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i 

ABSTRACT 

Statistical mediation analysis allows researchers to identify the most important the 

mediating constructs in the causal process studied. Information about the mediating 

processes can be used to make interventions more powerful by enhancing successful 

program components and by not implementing components that did not significantly 

change the outcome. Identifying mediators is especially relevant when the hypothesized 

mediating construct consists of multiple related facets. The general definition of the 

construct and its facets might relate differently to external criteria. However, current 

methods do not allow researchers to study the relationships between general and specific 

aspects of a construct to an external criterion simultaneously. This study proposes a 

bifactor measurement model for the mediating construct as a way to represent the general 

aspect and specific facets of a construct simultaneously.  Monte Carlo simulation results 

are presented to help to determine under what conditions researchers can detect the 

mediated effect when one of the facets of the mediating construct is the true mediator, but 

the mediator is treated as unidimensional. Results indicate that parameter bias and 

detection of the mediated effect depends on the facet variance represented in the 

mediation model. This study contributes to the largely unexplored area of measurement 

issues in statistical mediation analysis.  
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1 

Introduction 

The goal of statistical mediation analysis is to uncover the intermediate causal 

mechanisms (known as mediators) through which an independent variable brings about a 

change on an outcome (Baron & Kenny, 1986; MacKinnon, 2008). Statistical mediation 

is relevant in prevention research where interventions are designed to target mediators 

that are thought to be causally related to an outcome (MacKinnon, Fairchild, & Fritz, 

2007). Beyond testing the success of an intervention, researchers can save resources if 

they investigate which aspects of the mediator do not contribute to a change in the 

outcome (Cox, Kisbu-Sakarya, & MacKinnon, 2012; MacKinnon & Dwyer, 1993; Weiss, 

1997). Identifying the true mediator in the causal process can be thought of as a 

measurement problem, where a framework to distill the mediating variable is needed to 

find the underlying mediating construct (MacKinnon, 2008, p.4).  

An assumption in mediation analysis is the accurate characterization of the 

construct underlying the mediator. This assumption is relevant when researchers measure 

multifaceted constructs. Facets are subordinate concepts of a construct that could be 

measured independently from the general construct (Carver, 1989). A construct is 

considered general when it is defined by aggregating its facets. On the other hand, a 

construct is considered specific when it is defined by only one facet of a general 

construct. Multifaceted constructs are challenging because the specific aspects of a 

construct might relate differently to an outcome. Therefore, the mediator can be 

incorrectly characterized by including non-predictive aspects of the construct in the 

mediation model which could lead to inaccurate conclusions on mediation.   
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In this study, I propose a framework to distill the mediator by modeling the 

construct’s general variance and specific facet variance with a bifactor measurement 

model. First, I will describe statistical mediation and multifaceted constructs. Next, I will 

review the latent variable approaches to represent multifaceted constructs in mediation 

analysis. I will then describe the properties of the bifactor measurement model as a way 

to distill multifaceted constructs. Finally, Monte Carlo simulation results are presented on 

the properties of the mediated effect when one of the specific facets of a construct is the 

true mediator in the causal process, but the structure of the mediator is misspecified. The 

rationale of the study is that by modeling the facets of the mediator researchers could 

obtain more power to detect mediated effects. 

Statistical Mediation Analysis 

 Statistical mediation analysis addresses the question of how two variables are 

related by considering mediators (M) to explain the relationship between an independent 

(X) and a dependent variable (Y; see Figure 1; MacKinnon, 2008). The model can be 

conceptualized into three regression equations:  

𝑌̂ = 𝑖1 + 𝑐𝑋 + 𝑒1                                                                                                  (1) 

𝑀̂ = 𝑖2 + 𝑎𝑋 + 𝑒2                                                                                                (2) 

𝑌̂ = 𝑖3 + 𝑐′𝑋 + 𝑏𝑀 + 𝑒3                                                                                      (3) 

Equation 1 represents the total effect of the independent variable (X) on the dependent 

variable (Y; c coefficient). Equation 2 represents the effect of the independent variable (X) 

on the mediator (M; a coefficient). Equation 3 represents the effect of the mediator (M) 

on the dependent variable (Y), controlling for X (b coefficient) and the effect of the 

independent variable (X) on the dependent variable (Y), controlling for M (c’ coefficient). 
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Finally, the mediated effect, the indirect influence of X on Y through M, is captured by 

the product of the a and b parameters. Moreover, the standard error for ab can be derived 

through the multivariate delta method (Sobel, 1982; 1986) to test for statistical 

significance. However, the Sobel test of significance assumes that the distribution of the 

product of two random variables is normally distributed and this is rarely the case. 

Methods for calculating asymmetric confidence intervals with the distribution of the 

product method and resampling techniques have been developed to accurately test for the 

mediated effect (MacKinnon, Lockwood & Williams, 2004).  

 Several assumptions are also needed to accurately test for mediation (MacKinnon, 

2008). First, the functional form and temporal precedence among the three variables has 

to be correctly specified. Also, no relevant variables have been excluded from the model.  

Independent and identically distributed residuals across values of the predictors are also 

assumed. Finally, X, Y, and M are reliable and valid measures of their respective 

constructs. This study focuses on this last assumption due to the complications of 

representing multifaceted mediators. 

The Complexity of Multifaceted Constructs 

Typically, when researchers are interested in studying a construct, they 

hypothesize that multiple facets encompass the construct (Chen, West, & Sousa, 2006).  

Carver (1989, p. 577) indicates that multifaceted constructs “are composed of two or 

more subordinate concepts, each of which can be distinguished conceptually from the 

others and measured separately, despite being related to each other both logically and 

empirically.” Furthermore, Carver (1989) offers two competing arguments about 

multifaceted constructs. Examining specific facets of the construct and how they relate to 
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an external criterion might be more accurate because a general construct might mask the 

differential contributions of the facets to prediction. On the other hand, the interaction of 

the facets as a whole might be the construct of interest, where the whole is greater than 

the sum of its parts (see Bagozzi & Heatherton, 1994). Much of the psychometric work 

suggests that there are situations in which individual facets are important. Examples 

include alexithymia (trouble expressing emotion; Haviland, Warren & Riggs, 2000), self-

monitoring (Briggs, Cheek & Buss, 1980), the big five factors of personality (Chen et al., 

2012), general intelligence (Brunner, 2008) and well-being (Chen et al., 2013). 

According to Reise (2012), multifaceted constructs are complex because items measuring 

a specific facet are not interchangeable indicators of the general construct, and each facet 

might relate differently to external criterions.  In other words, the specific facets could 

make a theoretically important contribution to prediction beyond the general construct 

(Chen, West, Sousa, 2006). Therefore, the representation of multifaceted mediating 

constructs as general or specific could compromise accurate conclusions from statistical 

mediation. 

Representing Multifaceted Constructs with Latent Variables 

One of the approaches to test for statistical mediation is to use covariance 

structure analysis to investigate relationships between the three variables in the model.  

These methods evaluate how well a model represents the data by comparing an expected 

covariance matrix among the variables to the observed covariance matrix among the 

variables (Bollen, 1989).  Variables in the model can either be represented as manifest or 

latent. Chen and colleagues (2012) review the manifest variable approaches to represent 

multifaceted variables and suggest that they suffer from many disadvantages, such as not 
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controlling for unreliability of the construct. The latent variable model approach consists 

of measuring the individual facets of the construct and estimating the extent to which the 

facets are related to each other (Bollen, 1989). The latent variable cannot be directly 

measured, but it is indicated by its manifestations, such as the responses to the 

administered items (indicators).  The relationships between indicators and latent variables 

are estimated through confirmatory factor analysis (CFA; Brown, 2014).  In this study the 

indicators are assumed to be continuous and linearly related to the latent variable.  

A challenge of latent variable modeling is to choose a priori which measurement 

model represents the data better. Ideally, this decision would be backed-up with theory. 

However, researchers often overuse unidimensional models, assuming that only a single 

common factor accounts for the relationships among all of the items. Below, two 

measurement models used in this study and their priority in modeling the general 

construct or specific facets are discussed.  

Measurement Models 

One-factor model.  Proposed by Charles Spearman (1904; Figure 2) to explain 

the structure of intelligence, the one-factor model assumes that correlations among facets 

and individual differences in the test can be explained by a single, general factor (Reise 

et al., 2010).  This model does not take in consideration the specific facets of the 

construct. The variance of each indicator is influenced by two sources of variance: 

common variance shared by all the indicators due to the general construct and the unique 

variance of each indicator. The unique variance is comprised of reliable specific facet 

variance not shared among the other facets and unreliable variance due to measurement 

error (Brunner et al., 2012). This model assumes that the unique factors are uncorrelated 
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with each other because all common variance is accounted for by the single common 

factor. A violation of unidimensionality could show up in the model through “correlated 

uniquenesses,” where some or all of the unique factors of the indicators still share 

variance after accounting for the common factor.  If the data violates the unidimensional 

assumption, alternative measurement models need to be considered.  

Bifactor model: The bifactor model was recently “rediscovered” (Reise, 2012) 

after being introduced almost 80 years ago (Holzinger & Harman, 1938; Holzinger & 

Swineford, 1937) as an option to modeling construct-relevant multidimensionality. 

Researchers in personality assessment have used the bifactor model to help conceptualize 

psychological constructs and the bifactor model is starting to be considered as a 

competing model with the higher-order model and correlated-factor model (Reise, 2012). 

The bifactor model specifies that relationships among the items can be explained 

by a general factor that reflects the common variance among the indicators, and by 

several specific factors (group factors; Reise, 2012) reflecting the common variance of 

indicators with highly similar content not accounted by the general factor (Figure 3).  

The general factor represents the broad construct that the scale intends to measure and 

the specific factors incorporate the multifaceted aspect of the construct by influencing the 

indicators that represent the facets of the broad construct.  Also, indicators are influenced 

by their own unique factor. Therefore, the bifactor model can separate the general, 

specific, and unique variance of each of the indicators.  

According to Chen, West, and Sousa (2006), the bifactor model provides many 

advantages over conventional models, such as the higher-order factor model, when 

researchers want to test the unique contributions of the facets in prediction. When 
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modeling specific facet variance, a higher-order model is prone to mask the lack of 

variability in a facet by including a non-significant disturbance in a lower-order factor, 

while the bifactor model would have problems converging due to factor overextraction.  

By modeling specific factors, researchers can test for measurement invariance in the 

facets, calculate latent means, and study relationships between facets and outcomes 

beyond the general factor.  

Overall, if a researcher is only interested in the general construct, other models 

are more parsimonious than the bifactor model.  Yet, if the interest is on how specific 

facets of a construct carry the influence of the independent variable to the outcome, a 

bifactor model for the mediator provides a promising approach to study the influence of 

facets on a criterion.  

Distilling a Mediator with the Bifactor Model in Statistical Mediation 

 If a researcher fits multidimensional data in a unidimensional model, the model 

misspecification might lead to biased parameters and inaccurate results. This problem is 

relevant in statistical mediation when the true mediator is only one facet of a multifaceted 

construct. Reise et al. (2013) conducted a simulation study to determine if indices of 

model fit or indices of factor strength predict structural bias when multidimensional data 

(generated with a bifactor model) are treated as unidimensional when predicting an 

outcome. Reise et al. (2013) concluded that indices of factor strength, such as the 

explained common variance (ECV; the variance explained by general common factor 

over the total common variance explained in the model) and the percent of 

uncontaminated correlations (PUC; percentage of unique correlations among the 

indicators that are not confounded by both the general and specific factors) predict 
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structural bias. This study expands on Reise et al. (2013) by carrying out a simulation to 

investigate if the mediated effect can be distilled with the bifactor model when one of the 

specific facets of a multifaceted construct is the true mediator, but the mediator is treated 

as unidimensional. This study evaluates bias, power, Type I error, and confidence interval 

coverage of the mediated by analyzing simulation datasets with four different models. 

Two of the models ignore the specific facet variance and one of the models ignores the 

general factor variance of the bifactor mediator.   

Study Hypotheses 

The data-generating model used to test all of the hypotheses is shown in Figure 4 

(Model 1). The mediator has a bifactor structure and one of the three specific factors of 

the construct is specified to be the true mediator.  The four data-analysis models are 

described next. 

Finite-sample bias.  The first data-analysis model was identical to the data-

generating model (Model 1; see Figure 4). It was hypothesized that conditions with 

higher sample sizes will have higher statistical power, adequate Type 1 errors, lower 

bias, and adequate confidence interval coverage than conditions with lower sample sizes 

(Hypothesis 1). Specifically, as sample size increases, there will be lower bias in the 

mediated effect (Hypothesis 1.1) Furthermore, as the loadings on the general factor 

increase, there will be lower bias in the mediated effect (Hypothesis 1.2). Also, as the 

loadings on the specific factor increase, there will be lower bias in the mediated effect 

(Hypothesis 1.3). 

Also, a sample size increases, it would be more likely for the mediated effect to 

be statistically significant, have adequate Type 1 errors, and for the true estimate to be 
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covered in the confidence intervals (Hypothesis 1.4). Moreover, as the loadings on the 

general factor increase, it would be more likely for the mediated effect to be statistically 

significant, have adequate Type 1 errors, and for the true estimate to be covered in the 

confidence intervals (Hypothesis 1.5). Finally, as the loadings on the specific factor 

increase, it would be more likely for the mediated effect to be statistically significant, 

have adequate Type 1 errors, and for the true estimate to be covered in the confidence 

intervals (Hypothesis 1.6). It was also hypothesized that the combination of small sample 

sizes and low specific factor loadings will have convergence problems owing to a non-

positive definite covariance matrix (Hypothesis 2).  

Ignoring the general construct. The effect of ignoring the general aspect of the 

mediating construct was evaluated with Model 2 (Figure 5). The mediator has a 

unidimensional structure, where only the indicators of the true facet mediator are 

included and specified to load on a single factor. Model 2 represents a situation where the 

researcher believes that a specific part of a construct, such as a subscale, is the mediator. 

It was hypothesized that mediated effect estimates will be attenuated and have lower 

power, inadequate Type 1 errors, and inadequate confidence interval coverage 

(Hypothesis 3). Specifically, as sample size increases, there will be lower bias in the 

mediated effect (Hypothesis 3.1). Also, as the loadings on the general factor increase, 

there will be higher bias in the mediated effect (Hypothesis 3.2) because the variance of 

the mediator will have variance from the general and specific factors. Finally, as the 

loadings on the specific factor increase, there will be lower bias in the mediated effect 

(Hypothesis 3.3).   
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Furthermore, as sample size increases, it would be more likely for the mediated 

effect to be statistically significant, have adequate Type 1 errors, and for the estimate to 

be covered in the confidence intervals (Hypothesis 3.4). As the loadings on the general 

factor increase, it would be less likely for the mediated effect to be statistically 

significant, have adequate Type 1 errors, and for the estimate to be covered in the 

confidence intervals (Hypothesis 3.5). Finally, as the loadings on the specific factor 

increase, it would be more likely for the mediated effect to be statistically significant, 

have adequate Type 1 errors, and for the estimate to be covered in the confidence 

intervals (Hypothesis 3.6).  

Ignoring specific facets. The effect of ignoring the multidimensionality of the 

mediator was evaluated with the data-analysis models in Figure 6 (Model 3) and Figure 7 

(Model 4). In Model 3, the mediator has a unidimensional structure where all of the 

indicators of load on a single factor. Model 3 represents a situation where the researcher 

believes that the general construct is the true mediator and facets are not important. 

