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ABSTRACT  

Social media has become popular in the past decade. Facebook for example has 1.59 billion 

active users monthly. With such massive social networks generating lot of data, everyone is 

constantly looking for ways of leveraging the knowledge from social networks to make their 

systems more personalized to their end users. And with rapid increase in the usage of mobile 

phones and wearables, social media data is being tied to spatial networks. This research 

document proposes an efficient technique that answers socially k-Nearest Neighbors with Spatial 

Range Filter. The proposed approach performs a joint search on both the social and spatial 

domains which radically improves the performance compared to straight forward solutions. The 

research document proposes a novel index that combines social and spatial indexes. In other 

words, graph data is stored in an organized manner to filter it based on spatial (region of interest) 

and social constraints (top-k closest vertices) at query time. That leads to pruning necessary 

paths during the social graph traversal procedure, and only returns the top-K social close venues. 

The research document then experimentally proves how the proposed approach outperforms 

existing baseline approaches by at least three times and also compare how each of our 

algorithms perform under various conditions on a real geo-social dataset extracted from Yelp.  
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CHAPTER 1 

INTRODUCTION 

 

Figure 1. A motivation example showing a socio-spatial graph 

A social network is a graph of individuals and their interactions. Users keep up-to date of what 

their friends like, watch, see, etc... With the ever increasing use of web, social media is also used 

as an advertising tool. They are proved quite effective [2], [4], [6] to gain quick popularity by 

publicizing on popular social media sites like Facebook than traditional advertising means. Their 

effectiveness is mainly due to high usage and size of users using it. Facebook for example has 

around 1.59 billion active users monthly1. Another popular microblogging site called twitter has 

about 310 million monthly active users2. With such massive networks generating lot of data, 

everyone is constantly looking into ways of integrating the knowledge from them to make their 

systems more personal for their end users. Microsoft now ranks results, in its BING search, for a 

user using the search history from his/her social network [9]. There are also works on how 

probable a user performs an action given his/her friend committed the same action before [10]. 

The natural problem of social influence would be, ‘given a social network, how can we detect the 

players through which we can spread, or “diffuse”, the new technology in the most effective way’ 

[7]. Spread maximizing problem which try to find a minimal set S in a graph to gain maximum 

spread in a network is well studied in [12]. 

                                                      

 

1 http://www.statista.com/statistics/264810/number-of- monthly-active-facebook-users-worldwide/ 

2 http://www.statista.com/statistics/282087/number-of- monthly-active-twitter-users/ 
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At the other end of the spectrum are the spatial networks. With the ever increasing number of 

wearables everyday like Jawbone, Fitbit, smart watches (pebble, apple watch) there is an 

abundance of data in this realm too. Importantly with the rapid increase in the number of mobile 

phone users, this data is already being tied to Social Network data and the two realms are 

coming together. Popular social network sites like Facebook have a number of features which 

prompt users to add spatial information like check-ins, traveling posts, geotagged photos etc.  

And this research document is all about bringing these two even closer. We can predict what your 

best friend would have suggested to you if you wanted to go to an authentic Sushi place in SFO. 

Imagine restaurant recommendations from Google, are more personalized for a location instead 

of listing them by average user rating. To answer such queries it is required to traverse a social 

network and filter recommendations which fall in a given region. However minimum latency is 

rather imperative for such queries for the best user experience using huge social networks like 

Facebook, Twitter and Yelp. These graphs can be really dense, as much as, each person in the 

world is connected to every other person by only an average of three and a half other people! 

[15]. So the way to answer shortest path reachability queries with a spatial predicate quickly is 

needed even in such dense graphs. 

Consider a restaurant recommendation system like Yelp. Every registered user can have multiple 

friends and also check-ins at multiple venues using this service. A small example from such a 

service would look like the one shown in Figure 1 where Alice, Bob, Terry, Mark, Jack, Jimmy are 

people and letters from A to I are venues. Venues are also marked at the respective locations on 

a map. Edges between people indicate they are friends like in any social network and edges from 

a person to a restaurant means he/she checked-in at that location. Assume the system wants to 

recommend a restaurant to Bob in the marked region R and that all venues have the same 

average customer rating as 4.0. Any existing system would naturally return venues that fall in R in 

some random order as all of them are equally good. However, Bob is socially close to Terry than 

to Mark or Jack. Recommending restaurant F before G, H and I would make Bob happier as 

Terry and Bob are more similar in their tastes. Therefore, in order to provide good 

recommendations, we should consider both the spatial and social proximities in the search. 
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An easy way to solve the problem would be to find shortest distances to each venue falling in R, 

sorting them based on distance from the user of interest and picking the top K (whatever number 

is required). This disjoint approach can solve the problem but has a huge time latency especially 

while finding the closest vertices. Also we will be traversing huge graph aimlessly until we hit the 

required number of venues in R. Such a system would never be used in production. The paper [1] 

solves the problem in the disjoint manner using a distributed approach by implementing complex 

algorithms in a bottom up manner using simple distributed functions. This is a good start but we 

end up with other problems which distributed systems face today like network latency, 

consistency etc. The paper [11] takes a new approach by combining the social and spatial 

constraints of the problem during the search routine but is more suited for queries like finding 

nodes close to a given node. The system in [24] categorizes users as location experts based on 

their history and uses this precomputed data to generate recommendations for a specific region 

at runtime. The focus is on using user preference history to generate authorities in a social graph 

for every region, which is not truly using the user’s social network at query time. In our case 

user’s social graph is traversed and top-k recommendations are provided in a given region at 

runtime which is much more valuable and relevant.  

However the aim is to find K closest vertices in a region from a (person) vertex in a given social 

graph. Here the goal is to process the query with minimum latency and not to propose another 

recommendation algorithm. The edge weights in the given geosocial graph decide the social 

distance between two nodes which is used in deciding the social proximity during traversal. So 

the big challenges ahead are to perform geosocial searches on huge graphs (i) with minimum 

latency, (ii) traverse the graph in a goal oriented manner towards the region unlike Dijkstra’s, (iii) 

traverse the graph to the minimum as only the K closest vertices to a given vertex are required. 

In this research document, we propose a new approach SPSR in order to solve SkNGeo query 

which finds top-k closest vertices to a given (person) vertex in a social graph considering both the 

social and spatial components. Our key contributions are as follows: 

 Study the geosocial graph problem describing the challenge more formally and 

understand the need to solve this more efficiently. 
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 Propose indices on social and spatial domains of the graph which form the pre-

processing stage of the solution. Here graph data is stored in an organized manner to 

filter it based on spatial (region of interest) and social constraints (top-k closest vertices) 

at query time. This helps in solving the challenge of traversing to the minimum, as only 

best K are needed. 

 Propose a robust algorithm which uses above indices to answer top-k socio-spatial query 

using a modified landmark based A* algorithm by combining it with a spatial search. This 

solves the challenge of goal oriented search to reduce the latency even further. 

 Experimentally evaluates the proposed approach with different parameter combinations 

on Yelp 

 dataset. The experiments shows that our approach can achieve at least 3 times faster 

than existing approaches.  
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CHAPTER 2 

PRELIMINARIES 

In this chapter all the preliminary information required to understand the problem and solution 

better is discussed. In particular concepts on what graphs are and some examples on them, an 

algorithm very widely studied called the shortest path, more detailed study of a type of graph 

called directed acyclic graph, a term often used in graphs called connected component, a process 

some graphs undergo called graph condensation.  

