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ABSTRACT 

Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are 

often deployed in remote areas. A PV array monitoring system is considered where smart 

sensors are attached to the PV modules and transmit data to a monitoring station through 

wireless links. These smart monitoring devices may be used for fault detection and 

management of connection topologies. In this thesis, a compact hardware simulator of the 

smart PV array monitoring system is described. The voltage, current, irradiance, and 

temperature of each PV module are monitored and the status of each panel along with all 

data is transmitted to a mobile device. LabVIEW and Arduino board programs have been 

developed to display and visualize the monitoring data from all sensors. All data is saved 

on servers and mobile devices and desktops can easily access analytics from anywhere. 

Various PV array conditions including shading, faults, and loading are simulated and 

demonstrated. 

Additionally, Electrical mismatch between modules in a PV array due to partial 

shading causes energy losses beyond the shaded module, as unshaded modules are forced 

to operate away from their maximum power point in order to compensate for the shading. 

An irradiance estimation algorithm is presented for use in a mismatch mitigation system. 

Irradiance is estimated using measurements of module voltage, current, and back surface 

temperature. These estimates may be used to optimize an array’s electrical configuration 

and reduce the mismatch losses caused by partial shading. Propagation of error in the 

estimation is examined; it is found that accuracy is sufficient for use in the proposed 

mismatch mitigation application. 
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Chapter 1 

INTRODUCTION 

This chapter introduces the motivation behind the topic of research and gives a 

general outline of photovoltaic (PV) systems). The contribution and organization of the 

thesis is also briefly discussed. 

Alternative renewable energy sources have been gradually replacing existing ones. 

One of the most promising alternate energy sources is solar which is becoming 

increasingly more efficient and cheaper to install. With emerging solar technologies, 

experts calculated that the average energy derived from solar radiation can provide up to 

10,000 times more than the world’s current needs [1]. In many countries, generation of 

electricity based on solar energy, especially photovoltaic (PV) cells, is being promoted 

with incentives for utility scale energy generation. The global solar PV market has been 

growing with almost half of all PV capacity added in the past two years, and 

approximately 98% of current systems have been installed since the beginning of 2004 

[2]. PV modules produce no greenhouse gasses during operation and relatively little 

during manufacturing, and do not require significant resources which must be imported 

from other countries. There are no complicated moving parts associated with the PV 

power generation. This results in a very low operating cost and maintenance. Also it is 

freely available and abundant in nature. 

In spite of the several advantages, PV technology faces various barriers which 

prevent its wide deployment. The major barrier is the initial cost of setup. In the US as of 

2010, the average cost of solar energy was $211/MWh, while it was $95/MWh for coal 



2 

 

generated power [3]. Also, solar arrays are low efficiency compared to the light incident 

on them. Performance analysis of a 342kW roof mounted PV array using 10 years of data 

showed the array operating with an efficiency of 7-9 percent [4]. Thus, to improve PV 

array output is to ensure that the array operates in optimal output conditions at all times. 

PV arrays once installed are expected to operate with minimal human intervention. 

Despite the fact that solar PV systems have no moving parts and usually require low 

maintenance, they are still subject to various failures or faults along the PV arrays, power 

conditioning units, batteries, wiring, and utility interconnections [5, 6]. Most of these 

faults remain undetected for long periods of time resulting in loss of power. This results 

in reduced uptime of the array and decreased PV efficiency. The energy generation is 

often affected by conditions such as irradiance, temperature (weather conditions) and the 

connection topology of the PV array, which determine its overall power output [7]. In 

order to improve power generation robustness and predict system conditions, fault 

detection and monitoring [8-11] methods have been proposed. 

Especially for PV arrays, it is difficult to shut down PV modules completely during 

faults, since they are energized by sunlight in daytime. Once PV modules are electrically 

connected, any fault among them can affect the entire system performance. This means 

the PV system is only as robust as its weakest link (e.g., the faulted PV components).  In 

a large PV array, it may become difficult to properly detect or identify a fault, which can 

remain hidden in the PV system until the whole system breaks down. Due to the widely 

distributed PV arrays and the massive amount of generated sensor data, acquisition, 

storage and analysis in the monitoring processes is also a problem. By replacing current 

ad-hoc methods of monitoring and fault detection, the efficiency of PV arrays may be 
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increased while decreasing the net cost of electricity from PV sources. Current methods 

of fault detection are not reliable, are slow with more than 3 days of turnaround time, and 

rely on manual monitoring by technicians [12]. 

In most cases, remote facilities using manual monitoring methods such as panel by 

panel manual metering which is very time consuming [13]. This is prone to errors and 

takes a lot of resources and manpower for completion. Thus, PV array monitoring 

systems need to be automated for the processes of data monitoring, acquisition and 

storage. The family of technologies and protocols collectively known as the smart grid 

(smart PV array) offer an opportunity to change this: with increased monitoring and 

communication among PV array components, significant improvements in overall array 

power production may be achieved. 

 

Figure 1.1 Photovoltaic Cells, Modules and Arrays.[141] 
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Single Diode Model and I-V Characteristics 

PV arrays convert solar radiation incident on them to electricity. They are 

composed of several components such as PV modules, inverters and electrical 

connections. The block diagram of a typical PV array is shown in Figure 1.1. 

Furthermore, PV is scalable and modular technology that can build a PV power plant by 

connecting a large number of PV modules in series and parallel configuration. PV 

modules in the same row are connected electrically in series to increase the generated 

voltage. This series arrangement is called a string. To form the array, several strings are 

connected in parallel thereby increasing the current generated. The DC power generated 

by the array is converted to AC by means of an inverter. 

Figure 1.2 Single-Diode Model of a PV Module. 

The output current and voltage of a solar module depends on several factors such 

as module temperature, irradiance (amount of solar radiation power incident per square 

area), angle of incidence of the sun and spectrum of the incoming light [14–16]. A solar 

module is often modelled as a current source in parallel with a diode, with parasitic series 

and shunt resistance [17–19] as shown in Figure 1.2. 
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As with the diode, we can characterize the behavior of the PV module by its 

current-voltage relationship. IL is the light generated current and it depends mainly on the 

irradiance. Hence the PV module generates more current at higher irradiance values. The 

voltage across the diode depends mainly on the module temperature and the PV module 

outputs higher voltage at lower temperatures. The current voltage (I-V) characteristics of 

a PV module operating at standard test conditions of 1000 W/m2 irradiance and 25 

degrees’ Celsius temperature is shown in Figure 1.3. VOC and ISC represent the open 

circuit and the short circuit conditions respectively. For a given set of environmental 

conditions, the solar module has a voltage and current (VMP; IMP), at which it produces its 

maximum power PMP. Modern inverters dynamically adjust the load they present to a 

solar array in order to maintain operation near PMP using a process known as maximum 

power point tracking (MPPT) [20–23].  

