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ABSTRACT

Statistical mediation analysis allows researchers to identify the most important the
mediating constructs in the causal process studied. Information about the mediating
processes can be used to make interventions more powerful by enhancing successful
program components and by not implementing components that did not significantly
change the outcome. Identifying mediators is especially relevant when the hypothesized
mediating construct consists of multiple related facets. The general definition of the
construct and its facets might relate differently to external criteria. However, current
methods do not allow researchers to study the relationships between general and specific
aspects of a construct to an external criterion simultaneously. This study proposes a
bifactor measurement model for the mediating construct as a way to represent the general
aspect and specific facets of a construct simultaneously. Monte Carlo simulation results
are presented to help to determine under what conditions researchers can detect the
mediated effect when one of the facets of the mediating construct is the true mediator, but
the mediator is treated as unidimensional. Results indicate that parameter bias and
detection of the mediated effect depends on the facet variance represented in the
mediation model. This study contributes to the largely unexplored area of measurement

issues in statistical mediation analysis.
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Introduction

The goal of statistical mediation analysis is to uncover the intermediate causal
mechanisms (known as mediators) through which an independent variable brings about a
change on an outcome (Baron & Kenny, 1986; MacKinnon, 2008). Statistical mediation
is relevant in prevention research where interventions are designed to target mediators
that are thought to be causally related to an outcome (MacKinnon, Fairchild, & Fritz,
2007). Beyond testing the success of an intervention, researchers can save resources if
they investigate which aspects of the mediator do not contribute to a change in the
outcome (Cox, Kisbu-Sakarya, & MacKinnon, 2012; MacKinnon & Dwyer, 1993; Weiss,
1997). Identifying the true mediator in the causal process can be thought of as a
measurement problem, where a framework to distill the mediating variable is needed to

find the underlying mediating construct (MacKinnon, 2008, p.4).

An assumption in mediation analysis is the accurate characterization of the
construct underlying the mediator. This assumption is relevant when researchers measure
multifaceted constructs. Facets are subordinate concepts of a construct that could be
measured independently from the general construct (Carver, 1989). A construct is
considered general when it is defined by aggregating its facets. On the other hand, a
construct is considered specific when it is defined by only one facet of a general
construct. Multifaceted constructs are challenging because the specific aspects of a
construct might relate differently to an outcome. Therefore, the mediator can be
incorrectly characterized by including non-predictive aspects of the construct in the

mediation model which could lead to inaccurate conclusions on mediation.



In this study, | propose a framework to distill the mediator by modeling the
construct’s general variance and specific facet variance with a bifactor measurement
model. First, I will describe statistical mediation and multifaceted constructs. Next, | will
review the latent variable approaches to represent multifaceted constructs in mediation
analysis. | will then describe the properties of the bifactor measurement model as a way
to distill multifaceted constructs. Finally, Monte Carlo simulation results are presented on
the properties of the mediated effect when one of the specific facets of a construct is the
true mediator in the causal process, but the structure of the mediator is misspecified. The
rationale of the study is that by modeling the facets of the mediator researchers could
obtain more power to detect mediated effects.

Statistical Mediation Analysis

Statistical mediation analysis addresses the question of how two variables are
related by considering mediators (M) to explain the relationship between an independent
(X) and a dependent variable (Y; see Figure 1; MacKinnon, 2008). The model can be

conceptualized into three regression equations:

~

Y=i1+CX+81 (1)
M=i2+ax+ez (2)
Y=i3+cX+bM + e, (3)

Equation 1 represents the total effect of the independent variable (X) on the dependent
variable (Y; c coefficient). Equation 2 represents the effect of the independent variable (X)
on the mediator (M; a coefficient). Equation 3 represents the effect of the mediator (M)
on the dependent variable (Y), controlling for X (b coefficient) and the effect of the

independent variable (X) on the dependent variable (Y), controlling for M (¢’ coefficient).



Finally, the mediated effect, the indirect influence of X on Y through M, is captured by
the product of the a and b parameters. Moreover, the standard error for ab can be derived
through the multivariate delta method (Sobel, 1982; 1986) to test for statistical
significance. However, the Sobel test of significance assumes that the distribution of the
product of two random variables is normally distributed and this is rarely the case.
Methods for calculating asymmetric confidence intervals with the distribution of the
product method and resampling techniques have been developed to accurately test for the
mediated effect (MacKinnon, Lockwood & Williams, 2004).

Several assumptions are also needed to accurately test for mediation (MacKinnon,
2008). First, the functional form and temporal precedence among the three variables has
to be correctly specified. Also, no relevant variables have been excluded from the model.
Independent and identically distributed residuals across values of the predictors are also
assumed. Finally, X, Y, and M are reliable and valid measures of their respective
constructs. This study focuses on this last assumption due to the complications of

representing multifaceted mediators.

The Complexity of Multifaceted Constructs

Typically, when researchers are interested in studying a construct, they
hypothesize that multiple facets encompass the construct (Chen, West, & Sousa, 2006).
Carver (1989, p. 577) indicates that multifaceted constructs “are composed of two or
more subordinate concepts, each of which can be distinguished conceptually from the
others and measured separately, despite being related to each other both logically and
empirically.” Furthermore, Carver (1989) offers two competing arguments about

multifaceted constructs. Examining specific facets of the construct and how they relate to

3



an external criterion might be more accurate because a general construct might mask the
differential contributions of the facets to prediction. On the other hand, the interaction of
the facets as a whole might be the construct of interest, where the whole is greater than
the sum of its parts (see Bagozzi & Heatherton, 1994). Much of the psychometric work
suggests that there are situations in which individual facets are important. Examples
include alexithymia (trouble expressing emotion; Haviland, Warren & Riggs, 2000), self-
monitoring (Briggs, Cheek & Buss, 1980), the big five factors of personality (Chen et al.,
2012), general intelligence (Brunner, 2008) and well-being (Chen et al., 2013).
According to Reise (2012), multifaceted constructs are complex because items measuring
a specific facet are not interchangeable indicators of the general construct, and each facet
might relate differently to external criterions. In other words, the specific facets could
make a theoretically important contribution to prediction beyond the general construct
(Chen, West, Sousa, 2006). Therefore, the representation of multifaceted mediating
constructs as general or specific could compromise accurate conclusions from statistical
mediation.
Representing Multifaceted Constructs with Latent Variables

One of the approaches to test for statistical mediation is to use covariance
structure analysis to investigate relationships between the three variables in the model.
These methods evaluate how well a model represents the data by comparing an expected
covariance matrix among the variables to the observed covariance matrix among the
variables (Bollen, 1989). Variables in the model can either be represented as manifest or
latent. Chen and colleagues (2012) review the manifest variable approaches to represent

multifaceted variables and suggest that they suffer from many disadvantages, such as not



controlling for unreliability of the construct. The latent variable model approach consists
of measuring the individual facets of the construct and estimating the extent to which the
facets are related to each other (Bollen, 1989). The latent variable cannot be directly
measured, but it is indicated by its manifestations, such as the responses to the
administered items (indicators). The relationships between indicators and latent variables
are estimated through confirmatory factor analysis (CFA; Brown, 2014). In this study the
indicators are assumed to be continuous and linearly related to the latent variable.

A challenge of latent variable modeling is to choose a priori which measurement
model represents the data better. Ideally, this decision would be backed-up with theory.
However, researchers often overuse unidimensional models, assuming that only a single
common factor accounts for the relationships among all of the items. Below, two
measurement models used in this study and their priority in modeling the general
construct or specific facets are discussed.

Measurement Models

One-factor model. Proposed by Charles Spearman (1904; Figure 2) to explain
the structure of intelligence, the one-factor model assumes that correlations among facets
and individual differences in the test can be explained by a single, general factor (Reise
et al., 2010). This model does not take in consideration the specific facets of the
construct. The variance of each indicator is influenced by two sources of variance:
common variance shared by all the indicators due to the general construct and the unique
variance of each indicator. The unique variance is comprised of reliable specific facet
variance not shared among the other facets and unreliable variance due to measurement

error (Brunner et al., 2012). This model assumes that the unique factors are uncorrelated



with each other because all common variance is accounted for by the single common
factor. A violation of unidimensionality could show up in the model through “correlated
uniquenesses,” where some or all of the unique factors of the indicators still share
variance after accounting for the common factor. If the data violates the unidimensional
assumption, alternative measurement models need to be considered.

Bifactor model: The bifactor model was recently “rediscovered” (Reise, 2012)
after being introduced almost 80 years ago (Holzinger & Harman, 1938; Holzinger &
Swineford, 1937) as an option to modeling construct-relevant multidimensionality.
Researchers in personality assessment have used the bifactor model to help conceptualize
psychological constructs and the bifactor model is starting to be considered as a
competing model with the higher-order model and correlated-factor model (Reise, 2012).

The bifactor model specifies that relationships among the items can be explained
by a general factor that reflects the common variance among the indicators, and by
several specific factors (group factors; Reise, 2012) reflecting the common variance of
indicators with highly similar content not accounted by the general factor (Figure 3).
The general factor represents the broad construct that the scale intends to measure and
the specific factors incorporate the multifaceted aspect of the construct by influencing the
indicators that represent the facets of the broad construct. Also, indicators are influenced
by their own unique factor. Therefore, the bifactor model can separate the general,
specific, and unique variance of each of the indicators.

According to Chen, West, and Sousa (2006), the bifactor model provides many
advantages over conventional models, such as the higher-order factor model, when

researchers want to test the unique contributions of the facets in prediction. When



modeling specific facet variance, a higher-order model is prone to mask the lack of
variability in a facet by including a non-significant disturbance in a lower-order factor,
while the bifactor model would have problems converging due to factor overextraction.
By modeling specific factors, researchers can test for measurement invariance in the
facets, calculate latent means, and study relationships between facets and outcomes
beyond the general factor.

Overall, if a researcher is only interested in the general construct, other models
are more parsimonious than the bifactor model. Yet, if the interest is on how specific
facets of a construct carry the influence of the independent variable to the outcome, a
bifactor model for the mediator provides a promising approach to study the influence of
facets on a criterion.

Distilling a Mediator with the Bifactor Model in Statistical Mediation

If a researcher fits multidimensional data in a unidimensional model, the model
misspecification might lead to biased parameters and inaccurate results. This problem is
relevant in statistical mediation when the true mediator is only one facet of a multifaceted
construct. Reise et al. (2013) conducted a simulation study to determine if indices of
model fit or indices of factor strength predict structural bias when multidimensional data
(generated with a bifactor model) are treated as unidimensional when predicting an
outcome. Reise et al. (2013) concluded that indices of factor strength, such as the
explained common variance (ECV; the variance explained by general common factor
over the total common variance explained in the model) and the percent of
uncontaminated correlations (PUC; percentage of unique correlations among the

indicators that are not confounded by both the general and specific factors) predict



structural bias. This study expands on Reise et al. (2013) by carrying out a simulation to
investigate if the mediated effect can be distilled with the bifactor model when one of the
specific facets of a multifaceted construct is the true mediator, but the mediator is treated
as unidimensional. This study evaluates bias, power, Type I error, and confidence interval
coverage of the mediated by analyzing simulation datasets with four different models.
Two of the models ignore the specific facet variance and one of the models ignores the
general factor variance of the bifactor mediator.

Study Hypotheses

The data-generating model used to test all of the hypotheses is shown in Figure 4
(Model 1). The mediator has a bifactor structure and one of the three specific factors of
the construct is specified to be the true mediator. The four data-analysis models are
described next.

Finite-sample bias. The first data-analysis model was identical to the data-
generating model (Model 1; see Figure 4). It was hypothesized that conditions with
higher sample sizes will have higher statistical power, adequate Type 1 errors, lower
bias, and adequate confidence interval coverage than conditions with lower sample sizes
(Hypothesis 1). Specifically, as sample size increases, there will be lower bias in the
mediated effect (Hypothesis 1.1) Furthermore, as the loadings on the general factor
increase, there will be lower bias in the mediated effect (Hypothesis 1.2). Also, as the
loadings on the specific factor increase, there will be lower bias in the mediated effect
(Hypothesis 1.3).

Also, a sample size increases, it would be more likely for the mediated effect to

be statistically significant, have adequate Type 1 errors, and for the true estimate to be



covered in the confidence intervals (Hypothesis 1.4). Moreover, as the loadings on the
general factor increase, it would be more likely for the mediated effect to be statistically
significant, have adequate Type 1 errors, and for the true estimate to be covered in the
confidence intervals (Hypothesis 1.5). Finally, as the loadings on the specific factor
increase, it would be more likely for the mediated effect to be statistically significant,
have adequate Type 1 errors, and for the true estimate to be covered in the confidence
intervals (Hypothesis 1.6). It was also hypothesized that the combination of small sample
sizes and low specific factor loadings will have convergence problems owing to a non-
positive definite covariance matrix (Hypothesis 2).

Ignoring the general construct. The effect of ignoring the general aspect of the
mediating construct was evaluated with Model 2 (Figure 5). The mediator has a
unidimensional structure, where only the indicators of the true facet mediator are
included and specified to load on a single factor. Model 2 represents a situation where the
researcher believes that a specific part of a construct, such as a subscale, is the mediator.
It was hypothesized that mediated effect estimates will be attenuated and have lower
power, inadequate Type 1 errors, and inadequate confidence interval coverage
(Hypothesis 3). Specifically, as sample size increases, there will be lower bias in the
mediated effect (Hypothesis 3.1). Also, as the loadings on the general factor increase,
there will be higher bias in the mediated effect (Hypothesis 3.2) because the variance of
the mediator will have variance from the general and specific factors. Finally, as the
loadings on the specific factor increase, there will be lower bias in the mediated effect

(Hypothesis 3.3).