Besides these concepts, there are two state of the art solutions namely SocialFirst and 

SpatialFirst, which take a disjointed approach filtering first by social and then spatial or spatial 

and then social constraints respectively. These are the naïve solutions to solve our problem and 

are described at the end. 

Graph 

Graph is another data structure in computer science like Arrays, Linked List, and Trees. A graph 

contains a finite set of vertices and a finite set of edges connecting them. An edge connects two 

vertices and can be either directed or undirected. If edges in a graph have a direction (pointed 

arrow), the graph is called a directed graph or else the graph is undirected graph. 

 

Figure 2. Undirected and Directed Graphs 

As shown in Figure 2 the circular shapes are called vertices and lines connecting them are 

edges. The figure on the left is an undirected graph and one on the right is a directed graph. Both 

vertices and edges can have additional information attached to them. Here we labelled each 

vertex as A, B, C etc. and edges with some number on them. Typically the number on the edge is 

called its weight or importance. Such graphs are called weighted graphs. In our report, we will 
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always use weighted directed graphs unless stated. We can always convert an unweighted graph 

to a weighted graph by assuming all weights are same. 

Graphs are sometimes referred to as networks. And we can see many examples in our daily life. 

There are social graphs like Facebook where each user is a vertex and two users are connected 

by a relationship, generally friendship. The entire web is also a graph where each web page is a 

vertex and hyperlinks from one web page to another can be directed edges among them. In fact 

problems are easy to visualize and solve as graph problems. In Biology, protein interaction 

problems are often studied as graph problems. In such graphs, every protein known is a vertex in 

the graph and interacting proteins form edges.  

Let us now see how graphs are formally represented. There are two ways to represent a graph, G 

= (V, E) as an adjacency list or adjacency matrix. Here, V is the set of vertices and E is the set of 

edges which is a list of tuples containing vertices that are connected. If the graph is directed, the 

first vertex in the tuple is the source, from where the arrow originates, and the second is the 

destination. In Figure 2, the undirected graph can be represented as V = {A, B, C} and E = {{A, 

B}, {B, C}} and directed graph is represented as V = {A, B, C} and E = {(A, B), (C, B)}. However, 

edges are often saved as list or matrix form. In the list form, for every vertex we save a list of 

vertices it is originating to as shown in Table 1.  

Table 1 

Adjacency List 

Vertex List 

A B 

B  

C B 

 

In the matrix form for representing edges, we create an N X N matrix where N is the number of 

vertices. For every edge we mark the corresponding cell in the matrix under the vertices that form 

the edge. As shown in Table 2, we mark with 1 whenever there is an edge between the vertices 

else 0. The first row and column are just markers and do not need special space allocation while 
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coding. Adjacency list occupies less space but access time to check if there is edge between two 

vertices does not take constant time unlike in adjacency matrix. If the graph is really dense, 

matrix is a good choice, else list saves space and there are ways to reduce the linear time search 

by using a hash index. Unless stated, we will use adjacency list for storing edges by default for all 

algorithms.  

Table 2 

Adjacency Matrix 

 A B C 

A 0 1 0 

B 0 0 0 

C 0 1 0 

 

GeoSocial Graph Data 

It is a graph contains people, real spatial venues and relationships among these entities. The 

following is used to model a GeoSocial graph. It is a directed graph G = (V, E, S) consisting of (1) 

a set of vertices V representing people and spatial venues; (2) a set of directed edges, E ⊂ V ×V 

with weights. If (u, v) ∈ E, there exists one edge from vertex u to v, which means the two entities 

possess a real-life connection. The connection can be Friend-of or Like. The weights of the edge 

indicates which how strong the two entities are connected. The shorter a distance, the stronger it 

is; (3) a function S defined on V that decides spatial attribute of a given vertex. S(v) returns 

spatial property of v (denoted as v.spatial), generally for venues, and the value will be null when v 

brings no spatial attribute, generally for people. S(v) can be a geometrical a point, line, or 

polygon. For ease of presentation, we assume that a spatial attribute of spatial vertex is 

represented by a point. 
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Shortest Path 

In this section we will see one of the graph algorithms called the shortest path or more specifically 

single-source shortest path. Alice wants to go from her house to Taco Bell in Tempe, Arizona for 

dinner. She is very hungry and wants to reach as soon as possible. One way would be to 

enumerate all possible routes from her house to Taco Bell, add up all distances along each route 

and pick the smallest. Though this approach works, this can be very time consuming. Besides 

being slow, this won’t work, if any of the routes has a cycle. So we need a better way to find a 

solution to such problems. Given a weighted directed graph, G (V, E) and weight function such 

that, w(e in E) → R, mapping edges to real valued numbers. The weight of a path p(u, v), w(p) = 

∑ w(e ∈ E), sum of weights of edges that form the path p. We want the shortest path by weight 

which is,  

𝛽(𝑢, 𝑣) = 𝑚𝑖𝑛(𝑤(𝑝𝑖) ∋ 𝑝𝑖 𝑖𝑠𝑎𝑝𝑎𝑡ℎ𝑓𝑟𝑜𝑚𝑢𝑡𝑜𝑣)    (1) 

A shortest path from vertex u to vertex v is defined as the path from u to v which has the least 

weight compared to all others paths from u to v. The main idea is that every vertex in the shortest 

path also has the shortest distance to every other vertex in the path. Various approaches exists 

for different settings of the graph – only positive edge weights, negative weights are allowed but 

not cycles, only unweighted graph and there can be cycles etc. Breadth first search algorithm 

finds the shortest path between any two vertices in an unweighted graph with or without cycles. 

Dijkstra’s algorithm finds the shortest path in a weighted graph with or without cycles. This is a 

greedy algorithm and we will see this algorithm in detail as it is used in one of the solutions to our 

problem later. Bellman Ford algorithm finds the shortest path even the graph has negative weight 

edges but it shouldn’t have any cycles and is based on dynamic programming. A* algorithm also 

finds the shortest path between two vertices using a heuristic based approach. We will see this 

algorithm also in detail later. 

Directed Acyclic Graph (DAG) 

Directed Acyclic Graph or a dag for short is a graph in which linear ordering or vertices is 

possible. For every edge (u, v), u appears before v in the linearly ordered list. This is another way 
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to say that the graph doesn’t have a cycle. DAGs are used in many applications mainly because 

of its acyclic property. In our application, we will first transform a given graph into a DAG and 

simplify the pre-processing. Figure 3 shows an example DAG and we can arrange the vertices in 

a linear order. Using topological sort we can arrange a DAG’s vertices in order. 

 

Figure 3. A directed acyclic graph 

Strongly Connected Component 

A strongly connected component in a directed graph G(V, E) is a maximal set of vertices in G, 

such that there exists a path between any two vertices. More formally, for every pair of vertices u 

and v in that set, there exists u → v and v → u. Such a set is called a strongly connected 

component. It is also good to know that if there exists a path to reach every vertex in that set, it is 

called a weakly connected component. More formally for every pair of vertices in a set of vertices 

there exists u → v or v → u. We can find all strongly connected components in a directed graph 

by using depth first search on it. This can be done in Θ(V + E) time. A graph which has only one 

strongly connected component is called a Strongly Connected Graph as shown in Figure 4. 

 

Figure 4. Strongly Connected Graph 

Graph Condensation 

In a directed graph, if each strongly connected component is contracted into a single vertex, the 

graph is said to be condensed. Such a graph is always a DAG. The converse, a directed graph is 

acyclic if every vertex forms its own strongly connected component. This is true as if there are 

two vertices that form a strongly connected component, then there is a cycle between them. This 
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can be proved by induction for n vertices. Figure 5 shows how a graph looks before and after 

condensation. Graph with tiny blue vertices is the original graph and each of its strongly 

connected component is contracted to one big yellow vertex.  

