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ABSTRACT 

The last decade has witnessed a paradigm shift in computing platforms, from 

laptops and servers to mobile devices like smartphones and tablets. These devices host an 

immense variety of applications many of which are computationally expensive and thus 

are power hungry. As most of these mobile platforms are powered by batteries, energy 

efficiency has become one of the most critical aspects of such devices. Thus, the energy 

cost of the fundamental arithmetic operations executed in these applications has to be 

reduced. As voltage scaling has effectively ended, the energy efficiency of integrated 

circuits has ceased to improve within successive generations of transistors. This resulted in 

widespread use of Application Specific Integrated Circuits (ASIC), which provide 

incredible energy efficiency. However, these are not flexible and have high non-recurring 

engineering (NRE) cost. Alternatively, Field Programmable Gate Arrays (FPGA) offer 

flexibility to implement any application, but at the cost of higher area and energy compared 

to ASIC. 

In this work, a spatially programmable architecture customized for image 

processing applications is proposed. The intent is to bridge the efficiency gap between 

ASICs and FPGAs, by offering FPGA-like flexibility and ASIC-like energy efficiency. 

This architecture minimizes the energy overheads in FPGAs, which result from the use of 

fine-grained programming style and global interconnect. It is flexible compared to an ASIC 

and can accommodate multiple applications.  

The main contribution of the thesis is the feasibility analysis of the data path of this 

architecture, customized for image processing applications. The data path is implemented 

at the register transfer level (RTL), and the synthesis results are obtained in 45nm 
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technology cell library from a leading foundry. The results of image-processing 

applications demonstrate that this architecture is within a factor of 10x of the energy and 

area efficiency of ASIC implementations. 
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CHAPTER 1. INTRODUCTION 

The battery life of our ubiquitous mobile computing devices like mobile phones, 

tablets, cameras, smart watches, and smart health monitoring systems is determined by the 

energy efficiency of their computations. For applications that must process an abundance 

of data like image processing, computer vision, etc., this often requires that the energy cost 

of an arithmetic operation be very small. Since most of these mobile devices operate 

independently, these need to be very high performance to execute the algorithms in real 

time. Since battery life depends on energy consumption, this calls for energy efficient 

integrated circuit designs. Further, given power constraints, due to thermal limits of mobile 

devices, energy efficiency determines performance (Power = Performance * Energy) 

[Mark14]. 

Traditionally, the energy cost of arithmetic operation scaled cubically with feature 

size. Unfortunately, voltage scaling has effectively ended [Denn99]. Moreover, traditional 

technology scaling has slowed down [ITRS10, Cunn14], which is officially confirmed by 

Intel as they announced the extension of the life cycle for each process [Dent16]. Hence, 

we need to do something other than waiting for better transistors.  

Application Specific Integrated Circuits (ASIC) (fixed function hardware) are 

incredibly energy efficient and outclass the general purpose CPU or GPU by three orders 

of magnitude in terms of energy efficiency and performance [Chen14, Mark12]. ASICs 

achieve that efficiency by exploiting the structure of the algorithms [Mark12] and reducing 

the flexibility [Qadeer13]. Thus, ASICs are often employed in mobile System on Chips 

(SoC) for critical applications, which include image processing, computer vision, and video 

rendering applications.  
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Unfortunately, fixing the function of hardware represents an incredible opportunity 

cost. The resources allocated to ASIC (e.g. design, verification, silicon area, etc.) cannot 

be used for other applications. This often means that an algorithm is fixed well in advance 

of tape-out eliminating future opportunities for optimization.  

Alternatively, Field Programmable Gate Arrays (FPGA) are more flexible 

architectures. These can be used to implement any application that has an ASIC 

implementation. FPGA allows reconfiguration of the hardware after manufacturing, to 

accommodate newer applications. Additionally, FPGAs will generally have a lower unit 

cost for small volumes.  

However, FPGAs lack efficiency compared to ASICs. The flexibility of FPGAs 

comes at the expense of higher energy consumption, increased area usage, and slower clock 

frequency of operation. FPGAs are ~35X larger in silicon area, ~4X slower in performance 

and ~25X to ~50X energy expensive than ASICs for the same technology node [Kuon07]. 

A more efficient architecture would be something that offers the flexibility of 

FPGA’s and energy efficiency of ASIC’s.  In this thesis, a spatially programmable 

architecture (SPA), customized for image processing applications, is proposed. It aims at 

bridging the gap between ASICs and FPGAs by offering flexibility as an FPGA while 

remaining energy/area efficient with respect to ASICs. Compared to FPGA, the proposed 

architecture reduces overheads by employing local interconnects instead of global 

interconnects and follows a coarse-grained approach both in terms of functionality and 

precision of operation rather than fine-grained programmability. Additionally, the 

architecture can accommodate multiple applications, thus allowing flexibility compared to 

an ASIC. 
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The main contribution of this work is to demonstrate the feasibility of the data path 

for this architecture in terms of its functionality and energy efficiency. This is achieved by 

implementing the data path in Register Transfer Level (RTL) and performing topologically 

driven synthesis to obtain accurate energy/area results.  
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CHAPTER 2. THE CASE OF SPATIAL COMPUTE 

Fixed function hardware for image signal processing is incredibly energy efficient 

(Sec 2.1). Image processing applications greatly resemble the working of convolution 

operation (Sec 2.1.1). Applications in image processing domain have the inherent 

properties of energy efficient computations that allow building efficient fixed function 

hardware for these (Sec 2.1.2). However, Image Signal Processors (ISP) are not flexible 

and only suitable for a specific application. Alternatively, programmable architectures 

sacrifice energy/area efficiency for flexibility (Sec 2.2). In this work, a spatially 

programmable architecture is proposed for image processing applications, which is flexible 

while being energy efficient as fixed function hardware (Sec 2.3). 

2.1. Image Signal Processors (ISP) are Energy Efficient 

Image Signal Processors are employed for the acceleration of image processing 

algorithms in camera and mobile phone SoCs. ISPs perform various noise reduction/image 

enhancement algorithms on the raw sensor data and produce a colored image [Adams10]. 