Furthermore, as sample size increases, it would be more likely for the mediated
effect to be statistically significant, have adequate Type 1 errors, and for the estimate to
be covered in the confidence intervals (Hypothesis 3.4). As the loadings on the general
factor increase, it would be less likely for the mediated effect to be statistically
significant, have adequate Type 1 errors, and for the estimate to be covered in the
confidence intervals (Hypothesis 3.5). Finally, as the loadings on the specific factor
increase, it would be more likely for the mediated effect to be statistically significant,
have adequate Type 1 errors, and for the estimate to be covered in the confidence
intervals (Hypothesis 3.6).

Ignoring specific facets. The effect of ignoring the multidimensionality of the
mediator was evaluated with the data-analysis models in Figure 6 (Model 3) and Figure 7
(Model 4). In Model 3, the mediator has a unidimensional structure where all of the
indicators of load on a single factor. Model 3 represents a situation where the researcher
believes that the general construct is the true mediator and facets are not important.
Anticipating poor fit of Model 3, Model 4 also assumes a unidimensional mediator but
indicators of the same facet had correlated uniquenesses. It is hypothesized that mediated
effect estimates in Models 3 and 4 will have negative bias, low power, inadequate Type
1 errors, and inadequate confidence interval coverage (Hypothesis 4) because the
variance of the true mediator is only shared by a third of the indicators, so a
unidimensional model will not accurately capture all the specific factor variance. In this
case, as sample size increases, there will be lower bias in the mediated effect (Hypothesis
4.1). Furthermore, as the loadings on the general factor increase, there will be higher bias

in the mediated effect (Hypothesis 4.2) because more general factor variance is reflected
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on the latent variable. But, as the loadings on the specific factor increase, there will be
lower bias in the mediated effect (Hypothesis 4.3).

As sample size increases, it would be more likely for the mediated effect to be
statistically significant, to have adequate Type 1 errors, and for the estimate to be
covered in the confidence intervals (Hypothesis 4.4). Also, as the loadings on the general
factor increase, it would be less likely for the mediated effect to be statistically
significant, to have adequate Type 1 errors, and for the estimate to be covered in the
confidence intervals (Hypothesis 4.5). Finally, as the loadings of the specific factor
increase, it would be more likely for the mediated effect to be statistically significant,
have adequate Type 1 errors, and for the estimate to be covered in the confidence
intervals (Hypothesis 4.6).

Finally, it was hypothesized that ignoring the general construct (Model 2) will
have lower bias, higher power, more adequate Type 1 errors and more adequate
confidence interval coverage than ignoring the specific facets of the construct (Model 3
and 4; Hypothesis 5). The mediator in Model 2 reflects the most specific factor variance
from the true mediator in Model 1.

Method
Data-Generating Model

The statistical package R (R Core Team, 2013) and Mplus 7.1 (Muthen &
Muthen, 1998-2011) were used to conduct the simulation. The equations below represent
the data-generating model (Model 1), specifying a bifactor model for M and the structural

model for X, M, and Y.
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Measurement Model for the Mediator

M= A,n+e€ where: 4)
r 1 1 0 0 1
_M -
Ml /1g2.1 ASZ.I O 0 _61_
M. Agz1 Asi O 0 €2
3 €3
A I S R S B 1 I
M=|Ms| A, ={4g51 0 As2 0 1p= 7751 € =165
Mg Ag6.1 0 As6.2 0 nsz €6
s3 €
M; Ag71 0 0 1 Y
8
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Structural Model for Mediation
X ~N(0,1) : x> ¥=1; x< ¥=0 (5)
Ngy=aX + ez (6)
Y =cX + by +es (7
of, =1 (8)
of =1 9)
Oe2e3 = 0 (10)
Ocicj =0 fori#j (11)

In this case, M is the mediator and it has nine indicators. M has a bifactor measurement
structure, where the common variance among the indicators is explained by one general
factor (7¢) and three specific factors (7sz, 71s2, 17s3) influencing the indicators that represent
the facets of the construct. The general factor and all of the specific factors are
uncorrelated with each other. The identification of the bifactor measurement model is
similar to Thoemmes et al., (2010) specification for Monte Carlo power analysis in
Mplus. X is a binary experimental condition randomly assigned and was determined by a

conditioning on %, which is the mean of the normal distribution (¥ = 0; see Equation 5).
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Finally, Y is a normally-distributed continuous outcome. The true mediated effect (ab) is
the influence of X on outcome Y through the specific factor 7sz.
Simulation Procedure

The true covariance matrix for the distillation of the mediated effect was
analytically derived with RAM matrices in Symbolic Python (SymPy; SymPy
Developing Team, 2014) and presented in Appendix D. Population values were then
generated corresponding to simulation conditions hypothesized to influence the detection
of the mediated effect (explained at the beginning of the Results section).

The R package MplusAutomation (Hallquist & Wiley, 2013) was used to produce
and analyze the Mplus syntax files in the study. Each syntax file represents a condition
along with 1,000 replications of that condition. The data analysis models were estimated
with maximum likelihood under the structural equation modeling framework. Monte
Carlo datasets and estimated results were saved and processed by the R package
RMediation (Tofigui & MacKinnon, 2011) to compute confidence intervals using the
distribution of the product, Monte Carlo method, and asymptotic normal theory methods.
Appendix E shows a flow chart with the simulation procedure steps. Appendix F, G, and
H show an MplusAutomation template file, Mplus Monte Carlo syntax, and Mplus syntax
for the analysis of each replication, respectively.

Parameter Bias

Three measures of bias were used to evaluate point estimation in the simulation
study. Raw bias in the mediated effect estimate was calculated by the difference between
the estimate and the population true value of the mediated effect.

Bias(@) =0-6 (12)
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Second, relative bias in the mediated effect was calculated by the difference between the

estimate and the population true value, divided by the population true value.

)

RBias(9) = %9 (13)

Finally, standardized bias in the mediated effect was calculated by the difference between
the estimate and the population true value, divided by the standard deviation of the
estimates across replications.

6-6

SBias(@) = 5@

(14)

Standardized bias gives a magnitude of bias when a population value is equal to zero,
which is not possible to compute with Equation 14. An estimator was considered
unbiased when the relative and standardized bias were less than .10 (Flora & Curran,
2004).
Statistical Power and Type 1 Error

Type 1 error rates were calculated by the proportion of times across all
replications within a condition that a mediated effect estimate was statistically significant
when the population value was zero. Power was the proportion of times across all
replications within a condition that a mediated effect estimate was statistically significant
when the population value was nonzero. The best estimator will have the highest power
across simulation conditions.
Confidence Interval Estimation

Confidence interval coverage was the proportion of times across all replications
within a condition that each confidence interval contains the true value of the mediated

effect.
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Distribution of the product. Asymmetric confidence intervals based on the non-
normal distribution of the product of two random variables that represent the mediated
effect (ab; Mackinnon et al., 2007) were computed.

Monte Carlo confidence intervals. To build Monte Carlo confidence intervals
(MacKinnon et al., 2004), the a- and b-path estimates and their standard errors were used
to generate a sampling distribution of ab, with the replication estimates as true values of
the distribution. The lower and upper confidence limits for the mediated effect for each
replication were the values in the sampling distribution in the 2.5% and 97.5%
percentiles.

Asymptotic normal theory. The asymptotic normal confidence interval is ab
1.96 x SE(ab), where SE(ab) is the standard error of the mediated effect derived by the
equation below:

SE(ab) =

J (@(SE(b))" + (b(SE(@))" + 2abp,,SE(a)SE(b) + SE(a)*SE(b)* + SE(a)2SE(b)2p2, . (15)

Data Analysis Models

Finite model. The simulated datasets were analyzed using the true population
model (Model 1; Figure 4) to get information about sample size bias, power, and Type 1
error in parameter estimates and confidence interval estimation.

Ignoring the general construct. The equations below estimate the facet model
(Model 2), where the mediator has a unidimensional structure and only the indicators of
the true facet are modeled.

M= A,n+¢€ where: (16)
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Ml 1 61

M = |M, Ay = 152-1] n-= [7751] €= [62]

M; /153.1 €3
Ns1=axX + ez 17)
Y = C’X + bnsl + e3 (18)

For this model, the mediated effect is the influence of X on the outcome Y through the
specific factor 7sz and calculated by the product of ab. The a parameter represents the
effect of X on the specific factor 7sz. The b parameter represents the effect of 7szon'Y,
adjusting for X. The effect of X on Y, adjusting for 7s;, is represented by the ¢’ parameter.
Ignoring specific facets. The equations below estimate the unidimensional model

(Model 3), where the mediator is unidimensional and all indicators are included.

M= A,n+€ where: (19)
— 1 -
_M —_
M1 Ag2 €1
M, g3 €3
M, Aga €4
M: M5 Am = 195 n = [T]g] € = 65
M6 196 €g
€
%7 197 6;
8 A 8
A g €4
_Ag9_
ng=aX+ e (20)
Y =c¢X+bn, +es3 (21)

For this model, the mediated effect is the influence of X on the outcome Y through the
general factor 7z and calculated by the product ab. The a parameter represents the effect
of X on the general factor 7z The b parameter represents the effect of 7z 0on Y, adjusting

for X. The ¢’ parameter represents the effect of X on Y, adjusting for 7.
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With the same parameter interpretations as Model 3, the equations below estimate
the correlated factor model (Model 4), where the mediator is unidimensional and the

unique factors of indicators that measure the same facet are correlated, represented by ©5.

M= A,n+¢€ where: (22)
— 1 -
TM T e
1 Aga €1
MZ A 62
M, 93 €3
M4 Agll‘ 64
M= |Ms| A, =|4gs| n =[] € =|€5| and
M6 196 66
M, Ag7 57
M8 A 8
M. g8 [ €9
o [ Ago.
011 612 013 O 0 0 0 0 0 1
01 050 823 O 0 0 0 0 0
637 03, 033 O 0 0 0 0 0
0 0 0 844 045 04 O 0 0
E(M) = AmT]A,nl + 96‘, where: @5 = 0 0 0 654, 655 656 0 0 0
0 0 0 Oz g5 O O 0 0
0 0 0 0 0 0 677 78 079
0 0 0 0 0 0 Jg; dgg Ogo
0 0 0 0 0 0 897 Ogg Ogol
Ng=aX +e (23)
Y=cX+bn, +e3 (24)
Results

Presentation Strategy

The results are organized as follows. First, simulation conditions are summarized.
Second, convergence information is used to decide which conditions are analyzed. Third,
fit information per model is reported. Fourth, the influence of the simulation factors on

the bias, power, Type 1 error, and confidence interval coverage of the mediated effect are
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described for each of the four data-analysis models. Finally, simulation outcomes are
compared across models.
Simulation Conditions

There were 864 conditions (with 1,000 replications per condition) examined
under four data-analysis models. The simulation factors are summarized in Table A
below and were sample size (small=200, medium=500, large=1,000); factor loadings on
the general factor, referred to as general factor variance (small=.3, medium=.5, large=
.7); factor loading on the specific factor, referred to as specific factor variance (small=.3,
medium=.45, large=.6); a-path effect size (zero, small, medium, large); b-path effect size
(zero, small, medium, large); and ¢ -path effect size (zero, small). The label for the sizes
of the simulation conditions (zero, small, medium, large), the model labels (finite,
correlated, unidimensional, and facet), the label simulation factors to refer to the set of
predictors, and the hypotheses numbers are used through this section.

Table A. Summary of Simulation Factors

Symbol Interpretation Simulated Levels
Values
n Sample size 200, 500, 1000 3
a-path  Effect size of a-path (zero, small, medium, large) 0, .28, .72, 1.02 4
b-path  Effect size of b-path (zero, small, medium, large) 0, .14, .36, .51 4
c’-path  Effect size of the direct effect (zero, small) 0, .283 2
gen Factor loading on general factor 3,.5,.7 3
spec Factor loading on specific factor 3,.45,.6 3

Convergence Statistics
There were differences in convergence rates across the 864,000 estimated models

(864 conditions times 1000 replications). Replications did not converge when they had a
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non-positive covariance matrix or Mplus default iteration limit of 1,000 iterations was

exceeded. Nonconverged replications were dropped from the analysis.

Table B. Convergence summary for data-analysis models

Finite Factor Corr Factor Facet Factor  Unidim Factor

Initial Replications 864,000 864,000 864,000 864,000
Convergence 835,097 577,643 852,574 863,264
Non-convergence 28,903 286,357 11,426 736
Non-convergence % 3.34 33.14 1.32 0.08

Nonconvergence was investigated as a function of the simulation conditions and
described below. Conditions with less than a 70% convergence rate were problematic
conditions and excluded from analyses. There were 357 problematic conditions out of
3,456 total conditions (864 conditions times four models) in the simulation.

Unidimensional model. There were no problematic conditions analyzed with the
unidimensional model. The 736 nonconverged replications were dropped from the
simulation.

Facet model. There were no problematic conditions analyzed with the facet
model. The 11,426 nonconverged replications were dropped from the simulation.

Finite model. There were eight problematic conditions analyzed with the finite
model dropped from the simulation. Six of those conditions had a small sample size,
small general factor variance, small specific factor variance, a zero effect on the a-path,
and a zero or small effect on the b-path. The other two conditions had a medium general
factor variance, a small specific factor variance, small sample size, and zero effects for
the a- and b-paths. The nonconvergence patterns are consistent with Hypothesis 2, which

hypothesized that a combination of small sample sizes and low factor loadings on the

19



specific factor would have convergence problems. The 28,903 nonconverged replications
were also dropped from the simulation.

Correlated factor model. There were 349 problematic conditions analyzed with
the correlated factor model dropped from the simulation. Nonconvergence rates are
discussed below. The 286,357 nonconverged replications were dropped from the
simulation.

Small general factor variance. There were 224 problematic conditions. Shaded
cells in Table C indicate nonconverged conditions, averaged over the ¢ ’-path. Most
problematic conditions had a medium or large b-path effect size or a medium or large a-
path effect size with a zero or small b-path (144 and 72 conditions, respectively).