Anticipating poor fit of Model 3, Model 4 also assumes a unidimensional mediator but 

indicators of the same facet had correlated uniquenesses. It is hypothesized that mediated 

effect estimates in Models 3 and 4 will have negative bias, low power, inadequate Type 

1 errors, and inadequate confidence interval coverage (Hypothesis 4) because the 

variance of the true mediator is only shared by a third of the indicators, so a 

unidimensional model will not accurately capture all the specific factor variance.  In this 

case, as sample size increases, there will be lower bias in the mediated effect (Hypothesis 

4.1). Furthermore, as the loadings on the general factor increase, there will be higher bias 

in the mediated effect (Hypothesis 4.2) because more general factor variance is reflected 
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on the latent variable. But, as the loadings on the specific factor increase, there will be 

lower bias in the mediated effect (Hypothesis 4.3). 

As sample size increases, it would be more likely for the mediated effect to be 

statistically significant, to have adequate Type 1 errors, and for the estimate to be 

covered in the confidence intervals (Hypothesis 4.4). Also, as the loadings on the general 

factor increase, it would be less likely for the mediated effect to be statistically 

significant, to have adequate Type 1 errors, and for the estimate to be covered in the 

confidence intervals (Hypothesis 4.5). Finally, as the loadings of the specific factor 

increase, it would be more likely for the mediated effect to be statistically significant, 

have adequate Type 1 errors, and for the estimate to be covered in the confidence 

intervals (Hypothesis 4.6).  

Finally, it was hypothesized that ignoring the general construct (Model 2) will 

have lower bias, higher power, more adequate Type 1 errors and more adequate 

confidence interval coverage than ignoring the specific facets of the construct (Model 3 

and 4; Hypothesis 5). The mediator in Model 2 reflects the most specific factor variance 

from the true mediator in Model 1.   

Method 

Data-Generating Model 

The statistical package R (R Core Team, 2013) and Mplus 7.1 (Muthen & 

Muthen, 1998-2011) were used to conduct the simulation.  The equations below represent 

the data-generating model (Model 1), specifying a bifactor model for M and the structural 

model for X, M, and Y. 
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 Measurement Model for the Mediator  

 𝑴 = 𝚲𝒎𝜼 + 𝝐,     𝑤ℎ𝑒𝑟𝑒:     (4) 

 

M=

[
 
 
 
 
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

𝑀6

𝑀7

𝑀8

𝑀9]
 
 
 
 
 
 
 
 

  𝚲𝑚 =

[
 
 
 
 
 
 
 
 
 

1 1 0 0
𝜆𝑔2.1 𝜆𝑠2.1 0 0

𝜆𝑔3.1 𝜆𝑠3.1 0 0

𝜆𝑔4.1 0 1 0

𝜆𝑔5.1 0 𝜆𝑠5.2 0

𝜆𝑔6.1 0 𝜆𝑠6.2 0

𝜆𝑔7.1 0 0 1

𝜆𝑔8.1 0 0 𝜆𝑠8.3

𝜆𝑔9.1 0 0 𝜆𝑠9.3]
 
 
 
 
 
 
 
 
 

 𝜼 = [

𝜂𝑔1

𝜂𝑠1

𝜂𝑠2

𝜂𝑠3

]  𝝐 =

[
 
 
 
 
 
 
 
𝜖1

𝜖2
𝜖3

𝜖4
𝜖5

𝜖6
𝜖7
𝜖8

𝜖9]
 
 
 
 
 
 
 

 

 

 Structural Model for Mediation  

 X ~ N(0,1) : x≥ 𝑥̃=1; x< 𝑥̃=0  (5) 

 𝜂𝑠1=aX + e2  (6) 

 Y = c’X + b𝜂𝑠1+e3  (7) 

 𝜎𝜂𝑠1
2 = 1    (8) 

 𝜎𝑌
2 = 1   (9) 

 𝜎𝑒2𝑒3 = 0   (10) 

 𝜎𝜖𝑖 𝜖𝑗 = 0 ; for 𝑖 ≠ 𝑗  (11) 

In this case, M is the mediator and it has nine indicators. M has a bifactor measurement 

structure, where the common variance among the indicators is explained by one general 

factor (ηg) and three specific factors (ηs1, ηs2, ηs3) influencing the indicators that represent 

the facets of the construct. The general factor and all of the specific factors are 

uncorrelated with each other. The identification of the bifactor measurement model is 

similar to Thoemmes et al., (2010) specification for Monte Carlo power analysis in 

Mplus. X is a binary experimental condition randomly assigned and was determined by a 

conditioning on 𝑥̃, which is the mean of the normal distribution (𝑥̃ = 0; see Equation 5). 
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Finally, Y is a normally-distributed continuous outcome. The true mediated effect (ab) is 

the influence of X on outcome Y through the specific factor ηs1.  

Simulation Procedure 

The true covariance matrix for the distillation of the mediated effect was 

analytically derived with RAM matrices in Symbolic Python (SymPy; SymPy 

Developing Team, 2014) and presented in Appendix D. Population values were then 

generated corresponding to simulation conditions hypothesized to influence the detection 

of the mediated effect (explained at the beginning of the Results section). 

The R package MplusAutomation (Hallquist & Wiley, 2013) was used to produce 

and analyze the Mplus syntax files in the study. Each syntax file represents a condition 

along with 1,000 replications of that condition. The data analysis models were estimated 

with maximum likelihood under the structural equation modeling framework. Monte 

Carlo datasets and estimated results were saved and processed by the R package 

RMediation (Tofigui & MacKinnon, 2011) to compute confidence intervals using the 

distribution of the product, Monte Carlo method, and asymptotic normal theory methods. 

Appendix E shows a flow chart with the simulation procedure steps. Appendix F, G, and 

H show an MplusAutomation template file, Mplus Monte Carlo syntax, and Mplus syntax 

for the analysis of each replication, respectively.  

Parameter Bias 

Three measures of bias were used to evaluate point estimation in the simulation 

study. Raw bias in the mediated effect estimate was calculated by the difference between 

the estimate and the population true value of the mediated effect.  

𝐵𝑖𝑎𝑠(𝜃) = 𝜃 − 𝜃                                                                                                 (12)             
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Second, relative bias in the mediated effect was calculated by the difference between the 

estimate and the population true value, divided by the population true value.  

 𝑅𝐵𝑖𝑎𝑠(𝜃) =
𝜃̂−𝜃 

𝜃
 (13) 

Finally, standardized bias in the mediated effect was calculated by the difference between 

the estimate and the population true value, divided by the standard deviation of the 

estimates across replications.  

 𝑆𝐵𝑖𝑎𝑠(𝜃) =
𝜃̂−𝜃 

𝑆𝐷(𝜃̂)
 (14) 

Standardized bias gives a magnitude of bias when a population value is equal to zero, 

which is not possible to compute with Equation 14. An estimator was considered 

unbiased when the relative and standardized bias were less than .10 (Flora & Curran, 

2004).  

Statistical Power and Type 1 Error 

Type 1 error rates were calculated by the proportion of times across all 

replications within a condition that a mediated effect estimate was statistically significant 

when the population value was zero. Power was the proportion of times across all 

replications within a condition that a mediated effect estimate was statistically significant 

when the population value was nonzero. The best estimator will have the highest power 

across simulation conditions.  

Confidence Interval Estimation  

Confidence interval coverage was the proportion of times across all replications 

within a condition that each confidence interval contains the true value of the mediated 

effect.  
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Distribution of the product. Asymmetric confidence intervals based on the non-

normal distribution of the product of two random variables that represent the mediated 

effect (ab; Mackinnon et al., 2007) were computed.  

 Monte Carlo confidence intervals. To build Monte Carlo confidence intervals 

(MacKinnon et al., 2004), the a- and b-path estimates and their standard errors were used 

to generate a sampling distribution of ab, with the replication estimates as true values of 

the distribution. The lower and upper confidence limits for the mediated effect for each 

replication were the values in the sampling distribution in the 2.5% and 97.5% 

percentiles.  

 Asymptotic normal theory. The asymptotic normal confidence interval is ab ± 

1.96 × SE(ab), where SE(ab) is the standard error of the mediated effect derived by the 

equation below: 

SE(ab) = 

√(𝒂(𝑺𝑬(𝒃))
𝟐
+ (𝒃(𝑺𝑬(𝒂))

𝟐
+ 𝟐𝒂𝒃𝝆𝒂𝒃𝑺𝑬(𝒂)𝑺𝑬(𝒃) + 𝑺𝑬(𝒂)𝟐𝑺𝑬(𝒃)𝟐 + 𝑺𝑬(𝒂)𝟐𝑺𝑬(𝒃)𝟐𝝆𝒂𝒃

𝟐

 
 . (15) 

Data Analysis Models 

Finite model. The simulated datasets were analyzed using the true population 

model (Model 1; Figure 4) to get information about sample size bias, power, and Type 1 

error in parameter estimates and confidence interval estimation.  

Ignoring the general construct. The equations below estimate the facet model 

(Model 2), where the mediator has a unidimensional structure and only the indicators of 

the true facet are modeled. 

            𝑴 = 𝚲𝒎𝜼 + 𝝐,     𝑤ℎ𝑒𝑟𝑒:  (16) 
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𝑴 = [

𝑀1

𝑀2

𝑀3

]  𝚲𝑚 = [

1
𝜆𝑠2.1

𝜆𝑠3.1

]  𝜼 = [𝜂𝑠1] 𝝐 = [

𝜖1

𝜖2

𝜖3

]  

𝜂𝑠1= aX + e2 (17) 

Y = c’X + b𝜂𝑠1 + e3 (18) 

For this model, the mediated effect is the influence of X on the outcome Y through the 

specific factor ηs1 and calculated by the product of ab. The a parameter represents the 

effect of X on the specific factor ηs1. The b parameter represents the effect of ηs1 on Y, 

adjusting for X. The effect of X on Y, adjusting for ηs1, is represented by the c’ parameter.  

Ignoring specific facets. The equations below estimate the unidimensional model 

(Model 3), where the mediator is unidimensional and all indicators are included.  

𝑴 = 𝚲𝒎𝜼 + 𝝐,     𝑤ℎ𝑒𝑟𝑒:    (19)  

M=

[
 
 
 
 
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

𝑀6

𝑀7

𝑀8

𝑀9]
 
 
 
 
 
 
 
 

  𝚲𝑚 =

[
 
 
 
 
 
 
 
 
 

1
𝜆𝑔2

𝜆𝑔3

𝜆𝑔4

𝜆𝑔5

𝜆𝑔6

𝜆𝑔7

𝜆𝑔8

𝜆𝑔9]
 
 
 
 
 
 
 
 
 

 𝜼 = [𝜂𝑔] 𝝐 =

[
 
 
 
 
 
 
 
𝜖1

𝜖2
𝜖3

𝜖4
𝜖5

𝜖6
𝜖7
𝜖8

𝜖9]
 
 
 
 
 
 
 

  

𝜂𝑔= aX +   e2 (20)  

Y = c’X + b𝜂𝑔 + e3   (21) 

For this model, the mediated effect is the influence of X on the outcome Y through the 

general factor ηg and calculated by the product ab. The a parameter represents the effect 

of X on the general factor ηg. The b parameter represents the effect of ηg on Y, adjusting 

for X. The c’ parameter represents the effect of X on Y, adjusting for ηg. 
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 With the same parameter interpretations as Model 3, the equations below estimate 

the correlated factor model (Model 4), where the mediator is unidimensional and the 

unique factors of indicators that measure the same facet are correlated, represented by 𝚯𝜹. 

 𝑴 = 𝚲𝒎𝜼 + 𝝐,     𝑤ℎ𝑒𝑟𝑒: (22) 

M=

[
 
 
 
 
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

𝑀6

𝑀7

𝑀8

𝑀9]
 
 
 
 
 
 
 
 

  𝚲𝑚 =

[
 
 
 
 
 
 
 
 
 
 

1
𝜆𝑔2

𝜆𝑔3

𝜆𝑔4

𝜆𝑔5

𝜆𝑔6

𝜆𝑔7

𝜆𝑔8

𝜆𝑔9]
 
 
 
 
 
 
 
 
 
 

 𝜼 = [𝜂𝑔] 𝝐 =

[
 
 
 
 
 
 
 
 
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6
𝜖7
𝜖8
𝜖9]

 
 
 
 
 
 
 
 

 𝑎𝑛𝑑  

 𝚺(𝑴) = 𝚲𝒎𝜼𝚲𝐦
′ + 𝚯𝜹, 𝑤ℎ𝑒𝑟𝑒:𝚯𝜹 = 

[
 
 
 
 
 
 
 
 
 
𝛿11 𝛿12 𝛿13 0 0 0 0 0 0
𝛿21 𝛿22 𝛿23 0 0 0 0 0 0
𝛿31 𝛿32 𝛿33 0 0 0 0 0 0
0 0 0 𝛿44 𝛿45 𝛿46 0 0 0
0 0 0 𝛿54 𝛿55 𝛿56 0 0 0
0 0 0 𝛿64 𝛿65 𝛿66 0 0 0
0 0 0 0 0 0 𝛿77 𝛿78 𝛿79

0 0 0 0 0 0 𝛿87 𝛿88 𝛿89

0 0 0 0 0 0 𝛿97 𝛿98 𝛿99]
 
 
 
 
 
 
 
 
 

 

𝜂𝑔= aX + e2 (23)  

Y = c’X + b𝜂𝑔 + e3 (24) 

Results 

Presentation Strategy 

The results are organized as follows. First, simulation conditions are summarized. 

Second, convergence information is used to decide which conditions are analyzed. Third, 

fit information per model is reported. Fourth, the influence of the simulation factors on 

the bias, power, Type 1 error, and confidence interval coverage of the mediated effect are 
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described for each of the four data-analysis models. Finally, simulation outcomes are 

compared across models.  

Simulation Conditions  

There were 864 conditions (with 1,000 replications per condition) examined 

under four data-analysis models. The simulation factors are summarized in Table A 

below and were sample size (small=200, medium=500, large=1,000); factor loadings on 

the general factor, referred to as general factor variance (small=.3, medium=.5, large= 

.7); factor loading on the specific factor, referred to as specific factor variance (small=.3, 

medium=.45, large=.6); a-path effect size (zero, small, medium, large); b-path effect size 

(zero, small, medium, large); and c’-path effect size (zero, small). The label for the sizes 

of the simulation conditions (zero, small, medium, large), the model labels (finite, 

correlated, unidimensional, and facet), the label simulation factors to refer to the set of 

predictors, and the hypotheses numbers are used through this section.  

Table A. Summary of Simulation Factors 

Symbol Interpretation Simulated 

Values 

Levels 

n Sample size 200, 500, 1000 3 

a-path Effect size of a-path (zero, small, medium, large) 0, .28, .72, 1.02 4 

b-path Effect size of b-path (zero, small, medium, large) 0, .14, .36, .51 4 

c’-path Effect size of the direct effect (zero, small) 0, .283 2 

gen Factor loading on general factor  .3, .5, .7 3 

spec Factor loading on specific factor  .3, .45, .6 3 

Convergence Statistics 

There were differences in convergence rates across the 864,000 estimated models 

(864 conditions times 1000 replications).  Replications did not converge when they had a 
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non-positive covariance matrix or Mplus default iteration limit of 1,000 iterations was 

exceeded. Nonconverged replications were dropped from the analysis. 

