
Development and Implementation of Physical Layer Kernels for Wireless

Communication Protocols

by

Vamsi Reddy Chagari

A Thesis Presented in Partial Fulfillment
Of the Requirements for the Degree

Master of Science

Approved July 2016 by the
Graduate Supervisory Committee:

Chaitali Chakrabarti, Chair
Hyunseok Lee

Umit Ogras

ARIZONA STATE UNIVERSITY

August 2016

 i

ABSTRACT

Historically, wireless communication devices have been developed to process one

specific waveform. In contrast, a modern cellular phone supports multiple waveforms

corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is

controlled by software running on a general purpose processor, not by the user. Now,

instead of selecting from a set of complete radios as in software controlled radio, what if

the software could select the building blocks based on the user needs. This is the new

software-defined flexible radio which would enable users to construct wireless systems

that fit their needs, rather than forcing to use from a small set of pre-existing protocols.

To develop and implement flexible protocols, a flexible hardware very similar to a

Software Defined Radio (SDR) is required. In this thesis, the Intel T2200 board is chosen

as the SDR platform. It is a heterogeneous platform with ARM, CEVA DSP and several

accelerators. A wide range of protocols is mapped onto this platform and their performance

evaluated. These include two OFDM based protocols (WiFi-Lite-A, WiFi-Lite-B), one

DFT-spread OFDM based protocol (SCFDM-Lite) and one single carrier based protocol

(SC-Lite). The transmitter and receiver blocks of the different protocols are first mapped

on ARM in the T2200 board. The timing results show that IFFT, FFT, and Viterbi decoder

blocks take most of the transmitter and receiver execution time and so in the next step these

are mapped onto CEVA DSP. Mapping onto CEVA DSP resulted in significant execution

time savings. The savings for WiFi-Lite-A were 60%, for WiFi-Lite-B were 64%, and for

SCFDM-Lite were 71.5%. No savings are reported for SC-Lite since it was not mapped

onto CEVA DSP.

 ii

Significant reduction in execution time is achieved for WiFi-Lite-A and WiFi-Lite-

B protocols by implementing the entire transmitter and receiver chains on CEVA DSP. For

instance, for WiFi-Lite-A, the savings were as large as 90%. Such huge savings are because

the entire transmitter or receiver chain are implemented on CEVA and the timing overhead

due to ARM-CEVA communication is completely eliminated. Finally, over-the-air testing

was done for WiFi-Lite-A and WiFi-Lite-B protocols. Data was sent over the air using one

Intel T2200 WBS board and received using another Intel T2200 WBS board. The received

frames were decoded with no errors, thereby validating the over-the-air-communications.

 iii

DEDICATION

 To my family for their support

 iv

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my advisor and committee chair,

Dr. Chaitali Chakrabarti for giving me an opportunity to work on this exciting project and

for overseeing my research. I am grateful to my committee members, Dr. Hyunseok Lee

and Dr. Umit Ogras for their help, guidance, insightful comments and feedbacks. I would

also like to thank Dr. Dan Bliss for providing valuable ideas and support. I thank my fellow

project mate Ganapati Bhat for all his help in this project. I would also like to thank the

other team members, Sharanya Srinivas, Eric Torkildson, Shunyao Vincent Wu, Tom

Mcgiffen, and Prashant Sharma. Finally, I would like to express my profound gratitude to

my parents for providing me with unfailing support and continuous encouragement through

the process of researching and writing this thesis.

 This thesis work has been supported by Google through the Center for Wireless

Information Systems and Computational Architectures (WISCA).

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ……………………………………………………………………… ix

LIST OF FIGURES …………………………………………………………………….. xi

CHAPTER

1	 INTRODUCTION ..1	

1.1	 Software Defined Radio ... 1	

1.2	 Flexible Protocols ... 3	

1.2.1	 Proposed Method .. 3	

1.2.2	 Protocol Recommendation Engine (PRE) .. 4	

1.2.3	 Hardware Recommendation Engine (HRE) .. 4	

1.3	 Thesis Contributions .. 5	

1.3.1	 WiFi-Lite-A Protocol .. 6	

1.3.2	 WiFi-Lite-B Protocol .. 7	

1.3.3	 SCFDM-Lite Protocol ... 8	

1.3.4	 SC-Lite Protocol ... 9	

1.4	 Organization ... 9	

2	 BACKGROUND ..10	

2.1	 Intel Transcede T22xx SOC Architecture .. 10	

2.2	 CEVA DSP XC323 Architecture ... 10	

 vi

CHAPTER Page

2.3	 Wireless Protocols .. 12	

2.3.1	 WiFi-Lite ... 12	

2.3.2	 SCFDM-Lite ... 18	

2.3.3	 SC-Lite .. 20	

3	 WiFi-Lite-A Protocol ...22	

3.1	 Protocol Overview .. 22	

3.1.1	 Transmitter .. 22	

3.1.2	 Receiver .. 23	

3.2	 WiFi-Lite-A Implementation on ARM .. 24	

3.2.1	 Experimental Results .. 25	

3.3	 WiFi-Lite-A Implementation on ARM and CEVA DSP 27	

3.3.1	 ARM-CEVA Interface .. 27	

3.3.2	 Experimental Results .. 28	

3.4	 WiFi-Lite-A Fixed-Point Implementation on CEVA DSP 31	

3.4.1	 Experimental Results – CEVA DSP SDK .. 32	

3.4.2	 Experimental Results – CEVA DSP Hardware .. 33	

3.5	 WiFi-Lite-A Implementation using Ettus Radio .. 37	

3.5.1	 Experimental Results .. 38	

 vii

CHAPTER Page

3.6	 Implementation Using Intel T2200 for TX & RX – Real Time Processing 40	

3.6.1	 Experimental Results .. 40	

4	 WiFi-Lite-B Protocol ...43	

4.1	 Protocol Overview .. 43	

4.1.1	 Transmitter .. 43	

4.1.2	 Receiver .. 44	

4.2	 WiFi-Lite-B Implementation on ARM .. 45	

4.2.1	 Experimental Results .. 46	

4.3	 WiFi-Lite-B Implementation on ARM and CEVA DSP 48	

4.3.1	 Experimental Results .. 48	

4.4	 WiFi-Lite-B Fixed-Point Implementation on CEVA SDK 51	

4.4.1	 Experimental Results .. 51	

4.5	 Implementation Using Intel T2200 for TX and RX – Real Time Processing 55	

4.5.1	 Experimental Results .. 55	

5	 SCFDM-Lite ...57	

5.1	 Protocol Overview .. 57	

5.1.1	 Transmitter .. 57	

5.1.2	 Receiver .. 58	

 viii

CHAPTER Page

5.2	 SCFDM-Lite Implementation on ARM ... 59	

5.2.1	 Experimental Results .. 60	

5.3	 SCFDM-Lite Implementation on the ARM and CEVA DSP 62	

5.3.1	 Experimental Results .. 62	

6	 SC-Lite ..66	

6.1	 Protocol Overview .. 66	

6.1.1	 Transmitter .. 66	

6.1.2	 Receiver .. 66	

6.2	 SC-Lite Implementation on ARM .. 67	

6.2.1	 Experimental Results .. 68	

7	 CONCLUSIONS ..69	

7.1	 Summary .. 69	

7.2	 Future Work ... 69	

 ix

LIST OF TABLES

Table Page

1. WiFi-Lite-A Protocol Configuration .. 23	

2. WiFi-Lite-A Transmitter Implementation on ARM: Timing Profile 25	

3. WiFi-Lite-A Receiver Implementation on ARM: Timing Profile 26	

4. Scaling Factor for CEVA FFT Library Functions .. 28	

5. WiFi-Lite-A Transmitter Implementation on ARM+CEVA: Timing Profile 29	

6. WiFi-Lite-A Receiver Implementation on ARM+CEVA: Timing Profile 30	

7. WiFi-Lite-A Transmitter Implementation on CEVA SDK: Timing Profile 32	

8. WiFi-Lite-A Receiver Implementation on CEVA SDK: Timing Profile 32	

9 WiFi-Lite-A Transmitter Implementation on CEVA DSP: Timing Profile 33	

10 WiFi-Lite-A Receiver Implementation on CEVA DSP: Timing Profile 34	

11. WiFi-Lite-A Transmitter Profiler Results - ARM+CEVA vs CEVA DSP 35	

12. WiFi-Lite-A Receiver Profiler Results - ARM+CEVA vs CEVA DSP 36	

13. WiFi-Lite-B Protocol Configuration ... 44	

14. WiFi-Lite-B Transmitter Implementation on ARM: Timing Profile 46	

15. WiFi-Lite-B Receiver Implementation on ARM: Timing Profile 47	

16. WiFi-Lite-B Transmitter Implementation on ARM+CEVA: Timing Profile 48	

17. WiFi-Lite B Receiver Implementation on ARM+CEVA: Timing Profile 49	

18. WiFi-Lite-B Transmitter Implementation on CEVA SDK: Timing Profile 52	

19. WiFi-Lite-B Receiver Implementation on CEVA SDK ... 52	

20. WiFi-Lite-B Transmitter Profiler Results - ARM+CEVA vs CEVA SDK 53	

21. WiFi-Lite-B Receiver Profiler Results - ARM+CEVA vs CEVA SDK 54	

 x

Table Page

22 SCFDM-Lite Protocol Configuration .. 58	

23. SCFDM-Lite Transmitter Implementation on ARM: Timing Profile 60	

24. SCFDM-Lite Receiver Implementation on ARM: Timing Profile 61	

25. SCFDM-Lite Transmitter Implementation on ARM+CEVA: Timing Profile 62	

26. SCFDM-Lite Receiver Implementation on ARM+CEVA: Timing Profile 64	

27. SC-Lite Transmitter Profiler Results .. 68	

28. SC-Lite Receiver Profiler Results ... 68	

 xi

LIST OF FIGURES

Figure Page

1. Overview of the Protocol Development Kit ... 4	

2. CEVA XC323 Hardware Architecture ... 11	

3. WiFi-Lite Protocol: Block Diagram of Transmitter ... 13	

4. WiFi-Lite Protocol: Block Diagram of Receiver .. 16	

5. SCFDM-Lite Protocol: Block Diagram of Transmitter .. 18	

6. SCFDM-Lite Protocol: Block Diagram of Receiver .. 19	

7. SC-Lite Protocol: Block Diagram of Transmitter ... 20	

8. SC-Lite Protocol: Block Diagram of Receiver ... 21	

9. WiFi-Lite-A Protocol: Block Diagram of Transmitter ... 23	

10. WiFi-Lite-A Protocol: Block Diagram of Receiver .. 24	

11. WiFi-Lite-A Implementation – TX and RX Loopback .. 25	

12. WiFi-Lite-A Profiling Results for ARM Implementation .. 26	

13. WiFi-Lite-A TX Execution Time Values - ARM vs ARM+CEVA 29	

14. WiFi-Lite-A RX Execution Time Values - ARM vs ARM+CEVA 30	

15. WiFi-Lite-A CEVA SDK Implementation ... 31	

16. WiFi-Lite-A: Over the Air Experiment Using Ettus Radio and Intel WBS 37	

17. WiFi-Lite-A GNURadio Transceiver Block Diagram .. 38	

18. WiFi-Lite-A GNU Radio Implementation - Frame Detection Results 39	

19. WiFi-Lite-A – GNU Radio QPSK Constellation Diagram ... 39	

20. Intel T2200 WBS Dual Frequency Setup ... 40	

21. WiFi-Lite-A Over the Air Implementation - Intel T2200 WBS Boards 41	

 xii

Figure Page

22. WiFi-Lite-A Over-the-Air Frame Detection Algorithm Result 42	

23. WiFi-Lite-A Carrier Frequency Offset Algorithm Result .. 42	

24. WiFi-Lite-B Protocol: Block Diagram of Transmitter ... 44	

25. WiFi-Lite-B Protocol: Block Diagram of Receiver .. 45	

26. WiFi-Lite-B Protocol Implementation - TX and RX Loopback 46	

27. WiFi-Lite-B Profiling Results for ARM Implementation .. 47	

28. WiFi-Lite-B TX Execution Time Values - ARM vs ARM+CEVA 49	

29. WiFi-Lite-B RX Receiver Time Values - ARM vs ARM+CEVA 50	

30. WiFi-Lite-B CEVA SDK Implementation ... 51	

31. WiFi-Lite-B Over the Air Implementation - Intel T2200 WBS Boards 55	

32. WiFi-Lite-B – 16 QAM Constellation Diagram at the Receiver 56	

33. SCFDM-Lite Protocol: Block Diagram of Transmitter .. 58	

34. SCFDM-Lite Protocol: Block Diagram of Receiver .. 59	

35. SCFDM-Lite Protocol Implementation - TX and RX Loopback 60	

36. SCFDM-Lite Profiling Results for ARM Implementation ... 61	

37. SCFDM-Lite TX Execution Time Values - ARM vs ARM+CEVA 63	

38. SCFDM-Lite RX Execution Time Values - ARM vs ARM+CEVA 64	

39. SC-Lite Protocol: Block Diagram of Transmitter ... 66	

40. SC-Lite Protocol: Block Diagram of Receiver ... 67	

41. SC-Lite Protocol Implementation – Experimental Setup ... 67	

 1

1 INTRODUCTION

1.1 Software Defined Radio

Historically, wireless communication devices have been developed to process a specific

waveform. Most of the older radios were single function systems. For instance, a first generation

cellular phone sent only voice using GSM standard. In contrast, a modern cellular phone supports

LTE, WCDMA(3G) and 2G standards. The user is not required to flip a switch to access each

network; the selection is controlled by software running on the phone (Grayver, 2012).