ISPs constitute pipeline of image kernels, where each stage of the pipeline represents a 

specific kernel of an image processing application. The output pixel in a kernel is computed 

based on a limited region of input image pixels.  

The kernels in ISPs mirror the function of a convolution kernel [Brun15]. 

Convolution is a commonly used algorithm used for performing various filter effects on an 

image. The algorithms in image processing have similar working like that of a two-

dimensional convolution operation of an image.  
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2.1.1. Convolution in Image Processing 

 

 

Figure 2.1 Convolution of an 8x8 image with 3x3 window of operation 

 

Figure 2.2 Kernel operations performed for a 3x3 convolution 

In convolution, the output pixel is determined based on a small rectangular window 

of the input image pixels and few constant coefficients. The output pixels are calculated in 

row-major order. Convolution works in a sliding window fashion, where the working 

window traverses the entire input image in row-major order to produce the pixel values for 

the output image. This sliding window is referred to as stencil [Kung79, Kung88, Coll60]. 

Figure 2.1and Figure 2.2 show the working of two-dimensional convolution for an 8x8 

resolution of the image with a window size of 3x3. For this specific example, the 3x3 

sliding window starts at the upper left corner of the image and slides right, through all the 
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columns, until it reaches the end of a row. It again starts at the leftmost corner of the next 

row.  

  

Figure 2.3 Stencil kernel architecture for Convolution 

The hardware implementation of convolution kernel contains a line buffer, a stencil 

register, and a window function as represented in Brunhaver’s work [Brun15].  This is 

shown in Figure 2.3. The stencil register is a shift register and supplies the pixel values in 

the sliding window to the execution unit of the architecture. The data path of this 

architecture is shown as the window function (Figure 2.3). It executes arithmetic 

computations based on the input data from stencil register and calculates the output pixel. 

The rows of pixel values, which are re-used between successive row traversals, are stored 

in local memory (SRAM arrays). These buffers are called as line buffers [Reutz86, 

Kamp90, Zehner86]. The line buffer provides a column of pixel values to the stencil 

register for each overlapping window of the input image.  

Image signal processing applications are organized into the pipeline of kernels. This 

is shown in Figure 2.4. Each of these functional kernels works the same way as a 

convolution kernel. These convolution-like applications can be implemented by 

interconnecting the hardware components that are used for a single kernel [Brun15].  
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F(x) F(y)

 

Figure 2.4 Cascading kernels in image processing applications 

2.1.2. Energy efficiency of convolution-like applications 

An energy efficient application spends little energy for many arithmetic operations. 

As the cost of different operations varies (Table 2-1), energy efficient applications favor 

less expensive operations over more expensive operations. For energy efficient 

computation, the energy overheads relative to the cost of an arithmetic operation need to 

be reduced. The sources of these energy overheads are global memory (DRAM) access, 

local memory (SRAM) access, instructions and high precision operations [Brun15]. From 

Table 2-1, it is evident that the global memory access is an incredibly costly operation, 

which is three orders of magnitude energy expensive than the fundamental arithmetic work 

performed in an application. 

To amortize the DRAM energy overheads, we are interested in applications with a 

high compute-to-bandwidth ratio [Brun15, Sites96, Nowa96]. In Convolution-like 

applications, pixel values for the input image are fetched from global memory and fed into 

the deeply pipelined kernels that perform a large number of computations. Pixel values for 

an image at any stage of the pipeline is computed from a finite window of pixels from the 

image in the prior stage. Intermediate values between each stage are stored in line buffers. 

The deeply pipelined kernels execute thousands of arithmetic operations per pixel access 

from global memory, which amortizes the overheads of DRAM read operations.  
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Operation Energy Order 

8b add 0.05 pJ 1 

8b mult 0.20 pJ 4 

64b FMA 8.0 pJ 160 

8b Reg File Ld 0.38 pJ 8 

8b SRAM Ld 2.5 pJ 50 

8b DRAM Ld 320 pJ 6400 

RISC Instr. 50 pJ 1000 

SIMD Instr. 250 pJ 5000 

Table 2-1 Energy costs of different operations. The 8-bit addition, 8-bit multiplication and 

64-bit floating point multiply and accumulate results are obtained from the 

synthesis of these designs using 45nm cell library [Brun15].The memory 

operation costs are obtained from Cacti [Mura09]. The SIMD and RISC costs 

are obtained based on Tensilica cores [hameed10, Qadeer13]. 

 

We are interested in applications with a minimal working set [Ragan12] that can fit 

into the on-chip memory to avoid redundant global memory accesses [Brun15]. The 

working set of any application refers to the DRAM reads that are re-used over multiple 

operations. In convolution-like applications, the lines of pixel values that are re-used 

between successive rows constitute the total working set of the application. Hence, this 

working set is finite, and it is stored in line buffer so that pixel values need not be re-read 

from DRAM memory. 

SRAM reads that are instantly re-used should be stored in local registers to 

minimize accesses to local memory [Brun15]. Applications that allow significant reuse of 

data are said to have high locality (temporal and spatial locality) [Lee14]. The temporal 

locality refers to the reuse of data in the near future, and spatial locality is the use of 
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neighboring locations of a referenced data. In convolution-like applications, the column of 

pixel values that are immediately re-used in overlapping sliding window operations, are 

stored in local stencil registers. For a 3x3-stencil operation, one column of three-pixel 

values is read from the line buffer and stored in stencil register, which is re-used for three 

consecutive sliding window operations. This avoids redundant access to the line buffer.  

To amortize the instruction overhead costs, we are interested in applications that 

perform a large number of computations per instruction rather than executing a single 

instruction for a single operation [Brun15, Hameed10]. This overhead is due to the energy 

costs of different operations performed in a pipelined CPU that constitute instruction 

fetching, decoding, branch prediction, etc. It is the cost of flexibility provided by general-

purpose processors [Hameed10, Venkat10]. The operations performed in the kernels of 

convolution-like applications are functional in nature (e.g. multiply and accumulate, the 

sum of absolute difference, etc.). Hence, these operations can be unrolled in space and 

mapped to distinct execution units [Brun15]. Thus, we can perform multiple operations 

using a single instruction and minimize the instruction overhead. 