Nonconvergence was investigated as a function of the simulation conditions and 

described below. Conditions with less than a 70% convergence rate were problematic 

conditions and excluded from analyses. There were 357 problematic conditions out of 

3,456 total conditions (864 conditions times four models) in the simulation.  

Unidimensional model. There were no problematic conditions analyzed with the 

unidimensional model.  The 736 nonconverged replications were dropped from the 

simulation.  

Facet model.  There were no problematic conditions analyzed with the facet 

model. The 11,426 nonconverged replications were dropped from the simulation. 

Finite model. There were eight problematic conditions analyzed with the finite 

model dropped from the simulation. Six of those conditions had a small sample size, 

small general factor variance, small specific factor variance, a zero effect on the a-path, 

and a zero or small effect on the b-path.  The other two conditions had a medium general 

factor variance, a small specific factor variance, small sample size, and zero effects for 

the a- and b-paths. The nonconvergence patterns are consistent with Hypothesis 2, which 

hypothesized that a combination of small sample sizes and low factor loadings on the 

Table B. Convergence summary for data-analysis models 

 Finite Factor Corr Factor Facet Factor Unidim Factor 

Initial Replications 864,000 864,000 864,000 864,000 

Convergence 835,097 577,643 852,574 863,264 

Non-convergence 28,903 286,357 11,426 736 

Non-convergence % 3.34 33.14 1.32 0.08 
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specific factor would have convergence problems.  The 28,903 nonconverged replications 

were also dropped from the simulation. 

Correlated factor model. There were 349 problematic conditions analyzed with 

the correlated factor model dropped from the simulation. Nonconvergence rates are 

discussed below. The 286,357 nonconverged replications were dropped from the 

simulation. 

Small general factor variance. There were 224 problematic conditions. Shaded 

cells in Table C indicate nonconverged conditions, averaged over the c’-path. Most 

problematic conditions had a medium or large b-path effect size or a medium or large a-

path effect size with a zero or small b-path (144 and 72 conditions, respectively).  

Table C. Convergence table for the Correlated Factor model with small general factor 

variance 
 Spec loading  s-.3   s-.45   s-.6  

 N 200 500 1000 200 500 1000 200 500 1000 

a-zero b-zero          

 b-small          

 b-med          

 b-large          

a-small b-zero          

 b-small          

 b-med          

 b-large          

a-med b-zero          

 b-small          

 b-med          

 b-large          

a-large b-zero          

 b-small          

 b-med          

 b-large          

Medium general factor variance. There were 120 problematic conditions. 

Shaded cells in Table D indicate nonconverged conditions, averaged over the c’-path. 
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Most problematic conditions had a large b-path or a large a-path and a medium/large 

specific factor variance (48 conditions and 36 conditions, respectively). 

Table D. Convergence table for the Correlated Factor model with medium general 

factor variance 

 Spec loading  s-.3   s-.45   s-.6  

 Sample Size 200 500 1000 200 500 1000 200 500 1000 

a-zero b-zero          

 b-small          

 b-med          

 b-large          

a-small b-zero          

 b-small          

 b-med       s    

 b-large s          

a-med b-zero          

 b-small          

 b-med          

 b-large          

a-large b-zero          

 b-small          

 b-med          

 b-large          
Note: split cells with the letter “s” indicate that only the conditions with a small c’ path did not converge 

Large general factor loading. There were five problematic conditions that had a 

large specific factor variance and a combination of large a- and b-path effect sizes. 

Summary for the convergence statistics. The unidimensional and facet factor 

models do not have problematic conditions. The finite factor model has problems 

converging when the model structure is the weakest, i.e., small general and specific factor 

variance, mediation paths of zero to small effect size, and small sample size. Finally, the 

correlated factor model has problematic conditions when the a- and b-path effects are 

large and when the general factor variance is not large. The correlated errors capture the 

specific factor variance, leading to negative residuals in the indicators when X predicts 

the mediator, which pulls the factor. Table E shows the number of replications and 
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conditions in the simulation retained for analysis and differs from Table B above because 

problematic conditions have been dropped, reducing the converged replications. 

Table E. Convergence summary after problematic conditions have been dropped 

 Finite Factor Corr Factor Facet Factor Unidim Factor 

Convergence 829,763 493,994 852,574 863,264 

Non-convergence 26,237 21,006 11,426 736 

Conditions post-deletion 856 515 864 864 

 

Model Fit  

The RMSEA, the SRMR, and the CFI were used to evaluate how well the models 

represent the data (Hoyle, 2012). Conventional thresholds for the RMSEA and SRMR are 

.05 for perfect fit and .08 for adequate fit. The thresholds for the CFI are .95 and .90, 

respectively. Table F shows the number of times each of the fit indices per replication 

were below the thresholds.  

  

The finite factor model fits the datasets perfectly across replications. The 

correlated and the facet factor models fit the data well given adequate fit criteria. The 

unidimensional model had the poorest model fit because it does not account for the 

multidimensionality of the mediator. The unidimensional factor model is nested under the 

Table F. Fit indices for data-analysis models 

 Finite Factor Corr Factor Facet Factor Unidim Factor 

RMSEA.05 824,884 302,626 655,309 599 

 99.4% 61.3% 76.9% 0.06% 

RMSEA.08 829,763 451,339 775,406 53,596 

 100% 91.4% 90.9% 6.2% 

SRMR.05 789,664 404,823 845,642 1,911 

 95.1% 81.9% 99.2% 0.22% 

SRMR.08 829,610 493,049 852,569 271,441 

 99.9% 99.8% 99.9% 31.44% 

CFI.95 824,213 462,324 829,048 48 

 99.3% 93.6% 97.2% 0.01% 

CFI.90 829,302 493,336 851,039 897 

 99.9% 99.9% 99.8% 0.10% 
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correlated factor model, so the influence of the correlated uniqueness on fit is described 

by the percentage change across replications, where the RMSEA increased by 60%, 

SRMR by 80%, and the CFI by 92%. 

Unidimensional model. Shaded cells in Table G describe the conditions where 

less than 70% of the replications did not meet the adequate fit criterion, averaged over the 

c’-path. There was adequate fit in conditions with a small specific factor variance. As the 

general factor variance and the a- and b-paths increase, the model fits worse because not 

enough of the true mediator variance is represented by the unidimensional model.  

Table G. Unidimensional models where fit indices did not suggest adequate fit 70% of 

the time 

 Gen loading  g-.3   g-.5   g-.7  

 Sample Size 200 500 1000 200 500 1000 200 500 1000 

a-zero b-zero          

 b-small          

 b-med          

 b-large          

a-small b-zero          

 b-small          

 b-med    z       

 b-large          s 

a-med b-zero          

 b-small          

 b-med       s    s 

 b-large          

a-large b-zero          

 b-small       s    

 b-med          

 b-large          
Note: split cells with the letter s indicates small c’ path and letter z indicates zero c’ path 

Overview of the Analyses of Simulation Outcomes 

To assess which factors were associated with simulation outcomes in the 

mediated effect, OLS regression analyses were conducted for continuous outcomes and 
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logistic regressions for binary outcomes. Models with at least a small effect for both the 

a-path and b-path in the data-generating model are referred to as models with nonzero 

mediated effects, and models where either the a- or b-path (or both) had a zero effect are 

referred to as models with zero mediated effects. Unless specified, all simulation factors 

were dummy-coded and included in the regression model along with all possible 

interactions. Given that factors have three levels, interactions with the largest magnitude 

of the factor are reported. For OLS regression analyses, models with an R-squared value 

above .01 and a partial η2 above .005 for a predictor were further investigated. For 

logistic regression analyses, statistically significant predictors with at least a small effect 

size in the transformation of odd ratios into Cohen’s d (Chinn, 2000) were investigated. A 

log odds ratio of .362 (OR= 1.44) represents a small effect size, a log odds ratio of .905 

(OR= 2.47) represents a medium effect size, and a log odds ratio of 1.448 (OR=4.25) 

represents a large effect size. The transformation equation is shown below:  

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =
ln(𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜)

𝜋

 √3 

 (25) 

Bias in the mediated effect. Raw, relative, and standardized bias were used as 

continuous outcomes in models with nonzero mediated effects. Preliminary analyses 

indicate that the mediated effect in models with zero mediated effects were unbiased and 

simulation factors do not account for variance. These results are not presented. Tables are 

provided for relative and standardized bias in models with nonzero mediated effects 

because of the interpretable metric.  

Power to detect the mediated effect. The binary outcome variable for power in 

models with nonzero mediated effects was coded 1 if the 95% confidence interval did not 

contain zero or 0 otherwise. Statistical power above .80 was considered adequate.  
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Methods to assess statistical power. Differences in power by method were used to 

understand the best method to detect the mediated effect in the finite factor model. The 

power difference per condition through the distribution of the product method and the 

Monte Carlo method was never more than .01. According to Table 6-1 to Table 6-3, 

power of the asymptotic normal theory confidence intervals was never higher than the 

power from the distribution of the product confidence intervals, with differences up to 

.30. The discrepancy in the power decreased as the simulation factors increased. Only the 

distribution of the product method was used for the analyses of statistical power, Type 1 

error, and confidence interval coverage. 

- Insert Table 6-1 to Table 6-3 about here- 

Type 1 error. The binary outcome variable for empirical Type 1 error in models 

with zero mediated effects was coded 1 if the 95% confidence interval did not contain 

zero or 0 otherwise. Type 1 error rates between .025 and .075 (Bradley, 1978) were 

considered adequate. 

Confidence interval coverage and interval width. The binary outcome variable 

for coverage was coded as a 1 if the 95% confidence interval contained the true value of 

the mediated effect, and coded 0 otherwise. Coverage rates between .925 and .975 were 

considered adequate. Coverage in models with nonzero mediated effects need to be 

interpreted with caution due to estimate bias in the misspecified models. The interval 

width outcome was the difference between the lower and upper confidence interval limit. 

Smaller width suggests more precision.  

Comparisons across analysis models. For power and confidence interval 

coverage, a binary indicator that indexed discrepancies in conclusions on the mediated 
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effect per replication was used as a dependent variable in a logistic regression. 

Standardized bias, relative bias, and Type 1 error rate were compared across models 

through summary tables. Comparing simulation outcomes in misspecified models need to 

be with caution because the mediated effects across models are theoretically different. 

Analysis of the Finite Factor Model  

Bias in the finite model. The bias in the mediated effect decreased as sample 

size, the a- and b-paths, and the specific and general factor variance increased, supporting 

Hypotheses 1.1, 1.2, and 1.3. Conditions with 500 cases, medium general factor variance 

and medium a- and b-paths were unbiased. Detailed analyses of bias outcomes are found 

below. 

Standardized bias in the finite model with nonzero mediated effects. Table 1A-1 

to Table A1-3 show that conditions with low sample size, general factor variance, 

specific factor variance, and large a- or b-paths had standardized bias above .10. The 

variance explained in the regression predicting standardized bias from the simulation 

factors was R2 = .003. Figure 1A-1 suggests that standardized bias decreased as the 

specific factor variance, general factor variance, and sample size increased.  

- Insert Table 1A-1 to Table 1A-3 and Figure 1A-1 about here- 

Raw bias in finite model with nonzero mediated effects. The variance explained 

by the regression predicting raw bias from the simulation factors was R2 = .021. As 

sample size increased, the raw bias in the mediated effect decreased (b=-.022, t=-4.972, 

p<.05, partial η2=.006), supporting Hypothesis 1.1. Figure 1A-2 shows that raw bias 

decreased as sample size, general factor variance, and specific factor variance increased. 

Raw bias increased as the a- and b-paths increased.  
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- Insert Figure 1A-2 about here- 

Relative bias in the finite model with nonzero mediated effects. Table 1A-4 to 

Table 1A-6 show that conditions with small sample size, specific factor variance, and 

general factor variance had relative bias above .10. The variance explained by the 

regression predicting relative bias from the simulation factors was R2= .014. No 

predictors met the η2 criterion. Figure 1A-3 shows that relative bias decreased as 

simulation factors increased. 

- Insert Table 1A-4 to Table 1A-6 and Figure 1A-3 about here- 

Power in the finite model. The power to detect the mediated effect increased as 

sample size, the a- and b-paths, and the specific and general factor variance increased. 

Conditions with 500 cases, medium general factor variance and medium a- and b-paths 

were adequately powered (Table 1B-1 to Table 1B-3 and Figure 1B-1). Power was 

assessed for conditions with a sample size of 200. Detailed analyses of the power 

outcome are found below. 

-Insert Table 1B-1 to Table 1B-3 and Figure 1B-1 about here- 

Power to detect the mediated effect with a small sample size. Figure 1B-2 shows 

that power increased as the simulation factors increased. There was a significant 

interaction among all of the predictors (large effect size; b=2.352, z=3.803, p<.05). 

Power increased faster for conditions with larger a- and b-paths and larger general and 

specific factor variances than with smaller a- and b-paths and smaller general and 

specific factor variances. Power increased as the general factor variance (2(2, 

N=152,659) = 50.42, p<.05), specific factor variance (2(2, N=152,659) = 98.53, p<.05), 
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a-path (2(2, N=152,659) = 14.148, p<.05), and b-path (2(2, N=152,659) = 249.145, 

p<.05) increased, supporting Hypotheses 1.4, 1.5 and 1.6. 

- Insert Figure 1B-2 about here- 

Type 1 error in the finite model. The Type 1 error in the mediated effect 

approached .05 as sample size, the a- or b-path, and the specific and general factor 

variance increased. Type 1 error was adequate for conditions with a medium a- or b-path. 

Detailed analyses follow. 

Type 1 error in the mediated effect. As show in Table 1C-1 to Table 1C-3, 

conditions where the a- and b-path had a zero effect had empirical Type 1 errors close to 

zero. Conditions analyzed had one nonzero a- or b-path and sample size at or above 500. 

- Insert Table 1C-1 to Table 1C-3 about here- 

Nonzero effect size in the a- and b-path: Figure 1C-1 and Figure 1C-2 show that 

the Type 1 error approached .05 as the simulation factors increased. For conditions with a 

nonzero a-path, there was a significant interaction between the general and specific factor 

variance and the a-path (large effect size; b=1.912, z=-2.375, p<.05). The Type 1 error 

approached .05 faster as the a-path increased for conditions with smaller general and 

specific factor variance than conditions with larger general and specific factor variance. 

Type 1 errors approached .05 as sample size (2(1, N=140,596) = 31.228, p<.05), general 

factor variance (2(2, N=140,596) = 39.469, p<.05), specific factor variance (2(2, 

N=140,596) = 39.469, p<.05), and the a-path (2(2, N=140,596) = 18.888, p<.05) 

increased. For conditions with a nonzero b-path, there were significant interactions 

among the b-path and the general and specific factor variance (medium effect size; 

b=.943, z=-1.972, p<.05) and among the b-path, sample size, and general factor variance 
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(medium effect size; b=.968, z=2.041, p<.05). Type 1 errors approached .05 faster as the 

specific factor variance, general factor variance, and sample size increased for smaller b-

paths than for larger b-paths. Type 1 errors approached .05 as sample size (2(1, 

N=140,426) = 18.930, p<.05), general factor variance (2(2, N=140,426) = 11.347, 

p<.05), specific factor variance (2(2, N=140,426) = 18.858, p<.05), and the b-path 

(2(2, N=140,426) = 57.199, p<.05) increased, supporting Hypotheses 1.4, 1.5 and 1.6. 

