
Basins of Attraction in Human Balance

by

Victoria Smith

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved June 2016 by the

Graduate Supervisory Committee:

Mark Spano, Co-Chair

Thurmon Lockhart, Co-Chair

Claire Honeycutt

ARIZONA STATE UNIVERSITY

August 2016

 i

ABSTRACT

According to the CDC1 in 2010, there were 2.8 million emergency room visits

costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency

departments across the country. Falls are a recognized risk factor for unintentional

injuries among older adults, accounting for a large proportion of fractures, emergency

department visits, and urgent hospitalizations.2 The objective of this research was to

identify and learn more about what factors affect balance using analysis techniques from

nonlinear dynamics. Human balance and gait research traditionally uses linear or

qualitative tests to assess and describe human motion; however, it is growing more

apparent that human motion is neither a simple nor a linear task. In the 1990s Collins,3,4

first started applying stochastic processes to analyze human postural control system.

Recently, Zakynthinaki5 et al. modeled human balance using the idea that humans will

remain erect when perturbed until some boundary, or physical limit, is passed. This

boundary is similar to the notion of basins of attraction in nonlinear dynamics and is

referred to as the basin of stability. Human balance data was collected using dual force

plates and Vicon marker position data for leans using only ankle movements and leans

that were unrestricted. With this dataset, Zakynthinaki’s work was extended by

comparing different algorithms used to create the critical curve (basin of stability

boundary) that encloses the experimental data points as well as comparing the differences

between the two leaning conditions.

 ii

ACKNOWLEDGMENTS

Special thanks are in order for both of my advisors Dr. Mark Spano and Dr.

Thurmon Lockhart for all of their support, advice, and work throughout the entire

process. I would also like to thank my committee member Dr. Claire Honeycutt for her

knowledge and advice on how to move my project forward in the future. I would also like

to thank Dr. Maria S. Zakynthinaki for all of the work she has done in this area and for

kindly sharing her data to help me start my project in this field. While working on this

project I was funded by the NSF Louis Stokes Alliance for Minority Participation

(LSAMP) Fellowship program.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... v

LIST OF FIGURES .. vi

CHAPTER

1 INTRODUCTION ... 1

The Need ... 1

Background .. 2

Objectives .. 6

2 EXPERIMENTAL DESIGN .. 8

Experimental Procedures ... 8

Data Processing ... 9

3D Marker Locations and Definitions .. 9

3 THEORY AND CALCULATIONS ... 12

General Description .. 12

Zakynthinaki Methods .. 14

Developed Encapsulation Algorithms .. 18

4 MODELING BASINS OF STABILITY .. 23

5 EXPERIMENTAL RESULTS & DISCUSSION .. 29

6 CONCLUSION .. 39

REFERENCES ... 41

 iv

APPENDIX Page

A IGOR PRO CODE: MODELS ... 45

B MATLAB CODE: DATA PARSING .. 104

C IRB APPROVAL .. 126

 v

LIST OF TABLES

Table Page

1. Lower Limb Human Body Model Marker Details 11

2. Rigid Lean Parameter Summary .. 27

3. Free Lean Parameter Summary .. 28

 vi

LIST OF FIGURES

Figure Page

1. Examples of Attractors .. 3

2. Basin Boundary Examples .. 4

3. Idealized Phase Space of Postural Stability ... 6

4. Lower Limb Human Body Marker Positions .. 10

5. Phase Space of the Rigid and Free Leans .. 12

6. Colored Lean Directions .. 13

7. Schematic for Zakynthinaki 2008 Critical Curve Method 16

8. Graham Scan Schematic .. 22

9. 2004 Zakynthinaki Method using Rigid Lean Data ... 24

10. Basic Ellipse Fit .. 24

11. One Point Ellipse Fit .. 25

12. Two Point Ellipse Fit ... 25

13. Convex Hull Fit .. 26

14. Rigid Lean and Quiet Stance Comparison .. 30

15. Free Lean and Quiet Stance Comparison .. 31

16. Convex Hull Comparison of Rigid and Free Leans .. 33

17. Dwell Time for Rigid Leans .. 34

18. Dwell Time for Free Leans .. 35

 1

CHAPTER 1

INTRODUCTION

1.1 The Need

Falls are a well-recognized risk factor for unintentional injuries among older

adults, accounting for a large proportion of fractures, emergency department visits, and

urgent hospitalizations.2 According to the CDC’s Web-based Injury Statistics Query and

Reporting (WISQARS),1,6 in 2010 3.7 million people, over the age of 50, reported non-

fatal fall-related injuries and 24,000 people in this age bracket died from falling or from

their injuries. Also in 2010, there were 2.8 million emergency room visits costing $7.9

billion dollars for treatment of nonfatal falling injuries across the country.7 While

interventions to reduce falls have been tested in community-dwelling populations, they

have produced mixed success.

Generally a person’s level of fall risk is determined by musculoskeletal and

sensory functions, fatigue, and training. However these factors are often viewed only

with linear measures such as time to walk a predetermined distance, walking velocity,

step length, sway area, and sway velocity. Every year, almost a third of people over the

age of 65 fall at least once and 10-15% of those falls cause serious injuries or result in

death.8 Early prevention and intervention are paramount in reducing the number of falls.9

We want to identify at-risk fallers before the first fall to reduce the overall number of

falls and the number of injuries that occur when a fall occurs. Some of the more

promising predictors of fall risk have sprouted from analyzing stability with nonlinear

dynamical tools such as Lyapunov Exponents,10,11 stochastic resonance,12 and

entropy.13,14,15 The current stability and gait measures that are often used include a Sit-to-

 2

Stand test, Timed Up and Go test, Tinetti’s Mobility index, Roberg tests, gait velocity,

center of pressure, and center of pressure velocity. All of these tests are very simple

diagnostic tests and easily calculable or are strictly qualitative in nature. The more that is

learned and observed during these studies, the more apparent it becomes that standing

still and walking are not simple tasks. Thus a more complex algorithm or model may

better describe the observed innate motion in order to separate individuals that have a

normal and stable stance from individuals who are unstable and are at risk of falling.

Postural stability and quiet standing metrics are capable of identifying the differences

between individuals who have a history of falling, “fallers”, and those who do not have a

history of falling, “non-fallers.” 16,17,18 Despite being able to identify these individuals

after they have fallen, it is still inconclusive if these measures can be used as clinical

indications for being at risk of falling and can justify clinical intervention.19

1.2 Background

 Currently fall risk assessment is based on questionnaires and functional tests in

the clinical setting. Fall history and questionnaires are mostly qualitative in nature.

Functional tests such as Timed-Up and Go, Tinetti tests, or other balance scales are

objective and more quantitative, but they lack the ability to discriminate between healthy

and fall risk populations.20 The output factors these tests are often only views in terms of

a linear system.

Nonlinear dynamics describes the irregular or unpredictable outcomes from a

nonlinear system and it appears in almost every discipline from solid mechanics, fluid

dynamics, chemical reactions, and even in human movement.21 One fundamental source

of this irregularity is the uncontrolled response to the set of initial conditions of the

 3

system and that such irregularity is an intrinsic dynamic of the system and is not due to

outside forces. The first step when looking at a dynamical system is to create a geometric

phase space, which represents all of the possible trajectories for that system in terms of

position and momentum (or velocity). In our case, the dynamical system we are

interested in learning more about is human standing balance. A phase space shows all the

possible states of the desired system in order to identify all of the possible “attractors”.

There are three main types of attractors: point, limit cycle, and chaotic. Different types of

attractors can coexist and compete in the same phase space for nonlinear systems.22 A

point attractor (repellor) draws (repels) the nearby trajectories to (from) a single point

while limit cycles attract or repel periodic motions, as shown schematically in Figure 1.

Settling onto an attractor is reaching a steady state of the dynamical system23.

Figure 1: Examples of Attractors. Fig. 1a is an example of a point attractor, pulling the

trajectories around itself to a single point. Fig 1b shows an attracting limit cycle in the

phase space. All of the trajectories within and outside the limit cycle are approaching the

limit cycle. Figure was taken from C. Grebogi et al., Science 238, 4827 (1987).24

Attractors can combine attracting and repelling properties, repelling in one direction

and attracting in another. Points that do this are called saddle points. In a phase space

with a single or multiple attractor(s), there also exists a basin of attraction. A basin of

attraction is the set of all starting points that lead onto a specific attractor and is

contained inside a basin boundary that describes the edge of that influence. Figure 2

 4

shows an example phase space that contains two attractors, A and B, with a basin

boundary () separating the space.

Figure 2: Basin Boundary Example. A region of phase space divided by the basin

boundary Σ into basins of attraction for the two attractors A and B. 1 and 2 represent two

initial conditions. Taken from C. Gregogi et al., Phys. Lett. A 99, 9 (1983).24

One application of nonlinear dynamics in the field of biomechanics is the use of

Lyapunov exponents (LyExp) and entropy measures. Finding the maximum LyExp of a

data series evaluates the rate of divergence from neighboring trajectories and the

sensitivity of the system to initial conditions (or perturbations).11,21,25 In a phase space,

trajectories will begin to diverge as small changes (or perturbations) are made to the

initial conditions. For instance in walking, we take very similar steps from right to left in

terms of step size, walking velocity, etc. but not identical. These small changes are due to

slightly different initial conditions before we take a step. LyExp evaluates the changes

(divergences) between initial conditions and is used as a stability measure for dynamical

systems. We can evaluate the dynamic stability of walking by looking at the maximum

LyExp, and several papers have already used it as metric for walking stability.10,11

Another way to use these exponents is to look at the entire LyExp field instead of just the

maximum. The field of exponents quantifies the trajectory divergence rate at different

locations in the phase space. Tanaka and Ross26 used this method to study torso stability

 5

and sway using a wobble chair. They created boundaries that separate the stable state

versus a failure mode in their experiment.

While standing upright, a person is not actually remaining in a fixed position but is

swaying in the anteroposterior (front to back) and mediolateral (side to side) directions.

This motion is regulated by two independent subsystems and requires a nonlinear system

of equations to describe it.29 As such, postural sway is an example of physiological chaos

in the human postural control system.27,28 For postural stability, a phase space can be

created by plotting the center of pressure (COP) and center of mass (COM) in the

anteroposterior and mediolateral directions and calculating the angle between the ground

reaction forces and the vertical in the anteroposterior and mediolateral

directions.3,27,28,29,30 When one looks at these plots, it is evident that there is a region (in

the phase space) where the subject is able to maintain their balance without falling, which

can be considered a basin of attraction.

Figure 3 shows what an idealized phase space for postural stability would look like.

Maintaining an upright position has a pair of stable attractors, a point attractor at the

center representing vertical stance and an infinite number of point attractors that represent

falling.32 The basin boundary, or separatrix, is an infinite number of saddle points,

meaning that the closer a trajectory approaches the boundary, the more unpredictable it is

to determine in which basin it will end.25

 6

Figure 3: Idealized Phase Space of Postural Stability. Point A is the point attractor for

vertical stance and the outermost ring (labeled ff) represents the infinite number of point

attractors for falling. The basin of stability (labeled fc for the critical curve) is an unstable

limit cycle that separates the basins of attraction of remaining balanced and falling.

Figure was taken from M. S. Zakynthinaki et al., Appl. Math. Comput. 219, 8910

(2013)32.

1.3 Objectives

Maintaining an upright posture is a complex control sensorimotor system involving

our visual, vestibular, and proprioceptive systems in the central nervous system as well as

information from our neuromuscular system.3 The integration of all of these inputs allows

people to balance, walk, and go about their daily lives without having to concentrate on

the movements themselves. Without the correct integration of all these systems or if an

individual system starts to fail or degrade, performing those simple daily motions

becomes difficult and can lead to falls.

Currently there are very few models that attempt to describe human postural

stability, or the ability to remain standing even when an individual is perturbed. One of

the more promising models, by Zakynthinaki and Stirling,28 describes postural stability as

a dynamical system that has a basin of attraction, which is responsible for maintaining

erect. In essence, the upright standing position is an attractor and balance is maintained as

 7

long as the body’s position remains within this basin of attraction. If the body moves

outside of this basin an individual will lose their balance and fall or require a reactionary

response in order to stop from falling. It is important to note that this group did not create

a true phase space, which requires position and momentum, but actually only use a

portion of the phase space including just the positions. We will be adapting the definition

of the phase space to their interpretation from this point forward.

The model designed by Zakynthinaki and collaborators31,32 displayed the basin of

attraction as contours fitted to their experimental data. however, the depth (3rd

dimension) of these basins does not have any correlation to a physiological event or

action. This lack of connection limits their model’s ability to be used to evaluate balance.

We propose to improve upon their basin of attraction model by creating a link between

the third dimension of the 3D contour basin of attraction model and a physical

phenomenon, namely the energy required to regain balance from a specific position. The

objective of the current study is to recreate, revise, and compare the basin of stability

models by accomplishing the following:

1. Recreate the computer simulation (algorithms) to determine the basin of

stability from the original 2004 Zakynthinaki et al. paper.

2. Develop more clinically useful algorithms that describe the basin of stability.

3. Compare the models’ accuracy to describe postural behavior.

 8

CHAPTER 2

EXPERIMENTAL DESIGN

2.1 Experimental Procedures

The experiment consisted of leaning in eight distinct directions and used the

GRAIL: Gait Real-time Analysis Interactive Lab, from Motek Medical. This system

contains two force plates (Bertec), 10 motion analysis cameras (Bonita), and Vicon

Nexus 2.2 software program which captured the marker position and force plate data. We

took all of our data directly from Vicon. Our subject was a healthy, 28-year old male.

Twenty-five reflective markers were attached to the subject, placement of the tracking

spheres can be seen in Figure 4 and the names and their abbreviations for each sphere is

included in Table 1. They were placed on anatomically significant landmarks to represent

and track the lower extremities and trunk movement.

The standard procedure for the experiment was adapted from Zakynthinaki

201031. The subject’s initial and final position were standing on a force plate with both

feet together on the floor and with hands on their hips. The subject was asked to lean as

far and as fast as he could from this initial position in eight cardinal directions: forward,

backward, left, right, forward-left, forward-right, backward-left, and backward-right. The

trial was deemed successful if the subject was able to regain his balance and return to the

initial position. This was done for two different leaning conditions: rigid body, allowing

for movement only at the ankles and non-rigid body, allowing the subject to use all of his

lower extremity joints at the subject’s discretion. The order of the lean directions was

randomized before the experiment started and three trials for each direction were taken,

totaling 24 time series for each condition. Additionally, the subject was asked to stand

 9

still for 30 seconds at three separate times during the experiment, after every eight leans.

In order to avoid fatigue, the subject was asked to come back at a later time to perform

the other condition.

The ten-camera (Bonita) system collected 3-dimensional position data of the

participant. Position data were sampled and recorded at 100 Hz using Nexus 2.2 software.

The ground reaction forces were collected using two force plates (Bertec) at 1000 Hz and

were also recorded using Nexus 2.2.

2.2 Data Processing

The ground reaction forces were filtered using a low-pass 4th order Butterworth

filter at 7 Hz. The force plate data collected was used to calculate the models (described

in the next section) and the marker position data was used to calculate the joint angles at

the ankle, knee, and hip joints, for both the left and right legs.

2.3 3D Marker Locations and Definitions

 The marker locations and the naming scheme for each marker were based

on the human body model developed by A.J. van den Bogert et al. in 2013.33 We reduced

the number of markers from 47 to 25 for simplicity and to capture only the lower body

motions. The locations can be seen in Figure 4 and the abbreviations are explained

in Table 1.

 10

Figure 4: Lower Limb Human Body Model Marker Positions. This figure shows the

placement of all 25 markers used to collect data. Taken from “Grail System Manual” by

Motek Medical.

 11

Table 1: Lower Limb Human Body Model Marker Details. The table shows the

abbreviation or name of the marker used in model and the details about its location on the

body.

No. Name Position Details

1 T10 T10 On the 10th thoracic vertebrae

2 SACR Sacrum bone On the sacral bone

3 NAVE Navel On the navel

4 XYPH Xiphoid process Xiphoid Process of the sternum

5 STRN Sternum On the jugular notch of the sternum

6 LASIS Pelvic bone left front Left anterior superior iliac spine

7 RASIS Pelvic bone right front Right anterior superior iliac spine

8 LPSIS Pelvic bone left back Left posterior superior iliac spine

9 RPSIS Pelvic bone right back Right posterior superior iliac spine

10 LGTRO
Left greater trochanter

of the femur
On the center of the left greater trochanter

11 FLTHI Left thigh 1/3 of the way between LGTRO and LLEK

12 LLEK
Left lateral epicondyle

of the knee
On the lateral side of the joint

13 LATI Left anterior of the tibia 2/3 of the way between LLEK and LLM

14 LLM
Left lateral malleolus of

the ankle
The center of left lateral malleolus

15 LHEE Left heel
Center of the heel, at the same height as the

toe

16 LTOE Left toe Tip of big toe

17 LMT5 Left 5th meta tarsal Caput of the 5th meta tarsal bone

18 RGTRO
Right greater trochanter

of the femur
On the center of the right greater trochanter

19 FRTHI Right thigh 2/3 of the way between RGTRO and RLEK

20 RLEK
Right lateral epicondyle

of the knee
On the lateral side of the joint

21 RATI
Right anterior of the

tibia
1/3 of the way between RLEK and RLM

22 RLM
Right lateral malleolus

of the ankle
The center of right lateral malleolus

23 RHEE Right heel
Center of the heel, at the same height as the

toe

24 RTOE Right toe Tip of big toe

25 RMT5 Right 5th meta tarsal Caput of the 5th meta tarsal bone

 12

CHAPTER 3

THEORY AND CALCULATIONS

3.1 General Description

In all of the models, we assume that the initial position of the subject is the vertical

position of quiet stance and that the initial perturbation is away from the vertical (refer to

the experimental protocol for perturbation details).

The angles, 𝜃𝑥 and 𝜃𝑦, are the movements in the x (anteroposterior) and y

(mediolateral) directions, respectively, in relation to the ground reaction forces recorded

from the force plate. These values are calculated using the filtered force plate data. In the

original paper28 only a single force plate was used to calculate these angles. In order to

simulate the effect of having only a single force plate from a dual force plate system the

following equations were adapted:

 𝜃𝑥 = tan−1 (
𝐹𝑥1+𝐹𝑥2

𝐹𝑧1+𝐹𝑧2
) (1)

 𝜃𝑦 = tan−1 (
𝐹𝑦1+𝐹𝑦2

𝐹𝑧1+𝐹𝑧2
) (2)

Figure 5: Phase Space of Rigid (left) and Free (left) Leans. Each data set contains all 8

leans with 3 replicates each and was filtered using a 4th order Butterworth filter at 7 Hz.

 13

Using this notation, Fz is the vertical component of the ground reaction force and Fx, Fy

are the components of the resultant force in the anteroposterior and mediolateral

direction, respectively. Additionally the force plate under the left foot and right foot are

assigned to be force plate 1 and 2, respectively. The experimental phase space of both the

rigid and free leans is shown in Figure 5. Furthermore we color-coded the individual

leans of the free lean data to see how each lean traverses the phase space in Figure 6.

The upright attractor in the phase space, i.e. the vertical state, corresponds to the

condition that 𝜃𝑥 = 𝜃𝑦 = 0. The phase space of 𝜃𝑥 and 𝜃𝑦 includes a region where

upright balance can be maintained and bounded by the “critical curve”. If the body is

perturbed beyond this critical curve, it will be “attracted” to the “fallen” attractor and the

body must either take a step to regain balance or fall. The important difference between

all of the models is the algorithm that is used to calculate the critical curve. For

Figure 6: Colored Lean Directions.

 14

simplicity, all of the equations used to describe these methods will refer to 𝜃𝑥 as 𝑥 and 𝜃𝑦

as 𝑦.

3.2 Zakynthinaki Methods

3.2.1 2004 Zakynthinaki Method

Stirling, Zakynthinaki and colleagues28 developed Equation 3 to describe the

critical curve or basin of stability boundary in their 2004 paper. The constants (A-J) use

the maximum lean angles in the forward, back, left, and right directions found in the in

experimental data collected over all 24 leaning trials where I is a scaling factor and was

chosen to be 0.3 based on the original papers. These maximum angles are denoted as𝜙𝑓,

𝜙𝑏, 𝜙𝑙, 𝜙𝑟, respectively.

 𝐴𝑥2 + 𝐵𝑥 + 𝐶𝑦2 + 𝐷𝑦 + 𝐺𝑥𝑦2 + 𝐻𝑥2𝑦 + 𝐼𝑥2𝑦2 + 𝐽𝑥𝑦 − 𝐸 = 0 (3)

 A = −ϕlϕr (4)

 C = ϕrϕb (5)

 B = ϕlϕr(ϕf + ϕb) (6)

 D = ϕfϕb(ϕl + ϕr) (7)

 E = ϕlϕrϕfϕb (8)

 H = ϕl + ϕr (9)

 I = 0.3

 G = ϕb + ϕf (10)

 J = −(ϕl + ϕr)(ϕf + ϕb) (11)

These equations make the following assumptions:

1. The values of the maximum left and backward leans must be less than zero

and the maximum right and forward leans must be greater than zero;

2. The maximum forward lean angle must be greater than the maximum

backward lean angle;

3. Maximum lean in the left and right directions are approximately equal. This

method we have recreated and included in the comparison of all the models.

 15

3.2.2 2008 Greek Method and Beyond

 In Zakythinaki and collaborators’ 2008 paper, they changed their method of

evaluating and creating the basin boundary. As you will see in Section VI, the 2004

critical curve equation does not include all of the experimental points due to the

asymmetrical nature of these kinds of datasets. The model also breaks when the first

assumption, that a person cannot lean farther back than forward, is breached which can

happen in the rigid leans and frequently occurs during free leans. In order to correct the

fit to the critical curve they redefined the optimal curve to fulfill the five following

criteria:

1. A closed curve defined on the (𝜃𝑥, 𝜃𝑦) plane

2. A curve that encloses all of the data points

3. A curve with minimum weighted squared distance from the border points of the

data set

4. The critical curve passes through specific turning points, there can be one to four

different turning points

5. The curve turns after passing through the turning points

In order to find the best fit, they maximize a utility function, Equation 13, using

ALOPEX IV –an algorithm of pattern extraction that employs stochastic optimization.

This method is summarized in Figure 7.

 16

Figure 7: Schematic for Zakynthinaki 2008 Critical Curve Method. This schematic

explains the calculation method of the critical curve in the 2008 and later papers written

by Zakynthinaki and colleagues.

This method still uses the foundational critical curve expression (Equation 3) but

does not use the maximum lean angles to solve for the variables A-J. Instead the method

first converts all of the data into polar coordinates (𝜌, 𝜓). The new critical curve equation

is shown below. In polar, N border points are chosen by dividing the polar phase plot into

N wedges, where the value of N is chosen by trial and error. Within each wedge, the

border point is defined as the data point with the largest 𝜌 value. Four of the border

points are hand-picked to analytically evaluate parameters G, H, I, and J, using Equation

12, in terms of A, B, C, and D.

 𝐼 cos2(𝜓𝑗) sin2(𝜓𝑗) 𝜌𝑗
4 + [𝐻 cos2(𝜓𝑗) sin(𝜓𝑗) + 𝐺 cos(𝜓𝑗) sin2(𝜓𝑗)]𝜌𝑗

3

 +[𝐶 sin2(𝜓𝑗) + 𝐴 cos2(𝜓𝑗) + 𝐽 cos(𝜓𝑗) sin(𝜓𝑗)]𝜌𝑗
2

 +[𝐵 cos(𝜓𝑗) + 𝐷 sin(𝜓𝑗)]𝜌𝑗 − 𝐸 = 0 (12)

 17

The expression of G, H, I and J are substituted back into equation 12 such that the critical

curve equation is now in terms of A, B, C, and D. These four values will be the

parameters that will be changed to maximize the first part of the utility function.

The four 𝜌 values from the four selected border points are now functions of r. The

critical curve equation in terms of A, B, C, D and the independent variable 𝜓𝑗 is solved

analytically for r. The r expressions are now ready to be used in the utility function. Note

that every 𝜓𝑗 can generate four r values. If any 𝑟𝑗 gives more than 2 real solutions it is

thrown away because only one solution can be given to the cost function to evaluate. If

any of the solutions of 𝑟𝑗 is not in the real space they are thrown away. Only an 𝑟𝑗 value

that is real and has only one real solution is used in the cost function. However, we need

to first satisfy the final criterion before running the utility function through an

optimization algorithm. Criterion five states that there needs to be four or less, with a

minimum of one (in the case of a circle), turning points (L). These points are again

chosen by hand to act as turning points. An arbitrarily chosen small angle, 𝜓𝑐, is used to

calculate the points (𝜌𝑗
(+)

, 𝜓𝑗 + 𝜓𝑐) and (𝜌𝑗
(−)

, 𝜓𝑗 − 𝜓𝑐), where j = 1, …, L. These L

turning points are used in the second half of the utility function.