Now, instead of selecting from a set of complete radios as in software controlled radio, what

if the software could select the building blocks. For example, the software could select a particular

modulation block wherein the software has to configure details of the modulator, such as choose

between QPSK or QAM modulator, to map bits to symbols. This is the new software-defined

radio (SDR) which can be reprogrammed for functionally as desired. In contrast, a software-

controlled radio is limited to functionality explicitly included by the designers (Lee H. L., 2005).

The main characteristic of a SDR is its ability to provide great flexibility in software to support

different waveforms with low power consumption. The definition from wireless innovation forum

(formerly SDR forum) states: A software-defined radio is a radio in which some or all of the

physical layer functions are software defined (SDR forum). In a broad sense, software defined

means that different waveforms can be supported by modifying the software or firmware but not

changing the hardware.

SDR standardization has been progressing for many years. The Software Communications

Architecture (SCA) standard developed by the US Army and Space Telecommunication Radio

System (STRS) standard developed by NASA define robust and powerful infrastructures for

 2

flexible radios. There are currently many software reconfigurable radio communications

equipment’s being deployed in the field by the military and NASA organizations (Grayver, 2012).

There are also a few commercial mobile multi-standard terminals (VANU base stations) which

support many waveform standards like GSM, EDGE, W-CDMA, HSDPA, WiFi. There are two

popular open-source SDR platforms, namely GNURadio and OSSIE, which are being used in

academia and industry to develop and implement a wide range of protocols (Ramacher, 2007).

SDR architectures come in all flavors – from custom hardware to reconfigurable array to DSP

assisted architectures to hybrid SIMD architectures (Lin, et al., 2006). While custom hardware can

reach the requirements (throughput and power) of a single protocol, it is not the solution when

multiple protocols have to be supported. A very important aspect of a multiple radio system is

programmability. However, programmability comes with increase in power consumption. As

software flexibility increases, the power consumption of a chip increases. To meet the high

computational requirements of SDR with low power budgets heterogeneous architectures have

been proposed, these architectures have good programmable flexibility with moderate power

consumption and is the SDR architecture of choice.

There are several commercial solutions that provide moderate programmable flexibility with

low power consumption. Some vendors like Mercury, Morphics, Quicksilver and Televersal

designed hardware solutions that provided moderate flexibility in mapping the PHY layer

algorithms onto the hardware (Ramacher, 2007). Other vendors designed hardware solutions based

on DSP-centered and accelerator-assisted architectures to provide the highest degree of flexibility

in mapping PHY layer algorithms onto the hardware. Examples include Intel T2200 Wireless Base

Station (Berkeley Design Technology, Inc., 2012) which has two ARM cores, two DSP cores, four

MAP coprocessors and other accelerators (FEC, Turbo/Viterbi decoder), Sandbridge SB3011

 3

(Glossner, et al., 2007) which has Quad-DSP complex cores (8-way multithreaded), one ARM

processor and, Infineon (Ramacher, 2007) which has one ARM processor, four SIMD DSP cores,

and other accelerators (FIR Filter and Turbo/Viterbi decoder). These heterogeneous architecture

solutions helped designers to derive SDR solutions with low power for a wide range of protocols.

1.2 Flexible Protocols

The next revolution of the radio technologies “5G and internet of things” has started. While

5G focuses on higher data rates, IoT targets many aspects, such as greater access to network,

network reliability, and communication diversity. As user needs keep evolving, the need for

different kind of communication protocols increases. Instead of developing a rigid protocol for the

current needs/requirements, which may change in future, our idea is to develop a flexible protocol,

which enables users to construct wireless systems that fit their needs, rather than forcing to use

from a small set of pre-existing protocols.

1.2.1 Proposed Method

To aid the development and implementation of new or modified protocols, a protocol

development kit (PDK) is proposed as shown in Figure 1. PDK is designed to help reduce the cost

of defining, developing, testing and implementing the protocols. PDK consists of a protocol

recommendation engine which recommends a protocol based on the user inputs, a hardware

recommendation engine which interacts with the protocol recommendation engine to converge to

a protocol that can be implemented on the target hardware and finally implementation of the

protocol on a hardware platform. In this study, the hardware platform is the Intel T2200 board

which consists of two ARM cores, two CEVA DSP cores, a few accelerators (Viterbi decoder/FEC)

and a few Multi-Purpose Advanced Processors (Berkeley Design Technology, Inc., 2012).

 4

Figure 1. Overview of the Protocol Development Kit

1.2.2 Protocol Recommendation Engine (PRE)

The PRE recommends a protocol using the user inputs and system requirements. The user

parameters include operational environment, user density, link length and system requirements

which include bandwidth constraints, network topology, available frequency bands, data rate

requirements, antenna specifications, maximum transmit power, latency requirement, etc. The

PRE recommends the set of most suitable protocols based on the user and systems inputs. These

protocols could be similar to existing protocols such as WiFi, LTE, SCFDM, SC or could be brand

new. The details of the recommended protocols are given to the hardware recommendation engine.

1.2.3 Hardware Recommendation Engine (HRE)

After getting the protocol details from PRE, HRE checks to see whether it can support the

implementation of the specific protocol. If not, HRE sends feedback to PRE asking to request the

user to modify the inputs. HRE selects the best possible protocol from the list of the protocols that

 5

PRE has recommended and allocates resources to process the different kernels. Each kernel in the

protocol can run on a general purpose processor - ARM, or on a vector processing unit (VPU) -

CEVA DSP, or on a dedicated hardware accelerator - FEC. The HRE does the resource assignment

based on timing or memory constraints.

1.3 Thesis Contributions

In this study a wide variety of wireless protocols are selected for implementing on the Intel

platform. These include WiFi, an OFDM based WLAN system, mostly used for indoor

communications, SCFDM which is an OFDM-based system used in cellular communications such

as LTE-uplink, and a Single Carrier-based system that is used for low power and low data rate

communications. The performance of the protocols is evaluated on a heterogeneous computing

platform, namely, Intel Transcede T2200 Wireless Base Station board. This platform consists of

two ARM cores (Cortex A9), two DSP cores (XC-323), a few accelerators (Viterbi decoder/FEC)

and a few Multi-Purpose Advanced Processors (MAP). A summary of the tasks that were

undertaken is as follows.

i. Protocol implementation on only ARM, where all the transmitter and receiver blocks are

mapped to ARM.

ii. Protocol implementation on ARM+CEVA platforms, where FFT, IFFT, and Viterbi

decoder are mapped onto CEVA DSP and the remaining blocks are mapped onto ARM.

iii. Protocol implementation on only CEVA, where all the transmitter blocks and receiver

blocks are mapped onto CEVA DSP to overcome the communication overhead between

ARM and CEVA.

iv. Over-the-air testing using Intel Transcede boards or GNURadio and Ettus Radios.

 6

1.3.1 WiFi-Lite-A Protocol

WiFi-Lite-A is an Orthogonal Frequency Division Multiplexing (OFDM) based WLAN

system that is used for indoor communications. WiFi-Lite-A protocol uses 64 subcarriers that are

modulated by quadrature phase shift keying (QPSK) followed by convolutional coding with a

coding rate of ½ (IEEE Standards association, 2012).

First, WiFi-Lite-A protocol transmitter and receiver PHY layer kernels were developed and

implemented on ARM. In the transmitter chain, IFFT took 1.6ms, which is 95% of the total 1.7ms

execution time. Similarly, for the receiver chain, FFT took 29%, channel estimation and

equalization took 31%, and Viterbi decoder took 28% of the total execution time. These three

blocks together accounted for 88% of the total execution time of 7.8ms. This prompted us to

implement the IFFT, FFT, Viterbi decoder blocks onto the CEVA DSP; the rest of the blocks in

transmitter and receiver chains were still mapped on ARM. Such a mapping resulted in reduction

in the execution time of IFFT block from 1.6ms to 0.6ms, and the reduction in the transmitter chain

execution time reduction from 1.7ms to 0.69ms. Similarly, in the receiver chain, FFT block time

reduced from 2.2ms to 0.6ms, channel estimation block reduced from 2.4ms to 0.8ms and decoder

block reduced from 2.1ms to 0.5ms. Overall, the receiver chain execution time reduced by 62%

from 7.8ms to 2.9ms.

Next, WiFi-Lite-A protocol PHY layer kernels were implemented on CEVA DSP SDK and on

CEVA DSP hardware. On SDK this resulted in reduction of the transmitter execution time (without

preamble block) from 638µs to 7.6µs and reduction of the total receiver execution time from 2.9ms

to 76.84µs. The spectacular reduction in the execution time was achieved because the CEVA DSP

SDK does not exactly emulate the hardware. On CEVA DSP hardware, this resulted in reduction

of the transmitter execution time from 638µs to 86.8µs and reduction of the total receiver execution

 7

time from 2.9ms to 0.11ms. The significant reduction in the execution time was achieved because

of reduced context switching and memory overhead due to running the complete transmitter and

receiver chains on the CEVA DSP hardware.

A GNURadio WiFi-Lite-A protocol transmitter model was developed to do over-the-air

communication using Ettus radios (N210). The Intel T2200 WBS board was used to decode the

received frames. Finally, over-the-air transmission was demonstrated using Intel T2200 WBS

boards for both transmitter and receiver.

1.3.2 WiFi-Lite-B Protocol

WiFi-Lite-B is also an Orthogonal Frequency Division Multiplexing (OFDM) based WLAN

system. It also uses 64 subcarriers as in WiFi-Lite-A. However, here quadrature amplitude

modulation (QAM) is used followed by convolutional coding with a coding rate of 2/3 (IEEE

Standards Association, 2012).

First, WiFi-Lite-B protocol transmitter and receiver PHY layer kernels were developed and

implemented on ARM. In the transmitter chain, IFFT took 1.6ms, which is 94% of the total 1.7ms

execution time. Similarly, for the receiver chain, FFT took 19%, channel estimation and

equalization took 21%, and Viterbi decoder took 50% of the total 11.6ms execution time. These

three blocks together accounted for 90% of the execution time. Next, IFFT, FFT, Viterbi decoder

blocks were implemented on the CEVA DSP; the rest of the blocks in transmitter and receiver

chains were still mapped on ARM. Such a mapping resulted in reduction in the execution time of

IFFT block from 1.6ms to 0.6ms, and the reduction in the transmitter chain total execution time

reduction from 1.7ms to 0.72ms. Similarly, in the receiver chain, FFT block time reduced from

2.2ms to 0.65ms, channel estimation block reduced from 2.4ms to 0.8ms and decoder block

 8

reduced from 5.7ms to 0.6ms. Overall, the receiver chain execution time reduced by 72% from

11.6ms to 3.2ms.

 Next, WiFi-Lite-B protocol PHY layer kernels were implemented on CEVA DSP SDK.

This resulted in reduction of the transmitter execution time (without preamble block) from 638µs

to 10.5µs and reduction of the total receiver execution time from 3.2ms to 82.6µs. The significant

reduction in the execution time is achieved by reducing context switching and memory overhead

due to running the complete transmitter and receiver chains on the CEVA DSP. Finally, over-the-

air transmission was demonstrated using Intel T2200 WBS boards for the both transmitter and

receiver.