-Insert Figure 1C-1 and Figure 1C-2 about here- 

Coverage and interval width in the finite model. The 95% confidence interval 

coverage of mediated effect approached .95 as sample size, the a- and b-paths, and the 

specific and general factor variance increased. Conditions with 500 cases, medium a- and 

b-paths, and medium general factor variance were adequately covered. Detailed analyses 

are found below. 

Confidence interval coverage of the mediated effect. Table 1D-1 to Table 1D-3 

show that the confidence interval coverage was mostly adequate. Ten conditions with 

small sample size were outside of the robust criterion of coverage. Figure 1D-1 shows 

that coverage approached .95 as simulation factors increased. There was a significant 

interaction between sample size, general factor variance, specific factor variance, and the 

b-path (medium effect size; b= 1.172, z=2.283, p<.05). Coverage approached .95 faster 

as the general factor variance increased for conditions with a larger specific factor 

variance, sample size, and b-path, than for conditions with smaller specific factor 

variance, sample size and b-path. Coverage approached .95 as sample size (2(2, N= 

474,754) = 50.634, p<.05), specific factor variance (2(2, N= 474,754) = 38.040, p<.05), 

a-path (2(2, N= 474,754) = 24.853, p<.05), b-path (2(2, N= 474,754) =26.070, p<.05) 
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and general factor variance (2(2, N= 474,754) = 13.141, p<.05) increased, supporting 

Hypotheses 1.4, 1.5, and 1.6.  

Confidence interval width. Figure 1E-1 shows that confidence interval width for 

the mediated effect decreased as the sample size, general and specific factor variance 

increased, and as the a- and b-path decreased. The variance explained by the regression 

predicting interval width from the simulation outcomes was R2= .027. There was a 

significant interaction among all of the predictors (b=.648, z=3.110, p<.05, partial η2 

=.008). The interval width increased at a faster rate as the a- and b-path increased for 

conditions with smaller sample size, specific and general factor variance than for larger 

sample size, specific and general factor variance 

-Insert Table 1D-1 to Table 1D-3 and Figure 1D-1 to Figure 1E-1 about here- 

Summary of the finite factor model. The mediated effect in models with a 

bifactor mediator structure (Model 1) is unbiased, adequately powered, and covered by 

95% confidence intervals in conditions with 500 cases, medium general factor variance 

and medium a- and b-paths. The Type 1 error approached .05 when one of the paths had 

a medium effect size. For the other conditions, as the simulation factors increased, bias 

decreased, power increased, coverage approached .95, and Type 1 error approached .05. 

Finally, the model does not converge with a sample size of 200, zero or small a- and b-

paths, and small specific and general factor variance.    

Analysis of the Facet Factor Model 

Bias in the facet model. The mediated effect was underestimated. Bias decreased 

as the specific factor variance increased and as sample size, the a- and b-paths, and the 

general factor variance decreased. Conditions with large specific factor variance and 
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small general factor variance, a- and b-paths and sample size had the least bias. Detailed 

analyses are found below. 

Standardized bias in the facet model with nonzero mediated effects. Table 2A-1 

to Table 2A-3 and Figure 2A-1 show that standardized bias decreased as the specific 

factor variance decreased and other simulation factors increased. The variance explained 

by the regression predicting standardized bias from the simulation factors was R2 = .856. 

There were significant interactions between sample size and the a- and b-paths (b=-

2.313, t=-35.155, p<.05, partial η2= .04) and between the general factor variance and the 

a- and b-paths (b=-1.256, t=-17.086, p<.05, partial η2= .026). Standardized bias 

increased faster as sample size and general factor variance increased for conditions with 

larger a- and b-paths than smaller a- and b-paths, supporting Hypotheses 3.2, and 3.3.  

-Insert Table 2A-1 to Table 2A-3 and Figure 2A-1 about here- 

Raw bias in the facet model with nonzero mediated effects. Figure 2A-2 shows 

that raw bias decreased as the specific factor variance increased, as the general factor 

variance and a- and b-paths decreased, and not influenced by sample size. The variance 

explained by the regression predicting raw bias from the simulation factors was R2 = 

.822. There was a significant interaction between the general factor variance and the a- 

and b-paths (b=-.031, t=-11.281, p<.05, partial η2=.006). The raw bias increased as the 

general factor variance increased faster for conditions with larger a- and b-paths than for 

smaller a- and b-paths, supporting Hypothesis 3.2.  

-Insert Figure 2A-2 about here- 

Relative bias in the facet model with nonzero mediated effects. Table 2A-4 to 

Table 2A-6 and Figure 2A-5 show that relative bias decreased as the general factor 
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variance and a-path decreased and the specific factor variance increased. The variance 

explained by the regression predicting relative bias from the simulation factors was R2 = 

.11. Relative bias decreased as the specific factor variance increased (b=.097, t=10.683, 

p<.05, partial η2=.033), and as the a-path (b=-.116, t=-12.306, p<.05, partial η2= .012) 

and general factor variance (b=-.229, t=-25.069, p<.05, partial η2=.070) decreased, 

supporting Hypotheses 3.2 and 3.3.  

-Insert Table 2A-4 to Table 2A-6 and Figure 2A-3 about here- 

Power in the facet model. The power to detect the mediated effect increased as 

sample size, the a- and b-paths, and the specific factor variance increased, and as the 

general factor variance decreased, supporting Hypotheses 3.4, 3.5, and 3.6. Conditions 

with 500 cases and medium a- and b-paths were adequately powered (Tables 2B-1 to 

Table 2B-3). Power was assessed for conditions with a sample size of 200. Detailed 

analyses are found below. 

Power to detect the mediated effect with a small sample size. Figure 2B-1 shows 

that power was not influenced by the general factor variance, and increased as the other 

simulation factors increased. There was a significant interaction among all the predictors 

(medium effect size; b=-1.269, z=-2.787, p<.05). Power increased as the specific factor 

variance increased faster for conditions with smaller a- and b-paths than with larger a- 

and b-paths. Power increased as the b-path (2(2, N=157,074) = 328.93, p<.05), specific 

factor variance (2(2, N=157,074) = 38.55, p<.05), and a-path (2(2, N=157,074) = 

94.04, p<.05) increased, but power did not significantly increase as the general factor 

variance increased (2(2, N=157,074) = 3.29, p=.19). Evidence supports Hypotheses 3.4 

and 3.6. 
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-Insert Table 2B-1 to Table 2B-3 and Figure 2B-3 about here- 

Type 1 error in the facet model. The Type 1 error in the mediated effect 

approached .05 as sample size, the a- or b-path, and the specific factor variance 

increased, and not influenced by the general factor variance, supporting Hypotheses 3.4 

and 3.6. Type 1 errors were adequate for conditions with a medium a- or b-path (Table 

2C-1 to Table 2C-3). Conditions analyzed had a nonzero a- or b-path and a zero effect in 

the other path. Detailed analyses are found below. 

 Type 1 error in the mediated effect for nonzero a- or b-paths. Figure 2C-1 and 

Figure 2C-2 shows that the Type 1 error approached .05 as the simulation factors 

increased. For conditions with a nonzero a-path, there was a significant interaction 

between the general factor variance, specific factor variance, and sample size (large effect 

size; b= 1.449, z=2.126, p<.05). Type 1 error approached .05 faster as the sample size 

increased for conditions with a smaller general and specific factor variance than for a 

larger general and specific factor variance. Also, as the a-path increased, Type 1 error 

approached .05 (large effect size; b=2.540, z= 4.890, p<.05). Type 1 error rate 

approached .05 as sample size (2(2, N=159,830) = 53.313, p<.05), specific factor 

variance (2(2, N=159,830) = 12.209, p<.05), and a-path (2(2, N=159,830) = 47.828, 

p<.05) increased, and was not significantly influenced by the general factor variance 

(2(2, N=159,830) = 5.629, p=.06). For conditions with a nonzero b-path, there was a 

significant interaction between sample size and the b-path (large effect size; b= -1.822, 

z=-4.371, p<.05). Type 1 error approached .05 faster as the sample size increased for 

conditions with a smaller b-path than for a larger b-path. Type 1 error approached .05 as 

sample size (2(2, N=159,706) = 27.874, p<.05) and b-path (2(2, N=159,706) = 62.810, 
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p<.05) increased, and was not significantly influenced by the general factor variance 

(2(2, N=159,706) = 1.217, p=.54) and specific factor variance (2(2, N=159,706) = 

2.983, p=.23). Analyses supported Hypotheses 3.4 and 3.6. 

-Insert Table 2C-1 to Table 2C-3 and Figure 2C-1 and Figure 2C-2 about here- 

Coverage and interval width in the facet model. The 95% confidence interval 

coverage of the mediated effect approached .95 as the specific factor variance increased 

and as the sample size, the a- and b-paths, and general factor variance decreased, 

supporting Hypotheses 3.5 and 3.6. Conditions with large specific factor variance and 

small general factor variance, a- and b-paths, and sample size had coverage closest to .95. 

Detailed analyses follow. 

Confidence interval coverage of the mediated effect. Table 2D-1 to Table 2D-3 

show that all conditions had coverage rates below 92.5%. Conditions with a medium or 

large a- and b-path had zero coverage. Confidence interval coverage was assessed for 

small sample size conditions. Figure 2D-1 shows that coverage approached .95 as the 

specific factor variance increased, but decreased as the general factor variance and the a- 

and b-paths increased. There was a significant interaction between the general factor 

variance and the a- and b-paths (large effect size; b= -2.322, z=-7.747, p<.05). As the 

general factor variance decreased, the confidence interval coverage approached .95 at a 

faster rate for conditions with larger a- and b-paths than with smaller a- and b-paths. 

Coverage approached .95 as the general factor variance (2(2, N= 157,074) = 113.312, 

p<.05), a-path (2(2, N= 157,074) = 69.962, p<.05), and b-path (2(2, N= 157,074) 

=28.913, p<.05) decreased, and was not influenced by the specific factor variance (2(2, 

N= 157,074) = 2.254, p=.28), supporting Hypothesis 3.5.  
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Confidence interval width. Figure 2E-1 shows that the confidence interval width 

increased as the a- and b-paths and the general factor variance increased and not 

influenced by the specific factor variance. The variance accounted for by the regression 

predicting confidence interval width from the simulation factors was R2 = .614. There 

was a significant interaction between the a- and b-path (b=.648, t=.311, p<.05, partial 

η2=.064). As the a-path increased, the interval width increased faster for conditions with 

smaller b-paths than for larger b-paths.   

-Insert Table 2D-1 to Table 2D-3 and Figure 2D-1 to Figure 2E-1 about here- 

Summary of the facet factor model. When the bifactor model is misspecified by 

ignoring the general construct (Model 2), the mediated effect is underestimated and has 

confidence interval coverage below .95. Conditions with a large specific factor variance 

and small general factor variance, a- and b-paths, and sample size have the least bias and 

the highest coverage. Bias decreased and coverage approached .95 as the specific factor 

variance increased and the rest of the simulation factors decreased. Conditions with 500 

cases and medium a- and b-paths for models with zero and nonzero mediated effects had 

adequate power and Type 1 error rates. Conditions approached adequate power and Type 

1 error rates as the simulation factors increased, except for the general factor variance. 

All models met the adequate fit criteria 

Analysis of the Unidimensional Model 

As previously mentioned, only conditions with a small specific factor variance 

and a- and b-path less than a large size were analyzed for the unidimensional model. 

Bias in the unidimensional model. The mediated effect was negatively biased 

(Table 3A-1 and Table 3A-2). Bias decreased as the general factor variance, sample size, 
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and the a- and b-paths decreased, supporting Hypothesis 3.2. Conditions with large 

general factor variance, a- and b-paths, and sample size had the least bias. Detailed 

analyses are found below. 

Standardized bias in the unidimensional model with nonzero mediated effects. 

Figure 3A-1 shows that standardized bias increased as the simulation factors increased. 

The variance explained by the regression predicting standardized bias from simulation 

factors was R2 = .976. There was a significant interaction among all of the predictors 

(b=-5.524, t=-59.506, p<.05, partial η2=.051). As the general factor variance increased, 

standardized bias increased faster for conditions with a larger sample size and a- and b-

paths than with a smaller sample size and a- and b-paths. Evidence supports Hypothesis 

4.2.  

-Insert Table 3A-1 and Figure 3A-1 about here- 

Raw bias in the unidimensional model with nonzero mediated effects. Figure 

3A-2 shows that raw bias decreased as the simulation factors increased, except for sample 

size.  The variance explained by the regression predicting raw bias from the simulation 

factors was R2 = .908. There was a significant interaction among the general factor 

variance and the a- and b-path (b=-.028, t=-18.567, p<.05, partial η2 = .019). As the 

general factor variance increased, raw bias increased faster for conditions with larger a- 

and b-paths than for smaller a- and b-paths, supporting Hypothesis 4.2.  

-Insert Figure 3A-2 about here- 

Relative bias in the unidimensional model with nonzero mediated effects. Figure 

3A-3 show that relative bias decreased as the general factor decreased. The variance 

explained by the regression predicting relative bias from the simulation factors was R2 = 



 
 
 

37 

.219. There was a significant main effect of the general factor variance on relative bias 

(b=-.279, t=-35.957, p<.05, partial η2=.218). As the general factor variance increased, 

relative bias increased, supporting Hypothesis 4.2.  

-Insert Table 3A-2 and Figure 3A-3 about here- 

Power in the unidimensional model. The power to detect the mediated effect 

increased as sample size and the a- and b-paths increased, and as the general factor 

variance decreased (Figure 3B-1). Conditions with 1,000 cases, medium a- and b-paths, 

and small general factor variance were adequately powered (Table 3B-1). Detailed 

analyses are found below. 

Power in the mediated effect. There was a significant interaction among all the 

simulation factors (large effect size; b=-3.737, z=-4.547, p<.05). As sample size 

increased, power increased faster for conditions with a smaller general factor variance 

and large a- and b-paths than larger general factor variance and smaller a- and b-paths. 

Power increased as the b-path (2(1, N=69,022) = 147.18, p<.05), sample size (2(2, 

N=69,022) = 751.18, p<.05), and a-path (2(2, N=69,022) = 82.830, p<.05) increased, 

but power decreased as the general factor variance increased (2(2, N=69,022) = 15.800, 

p<.05), supporting Hypotheses 4.4, 4.5, and 4.6. 

-Insert Figure 3B-1 and Table 3B-1 about here- 

Type 1 error in the unidimensional model. The Type 1 error in the mediated 

effect approached .05 as the a- or b-path and sample size increased, and general factor 

variance decreased (Figure 3C-1 to Figure 3C-2) supporting Hypotheses 3.4, 3.5, and 

3.6. Type 1 errors were adequate for conditions with a medium a- or b-path, a sample 

size of 500, and small general factor variance (Table 2C-1). Conditions analyzed had a 
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nonzero a- or b-path and a zero effect in the other path. Detailed analyses are found 

below. 