 

Figure 1.3 I-V Curve of a PV Module at Standard Test Conditions. 

For an ideal PV array, the power output is the sum of the power generated by each 

of the modules. However, PV array performance can be reduced significantly in the 
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presence of faults. Several types of faults such as module mismatch [24], soiling [25], 

shading [26–28], ground faults [29] and arc faults [30, 31] occur in PV arrays. The series-

parallel topology commonly employed in PV arrays implies that every module in a string 

must carry the same current. As a result, faults in a single module would result in a sub-

optimal operating point for all the modules in a string, leading to a higher loss of power. 

For instance, it is shown in [32] that a partial shadow on a single string can result in a loss 

of power corresponding to over 30 times its physical size. Hence, any fault in the array 

must be identified as soon as possible. Due to faults occurring within PV arrays, several 

fire hazards have been reported in PV installations [33, 34]. Fig. 1.4 shows the results of 

a fire hazard in a 383 kW PV array in Bakersfield, California in 2009. 

 

Figure 1.4 Fire Hazard in a 383 kW PV Array in Bakersfield, California in 2009. [34] 

In these cases, the fault remained unnoticed and hidden in the system until the 

hazard caused catastrophic fire. These fire hazards not only show the weakness in 

conventional fault detection and protection schemes in PV arrays, but also reveal the 

urgent need of a better way to prevent such issues. Faults such as shading of a few 

modules within the array cannot be detected from the AC side. Parameters to measure on 
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the DC side include DC voltage and current at the inverter, string/module voltages and 

currents and module temperatures. 

The next topic considered is irradiance estimation for overall cost reduction for 

the PV array setup, monitoring and fault mitigation. A method is presented here for 

estimating the circuit parameters of partially shaded PV arrays given measurements from 

the smart PV array is shown in Fig1.5 described above. 

  

(a) First Generation Installed on Array              (b) Current Generation 

Figure 1.5 Prototype Monitoring Devices. 

 This method is intended as a step toward a comprehensive mismatch mitigation 

strategy, in which switching or load matching is used to allow PV modules to operate 

near their maximum power point (MPP) even under mismatch conditions. One potential 

approach to this mismatch mitigation problem requires an accurate circuit model of the 

PV array, in order to perform simulations and determine the optimal configuration [35–

37]. Since the behavior of PV modules depends on environmental conditions, this 
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requires knowledge of incoming irradiance and module temperature, at a minimum. 

However, at the time of this writing, reasonably accurate pyranometers are far too costly 

for installation of many irradiance sensors within the array. Temperature, current, and 

voltage sensors are much more affordable and may feasibly be deployed at the module 

level. 

The method presented here may be viewed as a way to use an operating PV Cell as its 

own pyranometer, deriving an accurate circuit model for analysis and simulation without 

relying on expensive direct measurements of irradiance. A small body of previous work 

on estimation in PV arrays is available. For instance, in [38] voltage and current 

measurements are used to estimate PV cell temperature. While useful, this method rests 

on the assumption that a module is operating at its maximum power point; under the 

partial shading conditions we wish to consider, this assumption is not valid. 

This work tries to address two of these factors. The monitoring and visualization of 

data is studied using a LabVIEW GUI built for a small scale PV array as well as cost 

reduction using estimation techniques. 

1.1 Problem Statement 

A series of articles have reported different monitoring systems [39-40] which, 

however, have been for the most part expensive and somewhat difficult to manage. In 

[39], data communications have been provided by cables which results in increased 

implementation cost and in [40] power line communications are incorporated which limit 

the transmission data rate. From previous studies, it was shown that around one fifth of 
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the total operational failures in PV array systems [41] are due to faults in PV modules 

which can be remedied by a monitoring system. 

First, we present a simulator of a smart PV monitoring system that is easy to manage 

and low-cost. Our simulator is implemented with LABVIEW GUI [42] and an Arduino 

Uno board. The group at Arizona State University has previously created several 

LabVIEW GUI and smartphone simulations [43] for signal analysis as well theory and 

award winning apps for Digital Signal Processing [44]. This system though is different in 

that actual solar and sensor hardware is interfaced to an Android app via an Arduino 

board. Thus, system can be accessed via the Internet using a browser or an app running 

on mobile devices for obtaining the latest monitoring status. This system is built for 

demonstration purposes. The simulator has been placed in a controlled- environment to 

test the performance of the entire system similar to [45]. We demonstrate that the 

simulator can be used to measure current, voltage, irradiance, and temperature to detect 

and deal with partial shading, ground fault, or other conditions which can cause reduction 

in power output [46, 47]. 

And secondly, we consider the problem of deriving a circuit model of a PV array 

under partial shading conditions, using only voltage, current, and temperature 

measurements from every module. Several factors complicate this task and make it non-

trivial. Since measurements are taken on an active and functioning array, I-V curves from 

individual modules are not available. Also, since partial shading is present, we can no 

longer assume that module-level measurements are taken at the modules’ maximum 

power point (MPP). This is because an inverter with maximum power point tracking 
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(MPPT) will seek the array’s maximum power point, causing some or all of the modules 

to operate away from their own MPP. Finally, shading affects not only the power of the 

incoming solar radiation, but its spectrum as well. Air mass models exist to predict the 

effect of changing solar spectral characteristics [48], but these typically assume light 

travels through clear, dry air. 