Table C. Convergence table for the Correlated Factor model with small general factor

variance
Spec loading s-.3 s-.45 s-.6

N 200 500 1000 200 500 1000 200 500 1000

a-zero b-zero
b-small
b-med
b-large

a-small  b-zero

b-small
b-med

b-large
a-med b-zero
b-small
b-med
b-large
a-large  b-zero
b-small
b-med
b-large

Medium general factor variance. There were 120 problematic conditions.

Shaded cells in Table D indicate nonconverged conditions, averaged over the ¢ -path.
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Most problematic conditions had a large b-path or a large a-path and a medium/large
specific factor variance (48 conditions and 36 conditions, respectively).

Table D. Convergence table for the Correlated Factor model with medium general
factor variance

Spec loading s-.3 s-.45 s-.6

Sample Size 200 500 1000 200 500 1000 200 500 1000

a-zero b-zero

b-small

b-med

b-large

a-small b-zero

b-small

b-med S

b-large S

a-med b-zero

b-small

b-med

b-large

a-large b-zero

b-small

b-med

b-large

Note: split cells with the letter “s” indicate that only the conditions with a small ¢’ path did not converge

Large general factor loading. There were five problematic conditions that had a

large specific factor variance and a combination of large a- and b-path effect sizes.

Summary for the convergence statistics. The unidimensional and facet factor
models do not have problematic conditions. The finite factor model has problems
converging when the model structure is the weakest, i.e., small general and specific factor
variance, mediation paths of zero to small effect size, and small sample size. Finally, the
correlated factor model has problematic conditions when the a- and b-path effects are
large and when the general factor variance is not large. The correlated errors capture the
specific factor variance, leading to negative residuals in the indicators when X predicts

the mediator, which pulls the factor. Table E shows the number of replications and
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conditions in the simulation retained for analysis and differs from Table B above because
problematic conditions have been dropped, reducing the converged replications.

Table E. Convergence summary after problematic conditions have been dropped

Finite Factor Corr Factor Facet Factor Unidim Factor

Convergence 829,763 493,994 852,574 863,264

Non-convergence 26,237 21,006 11,426 736

Conditions post-deletion 856 515 864 864
Model Fit

The RMSEA, the SRMR, and the CFI were used to evaluate how well the models
represent the data (Hoyle, 2012). Conventional thresholds for the RMSEA and SRMR are
.05 for perfect fit and .08 for adequate fit. The thresholds for the CFI are .95 and .90,
respectively. Table F shows the number of times each of the fit indices per replication
were below the thresholds.

Table F. Fit indices for data-analysis models

Finite Factor Corr Factor Facet Factor Unidim Factor
RMSEA.05 824,884 302,626 655,309 599
99.4% 61.3% 76.9% 0.06%
RMSEA.08 829,763 451,339 775,406 53,596
100% 91.4% 90.9% 6.2%
SRMR.05 789,664 404,823 845,642 1,911
95.1% 81.9% 99.2% 0.22%
SRMR.08 829,610 493,049 852,569 271,441
99.9% 99.8% 99.9% 31.44%
CFI1.95 824,213 462,324 829,048 48
99.3% 93.6% 97.2% 0.01%
CF1.90 829,302 493,336 851,039 897
99.9% 99.9% 99.8% 0.10%

The finite factor model fits the datasets perfectly across replications. The
correlated and the facet factor models fit the data well given adequate fit criteria. The
unidimensional model had the poorest model fit because it does not account for the
multidimensionality of the mediator. The unidimensional factor model is nested under the
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correlated factor model, so the influence of the correlated uniqueness on fit is described

by the percentage change across replications, where the RMSEA increased by 60%,

SRMR by 80%, and the CFI by 92%.

Unidimensional model. Shaded cells in Table G describe the conditions where

less than 70% of the replications did not meet the adequate fit criterion, averaged over the

c’-path. There was adequate fit in conditions with a small specific factor variance. As the

general factor variance and the a- and b-paths increase, the model fits worse because not

enough of the true mediator variance is represented by the unidimensional model.

Table G. Unidimensional models where fit indices did not suggest adequate fit 70% of

the time

Gen loading

g-.3

g-.5 g-.7

Sample Size

200 500 1000 200 500 1000 200 500 1000

a-zero b-zero
b-small
b-med
b-large
a-small  b-zero
b-small
b-med
b-large
a-med b-zero
b-small
b-med
b-large
a-large  b-zero
b-small
b-med
b-large

I

Note: split cells with the letter s indicates small ¢’ path and letter z indicates zero ¢’ path

Overview of the Analyses of Simulation Outcomes

To assess which factors were associated with simulation outcomes in the

mediated effect, OLS regression analyses were conducted for continuous outcomes and
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logistic regressions for binary outcomes. Models with at least a small effect for both the
a-path and b-path in the data-generating model are referred to as models with nonzero
mediated effects, and models where either the a- or b-path (or both) had a zero effect are
referred to as models with zero mediated effects. Unless specified, all simulation factors
were dummy-coded and included in the regression model along with all possible
interactions. Given that factors have three levels, interactions with the largest magnitude
of the factor are reported. For OLS regression analyses, models with an R-squared value
above .01 and a partial n? above .005 for a predictor were further investigated. For
logistic regression analyses, statistically significant predictors with at least a small effect
size in the transformation of odd ratios into Cohen’s d (Chinn, 2000) were investigated. A
log odds ratio of .362 (OR= 1.44) represents a small effect size, a log odds ratio of .905
(OR=2.47) represents a medium effect size, and a log odds ratio of 1.448 (OR=4.25)

represents a large effect size. The transformation equation is shown below:

Cohen's d = ln(Odd;s‘tRatio) (25)

V3

Bias in the mediated effect. Raw, relative, and standardized bias were used as
continuous outcomes in models with nonzero mediated effects. Preliminary analyses
indicate that the mediated effect in models with zero mediated effects were unbiased and
simulation factors do not account for variance. These results are not presented. Tables are
provided for relative and standardized bias in models with nonzero mediated effects
because of the interpretable metric.

Power to detect the mediated effect. The binary outcome variable for power in
models with nonzero mediated effects was coded 1 if the 95% confidence interval did not

contain zero or 0 otherwise. Statistical power above .80 was considered adequate.
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Methods to assess statistical power. Differences in power by method were used to
understand the best method to detect the mediated effect in the finite factor model. The
power difference per condition through the distribution of the product method and the
Monte Carlo method was never more than .01. According to Table 6-1 to Table 6-3,
power of the asymptotic normal theory confidence intervals was never higher than the
power from the distribution of the product confidence intervals, with differences up to
.30. The discrepancy in the power decreased as the simulation factors increased. Only the
distribution of the product method was used for the analyses of statistical power, Type 1
error, and confidence interval coverage.

- Insert Table 6-1 to Table 6-3 about here-

Type 1 error. The binary outcome variable for empirical Type 1 error in models
with zero mediated effects was coded 1 if the 95% confidence interval did not contain
zero or 0 otherwise. Type 1 error rates between .025 and .075 (Bradley, 1978) were
considered adequate.

Confidence interval coverage and interval width. The binary outcome variable
for coverage was coded as a 1 if the 95% confidence interval contained the true value of
the mediated effect, and coded 0 otherwise. Coverage rates between .925 and .975 were
considered adequate. Coverage in models with nonzero mediated effects need to be
interpreted with caution due to estimate bias in the misspecified models. The interval
width outcome was the difference between the lower and upper confidence interval limit.
Smaller width suggests more precision.

Comparisons across analysis models. For power and confidence interval

coverage, a binary indicator that indexed discrepancies in conclusions on the mediated
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effect per replication was used as a dependent variable in a logistic regression.
Standardized bias, relative bias, and Type 1 error rate were compared across models
through summary tables. Comparing simulation outcomes in misspecified models need to
be with caution because the mediated effects across models are theoretically different.
Analysis of the Finite Factor Model

Bias in the finite model. The bias in the mediated effect decreased as sample
size, the a- and b-paths, and the specific and general factor variance increased, supporting
Hypotheses 1.1, 1.2, and 1.3. Conditions with 500 cases, medium general factor variance
and medium a- and b-paths were unbiased. Detailed analyses of bias outcomes are found
below.

Standardized bias in the finite model with nonzero mediated effects. Table 1A-1
to Table A1-3 show that conditions with low sample size, general factor variance,
specific factor variance, and large a- or b-paths had standardized bias above .10. The
variance explained in the regression predicting standardized bias from the simulation
factors was R? = .003. Figure 1A-1 suggests that standardized bias decreased as the
specific factor variance, general factor variance, and sample size increased.

- Insert Table 1A-1 to Table 1A-3 and Figure 1A-1 about here-

Raw bias in finite model with nonzero mediated effects. The variance explained
by the regression predicting raw bias from the simulation factors was R? = .021. As
sample size increased, the raw bias in the mediated effect decreased (b=-.022, t=-4.972,
p<.05, partial n?=.006), supporting Hypothesis 1.1. Figure 1A-2 shows that raw bias
decreased as sample size, general factor variance, and specific factor variance increased.

Raw bias increased as the a- and b-paths increased.
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- Insert Figure 1A-2 about here-

Relative bias in the finite model with nonzero mediated effects. Table 1A-4 to
Table 1A-6 show that conditions with small sample size, specific factor variance, and
general factor variance had relative bias above .10. The variance explained by the
regression predicting relative bias from the simulation factors was R?= .014. No
predictors met the n? criterion. Figure 1A-3 shows that relative bias decreased as
simulation factors increased.

- Insert Table 1A-4 to Table 1A-6 and Figure 1A-3 about here-

Power in the finite model. The power to detect the mediated effect increased as
sample size, the a- and b-paths, and the specific and general factor variance increased.
Conditions with 500 cases, medium general factor variance and medium a- and b-paths
were adequately powered (Table 1B-1 to Table 1B-3 and Figure 1B-1). Power was
assessed for conditions with a sample size of 200. Detailed analyses of the power
outcome are found below.

-Insert Table 1B-1 to Table 1B-3 and Figure 1B-1 about here-

Power to detect the mediated effect with a small sample size. Figure 1B-2 shows
that power increased as the simulation factors increased. There was a significant
interaction among all of the predictors (large effect size; b=2.352, z=3.803, p<.05).
Power increased faster for conditions with larger a- and b-paths and larger general and
specific factor variances than with smaller a- and b-paths and smaller general and

specific factor variances. Power increased as the general factor variance (x2(2,

N=152,659) = 50.42, p<.05), specific factor variance (y3(2, N=152,659) = 98.53, p<.05),
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a-path (x%(2, N=152,659) = 14.148, p<.05), and b-path (x2(2, N=152,659) = 249.145,
p<.05) increased, supporting Hypotheses 1.4, 1.5 and 1.6.
- Insert Figure 1B-2 about here-

Type 1 error in the finite model. The Type 1 error in the mediated effect
approached .05 as sample size, the a- or b-path, and the specific and general factor
variance increased. Type 1 error was adequate for conditions with a medium a- or b-path.
Detailed analyses follow.

Type 1 error in the mediated effect. As show in Table 1C-1 to Table 1C-3,
conditions where the a- and b-path had a zero effect had empirical Type 1 errors close to
zero. Conditions analyzed had one nonzero a- or b-path and sample size at or above 500.

- Insert Table 1C-1 to Table 1C-3 about here-

Nonzero effect size in the a- and b-path: Figure 1C-1 and Figure 1C-2 show that
the Type 1 error approached .05 as the simulation factors increased. For conditions with a
nonzero a-path, there was a significant interaction between the general and specific factor
variance and the a-path (large effect size; b=1.912, z=-2.375, p<.05). The Type 1 error
approached .05 faster as the a-path increased for conditions with smaller general and
specific factor variance than conditions with larger general and specific factor variance.
Type 1 errors approached .05 as sample size (x(1, N=140,596) = 31.228, p<.05), general
factor variance (y2(2, N=140,596) = 39.469, p<.05), specific factor variance (x%(2,
N=140,596) = 39.469, p<.05), and the a-path (x%(2, N=140,596) = 18.888, p<.05)
increased. For conditions with a nonzero b-path, there were significant interactions
among the b-path and the general and specific factor variance (medium effect size;

b=.943, z=-1.972, p<.05) and among the b-path, sample size, and general factor variance
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(medium effect size; b=.968, z=2.041, p<.05). Type 1 errors approached .05 faster as the

specific factor variance, general factor variance, and sample size increased for smaller b-

paths than for larger b-paths. Type 1 errors approached .05 as sample size (%*(1,

N=140,426) = 18.930, p<.05), general factor variance (y?(2, N=140,426) = 11.347,

p<.05), specific factor variance (y?(2, N=140,426) = 18.858, p<.05), and the b-path

(x2(2, N=140,426) = 57.199, p<.05) increased, supporting Hypotheses 1.4, 1.5 and 1.6.
-Insert Figure 1C-1 and Figure 1C-2 about here-

Coverage and interval width in the finite model. The 95% confidence interval
coverage of mediated effect approached .95 as sample size, the a- and b-paths, and the
specific and general factor variance increased. Conditions with 500 cases, medium a- and
b-paths, and medium general factor variance were adequately covered. Detailed analyses
are found below.

Confidence interval coverage of the mediated effect. Table 1D-1 to Table 1D-3
show that the confidence interval coverage was mostly adequate. Ten conditions with
small sample size were outside of the robust criterion of coverage. Figure 1D-1 shows
that coverage approached .95 as simulation factors increased. There was a significant
interaction between sample size, general factor variance, specific factor variance, and the
b-path (medium effect size; b=1.172, z=2.283, p<.05). Coverage approached .95 faster
as the general factor variance increased for conditions with a larger specific factor
variance, sample size, and b-path, than for conditions with smaller specific factor
variance, sample size and b-path. Coverage approached .95 as sample size (y%(2, N=
474,754) = 50.634, p<.05), specific factor variance (x2(2, N= 474,754) = 38.040, p<.05),

a-path (x2(2, N= 474,754) = 24.853, p<.05), b-path (x2(2, N= 474,754) =26.070, p<.05)
29



and general factor variance (y2(2, N= 474,754) = 13.141, p<.05) increased, supporting
Hypotheses 1.4, 1.5, and 1.6.