Finally, we are interested in applications that employ inexpensive lower precision 

operations to reduce the energy cost of arithmetic operations [Brun15]. Image-processing 

applications work on pixel values that are generally represented by low precision 8 or 12-

bit integers. This allows minimum overheads for arithmetic operations.   

Thus, image-processing applications show the properties of energy efficient 

computation by having: “significant immediate re-use, finite and small working set, 

functional in execution such that the computation can be unrolled in space and low 
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precision in operation” [Brun15]. Hence, fixed function ISPs build for image processing 

applications are incredibly energy efficient.  

While ISPs are extremely energy efficient, these are not flexible. We have to build 

custom ASICs for every application. This presents a huge opportunity cost, thus makes this 

hardware undesirable. A desirable solution would be to have a programmable architecture 

that can cater to multiple applications while being energy efficient. 

2.2. Flexibility is Energy Expensive 

 

Figure 2.5 Trade-off between flexibility and efficiency 

Increased programmability in an architecture comes at the cost of energy and area 

efficiency. The general purpose CPUs and GPUs are incredibly flexible and have robust 

application development tools to cater many applications across various domains. 

However, these are three orders of magnitude energy and area expensive compared to an 

ASIC implementation for any application [Chen14, Mark12]. Figure 2.5 shows the energy 
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per operation and area per performance for various architectures. These values are gathered 

based on the work presented at ISSCC and JSSC [Mark12]. The FPGA value is based on 

Kuon’s work [Kuon07].  

 Digital Signal Processors (DSP) are some of the architectures, which fall between 

CPU/GPU and ASIC regarding energy and area efficiency while providing flexibility. 

DSPs are specialized architectures used for signal processing applications, and its 

instructions are optimized for the operational needs of this domain of applications. Still, 

DSPs are at least an order of magnitude more energy expensive compared to ASICs 

[Mark12].  

Alternatively, Field Programmable Gate Arrays (FPGA) are the closest to ASICs 

in terms of efficiency while offering immense flexibility to implement any application. 

FPGAs are load-time programmable architectures that can be re-configured after 

manufacturing to accommodate new applications. On the other hand, ASICs has to undergo 

full design and production cycle for any changes in the application. This led to FPGA being 

widely used for prototyping any application and its throughput comes close to an ASIC 

[Yuan15]. 

However, the flexibility of FPGAs come at the cost of higher energy consumption 

and area usage compared to ASICs. These inefficiencies can be attributed to certain 

overheads in FPGAs. First, there are overheads due to a vast number of look-up-tables 

(LUT) employed in FPGAs for offering fine-grained programming at the bit level 

[Comp02, Marq00]. Second, these LUTs are connected through 2D based interconnects 

that form global connections. The global interconnect network account for the bulk of 
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FPGA’s area, contribute to significant power consumption, and slower speed [Yuan15, 

Kuon07, Bols06, Merr13].  

Additionally, FPGAs have excessive compilation times and are slow to re-program. 

The flexibility of FPGAs is derived from the fine-grained architecture style by employing 

bit level granular LUTs and global on-chip network. This type of generic structures creates 

a vast number of alternative options for the physical implementation algorithms [Para13]. 

Hence, the implementation step has excessive run times for FPGA fabric. Moreover, 

FPGAs are load-time programmable using bit streams. For reconfiguring the hardware, the 

new bit streams must be generated and loaded into its memory, which is a time-consuming 

process.  

A more desirable architecture would be something that closes the efficiency gap 

between ASICs and FPGAs while being easy to program.  Naturally, many programmable 

architectures are targeted at bridging this gap. These are Systolic Arrays [Pedram12, 

Kung79], Coarse-Grained Reconfigurable Arrays (CGRA) [Govind12, Govind11, 

Qadeer13, Para13], PipeRench [Copen99], RAW [Taylor02] etc.  

This work shows the implementation of image-processing applications on a flexible 

architecture whose energy efficiency is comparable to an ASIC. This is achieved by 

optimizing the FPGAs and reducing their energy overheads.  First, rather than having a 

fine-grained architecture style of FPGA, we follow a coarse-grained approach in terms of 

functionality and precision of operation. This reduces the overheads because of the LUTs. 

Second, we employ local interconnect instead of global interconnect. This reduces the 

routing overheads compared to FPGAs. 
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2.3. Flexible architecture for image processing applications 

The stencil kernel abstraction (Figure 2.3) can be used for building hardware for 

image processing applications. Different kernels are cascaded to form a pipeline for any 

Convolution-like application as shown in Figure 2.6. The pixel output from each stage is 

fed to the line buffer of the next stage, thus forming a producer-consumer relationship 

between stages.  For creating a flexible architecture, we need to have flexible line buffers, 

flexible stencil registers, and flexible window function hardware.  

Line 
Buffer1

Window 
Function1

Stencil Register1

Line 
Buffer2

Window 
Function2

Stencil Register2

Line 
Buffer3

Window 
Function3

Stencil Register3

 

Figure 2.6 Architectural abstraction of a flexible application pipeline 
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In this work, the focus is to design a flexible data path (window function) for this 

abstraction that can support various kernel executions across many applications. The 

window function performs computations on the stream of data, furnished by the stencil 

register and calculates the output pixel value.  The output pixel calculation is completely 

functional that comprises of arithmetic functions like multiplication, subtraction, etc.  

The window function is implemented as an optimization of FPGA fabric by 

employing coarse-grained programming and limited local interconnect. Instead of using 

fine-grained LUTs, we employ coarser functional units that execute operations at the word-

length precision (8bit, 16bit, etc.) instead of 1-bit precision. This implementation utilizes 

the spatial programming model of FPGAs. These functional units are programmed in a 

spatial manner to perform the computations. 

A spatially programmable architecture distributes computations across a large 

number of computing resources whose operation is fixed in time. These resources execute 

the same function for the entire duration of any program. Whereas architectures that are 

programmed in time (e.g. pipelined MIPS), employ a small number of resources that are 

time multiplexed to execute the operations.  