1.2 Contributions 

The contributions of this research can be summarized as follows: 

 Design of hardware for the PV array monitoring simulator and software for 

visualization of module level voltage and current 

 Simulation analysis and understanding of shading, faults and loading on a small 

scale PV array system 

 Algorithm presented which accurately estimates circuit parameters i.e. irradiance 

when air mass and cell temperature are known and measurements are accurate, 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 describes earlier study and research in 

areas of fault detection, array optimization and monitoring for the PV arrays. Chapter 3 

talks about the design and working of PV monitoring simulator including the software 

and hardware design of the system. Chapter 4 talks about the irradiance estimation 

procedure and sources of error are also discussed. Chapter 5 presents the experimental 

results and simulation analysis. And, the thesis document ends with a final chapter of 

conclusions and future work. 
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Chapter 2 

EXISTING METHODOLOGIES – A LITERATURE REVIEW 

The following literature review discusses the advances in the field of solar array 

monitoring, fault detection and optimization. The importance to make solar energy a 

viable and cheap source of power has caused a recent surge of interest from researchers 

and commercial institutions alike, in these areas. The review involves literature revolving 

around research and development done in the area of solar array monitoring, Fault 

Detection and topology optimization area in recent years with focus on some crucial and 

key papers. Accordingly, journals and papers were identified which were relevant and 

contributed to the progress in the fields according to their relevance and importance. The 

review is divided into three main sections which focus on fault detection methods, PV 

array Topology optimizations and monitoring of PV systems. 

2.1 Fault Detection Methods 

Fault detection is very crucial for the optimal operation of the PV arrays. There has 

been a spike in interest in this area as it can improve overall power production and 

maintenance cost by quite a margin. There are various methods to the fault detection in 

PV array.  

2.1.1 Model-based Methods 

One of the basic approaches to detect unexpected power loss is comparing the 

output with a reference value and trigger an alarm when significant differences are 

detected while monitoring. The approach taken in [49] is to perform monitoring using 
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satellites, essentially building up known weather conditions. This approach is not 

applicable to this study due to insufficient weather data available. An extension of this 

method is building an analytical model [50-52] based on the one-diode model introduced 

in chapter 1. This method relies on access to both irradiance and solar panel temperature 

measurements in order to calculate the reference MPP. This is then compared to the 

measured working point as previously discussed. An active approach is described in [53], 

where the whole I-V curve is studied for defects, and the maximum attainable Vmax and 

Imax are recorded over time. Due to the nature of sweeping I-V curves this implies that 

this gives a reduction in power output during the analysis. In addition, it is not applicable 

to passive studies of systems since they can be assumed to deliver output at the MPP. 

Two studies by Vergura et al. [54, 55] consider several identical PV strings and compare 

the outputs in order to classify significant deviations. This is done by checking if certain 

statistical assumptions can be made, formally that the power differences are 

independently normally distributed with identical variance. If this is the case, a method 

known as analysis of variance (ANOVA) [55] can be applied in order to build confidence 

interval for the power output of each PV string. Otherwise the Kurskal-Wallis test [55] is 

applied in order to build the corresponding intervals. The resulting confidence intervals 

can be studied for significant deviations which would imply defect solar modules. 

Current-Voltage (I-V) Analysis 

Current vs. voltage (I-V) curve analysis can provide most of the operating points 

of a PV module, string or array. As illustrated in Fig. 2.1, the I-V curve reveals salient PV 

characteristics. Therefore, it is possible to detect and classify PV faults, such as series 
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losses, shunt losses, mismatch losses, reduced current and reduced voltage based on I-V 

characteristics [56-59]. 

 

Figure 2.1 I-V Curve Reveals Salient PV Characteristics.[142] 

Performance Comparison 

In addition to fire hazards and safety issues, faults in PV systems may cause a 

large amount of energy loss. Therefore, it is necessary to monitor PV system 

performance, study the fault pattern and develop the fault detection methods. 

Performance comparison compares the actual PV performance with the simulated 

performance under real-time operation [57, 60]. Recently, performance comparison has 

been proposed for fault detection. Generally, it compares the actual performance with the 

expected performance. The fault detection rule is straightforward: significant difference 

in produced and measured output performance may indicate a fault. The performance 

evaluation usually has several components, including weather information such as solar 

irradiance and temperature, expected PV performance as a benchmark, actual measured 

PV performance, performance comparison and fault detection. For example, to prevent 
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energy and subsequent financial losses in PV systems, an automatic PV performance 

comparison has been proposed in [60], which monitors the difference between the 

simulated and actual energy yield in real time. The fault detection system gathers 

satellite-derived solar irradiance and ambient temperature, which are fed into the 

simulation model to predict the PV's AC output power (Psim). Meanwhile, it monitors the 

actual AC output power (Pactual) and compares it with (Psim). Four general fault categories 

are: Constant energy loss, changing energy loss, snow cover and total blackout. The 

limitation exists: since it monitors the PV power over a period of time (equivalent to 

energy yield), it has a slow response. For example, this fault detection method may take 

at least one day. 

Performance Ratio (PR) Method 

Performance ratio (PR) is proposed in [61, 62] as a normalized parameter of the 

PV system energy yield to evaluate the system performance. Independent of the 

orientation and inclination of the panel, PR considers the overall effects of system losses 

so that it can be used for fault detection. It is usually defined in equation below (2.1) 

using the final yield (Yf ) over the reference yield (Yr). 

PR =
Yf

Yr
 (dimensionless)                                          (1) 

Specifically, Yf represents the normalized AC energy output to the utility grid. It is 

defined in (2.2), where E is the net AC power output and P0 is the nominal PV power. 

𝑌𝑓 =
𝐸

𝑃0
 (

𝑘𝑊ℎ

𝑘𝑊
) 𝑜𝑟 (ℎ𝑜𝑢𝑟𝑠)                                          (2) 
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On the other side, Yr represents the normalized solar irradiation conditions. It is defined 

in (2.3), where H is the total in-plane solar irradiation (kWh/m2) and GSTC is 1 kW/m2. 

𝑌𝑓 =
𝐻

𝐺𝑆𝑇𝐶
 (ℎ𝑜𝑢𝑟𝑠)                                               (3) 

PR values for PV systems are commonly reported on a monthly or yearly (long-

term) basis. For short-term basis, such as daily or weekly, PR gives better resolution and 

it can be used for fault detection in PV systems. For instance, as shown in Fig. 2.11, most 

of the PR values lie between 0.65 and 0.8 when the PV system is normally operating.  

 

Figure 2.2 Daily, Weekly, and Monthly PR Values for the PV System in 2001[62] [60]. 

However, the significantly reduced PR represents faults/anomalies in the PV 

system, such as partial shadings, inappropriate system sizing, MPPT errors, inverter 

failures, and faults within PV arrays. In addition, Fig. 2.3 shows that Pr values for smaller 

intervals (such as daily) give better fault-detection resolution and quicker response than 

monthly or weekly data [63]. 