1.3.3 SCFDM-Lite Protocol

SCFDM-Lite is an Orthogonal Frequency Division Multiplexing (OFDM) based system with a

DFT mapper, which utilizes single carrier modulation (SC), DFT-spread orthogonal frequency

multiplexing, and frequency domain equalization. It is mostly used in cellular communications such

as LTE-uplink. SCFDM-Lite protocol uses 64 DFT subcarriers and 128 FFT subcarriers that are

modulated by quadrature phase shift keying (QPSK) and forward error correction coding

(convolutional coding) with a coding rate of ½ (3GPP a global initiative, 2004).

First, SCFDM-Lite protocol transmitter and receiver PHY layer kernels were developed and

implemented on ARM. In the transmitter chain, IFFT took 4.6ms and FFT took 2.3ms of the total

7ms execution time. These two blocks accounted for 98% of the execution time. Similarly, for the

receiver chain, FFT took 43%, IFFT took 19%, channel estimation and equalization took 19%, and

Viterbi decoder took 15% of the total time. These four blocks together accounted for 96% of the

total execution time of 11.2ms. This prompted us to implement the IFFT, FFT, Viterbi decoder

blocks onto the CEVA DSP; the rest of the blocks in transmitter and receiver chains were still

 9

mapped on ARM. Such a mapping resulted in the execution time of the transmitter chain reducing

from 7ms to 1.2ms. Similarly, in the receiver chain, the reduction in the FFT block, IFFT block,

and decoder block execution time resulted in 60% reduction in total execution time, from 11.2ms

to 4.3ms.

1.3.4 SC-Lite Protocol

SC-Lite is a single carrier based system used for low power and low data rate communications.

SC-Lite protocol uses Reed Solomon encoder to encode the bits and uses BPSK modulation to

map the bits to symbols.

SC-Lite protocol transmitter and receiver PHY layer kernels were developed and implemented

on ARM. In the transmitter chain, Reed-Solomon encoder took 30µs, which is 81% of the total

37µs execution time. Similarly, for the receiver chain, Reed-Solomon decoder took 40µs, which

is 75% of the total 53µs execution time.

1.4 Organization

The remainder of the thesis is organized as follows. In Chapter 2, WiFi-Lite, SCFDM-Lite

and SC-Lite protocols transmitter and receiver blocks, and also the architecture details of CEVA

DSP XC323 and Intel Transcede T22xx series SOC are described. In Chapter 3, implementation

of WiFi-Lite-A protocol on ARM and CEVA DSP platforms are described. In Chapter 4,

implementation of WiFi-Lite-B protocol on ARM and CEVA DSP platforms are described. In

Chapter 5, implementation of SCFDM-Lite protocol on ARM and CEVA DSP platforms are

described and in chapter 6, implementation of SC-Lite protocol on ARM platform are described.

Chapter 7 concludes the thesis.

 10

2 BACKGROUND

2.1 Intel Transcede T22xx SOC Architecture

 Intel Transcede T22xx-series SOC contain three primary processing blocks, a dual-core

ARM Cortex-A9 cluster, running at 1 GHz with a NEON fixed/floating point SIMD unit, two

CEVA-XC323 cores, operating at 750MHz, each consisting of a vector DSP core and an SIMD

vector unit with an 8-issue VLIW instruction set that delivers up to 8 GIPS per core, and four

MAP4 (MindSpeed Application DSP) cores, each core containing four SIMD vector units (with

each unit capable of 1 GMAC/sec performance for 24x16 array math). In addition, it also includes

forward error correction function blocks, chip-rate processing correlator (used in WCDMA), and

several security protocol accelerators. These blocks connect to each other, as well as to numerous

special-function cores, via a combination of AXI (advanced extensible interface) and AHB

(advanced high-performance bus) AMBA interconnect fabric (Berkeley Design Technology, Inc.,

2012).

Intel Transcede T22xx provides several I/O bus options, dual JESD207 radio interfaces

(CMOS and LVDS), PCI Express (single and quad) clusters, serial and reduced gigabit media

independent interfaces (SGMII & RGMII), universal subscriber identity module (USIM), USB,

UART, JTAG, I2C, SPI and multiple GPIOs (Berkeley Design Technology, Inc., 2012).

2.2 CEVA DSP XC323 Architecture

CEVA XC323 is a fully programmable fixed point DSP processor architecture with a unique

mix of VLIW and vector capabilities. It has two vector processing units (SIMD engine), each unit

operates on 256-bit vector register. It supports up to 8 simultaneous instructions (8-Way VLIW)

and also supports non-vectorized data, control, and ANSI-C operations. CEVA DSP has powerful

computation capabilities which support 32 16x16-bit MAC operations, 64 arithmetic operations

 11

and over 200 16-bit operations per cycle. It also has many coprocessor units which allow efficient

1ow power implementation of transceiver algorithms, like MLD MIMO detector, Fast Hadamard

Transform, DFT, FFT, Viterbi decoding, LLR processing and HARQ combining. It provides a

high flexible SIMD programming model with intra-vector permutation capabilities and optimized

modem instruction sets including high precision instruction set architecture (ISA) (CEVA DSP,

2012).

CEVA XC323 has a memory subsystem, which includes coupled memories(TCM), caches,

AXI system interfaces, APB interface, DMA controller, message queues, emulation and profiling

modules. It also has Power Scaling Unit (PSU), which can be used to achieve significant energy

savings.

Figure 2. CEVA XC323 Hardware Architecture

CEVA’s development environment or CEVA-Toolbox provides all the software and

hardware tools to the programmer to develop any specific application. CEVA-Toolbox provides a

Software Development Framework, which includes a complete set of development, debug and

 12

optimization tools, which can be operated and configured via the integrated development

environment (IDE) using a GUI (CEVA DSP, 2012).

CEVA also provides an Integrated Development Environment (IDE) which includes a

powerful compiler that facilitates software development without the need for a programmer to

master architecture-specific details. The compiler supports the CEVA VEC-C language extensions

for vector processors, enabling the entire architecture to be programmed in C-level language

(CEVA DSP, 2012).

2.3 Wireless Protocols

The goal is to develop and implement a wide range wireless protocols on the Intel Transcede

T2200 Wireless Base Station. For this study, WiFi, an OFDM based WLAN system, mostly used

for indoor communications, SCFDM, an OFDM-based system used in cellular communications

such as LTE-uplink, and a Single Carrier based system used for low power and low data rate

communications, are selected.

2.3.1 WiFi-Lite

The transmitter and receiver blocks used in the WiFi-Lite protocol are described in Sections

2.3.1.1 and 2.3.1.2, respectively.

2.3.1.1 Transmitter

The key blocks in the transmitter chain of our WiFi-Lite protocol are presented in Figure

3, followed by short description of each of the blocks.

 13

Figure 3. WiFi-Lite Protocol: Block Diagram of Transmitter

2.3.1.1.1 Scrambler

Scrambler is a unit that transposes or inverts signals or encodes a message at the transmitter

to make it unintelligible at the receiver. It facilitates the work of timing recovery circuits, automatic

gain control and other adaptive circuits of the receiver by reordering sequences such that there are

no long sequences consisting of consecutive zeros and ones. It is also used for energy dispersal of

the carrier and reducing intercarrier signal interference (Unnikrishnan & Sunil, 2011).

2.3.1.1.2 Encoder

The encoder is used to convert data from one format to another format for better and

reliable transmission. It adds redundant bits to the payload which helps the receiver to decode the

bits in case of severe channel conditions (Proakis & Masoud, 2007) .

2.3.1.1.2.1 Viterbi/Convolutional Encoder

A convoutional encoder, encodes the entire data stream, into a single codeword. It maps

information to code bits sequentially by convolving a sequence of information bits with generator

sequences. It can be implemented easily using linear feedback shift register. A convolutional code

is specified by n, k, and K parameters, where n is the number of outputs, k is the number of inputs,

K is a contraint length of the convolutional code, k/n is the coding rate which determines the

 14

number of data bits per coded bit (Proakis & Masoud, 2007). The sliding nature (convolutional of

the encoder over the data) of the convolutional codes enables us to use a time-invariant trellis,

which supports maximum likelihood soft decision decoding.

2.3.1.1.3 Interleaver

Interleaving is a technique commonly used in communication systems to overcome

correlated channel noise such as burst errors. The interleaver rearranges input data such that

consecutive data are spaced apart. At the receiver end, the interleaved data are arranged back into

the original sequence by the de-interleaver. A linear random interleaver is used in this protocol,

which only does data permutation.

2.3.1.1.4 Modulation

Modulation is the process of varying one or more properties of a periodic waveform, called

the carrier signal, with a modulating signal that typically contains information to be transmitted

(Proakis & Masoud, 2007).

2.3.1.1.4.1 Quadrature Phase-shift Keying

QPSK is a digital modulation scheme that conveys data by changing (modulating) the

phase of a reference signal (the carrier wave). QPSK maps two bits into a symbol and can be

visualized using the constellation diagram.

2.3.1.1.4.2 Quadrature Amplitude Modulation

QAM is a digital modulation scheme that conveys data by changing the amplitude of a

reference signal (carrier waves) using amplitude-shift keying. QAM can map four bits into a

symbol and can be visualized using the constellation diagram.

 15

2.3.1.1.5 Pilot Insertion

Pilots are the known data symbols inserted at fixed locations in each OFDM symbol. They

are used to estimate the channel behavior. In our implementation, sixteen pilots are used for each

OFDM symbol. The positions of the pilot symbols in each OFDM symbol are fixed. Therefore, it

is easy to extract the pilots at the receiver.

2.3.1.1.6 IFFT/FFT

 Data bits, which are modulated as complex symbols, are mapped to the subcarriers which

are orthogonal to each other using the IFFT. The Fourier transform converts a signal from its

original domain (time or space) to its representation in the frequency domain and vice versa. The

Fast Fourier Transform (FFT) rapidly computes such transformations by factorizing the DFT

matrix into a product of sparse (mostly zero) factors. As a result, it reduces the complexity of

computing the Discrete Fourier Transform (DFT) from O (n2) to O (n log n), where n is the data

size (Rader & Brenner, 1976).

2.3.1.1.7 Cyclic Prefix/Guard Interval

The cyclic prefix adds the tail end of each symbol to the front end. This is done to eliminate

the intersymbol interference and to make the system robust to multipath fading. The length of the

cyclic prefix is based on the IEEE standard.

2.3.1.1.8 Preamble

The preamble is a complex data inserted at the head of every OFDM frame to achieve

proper synchronization at the receiver. In this protocol, the preamble is used for packet and frame

detection. FFT modulated short and long preamble symbols (10 short symbols and 2 long symbols)

are used as per the IEEE standards (802.11a) (IEEE Standards association, 2012).

 16

2.3.1.2 Receiver

 In this section, the blocks in the receiver chain of the WiFi-Lite protocol are described.

Figure 4 provides the block diagram of the receiver system.

Figure 4. WiFi-Lite Protocol: Block Diagram of Receiver

2.3.1.2.1 Frame Detection

Synchronization is a necessary task for any digital communication system to detect the

packets and frames at the receiver. Without accurate synchronization algorithms, it is not possible

to reliably receive the transmitted data. To achieve proper synchronization, current WLAN

standards uses preamble. Our frame detection algorithm uses the short preamble in the OFDM

frame and performs autocorrelation to detect the packet. It then performs cross-correlation of the

long preabmle sequence with the data samples to detect the start of the frame (Heiskala, 2001).

 17

2.3.1.2.2 Channel Estimation and Equalization

Channel estimation and equalization algorithms are used in the receiver to remove the

channel effects. Of the existing algorithms, first, the zero forcing algorithm was implemented

which does channel estimation by doing a linear interpolation on the estimated pilots to form a

channel response (H matrix). Since this algorithm did not suppress the channel effects completely,

Least Square Estimation (LSE) algorithm was used (Cai & Giannakis, 2004). Channel equalization

is achieved by dividing the received OFDM symbol with the estimated channel coefficients in the

time domain, which nullifies the channel effect.

2.3.1.2.3 Demodulation

Demodulation is used to recover the information bits from the modulated symbols. Soft

demodulator algorithm was used, which provides the reliability information of the bits. This

reliability information is used by the Viterbi decoder to make better decisions.

2.3.1.2.3.1 QPSK Demodulation

QPSK soft demodulator which calculates the distance from the received symbol to the four

possible constellation points (symbols in 2D space – I & Q samples) was implemented and the

distance was used to make the decision to select an appropriate boundary region.