The utility function, shown below, minimizes the distance between 𝜌𝑖 and 𝑟𝑗

while forcing the critical curve to turn at the L turning points.

 𝐹 = − ∑ 𝑤𝑖(𝜌𝑖 − 𝑟𝑖)2𝑀
𝑖=1 − ∑ [(𝜌𝑗

(+)
− 𝜌𝑗

(−)
)

2
− (𝜌𝑗 − 𝜌𝑗

(+)
)(𝜌𝑗 − 𝜌𝑗

(−)
)]𝐿

𝑗=1 (13)

This utility function is maximized by changing the values of the parameters A, B, C, D in

the expression r via the ALOPEX IV or in later papers LMA (Levenberg-Marquardt

nonlinear equation solving Algorithm).

 18

We decided to not recreate this optimization scheme for several reasons, such as

the high number of arbitrarily picked values and hand-picked data points as well as the

time consuming undertaking of analytically solving a quartic equation. We do recognize

that the authors fixed the early issues in the 2004 method and their current methods

would perform much better under the condition of including all of the data points.

Unfortunately because we did not recreate this optimization function we will be unable to

directly compare Zakynthinaki’s and collaborators most recent work on the basin

boundaries of stability with the models that we have created.

3.3 Developed Encapsulation Algorithms

A different algorithm for the basin of stability is needed because the definition of

a basin of attraction is violated using the original method on experimental data. The basin

of attraction is supposed to enclose a region of trajectories that all converge on the

attractor. As previously explained in Chapter 1 of this text, the attractor for remaining

upright is a point attractor at the center of the basin and falling has an infinite number of

point attractors. The basin boundary is the critical separator between the vertical state and

falling. If a point falls outside of the basin of stability, it should mean that the subject

would be unable to recover from their lean and fall. In the case of the 2004 critical curve

method, as seen in Figure 1, not all of the points lie within the basin of stability. The

algorithms that we will be presenting in this section are optimized to fit all of the points

inside the generated basin of stability.

The first three algorithms that were developed to encapsulate the data were based

on the equation of an ellipse, Equation 14.

 19

 1 =
[(x−h) cos(ϕ)+(y−k) sin(ϕ)]2

a2 +
[(x−h) cos(ϕ)−(y−k) sin(ϕ)]2

b2 (14)

where (h,k) is the center of the ellipse and 𝜙 is the angle at which the ellipse is tilted with

respect to the x-axis. Now let

 𝜆 = (x − h) cos(ϕ) + (y − k) sin(ϕ), (15)

and η = (x − h) cos(ϕ) − (y − k) sin(ϕ) (16)

such that the equation becomes 1 =
𝜆2

𝑎2 +
𝜂2

𝑏2 which is the more recognizable equation of

an ellipse.

In order to determine the angle 𝜙, the least squares regression line of a session’s

lean data was calculated. The angle of tilt was calculated to be the inverse tangent of the

slope of the regression line, Equation 17. This angle is based purely on the experimental

data and is the same angle regardless of which algorithm is being used.

 ϕ = tan−1(slope) (17)

An ellipse was chosen as the first attempt to create a new basin of stability based

on viewing the experimental data, like that shown in Figure 9.

3.3.1 Basic ellipse

The first algorithm, Basic Ellipse fit, tries to create the simplest ellipse based on

the data. The center point is defined as the midpoint between the maximum and minimum

values of x and y, Equations 18 and 19. The semiaxes of the ellipse were defined as the

difference between the center point of the ellipse and the maximum x and y points,

Equations 20 and 21.

 h =
xmax+xmin

2
 (18)

 k =
ymax+ymin

2
 (19)

 a = xmax − h (20)

 b = ymax − k (21)

 20

 This algorithm is very fast and simple which is ideal if this data was to be

processed on a handheld device for clinicians to use. But is not able to include all of the

experimental data within the boundary it creates, meaning that people aren’t falling at the

points outside of the boundary.

3.3.2 One point ellipse

In the second algorithm, called One-Point Ellipse, we solved the minor semi-axis

analytically given that we know the value of the major semi-axis and a point on the

curve. Just as in the Basic Ellipse fit, the center point is the midpoint between the

minimum and maximum x and y values. In this fit we are using the maximum lean angles

in the forward and backward direction to determine the length of the semi axis length, 𝑎.

We project these points onto the regression line and let 𝑎 be the greatest distance between

the center point and either extremum.

Once the length of 𝑎, major axis, is known we can solve for the length of the

minor axis using the following equation:

 b = aη√
1

(λ2−a2)
 (22)

This method was able to include a greater percentage of data points within its boundary

but not every point. The shape does not change much from the BE fit so there was

minimal deviation in describing the shape of the data.

3.3.3 Two point ellipse

The Two-Point Ellipse fit algorithm requires the center point (h,k), as defined in

the two previous algorithms, the slope of the regression line (ϕ), and all of the maximum

 21

lean angles. This algorithm tries to create an ellipse knowing two points that must lie on

the boundary line. The algorithm optimizes which points among the maximum lean

angles to use by minimizing how many data points fall outside of the boundary. Two of

the maximum lean angles are used at a time to determine both the major and minor semi-

axes’ lengths and every permutation of the four maximum lean angle coordinates is used.

For each pair of coordinates, the λ and η are calculated from Equation 15 and 16, these

are the numerators of the ellipse equation. This yields the following variables: λ1, η1, λ2,

and η2. The semi-axes are calculated using the following equations, which were solved

analytically given that the following was known: two points on the ellipse, center point,

and tilt angle. The least number of points that fall outside of the drawn ellipse determines

the best ellipse fit.

 𝑎2 =
𝜆1

2

[1−
(

𝜆2
𝜆1

)
2

𝜂1
2−𝜂1

2

(
𝜆2
𝜆1

)
2

𝜂1
2−𝜂2

2
]

 (23)

 𝑏2 =
(

𝜆2
𝜆1

)
2

𝜂1
2−𝜂2

2

(
𝜆2
𝜆1

)
2

−1
 (24)

 This algorithm includes 99.98% of data points, but lost the ability to describe the

shape of the data. The area of the basin is much greater than the other ellipse algorithms.

This algorithm is still more complicated than the BE and OPE fits but would still be able

to run on a simple device for clinical use.

3.3.4 Convex hull

In the final algorithm we wanted to ensure our goal that no data point could ever

lie outside of the basin boundary. Through a literature search we chose to use a convex

hull approach. A convex hull is the smallest convex curve containing all of the points in a

 22

given set.34 The algorithm used in this paper was based on the Graham scan35 which has a

worst case optimal run time of O(n log n). The algorithm is used to find the “extreme” or

outermost points in the given 2D coordinate dataset that can completely encapsulate the

data by creating a polygon. This algorithm finds the lowest “y-coordinate,” point P, in

the paired data point set and then sorts the entire dataset in increasing order of the angle

they form with P with respect to the x-axis. It then considers each of the sorted points and

determines if a “right” or “left” turn is taken. The algorithm looks for a left turn because

the points are sorted in a roughly counter clockwise order, so right turns mean that the

current path of the polygon is incorrect and other points need to be considered as the

outermost points.

If a right turn occurs, the second to last point is not part of the convex hull and

each of the preceding points are revaluated until a left turn can be made, as shown in

Figure 8. All of the points that were found to be inside of the hull are removed from the

sorted data set and the outside points of the hull are saved in a separate data array.

Figure 8: Graham Scan Schematic. Credit to:

http://www.csie.ntnu.edu.tw/~u91029/ConvexHull.html

 23

CHAPTER 4

MODELING BASINS OF STABILITY

The 2004 Zakynthinaki method for calculating a basin boundary using rigid lean

experimental data is shown in Figure 10. A critical curve could not be generated by their

method for the free lean data because it broke the assumption that a person could not lean

farther backwards than forwards. It is important to note that the critical curve could not

be generated for all of the rigid lean data; only one of the three sets of all 8 leans could be

used to create the critical curve depicted in Figure 10. This was due to the fact that the

maximum backwards-lean angles were greater in magnitude than the forward-leans

maximums.

Figure 9 through Figure 13 give a side by side comparison of how the Basic

Ellipse (BE) fit, One Point Ellipse (OPE) fit, Two Point Ellipse (TPE) fit, and Convex

Hull (CH) fit, respectively, generate the basin of stability for rigid and free leans. Before

looking at the differences among the models, it is essential to understand the raw data

first. The rigid and free leans do not show much of a difference between mediolateral

(left and right) leans, but there is a significant difference in the maximum lean angles in

the anteroposterior directions (back and front).

In Figure 9 you can see that the BE fit does not enclose all of the data for either

lean type. When the data is close to together, e.g. rigid lean data, the fit does well in not

having excess white space but when there are far excursions from the center more white

space is inevitably included to capture the movement.

 24

Figure 9: Basic Ellipse Fit. The rigid (right) and free (left) lean data are compared using the same

fit. Data is not completely included within the basin of stability fit for either lean data set.

Figure 10: 2004 Zakynthinaki Method using Rigid Lead Data. It is important to note that

the data uses only one lean in each of the 8 directions to make this plot and not all 24

leans collected. The force plate data for the other backward and forward leans broke the

model due to the fact that the backwards leans were farther than the forward leans.

 25

Figure 11: One Point Ellipse fit. This method calculates the linear regression of the force

plate (FP) data to tilt the ellipse along.

Figure 12: Two Point Ellipse fit. The four maxima of the data sets (in the front, back, left,

and right direction) are found. The semi-axes are then calculated using two of the four

maxima; all of the pairs are used to calculate the possible axes. The best pair is selected

by minimizing the number of points that lay outside of the ellipse generated.

 26

Figure 13: Convex Hull fit. This fit ensures that all of the data points are included

within the created polygon. This method also finds the minimum number of outside

points to make the final shape.

The OPE, Figure 11, and TPE, Figure 12, fits are similar but have distinct

differences as well. The OPE maintains the true shape of the data better than the TPE,

however, the TPE was able to include more of the data inside compared to the OPE. If

one looks at the OPE for the rigid data, you can see that the major axis is actually

orthogonal to the data trend line (blue), whereas in the TPE it is along the trend line. This

is due to how the major and minor axes are calculated for each model. In the TPE we

expected more leaning to the front and back and made an assumption that the major axis

should be along that axis, which as we see in the rigid leans is not always true. Both of

these methods improve the number of points that is enclosed compared to the BE fit, but

the area also increases. The CH fit, Figure 13, maintained the integrity of the shape of the

data and enclosed every data point, improving upon all of the previous models.

 27

The area, perimeter, and the number of points that are outside the generate

boundary line were calculated for all five of the basin of stability algorithms. The

circumference of the ellipse was estimated using Ramanujan’s method.36 The

eccentricity, or the “roundness”, for the three ellipse-based algorithms was also

calculated. Table 2 and Table 3 summarize these features. All of the fits improved on

enclosing more points within the basin of stability, however the area and perimeter also

increased. The Convex Hull approach kept the area the smallest and closest to the

original algorithm while the Basic Ellipse fit had the smallest perimeter. The Two Point

Ellipse had the best inclusion of all the data points, excluding the convex hull; however

the area and perimeter of the fit is much larger than the original methods.

Table 2: Rigid Lean Parameter Summary.

Summary Table for Rigid Leans

Models /

Parameters

Basic

Ellipse

One Point

Ellipse

Two Point

Ellipse

Convex

Hull

2004 Stirling,

Zakynthinaki

et al Model

Area 4.28E-3 4.46E-3 7.82E-3 4.01E-3 3.85E-3

Perimeter 236.37E-3 241.84E-3 318.29E-3 237.69E-3 228.02E-3

% Pts Outside 0.430% 0.163% 0.021% 0% 1%

Major Axis 31.50E-3 31.82E-3 57.61E-3 NA NA

Minor Axis 46.50E-3 44.62E-3 46.63E-3 NA NA

Eccentricity 685.71E-3 701.02E-3 730.79E-3 NA NA

Computational

Cost Low Low
Low Medium High

 28

Table 3: Free Lean Parameter Summary

Summary Table for Free Leans

Models /

Parameters

Basic

Ellipse

One Point

Ellipse

Two Point

Ellipse

Convex

Hull

2004 Stirling,

Zakynthinaki

et al Model*

Area 8.88E-3 9.00E-3 10.01E-3 7.47E-3 -

Perimeter 338.61E-3 341.16E-3 364.34E-3 327.91E-3 -

% Pts Outside 0.076% 0.062% 0.017% 0% -

Major Axis 60.80E-3 61.44E-3 68.32E-3 NA NA

Minor Axis 43.28E-3 46.64E-3 46.63E-3 NA NA

Eccentricity 0.6857059 0.65101 730.79E-3 NA NA

Computational

Cost
Low Low Low Medium High

*Method was unable to create a basin boundary for this dataset.

 29

CHAPTER 5

EXPERIMENTAL RESULTS & DISCUSSION

The objective of this thesis was to develop new algorithms for finding the basin of

stability from experimental data and to create a more substantial link between the basin

and physiological movements. We collected force plate and the 3D locations of 25

markers for eight lean types and 30 seconds of quiet stance, with three replicates each.

The first lean condition was a free lean where no other instructions other than the

direction and to lean as far as you can and return to the initial position as fast as possible

without falling. The second lean condition was a rigid lean where only ankle movements

were allowed while keeping the rest of the body as straight as possible. This rigid lean

type is what is usually seen in the literature37,38 but it is not a very natural motion.

Initially this style was used by researchers because it reducing the degrees of freedom

making it easier to do certain calculations as well as reduced possible confounding

factors. We wanted to see how much information about a person’s balance is lost when

using this paradigm by comparing it to what a person would normally do when asked to

lean in a given direction.

Our first step at looking at the differences between these two different kinds of

leans is to compare the differences between the magnitude of leaning angles during quiet

stance and the leaning motions, seen in Figure 14 and Figure 15. The rigid lean style

reduces how far forward and back a person leans, while it doesn’t seem to affect the left

and right leans. Looking more closely at the free lean plot, there doesn’t seem to be as big

of a difference between leaning backwards and forwards as one might expect since most

people can lean farther forward and backwards. While this subject could possibly be

 30

more skilled at leaning back than the normal population it does not seem likely. In truth

more weight and thus the center of mass of the person is actually transferred to the back

of the feet during a backwards lean. When asked to lean forward as far as possible most

people bend at the waist, not shifting the center of mass very far, and then try to lean

further by going up on their toes, which actually shift the center of mass. Additionally,

the successful act of leaning backwards and returning to a standing position involves

more joints, i.e. hips, knees, and ankles, than leaning forward. It is also possible that we

have more control leaning forward because we do it naturally in some normal daily

activities, such as bending over and picking something off the ground, whereas leaning

backwards is an unusual motion unless you are trying to recover from a fall or playing

limbo. Figure 15 (right) looked more closely at the magnitude difference of leans in quiet

stance (black) and leaning (red). This was found by calculating the distance between the

center (0,0) and each data point. Phenomenologically, a log normal fit describes both

distributions well. The reason for this is not understood at present.

Figure 14: Rigid Lean and

Quiet Stance Comparison.

We are looking at the

magnitude of leaning under

rigid conditions to the

natural sway we see in quiet

stance.

 31

Figure 15: Free Lean and Quiet Stance Comparison. (Left) Comparing the difference in

magnitude of the angles calculated from the free lean force plate data and quiet stance

force plate data. (Right) Histogram showing the distribution of the distances of each data

point from the center (0,0) point for the free lean and quiet stance data.

We previously defined the basin of stability to mean that all the points that are

enclosed within that region will converge back onto the center attractor. If you are

beyond the boundary then you are in a state of falling or must act (such as taking a step)

in order to recover to the standing position. The 2004 Zakynthinaki method used the

maximum lean angles in the left, right, back, and forward directions but was unable to

encompass all of the data points. Their later methods were able to encompass all of the

points but required “special” points for making the final basin of stability, but were more

computationally expensive to reproduce and would not be ideal for a clinical test.

Therefore we only recreated the 2004 method and developed methods of encapsulation

that do not require hand-picked points and that allow the collected data to be able to be

quickly processed for clinical use.

 32

Each of the four methods we developed – BE fit, OPE fit, TPE fit, and CH fit –

created different basins that included more of the data compared to the recreated

Zakynthinaki model, Table 2. The 2004 Zakynthinaki model was unable to create a basin

boundary for the free leaning data because the data breaks an assumption. The ellipse

algorithms do improve in inclusion, but some lose the ability to adequately describe the

overall shape of the data. We calculated the area, perimeter/circumference, and

eccentricity for all of the algorithms, when appropriate, in order to quantify how the fit

changed from algorithm to algorithm. This is most easily seen in the TPE fit algorithm,

Figure 12. It was able to include all but 0.021% of the data points but became extremely

elongated along the x-axis with an eccentricity greater than 0.9. The BE fit had similar

areas and circumference values to the original method and kept the empty space between

the data and the basin of stability to a minimum. The OPE was able to enclose more data

into their basin but elongated along the y-axis in comparison to the other methods. This

was quantified in the eccentricity of the ellipse, which was greater than the eccentricity of

the basic ellipse. The CH fit was the best algorithm of the four new basin of stability

methods. It was able to encapsulate all points as well as maintain the integrity of the

shape of the data.

The significant differences between the two lean types can be seen when you

compare them on the same plots in Figure 16.The dotted lines in the left plot of Figure 16

are the CH fits for each lean data set with the raw data and the right plot shows only the

CH fits. In the right Figure 16 plot, you can see that the range of mediolateral leans is

similar while the anteroposterior leans are distinctly different. The free leans had a much

larger lean angle range, shown in radians, than the rigid leans as we expected. One

 33

important point to make about the shape of the overall basin of stability is that we do not

know how close to the data the basin of stability should be because it is impossible to

collect information about every location within this phase space.

Figure 16: Convex Hull Comparison of Rigid and Free leans. Force data from

rigid (black) and free (red) leans are shown on the left plot with the CH fit of each data

set in dotted lines with their respective colors. The right plot shows just the convex hulls

of the rigid and free leans.

Traditionally, a phase space is a plot comparing position and momentum.

However, what we have called a phase space thus far compares the position in the

anteroposterior direction and mediolateral direction. Since we have two positions, a

correct phase space should have momenta in each direction as well, thus creating a 4

dimensional space. In order to come closer to producing a proper phase space we tried to

relate each position (in x and y directions) to the magnitude of the velocity via a

calculating information density.

We calculated the information density by dividing the 𝜃𝑥 and 𝜃𝑦 axes into a grid

of 100 by 100 boxes. The number of data points found in each box was counted, this

value corresponds to the density of information found in that box. The density of

 34

information in each box is then displayed using different colors to represent the ranging

density values, we called this a dwell time plot. The denser the number of points in a

given box (shown in purple) means that the subject spent more time in that location.

When the color of the box is lighter or red the subject spent less time in that region and

moved quickly through the area. Thus it essentially depicts the magnitude of the velocity

(which is proportional to the momentum).

Figure 17: Dwell Time for Rigid Leans. This plot includes all 24 leans collected for

the rigid condition. The purples and blues indicate that a lot of time is spent in that

region, where areas of red are where the subject spent the least amount of time during

a lean motion. The scaling in these plots is based on the number of boxes used to

divide the space. The maxima along the x and y-axes were divided into 100 equal

lengths with respect to each axis. The color scale represents the number of points that

were within each box, purple – up to 100 data points, red – less than 20, and black –

no points.

 35

Figure 17 depicts the dwell time map for rigid leans and Figure 18 depicts the

dwell time for free leans. The dwell time plots were made using different scales based on

the maxima points along the x and y axes, which explains why the plots look similar in

size when in reality they are not, refer to Figure 16. Both plots have a range of purples in

the center, which is expected since this is the start, and end position for the subject. The

major difference between the two plots is the differences in the color range. The rigid

Figure 18: Dwell Time for Free Leans. This plot includes all 24 leans collected for the

free condition. The purples and blues indicate that a lot of time is spent in that region,

where areas of red are where the subject spent the least amount of time during a lean

motion. The scaling in these plots is based on the number of boxes used to divide the

space. The maxima along the x and y-axes were divided into 100 equal lengths with

respect to each axis. The color scale represents the number of points that were within

each box, purple – up to 100 data points, red – less than 20, and black – no points.

 36

lean has a lot of green and blue colors with very few paths of red. This is indicative that

more time is spent in general at every stage of the lean when the subject is only allowed

to lean with their ankles. This physical restriction makes it more difficult for the subject

to control their movements thus the subject moves more carefully and slowly to reach

their farthest lean before returning to the initial position. Additionally when visually

comparing the two lean styles during the experiment, the free lean motion was much

more natural where the rigid lean motion made the subject hesitate more and even ask to

practice the motion more before continuing with the experiment. Looking at Figure 18,

we see a more gradual transition between each color gradient. A lot more of the leaning

action is done very quickly and occurs farther from the initial and final position states. It

is possible that the more distinctive color regions in a free lean dwell time plot could be

an indicator of the individual’s ability to balance. Each color could be a specific phase of

the movement, such as purple – simple stance; blue – start of the transition to a lean;

green – comfortable leaning region; red – pushing the boundaries of leaning before

starting to fall. In the future, we would like to quantify this further by calculating the joint

torques and power to estimate the energy required during each phase of a lean. We

hypothesize that these kinetic measurements might hold significance in determining

differences between different age groups and may help identify people who are at risk for

falling.

In the future, we would like to add more algorithms as well as make some

changes to the current algorithms, such as changing the optimization scheme used to pick

the semi-axes lengths for the TPE fit in an attempt to improve the closeness of fit to the

experimental data. Two of the major additions to the algorithm lineup would be adapting

 37

the CH fit to allow for some “right turns” to further reduce the white space in the fit and

create asymmetrical ellipses using singular value decomposition (SVD) methods39. Our

next steps also including calculating joint angles and moments and seeing how they

change during a free and rigid lean. We will be looking into different energy calculations

as well as estimating the movement of the center of mass. If the current marker set is not

sufficient for accurate estimations changes to the marker locations may be necessary. The

current marker layout does not capture much information about the movements of the

upper extremities and arms, which could be problematic for calculating center of mass

and estimating energy expenditure.

The application of basin of attraction to postural stability may help quantify

previously subjective clinical measures. Our intent is to use these algorithms to create a

fall risk assessment tool. We plan to apply these measures to several different populations

of people including healthy young, healthy elderly, and fall-prone elderly to characterize

their differences. We hypothesize that the size of the basin will decrease from young to

elderly populations and the basins of healthy and fall prone elderly adults will have

different, possibly asymmetric, shapes. For instance, a healthy individual may be able to

lean evenly in all direction while a fall-prone individual may only be able to lean well in

specific directions. In these future population comparison analyses, all of the basin of

stability models should be used to verify the effectiveness and ability of each model to

define clinical differences between individuals. We will also be collecting more personal

information from the participants such as medical history, questionnaires for quality of

daily living and specific motor actions, and a record of their falls or use fall journals. We

intend to develop a tool that can take all of these pieces of information along with the

 38

experimental data that would be collected to find the best factors or features to look at for

determining fall risk, such as a k-means clustering algorithm. This data mining method

uses the given observations (or parameters) and partitions them into a number (k) of

clusters; within each cluster is a collection of similar observations. In our case we want to

see if the algorithm can separate and differentiate between the different patient

populations and yield the best set of parameters to create a comprehensive fall risk

assessment for clinics to use.

 39

CHAPTER 6

CONCLUSION

The objective of this thesis was to develop new algorithms for creating the basin

of stability from experimental data to be used in a clinical setting as a way to assess an

individual’s risk of falling and possibly to distinguish different causal conditions for that

risk. We defined the basin of stability to mean that all the points that enclosed within that

region will converge back onto the center attractor. If you are beyond the boundary then

you are in a state of falling or must act in order to recover to the standing position. We

also wanted to better understand under what physical conditions we approach or cross

this basin boundary.

The original method created by Zakynthinaki and collaborators built the

framework for this vein of research and analysis. The 2004 Zakynthinaki method used the

maximum lean angles in the left, right, back, and forward directions but was unable to

encompass all of the data points. Their later methods were able to encompass all of the

points but required “special” points for making the final basin of stability making this

method unrealistic for a clinical diagnostic test. Therefore we developed methods of

encapsulation that do not require hand-picked points while allowing the collected data to

be quickly processed and used as a clinical measure.