Confidence interval width. Figure 1E-1 shows that confidence interval width for
the mediated effect decreased as the sample size, general and specific factor variance
increased, and as the a- and b-path decreased. The variance explained by the regression
predicting interval width from the simulation outcomes was R?= .027. There was a
significant interaction among all of the predictors (b=.648, z=3.110, p<.05, partial n?
=.008). The interval width increased at a faster rate as the a- and b-path increased for
conditions with smaller sample size, specific and general factor variance than for larger
sample size, specific and general factor variance

-Insert Table 1D-1 to Table 1D-3 and Figure 1D-1 to Figure 1E-1 about here-

Summary of the finite factor model. The mediated effect in models with a
bifactor mediator structure (Model 1) is unbiased, adequately powered, and covered by
95% confidence intervals in conditions with 500 cases, medium general factor variance
and medium a- and b-paths. The Type 1 error approached .05 when one of the paths had
a medium effect size. For the other conditions, as the simulation factors increased, bias
decreased, power increased, coverage approached .95, and Type 1 error approached .05.
Finally, the model does not converge with a sample size of 200, zero or small a- and b-
paths, and small specific and general factor variance.

Analysis of the Facet Factor Model

Bias in the facet model. The mediated effect was underestimated. Bias decreased

as the specific factor variance increased and as sample size, the a- and b-paths, and the

general factor variance decreased. Conditions with large specific factor variance and
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small general factor variance, a- and b-paths and sample size had the least bias. Detailed
analyses are found below.

Standardized bias in the facet model with nonzero mediated effects. Table 2A-1
to Table 2A-3 and Figure 2A-1 show that standardized bias decreased as the specific
factor variance decreased and other simulation factors increased. The variance explained
by the regression predicting standardized bias from the simulation factors was R? = .856.
There were significant interactions between sample size and the a- and b-paths (b=-
2.313, t=-35.155, p<.05, partial n?= .04) and between the general factor variance and the
a- and b-paths (b=-1.256, t=-17.086, p<.05, partial n?>= .026). Standardized bias
increased faster as sample size and general factor variance increased for conditions with
larger a- and b-paths than smaller a- and b-paths, supporting Hypotheses 3.2, and 3.3.

-Insert Table 2A-1 to Table 2A-3 and Figure 2A-1 about here-

Raw bias in the facet model with nonzero mediated effects. Figure 2A-2 shows
that raw bias decreased as the specific factor variance increased, as the general factor
variance and a- and b-paths decreased, and not influenced by sample size. The variance
explained by the regression predicting raw bias from the simulation factors was R? =
.822. There was a significant interaction between the general factor variance and the a-
and b-paths (b=-.031, t=-11.281, p<.05, partial n?=.006). The raw bias increased as the
general factor variance increased faster for conditions with larger a- and b-paths than for
smaller a- and b-paths, supporting Hypothesis 3.2.

-Insert Figure 2A-2 about here-
Relative bias in the facet model with nonzero mediated effects. Table 2A-4 to

Table 2A-6 and Figure 2A-5 show that relative bias decreased as the general factor
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variance and a-path decreased and the specific factor variance increased. The variance
explained by the regression predicting relative bias from the simulation factors was R? =
.11. Relative bias decreased as the specific factor variance increased (b=.097, t=10.683,
p<.05, partial n?=.033), and as the a-path (b=-.116, t=-12.306, p<.05, partial n>= .012)
and general factor variance (b=-.229, t=-25.069, p<.05, partial 1?=.070) decreased,
supporting Hypotheses 3.2 and 3.3.

-Insert Table 2A-4 to Table 2A-6 and Figure 2A-3 about here-

Power in the facet model. The power to detect the mediated effect increased as
sample size, the a- and b-paths, and the specific factor variance increased, and as the
general factor variance decreased, supporting Hypotheses 3.4, 3.5, and 3.6. Conditions
with 500 cases and medium a- and b-paths were adequately powered (Tables 2B-1 to
Table 2B-3). Power was assessed for conditions with a sample size of 200. Detailed
analyses are found below.

Power to detect the mediated effect with a small sample size. Figure 2B-1 shows
that power was not influenced by the general factor variance, and increased as the other
simulation factors increased. There was a significant interaction among all the predictors
(medium effect size; b=-1.269, z=-2.787, p<.05). Power increased as the specific factor
variance increased faster for conditions with smaller a- and b-paths than with larger a-
and b-paths. Power increased as the b-path (x%(2, N=157,074) = 328.93, p<.05), specific
factor variance (y%(2, N=157,074) = 38.55, p<.05), and a-path (x%(2, N=157,074) =
94.04, p<.05) increased, but power did not significantly increase as the general factor
variance increased (x2(2, N=157,074) = 3.29, p=.19). Evidence supports Hypotheses 3.4
and 3.6.
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-Insert Table 2B-1 to Table 2B-3 and Figure 2B-3 about here-

Type 1 error in the facet model. The Type 1 error in the mediated effect
approached .05 as sample size, the a- or b-path, and the specific factor variance
increased, and not influenced by the general factor variance, supporting Hypotheses 3.4
and 3.6. Type 1 errors were adequate for conditions with a medium a- or b-path (Table
2C-1 to Table 2C-3). Conditions analyzed had a nonzero a- or b-path and a zero effect in
the other path. Detailed analyses are found below.

Type 1 error in the mediated effect for nonzero a- or b-paths. Figure 2C-1 and
Figure 2C-2 shows that the Type 1 error approached .05 as the simulation factors
increased. For conditions with a nonzero a-path, there was a significant interaction
between the general factor variance, specific factor variance, and sample size (large effect
size; b=1.449, z=2.126, p<.05). Type 1 error approached .05 faster as the sample size
increased for conditions with a smaller general and specific factor variance than for a
larger general and specific factor variance. Also, as the a-path increased, Type 1 error
approached .05 (large effect size; b=2.540, z= 4.890, p<.05). Type 1 error rate
approached .05 as sample size (yx(2, N=159,830) = 53.313, p<.05), specific factor
variance (y2(2, N=159,830) = 12.209, p<.05), and a-path (x%(2, N=159,830) = 47.828,
p<.05) increased, and was not significantly influenced by the general factor variance
(x2(2, N=159,830) = 5.629, p=.06). For conditions with a nonzero b-path, there was a
significant interaction between sample size and the b-path (large effect size; b=-1.822,
z=-4.371, p<.05). Type 1 error approached .05 faster as the sample size increased for
conditions with a smaller b-path than for a larger b-path. Type 1 error approached .05 as
sample size (x%(2, N=159,706) = 27.874, p<.05) and b-path (3(2, N=159,706) = 62.810,
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p<.05) increased, and was not significantly influenced by the general factor variance
(x3(2, N=159,706) = 1.217, p=.54) and specific factor variance (y3?(2, N=159,706) =
2.983, p=.23). Analyses supported Hypotheses 3.4 and 3.6.

-Insert Table 2C-1 to Table 2C-3 and Figure 2C-1 and Figure 2C-2 about here-

Coverage and interval width in the facet model. The 95% confidence interval
coverage of the mediated effect approached .95 as the specific factor variance increased
and as the sample size, the a- and b-paths, and general factor variance decreased,
supporting Hypotheses 3.5 and 3.6. Conditions with large specific factor variance and
small general factor variance, a- and b-paths, and sample size had coverage closest to .95.
Detailed analyses follow.

Confidence interval coverage of the mediated effect. Table 2D-1 to Table 2D-3
show that all conditions had coverage rates below 92.5%. Conditions with a medium or
large a- and b-path had zero coverage. Confidence interval coverage was assessed for
small sample size conditions. Figure 2D-1 shows that coverage approached .95 as the
specific factor variance increased, but decreased as the general factor variance and the a-
and b-paths increased. There was a significant interaction between the general factor
variance and the a- and b-paths (large effect size; b=-2.322, z=-7.747, p<.05). As the
general factor variance decreased, the confidence interval coverage approached .95 at a
faster rate for conditions with larger a- and b-paths than with smaller a- and b-paths.
Coverage approached .95 as the general factor variance (x%(2, N= 157,074) = 113.312,
p<.05), a-path (x%(2, N= 157,074) = 69.962, p<.05), and b-path (x2(2, N= 157,074)
=28.913, p<.05) decreased, and was not influenced by the specific factor variance (y2(2,
N=157,074) = 2.254, p=.28), supporting Hypothesis 3.5.
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Confidence interval width. Figure 2E-1 shows that the confidence interval width
increased as the a- and b-paths and the general factor variance increased and not
influenced by the specific factor variance. The variance accounted for by the regression
predicting confidence interval width from the simulation factors was R? = .614. There
was a significant interaction between the a- and b-path (b=.648, t=.311, p<.05, partial
n%=.064). As the a-path increased, the interval width increased faster for conditions with
smaller b-paths than for larger b-paths.

-Insert Table 2D-1 to Table 2D-3 and Figure 2D-1 to Figure 2E-1 about here-

Summary of the facet factor model. When the bifactor model is misspecified by
ignoring the general construct (Model 2), the mediated effect is underestimated and has
confidence interval coverage below .95. Conditions with a large specific factor variance
and small general factor variance, a- and b-paths, and sample size have the least bias and
the highest coverage. Bias decreased and coverage approached .95 as the specific factor
variance increased and the rest of the simulation factors decreased. Conditions with 500
cases and medium a- and b-paths for models with zero and nonzero mediated effects had
adequate power and Type 1 error rates. Conditions approached adequate power and Type
1 error rates as the simulation factors increased, except for the general factor variance.
All models met the adequate fit criteria
Analysis of the Unidimensional Model

As previously mentioned, only conditions with a small specific factor variance
and a- and b-path less than a large size were analyzed for the unidimensional model.

Bias in the unidimensional model. The mediated effect was negatively biased

(Table 3A-1 and Table 3A-2). Bias decreased as the general factor variance, sample size,
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and the a- and b-paths decreased, supporting Hypothesis 3.2. Conditions with large
general factor variance, a- and b-paths, and sample size had the least bias. Detailed
analyses are found below.

Standardized bias in the unidimensional model with nonzero mediated effects.
Figure 3A-1 shows that standardized bias increased as the simulation factors increased.
The variance explained by the regression predicting standardized bias from simulation
factors was R? = .976. There was a significant interaction among all of the predictors
(b=-5.524, t=-59.506, p<.05, partial n2=.051). As the general factor variance increased,
standardized bias increased faster for conditions with a larger sample size and a- and b-
paths than with a smaller sample size and a- and b-paths. Evidence supports Hypothesis
4.2.

-Insert Table 3A-1 and Figure 3A-1 about here-

Raw bias in the unidimensional model with nonzero mediated effects. Figure
3A-2 shows that raw bias decreased as the simulation factors increased, except for sample
size. The variance explained by the regression predicting raw bias from the simulation
factors was R? = .908. There was a significant interaction among the general factor
variance and the a- and b-path (b=-.028, t=-18.567, p<.05, partial 1> = .019). As the
general factor variance increased, raw bias increased faster for conditions with larger a-
and b-paths than for smaller a- and b-paths, supporting Hypothesis 4.2.

-Insert Figure 3A-2 about here-

Relative bias in the unidimensional model with nonzero mediated effects. Figure

3A-3 show that relative bias decreased as the general factor decreased. The variance

explained by the regression predicting relative bias from the simulation factors was R? =
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.219. There was a significant main effect of the general factor variance on relative bias
(b=-.279, t=-35.957, p<.05, partial n2=.218). As the general factor variance increased,
relative bias increased, supporting Hypothesis 4.2.

-Insert Table 3A-2 and Figure 3A-3 about here-

Power in the unidimensional model. The power to detect the mediated effect
increased as sample size and the a- and b-paths increased, and as the general factor
variance decreased (Figure 3B-1). Conditions with 1,000 cases, medium a- and b-paths,
and small general factor variance were adequately powered (Table 3B-1). Detailed
analyses are found below.

Power in the mediated effect. There was a significant interaction among all the
simulation factors (large effect size; b=-3.737, z=-4.547, p<.05). As sample size
increased, power increased faster for conditions with a smaller general factor variance
and large a- and b-paths than larger general factor variance and smaller a- and b-paths.
Power increased as the b-path (x2(1, N=69,022) = 147.18, p<.05), sample size (x2(2,
N=69,022) = 751.18, p<.05), and a-path (x*(2, N=69,022) = 82.830, p<.05) increased,
but power decreased as the general factor variance increased (y2(2, N=69,022) = 15.800,
p<.05), supporting Hypotheses 4.4, 4.5, and 4.6.

-Insert Figure 3B-1 and Table 3B-1 about here-

Type 1 error in the unidimensional model. The Type 1 error in the mediated
effect approached .05 as the a- or b-path and sample size increased, and general factor
variance decreased (Figure 3C-1 to Figure 3C-2) supporting Hypotheses 3.4, 3.5, and
3.6. Type 1 errors were adequate for conditions with a medium a- or b-path, a sample
size of 500, and small general factor variance (Table 2C-1). Conditions analyzed had a
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nonzero a- or b-path and a zero effect in the other path. Detailed analyses are found
below.