2.3.1.2.3.2 QAM Demodulation

QAM demodulator which calculates the distance from the received symbol to all the

possible constellation points was implemented. It uses the log-likelihood ratio (LLR) algorithm to

make the decision to select an appropriate boundary region.

2.3.1.2.4 Decoder

Decoder is used to decode the bitstream that has been encoded by an encoder at the

transmitter.

 18

2.3.1.2.4.1 Viterbi Decoder

Viterbi Decoder is used to decode the bitstream that has been encoded by a convolutional

encoder. It is based on the Viterbi algorithm, which does maximum likelihood decoding (Viterbi,

1967).

2.3.2 SCFDM-Lite

The transmitter and receiver blocks used in SCFDM-Lite protocol are described in Sections

2.3.2.1 and 2.3.2.2 respectively.

2.3.2.1 Transmitter

The transmitter blocks used in SCFDM-Lite protocol are described here; the corresponding

block diagram is shown in Figure 5. Most of the blocks are the same as WiFi-Lite protocol. The

blocks that are different are only described in this section.

Figure 5. SCFDM-Lite Protocol: Block Diagram of Transmitter

2.3.2.1.1 Subcarrier Mapping

The subcarrier mapping assigns N-point DFT complex outputs values as the amplitude of

some of the selected subcarriers in M-point IFFT, where M is greater than N. Subcarrier mapping

 19

can be classified into two types: localized mapping and distributed mapping. Localized mapping,

was used in this protocol, where, the DFT output is mapped to a subset of consecutive sub-carriers

(3GPP a global initiative, 2004).

2.3.2.2 Receiver

In this section, the receiver blocks used in our SCFDM-Lite protocol are described. Most

of the blocks are the same as WiFi-Lite protocol, the only new block here is subcarrier de-

mapping. Figure 6 gives the block diagram of the receiver.

Figure 6. SCFDM-Lite Protocol: Block Diagram of Receiver

2.3.2.2.1 Subcarrier De-mapping

The subcarrier de-mapping de-maps the consecutive sub-carriers from an M-point FFT

output and gives it to an N-point IDFT block, where M is larger than N.

 20

2.3.3 SC-Lite

In this section, the transmitter and receiver blocks used in our SC-Lite protocol are

described.

2.3.3.1 Transmitter

The transmitter block diagram of the SC-Lite protocol is described in Figure 7. The

Scrambler block is reused from WiFi-Lite protocol; the encoder and modulation blocks are new.

Figure 7. SC-Lite Protocol: Block Diagram of Transmitter

2.3.3.1.1 Reed-Solomon Encoder

Reed-Solomon (RS) encoder takes a block of digital data and adds extra redundant bits, it

takes k data symbols of s bits each and adds parity sumbols to make an n symbol codeword. A

Reed-Solomon code is a type of error-correcting linear block code, specified as (n,k) with s-bit

symbols. The error capability of a RS code depends on the minumum distance which is n-k (Lin

& Costello, 2004).

2.3.3.1.2 Binary Phase Shift Keying Modulation

BPSK is a digital modulation scheme that conveys data by changing the phase of a

reference signal (the carrier wave). BPSK can only map 1 bit into a symbol.

 21

2.3.3.2 Receiver

The receiver block diagram of our SC-Lite protocol is described in Figure 8. The

descrambler block is reused from WiFi-Lite protocol; the Reed Solomon decoder and

demodulation blocks are new.

Figure 8. SC-Lite Protocol: Block Diagram of Receiver

2.3.3.2.1 BPSK Demodulation

Our BPSK demodulator makes decisions based on the reference point. If the value is below

the reference point, then the demodulator assumes that the data bit as zero and if it is greater than

the reference point, then it assumes that the data bit as one.

2.3.3.2.2 Reed-Solomon Decoder

Reed-Solomon (RS) Decoder is used to decode the symbols that has been encoded by a RS

encoder. It consists of syndrome computation, key equation solver (KES), and Chien search and

error evaluator (CSEE) units. (Minsky, 2010).

 22

3 WiFi-Lite-A Protocol

In this chapter, the implementations of WiFi-Lite-A protocol on ARM and CEVA DSP

platforms are described. An overview of the protocol is given in Section 3.1. This is followed by

protocol implementation on ARM in Section 3.2, protocol implementation on ARM+CEVA in

Section 3.3, protocol implementation on CEVA DSP in Section 3.4, over-the-air protocol

implementation using Ettus Radio in Section 3.5, and over-the-air protocol implementing using

Intel T2200 WBS boards in Section 3.6.

The work in Section 3.3.1 is done in collaboration with Ganapati Bhat, the work in Section

3.5 is done in collaboration with Dr. Hyunseok Lee, and the work in Section 3.6 is done in

collaboration with Dr. Hyunseok Lee and Ganapati Bhat.

3.1 Protocol Overview

WiFi-Lite A is an Orthogonal Frequency Division Multiplexing (OFDM) based system

similar to IEEE 802.11 standard. Our WiFi-Lite system uses 64 subcarriers that are modulated by

quadrature phase shift keying (QPSK) followed by forward error correction (FEC) coding

(convolutional coding) with a coding rate of ½.

3.1.1 Transmitter

At the transmitter, all the data bits undergo the following PHY layer signal processing.

Data bits are scrambled by a linear non-additive scrambler using LFSR and then encoded by the

convolutional encoder with a constraint length of 7 and code rate of ½. The bits are then interleaved

by the linear random interleaver using LFSR, followed by QPSK modulation, pilot insertion, IFFT

of width 64, cyclic prefix addition, and then by a long and short preamble (please refer to 2.3.1.1

section for transmitter block description). Figure 9 gives the block diagram of the transmitter chain

for WiFi-Lite-A.

 23

Figure 9. WiFi-Lite-A Protocol: Block Diagram of Transmitter

Protocol Configuration Values

No of input data bits per OFDM symbol 40
No of data subcarriers per OFDM symbol 48

No of pilot subcarriers 16
FFT/IFFT size 64

Convolutional encoder (2,1,8)
Mask0 – 0133
Mask1 – 0171
Mask2 – 0165

Modulation QPSK
Cyclic Prefix 16 symbols

Preamble 322 symbols
Table 1. WiFi-Lite-A Protocol Configuration

3.1.2 Receiver

At the receiver, the frame detection unit performs correlation of the received data samples

with the known preamble sequence to detect a packet and also to detect the start of each frame.

Once the frame is detected successfully, the cyclic prefix is removed, and the OFDM frame is

given to the FFT-64 unit for converting the samples from time domain to frequency domain. This

is followed by channel estimation and equalization to estimate and remove the channel effect. Next

pilots are removed from the frame and sent to QPSK demodulator to extract the bits from the

symbols. The de-interleaved data is given to the Viterbi decoder to remove the redundant bits and

 24

to rectify the errors bits. The bits are then descrambled to get the exact payload (please refer to

2.3.1.2 section for receiver blocks description). Figure 10 gives the block diagram of the receiver

chain for WiFi-Lite-A.

Figure 10. WiFi-Lite-A Protocol: Block Diagram of Receiver

3.2 WiFi-Lite-A Implementation on ARM

First, the WiFi-Lite-A transmitter and receiver chains were implemented on ARM. While

the protocol development is easy using MATLAB, it was still developed entirely in C, because the

MATLAB to C language converter was not very good. Figure 11 describes the experimental setup.

The input to the transmitter chain is a sequence of 40 bits. These are converted into OFDM

symbols. Transmitter chain output data is saved to a file. The channel model (Rayleigh fading)

corrupts the data and saves the data to another file. The receiver chain reads the data from a file

 25

and decodes the payload. In our implementation the receiver chain successfully decodes the

OFDM symbol with zero bit error rate.

Figure 11. WiFi-Lite-A Implementation – TX and RX Loopback

3.2.1 Experimental Results

The timing performance of the different blocks in transmitter and receiver are calculated

using the following way. Time stamps are introduced before and after each function call and the

difference in the time is calculated to estimate the execution time of each block. Table 2 describes

the execution time of the major functional blocks for the transmitter. The transmitter chain took

1.7ms with 95% of the time being spent on computing the 64 point IFFT.

Function Time(µs)
Scrambler 2
Encoder 15

Interleaver 4
QPSK

Modulation 12
Pilot Insertion 4

64-IFFT 1650
Cyclic Prefix 3

Preamble 54
Total 1744

Table 2. WiFi-Lite-A Transmitter Implementation on ARM: Timing Profile

 26

Function Time(µs)
64-FFT 2296

Channel Estimation & Equalization 2434
Pilot Removal 5

QPSK Demodulation 455
De-Interleaver 428

Decoder 2180
De-Scrambler 2

Total 7800
Table 3. WiFi-Lite-A Receiver Implementation on ARM: Timing Profile

 Table 3 lists the execution time of the major functional blocks of the receiver chain. The

results show that channel estimation and equalization, FFT, and decoder blocks took most of the

computational time. These three blocks all together took 6.9ms, which is 88% of the total time.

Figure 12. WiFi-Lite-A Profiling Results for ARM Implementation

Figure 12 shows the pie chart of the transmitter and receiver timing profiles. In the

transmitter, IFFT took 95% of the total execution time. In the receiver, channel estimation and

equalization block took 31%, FFT took 29%, Viterbi decoder took 28% of the execution time.

Scramble
r

0%

Encoder
1%

Interleav
er

0%

QPSK
Mod
1%

Pilot
Insertion

0%

64-IFFT
95%

Cyclic
Prefix

0%
Preamble

3%

WiFi-LITE-A Transmitter

Scrambler Encoder Interleaver

QPSK Mod Pilot Insertion 64-IFFT

Cyclic Prefix Preamble

64-FFT
29%

Channel
Est & Eq

31%

Pilot
Removal

0%

QPSK
DEMOD

6%

De-
Interleav

er
6%

Decoder
28%

Descram
bler
0%

WiFi-LITE-A Receiver

64-FFT Channel Est & Eq

Pilot Removal QPSK DEMOD

De-Interleaver Decoder

Descrambler

 27

Since the FFT, IFFT, and decoder algorithms took most of the processing time, so these algorithms

are mapped onto the CEVA DSP and the timing performance evaluated.

3.3 WiFi-Lite-A Implementation on ARM and CEVA DSP

In order to map some of the blocks, namely the IFFT, FFT, and Viterbi decoder blocks onto

the CEVA DSP, and map the remaining blocks onto ARM, the interface between ARM and CEVA

had to be designed.

3.3.1 ARM-CEVA Interface

The communication between ARM and CEVA was implemented using the polling

mechanism. It utilizes a generic function whose arguments include the task ID, pointer to an input

buffer, pointer to an output buffer and length of the input data. Task ID is the name of the library

function, which CEVA has to call during runtime. Our function takes the input buffer, does type

casting to the respective data type and does a memory copy to the shared memory. Once the

function maps the buffers to the respective data types, it makes the Task Control Block (TCB)

status ready so that CEVA can read the data and execute the specific function. Once CEVA is done

executing the function, it copies back the result from shared memory to the output buffer, so that

the next block in the chain can read the data and proceed with the execution. At the end of this

process, the function changes the Task Control Block (TCB) flag status to completed.

 CEVA DSP is a fixed point processor, so CEVA soft libraries are in fixed point. Since all

computations in ARM are done in floating point, data handling has to be done while passing the

data from the floating point buffer to the fixed point buffer. The output data of a floating point

function is multiplied by a scalar value; the scalar value is decided based on the data types of the

function input and output buffers. CEVA DSP libraries expect 16-bit values (in C language – short

 28

data type), so by considering the overflow cases, the data is multiplied by 1000 to get better results.

In spite of the scaling, there was some loss in precision, as expected.

 CEVA FFT soft library functions give scaled outputs, which have to be handled to get the

correct results. CEVA FFT library function outputs were compared with the MATLAB function

outputs by passing a known input data to find the exact scalar value. Table 4 shows the scalar

values for some of the FFT libraries.

CEVA FFT Library Scalar Value

FFT64 Output is scaled by 4

IFFT128 Output is scaled by 8

FFT128 Output is scaled by 16

Table 4. Scaling Factor for CEVA FFT Library Functions

3.3.2 Experimental Results

The experimental setup is the same as shown in Figure 11. A sequence of 40 bits is

processed by the transmitter chain, corrupted by Rayleigh fading channel and decoded successfully

by the receiver chain. DSP and communication libraries (C & ASM) provided by CEVA are used

to improve baseband timing performance. Specifically, the FFT and Viterbi decoder libraries

(ASM) are mapped onto CEVA DSP. This mapping resulted in significant reduction in the

computational time of both the transmitter and receiver chains. The transmitter chain took 0.69µs

compared to 1.7ms when implemented on only ARM and the receiver chain took 2.9ms compared

to 7.8ms when implemented on only ARM.