16 

 

2.1.2 Machine Learning based Methods 

Machine learning is a subarea of artificial intelligence, which automatically 

extracts knowledge from the given PV data set. One category of the machine learning 

uses supervised learning approaches. As shown in Fig. 2.4, depending on a large amount 

of labeled data, supervised learning algorithms can learn the system and make the 

prediction after it is trained. A variety of supervised learning models have been proposed 

in PV installations. Artificial Neural Networks (ANN) is developed for PV performance 

evaluation under partial shadings [64], PV health status monitoring [65] and short-circuit 

fault detection in PV arrays [66]. Bayesian Neural Network (BNN) and regression 

polynomial models have been proposed to predict the soiling effects on large-scale PV 

arrays [67]. PV fault detection and classification use decision-tree model in [68], K-

nearest neighbor and support vector machine (SVM) in [69].  

 

Figure 2.3 Simplified Flowchart of Machine Learning Techniques. 

(a) Supervised (b) Unsupervised learning (c) Semi-supervised learning. 

In the case of given knowledge surrounding faults it is possible to apply 

supervised learning, e.g. [68], where a labelled dataset is available containing 
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measurements classified manually. This dataset can for example be generated by 

measuring voltage and current of solar modules while injecting faults. The paper 

discusses a decision tree model that takes the available measurements and locates the 

most probable classification based on the dataset. Classification performance is 

concluded to be very good but real-life applications are limited due to the dataset being 

heavily tied to a specific PV installation. A natural extension is analyzed in [70] which 

considers the case of graph-based semi-supervised learning, where only a small amount 

of reference data is available from the start as in Fig 2.4. This approach results in 

significant cost reductions, due to the low amount of labeled data, but is also possible to 

adapt to changing conditions in different systems. The classification performance is up to 

99% for certain classes of errors. 

2.1.3 Statistical Methods 

Statistical methods are proposed to detect abnormality in PV systems based on 

energy generation [71]. Specifically, descriptive and inferential statistics are applied on 

the measured energy generation of each subarray of a PV plant. The experimental results 

show that the proposed method can successfully detect a wiring mistake at a single PV 

panel out of 22 normal panels. Multivariate outlier rules using minimum covariance 

determinant (MCD) has been proposed for PV fault detection [72]. Specifically, based on 

a number of voltage and current measurements of PV modules at each specific time, the 

MCD is used to calculate the robust distance (RD). The fault detection rule becomes 

straightforward: if the calculated RD is larger than a threshold, the fault occurs in the PV 

module. Another statistical approach is taken by Zhao [73] that is centered on outlier 
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detection. Similarly, to [54, 55], the paper assumes a set of identical PV strings and tries 

to classify deviations. This is done by building confidence intervals using three different 

methods: 3-Sigma rule, Hampel identifier, and Boxplot rule. All the surveyed methods 

exhibit different properties, but the paper concludes that the Hampel identifier and 

Boxplot rule are suitable for fault detection. Based on the assumptions made, the paper 

can consider all PV string currents as samples taken from a single normal distribution, 

allowing straight-forward statistical analysis. This simplification is however not 

applicable in practical real life situations. 

Finally, [74] takes the approach of using a Kalman filter in order to predict power 

output. The Kalman filter [74] takes a set of noisy measurements and the underlying 

physical model, and produces the most probable output value in an iterative process. This 

is used in order to locate faults based on measurements of voltage, current, and panel 

temperature. Notably this permits classification without access to irradiance data. 

However, access to panel temperature is required for this method. There has also been 

research into locating the faulty panel within a string [75]. These results can be 

considered less applicable when individual solar module measurements are available. 

2.2 Topology Optimization Methods 

The Figure 2.5 shows a block diagram that summarizes the vision for optimizing a 

utility scale PV array. The monitoring devices connected to every PV module collect the 

individual module measurements (current, voltage and temperature) continuously. The 

collected information is transmitted to the server which stores past and current 

measurements of panel and weather data. A central operator accesses the data and can 
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take action and issue various control commands to the PV array and the inverters. The 

output of fault detection algorithm is used to determine PV array topologies that optimize 

the overall efficiency of the array for different environmental conditions. This section 

focuses on the ‘Connection topology reconfiguration’ block, which is equipped with 

reconfiguration algorithms to predict the optimal array topology. There is a need for 

dynamic reconfiguration of the PV array topology to ensure effective power generation 

under any shade condition. 

 

Figure 2.4 Intelligent Networked PV System Management [76, 92]. 

The major problems that cause the PV array to generate power less than the rated 

power are shading and improper selection of topology. To overcome the shading 

problem, several methods were put forward. The leading-edge research area which is 

developing called dynamic reconfiguration strategies, namely efficient ways to 
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dynamically change the connection layout of PV modules into PV arrays in order to 

improve power output under electrical mismatch conditions caused by partial shading and 

other issues. For instance, when one or more series-connected PV modules are shaded, 

the maximum permitted current is reduced, consequently decreasing the power output 

[77]. Moreover, the shaded or faulty module can reach critical high temperature, leading 

to the hotspot phenomenon [78–82] and consequently to the failure of the module. 

Bypass diodes avoid the hotspot and mismatch events [83, 84], but they introduce losses 

and local maxima in the electrical characteristics of the PV module [85]. 

 

Figure 2.5 Block Diagram of Topology Reconfiguration Block. 

Electrical Mismatch and Partial Shading 

Differences in electric characteristics of solar cells lead to mismatch losses [86, 

87] inside the module, while modules with different electrical characteristics lead to 

mismatch in the whole PV plant [88]. Both issues can be influenced by factors that are 

internal or external to the module. Internal factors include non-homogeneous 

characteristics of solar cells, caused by manufacturing defects, faulty solar cells and 

malfunction of one PV module [68]. External factors include degradation of materials 

used to encapsulate the cells, dirt deposited on the cell surface, different temperatures 

[89] and shading [90]. In particular, partial shading of PV modules occurs when these are 

subjected to passing clouds, smog layer or common urban elements such as chimneys, 

electricity pylons and surrounding buildings and dirt. When modules with different 
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electrical characteristics are connected in a PV array [91], the mismatch issues become 

critical. In fact, the solar module in the worst operating condition determines the output 

current of the entire series-connection, leading also to non-recoverable reverse bias 

breakdown, hotspot phenomena and excessive power depletion as a result of mismatch 

effects [78] [91–93]. Since mitigation of mismatch losses in a solar array is always 

necessary, most commercial PV modules incorporate one or more bypass diodes, inserted 

in parallel to a group of cells series- connected [95].  