 

Figure 2.7 Inner loop of convolution in a high-level language 
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The proposed spatial programmable architecture (SPA) is suitable for 

implementing programs having inner loops of operations. These programs repeatedly 

execute a set of operations on a stream [kapa03, Thies02, Suger09] of input data. The inner 

loop of operations is mapped to distinct compute resources in the fabric by means of spatial 

programming. Figure 2.7 shows the inner loop of convolution operation. The inner loop of 

this convolution program is unrolled in space so that individual operations in the loop (e.g. 

multiply, sum) are mapped to distinct compute resources (Figure 3.3). Convolution-like 

applications that have multiple inner loops can be implemented by interconnecting 

different kernels (Figure 2.6). Each of the inner loops operates on the streams of input pixel 

values from the previous stage. 
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CHAPTER 3.  DATA PATH FOR A SPATIALLY PROGRAMMABLE 

ARCHITECTURE   

The data path of ASIC comprises fixed arithmetic units that execute operations and 

has fixed connections between those units to facilitate the data flow. We can replace each 

of these arithmetic units with a more flexible unit that supports multiple operations and 

allows an operation to be selected at runtime. This flexible unit, which is reconfigurable at 

runtime, is called a programmable element (PE).  Again, if we substitute the wires between 

the execution units with switches, then we can change the order of operations. Hence, the 

abstract representation of a flexible data path would be the arbitrary interconnection of PEs 

and Switches. 

Different topologies for this data path abstraction are procedurally generated from 

hardware templates with the help of chip generator [Shac10], Genesis2 [Shac15]. This 

requires the translation of the design specification to Genesis2 parameters for the hardware 

templates. The chip generator performs a rule-based elaboration to create a specific 

instance of the design based on the parameters (Sec 4.1.1, Sec 4.1.2). 

Domain-specific languages (DSL) like Darkroom provide the necessary structure to 

map the image processing algorithms to a spatially programmable architecture [Hega14]. 

A compiler is built for the proposed spatial architecture that translates the intermediate 

representations of the Darkroom code to a directed acyclic graph (DAG) of functions for 

the kernels of an application and generates the machine code for running the applications 

on the architecture [Mack16] (Sec 4.2). 
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Figure 3.1 Block diagram of programmable element (PE) 

3.1. Programmable Element (PE) 

The programmable element is the execution unit of the fabric that is configured 

during runtime to execute the same operation repeatedly for a given application. The block 

diagram of PE is shown in Figure 3.1. The runtime programmability is achieved by 

configuring the configuration register. The value in this register determines which of the 

functions is executed during runtime. It can support arbitrary functions including 

traditional programming language operators. At hardware generation time, the available 

functions are determined by a parameter defining a list of functions.  

PEs incorporate Local Reg Mux, Data Gate, Data Mux and some local 

configuration registers. The local configuration registers are used to store the constant 

coefficient values and shifted in pixel values for any kernel operation. The local reg mux 
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determines whether the values are taken from local configuration registers or from the 

primary inputs. The purpose of the data gate is to reduce power by eliminating toggles at 

the inputs of the functions, which are not selected during runtime. The data mux selects the 

appropriate output based on the value in the instruction configuration register. 

Parameter 

Name 

Legal 

Values 
Description of Parameter 

Functions 
mult,absDi

ff,gt,lt etc 
List of defined functions 

PePipeDepth 1,2,3 etc Total number  of flops at input and output side 

DataWidth 
4,8,16 bits 

etc 
Precision of operation 

Table 3-1 Parameters used in PE 

Valid bits are associated with each of inputs and outputs of the PE. These are used 

to implement push pipeline and pull pipeline. Additionally these help in simplifying the 

reset. As we make the valid bits as zero for the inputs, this makes the outputs invalid 

irrespective of reset. 

Moreover, there are flip-flops at the inputs and outputs of the PE. The flip-flop for 

the input shift register port allows incorporating a shift register connection inside the PE. 

These flip-flops also help in storing the constant values for immediate operations. 

Additionally, these flip-flops act as pipeline registers for timing.  

Genesis2 parameters determine the exact implementation of the PE including its 

number of inputs,outputs, the functions and the precision of operation. The list of functions 

that are supported in PE is defined through a Genesis2 parameter. From this parameter, we 

derive the number of input/output ports of the PEs (as required by the defined functions) 

and the dimension of the config register, which selects the function at runtime. The number 
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of flip-flops at input/output side of the PE are determined by a parameter. Additionally, we 

can implement any data precision for the operations with a Genesis2 parameter. This is 

summarized in Table 3-1. 

3.2. Switch  

The switch is configured during runtime to facilitate the data dependence between 

operations and system interface.  The switch allows the change of the order of the 

operations. Specifically, it creates a circuit switched network with dedicated connections 

from each of the inputs to each of the outputs. The switch consists of multiplexers for each 

of the outputs to select the corresponding input.  
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Figure 3.2 Block diagram of a 3x2 switch 
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The switch follows source based routing structure, where the input source of an 

output is specified through configuration registers. The configuration register has the 

unpacked dimension equal to the number of outputs and packed dimension equal to the 

number of bits required for binary encoding of the primary inputs. The configuration 

register’s dimensions are procedurally generated by the chip generator based on the 

parameter values for the number of inputs and outputs of the switch. The parameters for 

the switch are presented in Table 3-2.  

 

Parameter 

Name 

Legal 

Values 
Description of Parameter 

DataWidth 
4,8,16bit 

etc 
Packed LHS dimensions of input and output signals 

SwPipeDepth 1,2,3 etc Total number  of flops at input and output side 

InPortCount 1,2,3 etc Number of inputs of Switch 

OutPortCount 1,2,3 etc Number outputs of the Switch 

Table 3-2 Parameters used in Switch 

The block diagram of a switch with three input ports and two output ports is shown 

in Figure 3.2. Each of the outputs has a multiplexer to select the input. There are two 

multiplexers for two of the outputs and each of these have three inputs for selecting primary 

inputs. Additionally, there are valid bits associated with each of the inputs and outputs.  

3.3. Topologies 

The data path architecture is a complex interface, so we generate topology 

specifications using a small number of Genesis2 parameters. The organization of PEs and 

switches in a pattern is called as a topology. These parameters determine the configuration 

of the data path by deciding the number of switches and the number of PEs. The exact 
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structure of PEs and switches are elaborated based on the Genesis2 parameters for the 

respective units. During compilation of Genesis2, the interconnection between the PEs and 

switches is elaborated based on the interconnection rules for PEs/switches that are specific 

to a topology (Sec 4.1.2).  

