Ermakov-type system.

5.4 Solution of the Ermakov-type Equation

Starting from (5.16)–(5.17) when c0 = 1, and using (5.44) we arrive at

µ
′′− τ (t)µ

′+4σ (t)µ = (2a)2 (β (0)µ (0)λ )4
µ
−3, (5.50)

113



which is a familiar Ermakov-type equation (see [35], [41], [66], [130], [202], [238] and

references therein). Then our formula (5.42) leads to the representation(
µ (t)
µ (0)

)2

= β
4 (0)µ

2
0 (t)+

(
µ1 (t)
µ1 (0)

+
µ ′ (0)
2µ (0)

µ0 (t)
a(0)

)2

(5.51)

given in terms of standard solutions µ0 and µ1 of the linear characteristic equation (5.16)

when c0 = 0. Further details on this Pinney-type solution and the corresponding Ermakov-

type invariant are left to the reader (see also [35] and [202]).

5.5 Ehrenfest Theorem Transformations

By introducing expectation values of the coordinate and momentum operators in the

following form

x =
〈x〉
〈1〉

=
〈ψ,xψ〉
〈ψ,ψ〉

, p =
〈p〉
〈1〉

=
〈ψ, pψ〉
〈ψ,ψ〉

, (5.52)

one can derive Ehrenfest’s theorem for the generalized (driven) harmonic oscillators (see,

for example, [40] and [41]). Then

dx
dt

= 2a p+ c x−g,
d p
dt

=−2b x− c p+ f (5.53)

and the following classical equation of motion of the parametric driven oscillator holds

d2x
dt2 −

a′

a
dx
dt

+

(
4ab− c2 + c

a′

a
− c′

)
x = 2a f −g′+g

a′

a
− cg. (5.54)

The transformation of the expectation values

ξ = β x+ ε, ξ = 〈χ,ξ χ〉 with 〈χ,χ〉= 1, (5.55)

corresponding to our Lemma 1, converts (5.54) into the simplest equation of motion of the

free particle and/or harmonic oscillator:

d2ξ

dτ2 +4c0ξ = 0 (c0 = 0,1) . (5.56)

(This can be verified by a direct calculation.)
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Remark An exact transformation of a linear second-order differential equation into the

equation of motion of free particle was discussed by Arnold [9]. An extension of the later

to the case of the time-dependent Schrödinger equation had been considered, for exam-

ple, in Ref. [238] and recently it has been reproduced as the quantum Arnold transforma-

tion in [7] and [91] (see also [2], [38], [44], [83], [120], [153], [179], [201] and [203]

for similar transformations of nonlinear Schrödinger and other equations of mathematical

physics). We elaborate on a relation of the quantum Arnold transformation for the general-

ized (driven) harmonic oscillators with a Riccati-type system when c0 = 0 (transformation

to the free particle) and consider an extension of this transformation (in terms of solutions

of the corresponding Ermakov-type system) to the case c0 = 1 (transformation to the clas-

sical harmonic oscillator [238]).

5.6 Conclusion

In this chapter, we have determined the time evolution of the wave functions of gen-

eralized (driven) harmonic oscillators (5.18), known for their great importance in many

advanced quantum problems [73], in terms of the solution to the Ermakov-type system

(5.5)–(5.10) by means of a variant of the nonlinear superposition principle (5.42)–(5.48).

In this approach, the standard solutions of equation (5.16) with c0 = 0 should be found

analytically or numerically. Moreover, the classical Arnold transformation is related to

Ehrenfest’s theorem. Numerous examples, the corresponding coherent states, dynamic in-

variants, eigenfunction expansions and transition amplitudes [53], [54], [126], [129], [132],

[148], [147], [202] will be discussed elsewhere.
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Chapter 6

A MODEL FOR RADIATION FIELD QUANTIZATION IN MEDIA

The quantization of an electromagnetic field in an inhomogeneous and time variable

medium is discussed via the Caldirola-Kanai Hamiltonian. This model was also discussed

from a different perspective in [41]. Here, we describe a multi-parameter family of squeezed

states for this standard model of damping in non-relativistic quantum mechanics and dis-

cuss the uncertainty relation. The time-dependent photon statistics for the Caldirola-Kanai

Hamiltonian are given explicitly in the Schrödinger picture in terms of the solution of the

Ermakov-type system, see Chapter 5 or [125]. The Caldirola-Kanai Hamiltonian arises

naturally through the quantization of the electromagnetic field from Maxwell’s equations

in a medium with certain properties that will be specified below.