 

Figure 5. Directed graph with yellow vertices is obtained by contracting the graph with blue vertices 

Dijkstra’s Single Source Shortest Path Algorithm 

Dijkstra’s single source shortest path algorithm as the name suggests finds a shortest path from a 

source vertex to every other vertex in the graph. However, the graph should be weighted and all 

edge weights should be positive. Bellman-Ford algorithm handles the case when edge weights 

are negative however, it is more expensive w.r.t running time than Dijkstra’s. It uses a minimum 

priority queue keyed known distances from source vertex, to traverse the graph in order of 

increasing distance from source.  

Algorithm 

1. Initialize (G, s) 
2. Q = G.V 
3. While Q is not empty: 
4.   u = extract min from Q 
5.   For each vertex in G.Adj(u): 
6.    Relax(u, v, w) 

 

Assume every vertex has an attribute called d, which is known distance from the source vertex s. 

If we also want the shortest path we also maintain parent attribute for each vertex. Line 1 of the 

algorithm initializes the graph by assigning d = ∞ for every vertex and d = 0 for the source. We 

also set the parent attribute for every vertex as NULL or unknown. On line 2, we initialize a 

minimum priority queue Q of vertices of G keyed d attribute of each vertex. Then we pop each 

vertex from Q and update the distance from the source.  
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Figure 6. Step by step execution of Dijkstra's Algorithm 

Figure 6 shows each execution cycle of while loop on lines 3 to 6. First we pop vertex s as its d is 

the smallest shown in (a). Due to Relax call on line 6, vertices t and y, the neighbors of s are 

updated with their actual distances from s. Then out of the unvisited vertices, we pop the least 

which is y and update its neighbors. Every time we pop a vertex, it is considered to have the 

smallest distance to source. Here, after (c) the shortest distance to reach y from s would be 5. 

While reducing neighbors of y, we update the existing distance of t to 8. So instead reaching 

directly from s, it is shorter w.r.t to weight function to reach t via y. The algorithm stops once all 

vertices are popped.  

The algorithm stops as we are no adding vertices to the Q once they are popped. The invariant is 

the set of vertices popped till now + set of vertices in the Q = G.V. The runtime of the algorithm is 

O(E log(V)). In one of our solutions we use Dijkstra’s as a starting point and improve upon the 

ideas for our problem. 

A* Single Source Shortest Path Algorithm 

Breadth first search (BFS) and Dijkstra’s algorithms find the shortest by exploring aimlessly in all 

directions though we have a single destination. In other words, they are good if we want to find 

the shortest distances to many destinations. However in our case we have a single source and a 

single destination. Can we guide the algorithm in the direction of the goal to find the path faster or 

to traverse the graph lesser? The idea is to use a heuristic function which guides the algorithm. 

Say we have a heuristic function that returns an estimated distance to the goal. Instead keying by 
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distance from source in Dijkstra’s we key by the heuristic distance to goal (or destination). Let us 

name is greedy breadth first search assuming all edges are of equal weight. 

  

Figure 7. Path finding difference between BFS and Greedy (Heuristic based) BFS 

Figure 7 shows another way to visualize a graph, in the form of a grid. Every cell is a vertex and 

all adjacent cells are connected by edges. Star vertex is the source and cross is our destination. 

We use early exit version of BFS and Greedy BFS where we stop the traversal once we reach the 

destination. Blue vertices are vertices in the minimum priority queue and dark brown vertices are 

vertices explored by the algorithm. Greedy BFS totally beats BFS as it exactly finds the right 

shortest path to the goal by exploring lesser area of the graph. So the heuristic approach is better 

for finding paths to a few destinations (and there are proofs for it). However, the celebration ends 

soon when we add obstacles in the grid, i.e. areas which cannot be traversed, think of them 

vertices not connected or having edges with ∞ weight. Greedy BFS finds a path much faster like 

before than BFS but it is not the shortest. As shown in Figure 8, explores less edges but finds a 

longer path to destination. The dark green area on the grid is the obstacle. The problem lies in the 

heuristic function where we only account for nearness to the goal.  

   

Figure 8. Greedy BFS fails to find the shortest path if there are obstacles 
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The A* algorithm which was initially written for bot path finding uses best of both the worlds from 

Dijkstra’s and Greedy BFS. The heuristic function is the sum of actual distance from the start and 

estimated distance to the goal. 

   

Figure 9. Comparison among Dijkstra's, Greedy BFS and A* 

Figure 9 shows how A* explores only as much as Greedy BFS but also finds the shortest path 

and not just any path to destination. On the other hand Dijkstra’s explores almost the entire graph 

to find the right path. The only condition for heuristic is it should not overestimate the distance to 

goal. It uses this heuristic to reorder the nodes in the priority queue, i.e. more intelligence 

considering the goal. 

Social First Algorithm 

This algorithm uses the social constraint of K shortest distances first and then checks for spatial 

predicate. State of the art single source shortest path algorithm traverses the graph greedily from 

the source vertex until K closest vertices to source in the query region are found. During traversal, 

every vertex is checked if it falls in the region and the algorithm stops once K vertices are found. 

As this is a greedy approach which finds vertices in the increasing order of their distances to the 

source, the first K vertices found in the region are the closest ones. One example of such greedy 

algorithm can be Dijkstra’s. 

Spatial First Algorithm 

In this algorithm, vertices in the given region R are first filtered and the shortest distances to each 

are found. After sorting them in ascending by distance from the source, first K are picked. For 

filtering the vertices in R, state of the art spatial index, r-tree, is used and for finding the shortest 
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distance from the source vertex to each vertex in the region, state of the art A* with landmark 

algorithm [8] is used. This algorithm finds the shortest path between two vertices using 

precomputed landmarks like explained in algorithm 2. The closest K vertices based on distances 

returned by A* with landmark algorithm are picked. 
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CHAPTER 3 

PROBLEM DEFINITION 

In this chapter we will see a detailed explanation to the problem we are solving. Till now we saw a 

graph defined as G(V, E), from now on a graph is defined as G(V, E, S) where V is still the set of 

vertices, E is still the set of edges represented in the form of an adjacency list, S is a function 

defined on a vertex which returns the spatial attribute of it if present else NULL. So S has all 

information about the vertices that are spatial. Spatial attribute can be latitude and longitude 

information representing a point, for simplicity in our case.  

Path: A path is an ordered list of vertices and the length of the path is defined as the summation 

of all edge weights along the path.  

𝑝(𝑢, 𝑣) = (𝑣1, 𝑣2, … 𝑣𝑛−1, 𝑣𝑛)    (2) 

𝐿(𝑝) = ∑𝑤(𝑒𝑑𝑔𝑒𝑠(𝑝))     (3) 

 

Single Source Shortest Path: It is a path from a given vertex to a given destination which has 

the least length. If there are multiple paths from vertex u to vertex v, shortest path is the one 

which has the least weight.  

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑢, 𝑣) = 𝑚𝑖𝑛(𝐿(𝑝𝑖)| 𝑝𝑖 = 𝑝(𝑢, 𝑣))    (4) 

 

Socially k-Nearest Neighbors with GeoSpatial Range Filter(SkNGeo): Given a source vertex 

and a spatial region, a shortest path is defined as a path with the smallest length from the source 

vertex to any (spatial) vertex that falls in the region. Here spatial region can be a bounding box on 

the world map.  