Type 1 error in the mediated effect. Table 3C-1 shows that all conditions have 

Type 1 errors below .05; conditions with zero a- and b-paths had Type 1 errors close to 

zero. Conditions analyzed had a nonzero a- or b-path and a zero effect in the other path. 

For conditions with a nonzero a-path, there was a significant interaction among the 

predictors (large effect size; b=2.847, z=3.058, p<.05). Type 1 error approached .05 

faster as the general factor variance increased for conditions with smaller a-paths and 

larger sample size than for larger a-paths and smaller sample size. Type 1 error 

approached .05 as the a-path (2(1, N=35,155) = 83.211, p<.05) and sample size (2(2, 

N=35,155) = 20.218, p<.05) increased. The general factor variance (2(2, N=35,155) = 

1.356, p=.508) did not influence Type 1 error rates. For conditions with a nonzero b-path, 

Type 1 error approached .05 as the b-path increased (large effect size; b=3.858, z=4.416, 

p<.05). Type 1 error approached .05 as the b-path increased (2(3, N= 35,153) = 

134.117, p<.05), but sample size (2(2, N= 35,153) = 4.320, p=.116) and general factor 

variance (2(2, N= 35,153) = 0.006, p=.997) did not influence Type 1 error. 

-Insert Figure 3C-1 to Figure 3C-2 and Table 3C-1 about here- 

Coverage and interval width in the unidimensional model. The 95% 

confidence interval coverage of mediated effect approached .95 as the general factor 

variance, sample size and the a- and b-paths decreased. Conditions with small general 

factor variance, small a- and b-paths, and small sample size had coverage closest to .95. 

(Table 3D-1). Detailed analyses are found below. 
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Confidence interval coverage for the mediated effect. Table 3D-1 shows that all 

conditions had a coverage rate below 92.5 %; conditions with medium or large sample 

sizes had zero coverage. Confidence interval coverage was assessed for conditions with 

200 cases. As shown in Figure 3D-1, coverage approached .95 as sample size and general 

factor variance decreased. There was a significant interaction between the general factor 

variance and a- and b-paths (large effect size; b=-2.661, z=-2.636, p<.05). As the general 

factor variance decreased, coverage approached .95 faster for conditions with a small a- 

and b-paths than for conditions with a large a- and b-paths. Confidence interval coverage 

approached .95 as the general factor variance (2(2, N= 21,092) = 488.89, p<.05), the a-

path (2(1, N= 21,092) = 141.98, p<.05), and the b-path (2(1, N= 21,092) =144.01, 

p<.05) decreased, supporting Hypothesis 4.5.  

Confidence interval width. Figure 3E-1 shows that interval width decreased as 

sample size and general factor variance increased and as the a- and b-paths decreased. 

The variance explained by the regression predicting interval width from the simulation 

factors was R2 = .754. There was a significant interaction between the a-path and the 

general factor variance (b=-0.013, t=-10.890, p<.05, partial η2=.051). As the general 

factor variance increased, the interval width decreased faster for conditions with a smaller 

a-path than for a larger a-path. 

-Insert Table 3D-1 and Figure 3D-1 to Figure 3E-1 about here- 

Summary of the unidimensional model. When the bifactor model is 

misspecified by only modeling one dimension (Model 3), only conditions with a small 

specific factor variance adequately fit the data. The mediated effect is negatively biased 

and has coverage below .95. Conditions with a small sample size, general factor variance 
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and a- and b- paths had the least bias and highest coverage. Bias increased and coverage 

decreased as the rest of the simulation factors increased.  Also, conditions with 500 cases, 

small general factor variance, and medium a- and b-paths for models with zero and 

nonzero mediated effects had adequate power and Type 1 errors. Other conditions 

approached adequate power and Type 1 errors as the a- and b-path increased. Power also 

increased as sample size increased and general factor variance decreased. 

Analysis of the Correlated Factor Model 

As previously mentioned, only conditions with a large general factor variance, 

except conditions with a large b-path, were analyzed for the correlated model. 

Bias in the correlated factor model. The mediated effect was negatively biased 

(Table 4A-1 and Table 4A-2). Bias decreased as the specific factor variance increased 

and as sample size and the a- and b-paths decreased. Conditions with large specific factor 

variance and small a- and b-paths and small sample size had the least bias. Detailed 

analyses are found below. 

Standardized bias in the correlated factor model with nonzero mediated effects. 

Figure 4A-1 shows that standardized bias decreased as the specific factor variance 

increased and as the a- and b-paths and sample size decreased. The variance explained by 

the regression predicting standardized bias from the simulation factors was R2 = .982. 

There was a significant interaction among all of the predictors (b=8.833, t= 97.365, 

p<.05, partial η2=.083). As the specific factor variance increased, standardized bias 

increased slower for larger sample sizes and a- and b-paths than for the smaller sample 

sizes and a- and b-paths, supporting Hypothesis 4.3. 

-Insert Figure 4A-1 and Table 4A-1 about here- 
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Raw bias in the correlated factor model with nonzero mediated effects. Figure 

4A-4 shows that raw bias was not influenced by sample size or specific factor variance. 

The variance explained by the regression predicting raw bias from the simulation factors 

was R2 = .971. There was a significant interaction between the a- and the b-path (b=-

1.574, t=-192.150, p<.05, partial η2= .747). As the a-path increased, raw bias increased 

faster for a medium b-path than a small b-path.  

-Insert Figure 4A-2 about here- 

Relative bias in the correlated factor model with nonzero mediated effects. 

Figure 4A-5 show that relative bias decreased as the specific factor variance increased. 

The variance explained by the regression predicting relative bias from the simulation 

factors was R2 = .018. As the specific factor variance increased, the relative bias 

decreased, (b=.041, t=8.721, p<.05, partial η2=.016), supporting Hypothesis 4.3.  

-Insert Table 4A-2 and Figure 4A-3 about here- 

Power in the correlated factor model. The power to detect the mediated effect 

increased as sample size, the a- and b-paths, and the specific factor variance increased 

(Figure 4B-1). Conditions with 1,000 cases, large a- and b-paths, and large specific factor 

variance were adequately powered (Table 4B-1). Detailed analyses are found below. 

Power to detect the mediated effect. There were significant main effects of the a-

path (large effect size; b=1.668, z=3.053, p<.05), sample size (large effect size; b=1.453, 

z=2.612, p<.05), and b-path (medium effect size; b=1.257, z=2.216, p<.05). As the 

sample size and a- and b-paths increased, the power increased. Power increased as the b-

path (2(1, N=107,086) = 5.509, p<.05), sample size (2(2, N=107,086) = 9.066, p<.05), 

and a-path (2(2, N=107,086) = 13.134, p<.05) increased, but power did not significantly 
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increase as the specific factor variance increased (2(2, N=107,086) = 3.29, p=.416), 

supporting Hypothesis 4.4. 

-Insert Table 4B-1 and Figure 4B-1 about here- 

Type 1 error in the correlated factor model. The Type 1 error in the mediated 

effect approached .05 as the a- or b-path increased (Figure 4C-1 to Figure 4C-2). Type 1 

errors were adequate for conditions with a medium a- or b-path, a sample size of 1,000, 

and large specific factor variance (Table 4C-1). Conditions analyzed had a nonzero a- or 

b-path and a zero effect in the other path. Detailed analyses are found below. 

Type 1 error in the mediated effect. Table 4-C1 show that all conditions had 

empirical Type 1 error rates below .075. Conditions with zero a- and b-paths had Type 1 

errors close to zero. In the model predicting Type 1 error rate from the a-path, specific 

factor variance, and sample size, Type 1 error approached .05 as the a-path increased 

(large effect size; b=1.614, z=2.083, p<.05).  Type 1 error approached .05 as the a-path 

increased (2(2, N=53,870) = 6.235, p<.05), but sample size (2(2, N=53,870) = 2.972, 

p=.226) and the specific factor variance (2(2, N=53,870) = 3.245, p=.197) did not 

influence Type 1 error rates. Similarly, in the model predicting Type 1 error rate from the 

b-path, sample size, and specific factor variance, there was a significant interaction 

between the b-path and sample size (large effect size; b=1.868, z=2.624, p<.05). As 

sample size increased, Type 1 error approached .05 faster for conditions with a larger b-

path than with smaller b-path. The Type 1 error approached .05 as the b-path (2(2, 

N=53,997) = 3.307, p<.05) increased, but specific factor variance (2(2, N=53,997) = 

0.389, p=.197), and sample size (2(2, N=53,997) = 0.527, p=.226) did not significantly 

influence Type 1 error rates. 
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-Insert Table 4C-1 and Figure 4C-1 to 4C-2 about here- 

Coverage and interval width in the correlated factor model. The 95% 

confidence interval coverage of mediated effect approached .95 as the specific factor 

variance increased and the a- and b-paths and sample size decreased (Figure 4D-1). 

Conditions with large specific factor variance, and small a- and b-paths and sample size 

had coverage closer to .95. (Table 4D-1). Detailed analyses are found below. 

Confidence interval coverage and width for the mediated effect. Table 4D-1 

shows that all conditions had a coverage rate below 92.5%. Conditions with a medium a- 

and b-path and 500 cases had coverage of zero. Confidence interval coverage was 

examined only for conditions with a sample size of 200. There were significant 

interactions between the specific factor variance and the a-path (medium effect size; b= -

1.252, z=-3.368, p<.05) and between the specific factor variance and the b-path (medium 

effect size; b=.569, z=3.310, p<.05). As the specific factor variance increased, 

confidence interval coverage approached .95 faster for conditions with a smaller a- and b-

paths than for conditions with a larger a- and b-paths. Across all conditions, confidence 

interval coverage approached .95 as the specific factor variance increased (2(2, N= 

35,390) = 19.91, p<.05), and the a-path (2(2, N= 35,390) = 1,335.06, p<.05) and b-path 

(2(2, N= 35,390) =742.90, p<.05) decreased, supporting Hypothesis 4.6. 

Confidence Interval Width. Figure 4E-1 shows that interval width increased as the 

specific factor variance and a- and b-paths increased, and as the sample size decreased. 

The variance explained by the regression predicting confidence interval width from the 

simulation factors was R2 = .611. There was an interaction between the a-path and the 

specific factor variance (b=.025, z=19.281, p<.05, partial η2=.014). As the specific factor 
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variance increased, interval width increased faster for conditions with larger a-path than 

for their smaller a-path.  

-Insert Table 4D-1 and Figure 4D-1 to Figure 4E-1 about here- 

Summary of the correlated factor model. When the bifactor model is 

misspecified by only modeling one dimension with correlated uniquenesses (Model 4), 

most conditions with a large general factor variance converged. The mediated effect was 

negatively biased and had coverage below .95. Conditions with small a- and b-paths, 

small sample size, and large specific factor variance had the least bias and highest 

coverage.  Bias decreased and coverage approached .95 as the specific factor variance 

increased and the other simulation factors decreased. Also, conditions with 1,000 cases, 

large a- and b-paths, and large specific factor variance in models with zero or nonzero 

mediated effects had adequate power and Type 1 error rates. Other conditions approached 

adequate power and Type 1 error as the a- and b-paths increased, and were not 

influenced by the specific factor variance. Only power increased as the sample size 

increased.  

Model Comparisons 

 Comparisons of the different analysis models need to be done with caution 

because the mediated effects across misspecified models are theoretically different. 

Correlated v. unidimensional factor model. The unidimensional model is 

nested under the correlated factor model, so the influence of the correlated uniqueness on 

the simulation outcomes was investigated. Only conditions with large general factor 

variance and a small specific factor variance converged and fit both models. First, Table 

5A-1 and Table 5A-2 show that the correlated model had slightly higher bias than the 
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unidimensional model. The variance explained by the regression predicting the difference 

in the standardized bias between the models was R2=.906. There was an interaction 

among the a- and b-paths and sample size (b=0.081, t= 5.004, p<.05, partial η2=.008).  

The difference in standardized bias increased faster as the sample size increased for 

conditions with larger a- and b-paths than for smaller a- and b-paths. Second, Table 5B-1 

shows that both models had power around .05 for the analyzed conditions, so no 

statistical tests were performed. Conditions with the highest power had a medium effect 

size in the a-path and the b-path and 1,000 cases. Third, Table 5C-1 shows that both 

models had Type 1 errors below .075. Type 1 error rates were only adequate for the 

unidimensional model in conditions of 1,000 cases. Finally, Table 5D-1 shows that 

confidence interval coverage was similar for both models. Conditions with small sample 

size and small a- and b-paths had coverage closest to .95.  

-Insert Table 5A-1, Table 5A-2, Table 5B-1, Table 5C-1 and Table 5D-1 about here- 

Facet v. finite factor model. First, bias in the mediated effect from the facet 

model is always negative and higher than the bias from the finite model. The most biased 

condition in the finite model has a small sample size, small general factor variance, small 

specific factor variance, and small a- and b-paths. Those conditions had the least bias in 

the facet model, which increased as the specific factor variance decreased and the other 

simulation factors increased.  

Second, conditions with medium a- and b-paths and a sample size of 500 had 

adequate power for both models. The facet model only had more power in conditions 

where the general factor variance is small or medium, sample size is small, and one of the 

paths is small. For conditions with a small sample size, there was a significant interaction 
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among the predictors (small effect size; b=.802, z=.326, p<.05).  The difference in power 

decreased faster as the specific factor variance increased for conditions with larger a- and 

b-paths and smaller general factor variance than smaller a- and b-paths and larger general 

factor variance.  

Third, when the a- or b-path had nonzero effects and a small general factor 

variance, the facet model had Type 1 errors closer to .05. The finite model had Type 1 

errors closer to .05 when the general factor variance and sample size increased and the a- 

and b-paths were small.   

Finally, about 37.7% of the true mediated effects were covered by confidence 

intervals in both facet and finite models. The facet model never had higher coverage than 

the finite model. In the prediction of the coverage difference, there was a significant 

interaction among all of the predictors (large effect size; b=-2.407, z=-4.975, p<.05). The 

difference in coverage increased faster as sample size increased for conditions with larger 

a- and b-paths, larger general factor variance, and smaller specific factor variance than 

smaller a- and b-paths, smaller general factor variance, and larger specific factor 

variance.  

Unidimensional v. finite factor model. Only conditions with a small specific 

factor variance and up to medium a- or b-paths fit both models. First, bias in the mediated 

effect for the unidimensional model is always negative and higher than for the finite 

model. The most biased condition in the finite model had a small sample size, small 

general and specific factor variance, and small a- and the b-paths. Those conditions had 

the least bias in the unidimensional model, which increased as simulation factors 

increased.  
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Second, the finite model had more power that the unidimensional model, except in 

conditions with a small general factor variance and sample size. In the prediction of the 

difference in power, there was a significant interaction between sample size and the a- 

and b-paths (small effect size; b=-0.383, z=-19.372, p<.05). As sample size increased, 

the difference in power increased faster for conditions with a smaller a- and b-paths than 

for larger a- and b-paths.  

Third, the finite model has adequate Type 1 errors in conditions with 1,000 cases 

and a small a- or b-path. The unidimensional model had Type 1 error rates below .025 for 

that condition.  Also, the unidimensional model had adequate Type 1 error rates for 

conditions with a small sample size, general factor variance and a medium a- or b-path. 

The finite model had adequate Type 1 errors only for conditions with 500 cases.  

Finally, the finite model had confidence interval coverage closer to .95 than the 

unidimensional model. Discrepancies in coverage increased as the simulation factors 

increased.  