We developed four methods of encapsulation, Basic Ellipse (BE) fit, One Point

Ellipse (OPE) fit, Two Point Ellipse (TPE) fit, and Convex Hull (CH) fit. Each of the

four methods tried to include all of the data points within the shape in order to fulfill the

definition of a basin boundary We calculated the area, perimeter/circumference, and

eccentricity for all of the algorithms, when appropriate, in order to quantify how the fit

 40

changed from algorithm to algorithm. We believe that the CH fit was the best algorithm

of the four new basin of stability methods because it was able to encapsulate all points as

well as maintain the integrity of the shape of the data. One important point to make about

the shape of the overall basin of stability is that we do not know how close to the data the

basin of stability should be because it is impossible to collect information about every

location within this phase space. In future analyses when comparing different populations

of people (e.g. young to old, non-fallers to fallers) all of the basin of stability models

should be used to verify the effectiveness and ability of each model to define differences

between groups.

 41

REFERENCES

1 CDC Web-based Injury Statistics Query and Reporting System (WISQARS),

“Unintentional Fall Nonfatal Injuries and Rates per 100,000 United States, All Cases,

Ages 50 to 85+,” 2010, http://www.cdc.gov/injury/wisqars/, (2015).

2 M. E. Tinetti, “Preventing falls in elderly persons,” N. Engl. J. Med. 348 (1), 42 (2003).

3 J. J. Collins and C. J. De Luca, “Open-loop and closed-loop control of posture: A

random-walk analysis of center-of-pressure trajectories,” Exp. Brain Res. 95, 308 (1993).

4 J. J. Collins and C. J. De Luca, “Upright, correlated random walks: A statistical-

biomechanics approach to the human postural control system,” Chaos 5, 57 (1995).

5 M. S. Zakynthinaki, J. Stirling, C. Martinez, A. Durana, M. Quintana, G. Romo, and J.

Molinuevo, “Modeling the basin of attraction as a two-dimensional manifold from

experimental data: Applications to balance in humans,” Chaos 20, 013119 (2010).

6 CDC Web-based Injury Statistics Query and Reporting System (WISQARS) , “Fatal

Injuries, Both Sexes , Ages 50 to 85 + , United States, 2010 Intent Deaths and Type of

Cost Unintentional Average,” 2010, http://www.cdc.gov/injury/wisqars/, (2015).

7 CDC Web-based Injury Statistics Query and Reporting System (WISQARS), “Nonfatal

Emergency Department Treated and Released Injuries , Both Sexes , Ages 50 to 85 + ,

United States , 2010 Intent ED Visits and Type of Cost Unintentional Mechanism

Number of ED Visits Fall Average Total,” 2010, http://www.cdc.gov/injury/wisqars/

(2015).

8 A. J. Milat, W. L. Watson, C. Monger, M. Barr, M. Giffin and M. Reid, “Prevalence,

circumstances and consequences of falls among community-dwelling older people:

results of the 2009 NSW Falls Prevention Baseline Survey.” NSW Public Health Bull. 22

(4), 43 (2011).

9 I. D. Cameron, G.R. Murray, L. D. Gillespie, M.C. Robertson, K. D. Hill, R. G.

Cumming, and N. Kerse, “Interventions for preventing falls in older people in nursing

care facilities and hospitals. Cochane DB. Syst. Rev. (2010).

10 T. E. Lockhart and J. Liu, “Differentiating fall-prone and healthy adults using local

dynamic stability,” Ergonomics 51 (12), 1860 (2008).

11 A. R. Armiyoon and C. Q. Wu, “A novel method to identify boundaries of basins of

attraction in a dynamical system using Lyapunov exponents and Monte Carlo

techniques,” Nonlinear Dyn. 79 (1), 275 (2014).

http://www.cdc.gov/injury/wisqars/
http://www.cdc.gov/injury/wisqars/
http://www.cdc.gov/injury/wisqars/

 42

12 A. Priplata, J. Niemi, M. Salen, J. Harry, L. A. Lipsitz, and J. J. Collins, “Noise-

enhanced human balance control,” Phys. Rev. Lett. 89 (23), (2002).

13 P.C. Fino, A.R. Mojdehi, K. Adjerid, M. Habibi, T.E. Lockhart, and S.D. Ross,

"Comparing postural stability entropy analyses to differentiate fallers and non fallers,"

Ann. Biomed. Eng. 44 (5), 1636 (2015).

14 F. G. Borg, and G. Laxåback, “Entropy of balance – some recent results,” J.

NeuroEngineering Rehabil. 7, 38 (2010).

15 R. Soangra, and T. E. Lockhart, “Comparison of intra-individual physiological sway

complexity from force plate and inertial measurement unit,” Biomed. Sci. Instrum. 49,

180 (2013).

16 L. K. Boulgarides, S. M. McGinty, J. A. Willett, and C. W. Barnes, “Use of clinical

and impairment-based tests to predict falls by community-dwelling older adults,” Phys.

Ther. 83, 328 (2003).

17 J. A. Norris, A. P. Marsh, I. J. Smith, R. I. Kohut, and M. E. Miller, “Ability of static

and statistical mechanics posturographic measures to distinguish between age and fall

risk,” J. Biomech. 38, 1263 (2005).

18 P. B. Thapa, P. Gideon, K. G. Brockman, R. L. Fought, and W. A. Ray, “Clinical and

biomechanical measures of balance fall predictors in ambulatory nursing home

residents,” J. Gerontol. A-Biol. 51A, (1996).

19 M. Piirtola, and P. Era, “Force platform measurements as predictors of falls among

older people—a review,” Gerontology 52 (1), 1 (2006).

20 D. Hamacher, N. B. Singh, J. H. Van Dieen, M. O. Heller, and W. R. Taylor,

“Kinematic measures for assessing gait stability in elderly indivudals: a systematic

review” J. R. Soc. Interface 8 (65), 1682 (2011).

21 G. L. Baker and J. P. Gollub, Chaotic Dynamics, an Introduction, 2nd ed. (Cambridge

University Press, New York, 1996).

22 J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, (John Wiley &

Sons Ltd., Chichester, 1986).

23 H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. (Cambridge

University Press, Cambridge, 2000)

24 C. Grebogi, E. Ott, and J.A. Yorke, “Chaos, strange attractors, and fractal basin

boundaries in nonlinear dynamics,” Science 238 (4827), 632 (1987).

 43

25 C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an

obstruction to predictability,” Phys. Lett. A 99, 415 (1983).

26 M. L. Tanaka and S.D. Ross, “Separatrices and basins of stability from time series

data: an application to biodynamics,” Nonlinear Dyn. 58, 1 (2009).

27 J. J. Collins and C. J. De Luca, “Random walking during quiet stance,” Phys. Rev. Lett.

73, 764 (1994).

28 J. R. Stirling and M. S. Zakynthinaki, “Stabiity and the maintenance of balance

following a perturbation from quiet stance,” Chaos 14, 96 (2004).

29 D. A. Winter, F. Prince, J. S. Frank, C. Powell, and K. F. Zabjek, “Unified theory

regarding A/P and M/L balance in quiet stance,” J. Neurophysiol. 75, 2334 (1996).

30 J. Liu, X. Zhang, and T. E. Lockhart, “Fall risk assessment based on postural and

dynamic stability using inertial measurement units,” Safety and Health at Work 3, 192

(2012).

31 M. S. Zakynthinaki, J. Stirling, C. Martinez, A. Durana, M. Quintana, G. Romo, and J.

Molinuevo, “Modeling the basin of attraction as a two-dimensional manifold from

experimental data: Applications to balance in humans,” Chaos 20, 013119 (2010).

32 M. S. Zakynthinaki, A. López, C. A. Cordente, J. A. Ospina Betancurt, M. S. Quintana,

and J. Sampedro, “Detecting changes in the basin of attraction of a dynamical system:

Application to the postural restoring system,” Appl. Math. Comput. 219 (17), 8910

(2013).

33 A. J. van den Bogert, T. Geijtenbeek, O. Even-Zohar, F. Steenbrink, and E.C. Hardin,

“A real-time system for biomechanical analysis of human movement and muscle

function,” Med. Biol. Eng. Comput. 154, 1069 (2013).

34 J. O'Rourke, Computational Geometry in C, (Cambridge, UK: Cambridge UP, 1998).

Print.

35 R. L. Graham. “An efficient algorithm for determining the convex hull of a finite

planar set,” Information Processing Letters 1, 132 (1972).

36 G. Almkvist and B. Berndt, “Gauss, Landen, Ramanujan, the arithmetic-geometric

mean, ellipses, 𝜋, and the Ladies Diary,” Amer. Math. Monthly 95 (7), 585 (1988).

37 T. M. Owings, M. J. Pavol, K. T. Foley, and M. D. Grabiner, “Measures of postural

stability are not predictors of recovery from large postural disturbances in healthy older

adults,” J. Am. Geriatr. Soc. 48, 42 (2000).

 44

38 H. B. Menz, M. E. Morris, and S. R. Lord, “Foot and ankle characteristics associated

with impaired balance and functional ability in older people,” J. Gerontol. A-Biol. 60,

1546 (2005).

39 Tim Sauer, private communication.

 45

APPENDIX A

IGOR PRO CODE: MODELS

 46

// BasinOfStability_v4.2.pxp

//

// Created By: Victoria Smith, vasmith5@asu.edu

// Created On: Jan 19, 2016

// Last Updated On: Mar 29, 2016

//

//

#pragma rtGlobals=3 // Use modern global access method and strict wave access.

#include <All Gizmo Procedures>

#include <FillBetweenContours>,menus=0

Menu "Macros"

 "Clean up graphs", CleanWindows()

 Submenu "Main Fits"

 "Basic Ellipse", DisplayEllipseFit()

 "1pt Ellipse", Display1PtEllipse()

 "2pt Ellipse", Display2PtEllipse()

 "Convex Hull", DisplayConvexHullFit()

 Submenu "2004 Greek Fit"

 "All Leans", DisplayGreekMethod()

 "Individual Groups", DisplayGreekByGroup()

 End

 End

 Submenu "Other Graphs"

 Submenu "Phase Space"

 "All Leans", DisplayPhaseSpace()

 "Grouped Leans", DisplaySingleGroupPhaseSpace()

 End

 Submenu "Lean Directions"

 "All Leans", DisplayLeanDirections()

 "Grouped Leans", DisplayGroupedLeans()

 End

 Submenu "Quiet Stance"

 "Only Queit Stance", DisplayQuietStance()

 "Quiet Stance w Leans", DisplayLeansAndQS()

 End

 Submenu "Information Density"

 "All Data", DisplayInfoDensity()

 "Single Sets", DisplaySingleGroupInfoDensity()

 End

 End

 Submenu "Utility Functions"

 "Print Information", WriteInfoToFile()

 "Load Dataset", InitSession()

 "Delete Dataset", CleanDataFolder()

 End

 "HistTest", HistTest()

End

 47

//

//

// Utility Functions

//

//

Function CleanDataFolder() //CleanDataFolder

 String folder = SelectDataFolder()

//Checks if a folder has been selected, if not operation is aborted

 if (strlen(folder) == 0)

 return -1

 endif

//Creates a warning that the user is about to delete a folder. If user presses yes, then action will be

 //executed if user presses no, action is aborted.

String warning = "Do you wish to delete everything in:\t" + folder

 DoAlert/T="Caution" 1, warning

 if (V_flag == 1) //Meaning yes clicked

 KillDataFolder root:$(folder)

//Kills all the Session data folder and all the children df in that session

 printf "Deleted folder: %s\r", folder

 else //V_flag = 2 (No clicked)

 printf "%s folder deletion aborted\r", folder

 return -1

 endif

End

//Function that clears all the Graphs currently being displayed

Function CleanWindows() //CleanWindows

 String windows

 String graphName

 Variable i

 // Kill layouts

 i = 0

 windows = WinList("*",",","WIN:4")

 do

 graphName = StringFromList(i,windows,",")

 if (strlen(graphName) == 0)

 break

 endif

 KillWindow $graphName

 i += 1

 while(1)

 // Kill graphs

 i = 0

 windows = WinList("*",",","WIN:1")

 do

 graphName = StringFromList(i,windows,",")

 if (strlen(graphName) == 0)

 break

 48

 endif

 KillWindow $graphName

 i += 1

 while(1)

End

//Loads multiple data files. These are specifically formatted .txt files from Matlab (postProcessing_v2)

Function/S DoLoadMultipleFiles(type) //DoLoadMultipleFiles

 String type

 String message = "Select one or more files"

 String outputPaths

 String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"

 fileFilters += "All Files:.*;"

 Open /D /R /MULT=1 /F=fileFilters /M=message refNum

 outputPaths = S_fileName

 if (strlen(outputPaths) == 0)

 Print "Cancelled"

 else

 Variable numFilesSelected = ItemsInList(outputPaths, "\r")

 Variable i

 for(i=0; i<numFilesSelected; i+=1)

 String path = StringFromList(i, outputPaths, "\r")

 Printf "%d: %s\r", i, path

 // Load the waves and set the local variables.

 //This command is if there are only 2 waves in the imported file.

 if(stringMatch(type, "Thetas"))

 LoadWave/W/A/D/G/L={2, 0, 0, 0,2} path

 else //if type = "Angles"

 Printf "Loading Angles --Not ready yet"

 endif

 if (V_flag==0) // No waves loaded. Perhaps user canceled.

 return "-1"

 endif

 endfor

 endif

 return outputPaths // Will be empty if user canceled

End

//This functions initializes the waves that are to be used for later use. In this function, we will load

//multiple files with thetaX and thetaY data from .txt files created in Matlab. After loading all the files from

//a single trial type, all of the thetaX and thetaY data will be concatenated to create an Xwave and Ywave,

//respectively. These output waves will be used for further calculations in other routines.

//(This version was created in multipleFileLoad_v4)

Function InitSession() //InitSession

 //Outputs: Xwave, Ywave, Forward, Left, Back, Right

 //Outputs: ForwardLeft, ForwardRight, BackLeft, BackRight

 //Sets data folder to root

 49

 SetDataFolder root:

//Creates a prompt for the user to input the names of the waves for the final concatenated waves

 String sessionNum

 Prompt sessionNum, "Enter Session Number: " //Set prompt for userInput1 param

 DoPrompt "Session Number", sessionNum

 if(V_Flag)

 return -1 //User canceled

 endif

//Creates the Session folder name and sets the current folder to the session folder

 String folderName = "Session" + sessionNum

 NewDataFolder/O/S root:$folderName

//Creates a prompt for the user to input what kind of data is being loaded and appropriately load

 //files into the correct waves

 String dataType

 String menuList = "Thetas; Angles;"

 Prompt dataType, "Pick Data Type:", popup, menuList

 DoPrompt "Select Loaded Data File Type", dataType

//Function that enables user to select files from the computer. Creates a new data folder for those

 // files to be saved in

 DoLoadMultipleFiles(dataType)

 if (V_Flag)

 return -1 // User canceled

 endif

//Data Folder reference to the data folder we are in, after DoLoadMultipleFiles()

 DFREF sessionDFR = GetDataFolderDFR()

 String sessionFolder = GetDataFolder(1)

// Puts the names of specific waves in the current data folder into a List for ConcatWaves to read.

//The waves are specified by the first string in WaveList. The waves are being separated by data

//type (theta X or theta Y).

 String list1x, list1y

 list1x = WaveList("*_X", ";", "")

 list1y= WaveList("*_Y", ";", "")

//Based on the answer chosen in the above prompt different load protocols are used

 strswitch(dataType)

 case "Thetas":

 String thetaFolder = sessionFolder + "Thetas"

 NewDataFolder/O $thetaFolder

 InitThetas(list1x, list1y, sessionNum)

 break

 case "Angles":

 String anglesFolder = sessionFolder + "Angles"

 NewDataFolder/O $anglesFolder

 InitAngles(list1x, list1y, sessionNum)

 break

 endswitch

 50

 //Create Model datafolder for all the display functions to utilize

 String modelFolder = sessionFolder + "Models"

 NewDataFolder/O/S $modelFolder

 //Basic Ellipse model parameters

 String/G ebParam = "area=-1;perim=-1;pout=-1;semiA=-1;semiB=-1;eccen=-1;"

 //One Pt Ellipse model parameters

 String/G e1Param = "area=-1;perim=-1;pout=-1;semiA=-1;semiB=-1;eccen=-1;"

 //Two Pt Ellipse model parameters

 String/G e2param = "area=-1;perim=-1;pout=-1;semiA=-1;semiB=-1;eccen=-1;"

 //Convex Hull model parameters

 String/G chParam = "area=-1;perim=-1;pout=-1;semiA=-1;semiB=-1;eccen=-1;"

 //Greek 2004 model parameters

 String/G grParam = "area=-1;perim=-1;pout=-1;semiA=-1;semiB=-1;eccen=-1;"

End

//This function receives a list of x and y waves that were just selected by the user. The desired sets of the

//list are parsed into new lists and given to the function InitWaves where the desired waves are created and

//saved into the predetermined data folder

Function InitThetas(xList, yList, sessionNum) //InitTheta

 String xList, yList

 String sessionNum

 //String thetaFolder = GetDataFolder(1)

 //Makes the nessary folder paths and then creates the folders

 String tFolder = ":Thetas"

 String sFolder = ":Thetas:SingleLeans"

 String gFolder = ":Thetas:GroupedLeans"

 String qsFolder = ":Thetas:QuietStance"

 NewDataFolder/O $sFolder

 NewDataFolder/O $gFolder

 NewDataFolder/O $qsFolder

 //Creating the main wave that contains all of the leans from all trials

// Puts the names of specific waves into the Theta. The waves are being separated by data type

 String trialListX = ListMatch(xList, "!q*")

 String trialListY = ListMatch(yList, "!q*")

 String name

 if (strlen(trialListX) != 0)

 name = "trial"

 InitWaves(trialListX, trialListY, name, sessionNum, tFolder)

 endif

 //Separating the x and y lists of all waves imported into the individual lean directions and then

// creating a wave that only has those leans. Then creating waves that contain all of the same trial

// numbers, i.e.all 8 first leans in a wave, all 8 leans from take 2 in a wave, etc. Putting them into

 // their respective folders: "Single Leans", "Grouped Lean", "Quiet Stance"

 //Getting only forward leans

 String flistx = ListMatch(xList, "f*")

 flistx = ListMatch(flistx, "!*R*")

 flistx = ListMatch(flistx, "!*L*")

 String flisty = ListMatch(yList, "f*")

 51

 flisty = ListMatch(flisty, "!*R*")

 flisty = ListMatch(flisty, "!*L*")

 if (strlen(flistx) != 0)

 name = "forward"

 InitWaves(flistx, flisty, name, sessionNum, sFolder)

 endif

 //Getting only backward leans

 String blistx = ListMatch(xList, "b*")

 blistx = ListMatch(blistx, "!*R*")

 blistx = ListMatch(blistx, "!*L*")

 String blisty = ListMatch(yList, "b*")

 blisty = ListMatch(blisty, "!*R*")

 blisty = ListMatch(blisty, "!*L*")

 if (strlen(blistx) != 0)

 name = "back"

 InitWaves(blistx, blisty, name, sessionNum, sFolder)

 endif

 //Getting only forwardRight leans

 String fRlistx = ListMatch(xList, "fr*")

 String fRlisty = ListMatch(yList, "fr*")

 if (strlen(fRlistx) != 0)

 name = "forwardRight"

 InitWaves(fRlistx, fRlisty, name, sessionNum, sFolder)

 endif

 //Getting only forwardLeft leans

 String fLlistx = ListMatch(xList, "fl*")

 String fLlisty = ListMatch(yList, "fl*")

 if (strlen(fLlistx) != 0)

 name = "forwardLeft"

 InitWaves(fLlistx, fLlisty, name, sessionNum, sFolder)

 endif

 //Getting only backRight leans

 String bRlistx = ListMatch(xList, "br*")

 String bRlisty = ListMatch(yList, "br*")

 if (strlen(bRlistx) != 0)

 name = "backRight"

 InitWaves(bRlistx, bRlisty, name, sessionNum, sFolder)

 endif

 //Getting only backLeft leans

 String bLlistx = ListMatch(xList, "bl*")

 String bLlisty = ListMatch(yList, "bl*")

 if (strlen(bLlistx) != 0)

 name = "backLeft"

 InitWaves(bLlistx, bLlisty, name, sessionNum, sFolder)

 endif

 //Getting only right leans

 String rlistx = ListMatch(xList, "r*")

 String rlisty = ListMatch(yList, "r*")

 if (strlen(rlistx) != 0)

 52

 name = "right"

 InitWaves(rlistx, rlisty, name, sessionNum, sFolder)

 endif

 //Getting only left leans

 String llistx = ListMatch(xList, "l*")

 String llisty = ListMatch(yList, "l*")

 if (strlen(llistx) != 0)

 name = "left"

 InitWaves(llistx, llisty, name, sessionNum, sFolder)

 endif

 //Creating list for group leans

 String gListX, gListY

 String testX = "*1_X;*2_X;*3_X"

 String testY = "*1_Y;*2_Y;*3_Y"

 String nameList = "group1;group2;group3"

 Variable limitNum = 3

 Variable i = 0

 for (i = 0; i < limitNum; i += 1)

 gListx = ListMatch(xlist, StringFromList(i, testX))

 gListy = ListMatch(ylist, StringFromList(i, testY))

 if(strlen(gListx) == 0) //Checks if list is empty before continuing

 break

 endif

InitWaves(gListx, gListy, StringFromList(i, nameList), sessionNum, gFolder)

 endfor

 //Getting quiet stance (qS) data

 String qSlistx = ListMatch(xList, "q*")

 String qSlisty = ListMatch(yList, "q*")

 if (strlen(qSlistx) != 0)

 name = "qs"

 InitWaves(qSlistx, qSlisty, name, sessionNum, qsFolder)

 endif

 //Killing all the individual leans trials from the Session2 folder

 KillWaves/A/Z

End

//This function takes a list of waves that need to be concatenated and with the provided names and

//session number it names the wave accordingly. Lastly, these 2 new waves (x and y) are moved into

//a data folder given by the dfpath that is supplied by the calling function.

Function InitWaves(xList, yList, baseName, sessionNum, dfpath) //InitWaves

 String xList, yList, baseName //Inputs

 String sessionNum, dfpath //Inputs

//Need to add the colon to the path or it thinks it should rename the wave in MoveWaves to the

 //last folder name

 dfpath = dfpath +":"

 Variable count = 0

 count = PntsInWaveList(xList)

 53

 //Defining wave name

 String xName = baseName + "_X" + sessionNum

 String yName = baseName + "_Y" + sessionNum

 //Makes waves

 Make/O/D/N=(count) $xName, $yName

 ConcatWaves(xList, $xName)

 ConcatWaves(yList, $yName)

 //Moving waves into the desired data folder given dfpath

 MoveWave $xName, $dfpath

 MoveWave $yName, $dfpath

End

//Initializes the angles data sets for all types of leans and quiet stance. They will be saved into their

//respective folders.