For the quantization of a classical Hamiltonian system one replaces canonically con-

jugate coordinates and momenta by time-dependent operators qλ (t) and pλ (t) that satisfy

the commutation relations

[qλ (t),qµ(t)] = [pλ (t), pµ(t)] = 0, [qλ (t), pµ(t)] = ih̄δλ µ . (6.1)

The time-evolution of these operators is determined by the Heisenberg equation of motion

d
dt

qλ (t) =
i
h̄
[qλ (t),H ],

d
dt

pλ (t) =
i
h̄
[pλ (t),H ], (6.2)

For the phenomenological Maxwell equations in linear, dispersive, time-varying media,

namely

curlE =−1
c

∂B
∂ t

, divD = 4πρ, (6.3)

curlH =
1
c

∂D
∂ t

+
4π

c
j, divB = 0, (6.4)
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D = ε̃(r, t)E, B = µ̃(r, t)H, j = σ̃(r, t)E, (6.5)

the continuity equation,

∂ρ

∂ t
+div j =

∂ρ

∂ t
+

4πσ̃

ε̃
ρ +D ·grad

(
σ̃

ε̃

)
= 0, (6.6)

has the stationary solution ρ ≡ 0 under the condition grad(σ̃/ε̃) = 0.

With the help of the vector A and scalar ϕ potentials,

B = curlA, E =−1
c

∂A
∂ t

+gradϕ, (6.7)

the Maxwell equations can be reduced to the gauge condition

1
c

div
(

ε̃
∂A
∂ t

)
= div(ε̃ gradϕ) (6.8)

and the single second-order generalized wave equation

curl
(
µ̃
−1 curlA

)
+

1
c2

∂

∂ t

(
ε̃

∂A
∂ t

)
+

4πσ̃

c2
∂A
∂ t

=
1
c

∂

∂ t
(ε̃ gradϕ)+

4πσ̃

c
gradϕ. (6.9)

Here, we consider the factorized (real-valued) dielectric permittivity, the magnetic perme-

ability, and the conductivity (tensors)

ε̃(r, t) = ξ (t)ε(r), µ̃(r, t) = η(t)µ(r), σ̃(r, t) = χ(t)σ(r) (6.10)

(the case σ̃ ≡ 0 was discussed in [56]). Under the imposed condition grad(σ̃/ε̃) = 0, one

can choose 4πσ = ε without loss of generality.

The solution of the classical problem for a given single mode, υ say, has the form

A(r, t) = u(r)q(t), ϕ(r, t) = (k/c)
dq
dt

φ(r)

(k is a constant), and

B = qcurlU, D =−ξ

c
dq
dt

εU, (6.11)
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provided that

curl
(

1
µ

curlU
)
= υ

2
εU, U = u− k gradφ ,

d2q
dt2 +

ξ ′+χ

ξ

dq
dt

+
c2υ2

ξ η
q = 0, υ = constant, (6.12)

and certain required boundary conditions are satisfied on the boundary of the cavity (see

[56], [57], for more details).

Thus we can choose c = d = f = g = 0 and

a =
1

2ξ
e−

∫
(χ/ξ )dt , b =

c2υ2

2η
e
∫
(χ/ξ )dt (6.13)

in the Hamiltonian

H = a(t)p̂2 +b(t)x̂2 + c(t)x̂ p̂− id(t)− f (t)x̂−g(t)p̂. (6.14)

For a general approach see [4], [118], [114].