Correlated v. finite factor model. Only conditions with a large general factor 

variance and up to a medium b-path converged for both models. First, bias in the 

mediated effect for the correlated factor model is always negative and higher than for the 

finite model. The most biased conditions in the finite model had a small sample size, 

small general and specific factor variance, and small a- and the b-paths. Those conditions 

had the least bias in the correlated factor model, which increased as the specific factor 

variance decreased and the simulation factors increased. 

Second, the finite model had more power than the correlated factor model. In the 

prediction of the difference in power, there was a significant interaction among all of the 
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predictors (small effect size; b=-0.206, z=-5.348, p<.05). As sample size increased, the 

difference in power for the models increased faster for conditions with a smaller a- and b-

paths and specific factor variance than for larger a- and b-paths and specific factor 

variance.  

Third, Type 1 error rates were adequate for the finite and correlated factor 

models in conditions with a medium a- or b-path. However, Type 1 error approached .05 

for the correlated factor model only when the sample size and specific factor variance 

were medium or large. 

Finally, the finite model had coverage closer to .95 than the correlated factor 

model. The coverage difference increased as simulation factors increased but as the 

specific factor variance decreased.  

Facet v. unidimensional model. Only conditions with a small specific factor 

variance and up to a medium a- or b-path fit both models. First, the mediated effect in the 

facet model was less biased than in the unidimensional model. The variance explained by 

the regression predicting the difference in relative bias from the simulation factors was 

R2=.144. There was a significant interaction between sample size and the general factor 

variance (b=0.075, t=9.442, p<.05, partial η2=.005).  The difference in relative bias 

decreased faster as sample size increased for conditions with a smaller general factor 

variance than for a larger general factor variance.  Also, the variance explained by the 

regression predicting standardized bias from the simulation factors was R2=.993. There 

was a significant interaction among all of the predictors (b=5.555, t=95.140, p<.05, 

partial η2=.124). The difference in the standardized bias increased faster as the sample 
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size increased for conditions with larger general factor variance and a- and b-paths than 

with smaller general factor variance and a- and b-paths.  

Second, the facet model had more power than the unidimensional model. There 

was an interaction among simulation factors on the power difference (b=2.646, z=4.866, 

p<.05). As the general factor variance increased, the power difference increased faster for 

conditions with a larger sample size and a- and b-paths than for smaller sample size and 

a- and b-paths.  

Third, conditions with a medium a- and b-paths had adequate Type 1 errors in 

both models. The unidimensional model had adequate Type 1 errors for conditions with a 

small sample size and general factor variance. The facet model has adequate Type 1 

errors only for conditions with medium sample sizes. All of the previous comparisons 

supported Hypothesis 5. 

Finally, the facet model had coverage closer to .95 than the unidimensional 

model. Coverage differences increased as simulation factors increased but as the general 

factor variance decreased.  

Facet v. correlated factor model. Only conditions with a large general factor 

variance and up to a medium b-path converged for both models. First, the facet model 

was less biased than the correlated factor model. The variance explained by the 

regression predicting standardized bias from the simulation factors was R2=.992. There 

was a significant interaction among all the predictors (b=-8.413, t=-124.060, p<.05, 

partial η2=.129). The standardized bias difference increased faster as the sample size 

increased for conditions with smaller specific factor variance and larger a- and b-paths 

than with larger specific factor variance and smaller a- and b-paths.  
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Second, the facet model had more power that the correlated factor model. There 

was an interaction among the all the simulation factors on the power difference (large 

effect size; b=-1.487, z=-5.602, p<.05). As the sample size increased, the power 

difference increased faster for conditions with a smaller specific factor variance and 

larger a- and b-paths than for a larger specific factor variance and smaller a- and b-paths.  

Third, both models had adequate Type 1 errors in conditions with a medium a- or 

b-paths, but the correlated factor model also needed a large sample size and general 

factor variance for adequate Type 1 error rates. 

Finally, the facet model had coverage closer to .95 than the correlated factor 

model. The coverage difference increased as the specific factor variance decreased and 

the other simulation factors increased.  All of the previous comparisons supported 

Hypothesis 5.   

Discussion 

 The goal of this Monte Carlo study was to investigate what happens to the 

mediated effect when a facet of a broad mediating construct is the true mediator, but the 

mediating construct is misspecified. The simulation study evaluated four latent variable 

models that included general and specific aspects of a mediator. The main conclusion is 

that misspecifying the facets of a mediating construct leads to mediated effect estimates 

that are too small, though the effect could still be detected under certain conditions.  

Accurate mediated effect estimation depends on mediator specific facet variance. This 

discussion section describes the contributions of the study, limitations, and future 

directions. 

 



 
 
 

51 

Summary of the Simulation Results 

The mediation model with a bifactor mediator measurement model had unbiased 

and adequately powered mediated effects as the general and specific factor variance in 

the indicators increased. Conditions with small sample sizes (e.g., N=200), small general 

factor variance, and small specific factor variance in the indicators often had models that 

did not converge.   

The mediation model with only mediator facet indicators had small mediated 

effects, which were more likely to be detected as the specific factor variance increased 

and the general factor variance decreased. Recall the facet indicators do not distinguish 

between the general and specific factor variance. Not all of the variance in the latent 

variable is true mediator variance because some is from the general factor. The factor 

loadings on the facet are larger than those from the data-generating model. As a result, 

the b-path and the mediated effect are underestimated and the c’-path is overestimated.  

The unidimensional mediator model had many model fit problems. Few 

conditions with a small general factor variance, small specific factor variance, and small 

sample size met the conventional fit index thresholds of the RMSEA and the CFI. The 

model fit the data (with a threshold for the SRMR above .08) when there was 10% 

specific factor variance. This model had small mediated effects and were more likely to 

be detected as the general factor variance decreased because only a small part of the true 

mediator variance is reflected in the unidimensional latent variable. As the general factor 

variance increased, the latent variable reflects more of the general factor variance among 

the indicators rather than specific factor variance.  
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Adding correlated uniquenesses to the unidimensional mediator model improved 

model fit. The unidimensional measurement model with correlated uniqueness has the 

same fit, degrees of freedom, and factor loadings on the general factor as the bifactor 

model.  Although model fit improved, the model often did not converge (exceeding 

iteration limits or having negative residual variances in the indicators) because the 

correlated uniquenesses captured the true mediator variance.  Indicators that did not 

measure the true mediator had underestimated loadings on the general factors when X 

predicted the mediator because X tried to pull the factor to the right solution. Often, the 

variance of the mediator and residual variances had improper solutions. Most models 

with large general factor variance converged and had small mediated effects. The 

mediated effects were more likely to be detected as the specific factor variance increased.  

Contributions and Implications of the Simulation Results 

This study contributes to the important, but largely unexplored area of 

measurement issues in statistical mediation analysis (MacKinnon, 2008). Previous 

research investigated the influence of reliability (Hoyle & Kenny, 1999), measurement 

invariance (Olivera-Aguilar, Kisbu-Sakarya, & MacKinnon, submitted), and 

confounding-measurement error relationships (Fritz, Kenny, & MacKinnon, submitted) 

on the mediated effect in the single mediator model. This study described the influence of 

misspecifying the structure of the mediator on the mediated effect. The misspecifications 

studied were theoretically valid, alternative measurement models that did not represent 

the facets of the mediator accurately. This study used the bifactor measurement model to 

distill the indicators of the mediating variable into multiple variance components, obtain 

a facet latent variable, and use the facet as the mediator.   
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This study contributes to the psychometric literature of latent variable modeling 

by investigating how general and specific factor variance affects the measurement of the 

mediator (Brunner, Nagy, & Willhem, 2012). One alternative measurement model not 

studied was the higher-order model. Researchers have historically favored the higher-

order factor model over the bifactor model (Reise, 2012). The results of the simulation 

study demonstrate the viability of the bifactor model because it can simultaneously test 

relationships of general and specific aspects of a construct on an outcome (Chen, West & 

Sousa, 2006).  Finally, this study extends Reise et al., (2013), which found that indices of 

factor strength predicted structural bias when multidimensional data were treated as 

unidimensional. The results of this study suggest that the strength of the facet factor 

(specific factor variance) was a significant predictor of the bias and power to detect the 

mediated effect.  

This study has implications for how researchers conceptualize mediators. 

Researchers can apply the latent variable models described in this study to assess 

measurement structure and how the mediating process occurs. The level of generalization 

in the latent variable (Gustafsson & Balke, 1993) studied will affect the estimation of the 

mediated effect. When only the facet indicators were modeled in this study, the latent 

variable has facet variance of interest and also common variance that does not contribute 

to the mediation process. When the indicators of a multidimensional mediator are treated 

as unidimensional, for example, the model did not fit the data. When correlated 

uniquenesses were used to improve the fit of the unidimensional model, the true mediator 

variance was hidden in the correlated residuals. However, some misspecified models had 

sufficient power to detect the mediated effect, depending on the a- and b-path effect size 
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and the specific factor variance in the indicators. Therefore, statistically significant results 

in models with latent mediators are encouraging but repeated testing of the model is 

needed to distill the true mediator. 

There are several challenges to repeated testing to distill a mediating process and 

using the bifactor model in substantive research.  First, repeated revisions of the mediator 

measurement model could inflate Type 1 errors. One solution is to use cross-validation 

strategies to support the exploratory phase of model building (Bandalos, 1993). If there is 

a large sample size, using “out-of-bag” cases to test the model or using leave-one-out 

cross-validation would help researchers overcome inflated Type 1 error rates (Berk, 

2008). Second, the bifactor model requires a large sample size and high factor loadings in 

the general and specific factors for unbiased estimation and adequate power. Exploratory 

(Asparouhov & Muthen, 2009) and Bayesian (Muthen & Asparouhov, 2012) approaches 

to bifactor modeling could help reduce convergence problems due to low factor loadings, 

small sample sizes, or the orthogonality of specific factors.  A Bayesian approach could 

also be used to update the measurement model as more information is found in the 

literature. An incomplete bifactor model could also improve estimation when some of the 

facets do not have reliable variance (Chen, West, & Sousa, 2006). Using model-based 

measures of reliability, such as coefficient omega or explained common variance, can 

inform whether the general and specific factors need to be modeled (Reise et al., 2010). 

Finally, if the facet is the true mediator and all of the previous recommendations cannot 

be followed, measuring a few mediator indicators of a theoretical facet will have more 

power to detect the mediated effect than a unidimensional broad construct.    

 



 
 
 

55 

Limitations and Future Directions 

The future directions of this study extend from the limitations. Practical examples 

with datasets from the field are needed to illustrate the results from this study. More 

substantive examples of meaningful facets independent from a broad construct are also 

needed. Two examples in the literature are the constructs of depression and work-place 

vigor. Simms, Gros, Watson, and O’Hara (2008) investigated the bifactor structure of 

depression, modeling symptom groups as the specific factors. They indicate that appetite 

loss, appetite gain, well-being, and insomnia have high loadings on specific factors and 

that those symptoms relate differently to general distress. Simms et al. (2008) suggest 

that, if findings are replicated, examining the specific factors could provide an index of 

severity so that symptoms are not weighted the same when diagnosing for general 

depression (i.e., appetite loss had a higher association with distress than appetite gain).  

Moreover, Armon and Shiron (2011) fit a bifactor model to study vigor and its facets 

(physical strength, emotional energy, and cognitive liveliness). They interpreted the 

emotional energy specific factor as variance that “reflects a unique positive energy 

balance in one’s interpersonal relationships, unique in the sense of not being shared with 

the other two facets of vigor (Armon & Shiron, 2011, pg. 619).” The emotional energy 

specific factor had a .47 stability coefficient across a two-year testing span and was 

significantly associated with the Big 5 agreeableness factor.  DeMars (2013) warns 

researchers that the interpretation of the specific factors reflects information above and 

beyond the general factor score; that a weighted composite of general and specific factor 

variance might be more reliable than a specific factor score; and that specific factors 

might underestimate the influence of a facet on an outcome. 
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Also, a limited number of sample size conditions were investigated in this study. 

The simulation showed that models with a bifactor mediator do not have sufficient power 

to detect the mediated effect with a sample size of 200, but there was sufficient power in 

conditions with a sample size of 500. A power curve for the mediated effect is needed to 

find the exact sample size when power gets to .80 (Fritz & MacKinnon, 2007). 

Also, it is difficult to compare the simulation outcomes across misspecified 

models because they are theoretically different in how they represent the mediator. A 

criticism of Monte Carlo simulations is that the data-generating model will always be 

favored by the simulation outcomes. Parameters in misspecified models are expected to 

be biased and not adequately covered in confidence intervals, but they can still provide 

information about when an effect can be detected. The goal of this study was to 

investigate the conditions when a researcher who has some measures of the true 

mediating construct could find the effect.  

For this study, the bifactor mediator model was the data-generating model to 

study the influence of mediator facets in the presence of general factor variance. Data 

could have been generated under a unidimensional model or a one-factor model for the 

facet, but the presence of multiple sources of variance in the indicators cannot be studied 

if all of the sources of variance are not simulated. An alternative model to simulate 

multidimensional data is the higher-order factor model. The specific factor variance from 

the bifactor model is represented by a lower-order factor disturbance in the higher-order 

model. It would be interesting to use non-standard structural equation modeling to predict 

an outcome from a lower-order factor disturbance (see Stacy, Newcomb, & Bentler, 
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1991). Interpretation is sacrificed when disturbances are used as predictors but results 

from this model and the bifactor mediator model are comparable.    

Another interesting data-generating model is one where some the general factor 

variance distilled from the facet factors predicts the outcome. A parallel mediator model 

would be needed to capture the total mediated effect (O’Rourke & MacKinnon, 2015). 

The bifactor mediator would have two mediated effects – one through the general factor 

and one through the specific facet. It would be interesting to evaluate if a unidimensional 

model that only includes the facet indicators can fully capture the total mediated effect.  

A fully Bayesian approach with informative or diffuse priors can be an alternative 

model of analysis for statistical mediation (Yuan & MacKinnon, 2009) and might lead to 

more power and less bias in the mediated effects from misspecified models. A Bayesian 

approach to bifactor modeling has been proposed (Muthen & Asparouhov, 2012), but its 

properties for accurate bifactor estimation are yet to be investigated.   

Finally, this study assumed that the measurement structure of the mediator was 

invariant across the binary treatment variable and across time.  These hypotheses can be 

tested if there are pretest measures of the mediator and by comparing the factor structure 

across groups. Olivera-Aguilar, Kisbu-Sakarya, and MacKinnon (submitted) indicate that 

violations of scalar invariance in the mediator lead to biased and underpowered estimates 

of the mediated effect. It would be interesting to evaluate the influence violations of 

measurement invariance in the data-generating model on mediated effect estimation in 

misspecified models. Also, the dependent variable in this study was modeled as perfectly 

reliable and invariant. It would be interesting to evaluate how a bifactor mediator 

interacts with violations of measurement invariance in the dependent variable.  
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Conclusions 

 This study illustrated how identifying the true mediator in the causal process is a 

measurement problem. Incorrect characterizations of multifaceted mediators led to biased 

and underpowered mediated effects.  This study encourages researchers to explore the 

multidimensionality of their mediators and the influence of facets on outcomes so that 

they have more power to test for mediation in interventions and other substantive studies.   
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APPENDIX A  

 

DATA-ANALYSIS MODELS 
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Figure 1. The Single mediator model.  