In this work, we explored two topologies: convolutional topology (Sec 3.3.1) and 

wave pipeline topology (Sec 3.3.2). The convolutional topology has a single switch and all 

the data communication among PEs is performed through that switch. Whereas the wave 

pipeline topology consists of multiple stages of PEs and switches and the data is forwarded 

between successive stages with the help of a switch. 

3.3.1. Convolutional topology 

The convolutional topology employs a single switch and multiple PEs to perform 

convolution-like functions (e.g. sum of absolute differences (SAD), multiply and 

accumulate (MAC), greater than, less than). It takes a window of pixels and coefficients as 

input and produces a single output pixel. This topology follows the “map” and “reduce” 

operations employed by Qadeer and Hameed in “Convolution Engine” work [Qadeer13]. 

Instead of performing “MAC” or “SAD” operations in PEs, this topology maps a single 

operation (e.g. multiply for MAC, absolute difference for SAD) for each of the input pixel 

to a PE and executes a special reduce operation (e.g. sum in MAC and SAD) in a separate 

PE [Qadeer13]. For instance, in the case of a convolution operation (MAC), the 

multiplication of pixel values and constant coefficients is executed in the PEs, while the 

summation of all these multiplication outputs is performed in the reduction unit (Figure 

3.3).  
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Figure 3.3 Detailed block diagram of 2x2 convolution topology 

The switch facilitates the data flow between system inputs, PE inputs, PE outputs 

and system outputs. The coefficients, which are used in a kernel, are fed to the PEs through 

the switch interface. The output pixel value, which is calculated in the reduction unit, is 

routed through the switch to the system level output. The switch interface has (2N2+1) 

inputs and (2N2+1) outputs for a NxN size of the window. 

This architecture is deeply pipelined as the PEs and switches have registers on both 

the inputs and outputs. The overall throughput of this pipeline is one inner loop per cycle.  

This topology is used for the experiments to analyze the optimizations employed in 

this fabric compared to an FPGA (Sec 5.1). The coarser nature of the fabric is analyzed by 

varying the precision of operations. The size of the local communication is evaluated for 

different window sizes. 
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The window size can be configured during hardware generation time, based on the 

specification. The parameters are described in Table 3-3 for this implementation. 

Parameter 

Name 

Legal 

Values 
Description of Parameter 

Row 2,3,4 etc Number of rows of the window 

Col 2,3,4 etc Number of columns of the window 

Pe_Configurable 
0,1 

0 -> PE not configurable, 1 -> PE is configurable  

Sw_Configurable 0,1 0 -> Switch has fixed connections , 1 -> switch is 

runtime configurable. 

Table 3-3 Parameterization of Convolution topology 

3.3.2. Wave Pipeline Topology 

Wave pipeline topology is an abstraction to implement the directed acyclic graph 

(DAG) of operations for the kernels of convolution-like applications. The DAG 

representation of one of the stages of Canny edge detection [Canny86] is shown in Figure 

3.4 [Mack16]. The PEs are mapped to different operations and the data dependence is 

implemented through switches. An abstract representation of wave pipeline topology is 

shown in Figure 3.5. 

The wave pipeline topology employs PEs and Switches in the form of pipeline 

stages.  Each stage consists of a number of PEs and a switch. The number of PEs in a stage 

is called as the “stage height” of the fabric and the number of stages is referred to as “stage 

width” of the fabric. As shown in Figure 3.5, we have four switches corresponding to four 

stages and 12 PEs in the fabric with three PEs in each stage. The outputs of the operations 

performed in any stage are routed to the appropriate inputs of the next stage of PEs with 

the help of switches.  
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Figure 3.4 DAG representation for a stage of Canny edge detection 
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Figure 3.5 Abstract block diagram of Wave Pipeline topology 

The number of PEs and switches are determined by the topological parameters for 

the architecture as presented in Table 3-4. The exact structure of PEs, switches and the 

selection of arithmetic operations in PEs are controlled through Genesis2 parameters at the 

time of hardware generation. The specific instances of PEs, switches and interconnection 

between those units are elaborated during compilation of Genesis2. 
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Parameter 

Name 
Legal Values Description of Parameter 

StageH 1,2,3 etc Number of PEs in each stage 

StageW 1,2,3 etc Number of stages 

Table 3-4 Parameterization of Wave Pipeline topology 

3.4. Application Pipelines 

The pipeline for Convolution-like applications is constructed by creating the DAGs 

of the functional kernels with the help of DSLs [Brun15]. Thus, applications are organized 

as a set of unique kernels where the data path of each kernel is implemented using wave 

pipeline topology (Figure 3.6). A number of feature detection algorithms are implemented 

using this topology. The results for the applications are presented in Sec.  5.2.  
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Figure 3.6 Construction of Application pipeline 
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CHAPTER 4. METHODOLOGY 

4.1. Generation of the Data Path Hardware 

This work is a design space exploration of an abstract datapath micro-architecture. 

This is performed by the RTL implementation of the designs. The abstract architecture for 

the data path is primarily a composition of a large number of PEs and switches that are 

connected in some arbitrary order. The design space for this abstraction is vast due to the 

numerous possible implementations of the architecture on different topologies. Thus, we 

need a framework that allows massive reuse of the designs and follows a rule-based 

generation of hardware to ease the design process.  

Chip generation methodologies [Shac10] allow procedural generation of the 

hardware from architectural templates, thus achieving greater design productivity. This 

work employs chip generator, Genesis2 [Shac11, Shac15] for implementing the data path 

of the architecture. Genesis2 has been utilized  for building common design patterns in 

research including floating point multiply accumulate (FMA) unit generator [Galal13], 

stencil engine generator [Brun15], and multi-core chip generators [Shac11, Wachs14]. 