6.1 Exact Wave Functions and the Ermakov-type System

Motivated by (6.3)-(6.14), we consider the time-dependent Schrödinger equation in one

dimension with the Caldirola-Kanai Hamiltonian,

iψt =
ω0

2

(
−e−2λ t

ψxx + x2 e2λ t
ψ

)
+ iεxψx, (6.15)

which has the following square integrable solution (wave function)

ψn (x, t) =
ei(α(t)x2+δ (t)x+κ(t)+γ(t))√

2nn!µ (t)
√

π
e−(β (t)x+ε(t))2/2Hn (β (t)x+ ε(t)) , (6.16)

where α,β ,γ,δ ,κ,and ε are determined by the Ermakov-type system (5.5)–(5.10) and are

given explicitly on the next page:
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µ (t) = µ (0)e−(λ−ε)t
√

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2

α (t) = e2λ t ν cos(2ωt)+ωω0
(
4α2

0 +β 4
0 −1

)
sin(2ωt)/4+α0ω2−ν

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2

β (t) =
β0ωeλ t√

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2
,

γ (t) = γ0−
1
2

arctan
ω0β 2

0 tan(ωt)
ω +(2α0ω0 +λ − ε) tan(ωt)

,

δ (t) = ωeλ t ω0ε0β 3
0 sin(ωt)+δ0 ((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2 ,

ε (t) =
ε0 ((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))−β0δ0ω0 sin(ωt)√

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2
,

κ (t) = κ0 + sin2 (ωt)
ω2

0 ε0β 2
0 (α0ε0−β0δ0)−ω2

0 α0δ 2
0 +ω0 (λ − ε)

(
β 2

0 ε2
0 −δ 2

0
)
/2

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2

+
sin(2ωt)

4
ω0ω

(
β 2

0 ε2
0 −δ 2

0
)

β 4
0 ω2

0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2

(µ0 > 0, α0, β0 6= 0, γ0, δ0, ε0, κ0 are real initial data).

Here ν = (λ − ε)ω0
(
4α2

0 +β 4
0 +1

)
/4+α0ω2

0 and ω =
√

ω2
0 − (λ − ε)2 > 0. This system

also provides a solution to the Hamiltonian described above for the quantization in the limit

ε → 0. This solution can be verified by a direct substitution, for example with the aid of

the Mathematica computer algebra system. The solution (6.16) agrees with the result for

the quantum harmonic oscillator found in [119] in the limit λ ,ε → 0 (υ → α0ω2).

6.2 The Uncertainty Relation and Squeezing

A quantum state is said to be “squeezed” if its oscillating variances 〈(∆p)2〉 and 〈(∆x)2〉

become smaller than the variances of the “static” vacuum state 〈(∆p)2〉 = 〈(∆x)2〉 = 1/2

(with h̄ = 1). If the minimum value of the product is equal to 1/4, then the state is called

a minimum-uncertainty squeezed state (see, for example, [57], [95], [190], [195], [196],
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[221], [236]).

For the standard deviations in terms of the Ermakov-type system, one gets

σp = 〈(∆p)2〉=
(

n+
1
2

)
4α2 +β 4

β 2 , σx = 〈(∆x)2〉=
(

n+
1
2

)
1

β 2 , (6.17)

σpx =
1
2
〈(∆p∆x+∆x∆p)〉=

(
n+

1
2

)
2α

β 2 ,

and the uncertainty relation is

〈(∆p)2〉〈(∆x)2〉=
(

n+
1
2

)2(
1+

4α2

β 2

)
≥ 1

4
, (6.18)

which agrees with the fundamental Heisenberg uncertainty relation.

From this relation one can see that the minimum uncertainty squeezed states occur for

n = 0 precisely at the moments when α (tmin) = 0.

The uncertainty relation (6.18) attains its minimum value, min
[
〈(∆p)2〉〈(∆x)2〉

]
=

1
4

,

if

cos(2ωt + sφ) =
υ−α0ω2√

ν2 +ω2ω2
0
(
1−4α2

0 −β 4
0
)2
, (6.19)

where

φ = cos−1
(

ν/

√
ν2 +ω2ω2

0
(
1−4α2

0 −β 4
0
)2
)

and s = sign
(
ωω0

(
1−4α2

0 −β 4
0
)
/4
)
.