 29

Function Time(µs)
Scrambler 2
Encoder 15

Interleaver 4
QPSK

Modulation 12
Pilot Insertion 4

64-IFFT 601
Cyclic Prefix 3

Preamble 51
Total 692

Table 5. WiFi-Lite-A Transmitter Implementation on ARM+CEVA: Timing Profile

The profiling results in Table 5 show that the IFFT block took most of the transmitter chain

computational time. The IFFT block execution time is reduced to almost 60% when compared to

the only ARM implementation (Table 2).

Figure 13. WiFi-Lite-A TX Execution Time Values - ARM vs ARM+CEVA

Figure 13 compares the execution times of the transmitter chain implemented using ARM

with that using ARM+CEVA. Other than the IFFT block which was mapped onto CEVA, the other

2 15 4 12 4

1650

3 54

1744

2 15 4 12 4

601

3 51

692

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Scrambler Encoder Interleaver QPSK
Mod

Pilot
Insertion

64-IFFT Cyclic
Prrefix

Preamble Total

Ti
m

e(
µs

)

WiFi-Lite-A TX ARM vs ARM+CEVA

ARM ARM+CEVA

 30

blocks took the same time since they are implemented on ARM. The reduction in the IFFT block

timing translated to almost 60% reduction in the transmitter chain execution time.

Function Time(µs)
64-FFT 645

Channel Estimation & Equalization 855
Pilot Removal 5

QPSK Demodulation 450
De-Interleaver 420

Decoder 576
De-Scrambler 5

Total 2956
Table 6. WiFi-Lite-A Receiver Implementation on ARM+CEVA: Timing Profile

The profiling results in Table 6 show that for the receiver chain, the channel estimation and

equalization, FFT, and decoder blocks took most of the computational time. When compared to

the ARM only implementation, decoder, FFT, and channel estimation block execution time

reduced significantly. Overall, the execution time of the ARM+CEVA implementation reduced

from 7.8ms to 2.9ms.

Figure 14. WiFi-Lite-A RX Execution Time Values - ARM vs ARM+CEVA

2296 2434

5
455

428

2180

2

7800

645 855
5

450
420

576
5

2956

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Ti
m

e(
µs

)

WiFi-Lite-A RX ARM vs ARM+CEVA

ARM ARM+CEVA

 31

Figure 14 compares the execution times of the receiver chain implemented using ARM

with that using ARM+CEVA. The results show that the FFT block and decoder took significantly

lower time on CEVA DSP than on ARM. The channel estimation and equalization block also took

less time in ARM+CEVA implementation, since the FFT used in the channel estimation is

implemented on the CEVA DSP. The timing of the other blocks in the receiver chain remain the

same since they are implemented on ARM in both cases. The total execution time of a receiver

chain for ARM+CEVA implementation is reduced by almost 62% compared to the execution time

for only ARM implementation.

3.4 WiFi-Lite-A Fixed-Point Implementation on CEVA DSP

Next, all blocks of the transmitter and receiver chains were implemented on the CEVA DSP.

This was done to avoid the communication overhead and to reduce the memory overhead between

ARM and CEVA DSP. Figure 15 describe the setup. Transmitter chain output data is saved to a

file, the channel model (Rayleigh fading) corrupts the data and saves the data to a file. The receiver

chain reads the data from a file and decodes the payload. At first, all processing is done in CEVA

SDK and then all the blocks are mapped onto CEVA DSP hardware.

Figure 15. WiFi-Lite-A CEVA SDK Implementation

 32

3.4.1 Experimental Results – CEVA DSP SDK

 The protocol was implemented on CEVA SDK and the execution time for each block was

calculated. Tables 7 and 8 include the timing results of each block in the transmitter and receiver,

respectively.

Function Cycles Time(µs)
Scrambler 214 0.3
Encoder 2297 3

Interleaver 610 0.8
QPSK Modulation 2119 2.8

Pilot Insertion 497 0.6
IFFT 70 0.09
Total 5807 7.6

Table 7. WiFi-Lite-A Transmitter Implementation on CEVA SDK: Timing Profile

From Table 7, the two computationally expensive operations in the transmitter chain are

the encoder which took 3µs, and QPSK modulation which took 2.8µs. Together they account for

76% of the total execution time. The IFFT block took only 0.09µs which is significantly lower

compared to the ARM+CEVA implementation.

Function Cycles Time(µs)
FFT 70 0.1

Channel Est & Eq 48469 64.6
Pilot removal 932 1.2

QPSK Demodulation 33 0.04
De-Interleaver 5496 7.3

Viterbi Decoder 2490 3.3
De-Scrambler 214 0.3

Total 57704 76.8
Table 8. WiFi-Lite-A Receiver Implementation on CEVA SDK: Timing Profile

 33

The profiling results of the receiver chain presented in the Table 8 show that channel

estimation and equalization algorithm took 64.6µs out of the total 76.8µs. While this is very large,

the CEVA SDK implementation takes significantly less time compared to the ARM+CEVA

implementation (see Table 6). Also, FFT, QPSK Demodulation, and decoder blocks only took

0.1µs, 0.04µs, and 3.3µs respectively, which is very low when compared to the ARM+CEVA

implementation results.

CEVA SDK timing results are significantly lower since SDK runs on the general purpose

processor (Intel Xeon) and so it does not exactly emulate the cost of inter-process communication

and interrupts. It also does not consider the exact size of the memory available on the hardware.

Since SDK does not provide accurate estimates of the execution time on real hardware, next we

implement the protocol on CEVA DSP hardware.

3.4.2 Experimental Results – CEVA DSP Hardware

All the transmitter and receiver blocks are mapped onto CEVA DSP hardware and the

execution time for each block was calculated. Tables 9 and 10 include the timing results of each

block in the transmitter and receiver, respectively.

Function Cycles Time(µs)
Scrambler 498 1.9
Encoder 8371 33.4

Interleaver 1644 6.5
QPSK Mod 1646 6.5
Pilot insert 1302 5.2
IFFT-64 58 0.2

Cyclic Prefix 1664 6.6
Preamble 6534 26.1

Total 21717 86.8
Table 9 WiFi-Lite-A Transmitter Implementation on CEVA DSP: Timing Profile

 34

From Table 9, the two computationally expensive operations in the transmitter chain are

the encoder which took 33µs, and preamble block which took 26µs. Together they account for

69% of the total execution time. The IFFT block took only 0.2µs which is significantly lower

compared to the ARM+CEVA implementation but slightly higher compared to CEVA SDK

implementation.

Function Cycles Time(µs)
FFT-64 57 0.2

Channel Est & Eq 20350 81.4
Pilot removal 2608 10.4

QPSK De-mod 66 0.2
De-Interleaver 3104 12.4

Decoder 1167 4.6
Descrambler 466 1.8

Total 27818 111.2
Table 10 WiFi-Lite-A Receiver Implementation on CEVA DSP: Timing Profile

The profiling results of the receiver chain presented in the Table 10 show that channel

estimation and equalization algorithm took 81.4µs out of the total 111.2µs. While this is very large,

the CEVA DSP hardware implementation takes significantly less time compared to the

ARM+CEVA implementation (see Table 6). Also, FFT, QPSK Demodulation, and decoder blocks

only took 0.2µs, 0.2µs, and 4.6µs respectively, which is very low when compared to the

ARM+CEVA implementation results.

 35

Function Time(µs)
ARM+CEVA

Time(µs)
CEVA hardware

Scrambler 2 1.9
Encoder 15 33.4

Interleaver 4 6.5

QPSK Modulation 12 6.5
Pilot Insertion 4 5.2

64-IFFT 601 0.2
Cyclic Prefix 3 6.6

Preamble 51 26.1
Total 638 86.8

Table 11. WiFi-Lite-A Transmitter Profiler Results - ARM+CEVA vs CEVA DSP

Table 11 compares the execution times of the transmitter chain implemented using

ARM+CEVA and CEVA DSP hardware. The IFFT block took significantly lower time on CEVA

DSP when compared to ARM+CEVA results. While in both cases, the IFFT was implemented on

CEVA, in ARM+CEVA implementation there is a wrapper function which handles the polling

mechanism between CEVA DSP and ARM and adds to the timing complexity. In comparison, in

the CEVA DSP implementation, the complete transmitter chain is implemented on CEVA DSP

and there is no need for any wrapper function. Of the remaining blocks, QPSK modulation and

preamble blocks took much lower time on CEVA DSP compared to ARM+CEVA implementation

where these blocks are implemented on ARM. In contrast, the encoder, interleaver, and cyclic

prefix blocks took more time on CEVA DSP when compared to ARM+CEVA implementation,

where these blocks are implemented on ARM. This is possibly because, the ARM compiler

optimized the scalar codes better. The total execution time of the transmitter chain for CEVA DSP

implementation is reduced by almost 86% compared to the transmitter chain execution for

ARM+CEVA implementation.

 36

Function Time(µs)
ARM+CEVA

Time(µs)
CEVA hardware

64-FFT 645 0.2
Channel Estimation & Equalization 855 81.4

Pilot Removal 5 10.4
QPSK Demodulation 450 0.2

De-Interleaver 420 12.4

Decoder 576 4.6
De-Scrambler 5 1.8

Total 2380 111.2
Table 12. WiFi-Lite-A Receiver Profiler Results - ARM+CEVA vs CEVA DSP

Table 12 compares the execution times of the receiver chain implemented using

ARM+CEVA and CEVA DSP. The IFFT, decoder and QPSK demodulation blocks took

significantly lower time on CEVA DSP when compared to ARM+CEVA implementation. While

these blocks are implemented on CEVA in both implementations, the ARM+CEVA

implementation has wrapper function which handles the polling mechanism between CEVA DSP

and ARM. In contrast, the CEVA DSP hardware implementation, has no wrapper function because

the complete receiver chain is implemented on CEVA DSP. The de-scrambler and channel

estimation and equalization blocks took much lower time on CEVA DSP compared to

ARM+CEVA implementation where these blocks also are implemented on ARM. The reduction

in channel estimation was expected since the FFT block in channel estimation was mapped on

CEVA DSP of the remaining blocks, the pilot removal block took more time on CEVA DSP when

compared to ARM+CEVA implementation, where the block was implemented on ARM, because

the ARM compiler possibly optimized the scalar code better. The total execution time of a receiver

chain for CEVA DSP hardware implementation is reduced by almost 95% compared to the

receiver chain execution for CEVA+ARM implementation. In summary, a 30x - 80x reduction in

 37

the execution time is achieved by running the complete receiver and transmitter chain on the

CEVA DSP hardware.

3.5 WiFi-Lite-A Implementation using Ettus Radio

 GNURadio was used as a platform for over-the-air communication. The transmitter chain

(GUI blocks – signal processing blocks) for the WIFI-Lite-A protocol was developed using the

GNURadio OOT model. Ettus radio (N210) is used to transmit and receive the I and Q samples as

shown in Figure 16. At the receiver, data samples from the ADC are saved into a buffer and sent

to the Intel Transcede board for decoding.

Figure 16. WiFi-Lite-A: Over the Air Experiment Using Ettus Radio and Intel WBS

GNURadio OOT model provides an excellent framework to create the individual blocks.

The key issues in the development were handling input and output buffers of each block,

monitoring the length of the data in the buffers and scheduling block processing. The input buffer

of each block was monitored. If the data in the input buffer is greater than zero, then the block

 38

starts processing the data and gives it to the next block in the chain, as in cut through

implementation. The other ways such as store and forward mechanism was also implemented

(storing one complete packet/frame in the input buffer of the block and then allowing the block to

process), but observed buffer overflow, underflow, and output mismatch issues, so the cut through

based mechanism was finally used.

Figure 17. WiFi-Lite-A GNURadio Transceiver Block Diagram

3.5.1 Experimental Results

To verify that the transmitter and receiver chain functioned correctly, 40 bits of payload

data were transmitted and received (over the air data samples) using Ettus Radios as shown in

Figure 17. At the receiver, data samples are received and saved into a file and the dump file is sent

to Transcede board for decoding. Our receiver algorithm successfully decoded the dump file with

zero bit error rate (BER).