SkNGeo gets as input a source vertex v, a spatial region R and number of returned venues k and 

returns a set that consists of k venues that are located in R and can be reachable from v through 

k shortest path among all located venues. 

Social Proximity & Spatial Reachability(SPSR): returns the top-k nearest vertices from v to R. 

If we filter the vertices that fall in R and arrange shortest paths to each in ascending order of their 
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length, Social Proximity & Spatial Reachability (abb. as SPSR) returns the first K in such an 

ordering. Ultimately, K closest vertices to source vertex in the region are fetched.  

To understand how a sample solution looks like, See Figure 1 to understand the problem better. 

When a query SkNGeo(Terry, R, 2) is issued, {G, F, H, I, K} are all the vertices that are located in 

the region R. Aim of the query is to find two venues socially closest to Terry among {G, F, H, I, K}. 

Assume that F and G have shorter distance to Terry than the other vertices {H, I, K (not 

reachable)}, then G and F will be result of such SkNGeo query. 
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CHAPTER 4 

SOLUTION 

The solution to SPSR would be a list of K closest vertices to source vertex that lie in the region. A 

simple solution would be to first filter all vertices in the region and find shortest distances to each 

using a single source shortest path algorithm like Dijkstra’s or a more robust state of the art A* 

with landmark algorithm [8]. Once all paths are found we sort them by their length and pick the 

destination vertices of first K paths. This works but a spatial index like R-Tree would be needed to 

execute the spatial predicate. Also this needs traversal of the graph until distances to all vertices 

in R are found in the worst case if we use Dijkstra’s. In many case we may just need a K which is 

much smaller to the number of vertices in R. If A* with landmark algorithm is used to find the path 

lengths after filtering the vertices in R, it would take a really long time for reasons mentioned in 

the experiments chapter.  

Another idea would be to pre-compute shortest distances from all vertices to all other vertices in 

the graph. Save these distances and paths in a relational database and index them. On query, 

the index is probed and K best in the list of filtered vertices by spatial predicate R are returned, for 

that source vertex. This naïve solution of course works as precomputation matches exactly what 

is needed before the query hits. However, this may not be a feasible solution as geosocial graphs 

can be very dynamic and are updated all the time. Users check-in all the times at venues and 

make new friends very frequently. Also such a precomputation is very expensive w.r.t time and 

may take even days to complete if used on huge graphs. Even if time, O(V2) is not a concern, it 

would require quadratic space w.r.t size of the graph, as distances to every possible combination 

of vertices are stored. Hence this is not a feasible approach. 

Another simple idea is to use a Dijkstra’s algorithm starting the source vertex and continue until K 

vertices that fall in the region are found. As Dijkstra’s algorithm is greedy it finds the shortest 

distances in non-decreasing order to all vertices. We can safely conclude that we found the 

correct solution once we find K vertices in R to be the top-K in that region from the given source 

vertex. As shown in Figure 10, like in Dijkstra’s we start from ‘s’ vertex and start relaxing the 

neighbors. The marked maroon rectangular box is the region of interest R. ‘t’ and ‘x’ fall in the 
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region and say K = 1. From ‘s’ we relax ‘x’ and ‘y’ with 10 and 5 respectively. Then as ‘y’ has the 

least weight in the priority queue it will be popped and visited. ‘t’, ‘x’ and ‘z’ are relaxed to 8, 14, 

and 7 as shown in Figure 10 (c). Similarly ‘z’ is relaxed and then ‘t’ is relaxed. Once ‘t’ is popped 

from the queue, we know its shortest distance has been found and it is 8. Using the parent 

attribute of each vertex we can find the path to the source.   

 

Figure 10. Early stop Dijkstra's Algorithm having a spatial predicate 

As only one vertex is needed and ‘t’ is found which OVERLAPS R, and the algorithm halts. If K 

was set to 2, the algorithm continues until ‘x’ also is also found as shown in Figure 10 (f). The 

solution is 100% correct due to the way Dijkstra’s reduces the vertices. This approach is feasible 

as there is not have a huge space requirement. Its biggest plus is no pre-processing and works 

on highly dynamic graphs. But the side effect is the time it takes to find the solution. A much 

better solution with a minimal overhead can be invented. 

Now that it is understood why existing solutions are not feasible for a real application due to their 

drawbacks w.r.t time or space, this drives as an inspiration for Socially Proximity & Spatial 

Reachability (SPSR) index. Referring to Figure 10 again, it can observed that if K = 1, ‘s → y → t’ 

is the answer. There are two problems here: 

1. To understand the 1st problem, assume that the edge z-x doesn’t exist. This means there 

is no way to reach R from ‘z’. Even then using the above solution ‘z’ is visited first and 

then ‘t’. 

2. The 2nd problem is, vertex ‘z’ is visited before ‘t’ or ‘x’ though it is not part of the final 

solution even if K = 2.  
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To solve the first problem SPSR-Spatial is proposed. It helps Dijkstra’s during traversal and 

eliminates routes which do not reach the region, R. This makes Dijkstra’s more goal oriented like 

A*. To solve the second problem another index using the social proximity called the SPSR-Social 

is proposed. This helps the traversal algorithm, to traverse the graph as less as possible 

considering both the region of interest and K. 

 

Figure 11. SPSR-Spatial index 

The solution is twofold, first data is preprocessed to create an index. Then a modified A* 

algorithm traverses the graph using the index to answer query of type mentioned in Answering 

Queries chapter. 

 

Figure 12. Running Example 

A running example is used to explain the main idea followed by a formal algorithm. Consider 

Figure 2 which has a social graph of friends and their check-ins at various venues. 

In Figure 12, each vertex symbolizes a person and two nodes are connected if there is a social 

relationship between them. The number on the edge indicates their social distance, lesser implies 

stronger bond. Forest green edges from the nodes to the map are all check-ins made by people 
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at various venues (nodes not shown), which are our spatial vertices. Forest green edges are also 

weighted but are not shown as they are not important for explanation purposes. 

Our Approach, SPSR 

Structure 

The goal of the index is to quickly prune the graph for any range predicate, starting at any source 

vertex. Therefore for every vertex, spatial and social meta information is added. Using this meta 

information, the traversal algorithm at query time can decide whether to visit a sub-graph starting 

at that node or not or more generally, this guides the traversal algorithm at query time. 

Spatial meta information is created using the spatial at- tributes of the vertices. The world is 

divided into a fixed number of blocks in space and are numbered in increasing order. Then for 

each venue (i.e. spatial node) the meta in- formation for all the people nodes (other vertices) who 

have checked-in there is updated with the block number where the venue belongs. If the world is 

divided into very fine blocks, each meta entry can be really huge. To compress the index entry, 

the world is divided again but this time into more coarser blocks and are also numbered like 

before. For all the index entries which cross a threshold, block numbers from the coarser division 

are used. This is done recursively until the threshold is satisfied for that index entry. Once this is 

in place, at query time, while traversing the graph for finding a closest vertex, sub-graphs starting 

at a vertex which does not reach the region of interest are straight away pruned. 