The following are explicit formulas for the variances (6.17) in the case n = 0 :
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σx =
e−2λ t

2β 2
0 ω2

(
β

4
0 ω

2
0 sin2 (ωt)+(ω cos(ωt)+(2α0ω0 +λ − ε)sin(ωt))2

)

σp =
e2λ t

(
β 4

0 ω2
0 +4

(
α0ω2−ν +ν cos(2ωt)+ωω0

(
4α2

0 +β 4
0 −1

)
sin(2ωt)/4

)2
)

2β 2
0 ω2

(
β 4

0 ω2
0 sin2 (ωt)+(ω cos(ωt)+(2α0ω0 +λ − ε)sin(ωt))2

)
σpx =

1
β 2

0 ω2

(
α0ω

2−ν +ν cos(2ωt)+ωω0
(
4α

2
0 +β

4
0 −1

)
sin(2ωt)/4

)
.

6.3 Photon Statistics

Here we focus only on a single mode of radiation with the annihilation and creation

operators given by

â =
1√
2ω

(ω q̂+ i p̂) , â† =
1√
2ω

(ω q̂− i p̂) ,
[
â, â†

]
= 1. (6.20)

The time-dependent photon amplitudes with respect to the Fock basis are are evaluated

with the help of the unitary operator

U(t) = ei(â† â)θ e
(

e2iϕ â 2−e−2iϕ(â†)
2
)

τ/2eξ ∗ â−ξ â†
e2i(â† â)γ , (6.21)

which may be used to expand the wave function in terms of the Fock number states in an

abstract Hilbert space via the squeeze and displacement operators in the form

|ψn (t)〉=
∞

∑
m=0

(
e2iγ

[(
∞

∑
k=0

SmkDkn

)]
eimθ

)
|m〉 . (6.22)

The expansion (6.22) provides a way to compute the time-dependent photon amplitudes ex-

plicitly in terms of the Ermakov-type system using the squeeze and displacement operators.
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The parameters of (6.21) are determined by

tanθ =
e2λ t (2α0ω2−2ν +2ν cos(2ωt)−ωω0

(
1−4α2

0 −β 4
0
)

sin(2ωt)/2
)

e2λ tβ 2
0 ω2 +ω (ω2 +ρ)/2+ω (ω2−ρ)cos(2ωt)/2+ω2 (2αω +λ − ε)sin(2ωt)

,

tan2ϕ =
2e2λ tβ 2

0 ω2
(

β 2
0 ω2e2λ t +ωω2

0 ζ (t)
)

tan(θ)

e4λ tβ 4
0 ω4−ω2ω4

0 ζ 2 (t)−
(
β 2

0 ω2e2λ t +ωω2
0 ζ (t)

)2 tan2 (θ)
,

4 [coshτ]2 =
1

β 2
0 ω3 (2β

2
0 ω

3 + e−2λ t (
ω

2 +ρ
)(

ω
2 + e4λ t

)
/2

+
(

e−2λ t (
ω

2−ρ
)
/2ω

2
0 − e4λ t (

ω
2 +ρ−2ω

2 (4α
2
0 +β

4
0
)))

cos(2ωt)/2

+e−2λ t
ω

2 (2αω0 +λ − ε)+ e4λ t ((4α
2
0 +β

4
0
)
(ε−λ )ω0−2α0ω

2
0
)
/ω0)

4 [sinhτ]2 =
1

β 2
0 ω3 (−2β

2
0 ω

3 + e−2λ t (
ω

2 +ρ
)(

ω
2 + e4λ t

)
/2

+
(

e−2λ t (
ω

2−ρ
)
/2ω

2
0 − e4λ t (

ω
2 +ρ−2ω

2 (4α
2
0 +β

4
0
)))

cos(2ωt)/2

+e−2λ t
ω

2 (2αω0 +λ − ε)+ e4λ t ((4α
2
0 +β

4
0
)
(ε−λ )ω0−2α0ω

2
0
)
/ω0)

where ρ = ω2
0
(
4α2

0 +β 4
0
)
+4α0ω0 (λ − ε)+ω2

0 and

ζ (t) = ρ/2ω
2
0 +
(
2ω

2−ρ
)

cos(2ωt)/2ω
2
0 +ω (2α0ω0 +λ − ε)sin(2ωt)/ω

2
0 .