Function InitAngles(xList, yList, sessionNum) //InitAngles

 String xList, yList, sessionNum

 //String thetaFolder = GetDataFolder(1)

 //Makes the necessary folder paths and then creates the folders

 String aFolder = ":Thetas"

 String ankleFolder = ":Thetas:SingleLeans"

 String hipFolder = ":Thetas:GroupedLeans"

 String kneeFolder = ":Thetas:QuietStance"

 NewDataFolder/O $ankleFolder

 NewDataFolder/O $hipFolder

 NewDataFolder/O $kneeFolder

End

//This function creates a list of the trials that have been Loaded into the program. The user can select

//which trial data set they want to choose. The trial name chosen, will be returned as a string to be

//used to create different displays

Function/S SelectDataSet(folder) //SelectDataSet

 DFREF folder

 SetDataFolder folder

 //Counts the number of different trials that are in the given folder

 String list = WaveList("*_X*", ";","DP:1")

 Variable count = ItemsInList(list)

//Creates a list of trials based on how many trials are found in count (above)

 Variable i

 String temp

 String groupList = ""

 for (i = 0; i < count; i+=1)

 temp = "Group" + num2str(i+1) +";"

 groupList = groupList + temp

 endfor

 //Dialog box for selecting which trial is to be used

 String group

 Prompt group, "Select Data Set:", popup groupList

 DoPrompt "Graph Selected Data", group

 54

 if(V_flag)

 return "" //user cancelled

 endif

 //Return answer to function caller

 return group //Output

End

//This function allows the user to select what data folder to pull waves from in the display functions

Function/S SelectDataFolder() //SelectDataFolder

 //Gets the names of all the folders in root

 SetDataFolder root:

 DFREF dfr = GetDataFolderDFR() //dfr = data folder reference

 //Defining variables to create list of folders

 String objName

 String folderList = ""

 Variable index = 0

 do

 objName = GetIndexedObjNameDFR(dfr, 4, index)

 if (strlen(objName) == 0) //If returns a null string

 break

 endif

 //Creates the folder list

 folderList = folderList + objName + ";"

 index +=1

 while(1)

 //Remove the folder "Packages" from user folder choices

 folderList = RemoveFromList("Packages", folderList)

 //Sorts the folder list into alphanumeric order

 folderList = SortList(folderList)

 //Dialog box for selecting which folder is to be used

 String folderName

 Prompt folderName, "Select Folder:", popup folderList

 DoPrompt "Retrieve Data from Folder", folderName

 if(V_flag)

 return "" //user cancelled

 endif

 //Return answer to function caller

 return folderName

End

//This function is used in all of the main functions. It extracts specific strings in each function that hold the

//desired parameters for writing to a txt file

Function WriteInfoToFile() //WriteInforToFile

//User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 DFREF mDFR = GetModelsDFR(folder)

 String path = GetDataFolder(1)

 SetDataFolder mDFR

 55

 //Set up for making parameter table

 Variable i = 0, j = 0, k= 0

 String var, param, paramPath

 Make/O/T/N=(6,7) ModelParams

 String modelList = StringList("*", ";")

Make/O/T/N=5 modelNames = {"Basic Ellipse","1pt Ellipse","2pt Ellipse","Convex Hull","2004

Greek"}

 Make/O/T/N=6 keywords = {"area", "perim", "pout", "semiA", "semiB", "eccen"}

 //Making table labels

 ModelParams[0][0] = folder

 for (k=0; k<numPnts(keywords); k+=1)

 ModelParams[0][k+1] = keywords[k]

 endfor

 for (k=0; k<numPnts(modelNames); k+=1)

 ModelParams[k+1][0] = modelNames[k]

 endfor

 //Filling in data into table

 for (i=0; i < ItemsInList(modelList); i+=1)

 var = StringFromList(i, modelList)

 paramPath = path + var

 //Global key string with a single model's parameters

 SVAR model = $paramPath

 for (j=0; j<numPnts(keywords); j+=1)

 param = StringByKey(keywords[j], model, "=", ";")

 ModelParams[i+1][j+1] = param

 endfor

 endfor

End

 56

//

//

//Display Functions

//

//

//This function creates a graph based on the data from the user selected folder and creates a

//Basic Ellipse to fit the data.

Function DisplayEllipseFit() //DisplayEllipseFit

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder()

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 //Setting up the wave names that will be used to check if they already exist or to build waves if

 //they do not exist. Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //name = "trial"; number = "#" based on user choice

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String ellipseWaveX = "basicElliX" + sessionNum

 String ellipseWaveY = "basicElliY" + sessionNum

 String trendWave = "basicElliTrend" + sessionNum

 String outPtsWave = "basicElliOutPts" + sessionNum

 String waveCheck = ellipseWaveX+";" + ellipseWaveY+";" +trendWave + ";" + outPtsWave + ";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*basic*"

 objList = GetWavesInFolder(mDFR, str)

 print objList

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1)

 Printf "say Hi!!"

 else //Make the waves needed for ellipseFit

 Make/O/D/N=501 $ellipseWaveX, $ellipseWaveY //holds the ellipse points

 Make/O/D/N=(2,2) $trendWave //will contain the angled trend line

 Make/O/D/N=(numpnts($inY),3) $outPtsWave

 57

 //Main Function

 ellipseFit($inX, $inY, $ellipseWaveX, $ellipseWaveY, $trendWave, $outPtsWave)

 //Moving the generated waves into the Model folder

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $ellipseWaveX, $mFolder

 MoveWave $ellipseWaveY, $mFolder

 MoveWave $trendWave, $mFolder

 MoveWave $outPtsWave, $mFolder

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "BasicEllipseFit_" + folder //name of the graph window

 //Laying out the traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX

 //The linear regression line calculated in CurveFit

 AppendToGraph/W=$wn mDFR:$trendWave[][1] vs mDFR:$trendWave[][0]

 ModifyGraph/W=$wn rgb($trendWave)=(0,12800,52224), lsize($trendWave)=1.5; DelayUpdate

 AppendToGraph/W=$wn mDFR:$ellipseWaveY vs mDFR:$ellipseWaveX;DelayUpdate

 ModifyGraph/W=$wn rgb($ellipseWaveY)=(0,0,0),lsize($ellipseWaveY)=1.5;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=1;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z18Basic Ellipse Fit"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) FP Data\r\\s(#1) Data Trend Line\r"

 AppendText/W=$wn "\\Z16\\s(#2) Fitted Ellipse";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=-1.88/Y=0.33;DelayUpdate

End

 58

//This function creates a graph based on the data from the user selected folder and uses the

//OnePtEllipse to fit the data.

Function Display1PtEllipse() //Display1PtEllipse

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String ellipseWaveX = "onePtFitX" + sessionNum

 String ellipseWaveY = "onePtFitY" + sessionNum

 String trendWave = "onePtTrend" + sessionNum

 String outPtsWave = "onePtFitOutPts" + sessionNum

 String waveCheck =ellipseWaveX + ";" + ellipseWaveY+ ";" + trendWave + ";" +outPtsWave+";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*one*"

 objList = GetWavesInFolder(mDFR, str)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 //Make the waves needed for ellipseFit

 Make/O/D/N=501 $ellipseWaveX, $ellipseWaveY //holds the ellipse points

 Make/O/D/N=(2,2) $trendWave //will contain the angled trend line

 Make/O/D/N=(numpnts($inY),3) $outPtsWave

 //Main Function

 OnePtEllipse($inX, $inY, $trendWave, $ellipseWaveX, $ellipseWaveY, $outPtsWave)

 //Moving the generated waves into the Model folder

 59

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $ellipseWaveX, $mFolder

 MoveWave $ellipseWaveY, $mFolder

 MoveWave $trendWave, $mFolder

 MoveWave $outPtsWave, $mFolder

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "OnePtEllipseFit_" + folder //name of the graph window

 //Adding traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX

 AppendToGraph/W=$wn mDFR:$trendWave[][1] vs mDFR:$trendWave[][0];DelayUpdate

 ModifyGraph/W=$wn rgb($trendWave)=(0,12800,52224), lsize($trendWave)=1.5; DelayUpdate

 AppendToGraph/W=$wn mDFR:$ellipseWaveY vs mDFR:$ellipseWaveX;DelayUpdate

 ModifyGraph/W=$wn rgb($ellipseWaveY)=(0,0,0),lsize($ellipseWaveY)=1.5;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=1;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z18One Pt Ellipse Fit"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) FP Data\r\\s(#1) Data Trend Line\r"

 AppendText/W=$wn "\\Z16\\s(#2) Fitted Ellipse";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=-1.88/Y=0.33;DelayUpdate

End

//This function creates a graph based on the data from the user selected folder and uses

//FitConvexHull to fit the data.

Function Display2PtEllipse() //Display2PtEllipse

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 60

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name,

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String ellipseWaveX = "twoPtFitX" + sessionNum

 String ellipseWaveY = "twoPtFitY" + sessionNum

 String trendWave = "twoPtTrend" + sessionNum

 String outPtsWave = "twoPtFitOutPts" + sessionNum

 String waveCheck=ellipseWaveX + ";" +ellipseWaveY +";" +trendWave + ";" + outPtsWave + ";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*two*"

 objList = GetWavesInFolder(mDFR, str)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 //Make the waves needed for ellipseFit

 Make/O/D/N=501 $ellipseWaveX, $ellipseWaveY //holds the ellipse points

 Make/O/D/N=(2,2) $trendWave //will contain the angled trend line

 Make/O/D/N=(numpnts($inY),3) $outPtsWave

 //Main Function

 TwoPtEllipse($inX, $inY, $trendWave, $ellipseWaveX, $ellipseWaveY, $outPtsWave)

 //Moving the generated waves into the Model folder

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $ellipseWaveX, $mFolder

 MoveWave $ellipseWaveY, $mFolder

 MoveWave $trendWave, $mFolder

 MoveWave $outPtsWave, $mFolder

 endif

 61

 //Start Plotting

 SetDataFolder root:

 String wn = "TwoPtEllipseFit_" + folder //name of the graph window

 //Traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX;DelayUpdate

 AppendToGraph/W=$wn mDFR:$trendWave[][1] vs mDFR:$trendWave[][0];DelayUpdate

 ModifyGraph/W=$wn rgb($trendWave)=(0,12800,52224), lsize($trendWave)=1.5; DelayUpdate

 AppendToGraph/W=$wn mDFR:$ellipseWaveY vs mDFR:$ellipseWaveX;DelayUpdate

 ModifyGraph/W=$wn rgb($ellipseWaveY)=(0,0,0), lsize($ellipseWaveY)=1.5; DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=1;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z18Two Pt Ellipse Fit"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) FP Data\r\\s(#1) Data Trend Line\r"

 AppendText/W=$wn "\\Z16\\s(#2) Fitted Ellipse";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=-1.88/Y=0.33;DelayUpdate

End

//This function creates a graph based on the data from the user selected folder and uses the

//OnePtEllipse to fit the data.

Function DisplayConvexHullFit() //DisplayConvexHullFit

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String Xhull = "Xhull" + sessionNum

 String Yhull = "Yhull" + sessionNum

 62

 String waveCheck = Xhull + ";" + Yhull + ";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*hull*"

 objList = GetWavesInFolder(mDFR,str)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 //Sets the folder to Thetas in order to get the trials waves

 //Set up of waves to be passed into ConvexHull

 variable length = numPnts($inY)

 Make/O/D/N=(length) $Xhull, $Yhull //will contain the ConvexHull points

 //Main Function

 FitConvexHull($inX, $inY, $XHull, $Yhull)

 //Moving the generated waves into the Model folder

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $XHull, $mFolder

 MoveWave $Yhull, $mFolder

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "ConvexHullFit_" + folder //name of the graph window

 //Traces

 Display/K=1/N=$wn mDFR:$YHull vs mDFR:$XHull;DelayUpdate

 AppendToGraph/W=$wn tDFR:$inY vs tDFR:$inX;DelayUpdate

 ModifyGraph/W=$wn rgb($YHull)=(0,0,0);DelayUpdate

 ModifyGraph/W=$wn lsize($YHull)=1.5;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 63

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z18Convex Hull"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

End

Function DisplayGreekMethod() //DisplayGreekMethod

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String ellipseWaveX = "greekCritX" + sessionNum

 String ellipseWaveY = "greekCritY" + sessionNum

 String waveCheck = ellipseWaveX + ";" + ellipseWaveY + ";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*greek*"

 objList = GetWavesInFolder(mDFR, str)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 64

 Variable leng, doubleLeng

 leng = numPnts($inX)

 doubleLeng = 2*leng

 Make/O/D/N=(doubleLeng) $ellipseWaveX, $ellipseWaveY //holds the ellipse points

 //Main Function

 GreekMethod($inX, $inY, $ellipseWaveX, $ellipseWaveY)

 //Moving the generated waves into the Model folder

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $ellipseWaveX, $mFolder

 MoveWave $ellipseWaveY, $mFolder

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "GreekPlot_" + folder //name of the graph window

 //Traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX;DelayUpdate

 AppendToGraph/W=$wn mDFR:$ellipseWaveY vs mDFR:$ellipseWaveX;DelayUpdate

 ModifyGraph/W=$wn rgb($ellipseWaveY)=(0,0,0),lsize($ellipseWaveY)=1.5;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z182004 Zakynthinaki Method"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) FP Data\r\\s(#1) 2004 Basin\r"

 AppendText/W=$wn "\\s Boundary";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=-1.88/Y=0.33;DelayUpdate

End

 65

Function DisplayGreekByGroup() //DisplayGreekByGroup

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 if(strlen(folder)==0)

 return -1 //User Cancelled

 endif

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF gDFR = GetGroupedLeansDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 //Gets the folder where the data is extra

 String group = SelectDataSet(gDFR)

 if(strlen(group)==0)

 return -1 //User Cancelled

 endif

 String groupMatchStr = lowerStr(group) + "*"

 Printf "str = %s\r", groupMatchStr

 //Sets the folder to GroupedLeans in order to get the desired waves

 SetDataFolder gDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList(groupMatchStr, ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 SetDataFolder mDFR

 //Create the wave names

 String ellipseWaveX = "greekCritX" + sessionNum + group

 String ellipseWaveY = "greekCritY" + sessionNum + group

 String waveCheck = ellipseWaveX + ";" + ellipseWaveY + ";"

 //The current folder is still :Models. This creates

 String objList, str

 str = "*greek*"

 objList = GetWavesInFolder(mDFR, str)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 Variable leng, doubleLeng

 leng = numPnts(gDFR:$inX)

 doubleLeng = 2*leng

 66

 Make/O/D/N=(doubleLeng) $ellipseWaveX, $ellipseWaveY //holds the ellipse points

 //Main Function

 GreekMethod(gDFR:$inX, gDFR:$inY, $ellipseWaveX, $ellipseWaveY)

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "GreekPlot" + sessionNum + "_" + group //name of the graph window

 //Traces

 Display/K=1/N=$wn gDFR:$inY vs gDFR:$inX;DelayUpdate

 AppendToGraph/W=$wn mDFR:$ellipseWaveY vs mDFR:$ellipseWaveX;DelayUpdate

 ModifyGraph/W=$wn rgb($ellipseWaveY)=(0,0,0),lsize($ellipseWaveY)=1.5;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z182004 Zakynthinaki Method"

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33;DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) FP Data\r\\s(#1) 2004 Basin\r"

 AppendText/W=$wn "\\s Boundary";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=-1.88/Y=0.33;DelayUpdate

End

Function DisplayInfoDensity() //DisplayInfoDensity()

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF mDFR = GetModelsDFR(folder)

 SetDataFolder mDFR

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String densityMatrix = "densityMatrix" + sessionNum

 String logDensity = "logDensity" + sessionNum

 String waveCheck = densityMatrix + ";" + logDensity + ";"

 67

 //The current folder is still :Models. This creates

 String objList, str

 str = "*sity*"

 objList = GetWavesInFolder(mDFR,str)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "say Hi!!"

 else //Makes the waves from above using the desired Main Function and then graphs the results

 //Folder is already set to Thetas in order to get the trials waves

 //Set variables and waves to pass into boxCounting

 Variable numBoxes = 100 // number of boxes in the r & c to make an NxN matrix

 Make/O/N=(numBoxes,numBoxes) $densityMatrix

 //In order to visualize both the very dense and minimally dense boxes, we log10 the

matrix.

 Make/O/N=(numBoxes,numBoxes) $logDensity

 //Main Function

 boxCounting($inX, $inY, numBoxes, $densityMatrix, $logDensity)

 //Moving the generated waves into the Model folder

 //Setting the folder to session and then adding a new folder and getting that pathway

 SetDataFolder mDFR

 String mFolder = GetDataFolder(1)

 //Setting the path back to theta folder where all the waves are located so MoveWave can

 //access those waves to move them to the desired data folder given dfpath

 SetDataFolder tDFR

 MoveWave $densityMatrix, $mFolder

 MoveWave $logDensity, $mFolder

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "Data_Log_Density_" + folder //name of the graph window

 Display/K=1/N=$wn;AppendMatrixContour/W=$wn mDFR:$logDensity;DelayUpdate

 ModifyContour/W=$wn $logDensity ctabLines={*,*,Classification,0},labels=0;DelayUpdate

 ColorScale/W=$wn/C/N=text0/E ctab={0,100,Classification,0};DelayUpdate

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Go to Graph --> Packages --> Fill between Contours --> Setting: continous, classification,

 //log scale colors

End

 68

Function DisplaySingleGroupInfoDensity() //DisplaySingleGroupInfoDensity

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF gDFR = GetGroupedLeansDFR(folder)

 //Gets the folder where the data is extra

 String group = SelectDataSet(gDFR)

 //Setting up the wave names that will be used to check if they already exist or to build

 //waves if they do not exist.

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum //name = "trial"; number = "#" based on user

choice

 //The current folder is still :Models. This is the set up for the if statement check below

 String objList, str

 str = "*sity*"

 objList = GetWavesInFolder(mDFR,str)

 //Create the wave names

 String XYtrialList, inY, inX //used later in the if-else statement

 String densityMatrix = "densityMatrix" + sessionNum + "_" + group

 String logDensity = "logDensity" + sessionNum + "_" + group

 String waveCheck = densityMatrix + ";" + logDensity + ";"

 String groupMatchStr = lowerStr(group) + "*"

 Printf "str = %s\r", groupMatchStr

 //Sets the folder to GroupedLeans in order to get the desired waves

 SetDataFolder gDFR

 //From the folder selected the corresponding X and Y waves is used

 XYtrialList = waveList(groupMatchStr, ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Check to see if the waves for creating this display already exist so you don't have to

 //recalculate everything.

 if(stringMatch(waveCheck, objList) == 1) // these waves already exist break to straight to

graphing

 Printf "Waves already exist, graphing now ..."

 else //Makes the waves from above using the desired Main Function and then graphs the results

 //Folder is already set to Thetas in order to get the trials waves

 //Set variables and waves to pass into boxCounting

 Variable numBoxes = 100 // number of boxes in the rows & cols to make an NxN matrix

 Make/O/N=(numBoxes,numBoxes) $densityMatrix

 //In order to visualize both the very dense and minimally dense boxes, we log10 the

matrix.

 Make/O/N=(numBoxes,numBoxes) $logDensity

 //Main Function

 69

 boxCounting($inX, $inY, numBoxes, $densityMatrix, $logDensity)

 endif

 //Start Plotting

 SetDataFolder root:

 String wn = "Data_LogDensity_" + group //name of the graph window

 Display/K=1/N=$wn;AppendMatrixContour/W=$wn gDFR:$logDensity;DelayUpdate

 ModifyContour/W=$wn $logDensity ctabLines={*,*,Classification,0},labels=0;DelayUpdate

 ColorScale/W=$wn/C/N=text0/E ctab={0,100,Classification,0};DelayUpdate

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Go to Graph --> Packages --> Fill between Contours --> Setting: continous, classification,

 // log scale colors

End

//Function that will display all the waves based on the lean type with different colors

Function DisplayPhaseSpace() //DisplayPhaseSpace

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Start Plotting

 SetDataFolder root:

 String wn = "PhaseSpace_" + folder //name of the graph window

 //Traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 TextBox/W=$wn/C/N=text0/D=1.5 /A=LT/X=0.37/Y=0.33 "\\Z18Raw Data"

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

End

 70

Function DisplaySingleGroupPhaseSpace() //DisplaySingleGroupPhaseSpace

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF gDFR = GetGroupedLeansDFR(folder)

 //Gets the folder where the data is extra

 String group = SelectDataSet(gDFR)

 String groupMatchStr = lowerStr(group) + "*"

 Printf "str = %s\r", groupMatchStr

 //Sets the folder to GroupedLeans in order to get the desired waves

 SetDataFolder gDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList(groupMatchStr, ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Start Plotting

 SetDataFolder root:

 String wn = "PhaseSpace" + sessionNum + "_" + group //name of the graph window

 //Traces

 Display/K=1/N=$wn gDFR:$inY vs gDFR:$inX;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33 "//Z18Raw Data";DelayUpdate

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

End

Function DisplayLeanDirections() //DisplayLeanDirections

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 71

 DFREF slDFR = GetSingleLeansDFR(folder)

 SetDataFolder slDFR

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 String xStr = "*_X" + sessionNum + "*"

 String yStr = "*_Y" + sessionNum + "*"

 //Create the wave names

 String XdirectionList, YdirectionList

 String fX, bX, fRX, fLX, bRX, bLX, rX, lX

 String fY, bY, fRY, fLY, bRY, bLY, rY, lY

 XdirectionList = waveList(xStr, ";", "DP:1")

 YdirectionList = waveList(yStr, ";", "DP:1")

 fX = StringFromList(0, XdirectionList)

 fY = StringFromList(0, YdirectionList)

 bX = StringFromList(1, XdirectionList)

 bY = StringFromList(1, YdirectionList)

 fRX = StringFromList(2, XdirectionList)

 fRY = StringFromList(2, YdirectionList)

 fLX = StringFromList(3, XdirectionList)

 fLY = StringFromList(3, YdirectionList)

 bRX= StringFromList(4, XdirectionList)

 bRY = StringFromList(4, YdirectionList)

 bLX = StringFromList(5, XdirectionList)

 bLY = StringFromList(5, YdirectionList)

 rX = StringFromList(6, XdirectionList)

 rY = StringFromList(6, YdirectionList)

 lX = StringFromList(7, XdirectionList)

 lY = StringFromList(7, YdirectionList)

 //Start Plotting

 SetDataFolder root:

 String wn = "LeanDirection_" + folder //name of the graph window

 //Traces

 Display/K=1/N=$wn slDFR:$fY vs slDFR:$fX;DelayUpdate;

 AppendToGraph/W=$wn slDFR:$bY vs slDFR:$bX;DelayUpdate

 AppendToGraph/W=$wn slDFR:$fRY vs slDFR:$fRX; DelayUpdate

 AppendToGraph/W=$wn slDFR:$fLY vs slDFR:$fLX; DelayUpdate

 AppendToGraph/W=$wn slDFR:$bRY vs slDFR:$bRX; DelayUpdate

 AppendToGraph/W=$wn slDFR:$bLY vs slDFR:$bLX; DelayUpdate

 AppendToGraph/W=$wn slDFR:$rY vs slDFR:$rX; DelayUpdate

 AppendToGraph/W=$wn slDFR:$lY vs slDFR:$lX; DelayUpdate

 ModifyGraph/W=$wn rgb($fY)=(0,0,0),rgb($bY)=(39168,39168,39168);DelayUpdate

 ModifyGraph/W=$wn rgb($fRY)=(65280,32768,58880);DelayUpdate

 ModifyGraph/W=$wn rgb($fLY)=(0,43520,65280),rgb($rY)=(0,26112,13056);DelayUpdate

 ModifyGraph/W=$wn rgb($lY)=(32768,65280,0),rgb($bLY)=(0,0,52224);DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 72

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 Legend/W=$wn/C/N=text0/J/D=1.5/A=LC/E "\\Z16\\s(#0) Forward\r\\s(#1) Back";DelayUpdate

 AppendText/W=$wn "\\Z16\\s(#6) Right\r\\s(#7) Left\r\\s(#2) Forward-Right";DelayUpdate

 AppendText/W=$wn "\\Z16\\s(#3) Forward-Left\r\\s(#4) Back-Right";DelayUpdate

 AppendText/W=$wn "\\Z16\\s(#5) Back-Left\r";DelayUpdate

End

Function DisplayQuietStance() //DisplayQuietStance

 //User chooses data folder to use

 String session = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(session)

 DFREF qsDFR = GetQuietStanceDFR(session)

 //Sets the folder to QuietStance in order to get the trials waves

 SetDataFolder qsDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList("qs*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Start Plotting

 SetDataFolder root:

 String wn = "QuietStance_" + session //name of the graph window

 //Traces

 Display/K=1/N=$wn qsDFR:$inY vs qsDFR:$inX;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=1;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5 "\\Z18Quiet Stance Data"

End

 73

Function DisplayLeansAndQS() //DisplayLeansAndQS

 //User chooses data folder to use

 String session = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(session)

 DFREF qsDFR = GetQuietStanceDFR(session)

 DFREF tDFR = GetThetasDFR(session)

 //Sets the folder to QuietStance in order to get the trials waves

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList("trial*", ";", "DP:1")

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 //Sets the folder to QuietStance in order to get the trials waves

 SetDataFolder qsDFR

 //From the folder selected the corresponding X and Y waves is used

 String QStrialList, qsX, qsY

 QStrialList = waveList("qs*", ";", "DP:1")

 qsX = StringFromList(0, QStrialList)

 qsY = StringFromList(1, QStrialList)

 //Start Plotting

 SetDataFolder root:

 String wn = "Leans_QuietStance_" + session //name of the graph window

 //Traces

 Display/K=1/N=$wn tDFR:$inY vs tDFR:$inX;DelayUpdate

 AppendToGraph/W=$wn qsDFR:$qsY vs qsDFR:$qsX;DelayUpdate

 ModifyGraph rgb($qsY)=(0,0,0);DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=0;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 TextBox/W=$wn/C/N=text0/A=LT/X=0.37/Y=0.33 "\\Z14Leans & Quiet Stance";DelayUpdate