Social meta information/index is created using the social distances (edge weights). A few vertices 

are picked from the graph based on some criteria (detailed later) and the shortest distances from 

each to all vertices it can reach are computed using well known single source shortest path 

algorithms like Dijkstra’s and stored. These selected vertices are termed as landmarks. So social 

meta information is a table which has shortest distances information from each landmark. Using 

these landmarks and triangle inequality an estimate of the shortest distance from any vertex to 

any other vertex in the graph is obtained. This valuable information is used during graph traversal 

to prune sub-graphs even better and is detailed in Answering queries section. 
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Using the Spatial Component 

A complete picture of equally space partitioned world would be as shown in the Figure 3. Here 

the resolution of the division is 10 by 10. That means the entire world is divided into 10 equal 

sized blocks horizontally and 10 equal sized blocks vertically. In the running example, the entire 

region is divided into equal sized blocks from 1 to 16 as shown in Figure 13. Then for vertex D, 

meta information would be [8] as the user checked-in at a venue which falls in block number 8. 

Similarly for vertex G, the meta information would be [5, 6, 7]. Continuing like this, a meta 

information table for each vertex which are directly connected to a spatial node is populated. 

 

Figure 13. Multilayer grid 

This is the reachability to venues by 1-hop which can answer 1-hop queries. For example, did 

vertex G check-in at venue L1 or did vertex E visit any venue in a region L2. The first can be 

answered by finding its block number using its location and cross-reference it with the list of 

blocks G can reach from the meta table. More details on answering queries later. 

If idea of 1-hop reachability is extended to any number of hops, it is multi-hop reachability or 

simply reachability. These values denote all blocks that are reachable from a vertex in any 

number of hops/steps. For building multi- hop reachability information, direction of all the edges 

are reversed or the transpose of a graph is created. Now, for every vertex, its reachability 

information is appended with meta information of all the vertices it is directly connected to bottom 

up. 

In our example after reversing the edges, to compute multi-hop meta information for H, we 

append G’s meta in- formation. Similarly for B’s meta information is appended from H and F. As 

this is a DAG, we have complete reachability information of every node after completing the 

exercise for entire graph. If the original graph is not a DAG, it is condensed by contracting all 

strongly connected components into a single node to make it a DAG. The final meta table for 

every node looks like the one shown in the column 2 of Table 3.  

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17
1,2,9 ,10

18
3,4,11,12

19
5,6,13,14

20
7,8,15,16

21
17, 18,19,20
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Table 3 

Spatial Index 

Vertex Reachable regions Compressed 

D  [9, 2, 11]  [17, 18] 

E  [2, 11]  [2, 11] 

F  [3, 4]  [3, 4] 

H  [5, 6, 7]  [19, 20] 

G  [5, 6, 7]  [19, 20] 

C  [5, 6, 7]  [19, 20] 

B  [3, 4, 5, 6, 7]  [21] 

A [3, 4, 5, 6, 7]  [21] 

 

Using this table we can answer any region reachability query which will be described in the next 

section. Now we can see that vertex A can reach whatever B, C and D can reach. Similarly B can 

reach whatever H and F can reach and so on. However, as you can see the size of the meta 

table (a.k.a index table) can grow really large as vertices like B and A which are highly connected 

can reach many blocks. 

In order to compress the entries in the meta table for highly reachable nodes, a new layer of 

blocks with higher resolution is added. 

As shown in Figure 13 (assume the 3rd layer does not exist for now), blocks 17 to 20 are added 

on top of blocks 1 to 16. This can be visualized like a stack where the old layer sits exactly on top 

of the new layer. That is block 17 covers exactly the same area as area covered by blocks 1, 2, 8 

and 9. Similarly block 18 in layer 1 represents blocks 3, 4, 10 and 11 of layer 0. Due to this 

change, the meta table becomes like the one shown in the 3rd column of the Table 3. The 

reduction factor, which is rate at which the resolution changes between adjacent layers, is set to 

1/4 and is a tunable parameter of the system called RF. The number of layers in the multilayer 

grid index is guided by another system level tunable parameter M. M is the maximum size, in 

terms of number of block ids, of meta information for a vertex. For example, if M = 2 as used in 
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the running example, then each vertex can only have two entries in its meta information and until 

this limit is satisfied, new layers are created. In the example, for all vertices which have more than 

2 entries, are compressed using layer 1. However some of them still have more than 2 entries. 

To compress further one more layer below layer 1 is added as show in Figure 13. There block 21 

represents blocks 17, 18, 19 and 20 in the layer above it. 

The discussion began by condensing G to a DAG (G’). Now each node in a strongly connected 

component gets the meta information of the component as proved Lemma 1 below. 

Lemma 1. Let v be a vertex in a strongly connected component C of a directed graph G(V, E). 

Then, 

∀v ∈ C: Meta information of v = Meta information of C 

Proof. In a strongly connected component C, any vertex can be reached from any vertex by 

definition, i.e. u reaches v,∀(u, v) ∈ C. 

If C in condensed graph G′ can reach a set of regions R, then any vertex of C can reach R by 

definition of connected component. 

Therefore, meta information of C = meta information of ∀v ∈ C. 

Then a R-Tree is also constructed using the spatial nodes in the graph. This will later be used at 

query time to filter the exact nodes in a region and will be discussed in more details in the next 

section. These are the two indices created on the spatial component of the graph. For clarity, 

spatial index always means SPSR-spatial in the rest of the document as discussed in algorithm 1 

next. 

 

Figure 14. Algorithm 1, SPSR-Spatial 
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Algorithm 1 shows how the index, SPSR-spatial is created. In the first phase block numbers of all 

spatial vertices are added as the meta information of the vertices they are connected from. Then 

a modified DFS is used to construct multi hop reachability. The REGION() method re- turns the 

block number for any spatial vertex. The REPARTITION() method ensures the M constraint by 

recursively increasing the resolution by a factor of RF. In the DFS() method meta information is 

recursively appended to the head vertex from the tail vertex. 

To compute the asymptotic run time and space complexities for algorithm 1, it is divided into four 

pieces - graph condensation, 1-hop reachability calculation, DFS for multi- hop reachability and 

repartition function. The runtime for each would be as follows, 

• Graph Condensation: On line 2, the input graph is condensed into its strongly 

connected components. Using a popular algorithm like Targan’s Algorithm, the runtime 

would be O(V + E) [19]. 

• 1-hop reachability calculation: From lines 3 to 6, 1- hop reachability on the condensed 

graph is computed. In the worst case, every vertex will be a strongly connected 

component and so the size of the graph remains the same after graph condensation. As 

the entire graph is traversed once to populate 1-hop meta data for each vertex, the 

complexity for this piece also would be O(V + E). Calls to repartition() function are 

handled separately. 

• DFS: For multi-hop reachability, a DFS traversal is performed on the graph on line 7. As 

adjacency list is used for managing the graph’s edges, the complexity for DFS would be 

O(V + E) again. Calls to repartition() function are handled separately. 

• Repartition: This function is called multiple times to make sure the M constraint is 

satisfied. The runtime of the function depends on the size of the meta entry for the vertex. 

For every vertex’s index entry, the world is divided with a constant resolution to start with, 

like 10. The total number of blocks at that default resolution would always be square of it, 

like 100. Let the total number of blocks in the default resolution be c, which would be the 

worst case size of any vertex’s meta information. This happens when a vertex can reach 

all blocks in the world. And until the size of meta information for that vertex falls below M, 
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the resolution of the division is reduced by RF. Therefore the number of times the loop in 

REPARTITION() function of the algorithm, say n would be, 

𝑐

𝑅𝐹𝑛
≤ 𝑀     (5) 

𝑛 ≤  𝑙𝑜𝑔 1

𝑅𝐹

𝑀

𝑐
      (6) 

And repartition function is called exactly twice for each vertex, once during 1-hop reachability and 

once during DFS. Therefore, the time complexity due to this function would be O(V × log (1/RF) 

( M/c )). This fraction is very small compared to sum of vertices and edges in the graph. 