The equations determine the matrix elements of the squeeze operator (see below) as the

arguments of the hypergeometric function.

For the Hamiltonian in (6.15) the matrix elements of the displacement operator are

given by

Dmn (ξ ) =
〈

m
∣∣∣eξ ∗ â−ξ â†

∣∣∣n〉 (6.23)

= e−|ξ |
2/2 (−ξ )m (ξ ∗)n

√
m!n!

2F0

(
−n,−m;− 1

|ξ |2

)
,
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where the parameter ξ in terms of solutions of the Ermakov-type system is given by

ξ =
(β0ε0− iδ0)

((
2α0ω0 +λ − ε− iβ 2

0 ω0
)

sin(ωt)+ω cos(ωt)
)

√
2β0

√
β 4

0 ω2
0 sin2(ωt)+((2α0ω0 +λ − ε)sin(ωt)+ω cos(ωt))2

, (6.24)

which in turn completely determines the time-evolution of the displacement operator.

In a similar fashion, the matrix elements of the squeeze operator can be readily evalu-

ated by using the expression:

Smn (α,β ) =

〈
m
∣∣∣∣e(e2iϕ â 2−e−2iϕ(â†)

2
)

τ/2
∣∣∣∣n〉 (6.25)

=

√
m!n!π

2m+n coshτ

(
−e−2iϕ sinhτ

)(m−n)/2
(coshτ)−(m+n)/2

Γ
(m−n

2 +1
)

Γ
(n

2 +1
)

Γ
(n+1

2 +1
)

× 2F1

 (1−n)/2, −n/2

1+(m−n)/2
; −sinh2

τ

 , m≥ n.

With the help of familiar transformations of the terminating hypergeometric functions [8],

one may obtain the non-vanishing matrix elements as follows

Smn (α,β ) =
(−1)m/2 e−i(m−n)ϕ

√
coshτ

[
(1/2)m/2 (1/2)n/2

(m/2)!(n/2)!

]1/2

(6.26)

× (tanhτ)(m+n)/2
2F1

 −n/2, −m/2

1/2
; − 1

sinh2
τ

 ,

if m, n are even and

Smn (α,β ) = 2
(−1)(m−1)/2 e−i(m−n)ϕ

sinhτ
√

coshτ

[
(3/2)m−1

2
(3/2) n−1

2(m−1
2

)
!
(n−1

2

)
!

]1/2

(6.27)

× (tanhτ)(m+n)/2
2F1

 (1−n)/2, (1−m)/2

3/2
; − 1

sinh2
τ

 ,

if m, n are odd. The arguments of the hypergeometric function are given explicitly in terms

of the Ermakov-type system provided above.
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In conclusion, in this short chapter we have discussed a specific model which arises

naturally in the quantization of the electromagnetic field in inhomogeneous and time vari-

able media. This exactly solvable model, which will be elaborated on more elsewhere, and

its photon statistics provide a nice example of the usefulness of the Ermakov-type system

discussed in Chapter 5.
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[35] J. Cariñena and J. de Lucas. A nonlinear superposition rule for solutions of the
Milne–Pinney equation. Phys. Lett. A, 372(33):5385–5389, 2008.

[36] M. Carmeli. Classical Fields: General Relativity and Gauge Theory. Wiley Inter-
science: John Wiley & Sons, 1982.

[37] S. M. Carroll. Spacetime and Geometry. An Introduction to General Relativity.
Addison–Wesley, 2004.
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