4.1.1. Introduction to Genesis2 

Genesis2 is an extension to SystemVerilog [IEEE09] with Perl [Perl16] as pre-

processor. Genesis2 code is a combination of Perl and SystemVerilog code. Here, 

SystemVerilog is used to describe the structural description of hardware with strict 

synthesis restrictions. Whereas Perl controls the generation of the specific instance of the 

hardware during compilation of the Genesis2 code. This approach enables the reuse of low-

level designs/generators across various larger designs or projects. Sample Genesis2 code 

and its compilation is shown in Figure 4.1. 
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Figure 4.1 Compilation of Genesis2 code 

Genesis2 allows designers to leverage the powerful features offered in Perl and 

embed it with knowledge of structural hardware design. It allows constructs that are 

otherwise not available in System Verilog. It does string processing and manipulation that 

aids in writing flexible code. 

 

Figure 4.2 Parameterization in Genesis2 

 One of the most powerful features in Genesis2 is the use of parameters to generate 

templates of hardware. Unlike System Verilog parameters, Genesis2 parameters can be of 

any type like string, array, hashes, arrays of hashes, etc. As Genesis2 maintains the 

hierarchical scope of design instances, parameters can be accessed and modified at 

different scopes of the design hierarchy. Additionally, it allows external configuration of 

the parameters, during runtime, through XML/config files. Figure 4.2 shows an example 

of Genesis2 parameters for the design of a multiplexer module. The parameter for selecting 
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the encoding type, “Mode”, is one of the examples of string parameters, which is not 

supported in System Verilog. Different unique instances of the mux module can be created 

by configuring its parameters. 

4.1.2. Parameterization for the data path implementation  

The topological parameters of the data path architecture are utilized to create a 

hardware template for the topology, which is elaborated during the compilation of Genesis2 

to create the specific hardware. The topological parameters are determined by the 

topological specification. This is executed in multiple steps.  
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Generate PEs, 
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Connect PEs, 
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Figure 4.3 Procedural generation of data path hardware 
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 First, we create data structures of PEs and Switches from topological parameters. 

This is called as netlist elaboration step. These parameters provide the information 

regarding the number of PEs and switches in the topology. For instance, a wave pipeline 

topology with a stage height of 3 and stage width of 4 will have 12 (=3x4) PEs and 4 

Switches. Similarly, the window size of convolution determines the array size of PEs in 

convolution topology. The pseudo code to create the data structures is shown in Figure 4.4.  

 

Figure 4.4 Pseudo code to create the data structures of PEs and Switches 

The Genesis2 instances essentially create hardware templates for the PEs and 

Switches. The exact structures of these units are established at the time of hardware 

generation. We can override parameters of these units by using an XML/config file 

interface during Genesis2 invocation. Figure 4.6 shows a sample config file to configure 

the Genesis2 parameters. 

Once the data structures of PEs and Switches are created, we generate the specific 

designs for these modules by System Verilog instantiation. This creates the netlist for the 

topology with Verilog instances of PEs and Switches. The pseudo code to instantiate 

PEs/Switches is shown in Figure 4.5.  
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Figure 4.5 Pseudo code to instantiate PEs and Switches 

Finally, the interconnection of PEs and Switches is performed by assigning the PE 

outputs to switch inputs and the switch outputs to PE inputs. The system inputs are 

connected to the PE inputs communicating directly with system interface. The system 

outputs are connected with the Switch outputs from the final stage. The pseudo code is 

shown in Figure 4.6. 

 

Figure 4.6 Pseudo code for the interconnection of PEs, switches, and system interface 

 

Figure 4.7 External configuration of parameters for Convolution   
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4.2. Compiling applications on the architecture 

For compiling image-processing applications on this architecture, the Domain 

Specific Language (DSL) representation of an application needs to be converted to 

machine code for the instance of the architecture. The Darkroom [Hega14] DSL code has 

an intermediate description of the image-processing algorithms, called as Data Path 

Description Assembler (DPDA) [Brun15].  DPDA is the assembly-like representation of 

the algorithms and it only allows the expressions that can be implemented on image 

processing pipelines. A compiler, designed for this architecture, translates the DPDA code 

to the specific machine code that has to be executed on this architecture [Mack16].   

Data Path Description Assembler 
(DPDA)

Compiler for SPA

Testbench for SPA

Assembly Code

Machine Code

Mapping

Placing

Routing

 

Figure 4.8 Flow for Compilation of applications on the architecture 
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The compiler performs three steps (mapping, placement, and routing) to generate 

the machine code. First, it maps the DPDA operations to the functions available in the SPA 

fabric.  Second, it does the placement of mapped operations to the actual physical resources 

available in the fabric, which is represented by programmable elements (PEs). Third, it 

does the routing of data by creating switch connections that facilitate the correct order of 

data flow among the PEs. Finally, the compiler output is translated to the machine code 

representation, which is executed on the Verilog test bench of design. The flow is 

summarized in Figure 4.8. 

4.3. Implementation methodology  

Different topologies of the architecture are implemented in RTL using Genesis2 as 

the chip generator. All the code written for this architecture is in Genesis2 environment. 

The System Verilog design, generated through chip generator, undergoes simulation and 

synthesis using industry standard tools. The process is summarized in Figure 4.9. 

Verification 

Verification of the design is performed by comparing the design output to a golden 

reference output file. The reference output file is generated from a behavioral description 

of the algorithm in SystemVerilog and it is integrated within Genesis2 environment of the 

top-level test bench for the architecture. Both the reference model and the RTL test bench 

read input pixels from an image file in ppm format. The design output file and reference 

file are compared in the top test-bench at the end of the simulation. Simulation is performed 

using Synopsys VCS simulator. Moreover, the child instances of the design have 

assertions, which are checked dynamically during the simulation, to validate the design 

and aid in the debug process. 
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Synthesis 

The synthesis tool used is Synopsys Design Compiler. The synthesis tool is invoked 

in the topographical mode that incorporates place and route information to improve the 

accuracy of results. The activity factors are extracted from RTL simulations and are used 

in synthesis flow to obtain power results. A 45nm cell library, from a leading foundry, is 

utilized for synthesis.  