All the other lines in the algorithm can be computed in constant time. The runtime of SPSR - 

spatial would hence be O(V + E). 

Space complexity would be amount of memory required to store the multi-hop reachability table. 

Each index entry has an upper bound of M. Hence memory consumption in the worst case would 

be, O(V × M ). 

Using the Social Component 

Social distances between nodes are used to create an additional index to prune the graph even 

better. This will take care of the cases when the graph is very dense and the spatial index created 

before may not be of much use for pruning at query time. More details on querying the graph are 

described in the next section. 

The main idea is to select a few nodes in the graph and call them landmarks. Then for each 

vertex shortest distances to each landmark is stored. Then at query time these precomputed 

distances and triangle inequality are used to guide as a heuristic in the A* search algorithm. The 

inspiration is from [8] which introduces a class of algorithms called ALT. The main challenge here 

however is to find top-k closest vertices to a given vertex in a region and not finding the shortest 

path from a given source to a given destination unlike in [8]. 

The quality of the landmarks determine the pruning power of the index. Choosing the right 

landmarks requires some domain knowledge of the graph. Once that is picked the process 

remains the same no matter what the graph represents. [8] talks about multiple ideas on how to 

find high quality landmarks quickly. The ideal case would be to find as minimum number of 
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landmarks as possible such that every vertex in the graph is connected to at least one of the 

landmarks. However leaving out a few vertices that do not reach any landmarks will not hamper 

the correctness of the algorithm. Therefore finding a sweet spot of number of land- marks which 

gives the best query performance is crucial and is the main goal of [8]. The main contribution from 

our side is to use this social index and propose a new heuristic for A* algorithm that finds top-k 

venues satisfying a spatial predicate. 

 

Figure 15. Algorithm 2, SPSR-Social 

Algorithm 2, SPSR-Social, describes how to create an index using landmarks. Landmark 

selection function on line 2 can be any of the functions described in [8]. Then for each landmark 

the shortest distances is computed using any well-known single source shortest path algorithms 

like Dijkstra’s or Bellman Ford to every vertex reachable from that landmark. Please note that 

distances from the landmark to every vertex are saved and not the other way around. The 

direction is important as we are only dealing with directed graphs. 

To compute asymptotic run time and space complexities, algorithm 2 is divided into two pieces - 

finding the land- marks, finding shortest distances to each reachable vertex from each landmark. 

The runtime for each is as follows, 

• Finding Landmarks: There are various ways of picking the landmarks and is totally left 

to user. In our case we used an approach which finds landmarks in constant number of 

scans of the entire graph. Therefore, the complexity of this piece is O(V + E). 

• Shortest distance to each landmark: Here, the shortest distances from each landmark 

to all vertices it can reach are saved. Using adjacency list for storing the edges, Dijkstra’s 

algorithm is used as edges have positive weights. With this setting, the complexity would 

be O(landmarks × E log V ). As the number of landmarks is usually very small compared 

to number of edges in the graph, it would be O(E log V ) in asymptotic notation. 
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Therefore the runtime for this algorithm using a sensible landmark selection algorithm would be, 

O(V + E) + O(E log V). 

Space complexity would be memory taken to store the shortest distances to each reachable 

vertex for all landmarks. As the number of landmarks is very small compared to the number of 

vertices in the graph, this would be O(V ). 

Answering Social Proximity & Spatial Reachability Queries 

A modified A* with landmark [8] algorithm is proposed for answering SPSR queries using the 

SPSR index. The main goal is to prune as much graph as possible using the spatial index and 

move in a goal oriented manner towards the region during traversal. The algorithm takes a graph 

G, a starting vertex s and a query rectangle R as input and returns the top-K vertices by social 

distance in R in an iterative manner. Being iterative helps pipeline the SPSR with other database 

functions. 

The crux of A* algorithm is the heuristic function. Our heuristic function takes a vertex and a 

region and returns the heuristic distance which will be used by A* to decide which path to 

traverse. In order to design such heuristic function SPSR-social index is used explained in 

algorithm 3. For this the triangle inequality property is used to get a lower bound on the distance 

between any two vertices. 

 

Figure 16. Algorithm 3, SPSR 
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Figure 17. Algorithm 4, Vertex Visit sub routine for algorithm 3 

In Figure 18, say H and R vertices need a lower bound on the distance between them. For this, 

the distances saved w.r.t. each landmark, here G as part of social SPSR index is used. So in the 

figure using the index the distances u and v are known. In order to find x which is the distance 

between H and X u is subtracted from v. Therefor the value of x shown in the figure would be v − 

u which directly follows from vector addition. This is only a lower bound on the distance from H to 

X and is proved in [8]. 

 

Figure 18. Triangle Inequality 

In our case a lower bound from a vertex to a region is needed. In order to understand how this is 

done, recap the problem definition - find top-k closest vertices (w.r.t social distances) in a region 

from a vertex in a graph. To under- stand better, set K = 1, i.e. say the nearest vertex in the R 

from a source vertex is needed and say we have only one landmark. Now, for A* to work 

efficiently, a lower bound as tight as possible is needed, else the traversal would touch as many 

vertices as Dijkstra’s. Let the source vertex be H, landmark be G and region exactly enclosing 

blocks 5 and 6 in the Figure 5. The problem now becomes finding the closest vertex to H in the 

region. To get a lower bound for x, the triangle inequality formula devised above, v − u is used. In 
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order to keep x minimum, v should be as small as possible. Therefore the closest vertex in R to G 

is picked. Similarly for the second closest vertex we choose the second nearest vertex to G in R. 

The algorithm proceeds this way till the nearest K vertices in R are found. If multiple landmarks 

are present, a value of x for each landmark is produced. We pick the maximum value of x to get 

the tightest bound possible and this follows from efficiency of A* algorithm. 

Algorithm 3 shows Social Proximity & Spatial Reachability in detail. All vertices are labelled as 

unvisited initially. The visited flag is used to prevent traversing the same node multiple times. The 

priority queue Q in keyed by sum of actual distance from source and a heuristic distance to 

current closest vertex to a landmark. For each vertex popped from the queue, it is tested if it 

OVERLAPS R and returned if K vertices are found. If not, keys for all existing vertices in Q are 

updated with the new heuristic. All unvisited neighbors of the popped vertex are enqueued only if 

they can reach the region R as per SPSR-Spatial index. If a neighbor can reach R, and if it not 

already in Q, its heuristic distance is computed and summed with the distance from the source 

and inserted into the Q. If the vertex is already in the Q, its key is updated if the new distance is 

smaller. The algorithm proceeds this way till all vertices in the Q are exhausted or K closest 

vertices in R are found whichever is earlier. This way, it is an iterative algorithm which doesn’t 

traverse the entire graph to return the top-K results. 

Algorithm 3 answers socio-spatial queries using modified A* with landmark algorithm and its 

complexity depends on the quality of the heuristic function. So rather than one value for 

asymptotic runtime two extremes are obtained. The algorithm can be divided into three pieces - 

the Q, heuristic function and vertex visit (which is written as a subroutine as algorithm 4). The 

runtime for each is as follows, 

• the Q and Vertex visit: Lines 5 to 15 of algorithm 3 detail the priority queue’s role (viz. 

keyed by actual distance + heuristic distance). Algorithm 4 details what happens at every 

vertex that is not yet visited. The number of times the Q loop executes depends on the 

way heuristic guides the algorithm. In the best case, it is always on the right path to the 

current shortest distance and so the run time would O(n), where n is the length of the 

path. As K such paths are needed, the complexity would become, O(K × n). In the worst 
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case, the heuristic always picks the wrong path and the algorithm works like a Dijkstra’s 

or a BFS. In such a case, the complexity would be O(V + E) for finding any number of 

shortest paths since the entire graph is traversed once. 