Figure 18 explains the synchronization result of the frame detection algorithm. Here, the

x-axis represents the number of samples and y-axis represents the amplitude of the samples. The

red color shows the received data samples. The green color line shows the correlation result of the

data samples with the short preamble, the correlation peak (green color peak) is the starting point

 39

of the packet. The blue color shows the correlation result of the data samples with the long

preamble; the correlation peak (blue color peak) is the starting point of the OFDM frame.

Figure 18. WiFi-Lite-A GNU Radio Implementation - Frame Detection Results

Figure 19. WiFi-Lite-A – GNU Radio QPSK Constellation Diagram

 40

Figure 19 shows the constellation diagram of the symbols before the QPSK demodulation

block. It shows that our channel estimation and equalization algorithm removed the channel effect

in the OFDM symbol.

3.6 Implementation Using Intel T2200 for TX & RX – Real Time Processing

 Two Intel T2200 WBS boards are used: one as a transmitter, and the other as a receiver to

communicate data over the air using two different frequencies to communicate. Specifically,

frequency 2635Mhz is used to transmit data from board A to board B and frequency 2675Mhz is

used to transmit data from Board B to Board A as shown in Figure 20. The processing on the

T2200 boards was done using only ARM.

Figure 20. Intel T2200 WBS Dual Frequency Setup

3.6.1 Experimental Results

The RF cards are configured as shown in Figure 20. Each board can transmit and receive

data simultaneously. A fixed string of 124 bytes long data is sent per OFDM frame (40 bits per

OFDM symbol) from one board to another and vice versa.

 41

Figure 21. WiFi-Lite-A Over the Air Implementation - Intel T2200 WBS Boards

The data (124 bytes long) was decoded successfully with zero BER. The receiver

algorithms and RF configurations worked perfectly. Figure 22 shows the synchronization result of

our frame detection algorithm. The x-axis represents the number of samples and y-axis represents

the amplitude of the samples. The red color shows the received data samples. The green color line

shows the correlation result of the data samples with the short preamble, the correlation peak (green

color peak) is the starting point of the packet. The blue color shows the correlation result of the

data samples with the long preamble. The pink color shows the payload data samples. Therefore,

the frame detection algorithm successfully detected the packet and the payload.

 42

Figure 22. WiFi-Lite-A Over-the-Air Frame Detection Algorithm Result

Figure 23. WiFi-Lite-A Carrier Frequency Offset Algorithm Result

Figure 23 describes the constellation diagram before and after CFO compensation. The x-axis

of Figure 23 shows the in-phase component and y-axis shows the quadrature components of the

samples. Here autocorrelation is performed on the short preamble sequence at the receiver to find

the phase shift. The algorithm successfully corrected 20-degree phase shift in the symbols.

 43

4 WiFi-Lite-B Protocol

In this chapter, the implementations of WiFi-Lite-B protocol on ARM and CEVA DSP

platforms are described. An overview of the protocol is given in Section 4.1, followed by protocol

implementation on ARM in Section 4.2, protocol implementation on ARM+CEVA in Section 4.3,

protocol implementation on CEVA SDK in Section 4.4 and over-the-air protocol implementation

using Intel T2200 WBS boards in Section 4.5. The work in Section 4.5 is done in collaboration

with Dr. Hyunseok Lee.

4.1 Protocol Overview

WiFi-Lite B is an Orthogonal Frequency Division Multiplexing (OFDM) based system

similar to IEEE 802.11 standard. Our WiFi-Lite system uses 64 subcarriers that are modulated by

quadrature amplitude modulation (QAM) followed by forward error correction (FEC) coding

(convolutional coding) with a coding rate of 2/3.

4.1.1 Transmitter

At the transmitter, the data bits are first scrambled by a linear non-additive scrambler using

LFSR and then encoded by the convolutional encoder with a constraint length as 7 and code rate

of 2/3. The bits are then interleaved by the linear random interleaver using LFSR, followed by

QAM modulation, pilot insertion, IFFT of width 64, cyclic prefix addition, and then by a long and

short preamble (please refer to 2.3.1.1 section for transmitter block description). Figure 24

describes the block diagram of the WiFi-Lite-B transmitter.

 44

Figure 24. WiFi-Lite-B Protocol: Block Diagram of Transmitter

Protocol Configuration Values

No of input data bits per OFDM Symbol 136
No of data subcarriers per OFDM Symbol 48

No of pilot subcarriers 16
FFT/IFFT width 64

Convolutional Encoder (3,2,8)
Mask0 – 0133
Mask1 – 0171
Mask2 – 0165

Modulation QAM
Cyclic Prefix 16 symbols

Preamble 322 symbols
Table 13. WiFi-Lite-B Protocol Configuration

4.1.2 Receiver

At the receiver, the frame detection unit performs correlation of the received data samples

with the known preamble sequence to detect a packet and also to detect the start of each frame.

Once the frame is detected successfully, the cyclic prefix is removed, and the OFDM frame is sent

to the FFT-64 unit for converting the samples from time domain to frequency domain. This is

followed by channel estimation and equalization to estimate and remove the channel effect. Next

pilots are removed from the frame and sent to QAM demodulator to extract the bits from the

 45

symbols. The de-interleaved data is given to the Viterbi decoder to remove the redundant bits and

to rectify the errors bits. The bits are then descrambled to get the exact payload (please refer to

2.3.1.2 section for receiver block description). Figure 25 describes the block diagram of the WiFi-

Lite-B receiver.

Figure 25. WiFi-Lite-B Protocol: Block Diagram of Receiver

4.2 WiFi-Lite-B Implementation on ARM

First, the transmitter and receiver chains were implemented on ARM. The protocol was

developed entirely using the C language, because the MATLAB to C language converter was not

very good. Figure 26 describes the experimental setup. The input to the transmitter chain is a

sequence of 136 bits. These are converted into OFDM symbols. Transmitter chain output data is

saved to a file, the channel model (Rayleigh fading) corrupts the data and saves the data to another

file. The receiver chain reads the data from a file and decodes the payload. In our implementation,

the receiver chain successfully decoded the OFDM symbol with zero bit error rate.

 46

Figure 26. WiFi-Lite-B Protocol Implementation - TX and RX Loopback

4.2.1 Experimental Results

The timing performance of the different blocks in transmitter and receiver was evaluated.

Time stamps were introduced before and after each function call and the difference in the time was

calculated to estimate the execution time of each block. Table 14 describes the execution time of

the major functional blocks for the transmitter. The transmitter chain took 1.7ms with 94% of the

time being spent on computing the 64 point IFFT.

Function Time(µs)
Scrambler 5
Encoder 41

Interleaver 6
16Qam Modulation 8

Pilot Insertion 3
64-IFFT 1598

Cyclic Prefix 4
Preamble 41

Total 1706
Table 14. WiFi-Lite-B Transmitter Implementation on ARM: Timing Profile

 47

Function Time(µs)
64-FFT 2250

Channel Equalization and Estimation 2459
Pilot Removal 5

16 QAM demodulation 645
De-Interleaver 488

Viterbi Decoder 5767
Descrambler 5

Total 11619
Table 15. WiFi-Lite-B Receiver Implementation on ARM: Timing Profile

Table 15 lists the execution time of the major functional blocks of the receiver chain. The

results show that channel estimation and equalization, FFT, and decoder blocks take most of the

computational time. These three blocks took 10.4ms, which is 90% of the total time.

Figure 27. WiFi-Lite-B Profiling Results for ARM Implementation

Figure 27 shows the pie chart of the transmitter and receiver timing profiles. In the

transmitter, IFFT took 94% of the total execution time. In the receiver, channel estimation and

equalization block took 21%, FFT took 19%, and the Viterbi decoder took 50% of the execution

Scrambler
0%

Encoder
3% Interleave

r
0%

16QAM
1%

Pilot
Insertion

0%
64-

IFFT
94%

Cyclic
Prrefix

0%

Preamble
2%

WIFI-LITE-B TRANSMITTER -
ARM

64-FFT
19%

Channel
Est & Eq

21%
Pilot

Removal
0%

De-QAM
6%

Deinterleaver
4%

Decode
r

50%

Descrambler
0%

WIFI-LITE-B RECEIVER - ARM

 48

time. Since the FFT and decoder algorithms took most of the processing time, these algorithms

were mapped onto the CEVA DSP and their timing performance re-evaluated.

4.3 WiFi-Lite-B Implementation on ARM and CEVA DSP

In order to map the IFFT, FFT, and Viterbi decoding algorithms onto the CEVA DSP, and

map the remaining algorithms onto ARM, a polling mechanism was used to communicate between

ARM and CEVA (refer to Section 3.3.1 for ARM-CEVA interface details).

4.3.1 Experimental Results

The experimental setup is the same as shown in Figure 26. A sequence of 136 bits is

processed by the transmitter chain, corrupted by Rayleigh fading channel and decoded successfully

by the receiver chain. DSP and communication libraries (C & ASM) provided by CEVA are used

to improve baseband timing performance. Specifically, the FFT and Viterbi decoder libraries

(ASM) are mapped onto CEVA DSP. This mapping resulted in significant reduction in the

computational time of both the transmitter and receiver chains. The transmitter chain took 0.72µs

compared to 1.7ms for the only ARM implementation and the receiver chain took 3.2ms compared

to 11.6ms for the only ARM implementation.

Function Time(µs)
Scrambler 5
Encoder 41

Interleaver 6
16Qam Modulation 8

Pilot Insertion 3
64-IFFT 620

Cyclic Prefix 4
Preamble 41
Function 728

Table 16. WiFi-Lite-B Transmitter Implementation on ARM+CEVA: Timing Profile

 49

The profiling results in Table 16 show that the IFFT block took most of the transmitter

chain computational time. The IFFT block execution time is reduced to almost 61% when

compared to the only ARM implementation (Table 14).

Figure 28. WiFi-Lite-B TX Execution Time Values - ARM vs ARM+CEVA

Figure 28 compares the execution times of the transmitter chain implemented using only

ARM with that using ARM+CEVA. Other than the IFFT block which was mapped onto CEVA,

the other blocks took the same time since they are implemented on ARM. The reduction in the

IFFT block timing translated to almost 61% reduction in the transmitter chain execution time.

Function Time(µs)
64-FFT 650

Channel Equalization and Estimation 870
Pilot Removal 5

16 QAM demodulation 646
De-Interleaver 488

Viterbi Decoder 611
Descrambler 5

Total 3275
Table 17. WiFi-Lite B Receiver Implementation on ARM+CEVA: Timing Profile

5 41 6 8 3

1598

4 41

1706

5 41 6 8 3

620

4 41

728

0
200
400
600
800

1000
1200
1400
1600
1800

Ti
m

e(
µs

)

WiFi-Lite-B TX ARM vs ARM+CEVA

ARM ARM+CEVA

 50

The profiling results in Table 17 show that for the receiver chain, the channel estimation

and equalization, FFT, and decoder blocks took most of the computational time. When compared

to the only ARM implementation, decoder, FFT, and channel estimation block execution time

reduced significantly. Overall, the execution time of the ARM+CEVA implementation reduced

from 11.6ms to 3.2ms.

Figure 29. WiFi-Lite-B RX Receiver Time Values - ARM vs ARM+CEVA

Figure 29 compares the execution times of the receiver chain implemented using only

ARM with that using ARM+CEVA. The results show that the FFT block and decoder took

significantly lower time on CEVA DSP than on ARM. The channel estimation and equalization

block also took less time in ARM+CEVA implementation, since the FFT used in the channel

estimation is implemented on the CEVA DSP. The timing for the other blocks in the receiver chain

remain same since they are implemented on ARM in both cases. The total execution time of the

2250
2459

5 645 488

5767

5

11619

650
870

5 646 488 611 5

3275

0

2000

4000

6000

8000

10000

12000

14000

Ti
m

e(
µs

)

WiFI-Lite-B RX ARM vs ARM+CEVA

ARM ARM+CEVA

 51

receiver chain for ARM+CEVA implementation is reduced by almost 71% compared to the

receiver chain execution time for only ARM implementation.

4.4 WiFi-Lite-B Fixed-Point Implementation on CEVA SDK

Next, all blocks of the transmitter and receiver chains were implemented on the CEVA SDK.

Figure 30 describe the setup. Transmitter chain output data is saved to a file, the channel model

(Rayleigh fading) corrupts the data and saves the data to a file. The receiver chain reads the data

from a file and decodes the payload. All processing is done in CEVA SDK and so the transmitter

chain does not include the preamble block.