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5 "\\Z16\\s(#0) Leans\r\\s(#1) Quiet Stance";DelayUpdate

End

 74

Function DisplayGroupedLeans() //DisplayGroupedLeans

 //User chooses data folder to use

 String session = SelectDataFolder() //note that the name of the folder is the session name

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(session)

 DFREF gDFR = GetGroupedLeansDFR(session)

 //Sets the folder to Thetas in order to get the trials waves

 SetDataFolder gDFR

 //From the folder selected the corresponding X and Y waves is used

 //okay to only have 3 groups becuase it is limited to only 3 groups in initThetas()

 String groupsList, x1,y1,x2,y2,x3,y3

 groupsList = waveList("group*", ";", "DP:1")

 x1 = StringFromList(0, groupsList)

 y1 = StringFromList(1, groupsList)

 x2 = StringFromList(2, groupsList)

 y2 = StringFromList(3, groupsList)

 x3 = StringFromList(4, groupsList)

 y3 = StringFromList(5, groupsList)

 //Start Plotting

 SetDataFolder root:

 String wn = "Grouped_Leans_" + session //name of the graph window

 Display/K=1/N=$wn gDFR:$y1 vs gDFR:$x1;DelayUpdate

 //Axes modification

 SetAxis/W=$wn left -0.08,0.08;DelayUpdate

 SetAxis/W=$wn bottom -0.08,0.08;DelayUpdate

 ModifyGraph axThick=1.5 //Axes thickness

 ModifyGraph/W=$wn standoff=0;DelayUpdate

 ModifyGraph/W=$wn zero=1;DelayUpdate

 ModifyGraph/W=$wn lblMargin(left)=10,lowTrip=0.01;DelayUpdate

 ModifyGraph/W=$wn fSize=16;DelayUpdate //font size of ticks

 ModifyGraph/W=$wn width=432,height=432//graph area is square at 6inx 6in

 //Labels

 Label/W=$wn left "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'y \\M\\]0 (ML Direction)";DelayUpdate

 Label/W=$wn bottom "\\Z24\\[0\\F'Symbol'q\\B\\F'Arial'x \\M\\]0 (AP Direction)";DelayUpdate

 TextBox/W=$wn/C/N=text0/D=1.5/A=LT/X=0.37/Y=0.33 "\\Z18Lean Sets"

 //If loop for appending the other optional groups traces

 if(strlen(x2) !=0 && strlen(x3) != 0)

 AppendToGraph/W=$wn gDFR:$y2 vs gDFR:$x2;DelayUpdate

 ModifyGraph/W=$wn rgb($y2)=(0,0,65535);DelayUpdate

 AppendToGraph/W=$wn gDFR:$y3 vs gDFR:$x3;DelayUpdate

 ModifyGraph/W=$wn rgb($y3)=(0,0,0);DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) Group 1\r"

 AppendText/W=$wn "\\s(#1) Group 2\r\\s(#2) Group 3";DelayUpdate

 Legend/W=$wn/C/N=text1/J/A=RT/X=30.99/Y=35.03

 elseif(strlen(x2) !=0)

 AppendToGraph/W=$wn gDFR:$y2 vs gDFR:$x2;DelayUpdate

 ModifyGraph/W=$wn rgb($y2)=(0,0,65535);DelayUpdate

 Legend/W=$wn/C/N=text1/J/D=1.5/A=MC "\\Z16\\s(#0) Group 1\r\\s(#1) Group 2";

 Legend/W=$wn/C/N=text1/J/A=RT/X=-3.47/Y=0.33

 endif

End

 75

//

//

// Main Fit Functions

// (in order seen in menu)

//

//

Function EllipseFit(Xwave, Ywave, fitElliX, fitElliY, trend, outOfBounds) //EllipseFit

 Wave Xwave, Ywave //Inputs

 Wave fitElliX, fitElliY, trend, outOfBounds //Output

 Variable phi, x_max, x_min, y_max, y_min

 printf "Function: ellipseFit\r"

 //Finding the linear trend line of all the data

 Make/O/D/N=2 Coef

 MakeLinearTrend(Xwave, Ywave, trend, Coef)

 //Determine the value of phi, the angle of the trendline wrt the xaxis

 phi = DetermineAngle(trend, Coef)

 //Looking for the max and min x and y values of all the data

 x_max = WaveMax(Xwave)

 x_min = WaveMin(Xwave)

 y_max = WaveMax(Ywave)

 y_min = WaveMin(Ywave)

 //Finding the midpoint of the Ellipse

 variable midX, midY

 midX = (x_max + x_min)/2

 midY = (y_max + y_min)/2

 //Defining the semi-axis values. We are creating a horizontal ellipse, thus the a = major axis

 variable a, b

 a = x_max - midX

 b = y_max - midY

 //Creating the pnts for the ellipse

 MakeEllipse2(midX, midY, a,b, phi, fitElliX, fitElliY)

 //Finding the eccentricity, perimenter and area of an ellipse

 Variable elliArea, perimeter, eccen

 eccen = EllipseEccentricity(a,b)

 perimeter = EllipsePerimeter(a,b)

 elliArea = CalcElliArea(a, b)

 //Check for how many points lay outside of th ellipse

 variable length = numpnts(Ywave)

 variable pntsOut, nPnts, percent

 nPnts = numPnts(outOfBounds)

 pntsOut = 0

 pntsOut = PntCheck(Xwave, Ywave, midX, midY, a, b, phi, outOfBounds)

 printf "# pts Outside = %d\r", pntsOut

 percent = (pntsOut/length)*100

 printf "Percentage of pts Outside = %.5f%\r", percent

 76

 //Get the string path and Fill in the parameters into the given global string

 String currentDF = GetDataFolder(1)

 string temp = stringFromList(1, currentDF, ":")

 String strName = "root:" + temp + ":Models:ebParam";

 print strName

 FillParamStr(strName, elliArea, perimeter, percent, a, b, eccen)

 //Resizes the outOfBounds matrix such that all values are pts that are outside of the ellipse

 DeletePoints/M=0 pntsOut, (nPnts-1), outOfBounds

 //Kill excessive waves

 KillWaves Coef

End

//This is the main function that contains all of the sub-routines necessary to create an ellipse using a

//single maximum or minimum pt in the x or y-axis

Function OnePtEllipse(Xwave, Ywave, trend, fitX, fitY, outsidePts) //OnePtEllipse

 Wave Xwave, Ywave //Inputs

 Wave trend, fitX, fitY, outsidePts //Outputs

 printf "Function: OnePtEllipse\r"

 //Finding the linear trend line of all the data

 Make/O/D/N=2 Coef

 MakeLinearTrend(Xwave, Ywave, trend, Coef)

 //Determine the value of phi, the angle of the trendline wrt the xaxis

 variable Phi

 phi = DetermineAngle(trend, Coef)

 //Finding all of the mins and maxes of data

 Make/O/D/N=(4,2) orig4Corners

 FindingFourCorners(Xwave, Ywave, orig4Corners)

 //Row names: [0] xmin; [1]xmax; [2]ymin; [3]ymax

 //Column names: [0] x values [1] y values

 //Finding the Center point of all the data: Pt(h,k)

 variable h, k

 Make/O/D/N=2 centerWave

 //Function that finds the midpoint between the mins and maxes to be the center pt of the data

 FindMidPoints(orig4Corners, centerWave)

 h = centerWave[0]

 k = centerWave[1]

 //Projecting all of the points on the trend line, including the midpoint

 Make/O/D/N=(5,2) projPoints

 //note that the output wave has 5 points, the first point pair is the projected center,

 // the the x & y mins and maxes: [0] midpt [1]xmin [2] xmax [3] ymin [4] ymax

 KeyPointProjections(centerWave, orig4Corners, Coef, projPoints)

 //Set up and function to find the semiAxes

 Make/O/D/N=2 semiAxes

 FindAxesWith1Pt(orig4Corners, projPoints, h, k, phi, semiAxes)

 variable a,b

 77

 a = semiAxes[0]

 b = semiAxes[1]

 //Error check to make sure b is a real value

 if (b == numtype(2)) //if b == nan

 printf "Error: b = nan; Cannot use only a single point from the Ellipse\r Try using

TwoPtEllipse"

 else //if b is a real number

 //Function for drawing the ellipse

 MakeEllipse2(h, k, a, b, phi, fitX, fitY)

 //Finding the eccentricity, perimenter and area of an ellipse

 variable elliArea, perimeter, eccen

 eccen = EllipseEccentricity(a,b)

 perimeter = EllipsePerimeter(a,b)

 elliArea = CalcElliArea(a, b)

 //Check for how many points lay outside of th ellipse

 variable pntsOut, length2, percent

 length2 = DimSize(outsidePts, 0)

 pntsOut = PntCheck(Xwave, Ywave, h, k, a, b, phi, outsidePts)

 percent = pntsOut/(numPnts(Ywave))*100

 //Get the string path and Fill in the parameters into the given global string

 String currentDF = GetDataFolder(1)

 string temp = stringFromList(1, currentDF, ":")

 String strName = "root:" + temp + ":Models:e1Param";

 print strName

 FillParamStr(strName, elliArea, perimeter, percent, a, b, eccen)

 //Resizing outsidePts wave to only contain pnts that are outside of the Ellipse

 DeletePoints/M=0 pntsOut, length2, outsidePts

 endif

 //Kill waves

 Killwaves orig4Corners, projPoints, semiAxes, centerWave, Coef

End

Function TwoPtEllipse(Xwave, Ywave, trend, fitX, fitY, outPts) //TwoPtEllipse

 Wave Xwave, Ywave //Inputs

 Wave trend, fitX, fitY, outPts //Outputs

 printf "Function: TwoPtEllipse\r"

 //Finding the linear trend line of all the data

 Make/O/D/N=2 Coef

 MakeLinearTrend(Xwave, Ywave, trend, Coef)

 //Determine the value of phi, the angle of the trendline wrt the xaxis

 variable Phi

 phi = determineAngle(trend, Coef)

 //Finding all of the mins and maxes of data

 78

 Make/O/D/N=(4,2) orig4Corners

 FindingFourCorners(Xwave, Ywave, orig4Corners)

 //Row names: [0] xmin; [1]xmax; [2]ymin; [3]ymax

 //Finding the Center point of all the data: Pt(h,k)

 variable h, k

 Make/O/D/N=2 centerWave

 //Function for calculating the midPoints between the xMin & xMax and then between yMin &

yMax

 FindMidPoints(orig4Corners, centerWave)

 h = centerWave[0]

 k = centerWave[1]

 Make/O/D/N=2 semiAxes

 FindAxesWith2Pts(Xwave, Ywave, centerWave, orig4Corners, phi, semiAxes)

 variable a,b

 a = semiAxes[0]

 b = semiAxes[1]

 //Function for drawing the ellipse

 MakeEllipse2(h, k, a, b, phi, fitX, fitY)

 //Finding the eccentricity, perimenter and area of an ellipse

 variable elliArea, perimeter, eccen

 eccen = EllipseEccentricity(a,b)

 perimeter = EllipsePerimeter(a,b)

 elliArea = CalcElliArea(a, b)

 //Check for how many points lay outside of th ellipse

 variable pntsOut, length2, percent

 length2 = DimSize(outPts, 0)

 pntsOut = PntCheck(Xwave, Ywave, h, k, a, b, phi, outPts)

 percent = (pntsOut/(numPnts(Ywave)))*100

 //Get the string path and Fill in the parameters into the given global string

 String currentDF = GetDataFolder(1)

 string temp = stringFromList(1, currentDF, ":")

 String strName = "root:" + temp + ":Models:e2Param";

 print strName

 FillParamStr(strName, elliArea, perimeter, percent, a, b, eccen)

 //Resizing outsidePts wave to only contain pnts that are outside of the Ellipse

 DeletePoints/M=0 pntsOut, length2, outPts

 //Kill waves

 Killwaves orig4Corners, semiAxes, centerWave, Coef

End

 79

//This function creates a convex hull around the points provided in Xwave and Ywave and puts them into

//outXhull, and outYhull. Additionally, it calculates the area and perimeter of the hull and writes it into

//the global string chParam

Function FitConvexHull(Xwave, Ywave, outXHull, outYhull) //FitConvexHull

 Wave Xwave, Ywave //Inputs

 Wave outXhull, outYhull //Outputs

 Convexhull/C Xwave, Ywave

 Wave W_YHull, W_XHull //output waves of Convexhull

 Variable length, length2

 length = numPnts(W_YHull)

 length2 = numPnts(outYhull)

 DeletePoints/M=0 length, length2+1, outYhull

 DeletePoints/M=0 length, length2+1, outYhull

 Duplicate/O W_YHull, outYhull

 Duplicate/O W_XHull, outXHull

 Variable n = numPnts(outXhull)

 Variable i = 0

 Make/O/D/N=(n) CHLoc

 for (i=0; i<n; i+=1)

 Variable temp = outXHull[i]

 Variable V_value

 FindValue/V=(temp) Xwave

 CHLoc[i] = V_value

 endfor

 //Moving CHLoc wave into the model folder

 DFREF mDFR = GetModelsDFR

 MoveWave CHLoc, mDFR

 Variable area1, perim1

 area1 = AreaCH(outXhull, outYhull)

 perim1 = PerimeterCH(outXhull, outYHull)

 printf "CH Area = %f\r", area1

 printf "CH Perimeter = %f\r", perim1

 //Put parameters into the global parameter wave for ConvexHulls

 String currentDF = GetDataFolder(1)

 string temp1 = stringFromList(1, currentDF, ":")

 String strName = "root:" + temp1 + ":Models:chParam";

 print strName

 Variable percent = 0

 Variable a=-1, b=-1, e = -1

 FillParamStr(strName, area1, perim1, percent, a, b, e)

 Killwaves W_Yhull, W_XHull

End

 80

//Function recieves a string that contains the session folder. This will create a DFR to the SingleLeans

//folder

Function/DF GetGroupedLeansDFR(sessionFolder) //GetGroupedLeansDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder):Thetas:GroupedLeans

 DFREF gDFR = GetDataFolderDFR()

 return gDFR

End

//Function recieves a string that contains the session folder. This will create a DFR to the Models folder

Function/DF GetSessionDFR(sessionFolder) //GetSessionDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder)

 DFREF sDFR = GetDataFolderDFR()

 return sDFR

End

//Function recieves a string that contains the session folder. This will create a DFR to the session folder

Function/DF GetModelsDFR(sessionFolder) //GetModelsDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder):Models

 DFREF mDFR = GetDataFolderDFR()

 return mDFR

End

//Function recieves a str that contains the session folder. This will create a DFR to the SingleLeans folder

Function/DF GetSingleLeansDFR(sessionFolder) //GetSingleLeansDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder):Thetas:SingleLeans

 DFREF sDFR = GetDataFolderDFR()

 return sDFR

End

//Function recieves a string that contains the session folder. This will create a DFR to the Theta folder

Function/DF GetThetasDFR(sessionFolder) //GetThetasDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder):Thetas

 DFREF tDFR = GetDataFolderDFR()

 return tDFR

End

//Function recieves a string that contains the session folder. This will create a DFR to the Theta folder

Function/DF GetQuietStanceDFR(sessionFolder) //GetQuietStanceDFR

 String sessionFolder //Input

 SetDataFolder root:$(sessionFolder):Thetas:QuietStance

 DFREF qsDFR = GetDataFolderDFR()

 return qsDFR

End

 81

//This function is passed a data folder reference and sets the data folder.

//The string str containis inclusion/exclusion criteria for selecting the desired waves

//and putting them into a List.

Function/S GetWavesInFolder(dfr, str) //GetWavesInFolder

 DFREF dfr //Input

 String str //Input

 SetDataFolder dfr

 String objList = WaveList(str, ";", "")

 return objList

End

//This function is based on the 2004 critical curve method created by Stirling, Zakynthiaki et al.

//This function recieves all data points (theta values) and creates a fit around those points using the method

//they created and is within the FcritCurve() function. Then the points are resorted and given back to the

//display function that call it

Function GreekMethod(allX, allY, outX, outY) //GreekMethod

 Wave allX, allY //Inputs

 Wave outX, outY //Outputs

 variable leng, doubleLeng

 leng = numPnts(allX)

 doubleLeng = 2*leng

 Make/O/D/N=(4,2) fourCorners

 //fourCorners is in the format of: col[0] - x values; col[1] - y values

 // row[0] - xMin; [1] - xMax; [2] - yMin; [3] - yMax;

 FindingFourCorners(allX, allY, fourCorners)

 Make/O/D/N=(doubleLeng) critCurveX, critCurveY

 Variable error

 //Creates all of the critical curve y points.

 FcritCurve(allX, allY, critCurveX, critCurveY, error)

 printf "error top= %d\r", error

 //Sorts out the NaN value pairs and orders the final wave set in increasing order

 SortFcritCurve(critCurveX, critCurveY, outX, outY)

 //Other Calculations and Function calls

 Variable perim, space

 perim = PerimeterCH(outX, outY)

 printf "Perimeter = %.5f\r", perim

 space = AreaCH(outX, outY)

 printf "Area = %.5f\r", space

 //Get the string path and Fill in the parameters into the given global string

 String currentDF = GetDataFolder(1)

 string temp = stringFromList(1, currentDF, ":")

 String strName = "root:" + temp + ":Models:grParam";

 print strName

 Variable a=-1, b=-1, e=-1, percent = -1

 FillParamStr(strName, space, perim, percent, a, b, e)

 //KillWaves critCurveX, critCurveY, fourCorners

End

 82

//This function creates an information density plot (surface plot in igor). You define the size of your NxN

//matrix by setting the variable "N". The data that is inputted will first be shifted in the x and y coordinates

//to ensure all points are contained in the 1st quadrant. Then each point pair will be used to determine it's

//xbox and ybox place and its linear BoxLocation. The box each point is put in "snaps" to left and bottom

//edges of the box to be counted. Then in the subroutine "counting" the number of points in each box in the

//NxN matrix is calculated and an NxN is returned with all of those values.

Function BoxCounting(inX, inY, N, output, logOutput) //BoxCounting

 Wave inX, inY //Inputs

 // number of boxes in the rows & columns to make an NxN matrix

 Variable N //Inputs

 Wave output, logOutput //Ouput

 //Duplicates the input data into a local instance of the data, so the actual waves passed into the

 // function remain unaltered during the shifting process

 Duplicate/O inX, xValues

 Duplicate/O inY, yValues

 //Shifting Set up

 variable xmin, ymin, xmax, ymax

 xmin = wavemin(xValues)

 ymin = wavemin(yValues)

 // This shifts the x and y values by their minimum value to put all points into Quadrant I

 // of a graph. Now all x and yValues are non-negative and allows for better flexibility for

 // the program to accept any kind of data set

 xValues = xValues -xmin

 yValues = yValues - ymin

 xmax = waveMax(xValues)

 ymax = wavemax(yValues)

 printf "xmin: %f\t xmax: %f\r", xmin, xmax

 printf "ymin: %f\t ymax: %f\r", ymin, ymax

 Variable yrange = ymax - ymin, xrange = xmax - xmin

 printf "xrange = %f\t yrange: %f\r", xrange, yrange

 //Scaled shift values in the x and y direction

 variable xShift, yShift

 xShift = (xmin*N)/xmax

 yShift = (ymin*N)/ymax

 Printf "xshift: %f\t yshift: %f\r", xshift, yshift

 Variable boxCount, boxSize //total number of boxes in all space

 boxCount = N^2

 boxSize = 1/N //height and width of boxes

 //Setup for determining which box each point belongs in.

 Variable length = numpnts(xValues) //number of variables in the xn, yn waves

 Make/O/N =(length) xplace, yplace, boxLocation

 Variable i =0

 //Calculates which box the x-coordinate belongs in

 for (i=0; i<length; i+=1)

 xplace[i] = floor(xValues[i]*(N/xmax))

 if (xplace[i] == N)

 xplace[i] = N-1

 83

 endif

 endfor

 //Calculates which box the y-coordinate belongs in

 for (i=0; i<length; i+=1)

 yplace[i] = floor(yValues[i]*(N/ymax))

 if (yplace[i] == N)

 yplace[i] = N-1

 endif

 endfor

 //The known xbox and ybox places can be used to calculate the linear and absolute boxLocation in

 // the NxN matrix

 for (i=0; i<length; i+=1)

 boxLocation[i] = N*yplace[i] + xplace[i]

 endfor

 Make/O/N=(N) Bx, By

 Bx = p+xShift

 By = p+yShift

 //this is the density of points in each box, in a linear vector of boxes (not NxN)

 Make/O/N=(boxCount) linDensity

 Counting(boxLocation, linDensity)

 //Redimensioning linear Density to a NxN matrix

 Duplicate/O linDensity, Density

 Redimension/N=(N,N) Density

 //Setting output wave equal to density for final output of the function

 output = Density

 logOutput = log(Density)

 //Killing all the waves that are unnecssary to see

 KillWaves Bx, By, xplace, yplace, boxLocation, xvalues, yvalues, linDensity, Density

End

Function HistTest() //HistTest

 SetDataFolder root:

 //User chooses data folder to use

 String folder

 folder = SelectDataFolder() //note that the name of the folder is the session name

 //Splitting the string to extract the trial number

 String name, sessionNum

 String regExpr = "([[:alpha:]]+)([[:digit:]]+)"

 SplitString/E=regExpr folder, name, sessionNum

 //Setting up all of the data folder references we will need for creating the display

 DFREF sessionDFR = GetSessionDFR(folder)

 DFREF tDFR = GetThetasDFR(folder)

 DFREF qDFR = GetQuietStanceDFR(folder)

 SetDataFolder tDFR

 //From the folder selected the corresponding X and Y waves is used

 String XYtrialList, inX, inY

 XYtrialList = waveList("trial*", ";", "DP:1")

 84

 inX = StringFromList(0, XYtrialList)

 inY = StringFromList(1, XYtrialList)

 Variable ymax, ymin, xmax, xmin, yrange, xrange

 ymax = WaveMax($inY); ymin = WaveMin($inY); yrange = ymax - ymin;

 xmax = WaveMax($inX); xmin = WaveMin($inX); xrange = xmax - xmin;

 printf "ymax = %.5f\t ymin = %.5f\t range: %.5f\r", ymax, ymin, yrange

 printf "xmax = %.5f\t xmin = %.5f\t range: %.5f\r", xmax, xmin, xrange

 SetDataFolder qDFR

 //From the folder selected the corresponding X and Y waves is used

 String QStrialList, inXq, inYq

 QStrialList = waveList("qs*", ";", "DP:1")

 print QStrialList

 inXq = StringFromList(0, QStrialList)

 inYq = StringFromList(1, QStrialList)

 Variable qymax,qymin, qxmax, qxmin, qxrange, qyrange

 qymax = WaveMax($inYq); qymin = WaveMin($inYq); qyrange = qymax - qymin;

 qxmax = WaveMax($inXq); qxmin = WaveMin($inXq); qxrange = qxmax - qxmin;

 printf "qymax = %.5f\t qymin = %.5f\t range: %.5f\r", qymax, qymin, qyrange

 printf "qxmax = %.5f\t qxmin = %.5f\t range: %.5f\r", qxmax, qxmin, qxrange

 //Making the historgram waves

 SetDataFolder root:

 Variable binNum = 50

 Variable yBinSize = yrange/binNum;

 Variable yBinSizeQ = yrange/(2*binNum);

 Make/O/D/N=(binNum) histResultY, histResultQ

 Histogram/B={ymin, yBinSize, binNum} tDFR:$inY, histResultY

 Histogram/B={ymin, yBinSizeQ, 2*binNum} qDFR:$inYq, histResultQ

 histResultQ = -histResultQ

 //Plotting the histograms

 String wn1 = "yPnts"+folder

 Display/N=$wn1/K=1 histResultY

 AppendToGraph/W=$wn1 histResultQ

 ModifyGraph/W=$wn1 mode=5,rgb(histResultQ)=(0,0,0)

 ModifyGraph/W=$wn1 mode=5

 SetAxis bottom -0.03,0.03

 //Making the historgram waves

 SetDataFolder root:

 Variable xBinSize = xrange/binNum

 Variable xBinSizeQ = xrange/(2*binNum)

 Make/O/D/N=(binNum) histResultX, histResultQx

 Histogram/B={ymin, yBinSize, binNum} tDFR:$inY, histResultX

 Histogram/B={ymin, yBinSizeQ, 2*binNum} qDFR:$inYq, histResultQx

 histResultQx = -histResultQx

 //Plotting the histograms

 String wn2 = "xPnts"+folder

 Display/N=$wn2/K=1 histResultX

 AppendToGraph/W=$wn2 histResultQx

 ModifyGraph/W=$wn2 mode=5,rgb(histResultQx)=(0,0,0)