Genesis2 Chip Generator

Verilog Design Test Bench

Simulation 
Verification

Synthesis

Parameters

Activity factor

Area and Energy Results

DUT 
Output

Golden 
Output

 

Figure 4.9 RTL generation, verification, and synthesis flow for the architecture 
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4.4. FPGA Methodology  

The image processing applications are implemented on FPGA tool flow, to get 

energy results for FPGA. This is done in two steps. First, the C/C++ codes for these 

applications are compiled in a high-level synthesis (HLS) tool, Xilinx Vivado HLS. The 

HLS tool performs synthesis of the C/C++ code for an FPGA board and generates the 

Verilog netlist for the targeted FPGA.  The 28nm FPGA board, Xilinx Zynq 7045, is used 

for this purpose. Second, the Verilog netlist is imported to Xilinx Vivado for placement 

and routing of the design. This is summarized in Figure 4.10. 
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Figure 4.10 Tool flow for FPGA implementation 
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CHAPTER 5. RESULTS 

The convolution topology is employed to analyze the implications of precision of 

operation (Sec 5.1.1) and size of the local interconnect (Sec 5.1.2) on the overall cost of 

the fabric. This is achieved by performing synthesis of different configurations of the 

design with varying precision of operation and window size of convolution. Moreover, the 

suitable clock frequency for these designs is determined by the experimental results of this 

topology (Sec 5.1.3). 

The wave pipeline topology is utilized to evaluate the feasibility of the architecture 

for implementing Convolution-like applications. Each of these applications has a set of 

unique kernels whose data path is implemented using wave pipeline topology. The energy 

cost of these applications is compared with corresponding ASIC and FPGA results for the 

same application (Sec 5.2.2). 

The results of these experiments lead to some important observations about the 

architecture. It confirms the practicability of the architecture for performing energy 

efficient computations (Sec 5.3).  

 

Figure 5.1 Metrics used for reporting energy and area cost 

The metrics used in this thesis for analyzing the costs are “Energy per Operation” 

for energy cost and “Area per Performance per Operation” for area cost (Figure 5.1). These 

are used for measuring the efficiency of parallel applications like the image-processing 
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applications. The units of measurement are “pJ/op” for energy cost and “mm2/(op/ps)” for 

area cost.  

5.1. Results for Convolutional topology 

5.1.1. Cost for different precisions of operation 

As we increase the precision, the cost of operation in terms of energy and area also 

increases. For precisions above 24bit, there is a significant increase in the cost of the overall 

fabric. Figure 5.2 and Figure 5.3 shows the energy and area cost for the different precision 

of operations. The results are for a 5x5-window configuration. The number of PEs in this 

configuration is 26 including a single reduction PE. There is only one switch with 51 inputs 

and 51 output ports.  

 

Figure 5.2 Area cost with respect to precision of operation 

 

0

5

10

15

20

25

0 10 20 30 40 50

(A
re

a
/P

e
rf

)/
o

p
 i

n
 m

m
2
/(

o
p

/p
s

)

Precision in bit

PE_AREA SWITCH_AREA



 

                                                           37 

  

 

Figure 5.3 Energy cost with respect to precision of operation 

 

Figure 5.4 Area overhead of Switches for different precisions 
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Figure 5.5 Energy overhead of Switches for various precisions 

At lower precision of operation, switch dominates the overall cost of the fabric. The 

overhead of switches compared to PEs are shown in Figure 5.4 and Figure 5.5. For instance, 

the area cost of the switch is ~80% of the overall cost at the 2-bit precision of operation. 

Similarly, the energy cost of the switch is more than ~50% of the overall cost of the fabric 

for 2-bit operations.  

5.1.2. Cost of the local interconnect  

As the size of the local communication increases, the relative energy and area cost 

of switch compared to PE also increases (Figure 5.6 and Figure 5.7). In these experiments, 

the number of ports of the switch is twice that of the number of PEs communicating with 

it, as each PE has generally two input ports. For instance, a switch with ~30 ports is 

connected to ~15 PEs. For each additional PE, we add two ports to the switch. The 

precision of operation is 16-bit for all these results.  
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Figure 5.6 Area overhead of switches with varying ports of switch 

             

Figure 5.7 Energy overhead of switches with varying ports of switch 
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5.1.3. Results for obtaining the clock frequency  

The frequency of operation is 1GHz for the 16-bit precision of operation. As shown 

in Figure 5.8, the curve for area cost flattens out after 1.4ns period. Similarly, the energy 

cost does not change significantly after 1.4ns period as shown in Figure 5.9. The 

appropriate frequency of operation would be the point after which decreasing the frequency 

does not result in energy or area improvement.  

The PEs and switches have one flip-flop at each of their inputs and outputs. This 

makes the timing closure of the design easier and allows it to run at higher clock 

frequencies. 

 

Figure 5.8 Cost of area with varying frequency of operation 
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Figure 5.9 Cost of energy with varying frequency of operation 

5.2. Result for Wave Pipeline topology 

5.2.1. Experiments to find the cost of flexibility 

Four types of experiments are performed to measure the exact cost of the flexibility 

in the architecture. This architecture offers flexibility in terms of programmability of 

computational units (PEs) and reconfigurability of the interconnect (Switch). The 

underlying observation in this work is that flexibility is traded for area and energy 

efficiency.  

The exact cost of flexibility is determined by removing the programmability from 

PEs and Switches. The experiments are summarized in Figure 5.10. A fixed PE supports 

only a single function and is not configurable during runtime. Fixed switch means that the 
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values of the configuration registers of the switch are fixed in the design, thus the switch 

cannot be configured during runtime. 

As we traverse through successive experiments in the forward direction (shown in 

Figure 5.10), there is some extra cost incurred due to the added flexibility in the 

architecture. As we move from ASIC (Experiment 0) to “No Configurability” (Experiment 

1), the cost penalty is due to the compute model overhead employed for this specific 

architecture. Between “PE Configurable” (Experiment 2), “Switch Configurable” 

(Experiment 3) and “No Configurable” (Experiment 1), we can measure the cost of having 

flexible PE (which allows change of operation) or switch (which allows change of order of 

operation) respectively compared to fixed units. Similarly, as we move to the “Fully 

Configurable” SPA fabric (Experiment 4) from Experiment2/3, the cost flexibility of 

switch or PE can be measured. Finally, the energy efficiency of SPA architecture is 

compared to FPGA with the help of experiments 4 and 5. 