 

Figure 2.6 Connection Topologies of the PV Array. 

(a) Series array, (b) parallel array, (c) series-parallel array, (d) total-cross tied array, (e) 

bridge-link array and (f) honey-comb array. 

The presence of bypass diodes significantly affects the electrical curves of the PV 

array and creates one or more local maximum power points (MPP) in the P–V 

characteristic when a significant mismatch occurs, see Fig. 2.1. Therefore, distortion of 
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shaded I–V curve may lead to an error in the determination of the global MPP [93]. In the 

literature, some efficient simulation tools have been described [96–98]. 

2.2.1 Reconfiguration Strategies 

In the literature, many alternative array interconnection topologies have been 

proposed for reducing mismatch losses [99–100]. Series and parallel topologies, Fig. 2.7 

a and b, are the basic configurations, with the main disadvantages that, respectively, the 

current and the voltage are below the practical desired values. During partial shading, 

parallel-connected PV elements produce higher power than series-connected ones, since 

in the parallel connection the overall current is the summation of all the currents [81] and 

voltages do not vary very significantly [101]. However, higher currents flow in parallel-

connected elements, so that power losses [102] and voltage drops are generally higher 

and cabling is more expensive. In actual PV power plants, the serial-parallel (SP) is the 

most common connection. It is obtained connecting solar modules in series to form a 

string (necessary to reach the voltage required by inverter input ranges); strings are then 

connected in parallel to increase the total current (as shown in Fig. 2.7). 

In Total cross-tied (TCT) configurations (see Fig. 2.7 d), modules are first parallel 

tied so that voltages are equal and currents are summed up; many of these groups are then 

connected in series. Though under uniform conditions SP and TCT modules connection 

provide the same power value, the TCT topology reduces the overall effect of mismatch. 

In the Bridge-link (BL) topology, in Fig. 2.7 e, about half of the interconnections of the 

TCT topology are avoided, so that cable losses and wiring installation time are reduced 

[103]. Though, in larger installations the TCT arrangement can be easier to wire because 
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of the simplicity of the pattern [99]. Advantages shown by both TCT and BL topologies 

have been combined in the Honey Comb (HC) configuration (in Fig. 2.7 f). Although 

many convenient interconnection topologies have been developed, so far the most 

exploited solutions rely on TCT and SP module interconnections. In the following 

sections, the different reconfiguration approaches proposed in the literature have been 

discussed. 

 

Figure 2.7 Irradiance Equalization Example. 

(a) Before sorting, rows have different irradiance levels: 3200, 2600, 2800 and 3400 

W/m2; (b) changing PV modules position following a reconfiguration approach (modules 

3–11 and 8–13 have been switched, the irradiance could be equalized as 3000 W/m2) 

[104] 

2.2.2 Reconfiguration for TCT Topology 

As already discussed, the TCT interconnection allows to reduce the overall effects 

of mismatch. The challenge in a TCT reconfiguration technique consists in connecting 
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PV modules in irradiance-balanced tiers. An interesting optimization algorithm based on 

the use of an equalization index was presented in [104]. Irradiance equalization aims to 

obtain series connected tiers, also called rows, where the sum of the irradiances of the 

modules is the same; this results in a string where the circulating current is proportional 

to the given sum of irradiances of one row.  

The algorithm equalizes the available power on each row, thus n ideal current 

generators, with the same nominal values, are connected in the string, avoiding mismatch 

losses. Indicating with G the irradiance value of the module located on row I and column 

j within the topology showed in Fig. 2.8, the total irradiance of the row i is defined as 

𝐺𝑖 =
∑ 𝐺𝑖𝑗

𝑚
𝑗=1

𝑚
                                                         (4) 

where m is the number of modules that are parallel connected. For each configuration, the 

algorithm calculates the equalization index (EI) by means of the following expression: 

𝐸𝐼 = max
𝑖

(𝐺𝑖) − min
𝑖

(𝐺𝑖) ∀ 𝑖                                    (5) 

This index quantifies the degree of current limitation of the configuration and thus the one 

minimizing EI is selected. The secondary aim pursued by the algorithm is the smallest 

number of switching operations starting from the initial configuration. Under the same 

equalization index, the configuration with the least number of switching operations to be 

performed is selected. In [105] a PV generator with an electrical array configuration 

(EAR) controlled by the irradiance equalization algorithm has been presented. The EAR 

PV generator is composed of a static part, necessary to meet the input range constraints of 

the inverter and are configurable one, controlled by the irradiance equalization algorithm. 
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Although all the possible interconnections of PV modules are (m.n)! the total 

configurations of interest (C), namely the configurations delivering different values of 

output power, are 

𝐶 =
(𝑚 .𝑛)!

𝑚! .(𝑛!)𝑛
                                                         (6) 

with m and n, the number of rows and columns. All the configurations of interest can be 

achieved by using a number of switches, NSW equal to 

𝑁𝑆𝑊 = 2𝑁𝑃𝑉                                                       (7) 

These NSW switches are of single-pole m-throws type and NPV is the number of 

PV modules. It should be noted that, if not commercially available, it is necessary to 

emulate a m-throw switch by connecting m single pole switches in parallel, thus 

increasing NSW by a m factor as well as the overall control complexity. 

A variation of this technique was proposed in [106] as a mixed integer quadratic 

programming problem, which can be also applied when a non-equal number of modules 

per row is considered. In [107] a particular switching matrix, named Dynamic Electrical 

Scheme (DES) is proposed. It allows to implement two different reconfigurable 

controlling algorithms by computing the irradiance equalization. This solution creates 

rows with a non-equal number of modules, thus increasing the number of possible 

interconnection configurations. Calculation time, for a given number of modules, is fixed 

for the deterministic search algorithm, while in the random search algorithm it depends 

on the ending condition (e.g. prefixed number of iterations or flattening criterion). By the 

deterministic search algorithm, modules are ordered within the topology according to 
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decreasing irradiance values. First, the minimum (Nrow min) and maximum (N) number of 

rows of the optimized PV array are set. The algorithm then looks for the optimal 

configuration starting with a number of rows (Nrow max) equal to Nrow min. The first N 

Rows modules of the decreasing sequence are located one per row; then the remaining 

modules of the sequence are one by one connected to the row for which the sum of the 

irradiances of the modules already positioned is the minimum. After the last iteration, all 

modules are located and the total irradiations of rows are known. Then the algorithm 

calculates the equalization index by means of EI equation and stores it. The number N is 

thus increased and the same procedure is repeated until N. Finally, the optimal 

configuration is the one that minimizes the equalization index.  