 

Figure 2. Unidimensional measurement model. 

 

 

Figure 3. Bifactor measurement model for the mediator. 
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Figure 4. Model 1 – Distillation of the mediated effect with the bifactor model (finite-

sample model) 

 

Figure 5. Model 2 – Facet mediation model 

 

Figure 6. Model 3 – Unidimensional mediation model 
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Figure 7. Model 4 – Correlated Factor mediation model 
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Table 1C-1 

Type 1 Error in the mediated effect through the distribution of product method 

in the finite model when general factor variance is .09 (gen  =.3) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 N/A N/A 0.002 0.004 N/A 0.017 0.030 

.45 200 0.000 0.005 0.021 0.019 0.006 0.033 0.048 

.6 200 0.001 0.009 0.034 0.036 0.005 0.045 0.050 

.3 500 0.000 0.001 0.010 0.011 0.006 0.033 0.042 

.45 500 0.000 0.015 0.030 0.028 0.011 0.046 0.046 

.6 500 0.000 0.021 0.035 0.034 0.022 0.049 0.050 

.3 1000 0.000 0.018 0.030 0.032 0.023 0.043 0.039 

.45 1000 0.000 0.034 0.041 0.037 0.027 0.038 0.035 

.6 1000 0.000 0.038 0.042 0.040 0.038 0.039 0.038 

 

 

 

 

Table 1C-2 

Type 1 Error in the mediated effect through the distribution of product method 

in the finite model when general factor variance is .25 (gen  =.5) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 N/A 0.004 0.011 0.011 0.004 0.023 0.037 

.45 200 0.001 0.009 0.033 0.031 0.006 0.042 0.048 

.6 200 0.003 0.009 0.041 0.042 0.005 0.046 0.055 

.3 500 0.000 0.003 0.015 0.016 0.008 0.036 0.040 

.45 500 0.000 0.013 0.034 0.031 0.016 0.042 0.045 

.6 500 0.000 0.015 0.027 0.027 0.020 0.040 0.045 

.3 1000 0.001 0.024 0.032 0.028 0.028 0.047 0.041 

.45 1000 0.001 0.032 0.038 0.035 0.038 0.049 0.044 

.6 1000 0.000 0.036 0.038 0.037 0.036 0.043 0.036 
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Table 1C-3 

Type 1 Error in the mediated effect through the distribution of product method 

in the finite model when general factor variance is .49 (gen  =.7) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 0.000 0.009 0.025 0.023 0.007 0.038 0.049 

.45 200 0.000 0.020 0.047 0.044 0.011 0.043 0.048 

.6 200 0.000 0.018 0.048 0.051 0.019 0.045 0.046 

.3 500 0.000 0.016 0.032 0.033 0.017 0.035 0.036 

.45 500 0.000 0.021 0.044 0.041 0.027 0.038 0.040 

.6 500 0.000 0.024 0.044 0.043 0.025 0.039 0.043 

.3 1000 0.001 0.037 0.045 0.045 0.037 0.046 0.048 

.45 1000 0.001 0.044 0.048 0.047 0.036 0.049 0.044 

.6 1000 0.002 0.046 0.049 0.049 0.040 0.044 0.041 
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Table 2C-1 

Type 1 Error in the mediated effect through the distribution of product method 

in the facet model when general factor variance is .09 (gen  =.3) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 0.000 0.003 0.020 0.031 0.005 0.032 0.045 

.45 200 0.000 0.006 0.045 0.052 0.009 0.040 0.051 

.6 200 0.002 0.012 0.059 0.061 0.010 0.048 0.054 

.3 500 0.000 0.010 0.032 0.033 0.010 0.044 0.038 

.45 500 0.000 0.018 0.037 0.038 0.015 0.041 0.042 

.6 500 0.000 0.022 0.040 0.040 0.020 0.044 0.046 

.3 1000 0.001 0.030 0.048 0.048 0.025 0.035 0.037 

.45 1000 0.001 0.039 0.050 0.048 0.026 0.036 0.039 

.6 1000 0.001 0.043 0.048 0.047 0.036 0.041 0.036 

 

 

 

 

Table 2C-2 

Type 1 Error in the mediated effect through the distribution of product method 

in the facet model when general factor variance is .25 (gen  =.5) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 0.000 0.007 0.036 0.046 0.007 0.030 0.042 

.45 200 0.001 0.010 0.050 0.058 0.009 0.039 0.049 

.6 200 0.002 0.011 0.056 0.060 0.010 0.045 0.052 

.3 500 0.000 0.014 0.039 0.040 0.011 0.041 0.043 

.45 500 0.000 0.017 0.039 0.038 0.014 0.039 0.042 

.6 500 0.000 0.020 0.040 0.040 0.015 0.040 0.045 

.3 1000 0.001 0.034 0.052 0.052 0.024 0.036 0.037 

.45 1000 0.001 0.040 0.052 0.050 0.028 0.037 0.036 

.6 1000 0.001 0.044 0.051 0.052 0.029 0.039 0.038 
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Table 2C-3 

Type 1 Error in the mediated effect through the distribution of product method 

in the facet model when general factor variance is .49 (gen  =.7) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 0.002 0.008 0.038 0.059 0.008 0.034 0.047 

.45 200 0.002 0.011 0.048 0.060 0.008 0.038 0.048 

.6 200 0.002 0.011 0.055 0.061 0.008 0.042 0.052 

.3 500 0.000 0.009 0.040 0.042 0.008 0.045 0.043 

.45 500 0.000 0.015 0.040 0.041 0.009 0.040 0.041 

.6 500 0.000 0.019 0.041 0.042 0.012 0.041 0.041 

.3 1000 0.001 0.025 0.049 0.050 0.021 0.040 0.039 

.45 1000 0.001 0.035 0.050 0.051 0.026 0.038 0.039 

.6 1000 0.001 0.042 0.048 0.050 0.033 0.040 0.036 
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Table 3A-1 

Standardized Bias in the mediated effect for the unidimensional 

model with nonzero effects when the specific factor variance is 

.09 (spec =.3) 

  a-path 

  small medium 

  b-path 

  small medium small medium 

gen  

 

N     

.3 200 -0.971 -1.472 -1.463 -2.773 

.5 200 -1.877 -3.208 -3.193 -6.268 

.7 200 -2.736 -5.388 -5.321 -11.580 

.3 500 -1.837 -2.446 -2.497 -4.653 

.5 500 -3.997 -5.843 -5.924 -11.159 

.7 500 -6.291 -10.547 -10.568 -21.995 

.3 1000 -2.595 -3.385 -3.452 -6.327 

.5 1000 -5.960 -8.331 -8.479 -15.653 

.7 1000 -9.903 -15.365 -15.547 -31.417 
Note: Red are standardized bias above .1. 

 

 

 

Table 3A-2 

Relative Bias in the mediated effect for the unidimensional 

model with nonzero effects when the specific factor variance is 

.09 (spec =.3) 

  a-path 

  small medium 

  b-path 

  small medium small medium 

gen  

 

N     

.3 200 -0.659 -0.645 -0.676 -0.663 

.5 200 -0.857 -0.859 -0.873 -0.871 

.7 200 -0.938 -0.942 -0.949 -0.950 

.3 500 -0.659 -0.634 -0.663 -0.648 

.5 500 -0.870 -0.865 -0.880 -0.876 

.7 500 -0.947 -0.947 -0.954 -0.954 

.3 1000 -0.649 -0.626 -0.655 -0.641 

.5 1000 -0.867 -0.864 -0.879 -0.876 

.7 1000 -0.945 -0.946 -0.953 -0.954 
 



 
 
 

98 

Table 3B-1 

Power in the mediated effect through the distribution of product 

method for the unidimensional model with nonzero effects when 

the specific factor variance is .09 (spec =.3) 

  a-path 

  small medium 

  b-path 

  small medium small medium 

gen  

 

N     

.3 200 0.012 0.102 0.071 0.450 

.5 200 0.007 0.031 0.024 0.125 

.7 200 0.002 0.009 0.010 0.027 

.3 500 0.084 0.325 0.265 0.914 

.5 500 0.017 0.122 0.085 0.489 

.7 500 0.007 0.028 0.027 0.114 

.3 1000 0.293 0.626 0.518 0.997 

.5 1000 0.069 0.305 0.218 0.861 

.7 1000 0.014 0.098 0.075 0.382 
. 

 

 

Table 3C-1 

Type 1 Error in the mediated effect through the 

distribution of product method for the 

unidimensional model with nonzero effects when 

the specific factor variance is .09 (spec =.3) 

 

  a-path 

  zero small medium zero zero 

  b-path 

  zero zero zero small medium 

gen  

 

N      

.3 200 0.001 0.003 0.027 0.007 0.030 

.5 200 0.001 0.002 0.008 0.006 0.009 

.7 200 0.001 0.002 0.006 0.003 0.006 

.3 500 0.000 0.006 0.043 0.006 0.041 

.5 500 0.000 0.001 0.029 0.003 0.022 

.7 500 0.000 0.001 0.012 0.003 0.008 

.3 1000 0.002 0.020 0.055 0.016 0.039 

.5 1000 0.001 0.010 0.048 0.008 0.038 

.7 1000 0.001 0.002 0.028 0.004 0.029 
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Table 3D-1 

Confidence Interval Coverage in the mediated effect through 

the distribution of product method in the unidimensional model 

when specific factor variance is .09 (spec =.3) 

  a-path 

  small medium 

  b-path 

  small medium small medium 

gen  

 

N     

.3 200 0.803 0.620 0.619 0.277 

.5 200 0.618 0.278 0.265 0.020 

.7 200 0.459 0.101 0.098 0.001 

.3 500 0.615 0.382 0.394 0.031 

.5 500 0.225 0.024 0.019 0.000 

.7 500 0.077 0.000 0.000 0.000 

.3 1000 0.389 0.140 0.149 0.000 

.5 1000 0.038 0.000 0.000 0.000 

.7 1000 0.003 0.000 0.000 0.000 
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Table 4C-1 

Type 1 Error in the mediated effect through the distribution of product method 

in the correlated model when general factor variance is .49 (gen  =.7) 

  a-path 

  zero small medium large zero zero zero 

  b-path 

  zero zero zero zero small medium large 

spec   N        

.3 200 0.001 0.001 0.004 0.005 0.003 0.005 0.007 

.45 200 0.001 0.001 0.003 0.007 0.003 0.005 0.008 

.6 200 0.001 0.000 0.005 0.009 0.004 0.009 0.017 

.3 500 0.001 0.001 0.005 0.018 0.003 0.009 0.012 

.45 500 0.000 0.002 0.012 0.026 0.003 0.011 0.025 

.6 500 0.000 0.001 0.014 0.031 0.002 0.012 0.032 

.3 1000 0.001 0.003 0.016 0.034 0.002 0.018 0.030 

.45 1000 0.002 0.004 0.025 0.047 0.003 0.024 0.038 

.6 1000 0.001 0.004 0.036 0.058 0.005 0.025 0.036 
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Table 5A-1 

Standardized Bias in the mediated effect for the unidimensional and correlated 

model with nonzero effects when the specific factor variance is .09 (spec =.3) 

and general factor variance is .49 (gen =.7) 

    a-path 

    small medium 

    b-path 

    small mediu

m 

small mediu

m 

Model gen  

 

spec 

   

N     

Unidimensional 

Model 

.7 .3 200 
-2.736 -5.388 -5.321 -11.580 

.7 .3 500 -6.291 -10.547 -10.568 -21.995 

.7 .3 1000 -9.903 -15.365 -15.547 -31.417 

Correlation 

Model 

.7 .3 200 -2.647 -5.361 -5.385 -11.019 

.7 .3 500 -6.389 -11.225 -11.359 -22.530 

.7 .3 1000 -10.749 -17.026 -17.344 -33.404 
 

  

Table 5A-2 

Relative Bias in the mediated effect for the unidimensional and correlated 

model with nonzero effects when the specific factor variance is .09 (spec =.3) 

and general factor variance is .49 (gen =.7) 

    a-path 

    small medium 

    b-path 

    small medium small medium 

Model gen  

 

spec 

   

N     

Unidimensional 

Model 

.7 .3 200 
-0.938 -0.942 -0.949 -0.950 

.7 .3 500 -0.947 -0.947 -0.954 -0.954 

.7 .3 1000 -0.945 -0.946 -0.953 -0.954 

Correlation 

Model 

.7 .3 200 -0.946 -0.951 -0.957 -0.958 

.7 .3 500 -0.962 -0.960 -0.966 -0.964 

.7 .3 1000 -0.960 -0.961 -0.965 -0.963 
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Table 5B-1 

Power in the mediated effect through the distribution of product method for the 

unidimensional and correlated model with nonzero effects when the specific 

factor variance is .09 (spec =.3) and general factor variance is .49 (gen 

=.7) 

    a-path 

    small medium 

    b-path 

    small medium small medium 

Model gen  

 

spec 

   

N     

Unidimensional 

Model 

.7 .3 200 0.002 0.009 0.010 0.027 

.7 .3 500 0.007 0.028 0.027 0.114 

.7 .3 1000 0.014 0.098 0.075 0.382 

Correlation 

Model 

.7 .3 200 0.002 0.005 0.007 0.021 

.7 .3 500 0.007 0.012 0.015 0.069 

.7 .3 1000 0.009 0.039 0.046 0.215 
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Table 5C-1 

Type 1 Error in the mediated effect through the distribution of product method for 

the unidimensional and correlated model with nonzero effects when the specific 

factor variance is .09 (spec =.3) and general factor variance is .49 (gen =.7) 

      a-path   

    zero small medium zero zero 

      b-path   

    zero zero zero small medium 

Model gen  

 

spec 

   

N      

Unidimensional 

Model 

.7 .3 200 0.001 0.002 0.006 0.003 0.006 

.7 .3 500 0.000 0.001 0.012 0.003 0.008 

.7 .3 1000 0.001 0.002 0.028 0.004 0.029 

Correlation 

Model 

.7 .3 200 0.001 0.001 0.004 0.003 0.005 

.7 .3 500 0.001 0.001 0.005 0.003 0.009 

.7 .3 1000 0.001 0.003 0.016 0.002 0.018 

 

 

Table 5D-1 

Confidence Interval Coverage in the mediated effect through the distribution of 

product method for the unidimensional and correlated model with nonzero 

effects when the specific factor variance is .09 (spec =.3) and general factor 

variance is .49 (gen =.7) 

    a-path 

    small medium 

    b-path 

    small medium small medium 

Model gen  

 

spec 

   

N     

Unidimensional 

Model 

.7 .3 200 0.459 0.101 0.098 0.001 

.7 .3 500 0.077 0.000 0.000 0.000 

.7 .3 1000 0.003 0.000 0.000 0.000 

Correlation 

Model 

.7 .3 200 0.487 0.102 0.105 0.004 

.7 .3 500 0.075 0.001 0.001 0.000 

.7 .3 1000 0.003 0.000 0.000 0.000 
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Figure 1A-1. Standardized bias in the mediated effect for the finite model with 

nonzero mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  

 
 

 
 
  