Type 1 error in the mediated effect. Table 3C-1 shows that all conditions have
Type 1 errors below .05; conditions with zero a- and b-paths had Type 1 errors close to
zero. Conditions analyzed had a nonzero a- or b-path and a zero effect in the other path.
For conditions with a nonzero a-path, there was a significant interaction among the
predictors (large effect size; b=2.847, z=3.058, p<.05). Type 1 error approached .05
faster as the general factor variance increased for conditions with smaller a-paths and
larger sample size than for larger a-paths and smaller sample size. Type 1 error
approached .05 as the a-path (yx?(1, N=35,155) = 83.211, p<.05) and sample size (x2(2,
N=35,155) = 20.218, p<.05) increased. The general factor variance (y(2, N=35,155) =
1.356, p=.508) did not influence Type 1 error rates. For conditions with a nonzero b-path,
Type 1 error approached .05 as the b-path increased (large effect size; b=3.858, z=4.416,
p<.05). Type 1 error approached .05 as the b-path increased (y%(3, N= 35,153) =
134.117, p<.05), but sample size (x%(2, N= 35,153) = 4.320, p=.116) and general factor
variance (y2(2, N= 35,153) = 0.006, p=.997) did not influence Type 1 error.

-Insert Figure 3C-1 to Figure 3C-2 and Table 3C-1 about here-

Coverage and interval width in the unidimensional model. The 95%
confidence interval coverage of mediated effect approached .95 as the general factor
variance, sample size and the a- and b-paths decreased. Conditions with small general
factor variance, small a- and b-paths, and small sample size had coverage closest to .95.

(Table 3D-1). Detailed analyses are found below.
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Confidence interval coverage for the mediated effect. Table 3D-1 shows that all
conditions had a coverage rate below 92.5 %; conditions with medium or large sample
sizes had zero coverage. Confidence interval coverage was assessed for conditions with
200 cases. As shown in Figure 3D-1, coverage approached .95 as sample size and general
factor variance decreased. There was a significant interaction between the general factor
variance and a- and b-paths (large effect size; b=-2.661, z=-2.636, p<.05). As the general
factor variance decreased, coverage approached .95 faster for conditions with a small a-
and b-paths than for conditions with a large a- and b-paths. Confidence interval coverage
approached .95 as the general factor variance (yx2(2, N=21,092) = 488.89, p<.05), the a-
path (x2(1, N=21,092) = 141.98, p<.05), and the b-path (x2(1, N= 21,092) =144.01,
p<.05) decreased, supporting Hypothesis 4.5.

Confidence interval width. Figure 3E-1 shows that interval width decreased as
sample size and general factor variance increased and as the a- and b-paths decreased.
The variance explained by the regression predicting interval width from the simulation
factors was R? = .754. There was a significant interaction between the a-path and the
general factor variance (b=-0.013, t=-10.890, p<.05, partial n?=.051). As the general
factor variance increased, the interval width decreased faster for conditions with a smaller
a-path than for a larger a-path.

-Insert Table 3D-1 and Figure 3D-1 to Figure 3E-1 about here-

Summary of the unidimensional model. When the bifactor model is
misspecified by only modeling one dimension (Model 3), only conditions with a small
specific factor variance adequately fit the data. The mediated effect is negatively biased

and has coverage below .95. Conditions with a small sample size, general factor variance
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and a- and b- paths had the least bias and highest coverage. Bias increased and coverage
decreased as the rest of the simulation factors increased. Also, conditions with 500 cases,
small general factor variance, and medium a- and b-paths for models with zero and
nonzero mediated effects had adequate power and Type 1 errors. Other conditions
approached adequate power and Type 1 errors as the a- and b-path increased. Power also
increased as sample size increased and general factor variance decreased.
Analysis of the Correlated Factor Model

As previously mentioned, only conditions with a large general factor variance,
except conditions with a large b-path, were analyzed for the correlated model.

Bias in the correlated factor model. The mediated effect was negatively biased
(Table 4A-1 and Table 4A-2). Bias decreased as the specific factor variance increased
and as sample size and the a- and b-paths decreased. Conditions with large specific factor
variance and small a- and b-paths and small sample size had the least bias. Detailed
analyses are found below.

Standardized bias in the correlated factor model with nonzero mediated effects.
Figure 4A-1 shows that standardized bias decreased as the specific factor variance
increased and as the a- and b-paths and sample size decreased. The variance explained by
the regression predicting standardized bias from the simulation factors was R? = .982.
There was a significant interaction among all of the predictors (b=8.833, t= 97.365,
p<.05, partial n?=.083). As the specific factor variance increased, standardized bias
increased slower for larger sample sizes and a- and b-paths than for the smaller sample
sizes and a- and b-paths, supporting Hypothesis 4.3.

-Insert Figure 4A-1 and Table 4A-1 about here-
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Raw bias in the correlated factor model with nonzero mediated effects. Figure
4A-4 shows that raw bias was not influenced by sample size or specific factor variance.
The variance explained by the regression predicting raw bias from the simulation factors
was R? = .971. There was a significant interaction between the a- and the b-path (b=-
1.574, t=-192.150, p<.05, partial n?= .747). As the a-path increased, raw bias increased
faster for a medium b-path than a small b-path.

-Insert Figure 4A-2 about here-

Relative bias in the correlated factor model with nonzero mediated effects.
Figure 4A-5 show that relative bias decreased as the specific factor variance increased.
The variance explained by the regression predicting relative bias from the simulation
factors was R? = .018. As the specific factor variance increased, the relative bias
decreased, (b=.041, t=8.721, p<.05, partial n?=.016), supporting Hypothesis 4.3.

-Insert Table 4A-2 and Figure 4A-3 about here-

Power in the correlated factor model. The power to detect the mediated effect
increased as sample size, the a- and b-paths, and the specific factor variance increased
(Figure 4B-1). Conditions with 1,000 cases, large a- and b-paths, and large specific factor
variance were adequately powered (Table 4B-1). Detailed analyses are found below.

Power to detect the mediated effect. There were significant main effects of the a-
path (large effect size; b=1.668, z=3.053, p<.05), sample size (large effect size; b=1.453,
z=2.612, p<.05), and b-path (medium effect size; b=1.257, z=2.216, p<.05). As the
sample size and a- and b-paths increased, the power increased. Power increased as the b-
path (x2(1, N=107,086) = 5.509, p<.05), sample size (x%(2, N=107,086) = 9.066, p<.05),
and a-path (x2(2, N=107,086) = 13.134, p<.05) increased, but power did not significantly
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increase as the specific factor variance increased (y%(2, N=107,086) = 3.29, p=.416),
supporting Hypothesis 4.4.
-Insert Table 4B-1 and Figure 4B-1 about here-

Type 1 error in the correlated factor model. The Type 1 error in the mediated
effect approached .05 as the a- or b-path increased (Figure 4C-1 to Figure 4C-2). Type 1
errors were adequate for conditions with a medium a- or b-path, a sample size of 1,000,
and large specific factor variance (Table 4C-1). Conditions analyzed had a nonzero a- or
b-path and a zero effect in the other path. Detailed analyses are found below.

Type 1 error in the mediated effect. Table 4-C1 show that all conditions had
empirical Type 1 error rates below .075. Conditions with zero a- and b-paths had Type 1
errors close to zero. In the model predicting Type 1 error rate from the a-path, specific
factor variance, and sample size, Type 1 error approached .05 as the a-path increased
(large effect size; b=1.614, z=2.083, p<.05). Type 1 error approached .05 as the a-path
increased (y%(2, N=53,870) = 6.235, p<.05), but sample size (x%(2, N=53,870) = 2.972,
p=.226) and the specific factor variance (x%(2, N=53,870) = 3.245, p=.197) did not
influence Type 1 error rates. Similarly, in the model predicting Type 1 error rate from the
b-path, sample size, and specific factor variance, there was a significant interaction
between the b-path and sample size (large effect size; b=1.868, z=2.624, p<.05). As
sample size increased, Type 1 error approached .05 faster for conditions with a larger b-
path than with smaller b-path. The Type 1 error approached .05 as the b-path (x%(2,
N=53,997) = 3.307, p<.05) increased, but specific factor variance (3%(2, N=53,997) =
0.389, p=.197), and sample size (x2(2, N=53,997) = 0.527, p=.226) did not significantly

influence Type 1 error rates.
42



-Insert Table 4C-1 and Figure 4C-1 to 4C-2 about here-

Coverage and interval width in the correlated factor model. The 95%
confidence interval coverage of mediated effect approached .95 as the specific factor
variance increased and the a- and b-paths and sample size decreased (Figure 4D-1).
Conditions with large specific factor variance, and small a- and b-paths and sample size
had coverage closer to .95. (Table 4D-1). Detailed analyses are found below.

Confidence interval coverage and width for the mediated effect. Table 4D-1
shows that all conditions had a coverage rate below 92.5%. Conditions with a medium a-
and b-path and 500 cases had coverage of zero. Confidence interval coverage was
examined only for conditions with a sample size of 200. There were significant
interactions between the specific factor variance and the a-path (medium effect size; b= -
1.252, z=-3.368, p<.05) and between the specific factor variance and the b-path (medium
effect size; b=.569, z=3.310, p<.05). As the specific factor variance increased,
confidence interval coverage approached .95 faster for conditions with a smaller a- and b-
paths than for conditions with a larger a- and b-paths. Across all conditions, confidence
interval coverage approached .95 as the specific factor variance increased (x%(2, N=
35,390) = 19.91, p<.05), and the a-path (x2(2, N= 35,390) = 1,335.06, p<.05) and b-path
(x2(2, N=35,390) =742.90, p<.05) decreased, supporting Hypothesis 4.6.

Confidence Interval Width. Figure 4E-1 shows that interval width increased as the
specific factor variance and a- and b-paths increased, and as the sample size decreased.
The variance explained by the regression predicting confidence interval width from the
simulation factors was R? = .611. There was an interaction between the a-path and the
specific factor variance (b=.025, z=19.281, p<.05, partial n?=.014). As the specific factor
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variance increased, interval width increased faster for conditions with larger a-path than
for their smaller a-path.
-Insert Table 4D-1 and Figure 4D-1 to Figure 4E-1 about here-

Summary of the correlated factor model. When the bifactor model is
misspecified by only modeling one dimension with correlated uniquenesses (Model 4),
most conditions with a large general factor variance converged. The mediated effect was
negatively biased and had coverage below .95. Conditions with small a- and b-paths,
small sample size, and large specific factor variance had the least bias and highest
coverage. Bias decreased and coverage approached .95 as the specific factor variance
increased and the other simulation factors decreased. Also, conditions with 1,000 cases,
large a- and b-paths, and large specific factor variance in models with zero or nonzero
mediated effects had adequate power and Type 1 error rates. Other conditions approached
adequate power and Type 1 error as the a- and b-paths increased, and were not
influenced by the specific factor variance. Only power increased as the sample size
increased.

Model Comparisons

Comparisons of the different analysis models need to be done with caution
because the mediated effects across misspecified models are theoretically different.

Correlated v. unidimensional factor model. The unidimensional model is
nested under the correlated factor model, so the influence of the correlated uniqueness on
the simulation outcomes was investigated. Only conditions with large general factor
variance and a small specific factor variance converged and fit both models. First, Table

5A-1 and Table 5A-2 show that the correlated model had slightly higher bias than the
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unidimensional model. The variance explained by the regression predicting the difference
in the standardized bias between the models was R?=.906. There was an interaction
among the a- and b-paths and sample size (b=0.081, t= 5.004, p<.05, partial n?=.008).
The difference in standardized bias increased faster as the sample size increased for
conditions with larger a- and b-paths than for smaller a- and b-paths. Second, Table 5B-1
shows that both models had power around .05 for the analyzed conditions, so no
statistical tests were performed. Conditions with the highest power had a medium effect
size in the a-path and the b-path and 1,000 cases. Third, Table 5C-1 shows that both
models had Type 1 errors below .075. Type 1 error rates were only adequate for the
unidimensional model in conditions of 1,000 cases. Finally, Table 5D-1 shows that
confidence interval coverage was similar for both models. Conditions with small sample
size and small a- and b-paths had coverage closest to .95.
-Insert Table 5A-1, Table 5A-2, Table 5B-1, Table 5C-1 and Table 5D-1 about here-

Facet v. finite factor model. First, bias in the mediated effect from the facet
model is always negative and higher than the bias from the finite model. The most biased
condition in the finite model has a small sample size, small general factor variance, small
specific factor variance, and small a- and b-paths. Those conditions had the least bias in
the facet model, which increased as the specific factor variance decreased and the other
simulation factors increased.

Second, conditions with medium a- and b-paths and a sample size of 500 had
adequate power for both models. The facet model only had more power in conditions
where the general factor variance is small or medium, sample size is small, and one of the

paths is small. For conditions with a small sample size, there was a significant interaction
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among the predictors (small effect size; b=.802, z=.326, p<.05). The difference in power
decreased faster as the specific factor variance increased for conditions with larger a- and
b-paths and smaller general factor variance than smaller a- and b-paths and larger general
factor variance.

Third, when the a- or b-path had nonzero effects and a small general factor
variance, the facet model had Type 1 errors closer to .05. The finite model had Type 1
errors closer to .05 when the general factor variance and sample size increased and the a-
and b-paths were small.

Finally, about 37.7% of the true mediated effects were covered by confidence
intervals in both facet and finite models. The facet model never had higher coverage than
the finite model. In the prediction of the coverage difference, there was a significant
interaction among all of the predictors (large effect size; b=-2.407, z=-4.975, p<.05). The
difference in coverage increased faster as sample size increased for conditions with larger
a- and b-paths, larger general factor variance, and smaller specific factor variance than
smaller a- and b-paths, smaller general factor variance, and larger specific factor
variance.

Unidimensional v. finite factor model. Only conditions with a small specific
factor variance and up to medium a- or b-paths fit both models. First, bias in the mediated
effect for the unidimensional model is always negative and higher than for the finite
model. The most biased condition in the finite model had a small sample size, small
general and specific factor variance, and small a- and the b-paths. Those conditions had
the least bias in the unidimensional model, which increased as simulation factors

increased.
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Second, the finite model had more power that the unidimensional model, except in
conditions with a small general factor variance and sample size. In the prediction of the
difference in power, there was a significant interaction between sample size and the a-
and b-paths (small effect size; b=-0.383, z=-19.372, p<.05). As sample size increased,
the difference in power increased faster for conditions with a smaller a- and b-paths than
for larger a- and b-paths.