• the Heuristic: Here all vertices that fall in the region of interest, R are filtered. If properly 

implemented this can be done only once per query. Its complexity would be O(log m(V )) 

where m is the number of nodes/vertices per memory page (fan out of a tree). Then the 

maximum of all closest distances to all landmarks if found. This is nothing but finding the 

K smallest elements in an array, as the number of landmarks are constant. Its complexity 

would be O(K + (V − K) log K). So the total complexity would be O(logm (V ))+O(K +(V −K) 

log K) where m is the number of nodes/vertices per memory page (fan out of a tree). 

Therefore the runtime of Social Proximity & Spatial Reachability would be in between O(K 

×n)+O(logm(V))+O(K +(V −K)log K) and O(V +E)+O(logm(V))+O(K+(V −K)log K), where m is the 

number of nodes/vertices per memory page.  
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CHAPTER 5 

EXPERIMENTS 

In this chapter, multiple experiments verify the SPSR algorithm with various input parameters. For 

this an Intel Core i7 2.66 GHz processor with 8GB RAM and running MAC OSX was used. 

Real Yelp Dataset3 which has both social and spatial components as introduced in the beginning 

was used. The dataset has 552K social nodes, 77K spatial nodes, 3.5M social edges and 2.2M 

spatial edges. As social edges indicate friendship strength between users, a random number 

between 1 to 10 was generated to signify the social distance between two users. Similarly, as 

every spatial edge is a check-in at a business, the rating given by the user was indicated by a 

random number between 1 and 10. In both cases larger the number, lower is the friendship 

strength and lower is the rating respectively. 

 

Figure 19. Screenshot of the web application showing the top 10 venues in a region 

The closest vertices returned by SPSR are fed into a web application which visualizes the results 

as shown in Figure 19. The red markers are the places which the user,  

                                                      

 

3 https://www.yelp.com/dataset_challenge 
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“2AGGIi5EiVLM1XhBXaaAVw” visited and flag markers are her recommendations based on 

social distances. All the recommendations are for the region marked by the translucent black 

rectangle. The figure also shows the shortest paths listed in ascending order by social distances. 

Hovering over a node in the path, shows all the information rich attributes that can be used for 

computing social distance (or edge weights).  

First the user name is entered and the list of places the user been to is listed using the left panel. 

This gives an idea where the user usually goes to. Then a region is marked using the rectangular 

marquee tool on the top of the map. Lastly the Recommend button fetches the best 10 

recommendations (10 closest venues to user) in the marked region on the map. The details of the 

application and its source code are available at  

https://github.com/Nithanaroy/GeoReachRecommender.  

Table 4  

Default Parameter Values 

Parameter Default Value Range 

K 100 10, 100, 1000, 10000 

RZ 125 25, 125, 625, 3125 

VertexReachesAlgo Type 3 Type 1, Type 2, Type 3 

M 10K - 

RF 4 - 

 

Unless specified each run uses the default parameter values as shown in Table 4. Parameter K is 

the shorthand for top-k, i.e. any query requests 100 closest vertices by default. RZ is the 

shorthand for resolution which deter- mines the number of blocks the world is divided into. RZ ← 

125 implies that the world is equally into 125 by 125 blocks along latitudes and longitudes. 

VertexReachesAlgo parameter defines how line 3 of algorithm 4 is implemented. Throughout this 

section, it is referred as OVERLAPS. Three implementations which check whether the query 

region R overlaps with regions reachable from a vertex were used and will be described near 

those experiments. M and RF are the same parameters described before as the maximum 

https://github.com/Nithanaroy/GeoReachRecommender
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allowed size of a SPSR-Spatial index entry for a vertex and reduction factor between levels of the 

SPSR-Spatial index respectively. 

The pre-processing times for building the SPSR-spatial and SPSR-social indices are very 

reasonable for a dataset of realistic size dealt here. The pre-processing time for SPSR is 

summation of times taken for building both the social and spatial indices which is 195s. 

SocialFirst does not require any pre-processing as it is a modification of Dijkstra’s algorithm. 

SpatialFirst requires selection of landmarks and finding shortest distances for each which is 

exactly like the social index of SPSR. 

Table 5  

Pre-processing times 

SPSR Social First Spatial First 

SPSR-Spatial requires 122s 

SPSR-Social requires 73s 

0s 73s 

 

SPSR is first compared with SocialFirst and SpatialFirst approaches introduced in Preliminary 

chapter. Figure 20 compares the time taken by SPSR, SpatialFirst and SocialFirst algorithms for 

the same source vertex and region. It may seem very intuitive at first that the SpatialFirst 

algorithm should to- tally beat others as pruning the graph by a huge extent initially using r-tree. 

To be exact from a graph of 629K nodes, we focused on 2,804 nodes only which is 0.44% of the 

entire graph. Surprisingly, SpatialFirst is 3 orders of magnitude slower than the simple graph 

traversal Social- First algorithm and 4 orders of magnitude slower than SPSR. The reason for this 

massive difference is, A* with landmark is designed for solving single source and single 

destination problems. In our case A* with landmark function is invoked from the single given 

source vertex to every destination vertex in the region. Getting into some digits, say A* with 

landmark takes 3s (which is a very modest number on a real Yelp graph) for computing the 

shortest path for a given source and destination. Assume the given region R contains 2,000 

venues. Therefore A* with landmark is invoked to each of them for a total of 2,000 times, which 

itself takes about 6,000s or 1.67 hours! Another way to visualize is, the algorithm (from source) is 
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restarted for each of 2,000 destinations which causes it to lose by a huge margin with SocialFirst 

and SPSR.  

 

Figure 20. Algorithms VS K VS Time 

That is where the SocialFirst algorithm shines. It totally takes a disconnected approach between 

spatial and social constraints like SpatialFirst, however it doesn’t restart for obtaining the next 

shortest path. SpatialFirst aimlessly wanders the graph in the order of increasing distances from 

source and emits a result when it finds a vertex in the region. SPSR is the best of both the worlds, 

as it uses a heuristic to traverse the graph in a goal oriented manner towards the region like 

SpatialFirst and does not restart for obtaining the next shortest destination like SocialFirst. This is 

the main reason why it shines than the other approaches. And this can be clearly seen in Figure 

20. As SpatialFirst is way out of the league, it is eliminated from the discussion from now on and 

SocialFirst and SPSR are focused. From the plot it is evident that as K increases, the time taken 

by SPSR and SocialFirst also increases. Though it may be very unlikely that for a query to seek 

with K > 20, SPSR still outperforms SocialFirst algorithm by at least 2 times even in the worst 

cases. To be specific, the region in the query has 2,804 spatial nodes and K was set as high as 

10,000 nodes which is 100% selectivity for that region and is testing the limits. As the final 

outcome is clear, the main focus would now be only on SPSR. As SPSR is made of Spatial Index 

and Social Index, SPSR was run multiple times with and without each index and to study how 

each of them perform. 
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Figure 21. Time VS K VS SPSR Types for Resolution = 25 

So the Figure 21 breaks down the components of SPSR into SPSR-Spatial, SPSR-Social 

and Both (marked as SPSR in the plot’s legend). SPSR-Spatial uses only the Spatial index while 

traversing the graph. As using only SPSR-Spatial index, a heuristic function cannot be built, 

modified Dijkstra’s is used with one extra condition. In Dijkstra’s, before adding any vertex to the 

priority queue, it is verified whether it can reach the given region R using the spatial index. So the 

sub graphs which cannot reach the region are pruned early using the index. Similarly, SPSR-

Social uses only the social index for finding the K closest vertices to the source. For this, the 

algorithm is exactly like algorithm 3 except the condition on line 3 of algorithm 4 would always 

return false. This indirectly means spatial index is never used. 