The DES requires a number of switches NSW equal to 

𝑁𝑆𝑊 = (2𝑚𝑁𝑃𝑉)𝐷𝑃𝑆𝑇 + (𝑚)𝑆𝑃𝐷𝑇                                (8) 

where DPST are double-pole single-throw switches, NPV is the number of PV modules 

and m is the number of rows, supporting up to (m n)!/(n!)m configurations. Another 

method based on the irradiance equalization principle was presented in [108]. The 

proposed technique is an iterative and hierarchical sorting algorithm, designed to achieve 

a near optimum configuration in an efficient way in terms of number of iterations. The 

irradiances of cells are obtained, arranged in descending order and mapped to the matrix 

of the physical PV array. Next, all even rows are flipped left to right and added to the 

preceding odd row, resulting in an averaged matrix. This method is applied again, 

resulting in a second average. The process stops when all the rows have been considered. 

A number of padding rows of zeros can be added if the number of rows is not a power of 
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two nor an even number. Although the proposed interconnection matrix supports each 

row having arbitrary number of modules, the algorithm enables to build rows having the 

same number of modules only. If single-pole single throw (SPST) switches are used, the 

number of required switches, NSW is 

𝑁𝑆𝑊 = 𝑁𝑃𝑉. (𝑚2 − 𝑚)                                          (9) 

where m is the number of rows. In [109], a system architecture enabling the adaptive 

interconnection of solar cells inside a PV module was presented. This solution can be 

extended to a PV plant, where, instead of solar cells, many modules are considered. In 

this approach, a switching matrix connects a fixed number of fixed PV cells in a TCT 

topology, to another small reconfigurable (not fixed) bank of solar cells [110]. The 

number of switches required by this approach is smaller when compared to other 

solutions, for the presence of affixed part, thus enabling the use of simpler controlling 

algorithms. Under uniform irradiance conditions, static part and the adaptive one are 

connected together through the switching matrix. If the first row is shaded, its voltage V1 

is less than a threshold voltage; otherwise, when the jth row (with j≠1) is shaded, the 

output voltage is less than the quantity VX  

𝑉𝑜𝑢𝑡 < 𝑉𝑥(𝑤ℎ𝑒𝑟𝑒 𝑉𝑥 = 𝑚𝑉1)                                     (10) 

where m is the number of rows. Both conditions trigger the reconfiguration phase. The 

logic of this approach relies on connecting the most irradiated cell of the bank (with the 

maximum open-circuit voltage) to the most shaded row of the fixed part, in order to 

compensate the irradiance (and thus the voltage) drop. 
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A simple bubble-sort method and a quick model-based method are presented in 

[111] for controlling the switching matrix. In [112] a self-adaptive reconfiguration 

method based on fuzzy logic was proposed. When the voltage across a row is less than 

the threshold, the shading degree and the derivative of the irradiance are calculated, and 

then used as the inputs of a fuzzy controller. The latter calculates the number of PV cells 

of an adaptive bank needed to compensate the irradiance drop and then the 

reconfiguration is carried out. Finally, in [113] the Su Do Ku puzzle pattern is used to 

physical arrange modules in a TCT connected PV array, distributing the shading effects 

over the array and consequently reducing the occurrence of shaded modules in the same 

row. 

2.2.3 Reconfiguration in SP Topology 

Reconfiguration by means of SP topology aims to build strings of series-

connected modules with similar irradiance levels and then connecting all these strings in 

parallel. In this way, well irradiated solar panels will not be limited in current by a low 

irradiance panel of the same string. 

A Flexible Switch Array Matrix (FSM) was presented in [114]. The FSM is 

integrated with PV modules to form the Elastic Photovoltaic Structure (EPVS). In 

uniform conditions, the PV system operates as a central inverter topology and the DC/DC 

converter is not used. When mismatch occurs, the proposed system excludes the shaded 

PV modules, reconfiguring the remaining ones in the main PV strings (MPV) and, if 

necessary, a sub-PV string (SPV). MPV strings have an equal number of modules 

connected directly to the inverter input, while SPV has fewer modules so that the DC/DC 
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converter is used to connect this partial string to the inverter, thus avoiding mismatch 

losses. Four single-pole dual-throw (SPDT) switches are needed for every module, while 

two are required for the MPV bus and other two more for the SPV. The total number of 

required switches, NSW is given by the expression: 

𝑁𝑆𝑊 = (2𝑁𝑃𝑉)𝑆𝑃𝐷𝑇 + (2𝑁𝑃𝑉 + 4)𝑆𝑃𝑆𝑇                             (11) 

where NPV is the number of modules and 4 are the switches required for the MPV and 

SPV bus. The identification of the irradiance conditions of PV modules was achieved by 

measuring voltage, current and temperature of each module. In [115] a 9 module 

prototype system implementing this approach is presented, showing power gains 

compatible with simulation results. 

Another approach using DC/DC converter is presented in [116], where multiple 

strings, each containing substrings of similar power levels only, were created. All the 

strings were connected to a DC/DC converter array, converging to a unique dc bus. In 

[117] the aim was to build strings where solar cells having similar irradiance levels, G, 

are connected. First, the current (Ib) across every bypass diode of each cell is sensed; 

when Ib is greater than zero the cell is dark, otherwise the short-circuit current (ISC) is 

measured to classify the cell as bright or grey. The proposed strategy calculates the 

number of shaded (dark) cells and if this is greater than 15% of the total, the 

reconfiguration occurs. Cells of the same state are combined in strings (bright strings and 

grey strings), while dark cells are excluded from the array, since their power contribution 

is negligible. The proposed system senses temperature and open-circuit voltage of each 

cell for monitoring purposes [118]. 
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In [119] the Rough Set Theory (RST) is used to build an Automatic 

Reconfiguration System (ARS). For a SP topology of PV modules, different cases of 

shadowing conditions (when one or two modules are shaded) are considered and, for each 

of them, the most convenient SP connection of PV modules is selected. The RST helps to 

recognize similar or equivalent cases, producing simplified rules starting from the data of 

a decision table [120]. Each module of the PV array supplies a certain value of current 

i(k). When i(k) is less than a threshold current Iref (i(k) I0), the module is considered 

‘shaded’; on the contrary, if i(k) 4I the module is considered ‘unshaded’. For every 

module of the PV array, the information about its shading state is used by the set of rules 

and the correct rule is chosen. Every rule contains a switch configuration which sets the 

optimal configuration for the electrical connections of the panel.  