Third, the finite model has adequate Type 1 errors in conditions with 1,000 cases
and a small a- or b-path. The unidimensional model had Type 1 error rates below .025 for
that condition. Also, the unidimensional model had adequate Type 1 error rates for
conditions with a small sample size, general factor variance and a medium a- or b-path.
The finite model had adequate Type 1 errors only for conditions with 500 cases.

Finally, the finite model had confidence interval coverage closer to .95 than the
unidimensional model. Discrepancies in coverage increased as the simulation factors
increased.

Correlated v. finite factor model. Only conditions with a large general factor
variance and up to a medium b-path converged for both models. First, bias in the
mediated effect for the correlated factor model is always negative and higher than for the
finite model. The most biased conditions in the finite model had a small sample size,
small general and specific factor variance, and small a- and the b-paths. Those conditions
had the least bias in the correlated factor model, which increased as the specific factor
variance decreased and the simulation factors increased.

Second, the finite model had more power than the correlated factor model. In the

prediction of the difference in power, there was a significant interaction among all of the
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predictors (small effect size; b=-0.206, z=-5.348, p<.05). As sample size increased, the
difference in power for the models increased faster for conditions with a smaller a- and b-
paths and specific factor variance than for larger a- and b-paths and specific factor
variance.

Third, Type 1 error rates were adequate for the finite and correlated factor
models in conditions with a medium a- or b-path. However, Type 1 error approached .05
for the correlated factor model only when the sample size and specific factor variance
were medium or large.

Finally, the finite model had coverage closer to .95 than the correlated factor
model. The coverage difference increased as simulation factors increased but as the
specific factor variance decreased.

Facet v. unidimensional model. Only conditions with a small specific factor
variance and up to a medium a- or b-path fit both models. First, the mediated effect in the
facet model was less biased than in the unidimensional model. The variance explained by
the regression predicting the difference in relative bias from the simulation factors was
R?=.144. There was a significant interaction between sample size and the general factor
variance (b=0.075, t=9.442, p<.05, partial n?=.005). The difference in relative bias
decreased faster as sample size increased for conditions with a smaller general factor
variance than for a larger general factor variance. Also, the variance explained by the
regression predicting standardized bias from the simulation factors was R?=.993. There
was a significant interaction among all of the predictors (b=5.555, t=95.140, p<.05,

partial n?=.124). The difference in the standardized bias increased faster as the sample
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size increased for conditions with larger general factor variance and a- and b-paths than
with smaller general factor variance and a- and b-paths.

Second, the facet model had more power than the unidimensional model. There
was an interaction among simulation factors on the power difference (b=2.646, z—=4.866,
p<.05). As the general factor variance increased, the power difference increased faster for
conditions with a larger sample size and a- and b-paths than for smaller sample size and
a- and b-paths.

Third, conditions with a medium a- and b-paths had adequate Type 1 errors in
both models. The unidimensional model had adequate Type 1 errors for conditions with a
small sample size and general factor variance. The facet model has adequate Type 1
errors only for conditions with medium sample sizes. All of the previous comparisons
supported Hypothesis 5.

Finally, the facet model had coverage closer to .95 than the unidimensional
model. Coverage differences increased as simulation factors increased but as the general
factor variance decreased.

Facet v. correlated factor model. Only conditions with a large general factor
variance and up to a medium b-path converged for both models. First, the facet model
was less biased than the correlated factor model. The variance explained by the
regression predicting standardized bias from the simulation factors was R?=.992. There
was a significant interaction among all the predictors (b=-8.413, t=-124.060, p<.05,
partial n?=.129). The standardized bias difference increased faster as the sample size
increased for conditions with smaller specific factor variance and larger a- and b-paths

than with larger specific factor variance and smaller a- and b-paths.
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Second, the facet model had more power that the correlated factor model. There
was an interaction among the all the simulation factors on the power difference (large
effect size; b=-1.487, z=-5.602, p<.05). As the sample size increased, the power
difference increased faster for conditions with a smaller specific factor variance and
larger a- and b-paths than for a larger specific factor variance and smaller a- and b-paths.

Third, both models had adequate Type 1 errors in conditions with a medium a- or
b-paths, but the correlated factor model also needed a large sample size and general
factor variance for adequate Type 1 error rates.

Finally, the facet model had coverage closer to .95 than the correlated factor
model. The coverage difference increased as the specific factor variance decreased and
the other simulation factors increased. All of the previous comparisons supported
Hypothesis 5.

Discussion

The goal of this Monte Carlo study was to investigate what happens to the
mediated effect when a facet of a broad mediating construct is the true mediator, but the
mediating construct is misspecified. The simulation study evaluated four latent variable
models that included general and specific aspects of a mediator. The main conclusion is
that misspecifying the facets of a mediating construct leads to mediated effect estimates
that are too small, though the effect could still be detected under certain conditions.
Accurate mediated effect estimation depends on mediator specific facet variance. This
discussion section describes the contributions of the study, limitations, and future

directions.
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Summary of the Simulation Results

The mediation model with a bifactor mediator measurement model had unbiased
and adequately powered mediated effects as the general and specific factor variance in
the indicators increased. Conditions with small sample sizes (e.g., N=200), small general
factor variance, and small specific factor variance in the indicators often had models that
did not converge.

The mediation model with only mediator facet indicators had small mediated
effects, which were more likely to be detected as the specific factor variance increased
and the general factor variance decreased. Recall the facet indicators do not distinguish
between the general and specific factor variance. Not all of the variance in the latent
variable is true mediator variance because some is from the general factor. The factor
loadings on the facet are larger than those from the data-generating model. As a result,
the b-path and the mediated effect are underestimated and the ¢ ’-path is overestimated.

The unidimensional mediator model had many model fit problems. Few
conditions with a small general factor variance, small specific factor variance, and small
sample size met the conventional fit index thresholds of the RMSEA and the CFI. The
model fit the data (with a threshold for the SRMR above .08) when there was 10%
specific factor variance. This model had small mediated effects and were more likely to
be detected as the general factor variance decreased because only a small part of the true
mediator variance is reflected in the unidimensional latent variable. As the general factor
variance increased, the latent variable reflects more of the general factor variance among

the indicators rather than specific factor variance.
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Adding correlated uniquenesses to the unidimensional mediator model improved
model fit. The unidimensional measurement model with correlated uniqueness has the
same fit, degrees of freedom, and factor loadings on the general factor as the bifactor
model. Although model fit improved, the model often did not converge (exceeding
iteration limits or having negative residual variances in the indicators) because the
correlated uniquenesses captured the true mediator variance. Indicators that did not
measure the true mediator had underestimated loadings on the general factors when X
predicted the mediator because X tried to pull the factor to the right solution. Often, the
variance of the mediator and residual variances had improper solutions. Most models
with large general factor variance converged and had small mediated effects. The
mediated effects were more likely to be detected as the specific factor variance increased.
Contributions and Implications of the Simulation Results

This study contributes to the important, but largely unexplored area of
measurement issues in statistical mediation analysis (MacKinnon, 2008). Previous
research investigated the influence of reliability (Hoyle & Kenny, 1999), measurement
invariance (Olivera-Aguilar, Kisbu-Sakarya, & MacKinnon, submitted), and
confounding-measurement error relationships (Fritz, Kenny, & MacKinnon, submitted)
on the mediated effect in the single mediator model. This study described the influence of
misspecifying the structure of the mediator on the mediated effect. The misspecifications
studied were theoretically valid, alternative measurement models that did not represent
the facets of the mediator accurately. This study used the bifactor measurement model to
distill the indicators of the mediating variable into multiple variance components, obtain

a facet latent variable, and use the facet as the mediator.
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This study contributes to the psychometric literature of latent variable modeling
by investigating how general and specific factor variance affects the measurement of the
mediator (Brunner, Nagy, & Willhem, 2012). One alternative measurement model not
studied was the higher-order model. Researchers have historically favored the higher-
order factor model over the bifactor model (Reise, 2012). The results of the simulation
study demonstrate the viability of the bifactor model because it can simultaneously test
relationships of general and specific aspects of a construct on an outcome (Chen, West &
Sousa, 2006). Finally, this study extends Reise et al., (2013), which found that indices of
factor strength predicted structural bias when multidimensional data were treated as
unidimensional. The results of this study suggest that the strength of the facet factor
(specific factor variance) was a significant predictor of the bias and power to detect the
mediated effect.

This study has implications for how researchers conceptualize mediators.
Researchers can apply the latent variable models described in this study to assess
measurement structure and how the mediating process occurs. The level of generalization
in the latent variable (Gustafsson & Balke, 1993) studied will affect the estimation of the
mediated effect. When only the facet indicators were modeled in this study, the latent
variable has facet variance of interest and also common variance that does not contribute
to the mediation process. When the indicators of a multidimensional mediator are treated
as unidimensional, for example, the model did not fit the data. When correlated
uniquenesses were used to improve the fit of the unidimensional model, the true mediator
variance was hidden in the correlated residuals. However, some misspecified models had

sufficient power to detect the mediated effect, depending on the a- and b-path effect size
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and the specific factor variance in the indicators. Therefore, statistically significant results
in models with latent mediators are encouraging but repeated testing of the model is
needed to distill the true mediator.

There are several challenges to repeated testing to distill a mediating process and
using the bifactor model in substantive research. First, repeated revisions of the mediator
measurement model could inflate Type 1 errors. One solution is to use cross-validation
strategies to support the exploratory phase of model building (Bandalos, 1993). If there is
a large sample size, using “out-0f-bag” cases to test the model or using leave-one-out
cross-validation would help researchers overcome inflated Type 1 error rates (Berk,
2008). Second, the bifactor model requires a large sample size and high factor loadings in
the general and specific factors for unbiased estimation and adequate power. Exploratory
(Asparouhov & Muthen, 2009) and Bayesian (Muthen & Asparouhov, 2012) approaches
to bifactor modeling could help reduce convergence problems due to low factor loadings,
small sample sizes, or the orthogonality of specific factors. A Bayesian approach could
also be used to update the measurement model as more information is found in the
literature. An incomplete bifactor model could also improve estimation when some of the
facets do not have reliable variance (Chen, West, & Sousa, 2006). Using model-based
measures of reliability, such as coefficient omega or explained common variance, can
inform whether the general and specific factors need to be modeled (Reise et al., 2010).
Finally, if the facet is the true mediator and all of the previous recommendations cannot
be followed, measuring a few mediator indicators of a theoretical facet will have more

power to detect the mediated effect than a unidimensional broad construct.
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Limitations and Future Directions

The future directions of this study extend from the limitations. Practical examples
with datasets from the field are needed to illustrate the results from this study. More
substantive examples of meaningful facets independent from a broad construct are also
needed. Two examples in the literature are the constructs of depression and work-place
vigor. Simms, Gros, Watson, and O’Hara (2008) investigated the bifactor structure of
depression, modeling symptom groups as the specific factors. They indicate that appetite
loss, appetite gain, well-being, and insomnia have high loadings on specific factors and
that those symptoms relate differently to general distress. Simms et al. (2008) suggest
that, if findings are replicated, examining the specific factors could provide an index of
severity so that symptoms are not weighted the same when diagnosing for general
depression (i.e., appetite loss had a higher association with distress than appetite gain).
Moreover, Armon and Shiron (2011) fit a bifactor model to study vigor and its facets
(physical strength, emotional energy, and cognitive liveliness). They interpreted the
emotional energy specific factor as variance that “reflects a unique positive energy
balance in one’s interpersonal relationships, unique in the sense of not being shared with
the other two facets of vigor (Armon & Shiron, 2011, pg. 619).” The emotional energy
specific factor had a .47 stability coefficient across a two-year testing span and was
significantly associated with the Big 5 agreeableness factor. DeMars (2013) warns
researchers that the interpretation of the specific factors reflects information above and
beyond the general factor score; that a weighted composite of general and specific factor
variance might be more reliable than a specific factor score; and that specific factors

might underestimate the influence of a facet on an outcome.
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Also, a limited number of sample size conditions were investigated in this study.
The simulation showed that models with a bifactor mediator do not have sufficient power
to detect the mediated effect with a sample size of 200, but there was sufficient power in
conditions with a sample size of 500. A power curve for the mediated effect is needed to
find the exact sample size when power gets to .80 (Fritz & MacKinnon, 2007).

Also, it is difficult to compare the simulation outcomes across misspecified
models because they are theoretically different in how they represent the mediator. A
criticism of Monte Carlo simulations is that the data-generating model will always be
favored by the simulation outcomes. Parameters in misspecified models are expected to
be biased and not adequately covered in confidence intervals, but they can still provide
information about when an effect can be detected. The goal of this study was to
investigate the conditions when a researcher who has some measures of the true
mediating construct could find the effect.

For this study, the bifactor mediator model was the data-generating model to
study the influence of mediator facets in the presence of general factor variance. Data
could have been generated under a unidimensional model or a one-factor model for the
facet, but the presence of multiple sources of variance in the indicators cannot be studied
if all of the sources of variance are not simulated. An alternative model to simulate
multidimensional data is the higher-order factor model. The specific factor variance from
the bifactor model is represented by a lower-order factor disturbance in the higher-order
model. It would be interesting to use non-standard structural equation modeling to predict

an outcome from a lower-order factor disturbance (see Stacy, Newcomb, & Bentler,
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1991). Interpretation is sacrificed when disturbances are used as predictors but results
from this model and the bifactor mediator model are comparable.