Though using either of the indices beat SocialFirst and of course SpatialFirst algorithms, it can be 

clearly seen that using SPSR-Social index outperforms others for smaller K in this case. To 

understand why it is so, revisit the heuristic algorithm of SPSR. The heuristic function uses the 

Social index with landmark(s). Combined with triangle inequality a lower bound on the distance 

between the source vertex and a destination vertex in the region is computed. Higher the lower 

bound, better is the pruning power of SPSR. As dis- cussed the quality of landmark(s) plays an 

important role in the performance. So here using the spatial index only adds the overhead by 

querying that index, therefore the curve using both the indices slightly underperforms initially. But 

as K increases, the heuristic’s bound weakens as v in Figure 18 is no longer small compared to u. 
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At the same time, spatial index helps SPSR to make better decisions whenever social index fails. 

The bottom line, using social index gives better results when: 

• Quality of the heuristic, indirectly landmarks, is very good 

• Graph is very dense that most of the vertices can reach the region, making spatial index 

only an overhead 

However, as the value of K increases, using both the indices certainly helps as unnecessary 

graph traversals are further reduced by spatial index. This is clearer in a later experiment when 

the quality of the landmark is not as good as this case. A very low resolution of 25 by 25 was 

used above. So how the runtimes change when we increase it by 125 times is studied next. 

 

Figure 22. SPSR Types VS Time VS K for Resolution = 3125 

Just as expected as shown in Figure 22, the gap between SPSR and SPSR-Social indices further 

increases when resolution (RZ) is set to 3125. The function OVERLAPS which checks whether a 

vertex can reach a region using spatial index takes longer when size of the index entry increases 

for a given vertex. To totally confirm that this is the case, OVERLAPS was implemented in two 

more ways which were equivalent w.r.t. runtime but cash on tiny advantages based on the size of 

R and size of spatial index. This is exactly the same parameter VertexReachesAlgo in Table 4. 

This is how each algorithm is implemented: 

• Type 1: It is a No or May Be algorithm. In this axes transformation technique is used to 

check if a vertex reaches a region. The axes are transformed such that the southwest 

corner of the region in the query, is set as origin (0,0). Then for checking if a vertex 
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reaches this region, SPSR-Spatial entry for the vertex is queried. Then each block 

number, that the vertex can reach as per reachable blocks table, is transformed into the 

new co-ordinate system. Then using this transformed 2D block number, a simple 

comparison of the block with all four corners of the region was used. If the result is true, 

the vertex may reach R and so we have to use the exact Type 2 or Type 3 algorithms. 

• Type 2: In this, region (R) in the query is enumerated to block numbers for as many 

levels as there in the spatial index. Then to check if a vertex reaches this region, each 

block number from the spatial index for the vertex, are probed with the enumerated 

region (R). This probing can be done in constant time if blocks reachable by a vertex are 

stored in a HashSet. This approach performs better than Type 1 if region is really small 

as the overhead of transforming into a new co-ordinate system is avoided. 

• Type 3: In this also, region (R) in the query is enumerated to block numbers for all levels 

in the spatial index. Then a native set intersection function to find if there is match 

between blocks from R and blocks from a vertex was used. This sometimes shines as 

native programming implementations which are written in most optimized way especially 

in higher level languages like Python. 

That is how each of the three OVERLAPS algorithms are implemented. Figures Figure 23, Figure 

24, Figure 25 clearly show that all perform the same way. However, if on mashing the plots 

together keeping the K constant, Algorithm of Type 3 outperforms in majority of the cases. This 

confirms the previous doubt that if the resolution is too high like 3125 by 3125 the overhead in 

OVERLAPS function overcomes the advantage gained by graph pruning in a dense graph. Now 

to figure out the sweet spot for right value of RZ, experiments comparing K VS Resolution VS 

Time for each variant of SPSR were studied. 
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Figure 23. K VS Time VS SPSR Types for VertexReachesAlgo Type 1 and Resolution = 625 

 

Figure 24. K VS Time VS SPSR Types for VertexReachesAlgo Type 2 and Resolution = 625 

 

Figure 25. K VS Time VS SPSR Types for VertexReachesAlgo Type 3 and Resolution = 625 
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From Figure 26 it is evident that as resolution increases for a fixed K and for SPSR-Spatial, 

performance degrades for very high resolutions due to the overhead by OVERLAPS function. For 

very low resolutions, as each block is almost the size of Texas, even if a user checks-in at one 

restaurant there, he/she is considered reachable to that block. So it returns that most vertices can 

reach R, making it less useful to use a spatial index. The sweet spot so is in between the both 

extremes, which is 625 in this case. Similar conclusions can be made in next case Figure 27 

where both indices were used. 

 

Figure 26. Time VS K VS Resolution for SPSR-Spatial Algorithm 

 

Figure 27. Time VS K VS Resolution for SPSR Algorithm 

But social index lessens the loss brought by spatial index overhead and therefore extreme high 
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So after these experiments, it can be concluded that when the graph is really dense using the 

social index with a high quality landmark is sufficient. Things change when the quality of 

landmark(s) is not as good. For the next query, the region is even more densely connected and 

the source vertex is the same, however a lower quality landmark was used. This region has 

21,239 spatial nodes which is almost 10 times the count of the previous one. 

 

Figure 28. Runtime comparison between the types of SPSR algorithms for RZ = 625 and for lower quality 
landmark 

Figure 28 proves why just having a social index won’t help like before. For this region, 

purposefully a lower quality landmark was chosen. In such cases spatial index prunes majority of 

the graph as a good resolution of 625 by 625 found earlier was used. Though social index equally 

performed between Resolution and K using tween Resolution and K using social + spatial index 

initially, it lost soon as the landmark quality further degraded for higher K for the same reason 

explained before. The correctness is never compromised, it is only that SPSR tends to Dijkstra’s 

search if landmark quality is not good. Now that when to use each type of index is understood, 

how each of the algorithms perform with change in region size is studied next. 
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Figure 29. Region Size VS Time VS SPSR Type for source vertex S1 

 

Figure 30. Region Size VS Time VS SPSR Type for source vertex S2 

Figure 29 shows how in every algorithm the time taken linearly increase w.r.t. the size of the 
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regions and so the spatial index performs worse initially due to its overhead but gradually 

performs better. The gap further reduces when we a user whose social neighbors do not have 

many check-ins in the query regions was chosen. Due to this algorithm has to traverse the social 

graph further down to find the result as shown in Figure 30. 
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CHAPTER 6 

CONCLUSION 

SPSR finds socially k-NN with spatial range filter by combining social and spatial searches and 

works on any socio-spatial graph. Different tunable parameters give an extra layer of flexibility to 

such a generic solution. Thorough experiments not only prove this point by outperforming existing 

approaches by at least three times even in extreme cases but also show how to set each of the 

tunable arguments. Extensions to SPSR can include a persistent way to store the index and also 

a distributed algorithm. 
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