To summarize, some of the most interesting PV reconfiguration strategies for 

different PV plant topologies presented in the literature have been discussed. While many 

commercial solutions rely on the classic Series Parallel topology, the Total Cross Tied 

topology has raised a great interest from many authors. TCT offers effective optimization 

algorithms and higher flexibility, despite the higher currents of this topology usually lead 

to more expensive cabling, thus reducing the Return-on Investments (ROI) index. 

Furthermore, for small PV plants the overall voltage plant output is less than in the case 

of the SP topology. On the other hand, marketing target in the next years, could be the 

conversion of fixed PV plants into reconfigurable ones; in this way, keeping the SP 

topology will save re-designing efforts and costs. Adding a dynamic reconfiguration 

system to an existing PV plant that benefits from a particular feed in tariff would produce 

not only an increase of the energy produced but also an increase of the economic 
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advantages connected to the relevant feed in tariff. Nonetheless, it could be possible to 

design a reconfigurable interconnection device supporting both SP and TCT 

interconnection topologies at the same time, but on the other hand, many switches would 

be needed and, as a result, costs would be increased. Therefore, the interconnection 

topology should be chosen first. While it could be possible to address the TCT connection 

topology for new plant designs and the SP for the conversion of existing plants, a better 

comparison study on the TCT versus SP reconfigurable approach should be needed in 

terms of investments, reliability and power improvements. The overall complexity of the 

solution and total cost are indeed important factors to evaluate a proper reconfigurable 

approach. Further research on the topic should be addressed towards the definition of 

efficient switching matrices also taking into account the lifetime of switches, not only 

installation costs, as well as the identification of applicability issues for each considered 

strategy. 

2.3 Solar Monitoring Methods 

A monitoring system for a PV array is usually needed to collect power production and 

performance data as well as weather conditions. Several systems have already been 

developed to monitor PV arrays and modules. We look into some of these systems 

currently being used emphasizing systems that perform intra-array monitoring. The 

usability of each system varies depending on their targeted capabilities. This data enables 

to track the working conditions of each module, recognizing faulty solar panels, 

mismatch and partial shading conditions [121–124]. Monitored variables of interest are 

DC and AC electrical parameters (voltage, current, power), module and ambient 
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temperature, irradiance, wind speed and humidity [125,126]. While the majority of 

monitoring systems collect data at a whole plant level, sensing parameters that are closer 

to each module are necessary when a PV module fault detection and reconfiguration 

approach is adopted. As detailed in Section 2.2, most open loop control systems 

employed for dynamic reconfiguration purposes use the irradiance value since the 

irradiance equalization algorithm [127] requires the knowledge of the irradiance for every 

PV module. The most common method to sense the irradiance employs a pyranometer, 

thus common solar plants have one or few units for monitoring purpose. In order to have 

a good understanding of the spatial irradiance profile, one pyranometer per PV module 

should be used, consequently increasing costs. In chapter 4, approach estimates the 

irradiance level of each solar module by measuring the electrical characteristics of the 

modules. Voltage, current and temperature can be used in combination with the physical 

parameters of the given solar module to obtain the irradiance value using the PV 

electrical model in one diode model. In [104] and [114] a simplified model was used to 

estimate the irradiance, starting from the voltage and the current of the module. However, 

in many real-world situations, temperature effects should not be neglected since, under 

shadow conditions, the temperature difference between modules can be significantly 

greater than zero. Thus, the irradiance levels can be considerably different even if 

modules have compatible values of voltage and current. 

It is worth mentioning that, while in a SP topology it is necessary to acquire the 

voltage for each module but only the current of each string, in a TCT topology the 

voltage of every row and the current of each module are needed. Thus in a TCT topology 

more current sensors are used. Another approach relies on short circuit current sensing of 
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each module, estimating irradiance. The advantage of this method is that ISC has a linear 

dependence on irradiance [128] and also is not very sensitive to temperature variations, 

thus temperature measurements are not necessary. This approach however requires each 

solar module to be electrically disconnected from the PV array and to be short-circuited 

for every measurement, not only causing lack of its power contribution, but even leading 

to the stop of the inverter MPPT algorithm if the minimum voltage and current input 

ranges are not satisfied due to its exclusion. In order to avoid installing current sensors, 

usually more expensive than voltage sensors, the open-circuit voltage VOC, ISC and the 

temperature of each module can be measured and estimating irradiance. Even in this case, 

each solar module will be electrically disconnected from the PV array. In [128] a similar 

approach was used to evaluate irradiance levels, although the temperature is not acquired 

for each module. Monitoring a fixed PV plant in order to evaluate the affordability of its 

conversion to a reconfigurable plant is an issue of great interest. For such application, a 

wireless monitoring system [129] could be adopted for sensing the electrical 

characteristics of each module of the plant, thus processing the acquired data to evaluate 

the power improvement that could be obtained using a reconfigurable interconnection 

matrix.  

A monitoring system used to evaluate the performance of PV array installed on a 

building is given in [130]. The monitoring system measures voltage, current and power at 

the AC output of the inverter. It measures the solar intensity using two photo diode 

sensors and taking their average. Module internal temperatures are obtained using 

temperature sensors. The measurements are done over 20 minute intervals. The data can 

be used for both short term purposes such as monitoring the system’s status, and long 
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term purposes such as monitoring the deterioration of components. Comparison of the 

different strings helps evaluate the effect of shading on the array. The correlation of 

output power with temperature can be used to determine the effect of module temperature 

on output power for the same irradiance. These measurements can be used to evaluate the 

annual energy production and cost of electricity produced by the array. Measurements are 

transferred to a computer enabling internet access to the data. The authors mention the 

use of commercially available data acquisition systems to transfer the data to the 

computer. Here, the monitoring system does not consider module level measurements 

and communication systems for such an arrangement. Kolodenny et.al [131] propose an 

approach that uses modern informatics tools such as XML to analyze the acquired data. 

Their goal is to analyze the performance of a PV system of any type and size. They 

propose a protocol called PV markup language (developed from XML) to automatically 

access, extract and use data from several sensors systems/database sources. The system 

collects and classifies the data.  