Another interesting data-generating model is one where some the general factor
variance distilled from the facet factors predicts the outcome. A parallel mediator model
would be needed to capture the total mediated effect (O’Rourke & MacKinnon, 2015).
The bifactor mediator would have two mediated effects — one through the general factor
and one through the specific facet. It would be interesting to evaluate if a unidimensional
model that only includes the facet indicators can fully capture the total mediated effect.

A fully Bayesian approach with informative or diffuse priors can be an alternative
model of analysis for statistical mediation (Yuan & MacKinnon, 2009) and might lead to
more power and less bias in the mediated effects from misspecified models. A Bayesian
approach to bifactor modeling has been proposed (Muthen & Asparouhov, 2012), but its
properties for accurate bifactor estimation are yet to be investigated.

Finally, this study assumed that the measurement structure of the mediator was
invariant across the binary treatment variable and across time. These hypotheses can be
tested if there are pretest measures of the mediator and by comparing the factor structure
across groups. Olivera-Aguilar, Kisbu-Sakarya, and MacKinnon (submitted) indicate that
violations of scalar invariance in the mediator lead to biased and underpowered estimates
of the mediated effect. It would be interesting to evaluate the influence violations of
measurement invariance in the data-generating model on mediated effect estimation in
misspecified models. Also, the dependent variable in this study was modeled as perfectly
reliable and invariant. It would be interesting to evaluate how a bifactor mediator

interacts with violations of measurement invariance in the dependent variable.
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Conclusions

This study illustrated how identifying the true mediator in the causal process is a
measurement problem. Incorrect characterizations of multifaceted mediators led to biased
and underpowered mediated effects. This study encourages researchers to explore the
multidimensionality of their mediators and the influence of facets on outcomes so that

they have more power to test for mediation in interventions and other substantive studies.
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Figure 1. The Single mediator model.

Figure 2. Unidimensional measurement model.

Figure 3. Bifactor measurement model for the mediator.
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X b4

Figure 4. Model 1 — Distillation of the mediated effect with the bifactor model (finite-

sample model)

X : Y

Figure 6. Model 3 — Unidimensional mediation model
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Figure 7. Model 4 — Correlated Factor mediation model
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Table 1C-1

Type 1 Error in the mediated effect through the distribution of product method
in the finite model when general factor variance is .09 (gen 1=.3)

a-path
zero small medium large zero zero zero

b-path
Zero  zero zZero zero small medium large

spec L N

3 2000 N/A  N/A 0.002 0.004 N/A 0.017  0.030
45 200 0.000 0.005 0.021 0.019 0.006 0.033 0.048
.6 200 0.001 0.009 0.034 0.036 0.005 0.045 0.050
3 500 0.000 0.001 0.010 0.011 0.006 0.033 0.042
45 500 0.000 0.015 0.030 0.028 0.011 0.046  0.046
6 500 0.000 0.021 0.035 0.034 0.022 0.049 0.050
3 1000 0.000 0.018 0.030 0.032 0.023 0.043 0.039
45 1000 0.000 0.034 0.041 0.037 0.027 0.038 0.035
.6 1000 0.000 0.038 0.042 0.040 0.038 0.039 0.038

Table 1C-2

Type 1 Error in the mediated effect through the distribution

of product method

in the finite model when general factor variance is .25 (gen 1=.5)
a-path
zero small medium large  zero zero zero
b-path
Zero  zero zZero zero small medium large
spec L N
3 200 N/A 0.004 0.011 0.011 0.004 0.023  0.037
45 200 0.001 0.009 0.033 0.031 0.006 0.042  0.048
.6 200 0.003 0.009 0.041 0.042 0.005 0.046  0.055
3 500 0.000 0.003 0.015 0.016 0.008 0.036  0.040
45 500 0.000 0.013 0.034 0.031 0.016 0.042  0.045
6 500 0.000 0.015 0.027 0.027 0.020 0.040  0.045
3 1000 0.001 0.024 0.032 0.028 0.028 0.047  0.041
45 1000 0.001 0.032 0.038 0.035 0.038 0.049  0.044
.6 1000 0.000 0.036 0.038 0.037 0.036 0.043  0.036
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Table 1C-3
Type 1 Error in the mediated effect through the distribution of product method
in the finite model when general factor variance is .49 (gen 1=.7)

a-path
zero small medium large  zero zero zero
b-path
Zero  zero Zero zero small medium large
spec AN
3 200 0.000 0.009 0.025 0.023 0.007 0.038 0.049
45 200 0.000 0.020 0.047 0.044 0.011 0.043 0.048
6 200 0.000 0.018 0.048 0.051 0.019 0.045 0.046
3 500 0.000 0.016 0.032 0.033 0.017 0.035 0.036
45 500 0.000 0.021 0.044 0.041 0.027 0.038 0.040
6 500 0.000 0.024 0.044 0.043 0.025 0.039 0.043
3 1000 0.001 0.037 0.045 0.045 0.037 0.046 0.048
45 1000 0.001 0.044 0.048 0.047 0.036 0.049 0.044
6 1000 0.002 0.046 0.049 0.049 0.040 0.044 0.041
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Table 2C-1
Type 1 Error in the mediated effect through the distribution of product method
in the facet model when general factor variance is .09 (gen 1=.3)

a-path
zero small medium large zero zero zero
b-path
Zero  zero zZero zero small medium large
spec L N
3 200 0.000 0.003 0.020 0.031 0.005 0.032 0.045
45 200 0.000 0.006 0.045 0.052 0.009 0.040 0.051
.6 200 0.002 0.012 0.059 0.061 0.010 0.048 0.054
3 500 0.000 0.010 0.032 0.033 0.010 0.044 0.038
45 500 0.000 0.018 0.037 0.038 0.015 0.041 0.042
6 500 0.000 0.022 0.040 0.040 0.020 0.044 0.046
3 1000 0.001 0.030 0.048 0.048 0.025 0.035 0.037
45 1000 0.001 0.039 0.050 0.048 0.026 0.036 0.039
.6 1000 0.001 0.043 0.048 0.047 0.036 0.041 0.036
Table 2C-2

Type 1 Error in the mediated effect through the distribution of product method
in the facet model when general factor variance is .25 (gen A=.5)

a-path
zero small medium large  zero zero zero
b-path
Zero  zero zZero zero small medium large
spec L N
3 200 0.000 0.007 0.036 0.046 0.007 0.030 0.042
45 200 0.001 0.010 0.050 0.058 0.009 0.039 0.049
.6 200 0.002 0.011 0.056 0.060 0.010 0.045 0.052
3 500 0.000 0.014 0.039 0.040 0.011 0.041 0.043
45 500 0.000 0.017 0.039 0.038 0.014 0.039 0.042
.6 500 0.000 0.020 0.040 0.040 0.015 0.040 0.045
3 1000 0.001 0.034 0.052 0.052 0.024 0.036 0.037
45 1000 0.001 0.040 0.052 0.050 0.028 0.037 0.036
.6 1000 0.001 0.044 0.051 0.052 0.029 0.039 0.038
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Table 2C-3
Type 1 Error in the mediated effect through the distribution of product method
in the facet model when general factor variance is .49 (gen 1=.7)

a-path
zero small medium large zero zero zero
b-path
Zero  zero Zero zero small medium large
spec AN
3 200 0.002 0.008 0.038 0.059 0.008 0.034 0.047
45 200 0.002 0.011 0.048 0.060 0.008 0.038 0.048
6 200 0.002 0.011 0.055 0.061 0.008 0.042 0.052
3 500 0.000 0.009 0.040 0.042 0.008 0.045 0.043
45 500 0.000 0.015 0.040 0.041 0.009 0.040 0.041
6 500 0.000 0.019 0.041 0.042 0.012 0.041 0.041
3 1000 0.001 0.025 0.049 0.050 0.021 0.040 0.039
45 1000 0.001 0.035 0.050 0.051 0.026 0.038 0.039
6 1000 0.001 0.042 0.048 0.050 0.033 0.040 0.036
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Table 3A-1

Standardized Bias in the mediated effect for the unidimensional
model with nonzero effects when the specific factor variance is
.09 (spec 1=.3)

a-path
small medium
b-path
small medium small medium
gen N

A
3 200 -0.971 -1.472 -1.463 -2.773
5 200 -1.877 -3.208 -3.193 -6.268
T 200 -2.736 -5.388 -5.321 -11.580
3 500 -1.837 -2.446 -2.497 -4.653
5 500 -3.997 -5.843 -5.924 -11.159
7 500 -6.291 -10.547  -10.568 -21.995
3 1000  -2.595 -3.385 -3.452 -6.327
5 1000 5960  -8.331 -8.479 -15.653

A 1000  -9.903  -15.365  -15.547 -31.417

Note: Red are standardized bias above .1.

Table 3A-2

Relative Bias in the mediated effect for the unidimensional
model with nonzero effects when the specific factor variance is
.09 (spec 1=.3)

a-path
small medium
b-path
small medium small medium
gen N

A
3 200 -0.659 -0.645 -0.676 -0.663
5 200 -0.857 -0.859 -0.873 -0.871
v 200 -0.938 -0.942 -0.949 -0.950
3 500 -0.659 -0.634 -0.663 -0.648
5 500 -0.870 -0.865 -0.880 -0.876
v 500 -0.947 -0.947 -0.954 -0.954
3 1000 -0.649 -0.626 -0.655 -0.641
5 1000  -0.867 -0.864 -0.879 -0.876
v 1000 -0.945 -0.946 -0.953 -0.954
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Table 3B-1

Power in the mediated effect through the distribution of product
method for the unidimensional model with nonzero effects when
the specific factor variance is .09 (spec 1=.3)

a-path
small medium
b-path
small medium small medium
gen N
A
3 200 0.012 0.102 0.071 0.450
5 200 0.007 0.031 0.024 0.125
T 200 0.002 0.009 0.010 0.027
3 500 0.084 0.325 0.265 0.914
5 500 0.017 0.122 0.085 0.489
7 500 0.007 0.028 0.027 0.114
3 1000 0.293 0.626 0.518 0.997
5 1000  0.069 0.305 0.218 0.861
7 1000 0.014 0.098 0.075 0.382
Table 3C-1

Type 1 Error in the mediated effect through the
distribution of product method for the
unidimensional model with nonzero effects when
the specific factor variance is .09 (spec 1=.3)

a-path
zero small medium zero Zero
b-path
Zero Zero Zero small medium
gen N
A
3 200 0.001 0.003 0.027 0.007 0.030
D 200 0.001 0.002 0.008 0.006 0.009
v 200 0.001 0.002 0.006 0.003 0.006
3 500 0.000 0.006 0.043 0.006 0.041
5 500 0.000 0.001 0.029 0.003 0.022
7 500 0.000 0.001 0.012 0.003 0.008
3 1000 0.002 0.020 0.055 0.016 0.039
5 1000  0.001 0.010 0.048 0.008 0.038
v 1000 0.001 0.002 0.028 0.004 0.029
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Table 3D-1

Confidence Interval Coverage in the mediated effect through
the distribution of product method in the unidimensional model
when specific factor variance is .09 (spec 1=.3)

a-path
small medium
b-path
small medium small medium
gen N

A
3 200 0.803 0.620 0.619 0.277
5 200 0.618 0.278 0.265 0.020
T 200 0.459 0.101 0.098 0.001
3 500 0.615 0.382 0.394 0.031
5 500 0.225 0.024 0.019 0.000
v 500 0.077 0.000 0.000 0.000
3 1000 0.389 0.140 0.149 0.000
2 1000 0.038 0.000 0.000 0.000
T 1000 0.003 0.000 0.000 0.000
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Table 4C-1
Type 1 Error in the mediated effect through the distribution of product method
in the correlated model when general factor variance is .49 (gen A1=.7)

a-path

zero  small medium large  zero Zero Zero
b-path

zero zero zZero zero small medium large

spec L N

3 200 0.001 0.001 0.004 0.005 0.003 0.005 0.007
45 200 0.001 0.001 0.003 0.007 0.003 0.005 0.008
.6 200 0.001 0.000 0.005 0.009 0.004 0.009 0.017
3 500 0.001 0.001 0.005 0.018 0.003 0.009 0.012
45 500 0.000 0.002 0.012 0.026 0.003 0.011 0.025
.6 500 0.000 0.001 0.014 0.031 0.002 0.012 0.032
3 1000 0.001 0.003 0.016 0.034 0.002 0.018 0.030
45 1000 0.002 0.004 0.025 0.047 0.003 0.024 0.038
.6 1000 0.001 0.004 0.036 0.058 0.005 0.025 0.036
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Table 5A-1

Standardized Bias in the mediated effect for the unidimensional and correlated
model with nonzero effects when the specific factor variance is .09 (spec 1=.3)
and general factor variance is .49 (gen 1=.7)

a-path
small medium
b-path
small mediu  small mediu
m m
Model gen spec N
A A
7 3 200
Unidimensional -2.736  -5.388 -5.321 -11.580
Model 7.3 500 6291 -10547 -10.568 -21.995
A 3 1000 -9.903 -15.365 -15.547 -31.417
Correlation A 3 200 -2.647 -5361 -5385 -11.019
Model g 3 500 -6.389 -11.225 -11.359 -22.530
A 3 1000 -10.749 -17.026 -17.344 -33.404
Table 5A-2

Relative Bias in the mediated effect for the unidimensional and correlated
model with nonzero effects when the specific factor variance is .09 (spec 1=.3)
and general factor variance is .49 (gen 41=.7)

a-path
small medium
b-path
small  medium  small medium
Model gen spec N
A A
7 3 200
Unidimensional -0.938 -0.942 -0.949 -0.950
Model 7.3 500 9947 0947 -0.954 -0.954
7 .3 1000 -0.945 -0.946 -0.953 -0.954
Correlation v 3 200 -0.946 -0.951 -0.957 -0.958
Model v 3 500 -0.962 -0.960 -0.966 -0.964
7 .3 1000 -0.960 -0.961 -0.965 -0.963
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Table 5B-1