Figure 30. WiFi-Lite-B CEVA SDK Implementation

4.4.1 Experimental Results

The protocol was implemented on the CEVA SDK and the execution time was calculated

for each block. Tables 18 and 19 include the timing results of each block in the transmitter and

receiver, respectively.

 52

Function Cycles Time(µs)
Scrambler 694 0.9
Encoder 4577 6.1

Interleaver 1286 1.7
QAM Modulation 878 1.1

Pilot Insertion 497 0.6
IFFT 70 0.09
Total 8002 10.5

Table 18. WiFi-Lite-B Transmitter Implementation on CEVA SDK: Timing Profile

From Table 18, the two computationally expensive operations in the transmitter chain are

the encoder which took 6.1µs and interleaver which took 1.7µs. Together they account for 74% of

the total execution time. The IFFT block took only 0.09µs which is significantly lower compared

to the ARM+CEVA implementation.

Function Cycles Time(µs)
FFT 70 0.09

Channel Estimation 42570 56.7
Pilot removal 932 1.2

QAM Demodulation 60 0.08
De-Interleaver 11322 15.

Viterbi Decoder 7048 9.3
De-Scrambler 274 0.3

Total 62276 82.6
Table 19. WiFi-Lite-B Receiver Implementation on CEVA SDK

The profiler results of the receiver chain presented in the Table 19 show that channel

estimation and equalization algorithm took 56.7µs out of the total 82.6µs. While this is very large,

the CEVA SDK implementation takes significantly less time compared to the ARM+CEVA

implementation (see Table 15). Also, FFT, QAM Demodulation, and decoder blocks only took

 53

0.09µs, 0.08µs, and 9.3µs respectively, which is very low when compared to the ARM+CEVA

implementation results.

Function Time(µs)
ARM+CEVA

Time(µs)
CEVA

Scrambler 5 0.9
Encoder 41 6.1

Interleaver 6 1.7
16-QAM Modulation 8 1.1

Pilot Insertion 3 0.6
64-IFFT 620 0.09

Total 683 10.5
Table 20. WiFi-Lite-B Transmitter Profiler Results - ARM+CEVA vs CEVA SDK

Table 20 compares the execution times of a transmitter chain implemented using

ARM+CEVA and CEVA SDK. The results show that the scrambler, encoder, interleaver, QPSK

modulation and pilot insertion blocks took much lower time on CEVA SDK when compared to

ARM+CEVA implementation where these blocks are implemented on ARM. The IFFT block took

significantly lower time on CEVA SDK when compared to ARM+CEVA implementation. While

the FFT block was implemented on CEVA in both implementations, the spectacular reduction in

time is because the SDK doesn’t exactly emulate the hardware. For instance, it does not take into

account memory size or latency. The total execution time of a transmitter chain for CEVA SDK

implementation is reduced by almost 98% compared to the transmitter chain execution for

ARM+CEVA implementation.

 54

Function Time(µs)
ARM+CEVA

Time(µs)
CEVA

64-FFT 650 0.09
Channel Estimation &

Equalization 870 56.7
Pilot Removal 5 1.2

16-QAM
Demodulation 646 0.08
De-Interleaver 488 15

Decoder 611 9.3
De-Scrambler 5 0.3

Total 3275 82.6
Table 21. WiFi-Lite-B Receiver Profiler Results - ARM+CEVA vs CEVA SDK

Table 21 compares the execution times of a receiver chain implemented using

ARM+CEVA and CEVA SDK. The results show that the pilot removal, de-interleaver, de-

scrambler and channel estimation & equalization blocks took much lower time on CEVA SDK

compared to ARM+CEVA implementation where these blocks are implemented on ARM. The

IFFT, decoder and QPSK demodulation blocks took significantly lower time on CEVA SDK when

compared to ARM+CEVA implementation. While these blocks are implemented on CEVA in both

implementations, reduction in time is because the SDK doesn’t exactly emulate the hardware. For

instance, it does not take into account memory size or latency. The total execution time of a

receiver chain for CEVA SDK implementation is reduced by almost 97.4% compared to the

receiver chain execution for CEVA+ARM implementation. Overall, there is a 30x - 80x reduction

in the execution time achieved by running the complete receiver and transmitter chain on the

CEVA DSK.

 55

4.5 Implementation Using Intel T2200 for TX and RX – Real Time Processing

Two Intel T2200 WBS boards are used: one as a transmitter, and the other as a receiver to

communicate data over the air using the same RF configuration as WiFi-Lite-A protocol (refer to

Figure 20). The processing on the T2200 boards was done using only ARM.

4.5.1 Experimental Results

Figure 31 shows the experimental setup. A fixed string of length 424 bytes corresponding

to one OFDM frame (136 bits per OFDM symbol) is sent from one board to another and vice versa.

Figure 31. WiFi-Lite-B Over the Air Implementation - Intel T2200 WBS Boards

The data (424byte) was decoded successfully with zero BER. Our receiver algorithms and

RF configurations worked perfectly. Figure 32 shows the constellation diagram of the symbols

before the 16-QAM demodulation block, the diagram shows that the channel estimation and

equalization algorithm removed the channel effect in the OFDM symbol.

 56

Figure 32. WiFi-Lite-B – 16 QAM Constellation Diagram at the Receiver

 57

5 SCFDM-Lite

In this chapter, the implementations of the SCFDM-Lite protocol on ARM and CEVA DSP

platforms are described. An overview of the protocol is given in Section 5.1, followed by protocol

implementation on ARM in Section 5.2, and protocol implementation on ARM+CEVA in Section

5.3.

5.1 Protocol Overview

SCFDM-Lite is an Orthogonal Frequency Division Multiplexing (OFDM) based system

with a DFT mapper, which utilizes single carrier modulation (SC), DFT-spread orthogonal

frequency multiplexing, and frequency domain equalization. Our SCFDM-Lite system uses 64 DFT

subcarriers and 128 FFT subcarriers that are modulated by quadrature phase shift keying (QPSK),

and forward error correction (FEC) coding (Convolutional coding) with a coding rate of ½. Our

protocol is implementation is based on the LTE Uplink standard.

5.1.1 Transmitter

At the transmitter, all the data bits undergo the following PHY layer signal processing.

Data bits are scrambled by a linear non-additive scrambler using LFSR and then encoded by the

convolutional encoder with a constraint length of 7 and code rate of ½. The bits are then interleaved

by the linear random interleaver using LFSR, followed by QPSK modulation, pilot insertion, DFT

of width 64, subcarrier mapping, IFFT of width 128, and then by a cyclic prefix addition (please

refer to 2.3.1.1 and 2.3.2.1sections for transmitter block description).

 58

Figure 33. SCFDM-Lite Protocol: Block Diagram of Transmitter

Protocol Configuration Values
No of input data bits per OFDM Symbol 40

No of data subcarriers per OFDM Symbol 48
No of pilot subcarriers 16

FFT/IFFT width
DFT/IDFT width

128
64

Convolutional Encoder (2,1,8)
Mask0 – 0133
Mask1 – 0171
Mask2 – 0165

Modulation QPSK
Cyclic Prefix 16 symbols

Table 22 SCFDM-Lite Protocol Configuration

5.1.2 Receiver

At the receiver, the cyclic prefix is removed, and the OFDM frame is given to the FFT-128

unit for converting the symbols from time domain to frequency domain. This is followed by

subcarrier de-mapping and IDFT-64/IFFT-64 unit for converting the symbols from frequency

domain to time domain. Then the symbols are given to channel estimation and equalization to

estimate and remove the channel effect. Next pilots are removed from the frame and sent to QPSK

demodulator to extract the bits from the symbols. The de-interleaved data is given to the Viterbi

 59

decoder to remove the redundant bits and to rectify the errors bits. The bits are then descrambled

to get the exact payload.

Figure 34. SCFDM-Lite Protocol: Block Diagram of Receiver

5.2 SCFDM-Lite Implementation on ARM

First, the transmitter and receiver chains were implemented on ARM using the C language.

Figure 35 describes the experimental setup. The input to the transmitter chain is a sequence of 40

bits. These are converted into OFDM symbols. Transmitter chain output data is saved to a file,

the channel model (Rayleigh fading) corrupts the data and saves the data to another file. The

receiver chain reads the data from this file and decodes the payload. In our implementation the

receiver chain successfully decodes the OFDM symbol with zero bit error rate.

 60

Figure 35. SCFDM-Lite Protocol Implementation - TX and RX Loopback

5.2.1 Experimental Results

The timing performance of the different blocks in transmitter and receiver was evaluated.

Table 23 describes the execution time of the major functional blocks for the transmitter. The

transmitter chain took 7ms with a 93% of the time being spent on computing the 128 point IFFT

and 64 point FFT/DFT.

Function Time(µs)
Scrambler 3
Encoder 15

Interleaver 4
QPSK Mod 10
Pilot Insert 4

64-DFT 2329
128-IFFT 4673

Cyclic Prefix 7
Total 7045

Table 23. SCFDM-Lite Transmitter Implementation on ARM: Timing Profile

 61

Function Time(µs)
128-FFT 4779
64-IDFT 2148

CH EST & EQ 2165
Pilot Rem 5

QPSK Demodulation 465
De-Interleaver 16

Decoder 1636
Descrambler 2

Total 11216
Table 24. SCFDM-Lite Receiver Implementation on ARM: Timing Profile

Table 24 lists the execution time of the major functional blocks of the receiver chain. The

results show that channel estimation and equalization, FFT, and decoder blocks take most of the

computational time. These three blocks took 10.7ms, which is 95% of the total time.

Figure 36. SCFDM-Lite Profiling Results for ARM Implementation

Figure 36 shows the pie chart of the transmitter and receiver timing profiles. In the

transmitter, IFFT took 67% and FFT/DFT took 33% of the total execution time. In the receiver,

channel estimation and equalization block took 19%, FFT took 43%, IFFT/IDFT took 19%, and

Scrambler
0%

Encoder
0%

Interleaver
0%

QPSK	
Mod
0%

Pilot	
Insert
0%

64-DFT
33%

128-IFFT
67%

Cyclic	
Prefi…

TRANSMITTER

128-FFT
43%

64-IDFT
19%

CH	EST	
&	EQ
19%

Pilot	Rem
0%

QPSK	
DeMOD

4%

De-
Inter
0%

Decode
r

15%
Descram

0%

RECEIVER

 62

Viterbi decoder took 15% of the execution time. Since the FFT/DFT, IFFT/IDFT and decoder

algorithms took most of the processing time, these algorithms were mapped onto the CEVA DSP.

5.3 SCFDM-Lite Implementation on the ARM and CEVA DSP

In order to map the IFFT, FFT, and Viterbi decoding algorithms onto the CEVA DSP, and

map the remaining algorithms onto ARM, the interface between the ARM-CEVA interface was

utilized (refer to Section 3.3.1 for ARM-CEVA interface details).

5.3.1 Experimental Results

The experimental setup is the same as shown in Figure 11. A sequence of 40 bits is

processed by the transmitter chain, corrupted by Rayleigh fading channel and decoded successfully

by the receiver chain. DSP and communication libraries (C & ASM) provided by CEVA are used

to improve baseband timing performance. Specifically, the FFT and Viterbi decoder libraries

(ASM) were mapped onto CEVA DSP. This mapping resulted in significant reduction in the

computational time of both the transmitter and receiver chains. The transmitter chain took 1.2ms

compared to 7ms when implemented on only ARM and the receiver chain took 4.3ms compared

to 11.2ms when implemented on only ARM.

Function Time(µs)
Scrambler 3
Encoder 15

Interleaver 5
QPSK Mod 12
Pilot Insert 4

64-DFT 585
128-IFFT 608

Cyclic Prefix 10
Total 1242

Table 25. SCFDM-Lite Transmitter Implementation on ARM+CEVA: Timing Profile

 63

The profiling results in Table 25 show that the IFFT and FFT/DFT blocks took most of the

transmitter chain computational time. The IFFT and FFT/DFT blocks execution time is reduced to

almost 86% and 72.7%, respectively, when compared to the only ARM implementation (Table

20).

Figure 37. SCFDM-Lite TX Execution Time Values - ARM vs ARM+CEVA

Figure 37 compares the execution times of the transmitter chain implemented using ARM

with that using ARM+CEVA. Other than the IFFT and FFT/DFT blocks which were mapped onto

CEVA, the other blocks took the same time since they are implemented on ARM. The reduction

in the IFFT block timing translated to almost 82% reduction in the transmitter chain execution

time.