 ModifyGraph/W=$wn2 mode=5

 SetAxis bottom -0.03,0.03

 85

 //Distances from center

 Variable leng1 = numPnts(tDFR:$inX)

 Variable leng2 = numPnts(qDFR:$inXq)

 Make/O/D/N=(leng1) dist

 Make/O/D/N=(leng2) distq

 Print GetDataFolder(1)

 DistanceFromPoint(0, 0, tDFR:$inX, tDFR:$inY, root:dist)

 DistanceFromPoint(0, 0, qDFR:$inXq, qDFR:$inYq, root:distq)

 Variable distMax, distMin, distqMax, distqMin, distRange, distqRange

 distMax = WaveMax(dist); distMin = WaveMin(dist); distRange = distMax - distMin;

 distqMax = WaveMax(distq); distqMin = WaveMin(distq); distqRange = distqMax - distqMin;

 printf "distMax = %.5f\t distMin = %.5f\t range: %.5f\r", distMax, distMin, distRange

 printf "distqMax = %.5f\t distqMin = %.5f\t range: %.5f\r", distqMax, distqMin, distqRange

 //Making the historgram waves

 SetDataFolder root:

 Variable distBinSize = distRange/binNum

 Variable distQBinSize = distRange/100

 Make/O/D/N=(binNum) histDist, histDistQ

 Histogram/B={distMin, distBinSize, binNum} dist, histDist

 Histogram/B={distMin, distQBinSize, binNum} distq, histDistQ

 histDistQ = -histDistQ

 CurveFit/Q/M=2/W=0 LogNormal, histDistQ/D

 CurveFit/Q/M=2/W=0 LogNormal, histDist/D

 Wave fit_histDist, fit_histDistQ

 //Plotting the histograms

 String wn3 = "distances" +folder

 //Traces

 Display/N=$wn3/K=1 histDist

 SetAxis/W=$wn3 bottom 0,0.04

 ModifyGraph/W=$wn3 mode=5

 AppendToGraph/W=$wn3 histDistQ

 AppendToGraph/W=$wn3 fit_histDistQ

 AppendToGraph/W=$wn3 fit_histDist

 ModifyGraph/W=$wn3 mode=5,rgb(histDistQ)=(0,0,0)

 ModifyGraph/W=$wn3 hbFill(histDist)=6

 ModifyGraph/W=$wn3 hbFill(histDistQ)=7

 ModifyGraph/W=$wn3 mode(fit_histDist)=0, lsize(fit_histDistQ)=1.5

 ModifyGraph/W=$wn3 mode(fit_histDistQ)=0, rgb(fit_histDistQ)=(0,0,0), lsize(fit_histDist)=1.5

 //Axes

 SetAxis/W=$wn3 left -25000,15000

 ModifyGraph/W=$wn3 nticks(left)=7,lblMargin(left)=30,standoff=0;DelayUpdate

 ModifyGraph fSize=14

 ModifyGraph width=432,height=432

 //Labels

 TextBox/W=$wn3/C/N=text0/A=MT/E "\\Z18Distribution of Distance from Center"

 Label/W=$wn3 left "\\Z16Number of Points";DelayUpdate

 Label/W=$wn3 bottom "\\Z16Distance from Center ";DelayUpdate

 Legend/W=$wn3/C/N=text1/J/A=MT/E "\\s(histDist) Lean Data\r"

 AppendText/W=$wn3 "\\s(fit_histDist) LogNormal Fit\r\\s(histDistQ) Quiet Stance Data\r"

 AppendText/W=$wn3 "\\s(fit_histDistQ) LogNormal Fit"

 Legend/W=$wn3/C/N=text1/J/A=RT/X=-1.36/Y=-1.16/E=0

End

 86

//

//

// Sub-routine Functions

// (in alphabetical order)

//

//

//Calculates the area of the Convex hull. This is done by finding the midpoint of all the data and defining

// it as the center point. From this center point triangles of neighboring points are created and area of

//each triangle is calculated. The sum of all the triangles is the final area of the Convex hull.

Function AreaCH(Xpts, Ypts) //AreaCH

 Wave Xpts, Ypts //Inputs

 Variable answer //Output

 WaveStats/W/Q Xpts

 Wave M_WaveStats //output wave for WaveStats

 Variable xMin, Xmax, Xminmatch, Xmaxmatch, xMinLoc, xMaxLoc

 xMin = M_WaveStats[10]

 xMinLoc = M_WaveStats[9]

 xMax = M_WaveStats[12]

 xMaxLoc = M_WaveStats[11]

 xMinMatch = Ypts[xMinLoc]

 xMaxMatch = Ypts[xMaxLoc]

 Variable midX, midY

 midX = (xMin + xMax)/2

 midY = (xMinMatch + xMaxMatch)/2

 Variable length,i

 length = numPnts(Xpts)

 //Finding the distance between the pts and the midpt = (midX, midY)

 //Note that the last points of X and Y are the same as the first points

 Make/O/N=(length) d2Mid

 for(i=0; i<length; i+=1)

 d2Mid[i] = sqrt((midX - Xpts[i])^2 + (midY - Ypts[i])^2)

 endfor

 //Finding the distance between each pt pairs in Xpts & Ypts to act as base length for area of

 // triangle equation

 Make/O/N=(length) bases

 for(i=0; i<length -1; i+=1)

 bases[i] = sqrt((Xpts[i+1]-Xpts[i])^2 + (Ypts[i+1]-Ypts[i])^2)

 endfor

 //Finding the areas of each triangle slice of the polygon, using Heron's Formula

 //Heron's Formula: s = 1/2 perimeter; A = sqrt(s(s-side1)(s-side2)(s-side3))

 Make/O/N=(length) triAreas

 variable s, finalS

 for(i = 0; i < (length-1); i+=1)

 s = (d2Mid[i] + d2Mid[i+1] + bases[i])/2

 triAreas[i] = sqrt(s*(s-d2Mid[i])*(s-d2Mid[i+1])*(s-bases[i]))

 endfor

 87

 answer = sum(triAreas)

 killWaves d2mid, triAreas, bases, M_wavestats

 return answer

End

//Calculate the Area of an Ellipse: Given the semi-axes length the area of an ellipse can be found using

// the equation: A = Pi*a*b

Function CalcElliArea(a, b) //CalcElliArea

 Variable a, b //Inputs

 Variable answer //Output

 answer = PI*a*b

 return answer

End

//Double checking that all maximum angles have the correct sign

Function CheckMaximums(inWave) //CheckMaximums

 Wave inWave //Input

 Variable phi_f, phi_b, phi_r, phi_l

 phi_f = inWave[1][0] //xmax - x value

 phi_r = inWave[2][1] //ymin - y value

 phi_b = inWave[0][0] //xmin - x value

 phi_l = inWave[3][1] //ymax - y value

 if(phi_f + phi_b <0)

 printf "Error: phi_b > phi_f\r Check data orientation\r"

 return 1

 elseif (phi_f + phi_b == 0)

 printf "Warning: phi_b = phi_f\r"

 return 0

 else

 return 0

 endif

End

//This function takes the inputted string, which contain a list of waves, and concatenate the waves in

// the list into a new output Wave. The original waves in the given lists are not killed.

Function ConcatWaves(list, outWave) //ConcatWaves

 String list //Inputs

 Wave outWave //Outputs

 Concatenate/O/NP list, temp

 outWave = temp

 //Kills temporary waves after outputting them as outX1and outY1

 Killwaves temp

End

 88

//Function recieves an input wave (array) and will return a wave (output). Array is filled with intergers

// and maxWave(array) <= numpnts(output). The function will loop through the values in the array.

//Every value in the array is a value which corresponds to a location in //the output wave. Every instance

//of array will increase the count in output for that array value location in output.

Function Counting(array, output) //Counting

 Wave array //Input

 Wave output //Output

 variable i = 0

 for (i=0; i<(numpnts(array)); i+=1)

 output[array[i]] += 1

 endfor

end

//This function takes the 2points in the wave inTrend to calculate the angle between the trend line and

//x-axis inCoef is currently also passed in to see if there is a difference between atan and atan2

Function DetermineAngle(inTrend, inCoef) //DetermineAngle

 Wave inTrend, inCoef //Inputs

 Variable angleOut //Output

 Variable x, y

 y = inTrend[1][1] - inTrend[0][1]

 x = inTrend[1][0] - inTrend[0][0]

 angleOut = atan2(y,x)

 return angleOut

End

//This function take the input wave (w1) and finds how many positive x values and negative x values

//there are. # of positive Xs = j # of negative Xs = k output = {j,k}

Function DetermineWavesSize(w1, wout) //DetermineWavesSize

 wave w1 //Input

 wave wout //Output

 variable leng = numpnts(w1)

 variable i, j,k

 i = 0

 j= 0

 k =0

 for (i=0; i<leng; i+=1)

 if (w1[i] > 0 || w1 == 0)

 j += 1

 elseif(w1[i] < 0)

 k += 1

 endif

 endfor

 wout = {j,k}

End

 89

//Finds the distance between the points in the waves: xPts, yPts and the given (x,y) pt. The output

//is a wave with the same length as the inputted waves

Function DistanceFromPoint(x, y, xPts, yPts, outDist) //DistanceFromPoint

 Variable x, y //Inputs

 Wave xPts, yPts //Inputs

 Wave outDist //Output

 Variable leng = numPnts(xPts); Variable leng1 = numPnts(yPts)

 Variable i

 if(leng != leng1)

 Printf "DistanceFromPoint Error: Inputted waves are different sizes"

 else

 for(i = 0; i < leng; i += 1)

 outDist[i] = sqrt((x - xPts[i])^2 + (y - yPts[i])^2)

 endfor

 endif

End

//Calculates the eccentricity of an ellipse. The value of e increases as the ellipse is more "squashed"

//Eccentricity can be defined as how "round" the ellipse is.

Function EllipseEccentricity(a,b) //EllipseEccentricity

 Variable a,b //Inputs

 Variable e //eccentricity //Output

 Variable temp

 if (a > b)

 temp = b^2/a^2

 e = sqrt(1-temp)

 return e

 else //if b > a

 temp = a^2/b^2

 e = sqrt(1-temp)

 return e

 endif

End

//Return perimeter of ellipse based on Ramanujan's 1914 formula:

// P = pi*(a+b)*(1+(3*h^2)/(10+sqrt(4-3*h^2)))

//Equations found in Almkuist and Berndy 1988 paper in Amer. Math Monthly

Function EllipsePerimeter(a,b) //EllipsePerimeter

 Variable a, b //Inputs

 Variable perimeter //Output

 Variable h = (a-b)/(a+b)

 perimeter = PI*(a+b)*(1+((3*h^2)/(10+sqrt(4 - 3*h^2))))

 return perimeter

End

 90

//This function calculates all of the points on the critical curve using the 2004 Greek method.

//For each inX value there are two inY values.

Function FcritCurve(inX, inY, outX, outY, error1) //FcritCurve

 Wave inX, inY //Input

 Wave outX, outY //Output

 Variable error1 //Output

 Make/O/D/N=4 fourCorners

 FindingFourCorners(inX, inY, fourCorners)

 //fourCorners is in the format of: col[0] - x values; col[1] - y values

 // row[0] - xMin; [1] - xMax; [2] - yMin; [3] - yMax;

 //Checks if forward lean is greater than backward lean.

 //The model can't work if backward lean is greater than forward lean

 error1 = CheckMaximums(fourCorners)

 if(error1 == 0)

 Make/O/D/N=9 coefs

 MakeCoefs(fourCorners, coefs)

 // coefs = {A, B, C, D, E, G, H, I, J}

 // coefs = {0, 1, 2, 3, 4, 5, 6, 7, 8}

 //Using the quadratic equation we are solving for y of the following equation:

 // Ax^2 + Bx + Cy^2+ Dy + Gxy^2 + Hx^2y +Ix^2y^2 + Jxy - E =

 //Therefore y = [-Beta +/- sqrt(Beta^2 - 4*Alpha*Gamma)]/2*Alpha

 Variable beta1, alpha1, gamma1

 variable n, totN, count

 totN = numPnts(inX)

 count = 0

 variable leng = numpnts(inX)

 Make/O/D/N=(leng) tempY1, tempY2

 //For each thetaX value, the coefs are used to find the alpha, beta, and gamma, variables

 // used to solve the quadratic equation for thetaY

 for (n = 0; n< totN; n+=1)

 beta1 = coefs[6] * (inX[n])^2 + coefs[8] * inX[n] + coefs[3]

 alpha1 = coefs[7] * (inX[n])^2 + coefs[5] * inX[n] + coefs[2]

 gamma1 = coefs[0] * (inX[n])^2 + coefs[1] * inX[n] - coefs[4]

 tempY1[n] = (-beta1 + sqrt((beta1)^2 - 4*alpha1*gamma1))/(2*alpha1)

 tempY2[n] = (-beta1 - sqrt((beta1)^2 - 4*alpha1*gamma1))/(2*alpha1)

 //Counting how many values are NaN

 if (numtype(tempY1[n]) == 2)

 count +=1

 endif

 endfor

 if (count > 0)

 printf "Count = %d\r", count

 endif

 elseif (error1 ==1)

 91

 print "Error1 = 1\r"

 return -1

 endif

 //Since there are 2 tempYs the outY is the concatenation of the two. The same is done for

 //inX such that the same number of points and order is maintained

 Concatenate/O/NP {inX, inX}, tempX

 Concatenate/O/NP/KILL {tempY1, tempY2}, tempY

 outX = tempX

 outY = tempY

 Killwaves fourCorners, coefs, tempX, tempY

End

//This function is given a global string name and the parameter values that belong in the str key

Function FillParamStr(strName, theArea, circum, pout, semiA, semiB, eccen) //FillParamStr

 String strName //Input

 Variable theArea, circum, pout, semiA, semiB, eccen //Inputs

 SVAR gS = $strName //Global

 gS = ReplaceNumberByKey("area", gS, theArea, "=")

 gS = ReplaceNumberByKey("perim", gS, circum, "=")

 gS = ReplaceNumberByKey("pout", gS, pout, "=")

 gS = ReplaceNumberByKey("semiA", gS, semiA, "=")

 gS = ReplaceNumberByKey("semiB", gS, semiB, "=")

 gS = ReplaceNumberByKey("eccen", gS, eccen, "=")

 Print gS

End

//This function is used to determine the semiAxes of the One Pt Ellipse algorithm. Based on the projected

//points the major axis is determined by the distance between the midpoint and the projected mins and

//maxes onto the regression line. Once the major axis is defined, the equation in MinorAxisSelection()

//is used to calculate the minor axis length. These values are outputed to the calling function.

Function FindAxesWith1Pt(inOrig4Corners, inProjPoints, inH, inK, inPhi, outputWave) //AxesWith1Pt

 Wave inOrig4Corners, inProjPoints //Inputs

 variable inH, inK, inPhi //Inputs

 Wave outputWave //Output

 //Calling Functions to calculate major and minor axis

 variable a

 a = MajorAxisSelection(inProjPoints)

 variable b

 b = MinorAxisSelection(inOrig4Corners, inH, inK, a, inPhi)

 //Answer

 outputWave = {a, b}

End

 92

//This function is used to determine the semiAxes of the Two Pt Ellipse algorithm. The in points are

//the four corners (maximums) of the data with their respective x or y value. This function finds the

//pair of maximums from four corners to calcuate the semi axes. The pair that creates the semi axes that

//include the most data points is chosen and returned to the calling function in outAxes.

Function FindAxesWith2Pts(inX, inY ,inCenter, inPoints, angle, outAxes) //FindAxesWith2Pts

 Wave inX, inY, inCenter, inPoints //Inputs

 Variable angle //Inputs

 Wave outAxes //Output

 variable h, k

 h = inCenter[0]

 k = inCenter[1]

 Make/O/D/N = (6,2) Point1, Point2

 //These two arrays create the combination of all four inPoints paired with each of the other

inPoints

 Point1[0][0] = inPoints[0][0]

 Point1[0][1] = inPoints[0][1]

 Point1[1][0] = inPoints[0][0]

 Point1[1][1] = inPoints[0][1]

 Point1[2][0] = inPoints[0][0]

 Point1[2][1] = inPoints[0][1]

 Point1[3][0] = inPoints[1][0]

 Point1[3][1] = inPoints[1][1]

 Point1[4][0] = inPoints[1][0]

 Point1[4][1] = inPoints[1][1]

 Point1[5][0] = inPoints[2][0]

 Point1[5][1] = inPoints[2][1]

 Point2[0][0] = inPoints[1][0]

 Point2[0][1] = inPoints[1][1]

 Point2[1][0] = inPoints[2][0]

 Point2[1][1] = inPoints[2][1]

 Point2[2][0] = inPoints[3][0]

 Point2[2][1] = inPoints[3][1]

 Point2[3][0] = inPoints[2][0]

 Point2[3][1] = inPoints[2][1]

 Point2[4][0] = inPoints[3][0]

 Point2[4][1] = inPoints[3][1]

 Point2[5][0] = inPoints[3][0]

 Point2[5][1] = inPoints[3][1]

 Make/O/D/N=(6,2) possibleAxes

 FindPossisbleAxes(Point1, Point2, h, k, angle, possibleAxes)

 variable length2 = dimSize(possibleAxes,0)

 variable n,rawr

 rawr = 0

 Variable tempRawr, row

 tempRawr = 0

 for(n = 0; n< length2; n+=1)

 rawr = OptimizePntsOut(inX, inY, h, k, possibleAxes[n][0], possibleAxes[n][1], angle)

 if(n==0)

 93

 tempRawr = rawr

 endIf

 if(rawr < tempRawr)

 tempRawr = rawr

 row = n

 endif

 endfor

 outAxes[0] = possibleAxes[row][0]

 outAxes[1] = possibleAxes[row][1]

 //Kill waves

 killWaves Point1, Point2, possibleAxes

End

//This function finds the coordinate location for each of the x and y mins and maxes

Function FindingFourCorners(inX, inY, outWave) //FindingFourCorners

 Wave inX, inY //Inputs

 Wave outWave //Outputs

 //Setting up variable names

 variable xMax, xMaxLoc, xMin, xMinLoc

 variable yMax, yMaxLoc, yMin, yMinLoc

 variable xMax_yMatch, xMin_yMatch, yMax_xMatch, yMin_xMatch

 // Xwave Stats

 WaveStats/Q/C=1/W inX

 Wave M_WaveStats //output wave for WaveStats

 Wave W_IPIV //wave made by WaveStats, but is unused by us

 xMin = M_WaveStats[10]

 xMinLoc = M_WaveStats[9]

 xMax = M_WaveStats[12]

 xMaxLoc = M_WaveStats[11]

 //Finding the corresponding y values for the X min and max values

 xMin_yMatch = inY[xMinLoc]

 xMax_yMatch = inY[xMaxLoc]

 //Kill unnecessary waves

 KillWaves M_WaveStats, W_IPIV

 // Ywave Stats

 WaveStats/W/Q/C=1 inY

 Wave M_WaveStats //output wave for WaveStats

 Wave W_IPIV //wave made by WaveStats, but is unused by us

 yMin = M_WaveStats[10]

 yMinLoc = M_WaveStats[9]

 yMax = M_WaveStats[12]

 yMaxLoc = M_WaveStats[11]

 //Finding the corresponding X values for the Y min and max values

 yMin_xMatch = inX[yMinLoc]

 yMax_xMatch = inX[yMaxLoc]

 //Kill unnecessary waves

 KillWaves M_WaveStats, W_IPIV

 94

 //Put answers into the output wave: outWave

 // columns: [0] - x values; [1] - y values

 // rows: [0] - x Min; [1] - x Max; [2] - y Min [3] - y Max

 outWave[][0] = { xMin, xMax, yMin_xMatch, yMax_xMatch}

 outWave[][1] = { xMin_yMatch, xMax_yMatch, yMin, yMax}

End

//Solves the equation of an ellipse: (g/a)^2 + (h/b)^2 = 1, with center at (h,k) and angle wrt xaxis

//of phi where:

//lambda = (x-h)cos(phi) + (y-k)sin(phi)

//eta = (x-h)sin(phi) - (y-k)cos(phi)

Function FindLambdaAndEta(inWave, Xmid, Ymid, phi, outWave) //FindLambdaAndEta

 Wave inWave //Input

 variable Xmid, Ymid, phi //Inputs

 Wave outWave //Output

 variable eta, lambda

 lambda = (inWave[0] - Xmid)*cos(phi) + (inWave[1] - Ymid)*sin(phi)

 eta = (inWave[0] - Xmid)*sin(phi) - (inWave[1] - Ymid)*cos(phi)

 outWave = {eta, lambda}

End

//This function finds the midpoint between the mins and maxes to be center point of the data

// the inMatrix is a 4x2 matrix that contains the ponts of xmin, xmax, ymin, ymax points respectively

// with rows - xvals & columns - yvals

// output: outWave[0] = midX, outWave[1] = midY

Function FindMidPoints(inMatrix, outWave) //FindMidPoints

 Wave inMatrix //Inputs

 Wave outWave //Outputs

 Variable MidX, MidY

 MidX = (inMatrix[0][0] + inMatrix[1][0])/2

 MidY = (inMatrix [2][1] + inMatrix[3][1])/2

 outWave = {MidX, MidY}

End

//This function recieves two points, the midpoint of the data, and the angle of the regression line.

//Using these parameters the function calculates the semiaxes a and b, using the equations:

// a^2 = lambda1^2/[1-{(lambda2/lambda1)^2eta1^2-eta1^2 }/{(lambda2/lambda1)^2eta1^2-eta2^2}]

// b^2 = [(lambda2/lambda1)^2eta1^2 - eta2^2]/[(lambda2/lambda1)^2 - 1]

//Please refer to Victoria Smith's MS Thesis for all equations

Function FindPossisbleAxes(inPoint1, inPoint2, midX, midY, inPhi, outAxes) //FindPossisbleAxes

 Wave inPoint1, inPoint2 //Inputs

 Variable inPhi, midX, midY //Inputs

 Wave outAxes //Output

 Variable lambda1, eta1, lambda2, eta2

 variable i

 variable a,b

 variable j, length, numer, denom

 j = 0

 95

 length = Dimsize(outAxes,0)

 for(i=0; i<length; i+=1)

 lambda1 = (inPoint1[i][0] - midX)*cos(inPhi) + (inPoint1[i][1] - midY)*sin(inPhi)

 eta1 = (inPoint1[i][0] - midX)*sin(inPhi) - (inPoint1[i][1] - midY)*cos(inPhi)

 lambda2 = (inPoint2[i][0] - midX)*cos(inPhi) + (inPoint2[i][1] - midY)*sin(inPhi)

 eta2 = (inPoint2[i][0] - midX)*sin(inPhi) - (inPoint2[i][1] - midY)*cos(inPhi)

 numer = (lambda1^2)/(1-((eta1^2*((lambda2/lambda1)^2-1))))

 denom = ((lambda2/lambda1)^2)*eta1^2-eta2^2

 a = sqrt(numer/denom)

 b = sqrt(((lambda2/lambda1)^2*eta1^2 - eta2^2) / ((lambda2/lambda1)^2 - 1))

 if(numtype(a) ==0 && numtype(b) ==0)

 outAxes[j][0] = a

 outAxes[j][1] = b

 j+=1

 endif

 endfor

 DeletePoints/M=0 j,length, outAxes

End

//This function will project the center point [aka inCenter] and 4 corners (x&y mins and maxes)

//[aka in4Corners] onto the trend line with the slope and y-intercept given [aka inCoef] and put all

//of the projected coordinates into the wave matrix outPoints. Note that the output wave has 5 points,

//the first point pair is the projected center, the x & y mins and maxes. The points will be projected by

//solving linear eqs in matrix form: A*X = B ; X = A^-1*B, where we know values for the A & B matrices

Function KeyPointProjections(inCenter, in4Corners, inCoef, outPoints) //KeyPointProjections

 Wave inCenter, in4Corners, inCoef //Inputs

 Wave outPoints //Outputs

 //Creating local variables in order to make the equations easier to decifer

 variable slope, yIntercept

 slope = inCoef[0]

 yIntercept = inCoef[1]

 variable midX, midY

 midX = inCenter[0]

 midY = inCenter[1]

 variable xMin, xMax, yMin, yMax

 variable xMin_yMatch, xMax_yMatch, yMin_xMatch, yMax_xMatch

 xMin = in4Corners[0][0]

 xMin_yMatch = in4Corners[0][1]

 xMax = in4Corners[1][0]

 xMax_yMatch = in4Corners[1][1]

 yMin = in4Corners[2][1]

 yMin_xMatch = in4Corners[2][0]

 yMax = in4Corners[3][1]

 yMax_xMatch = in4Corners[3][0]

 // Naming convention for matrices are based on AX = B, X = A^-1B

 // A Matrix

 96

 Make/O/D/N=(2,2) AMatrix

 AMatrix[][0] = { -slope, (1/slope)} //note that Coef[0] = slope

 AMatrix[][1] = { 1, 1}

 //B Matrices

 Make/O/D/N=(2,1) BMidPt, BxMax, ByMax, BxMin, ByMin

 BMidPt = {yIntercept, (midY + midX*(1/slope))}

 BxMax = {yIntercept, (xMax_yMatch + xMax*(1/slope))}

 ByMax = {yIntercept, (yMax + yMax_xMatch*(1/slope))}

 BxMin = {yIntercept, (xMin_yMatch + xMin*(1/slope))}

 ByMin = {yIntercept, (yMin + yMin_xMatch*(1/slope))}

 Make/O/D/N=(2,1) X_MidPt, X_xMax, X_yMax, X_xMin, X_yMin

 //Answer matrix will be in the format of: [0] = x; [1] = y

 //Projection of Mid point onto trendline

 SolveLinearEq(AMatrix, BMidPt, X_MidPt)

 //Projection of XMin point onto trendline

 SolveLinearEq(AMatrix, BxMin, X_xMin)

 //Projection of XMax point onto trendline

 SolveLinearEq(AMatrix, BxMax, X_xMax)

 //Projection of YMin point onto trendline

 SolveLinearEq(AMatrix, ByMin, X_yMin)

 //Projection of YMax point onto trendline

 SolveLinearEq(AMatrix, ByMax, X_yMax)

 //Output wave contains the projected pts of the midpts, xmin, xmax, y min, and ymax onto the

 //trend line

 outPoints[][0] = {X_MidPt[0], X_xMin[0], X_xMax[0], X_yMin[0], X_yMax[0]}

 outPoints[][1] = {X_MidPt[1], X_xMin[1], X_xMax[1], X_yMin[1], X_yMax[1]}

 Killwaves BMidPt, BxMax, ByMax, BxMin, ByMin, AMatrix

 KillWaves X_MidPt, X_xMax, X_yMax, X_xMin, X_yMin

End

//This function takes in the wave containing the projected major points onto the trend line.