Power in the mediated effect through the distribution of product method for the
unidimensional and correlated model with nonzero effects when the specific
factor variance is .09 (spec A=.3) and general factor variance is .49 (gen

A=.7)
a-path
small medium
b-path
small  medium small medium
Model gen spec N
A A
Unidimensional v 3 200 0.002 0.009 0.010 0.027
Model v 3 500 0.007 0.028 0.027 0.114
T .3 1000 0.014 0.098 0.075 0.382
Correlation v 3 200 0.002 0.005 0.007 0.021
Model T 3 500 0.007 0.012 0.015 0.069
v 3 1000 0.009 0.039 0.046 0.215
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Table 5C-1

Type 1 Error in the mediated effect through the distribution of product method for
the unidimensional and correlated model with nonzero effects when the specific
factor variance is .09 (spec A=.3) and general factor variance is .49 (gen 1=.7)

a-path
zero small medium  zero Zero
b-path
ZEro ZEero ZEero small medium
Model gen spec N
A A
v 3 200
Unidimensional 0.001 0.002 0.006 0.003 0.006
Model g 3 500 0.000 0.001 0.012 0.003 0.008
7 3 1000 0.001 0.002 0.028 0.004 0.029
Correlation g 3 200 0.001 0.001 0.004 0.003 0.005
Model 7 3 500 0.001 0.001 0.005 0.003 0.009
g 3 1000 0.001 0.003 0.016 0.002 0.018
Table 5D-1

Confidence Interval Coverage in the mediated effect through the distribution of
product method for the unidimensional and correlated model with nonzero
effects when the specific factor variance is .09 (spec A1=.3) and general factor
variance is .49 (gen 1=.7)

a-path
small medium
b-path
small  medium small medium
Model gen  spec N
A A
Unidimensional T 3 200  0.459 0.101 0.098 0.001
Model v 3 500 0.077 0.000 0.000 0.000
v 3 1000 0.003 0.000 0.000 0.000
Correlation T 3 200  0.487 0.102 0.105 0.004
Model v 3 500 0.075 0.001 0.001 0.000
T 3 1000 0.003 0.000 0.000 0.000
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Figure 1A-1. Standardized bias in the mediated effect for the finite model with
nonzero mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1A-2. Raw bias in the mediated effect for the finite model with nonzero

effects. spec= specific factor variance; gen=general factor variance;

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1A-3. Relative bias in the mediated effect for the finite model with nonzero
mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1B-1. Power in the mediated effect through the distribution of product method
in the finite model. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1B-2. Power in the mediated effect through the distribution of product method
in the finite model when the sample size is small. spec= specific factor variance;
gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size;
btrue2=b-path effect size.
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Figure 1C-1. Type 1 error in the mediated effect through the distribution of product
method in the finite model when the a-path has a nonzero effect and sample size is
greater than 500. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1C-2. Type 1 error in the mediated effect through the distribution of product
method in the finite model when the b-path has a nonzero effect and sample size is
greater than 500. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 1D-1. Confidence interval coverage in the mediated effect through the
distribution of product method in the finite model. spec= specific factor variance;
gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size;
btrue2=b-path effect size.
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Figure 1E-1. Confidence interval width in the mediated effect through the distribution
of product method in the finite model. spec= specific factor variance; gen=general
factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path
effect size.
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Figure 2A-1. Standardized bias in the mediated effect for the facet model with
nonzero mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 2A-2. Raw bias in the mediated effect for the facet model with zero mediated
effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 2A-3. Relative bias in the mediated effect for the facet model with nonzero
mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 2B-1. Power in the mediated effect through the distribution of product method
in the facet model when the sample size is 200. spec= specific factor variance;
gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size;
btrue2=b-path effect size.
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Figure 2C-1. Type 1 error in the mediated effect through the distribution of product
method in the facet model when the a-path has a nonzero effect. spec= specific factor
variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path
effect size; btrue2=b-path effect size.
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Figure 2C-2. Type 1 error in the mediated effect through the distribution of product
method in the facet model when the b-path has a nonzero effect. spec= specific factor
variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path
effect size; btrue2=b-path effect size.
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Figure 2D-1. Confidence interval coverage in the mediated effect through the
distribution of product method in the facet model when the sample size is 200. spec=
specific factor variance; gen=general factor variance; sample_size2=sample size;
atrue2=a-path effect size; btrue2=b-path effect size.
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Figure 2E-1. Confidence interval width in the mediated effect through the distribution
of product method in the facet model. spec= specific factor variance; gen=general
factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path
effect size.
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Figure 3A-1. Standardized bias in the mediated effect for the unidimensional model
with nonzero mediated effects. spec= specific factor variance; gen=general factor
variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect

size.
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Figure 3A-2. Raw bias in the mediated effect for the unidimensional model with
nonzero mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.

130



adjusted mean

[T}
g 4 = - #/#/g - == . #/#
K en
N . . - 9
' | | | | - g-3
0 o g5
o _| . . ] A g7
< T - o - = ks
n
o 4 #&=---- B SH & T I T A=
2 | T T — T ] T T
S
ﬁ_ . _ _ . sample_size2
o
' i | | i —&- n=200
o e e = = el —o- n=500
® _| a a ] -4A- n=1000
<
n
o - . .
8 | T T | — T ] T T
S
n
N _ _ _
=} atrue2
- - - - -8 028
10 2—m—— -— — o 072
= _ _ _
[Te}
o _ _ _
2 ] 1T T — T — T T
S
2
] n T T n btrue2
- i i - - 014
" #==-g-—- === - -0 0.36
i _ _ _
S
n
o _| . . -
Q T T T T T T T
g-3 ged 97  n=288mple_siz8z1000 0.28 atrue2 0.72 0.14 btrye2 0.36

Figure 3A-3. Relative bias in the mediated effect for the unidimensional model with
nonzero mediated effects. spec= specific factor variance; gen=general factor variance;
sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.
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factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path
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APPENDIX D

TRUE COVARIANCE MATRIX FOR THE DISTILLATION OF THE MEDIATED

EFFECT
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APPENDIX E

FLOWCHART FOR SIMULATION PROCEDURES
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APPENDIX F

MPLUS AUTOMATION FILE FOR MONTE CARLO SIMULATION
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Example of an Mplus Automation file for Monte Carlo simulation (Model 1)

[[init]]

iterators= g_load s_load n;

n = 200 500 1000;

g_load= 1:2;

s_load= 1;

value#g_load= .6 .7;

fac#s_load= .6;
outputDirectory="C:/Users/ogonzal3/Desktop/Montecarlo/sims/sample_size
[[n]]/gen factor[[value#g_load]]/sp factor[[fac#s_Tload]]l";
filename="MC-sample_size [[n]],g-[[value#g_load]],s-[[fac#s_load]]
combination.inp";

[[/init]]

TITLE: MC BIFACTOR MODEL, n=[[n]], g-[[value#g_load]], s-
[[fac#s_Toad]l];

MONTECARLO:
names are x ml m2 m3 m4 m5 m6 m7 m8 m9 y;
ngroups=1;
nobs=[[n]];
nreps=1000;
lseed=2;
cutpoints=x(0);
REPSAVE = ALL;
save= data_rep*.dat;
results=data_results.txt;

ANALYSIS: !TYPE=MEANSTRUCTURE;
PROCESS=4;
MODEL POPULATION:
!Measurement model
[m1-m9@0];
1l by ml1@1 m2-m3@[[fac#s_Tload]];
2 by m4-mé6@[[fac#s_Tload]];
3 by m7-m9@[[fac#s_Tload]];
m by ml-m9@[[value#g_load]];

[[g_load=1]]
[[s_Toad=1]]
ml-m9@.28;; !.6 and .6 Tloadings
[[/s_Toad=1]]
[[/g_Toad=1]]

[[g_Toad=2]]
[[s_load=1]]
ml-m9@.15; !.6 and .7 loadings
[[/s_Toad=1]]
[[/g_Toad=2]]

m f1 f2 f3 wWITH m@0 fl@0 f2@0 f3@0;
[m @ 0]; [fl@0]; [f2@0]; [f3@0];
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!Structural Model
[x@0];
x@.25;
[y@0];
y@.813;
f1@.87;
f2-f3@1;
m@l;
fl on x@.721;
y on f1l@.36 x@.283;

MODEL:
IMeasurement Model
[m1-m9*0];

[[g_Toad=1]]
[[s_Toad=1]]
ml-m9*.28;; !.6 and .6 Tloadings
[[/s_Toad=1]]
[[/g_Toad=1]]

[[g_load=2]1]

[[s_Toad=1]]

ml-m9*.15; !.6 and .7 loadings
[[/s_Toad=1]]

[[/g9_1oad=2]]

f1 by ml-m3*[[fac#s_Tload]];

f2 by m4-m6*[[fac#s_Tload]];

3 by m7-m9*[[fac#s_Tload]];

m by ml1-m9*[[value#g_load]];

m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0;
[m @ 0]; [fl@0]; [f2@0]; [f3@O0];

!Structural Model
[y*0]1;
y*.813;
fl-f3@1;
m@l;
fl on x*.721(a);
y on f1*.36(b)
X*.283;
IMediation

MODEL INDIRECT:
y IND X;

MODEL CONSTRAINT:

NEwW(ab*.26);
ab=a*b; OUTPUT: tech3 tech9;
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APPENDIX G

EXAMPLE OF MPLUS MONTE CARLO SYNTAX

152



TITLE: MC BIFACTOR MODEL, n=200, g-.6, s—-.6;

MONTECARLO:
names are x ml m2 m3 m4 m5 m6 m7 m8 m9 y;
ngroups=1;
nobs=200;
nreps=1000;
!'seed=2;
cutpoints=x(0) ;
REPSAVE = ALL;
save= data rep*.dat;

results=data results.txt;

ANALYSIS: TYPE=BASIC;
PROCESS=4;
MODEL POPULATION:
!Measurement model
[m1-m9@0];
fl by ml@l m2-m3@.6;
f2 by md4-m6@.6;
£f3 by m7-m9@.6;
m by ml-m9@Q.6;

ml-m9@.28;; '.6 and .6 loadings

m £f1 £2 £3 WITH m@O £1Q@0 f£2@0 £3@0;
[m @ 0]; [£f1@0]; [f2@0]; [£f3@0];

!'Structural Model
[x@0];
x@.25;
[y@O0];
y@.813;
£f1@.87;
f2-£3@1;
m@l;
fl on x@.721;
y on f1@.36 x@.283;

MODEL:

!Measurement Model
[m1-m9*07];

ml-m9*.28;; .6 and .6 loadings
fl by ml-m3*.6;
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f2 by md-m6*.6;

£f3 by m7-m9*.6;

m by ml-m9*.6;

m f1 f2 £3 WITH m@O0 f1@0 £f2@0 f£3@0;
[m @ 0]; [f1@0]; [f2@0]; [f3@0];

!'Structural Model
[y*0];
y*.813;
f1-£3@1;
m@l;
fl on x*.721(a);
y on £1*.36 (b)
X*,283;
IMediation

MODEL INDIRECT:
y IND x;

MODEL CONSTRAINT:
NEW (ab*.26) ;

ab=a*b;

OUTPUT: tech3 tech9;
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MPLUS SYNTAX FOR THE ANALYSIS OF ONE MONTE CARLO REPLICATION
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TITLE:INDIVIDUAL BIFACTOR, rep-1, n=200, g-.6, s-.6;
DATA: FILE IS data repl.dat;
VARIABLE: names are ml m2 m3 m4 mS mé6 m7 m8 mS y x;

ANALYSIS: !TYPE=MEANSTRUCTURE;
PROCESS=4;

MODEL:
'Measurement Model
[m1-m9*07];

ml-m9*.28;; !'.6 and .6 loadings

fl by ml-m3*.6;

f2 by md-m6*.6;

£f3 by m7-mS8*.6;

m by ml-m9*.6;

m £f1 £2 £3 WITH m@O £1Q@0 £2Q@0 £3Q0;
[m @ 0]; [£f1@O0]; [f2Q@0]; [£3@0]1;

!'Structural Model
[y*01;
y*.813;
f1-£3@1;
m@l;
fl on x*.721(a);
y on £1*.36 (b)
X*,283;
!Mediation

MODEL INDIRECT:
y IND x;

MODEL CONSTRAINT:
NEW (ab*.26) ;
ab=a*b;

OUTPUT: techl tech3;
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There were a few differences from what was originally proposed in the prospectus

meeting and the final simulation results presented. First, the unidimensional model with

correlated uniqueness was added to the simulation. Also, simulation conditions were cut.

The table below describes the difference in the conditions:

Simulation Factor Proposed Analyzed Reason
Sample size 200, 500, 1000 200, 500, 1000  Committee Agreed
a-path effect size (zero, small, 0,.28,.72,1.02 0,.28,.72,102 Committee Agreed
medium, large)
b-path effect size (zero, small, 0,.14, 36,51  0,.14,.36, 51 Committee Agreed
medium, large)
c'-path effect size (zero, small) 0,.283 0,.283 Averaged over in analyses
Factor loading on general factor 3,.4,.5,.6,.7 3,.5,.7 Committee Agreed
Factor loading on specific factor 3,.4,.5,.6 .3, .45, .6 Committee Agreed
Percentage of uncontaminated 75, .88.. .96 75 CPU RAM (memory)

correlations (PUC)

problems

As shown in the table above, the results from larger models with the “percentage of

uncontaminated correlations” conditions had trouble being read from Mplus to R given

the large data files. Those conditions also suffered from many non-positive covariance

matrices and were not analyzed. Also, the original document proposed to test hypotheses

on the individual paths regarding the simulation outcomes. However, due to the wide

extent of the project, it was decided to focus on the interpretation of the mediated effect,

which was of most interest. Consequently, results were averaged over the ¢ -path

conditions.
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