No Configurability

PE -> Fixed
Switch -> Fixed

PE Configurable

PE -> Flexible
Switch -> Fixed

Switch 
Configurable

PE -> Fixed
Switch -> Flexible

Fully Configurable

PE -> Flexible
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ASIC FPGA

Experiment 0 Experiment 5

 

Figure 5.10 Experiments for measuring cost of flexibility 
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5.2.2. Application results 

The results for four image-processing applications are obtained on this architecture. 

Applications are: Canny1 edge detection [Canny86], Harris2 corner detection [Harris88], 

FAST corner detection [Durand02] and Convolution3 for 5x5 window. Wave pipeline 

topology is used for the edge detection applications. The memory costs and the ASIC 

results are obtained from Brunhaver’s work [Brun15]. The line buffer data are obtained 

from Cacti [Mura09]. The FPGA4 result is in 28nm technology node, while all other results 

are obtained using 45nm cell library. The results are shown in Figure 5.11 and Figure 5.12. 

As we move from ASIC to different configurations of SPA, the energy cost 

increases with each successive experiments. The energy cost is higher for having a 

programmable switch (“Switch Configurable”) than having a programmable PE (“PE 

Configurable”) compared to both as fixed units (“No Configurability”). We observe a 

similar trend in area cost except the results for Harris application. This is due to the use of 

multipliers that account for a larger area in PEs. If we take the arithmetic mean of the results 

for the four applications, SPA is 4.1X energy expensive and ~5.9X area expensive 

compared to ASIC. These results account for the optimized implementations of the 

applications in the SPA fabric. For instance, any kernel has the exact same size of the fabric 

(stage-height and stage-width of wave pipeline topology) that is necessary to implement  

 

1 The hysteresis stage of Canny is not implemented.  

2 The ASIC version utilized 32-bit operations, whereas SPA uses 16-bit operations. 

3  The ASIC and FPGA results for convolution are for the 3-channel image, whereas the SPA results are for 

a single-channel convolution.  

 
4 The throughput of the FPGA designs is ~10 cycles per pixel.  
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that specific kernel. In addition, a kernel only supports the functions that are required by 

that specific kernel. There will be some extra area and energy cost when different 

applications share the same kernels. 

FPGA is 1.6X energy expensive than SPA and 6.6X energy expensive than ASIC 

implementation based on the arithmetic mean of the results for the applications. However, 

the FPGA results are obtained on 28nm technology node, whereas SPA/ASIC results are 

obtained using 45nm cell library. Considering the scaling factor, the current FPGA results 

might be four times worse in 45nm technology node. 

 

Figure 5.11 Energy results for applications 
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Figure 5.12 Area results for the applications 

The categorization of energy and area costs that account for PEs, switches, etc. is 

shown in Figure 5.13 and Figure 5.14 for all the four types of experiments. Total energy 

cost for each of the applications is  represented as the sum of the energy cost of PEs, energy 

cost of switches, clock-tree energy and the remaining energy incurred at top level design. 

Similarly, the total area cost is represented as the sum of area cost of PEs and switches.  

The mean energy of switch is 35 percent and the mean area of the switch is 43 

percent for all the applications in the fully configurable experiment. The mean energy of 

PEs is 46 percent and the mean area of the PEs is 57 percent for all the applications in the 

fully configurable experiment. The average clock-tree energy is nearly 17 percent of the 

total energy of the SPA fabric for the applications. 
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Figure 5.13 Categorization of energy components for the applications 

5.3. Conclusions from the result 

For efficient computation, the hardware should be tailored to match the actual data 

precision in the application. The image processing applications essentially perform 8-bit or 

16-bit operations for different kernels. From the experimental results (Sec 5.1.1), it is 

evident that this architecture is optimum for the 8-bit or 16-bit precision of operation. 

Hence, these applications can be efficiently implemented on this architecture. Again, 

Genesis2 parameters can be used to alter the precision of the hardware so that it matches 

the data precision in the applications. 
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Figure 5.14 Categorization of area components for the applications 

The reasonable array size of PEs for local communications should be in 9 to 16 

range.  As per Figure 5.6 and Figure 5.7, the switch ports for this range is nearly 18 to 33. 

If we use switches with less than 30 ports, then the overhead due to switches can be 

restricted to less than 50 percent of the total fabric. The cost of interconnect in FPGAs is 

around 90 percentage of the total cost of the fabric.  
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1. Thesis Summary and Conclusion 

In this work, the proposed data path architecture is designed to be energy efficient, 

programmable, easy to program for image processing applications. This architecture 

achieves its energy efficiency by exploiting the significant locality present image 

processing applications.   

This architecture is an optimization of FPGA by means of coarse-grained approach 

and the use of local interconnect. This work verifies that the precision of operation 

employed in image processing applications is indeed optimum for this coarse-grained 

fabric. 

The primary objective of this work is to analyze the feasibility of the architecture 

in terms of its functionality and energy efficiency, for image processing applications.  The 

application results show that this architecture is only within a single order of magnitude 

energy and area expensive compared to ASIC implementations. 

6.2. Scope of Future work 

While this thesis has demonstrated the feasibility and working of this architecture 

for image processing applications, still there are numerous ways to improve the architecture 

further. Some of these are mentioned in the following paragraphs. 

The switches can be de-featured to support a specific set of connections, which 

apply to the data-flow structure of the algorithm. Practically, the fully connected switches 

are not always desirable for many applications and are costly in terms of area and energy. 

This can significantly reduce the cost of the overall interconnect fabric and can further 

reduce the routing overhead of the architecture. 
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Further efficiency can be gained by employing heterogeneous PEs that are 

specifically customized according to the functions used in applications. For instance, 

multiplication is an expensive operation performed in a PE. If multiplication is used only 

at certain stages of the data flow of the algorithm, it should not be supported in the PEs for 

other stages. This enables this architecture to further approach ASIC’s efficiency.   

Hierarchical local interconnect approach can be analyzed for further efficiency. 

This is especially applicable for applications that require local communication among a 

large number of computational units. In this work, the size of local communication is 

analyzed only on a single switch. The exact structure of the hierarchical interconnect, and 

its cost for different configurations need to be analyzed for different applications. 
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