//The length of the majorAxis "a" is the greatest distance between the midpont and either the xmax or

//xmin coordinate. The output is return and thus the function should be set equal to something when called.

Function MajorAxisSelection(inWave) //MajorAxisSelection

 Wave inWave //Inputs

 Variable answer //Output

 //Pt1 - projMidPoint Pt2 - projXmin Pt3 - projXmax

 Variable x1, x2, x3, y1, y2, y3

 x1 = inWave[0][0]

 y1 = inWave[0][1]

 x2 = inWave[1][0]

 y2 = inWave[1][1]

 x3 = inWave[2][0]

 y3 = inWave[2][1]

 Variable dmax, dmin //Distances 3 & 2 are for xmax, xmin to midpt; respectively

 //could just find the distances using the x values

 dmax = sqrt((x3- x1)^2 + (y3 - y1)^2)

 97

 dmin = sqrt((x2- x1)^2 + (y2 - y1)^2)

 //Selection of largest "a" for building an ellipse

 if (dmax > dmin)

 answer = dmax

 return answer

 elseif (dmin > dmax)

 answer = dmin

 return answer

 elseif (dmin == dmax)

 answer = dmax

 return answer

 endif

End

Function MakeCoefs(fourCorners, coefs) //MakeCoefs

 Wave fourCorners //Input

 Wave coefs //Output

 Variable phi_f, phi_b, phi_r, phi_l

 //Maximum lean angles

 phi_f = fourCorners[1][0] //xmax - x value

 phi_r = fourCorners[2][1] //ymin - y value

 phi_b = fourCorners[0][0] //xmin - x value

 phi_l = fourCorners[3][1] // ymax - y value

 //Variables used to solve the f_crit curve

 Variable A,B,C,D,E,G,H,J, I

 A = -(phi_l*phi_r)

 B = (phi_l*phi_r) * (phi_f + phi_b)

 C = -(phi_f*phi_b)

 D = (phi_f*phi_b)* (phi_l + phi_r)

 E = phi_l*phi_r*phi_f*phi_b

 G = phi_b + phi_f

 H = phi_l + phi_r

 J = -(phi_l + phi_r)*(phi_b + phi_f)

 I = 0.3

 //Output:

 coefs = {A,B,C,D,E,G,H, I, J}

End

//Function that makes the points for graphing an ellipse. Uses A*R =A'

//ROTATION IN CCW

Function MakeEllipse2(midX, midY, a,b, phi, fitElliX, fitElliY) //MakeEllipse2

 Variable midX, midY, a, b, phi //Inputs

 Wave fitElliX, fitElliY //Outputs

 Variable length = numPnts(fitElliY)

 //Creating the pnts for the ellipse

 variable theta, k

 theta = 0.0

 98

 for(k=0; k<length; k+=1)

 fitElliX[k] = midX + a*cos(theta)*cos(phi) - b*sin(theta)*sin(phi)

 fitElliY[k] = midY + a*cos(theta)*sin(phi) + b*sin(theta)*cos(phi)

 theta += 2*Pi/(length-1)

 endfor

End

//This function takes the inXw (Xwave) and inYw (Ywave) and calculates the linear regression line of

//the data. The output of this function is trendOut matrix which contains 2 pts to create the trend line

//and a wave containing the coefs of the linear equation of y = mx +b. [0] = m (slope);

//[1] = b (y-intercept). In outTrend, the point in row[0] is the min point and row[1] is the max point

Function MakeLinearTrend(inXw, inYw, outTrend, outCoef) //MakeLinearTrend

 Wave inXw, inYw //Inputs

 Wave outTrend, outCoef //Outputs

 //Prep work for using Curvefit

 variable length = numpnts(inYw)

 Variable trendM, trendB // think y = mx + b

 Make/O/D/N=(length) fitting

 Make/O/D/N=2 tempCoef

 CurveFit/Q/NTHR=0 line kwCWave=tempCoef inYw /X= inXw /D= fitting

 wave W_sigma //ignore wave, it is killed at the end of the program

 //Prep work for putting a fitted line onto the graph, Column 0: X values, Column 1: Y values

 outTrend[0][1] = WaveMin(fitting)

 outTrend[1][1] = WaveMax(fitting)

 outTrend[0][0] = (outTrend[0][1] - tempCoef[0])/tempCoef[1]

 outTrend[1][0] = (outTrend[1][1] - tempCoef[0])/tempCoef[1]

 //Switching the position of the coefficients in the wave such that [0] - slope, [1]-y-intercept

 trendM = tempCoef[1]

 trendB = tempCoef[0]

 //printf "Slope = %.4f\r", trendM

 //printf "B = %.4f\r", trendB

 outCoef[0] = trendM

 outCoef[1] = trendB

 //Kill excess waves

 Killwaves fitting, tempCoef, W_sigma

End

 99

//This function calculates the minor axis of the ellipse based on a single point. That single point is chosen

// from the inMatrix [aka orig4Corners]. The output is returned and thus the function should be set equal

//to something when called.

Function MinorAxisSelection(inMatrix, MidX, MidY, majorAxis, angle) //MinorAxisSelection

 Wave inMatrix //Input

 Variable midX, midY, majorAxis, angle //Inputs

 variable answer //Output

 //Set up the possible points to be used to calculate minor axis length "b"

 Make/O/D/N=2 Ymin, Ymax

 //column[0] - xvals column[1] - yvals

 Ymin = {inMatrix[2][0] , inMatrix[2][1]}

 Ymax = {inMatrix[3][0] , inMatrix[3][1]}

 //From the equation of an ellipse: (lamdba/a)^2 + (eta/b)^2 = 1, with center at (h,k) and angle

 // wrt xaxis of phi

 //lambda = (x-h)cos(phi) + (y-k)sin(phi)

 //eta = (x-h)sin(phi) - (y-k)cos(phi)

 Make/O/D/N=2 temp1, temp2

 //Function

 FindLambdaAndEta(Ymin, MidX, MidY, angle, temp1)

 variable lambda1, eta1, b1//, b1a

 eta1 = temp1[0]

 lambda1 = temp1[1]

 b1= majorAxis*eta1*sqrt(-1/(lambda1^2-majorAxis^2))

 FindLambdaAndEta(Ymax, MidX, MidY, angle, temp2)

 variable lambda2, eta2, b2

 eta2 = temp2[0]

 lambda2 = temp2[1]

 b2 = majorAxis*eta2*sqrt(-1/(lambda2^2-majorAxis^2))

 if (numtype(b1)==2) //b1 is NaN

 if (numtype(b2) == 0) //b2 is num

 answer = b2

 endif

 else //b1 is a number

 if (numtype(b2) == 2) //b2 is NaN

 answer = b1

 else // b1 &b2 are numbers

 answer = max(b1,b2)

 endif

 endif

 //Killwaves before returning answer

 Killwaves Ymin, Ymax, temp1, temp2

 return answer

End

 100

//This function is checking for how many points lay outside of the ellipse using the Analytic Eq for Ellipses

//Eq : AA*X^2 + BB*X*Y + CC*Y^2 + DD*X + EE*Y + FF = a^2*b^2

//Note that normally the equation is set to 0 and that the coef FF absorbs the a^2b^2 term

Function OptimizePntsOut(Xwave, Ywave, h, k, a, b, phi) //OptimizePntsOut

 Wave Xwave, Ywave //Inputs

 Variable h, k, a, b, phi //Inputs

 Variable count //Output

 variable i, length

 length = numpnts(Xwave)

 count = 0

 Variable AA, BB, CC, DD, EE, FF

 AA = a^2*(sin(phi))^2 + b^2*(cos(phi))^2

 BB = 2*(b^2 - a^2)*sin(phi)*cos(phi)

 CC = a^2*(cos(phi))^2 + b^2*(sin(phi))^2

 DD = -2*AA*h - BB*k

 EE = -BB*h - 2*CC*k

 FF = AA*h^2 + BB*h*k + CC*k^2

 for (i = 0; i<length; i+=1)

 variable temp

 temp = AA*(Xwave[i])^2 + BB*Xwave[i]*Ywave[i] + CC*(Ywave[i])^2 +

DD*Xwave[i] + EE*Ywave[i] + FF

 if (temp > a^2*b^2)

 count +=1

 endif

 endfor

 return count

End

//Function finds the perimeter of the convex hull

Function PerimeterCH(Xpts, Ypts) //PerimeterCH

 Wave Xpts, Ypts //Inputs

 Variable answer //Output

 Variable i, length, wrappt

 variable d = 0

 answer = 0

 length = numPnts(Xpts)

 for(i = 0; i<length - 1; i +=1)

 d = sqrt((Xpts[i+1]-Xpts[i])^2 + (Ypts[i+1]-Ypts[i])^2)

 answer = answer +d

 endfor

 wrappt = sqrt((Xpts[0]-Xpts[length-1])^2 + (Ypts[0]-Ypts[length-1])^2)

 answer = answer + wrappt

 return answer

End

 101

//This function is checking for how many points lay outside of the ellipse using the Analytic Eq for Ellipses

//Eq : AA*X^2 + BB*X*Y + CC*Y^2 + DD*X + EE*Y + FF = a^2*b^2

//Note that normally the equation is set to 0 and that the coef FF absorbs the a^2b^2 term

Function PntCheck(Xwave, Ywave, h, k, a, b, phi, outsidePts) //PntCheck

 Wave Xwave, Ywave //Inputs

 Variable h, k, a, b, phi //Inputs

 Wave outsidePts //Output

 Variable count = 0

 variable i, length

 length = numpnts(Xwave)

 //Sets up variable's equation

 Variable AA, BB, CC, DD, EE, FF

 AA = a^2*(sin(phi))^2 + b^2*(cos(phi))^2

 BB = 2*(b^2 - a^2)*sin(phi)*cos(phi)

 CC = a^2*(cos(phi))^2 + b^2*(sin(phi))^2

 DD = -2*AA*h - BB*k

 EE = -BB*h - 2*CC*k

 FF = AA*h^2 + BB*h*k + CC*k^2

 //Loop is calculating if the point[i] is inside the ellipse or not. f point[i]>a^2*b^2 then the pt is

 // outside the ellipse and the point[i] is put into the wave to be returned

 for (i = 0; i<length; i+=1)

 variable temp

 temp = AA*(Xwave[i])^2 + BB*Xwave[i]*Ywave[i] + CC*(Ywave[i])^2 +

DD*Xwave[i] + EE*Ywave[i] + FF

 if (temp > a^2*b^2)

 outsidePts[count][0] = Xwave[i]

 outsidePts[count][1] = Ywave[i]

 outsidePts[count][2] = temp

 count +=1

 endif

 endfor

 //True output is the number of points that fall outside of the ellipse

 return count

End

//This function is given a list of waves (using WaveList) in a string. Each wave in the string has a different

//number of pnts in the wave and the total sum of pnts from all waves in the list are counted. The sum

//(var: count) is returned. Should be used like: Variable pntCount = PntsInWaveList(string list)

Function PntsInWaveList(listOfWaves) //PntsInWaveList

 String listOfWaves //Inputs

 //Local variable set-up

 variable i, numOfwaves

 variable count = 0

 String tempName

 //Calculation of Pnts in all Waves in the passed listOfWaves

 numOfwaves = ItemsInList(listOfWaves)

 for (i=0; i<numOfwaves; i+=1)

 102

 tempName = StringFromList(i, listOfWaves)

 count += numPnts($tempName)

 endfor

 return count //Ouput

End

// This functions separates the x values and their respective y coordinates by positive and negative values

// Once separated, the x and corresponding y coordinates are sorted in increasing order (pos x vals) and

// decreasing order (neg x vals). They are then strung back together into the original wave format

Function ReorderWaves(x, y, j, k) //ReorderWaves

 Wave x, y //Output

 Variable j,k //input?

 printf "j = %d\t k= %d\r", j, k

 Make/O/D/N=(j) temp1x, temp1y

 Make/O/D/N=(k) temp2x, temp2y

 Variable i, leng

 i = 0

 j= 0

 k=0

 leng = numpnts(x)

 for (i=0; i<leng; i+=1)

 if(x[i] > 0 || x == 0)

 temp1x[j] = x[i]

 temp1y[j] = y[i]

 j+=1

 elseif(x[i] < 0)

 temp2x[k] = x[i]

 temp2y[k] = y[i]

 k+=1

 endif

 endfor

 Sort temp1y, temp1y, temp1x

 Sort/R temp2y, temp2y, temp2x

 Concatenate/O/NP/KILL {temp1x, temp2x}, rawr

 Concatenate/O/NP/KILL {temp1y, temp2y}, duh

 x = rawr

 y = duh

 Killwaves rawr, duh

End

 103

//Takes in 3 matrices A, B, and X. Where A and B are known and solving for X --> X = A^-1*B

Function SolveLinearEq(A, B, X) //SolveLinearEq

 Wave A, B //Inputs

 Wave X //Output

 //Built In Igor Pro Matrix solver

 MatrixLinearSolve/M=1 A B

 Wave M_B, M_A //waves for Matrix Linear Solve to put answers into

 Duplicate/O/D M_B, X

 //Kills waves that are not needed outside of this function

 Killwaves M_A, M_B

End

//Takes the inputted waves and finds the number of positive and neg. x values. It then sorts the waves

//by increasing pos. x values and then decreasing order of neg. x values.

Function sortFcritCurve(inX, inY, outX, outY) //SortFcritCurve

 Wave inX, inY //Input

 Wave outX, outY //Output

 Duplicate/O inX, inX2

 Make/O/D/N=2 output1

 //Finds how many positive x values and negative x values there are.

 determineWavesSize(inX, output1)

 //output = {pos. Xs, neg. Xs}

 Variable size1, size2

 size1 = output1[0]

 size2 = output1[1]

 Killwaves output1

 // Reorders the waves

 reorderWaves(inX, inY, size1, size2)

 outX = inX

 outY = inY

 Killwaves inX2

End

 104

APPENDIX B

MATLAB CODE: DATA PARSING

 105

 SCRIPT FILE

%%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Created on: Mar 08 2016

% Updated on: Mar 16 2016

% ---

% Script Description:

% Function for importing and exporting data in a specific file format of

% Vicon data for forceplate data and marker set. This function will import

% two separate files of data with the endings 1)_FP and 2)_Markers. Each

% individual file only contains one type of data.

%

% The force plate import function (ImportTxt_FP.m) should be able to import

% any force plate data in txt form. The data is collected at 1000 Hz and is

% unfiltered.

% The marker import file(ImportTxt_Markers.m) will only correctly import the

% marker position for the LowerLimb_HBMN2 marker set only. The data is

% collected at 100 Hz.

%

% Files to be imported must be in the DataToBeProcessed folder and in the

% respective FP and Markers folder.

% FP folder ending: _FP.txt

% Marker folder ending: _Markers.txt

%% --

%This number reflects how many files you want to import and export from a

%given folder.

numFiles = 1;

%This folder must be with in the Matlab directory i.e.

%/Users/vasmith/Documents/MATLAB/~ the rest of the folder information can

%be put at the end and into the variable pathname.

% Creates the prompt box and then assigns the inputted string to the

% variables: date, ID. Asking for date of the data collection and the

% subject's ID number.

prompt = {'Date data collected on:','Patient ID'};

title = 'Data Information';

lines = 1;

def = {'mm/dd/yy', ''}; %default text in edit box

answer = inputdlg(prompt, title, lines, def);

assignin('base', 'date', answer{1});

assignin('base', 'ID', answer{2});

for i = 1:numFiles

 106

 %---------------------- Importing All Data ----------------------------

%The settings below are specific for the Vicon files that have

%forceplate data

startRow = 6;

endRow = inf;

%Double check that below is the correct pathway to the desired data file;

%change as needed

%Office computer:

'/Users/vasmith/Documents/MATLAB/Lean_0316/DataToBeProcessed/FP/'

pathname_FP =

'/Users/vasmith/Documents/MATLAB/Lean_0316/DataToBeProcessed/FP/';

 pathname_M =

'/Users/vasmith/Documents/MATLAB/Lean_0316/DataToBeProcessed/Markers/';

 %Determines the final file name

 if i<10

 text = 'lean0'; %Change as necessary

 count = num2str(i);

 ending1 = '_FP.txt';

 ending2 = '_Markers.txt';

 %file1 = strcat(text,count, ending1)

 %file2 = strcat(text,count, ending2)

 file1 = strcat(text,ending1)

 file2 = strcat(text,ending2)

 filename1 = strcat(pathname_FP, file1);

 filename2 = strcat(pathname_M, file2);

 else

 text = 'lean'; %Change as necessary

 count = num2str(i);

 ending1 = '_FP.txt';

 ending2 = '_Markers.txt';

 file1 = strcat(text,count, ending1)

 file2 = strcat(text,count, ending2)

 %file1 = strcat(text,ending1)

 %file2 = strcat(text,ending2)

 filename1 = strcat(pathname_FP, file1);

 filename2 = strcat(pathname_M, file2);

 end

 %Function that imports the FP data, ImportTxt_FP, is specifically

 %designed to create the following variable vectors: Frame_FP,

 %SubFrame_FP - time steps; Fx,Fy,Fz - Forces given by the left force

 %plate; Fx1,Fy1,Fz1 - forces given by the right force plate

 [Frame_FP,SubFrame_FP,Fx,Fy,Fz,Fx1,Fy1,Fz1] = ImportTxt_FP(filename1,

 107

startRow, endRow);

 %Function that imports the marker data, ImportTxt_Markers is

 %specifically designed to create variable matracies for each of the

 %markers and containing the x, y,z coordinates for that marker. It also

 %creates Frame_M and SubFrame_M - which are time step vectors

 [Frame_M, SubFrame_M, LASIS, RASIS, LPSIS, RPSIS, SACR, T10, STRN,

XYPH, NAVE, LGTRO, FLTHI, LLEK, LATI, LLM, LHEE, LTOE, LMT5, RGTRO,

FRTHI, RLEK, RATI, RLM, RHEE, RTOE, RMT5] = ImportTxt_Markers(filename2,

startRow, endRow);

 %--------------------- Prep for file Processing -----------------------

 % Creates the prompt box and then assigns the inputted string to the

 % variable: fileString

 prompt = {'Enter File Name:', 'Abbreviation:'};

 title = file1;

 %title = 'Filename'; %for if not running for loop

 lines = 1; %edit lines

 def = {'enter name (no spaces)', ''}; %default text in edit box

 answer = inputdlg(prompt, title, lines, def);

 assignin('base', 'fileString', answer{1});

 assignin('base', 'abbr', answer{2});

%Creates two file names with user entry from fileString

 type1 = '_thetas.txt';

 type2 = '_markers.txt';

 %Office computer: '/Users/vasmith/Documents/MATLAB/Lean_0316/Processed'

 %Laptop:'C:\Users\Victoria\Documents\MATLAB\postProcessing_v1\LeanExper

iments\Data\Processed\'

 %Thetas calculated from FP output file

 newPath = '/Users/vasmith/Documents/MATLAB/Lean_0316/Processed/';

 newFile1 = strcat(newPath, fileString, type1);

 name1 = strcat(fileString, type1);

 %Marker output file

 newFile2 = strcat(newPath, fileString, type2);

 name2 = strcat(fileString, type2);

%% ------------------------ Force Plate Processing ------------------------

 %Rotates the coordinate systeme to match the desired Greek coordinate

 %system (Zakythinaki et al. Chaos 2004)

 [Fx,Fy,Fz,Fx1,Fy1,Fz1] = RotateCoordSys(Fx,Fy,Fz,Fx1,Fy1,Fz1);

 %Filtering raw data using 4th order Butterworth lowpass filter.

 %Function filterData must have Fs, cutFreq, and 1 vector to filter and

 108

 %upto 6 different vectors to pass through a 4th order Butterworth low

 %pass filter called butter4th: function [filteredData] =

 %butter4th(FreqS, FreqC, dataSet)

 Fs = 1000; %Hz - Sampling frequency

 cutFreq = 7; %Hz - cut off frequency

 [f_Fx, f_Fy, f_Fz, f_Fx1, f_Fy1, f_Fz1] = FilterFPData(Fs, cutFreq, Fx, Fy, Fz,

Fx1, Fy1, Fz1);

 %This function calculates the phase space from the given Vicon forces.

 %In addition this function changes the coordinate systems from the

 %Vicon coord system to the desired coordinate system (i.e. the Greek

 %Coordinate System)

 output = CalcFinalThetas(f_Fx, f_Fy, f_Fz, f_Fx1, f_Fy1, f_Fz1);

 %If you want all thetas (left, right, both feet) format = 1

 %If you only want final thetas format = 2

 format = 2;

 %output must be transposed to have a 6xN matrix for the makeThetaFiles

 %to properly put all the data correctly into a .txt file. The function

 %read down a coulmn and writes it in a row to create columns of data in

 %a .txt file.

 MakeThetaFiles_v3(format, newFile1, name1, abbr, date, ID, output');

%%--------------------- Marker Data Processing ----------------------------

 %Rotates the coordinate system to match the desired Greek coordinate

 %system (Zakythinaki et al. Chaos 2004) for the selected markers

 T10 = RotateCoordSys3D(T10);

 SACR = RotateCoordSys3D(SACR);

 LGTRO = RotateCoordSys3D(LGTRO);

 LLEK = RotateCoordSys3D(LLEK);

 LLM = RotateCoordSys3D(LLM);

 LHEE = RotateCoordSys3D(LHEE);

 LTOE = RotateCoordSys3D(LTOE);

 RGTRO = RotateCoordSys3D(RGTRO);

 RLEK = RotateCoordSys3D(RLEK);

 RLM = RotateCoordSys3D(RLM);

 RHEE = RotateCoordSys3D(RHEE);

 RTOE = RotateCoordSys3D(RTOE);

 %No filteringis done

 %Calculating the angles in the XZ plane and YZ plane.