3 15 4 10 4

2329

4673

7

7045

3 15 5 12 4
585 608

10

1242

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e(
µs

)

SCFDM-Lite ARM vs ARM+CEVA

ARM ARM+CEVA

 64

Function Time(µSeconds)
128-FFT 563
64-IDFT 517

CH EST & EQ 2218
Pilot Rem 5

QPSK Demodulation 483
De-Interleaver 10

Decoder 589
Descrambler 3

Total 4388
Table 26. SCFDM-Lite Receiver Implementation on ARM+CEVA: Timing Profile

The profiling results in Table 26 show that for the receiver chain, the channel estimation

and equalization block took most of the computational time. When compared to the only ARM

implementation, FFT, IFFT/IDFT and decoder blocks execution time reduced significantly.

Overall, the execution time of the ARM+CEVA implementation reduced from 11.2ms to 4.3ms.

Figure 38. SCFDM-Lite RX Execution Time Values - ARM vs ARM+CEVA

4779

2148
2165

5 465 16

1636

2

11216

563 517

2218

5
483

10
589

3

4388

0

2000

4000

6000

8000

10000

12000

128-FFT 64-IDFT CH EST &
EQ

Pilot Rem QPSK
DeMOD

De-Inter Decoder Descram

Ti
m

e(
µs

)

SCFDM-Lite ARM vs ARM+CEVA

ARM ARM+CEVA

 65

Figure 38 compares the execution times of the receiver chain implemented using ARM

with that using ARM+CEVA. The results show that the FFT block, IFFT/IDFT block and decoder

took significantly lower time on CEVA DSP than on ARM. The other blocks values in the receiver

chain remain same since they are implemented on ARM. The total execution time of a receiver

chain for ARM+CEVA implementation reduced by almost 60% compared to the execution time

for only ARM implementation.

 66

6 SC-Lite

 In this chapter, the implementation of the SC-Lite protocol on ARM platform is described.

An overview of the protocol is given in Section 6.1, and protocol implementation on ARM in given

in Section 6.2.

6.1 Protocol Overview

SC-Lite is a Single Carrier based system. Our SC-Lite system uses Reed Solomon encoder

to encode the bits and uses BPSK modulation to map the bits to symbols.

6.1.1 Transmitter

At the transmitter, all the data bits undergo the following PHY layer signal processing. Data

bits are scrambled by a linear non-additive scrambler using LFSR, encoded by the convolutional

encoder with a (132,100) configuration. The bits are then modulated by a BPSK modulator (please

refer to 2.3.3.1 section for transmitter blocks description). Figure 39 describe the block diagram of

the SC-Lite transmitter.

Figure 39. SC-Lite Protocol: Block Diagram of Transmitter

6.1.2 Receiver

At the receiver, the symbols are given to BPSK demodulator to extract the bits from the

symbols. The data bits are given to the Reed-Solomon decoder to remove the redundant bits and

 67

to rectify the errors bits. The bits are then descrambled to get the exact payload (please refer to

2.3.3.2 section for receiver block description). Figure 40 describes the block diagram of the SC-

Lite receiver.

Figure 40. SC-Lite Protocol: Block Diagram of Receiver

6.2 SC-Lite Implementation on ARM

The protocol is developed using the C language and implemented on ARM in the Intel

T2200 WBS board. Figure 41 describes the experimental setup. The input to the transmitter chain

is a sequence of 40 bits. These are converted into SC symbols. Transmitter chain output data is

saved to a file, the channel model (AWGN) corrupts the data and saves the data to a file. The

receiver chain reads the data from a file and decodes the payload. Receiver chain successfully

decodes the symbol with zero bit error rate.

Figure 41. SC-Lite Protocol Implementation – Experimental Setup

 68

6.2.1 Experimental Results

The timing performance of the different blocks in transmitter and receiver is evaluated.

Table 27 describes the execution time of the major functional blocks for the transmitter. The

transmitter chain took 37µs with 81% of the time being spent on the encoder.

Function Time(µs)
Scrambler 3

Reed Solomon
Encoder

30

BPSK Modulation 4
Total 37

Table 27. SC-Lite Transmitter Profiler Results

Function Time(µs)
BPSK Demodulation 10

RS Decoder 40

De-scrambler 3
Total 53

Table 28. SC-Lite Receiver Profiler Results

Table 28 lists the execution time of the major functional blocks of the receiver chain. The

results show that the receiver chain took 53µs, with 75% of the time being spent on the RS decoder.

 69

7 CONCLUSIONS

7.1 Summary

This thesis focused on developing and implementing a wide variety of wireless protocols on

a heterogeneous computing platform. Specially, OFDM-based protocols such as WiFi-Lite-A,

WiFi-Lite-B, a DFT-spread OFDM based protocol such as SCFDM-Lite, and a single carrier based

protocol such as SC-Lite, were mapped onto Intel T2200 board. The transmitter and receiver

blocks of all the protocols were first mapped onto ARM. The IFFT, FFT, and Viterbi decoder

blocks took most of the computational time and so, next, IFFT, FFT, and Viterbi decoder blocks

were mapped onto CEVA DSP and the remaining blocks were mapped onto ARM. The timing

results of CEVA+ARM implementation showed 60%, 64%, and 71.5% savings compared to an

only-ARM implementation for WiFi-Lite-A, WiFi-Lite-B, and SCFDM-Lite protocols,

respectively. Such a reduction was due to mapping the time intensive computational units on

CEVA DSP hardware. Further savings in baseband processing was achieved by implementing all

the transmitter and receiver blocks on CEVA DSP. The timing results showed almost 90% savings,

for WiFi-Lite-A protocol. Such large savings were due to reduction in the context switching and

memory overhead since the interaction between ARM and CEVA DSP was minimized. Finally,

over-the-air transmission communication was demonstrated for WiFi-Lite-A and WiFi-Lite-B

protocols using Intel T2200 WBS boards for both the transmitter and receiver.

7.2 Future Work

In the near future, the WiFi-Lite-B transmitter and receiver blocks will be mapped onto

CEVA DSP hardware. The challenges include:

i. Integrating the necessary source files and linking the libraries into a single executable file,

which will be used to boot the CEVA DSP.

 70

ii. Code and data section address alignment using the linker file. CEVA SDK doesn’t align

the address as needed by XC323 DSP, so external linker file should be used to align the

address for the code and data sections.

iii. Conversions of floating point algorithms to fixed point algorithms of transmitter and

receiver blocks.

In the long term, the goal is to study other communication (standard as well as non-standard)

protocols and map them onto the CEVA DSP hardware. An important step is to reduce the

computation time of the transmitter and receiver chain. This can be done by implementing the

computationally expensive kernels such as channel estimation, and frame detection algorithm in

VEC-C language (CEVA DSP specific Vector C language). Without this step, multiple packets

cannot be processed in real time.

 71

REFERENCES

3GPP a global initiative. (2004, Janurary 10). The Mobile Broband Standard LTE. Retrieved July
1, 2016, from 3GPP : http://www.3gpp.org/technologies/keywords-acronyms/98-lte

Akyildiz, I., Lee, W., Vuran, M., & Mohanty, S. (2006). NeXt generation/dynamic spectrum
access/cognitive radio wireless networks: a survey. Computer networks, 50(13), 2127-
2159.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of
things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials, 17(4), 2347-2376.

Arslan, H. (. (2007). Cognitive radio, software defined radio, and adaptive wireless systems (Vol.
10). Berlin: Springer.

Berkeley Design Technology, Inc. (2012, Feburary 23). Picochip and Mindspeed: Former
Competitors Unite to Address Wireless Spectrum Needs. Retrieved June 24, 2016, from
An inside look at DSP Technology:
http://www.bdti.com/InsideDSP/2012/02/23/Mindspeed

Bliss, D. W., & Govindasamy, S. (2013). Adaptive Wireless Communications: MIMO Channels
and Networks. Cambridge University Press.

Bloessl, B., Segata, M., Sommer, C., & Dressler, F. (2013). An IEEE 802.11 a/g/p OFDM
Receiver for GNU Radio. In Proceedings of the second workshop on Software radio
implementation forum (pp. 9-16). ACM.

Bluethgen, H., Grassmann, C., Raab, W., Ramacher, U., & Hausner, J. (2004). A programmable
baseband platform for software defined radio. A programmable baseband platform for
software-defined radio. In Proceedings of SDR FORUM.

Cai, X., & Giannakis, G. B. (2004). Error Probability Minimizing Pilots for OFDM With M-PSK
Modulation Over Rayleigh-Fading Channels. IEEE Transactions on Vehicular
Technology, 53(1), 146-155.

CEVA DSP. (2012, January 20). CEVA-XC323. Retrieved June 24, 2016, from ceva-dsp:
http://www.ceva-dsp.com/CEVA-XC323

Grayver, E. (. (2012). Implementing software defined radio. Springer Science & Business Media.

Gupta, U., Korrapati, S., Matturu, N., & Ogras, U. Y. (2016). A generic energy optimization
framework for heterogeneous platforms using scaling models. Microprocessors and
Microsystems, 40, 74-87.

 72

Heiskala, J., & Terry Ph D, J. (2001). OFDM wireless LANs: A theoretical and practical guide.
Sams.

IEEE Standards association. (2012). 802.11: Wireless LANs. Retrieved from standards.ieee.org:
http://standards.ieee.org/about/get/802/802.11.html

Intel . (2014, January 10). Leading-Edge SMALL CELL Solutions . Retrieved June 24, 2016,
from Transcede product family brief :
http://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/transcede-product-family-brief.pdf

Intel Corp. (n.d.). LTE / Dual-Mode Femtocell SoC. Retrieved from
http://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/transcede-product-family-brief.pdf

Kelley, B. (2009, October). Software defined radio for broadband OFDM protocols. SMC 2009.
IEEE International Conference on Systems, Man and Cybernetics, pp. 2309-2314.

Lee, H. (2007). A baseband processor for software defined radio terminals. (Doctoral
Dissertation, University of Michigan).

Lee, H., Chakrabarti, C., & Mudge, T. (2010). A low-power DSP for wireless communications.
IEEE transactions on very large scale integration (VLSI) systems, 18(9), 1310-1322.

Lin, S., & Costello, D. J. (2004). Error Control Coding: Fundamentals and Applications. India:
Pearson Eduation.

Woh, M., Lin, Y., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C., ... & Flautner, K. (2008,
November). From SODA to scotch: The evolution of a wireless baseband processor. In
2008 41st IEEE/ACM International Symposium on Microarchitecture (pp. 152-163).
IEEE.

Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., & Flautner, K. (2007). SODA: A
high-performance DSP architecture for software-defined radio. IEEE MICRO, 27(1),
114-123.

Minsky, H. (2010, Jan 10). rscode . Retrieved 2016, from rscode sourceforge:
http://rscode.sourceforge.net

Parhi, K. K. (2001). Digital Signal Processing for Mutlimedia Systems. Minnesota, Minnesota,
USA: Marcel Dekker.

Perahia, E., & Stacey, R. (2013). Next Generation Wireless LANS: 802.11 n and 802.11 ac.
Cambridge University press.

 73

Proakis, J., & Masoud, S. (2007). Digital Communications. San Diego, California, USA:
McGraw-Hill Education.

Rader, C. M., & Brenner, N. M. (1976). A New Principle for Fast Fourier Transformation. IEEE
Acoustics, Speech & Signal Processing, 24(3), 264-266.

Ramacher, U. (2007). Software-defined radio prospects for multistandard mobile phones. IEEE
Computer, 40(10), 62-69.

SDR forum. (n.d.). SDRF Congnitive Radio Definitions . Retrieved from sdrforum:
http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-
V1_0_0.pdf

Singh, D., Tripathi, G., & Jara, A. J. (2014, March). A survey of Internet-of-Things: Future
vision, architecture, challenges and services, 2014 IEEE World Forum on Internet of
things (WF-IoT), pp. 287-292.

Ulversoy, T. (2010). Software Defined Radio: Challenges and Opportunities. IEEE
Communications Surveys & Tutorials, 12(4), 531-550.

Unnikrishnan, S., Surve, S., & Bhoir, D. (Eds.). (2011). International Conference on Advances in
Computing, Communication and Control, ICAC3 2011, Mumbai, India, January 28-29,
2011. Springer.

Viterbi, A. J. (1967). Error Bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269.