0
.0

5
0

.1
5 spec

 s-.3
 s-.45
 s-.6

0
.0

5
0

.1
0

0
.1

5

gen

 g-.3
 g-.5
 g-.7

0
.0

5
0

.1
5 sample_size2

 n=200
 n=500
 n=1000

0
.0

6
0

.1
0

0
.1

4

atrue2

0.28
0.72
1.02

 s-.3  s-.6

0
.0

4
0
.1

0
0
.1

6

 g-.3  g-.7  n=200  n=1000 0.28 0.72 1.02 0.14 0.36 0.51

btrue2

0.14
0.36
0.51

spec gen sample_size2 atrue2 btrue2

adjusted mean



 
 
 

113 

 
Figure 1A-2. Raw bias in the mediated effect for the finite model with nonzero 

effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 1A-3. Relative bias in the mediated effect for the finite model with nonzero 

mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 1B-1. Power in the mediated effect through the distribution of product method 

in the finite model. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 1B-2. Power in the mediated effect through the distribution of product method 

in the finite model when the sample size is small. spec= specific factor variance; 

gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size; 

btrue2=b-path effect size.  
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Figure 1C-1. Type 1 error in the mediated effect through the distribution of product 

method in the finite model when the a-path has a nonzero effect and sample size is 

greater than 500. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 1C-2. Type 1 error in the mediated effect through the distribution of product 

method in the finite model when the b-path has a nonzero effect and sample size is 

greater than 500. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 1D-1. Confidence interval coverage in the mediated effect through the 

distribution of product method in the finite model. spec= specific factor variance; 

gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size; 

btrue2=b-path effect size.  
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Figure 1E-1. Confidence interval width in the mediated effect through the distribution 

of product method in the finite model. spec= specific factor variance; gen=general 

factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path 

effect size.  
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Figure 2A-1. Standardized bias in the mediated effect for the facet model with 

nonzero mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 2A-2. Raw bias in the mediated effect for the facet model with zero mediated 

effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 2A-3. Relative bias in the mediated effect for the facet model with nonzero 

mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 2B-1. Power in the mediated effect through the distribution of product method 

in the facet model when the sample size is 200. spec= specific factor variance; 

gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size; 

btrue2=b-path effect size.  
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Figure 2C-1. Type 1 error in the mediated effect through the distribution of product 

method in the facet model when the a-path has a nonzero effect. spec= specific factor 

variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path 

effect size; btrue2=b-path effect size.  
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Figure 2C-2. Type 1 error in the mediated effect through the distribution of product 

method in the facet model when the b-path has a nonzero effect. spec= specific factor 

variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path 

effect size; btrue2=b-path effect size.  
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Figure 2D-1. Confidence interval coverage in the mediated effect through the 

distribution of product method in the facet model when the sample size is 200. spec= 

specific factor variance; gen=general factor variance; sample_size2=sample size; 

atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 2E-1. Confidence interval width in the mediated effect through the distribution 

of product method in the facet model. spec= specific factor variance; gen=general 

factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path 

effect size.  
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Figure 3A-1. Standardized bias in the mediated effect for the unidimensional model 

with nonzero mediated effects. spec= specific factor variance; gen=general factor 

variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect 

size.  
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Figure 3A-2. Raw bias in the mediated effect for the unidimensional model with 

nonzero mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 3A-3. Relative bias in the mediated effect for the unidimensional model with 

nonzero mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 3B-1. Power to detect the mediated effect through the distribution of product 

method in the unidimensional model. spec= specific factor variance; gen=general 

factor variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path 

effect size.  
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Figure 3C-1. Type 1 error in the mediated effect through the distribution of product 

method in the unidimensional model when the a-path has a nonzero effect. spec= 

specific factor variance; gen=general factor variance; sample_size2=sample size; 

atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 3C-2. Type 1 error in the mediated effect through the distribution of product 

method in the unidimensional model when the b-path has a nonzero effect. spec= 

specific factor variance; gen=general factor variance; sample_size2=sample size; 

atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 3D-1. Confidence interval coverage in the mediated effect through the 

distribution of product method in the unidimensional model, averaged over the effect 

size of the paths. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 3E-1. Confidence interval width in the mediated effect through the distribution 

of product method in the unidimensional model. spec= specific factor variance; 

gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size; 

btrue2=b-path effect size.  
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Figure 4A-1. Standardized bias in the mediated effect for the correlated factor model 

with nonzero mediated effects. spec= specific factor variance; gen=general factor 

variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect 

size.  
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Figure 4A-2. Raw bias in the mediated effect for the correlated factor model with 

nonzero effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 4A-3. Relative bias in the mediated effect for the correlated factor model with 

nonzero mediated effects. spec= specific factor variance; gen=general factor variance; 

sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 4B-1. Power in the mediated effect through the distribution of product method 

in the correlated factor model. spec= specific factor variance; gen=general factor 

variance; sample_size2=sample size; atrue2=a-path effect size; btrue2=b-path effect 

size.  
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Figure 4C-1. Type 1 error in the mediated effect through the distribution of product 

method in the correlated factor model when the a-path has a nonzero effect. spec= 

specific factor variance; gen=general factor variance; sample_size2=sample size; 

atrue2=a-path effect size; btrue2=b-path effect size.  
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Figure 4C-2. Type 1 error in the mediated effect through the distribution of product 

method in the finite model when the b-path has a nonzero effect. spec= specific factor 

variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path 

effect size; btrue2=b-path effect size.  
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Figure 4D-1. Confidence interval coverage in the mediated effect through the 

distribution of product method in the correlated factor model. spec= specific factor 

variance; gen=general factor variance; sample_size2=sample size; atrue2=a-path 

effect size; btrue2=b-path effect size.  
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Figure 4E-1. Confidence interval width in the mediated effect through the distribution 

of product method in the correlated factor model. spec= specific factor variance; 

gen=general factor variance; sample_size2=sample size; atrue2=a-path effect size; 

btrue2=b-path effect size.  
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APPENDIX D 

 

TRUE COVARIANCE MATRIX FOR THE DISTILLATION OF THE MEDIATED  

 

EFFECT 
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APPENDIX E 

 

FLOWCHART FOR SIMULATION PROCEDURES  
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Write Template Syntax 
File (Notepad) for Mplus 
MonteCarlo models with 

true values.

Use Mplus Automation 
(M.A.) in R to produce 

Mplus Montecarlo Syntax 
- createModels()

Use M.A. in R to run 
MonteCarlo Models in 
Mplus - runModels()

Save Mplus Datasets 
without analyzing

Use Template Syntax File 
(Notepad) to produce in R 
M.A. Syntax for Individual 

Analysis in Mplus
- createModels()

Use M.A. in R to run 
Mplus Individual analysis 

syntax - runModels()

Read Models back to R for 
presentation and analyses 

- readModels()

Compute Bias, Empirical 
Power, and confidence 

intervals (RMediation) for 
the parameter estimates

Analyze simulation data 
with ANOVA's and logistic 

regressions
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APPENDIX F 

 

MPLUS AUTOMATION FILE FOR MONTE CARLO SIMULATION 
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Example of an Mplus Automation file for Monte Carlo simulation (Model 1)  

[[init]] 
iterators= g_load s_load n; 
n = 200 500 1000; 
g_load= 1:2; 
s_load= 1; 
value#g_load= .6 .7; 
fac#s_load= .6;  
outputDirectory="C:/Users/ogonza13/Desktop/Montecarlo/sims/sample_size 
[[n]]/gen factor[[value#g_load]]/sp factor[[fac#s_load]]"; 
filename="MC-sample_size [[n]],g-[[value#g_load]],s-[[fac#s_load]] 
combination.inp"; 
[[/init]] 
 
TITLE: MC BIFACTOR MODEL, n=[[n]], g-[[value#g_load]], s-
[[fac#s_load]]; 
 
MONTECARLO:  
    names are x m1 m2 m3 m4 m5 m6 m7 m8 m9 y;  
    ngroups=1;  
    nobs=[[n]];  
    nreps=1000;  
    !seed=2;  
    cutpoints=x(0); 
    REPSAVE = ALL;  
    save= data_rep*.dat; 
    results=data_results.txt; 
 
 
ANALYSIS: !TYPE=MEANSTRUCTURE; 
PROCESS=4;   
MODEL POPULATION:  
!Measurement model 
    [m1-m9@0];  
    f1 by m1@1 m2-m3@[[fac#s_load]]; 
    f2 by m4-m6@[[fac#s_load]]; 
    f3 by m7-m9@[[fac#s_load]];  
    m by m1-m9@[[value#g_load]];  
 
[[g_load=1]] 
[[s_load=1]] 
m1-m9@.28;;  !.6 and .6 loadings 
[[/s_load=1]] 
[[/g_load=1]] 
 
[[g_load=2]] 
[[s_load=1]] 
m1-m9@.15; !.6 and .7 loadings 
[[/s_load=1]] 
[[/g_load=2]] 
 
   m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0; 
    [m @ 0]; [f1@0]; [f2@0]; [f3@0]; 
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!Structural Model 
    [x@0]; 
    x@.25; 
    [y@0]; 
    y@.813; 
    f1@.87; 
    f2-f3@1; 
    m@1; 
    f1 on x@.721; 
    y on f1@.36 x@.283;  
 
 
MODEL:  
!Measurement Model 
    [m1-m9*0];  
    
 
[[g_load=1]] 
[[s_load=1]] 
m1-m9*.28;;  !.6 and .6 loadings 
[[/s_load=1]] 
[[/g_load=1]] 
 
[[g_load=2]] 
[[s_load=1]] 
m1-m9*.15; !.6 and .7 loadings 
[[/s_load=1]] 
[[/g_load=2]] 
 
 
    f1 by m1-m3*[[fac#s_load]]; 
    f2 by m4-m6*[[fac#s_load]]; 
    f3 by m7-m9*[[fac#s_load]];  
    m by m1-m9*[[value#g_load]];  
    m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0; 
    [m @ 0]; [f1@0]; [f2@0]; [f3@0]; 
 
 
!Structural Model 
    [y*0]; 
    y*.813; 
    f1-f3@1; 
    m@1; 
    f1 on x*.721(a); 
    y on f1*.36(b)  
    x*.283;  
!Mediation 
 
MODEL INDIRECT: 
y IND x;  
 
MODEL CONSTRAINT:  
NEW(ab*.26); 
ab=a*b; OUTPUT: tech3 tech9;  
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APPENDIX G 

 

EXAMPLE OF MPLUS MONTE CARLO SYNTAX 
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TITLE: MC BIFACTOR MODEL, n=200, g-.6, s-.6; 

 

MONTECARLO:  

    names are x m1 m2 m3 m4 m5 m6 m7 m8 m9 y;  

    ngroups=1;  

    nobs=200;  

    nreps=1000;  

    !seed=2;  

    cutpoints=x(0); 

    REPSAVE = ALL;  

    save= data_rep*.dat; 

    results=data_results.txt; 
 

ANALYSIS: TYPE=BASIC; 

PROCESS=4;   

MODEL POPULATION:  

!Measurement model 

    [m1-m9@0];  

    f1 by m1@1 m2-m3@.6; 

    f2 by m4-m6@.6; 

    f3 by m7-m9@.6;  

    m by m1-m9@.6;  

 

m1-m9@.28;;  !.6 and .6 loadings 

 

   m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0; 

    [m @ 0]; [f1@0]; [f2@0]; [f3@0]; 

 

!Structural Model 

    [x@0]; 

    x@.25; 

    [y@0]; 

    y@.813; 

    f1@.87; 

    f2-f3@1; 

    m@1; 

    f1 on x@.721; 

    y on f1@.36 x@.283;  

 

MODEL:  

!Measurement Model 

    [m1-m9*0];  

    

 

m1-m9*.28;;  !.6 and .6 loadings 

 

    f1 by m1-m3*.6; 
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    f2 by m4-m6*.6; 

    f3 by m7-m9*.6;  

    m by m1-m9*.6;  

    m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0; 

    [m @ 0]; [f1@0]; [f2@0]; [f3@0]; 

 

!Structural Model 

    [y*0]; 

    y*.813; 

    f1-f3@1; 

    m@1; 

    f1 on x*.721(a); 

    y on f1*.36(b)  

    x*.283;  

!Mediation 

 

MODEL INDIRECT: 

y IND x;  

 

MODEL CONSTRAINT:  

NEW(ab*.26); 

ab=a*b; 

 

OUTPUT: tech3 tech9; 

  



 
 
 

155 

APPENDIX H 

 

MPLUS SYNTAX FOR THE ANALYSIS OF ONE MONTE CARLO REPLICATION  
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TITLE:INDIVIDUAL BIFACTOR, rep-1, n=200, g-.6, s-.6; 

    DATA: FILE IS data_rep1.dat; 

    VARIABLE:  names are m1 m2 m3 m4 m5 m6 m7 m8 m9 y x; 

 

 

  ANALYSIS: !TYPE=MEANSTRUCTURE; 

     PROCESS=4; 

 

  MODEL: 

  !Measurement Model 

      [m1-m9*0]; 

 

 

  m1-m9*.28;;  !.6 and .6 loadings 

 

 

      f1 by m1-m3*.6; 

      f2 by m4-m6*.6; 

      f3 by m7-m9*.6; 

      m by m1-m9*.6; 

      m f1 f2 f3 WITH m@0 f1@0 f2@0 f3@0; 

      [m @ 0]; [f1@0]; [f2@0]; [f3@0]; 

 

 

  !Structural Model 

      [y*0]; 

      y*.813; 

      f1-f3@1; 

      m@1; 

      f1 on x*.721(a); 

      y on f1*.36(b) 

      x*.283; 

  !Mediation 

 

  MODEL INDIRECT: 

  y IND x; 

 

  MODEL CONSTRAINT: 

  NEW(ab*.26); 

  ab=a*b; 

 

 

  OUTPUT: tech1 tech3;  
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APPENDIX I 

 

CHANGES BETWEEN  PROPOSAL AND DATA-MEETING  
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There were a few differences from what was originally proposed in the prospectus 

meeting and the final simulation results presented. First, the unidimensional model with 

correlated uniqueness was added to the simulation. Also, simulation conditions were cut. 

The table below describes the difference in the conditions:  

 

Simulation Factor Proposed Analyzed Reason 

Sample size 200, 500, 1000 200, 500, 1000 Committee Agreed 

a-path effect size (zero, small, 

medium, large) 
0, .28, .72, 1.02 0, .28, .72, 1.02 Committee Agreed 

b-path effect size (zero, small, 

medium, large) 
0, .14, .36, .51 0, .14, .36, .51 Committee Agreed 

c'-path effect size (zero, small) 0, .283 0, .283 Averaged over in analyses 

Factor loading on general factor  .3, .4, .5, .6, .7 .3, .5, .7 Committee Agreed 

Factor loading on specific factor  .3, .4, .5, .6 .3, .45, .6 Committee Agreed 

Percentage of uncontaminated 

correlations (PUC) 
.75, .88., .96 .75 

CPU RAM (memory) 

problems 

  

As shown in the table above, the results from larger models with the “percentage of 

uncontaminated correlations” conditions had trouble being read from Mplus to R given 

the large data files. Those conditions also suffered from many non-positive covariance 

matrices and were not analyzed. Also, the original document proposed to test hypotheses 

on the individual paths regarding the simulation outcomes. However, due to the wide 

extent of the project, it was decided to focus on the interpretation of the mediated effect, 

which was of most interest. Consequently, results were averaged over the c’-path 

conditions.  

 