 [leftAngles] = JointAngle2D(T10, SACR, LGTRO, LLEK, LLM, LHEE,

LTOE);

 109

 [rightAngles] = JointAngle2D(T10, SACR, RGTRO, RLEK, RLM, RHEE,

RTOE);

 %outputs a .txt based on the path given in newFile2

 MakeMarkerFile_v2(newFile2, name2, abbr, date, ID, leftAngles, rightAngles)

end

 110

FUNCTION FILES

(In alphabetical order)

function [filteredData] = Butter4th(FreqS, FreqC, dataSet)

%4th Order Butterworth filter with a cut off freqency of Wn. Where Wn =

%cutoff frequency desired divided by the half the sampling frequency. (This is done

%because Wn must be 0.0<Wn<1.0, with 1.0 corresponding to half the sample rate

 N = 4;

 Wn = FreqC/(FreqS/2);

 [b,a] = butter(N, Wn);

 filteredData = filter(b, a, dataSet);

end

function [angle] = Calc2DAngle(v1, v2)

%DotProduct Caculates the angle between the 2 inputted vectors

% INPUT:

% v1, v2 : two vector matrix

%

% OUTPUT:

% angle

%

% Created by: Victoria A. Smith

% Created on: March 3rd, 2016

%Preassigning size of angle for faster computation:

angle = zeros(size(v1,1),1);

for i=1:size(v1,1)

 vector1 = [v1(i,:)]';

 vector2 = [v2(i,:)]';

 %in case there is no data

 if norm(vector1) ~= 0 && norm(vector2) ~= 0

 rawr =

180/pi*(acos(sum(vector1.*vector2)/(norm(vector1)*norm(vector2))));

 else

 rawr = 0;

 end

 angle(i) = rawr;

end

end

 111

function [output] = CalcFinalThetas(l_Fx, l_Fy, l_Fz, r_Fx, r_Fy, r_Fz)

%%calcThetas %This function calculates the phase space from the given

%forces. The forces inputted into this function must be in the final

%desired global coordinate system

% INPUTS:

% Forces in the x,y,z direction from left (l_F) and right (r_F) force

% plates

%

% EQUATIONS:

% thetaX = atan(x/-z)

% thetaY = atan(y/-z)

% Note: all of the data in the z-axis is negative in these equations because we

% were given force applied to the forceplate and we need ground reaction

% force, which is the negative of the force applied to the force plate.

%

% OUTPUTS:

% output - is a matrix of the thetas calculated for the left, right force

% plate as well as the thetas calculated to mimic a single force plate

% NOTE: The output of this file must be all the data extending down rows

% with only 6 columns

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Created on: Jan 12 2016

% Updated on: Jan 18 2016

% ---

% left foot:

l_thetaX = atan2(l_Fx, -l_Fz);

l_thetaY = atan2(l_Fy, -l_Fz);

% right foot:

r_thetaX = atan2(r_Fx, -r_Fz);

r_thetaY = atan2(r_Fy, -r_Fz);

% together - this is the REAL PHASE SPACE we need for further calculations

% First sum all of the forces together

fx = l_Fx + r_Fx;

fy = l_Fy + r_Fy;

fz = l_Fz + r_Fz;

% Then calculate the theta's

thetaX = atan2(fx, -fz); %Nx1,

thetaY = atan2(fy, -fz);

output = [l_thetaX, l_thetaY, r_thetaX, r_thetaY, thetaX, thetaY];

end

 112

function [out1, out2, out3, out4, out5, out6] = FilterFPData(Fs, Fc, d1, d2, d3, d4, d5,

d6)

%filterData

% Faster way to filter many sets of data at once

% Fs - sampling frequency

% Fc - cutoff Frequency

% d1 - d6 - data sets, dim =1

% butter4th - 4th order Butterworth lowpass filter

% Fs, Fc, d1 are mandatory

% d2 - d6 are optional

if nargin < 4

 out1 = Butter4th(Fs, Fc, d1);

elseif nargin < 5

 out1 = Butter4th(Fs, Fc, d1);

 out2 = Butter4th(Fs, Fc, d2);

elseif nargin < 6

 out1 = Butter4th(Fs, Fc, d1);

 out2 = Butter4th(Fs, Fc, d2);

 out3 = Butter4th(Fs, Fc, d3);

elseif nargin < 7

 out1 = Butter4th(Fs, Fc, d1);

 out2 = Butter4th(Fs, Fc, d2);

 out3 = Butter4th(Fs, Fc, d3);

 out4 = Butter4th(Fs, Fc, d4);

elseif nargin < 8

 out1 = Butter4th(Fs, Fc, d1);

 out2 = Butter4th(Fs, Fc, d2);

 out3 = Butter4th(Fs, Fc, d3);

 out4 = Butter4th(Fs, Fc, d4);

 out5 = Butter4th(Fs, Fc, d5);

elseif nargin < 9

 out1 = Butter4th(Fs, Fc, d1);

 out2 = Butter4th(Fs, Fc, d2);

 out3 = Butter4th(Fs, Fc, d3);

 out4 = Butter4th(Fs, Fc, d4);

 out5 = Butter4th(Fs, Fc, d5);

 out6 = Butter4th(Fs, Fc, d6);

end

end

 113

 function [Frame_FP,SubFrame_FP,Fx,Fy,Fz,Fx1,Fy1,Fz1] = ImportTxt_FP(filename,

startRow, endRow)

%ImportTxt_FP Import numeric data from a text file as column vectors.

%This version of importfile is explicitly for extracting the forces and

%frame rates from the inputted Vicon txt file. That Vicon file can ONLY

%contain forceplate data. No marker data can be in the file. A different

%importfile file must be used (ImportTxt_Markers.m)

%

% [FRAME,SUBFRAME,FX,FY,FZ,FX1,FY1,FZ1] = IMPORTFILE1(FILENAME,

STARTROW,

% ENDROW) Reads data from rows STARTROW through ENDROW of text file

% FILENAME.

%

% Auto-generated by MATLAB on 2016/01/12 10:55:53

% Revised by Victoria Smith on 2016/03/08

%% Initialize variables.

delimiter = '\t';

if nargin<=2

 startRow = 6;

 endRow = inf;

end

%% Format string for each line of text:

% column1: double (%f)

% column2: double (%f)

% column3: double (%f)

% column4: double (%f)

% column5: double (%f)

% column12: double (%f)

% column13: double (%f)

% column14: double (%f)

% For more information, see the TEXTSCAN documentation.

formatSpec =

'%f%f%f%f%f%*s%*s%*s%*s%*s%*s%f%f%f%*s%*s%*s%*s%*s%*s%[^\n\r]';

%% Open the text file.

fileID = fopen(filename,'r');

%% Read columns of data according to format string.

% This call is based on the structure of the file used to generate this

% code. If an error occurs for a different file, try regenerating the code

% from the Import Tool.

textscan(fileID, '%[^\n\r]', startRow(1)-1, 'ReturnOnError', false);

dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',

 114

delimiter, 'EmptyValue' ,NaN,'ReturnOnError', false);

for block=2:length(startRow)

 frewind(fileID);

 textscan(fileID, '%[^\n\r]', startRow(block)-1, 'ReturnOnError', false);

 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-

startRow(block)+1, 'Delimiter', delimiter, 'EmptyValue' ,NaN,'ReturnOnError', false);

 for col=1:length(dataArray)

 dataArray{col} = [dataArray{col};dataArrayBlock{col}];

 end

end

%% Close the text file.

fclose(fileID);

%% Post processing for unimportable data.

% No unimportable data rules were applied during the import, so no post

% processing code is included. To generate code which works for

% unimportable data, select unimportable cells in a file and regenerate the

% script.

%% Allocate imported array to column variable names

Frame = dataArray{:, 1};

SubFrame = dataArray{:, 2};

Fx = dataArray{:, 3};

Fy = dataArray{:, 4};

Fz = dataArray{:, 5};

Fx1 = dataArray{:, 6};

Fy1 = dataArray{:, 7};

Fz1 = dataArray{:, 8};

Frame_FP = Frame;

SubFrame_FP = SubFrame;

end

 115

function [Frame_M, SubFrame_M, LASIS, RASIS, LPSIS, RPSIS, SACR, T10, STRN,

XYPH, NAVE, LGTRO, FLTHI, LLEK, LATI, LLM, LHEE, LTOE, LMT5, RGTRO,

FRTHI, RLEK, RATI, RLM, RHEE, RTOE, RMT5] = ImportTxt_Markers(filename,

startRow, endRow)

%ImportTxt_Markers Import numeric data from a text file as column vectors.

% This file takes the marker data from the LowerLimb_HBMN2 marker set in

% from Vicon Nexus 2.2. Only this specific marker set can be imported

% correctly, other import files would need to be created for a different

% marker set.

%

% This marker set contains 25 markers, concentrating on the Lower Limb

% capture. The data is collected at 100Hz.

%

% [Frame_M, SubFrame_M, LASIS, RASIS, LPSIS, RPSIS, SACR, T10, STRN,

XYPH, NAVE, LGTRO, FLTHI, LLEK, LATI, LLM, LHEE, LTOE, LMT5, RGTRO,

FRTHI, RLEK, RATI, RLM, RHEE, RTOE, RMT5]

% = ImportTxt_Markers(FILENAME, STARTROW, ENDROW) Reads data from rows

STARTROW

% through ENDROW of text file FILENAME.

%

% Auto-generated by MATLAB on 2016/03/08 10:36:51

% Adapted by Victoria Smith on 2016/03/08

%% Initialize variables.

delimiter = '\t';

if nargin<=2

 startRow = 6;

 endRow = inf;

end

%% Format string for each line of text:

% column1 - 26: double (%f)

% column27 - 29: text (%s)

% column30 - 77: double (%f)

% For more information, see the TEXTSCAN documentation.

formatSpec =

'%f%s%s%s%f

%f%

f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%[^\n\r]';

%% Open the text file.

fileID = fopen(filename,'r');

%% Read columns of data according to format string.

 116

% This call is based on the structure of the file used to generate this

% code. If an error occurs for a different file, try regenerating the code

% from the Import Tool.

dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',

delimiter, 'HeaderLines', startRow(1)-1, 'ReturnOnError', false);

for block=2:length(startRow)

 frewind(fileID);

 dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-

startRow(block)+1, 'Delimiter', delimiter, 'HeaderLines', startRow(block)-1,

'ReturnOnError', false);

 for col=1:length(dataArray)

 dataArray{col} = [dataArray{col};dataArrayBlock{col}];

 end

end

%% Close the text file.

fclose(fileID);

%% Post processing for unimportable data.

% No unimportable data rules were applied during the import, so no post

% processing code is included. To generate code which works for

% unimportable data, select unimportable cells in a file and regenerate the

% script.

%% Allocate imported array to column variable names

Frame = dataArray{:, 1};

SubFrame = dataArray{:, 2};

X = dataArray{:, 3};

Y = dataArray{:, 4};

Z = dataArray{:, 5};

X1 = dataArray{:, 6};

Y1 = dataArray{:, 7};

Z1 = dataArray{:, 8};

X2 = dataArray{:, 9};

Y2 = dataArray{:, 10};

Z2 = dataArray{:, 11};

X3 = dataArray{:, 12};

Y3 = dataArray{:, 13};

Z3 = dataArray{:, 14};

X4 = dataArray{:, 15};

Y4 = dataArray{:, 16};

Z4 = dataArray{:, 17};

X5 = dataArray{:, 18};

Y5 = dataArray{:, 19};

Z5 = dataArray{:, 20};

 117

X6 = dataArray{:, 21};

Y6 = dataArray{:, 22};

Z6 = dataArray{:, 23};

X7 = dataArray{:, 24};

Y7 = dataArray{:, 25};

Z7 = dataArray{:, 26};

X8 = dataArray{:, 27};

Y8 = dataArray{:, 28};

Z8 = dataArray{:, 29};

X9 = dataArray{:, 30};

Y9 = dataArray{:, 31};

Z9 = dataArray{:, 32};

X10 = dataArray{:, 33};

Y10 = dataArray{:, 34};

Z10 = dataArray{:, 35};

X11 = dataArray{:, 36};

Y11 = dataArray{:, 37};

Z11 = dataArray{:, 38};

X12 = dataArray{:, 39};

Y12 = dataArray{:, 40};

Z12 = dataArray{:, 41};

X13 = dataArray{:, 42};

Y13 = dataArray{:, 43};

Z13 = dataArray{:, 44};

X14 = dataArray{:, 45};

Y14 = dataArray{:, 46};

Z14 = dataArray{:, 47};

X15 = dataArray{:, 48};

Y15 = dataArray{:, 49};

Z15 = dataArray{:, 50};

X16 = dataArray{:, 51};

Y16 = dataArray{:, 52};

Z16 = dataArray{:, 53};

X17 = dataArray{:, 54};

Y17 = dataArray{:, 55};

Z17 = dataArray{:, 56};

X18 = dataArray{:, 57};

Y18 = dataArray{:, 58};

Z18 = dataArray{:, 59};

X19 = dataArray{:, 60};

Y19 = dataArray{:, 61};

Z19 = dataArray{:, 62};

X20 = dataArray{:, 63};

Y20 = dataArray{:, 64};

Z20 = dataArray{:, 65};

 118

X21 = dataArray{:, 66};

Y21 = dataArray{:, 67};

Z21 = dataArray{:, 68};

X22 = dataArray{:, 69};

Y22 = dataArray{:, 70};

Z22 = dataArray{:, 71};

X23 = dataArray{:, 72};

Y23 = dataArray{:, 73};

Z23 = dataArray{:, 74};

X24 = dataArray{:, 75};

Y24 = dataArray{:, 76};

Z24 = dataArray{:, 77};

 %% Allocate each marker variable into a matrix for each marker containing

%those variables

 % marker = [x_position, y_position, z_position];

LASIS = [X, Y, Z];

RASIS = [X1, Y1, Z1];

LPSIS = [X2, Y2, Z2];

RPSIS = [X3, Y3, Z3];

SACR = [X4, Y4, Z4];

T10 = [X5, Y5, Z5];

STRN = [X6, Y6, Z6];

XYPH = [X7, Y7, Z7];

NAVE = [X8, Y8, Z8];

LGTRO = [X9, Y9, Z9];

FLTHI = [X10, Y10, Z10];

LLEK = [X11, Y11, Z11];

LATI = [X12, Y12, Z12];

LLM = [X13, Y13, Z13];

LHEE = [X14, Y14, Z14];

LTOE = [X15, Y15, Z15];

LMT5 = [X16, Y16, Z16];

RGTRO = [X17, Y17, Z17];

FRTHI = [X18, Y18, Z18];

RLEK = [X19, Y19, Z19];

RATI = [X20, Y20, Z20];

RLM = [X21, Y21, Z21];

RHEE = [X22, Y22, Z22];

RTOE = [X23, Y23, Z23];

RMT5 = [X24, Y24, Z24];

 %Renaming Frame and Subframe

Frame_M = Frame;

SubFrame_M = SubFrame;

 end

 119

function [angleStruct] = JointAngle2D(T10, SACR, Hip, Knee, Ankle, Heel, Toe)

%JointAngle2D Calculating the Joint Angle in XZ and YZ planes

% Inputs: are matrices of marker locations for an entire movement. Each

% matrix is Nx3 with columns of x, y, z coordinates

%

% Outputs: Two structs that contain the joint angles at the Hip, Knee,

% and Ankle in the XZ and YZ plane, respectively

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Updated on: Mar 17 2016

% ---

%Calculating the hip, knee, and ankle angles in the XZ (frontal) plane

hip_AP = Calc2DAngle(T10(:,1:2:3) - SACR(:,1:2:3), Knee(:,1:2:3) -

Hip(:,1:2:3));

knee_AP = Calc2DAngle(Hip(:,1:2:3) - Knee(:,1:2:3), Ankle(:,1:2:3) - Knee(:,1:2:3));

ankle_AP = Calc2DAngle(Knee(:,1:2:3) - Ankle(:,1:2:3), Heel(:,1:2:3) - Toe(:,1:2:3));

%Calculating the hip, knee, and ankle angles in the XZ (sagittal) plane

hip_ML = Calc2DAngle(T10(:,2:3) - SACR(:,2:3), Knee(:,2:3) - Hip(:,2:3));

knee_ML = Calc2DAngle(Hip(:,2:3) - Knee(:,2:3), Ankle(:,2:3) - Knee(:,2:3));

ankle_ML = Calc2DAngle(Knee(:,2:3) - Ankle(:,2:3), Heel(:,2:3) - Toe(:,2:3));

angleStruct = struct('hipAP', hip_AP, 'kneeAP', knee_AP, 'ankleAP', ankle_AP, 'hipML',

hip_ML, 'kneeML', knee_ML, 'ankleML', ankle_ML);

end

 120

function MakeMarkerFile_v2(filepath, title, nickName, date, ID, dataInL, dataInR)

%makeThetaFiles - This function creates .txt files from the input The

%function reads down a coulmn in the data matrix and writes it in a row of

%the .txt file to create columns of data in a .txt file.

%

%Inputs:

%filepath - contains the path that the file should be saved in and includes

% the desired name of the file

%title - is the name of the file to be put in the header of the .txt file

%nickname - is the abbrevation of the title that is used to label each row

%date - is the date the data was taken on and put into the header of the

% .txt file

%ID - is the Patient ID number

%dataInL - is a struct with 6 joint angles: hip, knee, ankle in the XZ and

% YZ plane, respectively. These are the angles from the left leg

%dataInR - is a struct with 6 joint angles: hip, knee, ankle in the XZ and

% YZ plane, respectively. These are the angles from the right leg

%Output:

%the output of this function is the creation of a .txt file in a folder

%given by filepath, with the name of title and header (contains title and

%date) and the desired data in 12 columns

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Updated on: Mar 17 2016

% ---

% This is setting up the inputs into the header file

date = strcat('Data taken on: ', date);

patient = strcat('Patient ID: ', ID);

a = strcat(nickName,'_lhAP');

b = strcat(nickName,'_lkAP');

c = strcat(nickName,'_laAP');

d = strcat(nickName,'_lhML');

e = strcat(nickName,'_lkML');

f = strcat(nickName,'_laML');

g = strcat(nickName,'_rhAP');

h = strcat(nickName,'_rkAP');

i = strcat(nickName,'_raAP');

j = strcat(nickName,'_rhML');

k = strcat(nickName,'_rkML');

l = strcat(nickName,'_raML');

%Break apart the inputted structure

%They are all transposed from Nx1 vectors to 1xN vectors

L_hip_AP = dataInL.hipAP';

 121

L_knee_AP = dataInL.kneeAP';

L_ankle_AP = dataInL.ankleAP';

L_hip_ML = dataInL.hipML';

L_knee_ML = dataInL.kneeML';

L_ankle_ML = dataInL.ankleML';

R_hip_AP = dataInR.hipAP';

R_knee_AP = dataInR.kneeAP';

R_ankle_AP = dataInR.ankleAP';

R_hip_ML = dataInR.hipML';

R_knee_ML = dataInR.kneeML';

R_ankle_ML = dataInR.ankleML';

%Create a matrix that contains the angle data.

%data1 should be a 12xN matrix

data1 = [L_hip_AP;

L_knee_AP;L_ankle_AP;L_hip_ML;L_knee_ML;L_ankle_ML;R_hip_AP; R_knee_AP;

R_ankle_AP;R_hip_ML; R_knee_ML; R_ankle_ML];

%Create an output file

fileID = fopen(filepath, 'w+');

fprintf(fileID, '%s\n', title);

fprintf(fileID, '%s\t %s\n', date, patient);

fprintf(fileID, '%s %12s %12s %12s %12s %12s %12s %12s %12s %12s %12s %12s\n',

a, b, c, d, e, f, g, h, i, j, k, l);

fprintf(fileID,

'%12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %12.6f %

12.6f\n', data1);

end

 122

function MakeThetaFiles_v3(format, filepath, title, nickName, date, ID, dataIn)

%makeThetaFiles - This function creates .txt files from the input The

%function reads down a coulmn in the data matrix and writes it in a row of

%the .txt file to create columns of data in a .txt file.

%

%Inputs:

%format - int = 1 or 2.

% 1: writes all thetas to .txt

% 2: writes only real phase space thetas to .txt

%filepath - contains the path that the file should be saved in and includes

% the desired name of the file

%title - is the name of the file to be put in the header of the .txt file

%nickname - is the abbrevation of the title that is used to label each row

%date - is the date the data was taken on and put into the header of the

% .txt file

%ID - is the Patient ID number

%data - is a matrix of Nx6 dimensions

%Output:

%the output of this function is the creation of a .txt file in a folder

%given by filepath, with the name of title and header (contains title and

%date) and the desired data in 6 columns

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Updated on: Mar 17 2016

% ---

%The following strings will be the column names in the .txt

%Ex: if nickName = f1 --> e = f1_X

%It is critical for all of the columns to have unique names for igor pro to

%read and create the corresponding waves for further data analysis

a = strcat(nickName,'_lX');

b = strcat(nickName,'_lY');

c = strcat(nickName,'_rX');

d = strcat(nickName,'_rY');

e = strcat(nickName,'_X');

f = strcat(nickName,'_Y');

if format == 1

 patient = strcat('Patient ID: ', ID);

 date = strcat('Data taken on: ', date);

 fileID = fopen(filepath, 'w+');

 fprintf(fileID, '%s\n', title);

 fprintf(fileID, '%s\t %s\n', patient, date);

 123

 fprintf(fileID, '%s %12s %12s %12s %12s %12s\n', a, b, c, d, e, f);

 fprintf(fileID, '%.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n', dataIn);

else %format == 2

 patient = strcat('Patient ID: ', ID);

 date = strcat('Data taken on: ', date);

 myX = dataIn(5,:);

 myY = dataIn(6,:);

 myThetas = [myX; myY];

 fileID = fopen(filepath, 'w+');

 fprintf(fileID, '%s\n', title);

 fprintf(fileID, '%s\t %s\n', patient, date);

 fprintf(fileID, '%s %12s\n', e, f);

 fprintf(fileID, '%.8f %12.8f\n', myThetas);

end

end

 124

function [outFx,outFy,Fz,outFx1,outFy1,Fz1] = RotateCoordSys(inFx,inFy,

Fz,inFx1,inFy1,Fz1)

%rotateCoordSys - this function transforms the inputted data from the Vicon

%Nexus system into the desired (Greek) global coordinate system. Only the x

%an y axes are being rotated by 90 degrees CCW (right hand rule).

% INPUTS:

% Forces - Left: inFx, inFy, Fz

% - Right: inFx1, inFy1, Fz1

% *all of these are single vectors (nx1) and not matrices

% ROTATION:

% We need to rotate the x and y axis 90 degress about the z axis, i.e.:

% VICON = GREEK

% Y = -X

% X = Y

% Z = Z

% calculations for thetas in new coordinate system done on 011516

% OUTPUTS:

% Forces - Left: outFx, outFy, Fz

% - Right: outFx1, outFy1, Fz1

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Updated on: Jan 18 2016

% ---

%rotation matrix set up

ang = 90;

rotMatrix = [cosd(ang) -sind(ang); sind(ang) cosd(ang)];

%Rotate data

dataRot = [inFx, inFy] *rotMatrix;

dataRot1 = [inFx1, inFy1]*rotMatrix;

outFx = dataRot(:,1);

outFy = dataRot(:,2);

outFx1 = dataRot1(:,1);

outFy1 = dataRot1(:,2);

end

 125

function [output] = RotateCoordSys3D(inMatrix)

%rotateCoordSys3D - this function transforms the inputted data from the Vicon

%Nexus system into the desired (Greek) global coordinate system. Only the x

%an y axes are being rotated by 90 degrees CCW (right hand rule).

% INPUTS:

% inMatrix - matrix data (Nx3), columns: x, y, z

% ROTATION:

% We need to rotate the x and y axis 90 degress about the z axis, i.e.:

% VICON = GREEK

% Y = -X

% X = Y

% Z = Z

% calculations for thetas in new coordinate system done on 011516

% OUTPUTS:

% output - rotated data

%--

% Created by: Victoria Smith, vasmith5@asu.edu

% Updated on: Jan 18 2016

% ---

%Preassigning size of output for faster computation:

L = length(inMatrix);

output = zeros(L,3);

%rotation matrix set up

%This rotates the coord system 90 degrees about the z-axis

ang = 90;

rotMatrix = [cosd(ang) -sind(ang) 0; sind(ang) cosd(ang) 0; 0 0 1];

%Rotating each point array in the inMatrix (by rows)

for i = 1:L

 temp = rotMatrix * inMatrix(i,:)'; %each row has to be transposed b/c: 3x3 x 3x1

 output(i,:) = temp';

end

 126

APPENDIX C

IRB APPROVAL

 127

 128

	Title Page
	Abstract
	Table Of Contents
	1 Introduction
	2 Experimental Design
	3 Theory and Calculations
	4 Modeling Basins of Stability
	5 Experimental Results & Discussion
	6 Conclusion
	References
	Appendix A: Igor Pro Codes
	Appendix B: MatLab Codes
	Appendix C: IRB Approval