A PV logger system constantly collects information about the state of the array (such 

as voltages, currents and irradiance) and updates it in a database. The system diagnostics 

retrieves the data and detects possible failures. This information is then updated in the 

database. The different users can query the database and obtain information they are 

interested in. The owner can view the overall system health and output of the array while 

the technician can view the PV system parameters. This work provides a comprehensive 

method to store and retrieve PV array data and can be used with different current voltage 

sensor location and weather data. However, it does not describe a complete PV 

monitoring system which includes sensing, data communication and user interface 
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systems. A simple and cost effective method of monitoring a PV power station using a 

GUI built in NI LabVIEW is presented in [132]. The set-up consists of current sensors for 

each string and voltage sensor for the array connected to a micro-controller through an 

analog multiplexer. Irradiance is measured using a pyranometer. Also included are 

sensors for measuring the module surface temperature. The collected data can be used for 

both monitoring and control. The micro-controller is interfaced to a laptop through a 

serial port where the data can be viewed and analyzed using a GUI designed using 

LabVIEW. The GUI provides views for PV array output and battery health and calculates 

PV expected outputs using the diode equivalent model given in Figure 1.2. This system 

does not consider module level sensor networks and communication systems for them. 
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Chapter 3 

PV ARRAY MONITORING SIMULATOR 

3.1 Overview of System 

This section provides a brief overview of the smart PV array monitoring simulator 

developed in laboratory environments. The simulator attempts to represent a PV array 

with a large number of PV modules, each attached to a smart sensor device as shown in 

Figure 3.1. These smart sensors communicate through a wireless sensor network with a 

monitoring station from which data and analytics can be obtained using an Internet 

connected smartphone, tablet or desktop PC. 

 

Figure 3.1 Concept of Smart PV Monitoring System. 

For the small scale simulator implementation, this monitoring system can be 

divided into basic building blocks as shown in Figure 3.2. The PV array laboratory 

simulator consists of a 4x4 array of solar panels in which 4 modules are connected in a 
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series string, and each of these 4 strings are then connected in parallel.  In actual field 

applications, monitoring is required for hundreds or thousands of panels. For the lab 

monitoring simulators, voltage dividers are used as voltage sensors. 

Other sensors include current sensors [133] based on variable resistors to detect 

current in each series string, a light-to-frequency meter to detect irradiance, and digital 

temperature sensor [134] for temperature. 

In our simulator, these sensors are connected to a 10-bit ADC of the 

ATMEGA328 microcontroller (part of Arduino Uno), which converts the analog signal to 

digital. The board is connected to the PC running LABVIEW and LABVIEW Web 

Services. The last sub-block is the end user, who can access data through a webpage or an 

app. 

 

Figure 3.2 Block Diagram of the Implementation. 

The implementation of the compact monitoring simulation system involves hardware 

and software design which will be discussed in the next sections. The data flow and the 

components involved is shown in Figure 3.3. 
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3.2 Hardware and Software Setup 

Hardware Design 

The hardware design includes two sections. The first is the PV array setup which 

describes the array configuration, sensors connected to array, and its topology 

connections in detail. 

The next section is the measurement circuit which discusses the sensors 

connected to this circuit, capability of Arduino board and its shields, as well as data 

communication of sensors to the measurement circuit and serial communication of the 

measurement circuit to PC. 

PV Array Setup 

Table 3.1 

Solar Panel Parameters. 

Symbol Cell Parameters Typical Ratings Units 

VOC Open circuit voltage 5.04 V 

ISC Short Circuit Current 200 mA 

VMPP Voltage at MPP 4.00 V 

IMPP Current at MPP 178 mA 

PMPP Max. Peak Power 714 mW 

FF Fill Factor >70 % 

ɳ Solar cell efficiency 22 % 
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The PV array consists of 16 solar panels (Part No. SLMD481H08L from IXYS 

Corporation) [135] in series-parallel configuration. PV panel parameters are given in 

Table 3.1. First, four solar panels are connected in a series string; each of these four 

strings are then connected in parallel to create a 4x4 array as described in Section 3.1. 

 

Figure 3.3 Solar Array Monitoring Simulator: Implementation Architecture and Data 

Flow. 
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The nodes in-between each of the solar panels are also connected to multiple 

voltage divider circuits acting as voltage sensors as shown in Figure 3.4. The 13 single-

ended voltages with respect to ground are fed to the measurement circuit, which 

computes the individual solar panel voltages. The measurement circuit has analog voltage 

input capacity of 0V-5V. The resistors in the voltage divider circuit are chosen in the 

ratio of 4:1 so that the maximum solar panel series string voltage (i.e. 20V) can be 

handled by the measurement circuit. A 1nF capacitor is also connected across the voltage 

divider to filter fluctuations in the analog voltages. 

Four current sensors (INA219) are used in series with each of the four series 

strings of solar panels. These current sensors are based on the principle of variable sense 

resistors and can measure up to 3.2A with a precision of 1%. Current readings from these 

current sensors are communicated to the measurement circuit using I2C. The temperature 

sensor (DS18B20) is a digital temperature sensor, and is connected to a digital port of the 

measurement circuit through a 4.7kΩ pull-up resistor. This temperature sensor has 

precision of 0.5°C. The TSL230BR−LF programmable light-to-frequency converter 

[136] is used as an irradiance sensor. This combines a configurable silicon photodiode 

and a current-to-frequency converter on single CMOS IC. The photodiode’s working 

wavelength range is from 320nm to 1050nm. Sensor output is a pulse train with 

frequency directly proportional to the irradiance on the photodiode. Pulse train output is 

connected to one of the PWM ports of the Arduino board. To complete the PV setup, a 

500W halogen lamp is used for the light source in the lab environment. The PV array is 

connected to a variable load (potentiometer) to plot voltage-current (V-I) and power-

voltage (P-V) characteristics curves. 
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Figure 3.4 Voltage Sensor Circuit with PV Array. 

Measurement Circuit 

The heart of the measurement circuit is the Arduino Uno board which 

communicates with a PC as well as multiple sensors in the PV array setup. 

Table 3.2 

Communication Ports of Measurement Circuit. 

Symbol Communication Protocols Arduino Ports Number of ports 

Voltage None (Analog Voltages) Analog I/O 13 

Current I2C SCL & SDA 2 

Temperature 1-Wire Protocol Digital I/O 1 

Irradiance PWM Digital I/O 1 

 

It is a microcontroller board based on the ATmega328 microcontroller. The 

Arduino has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 
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analog inputs, and a 16 MHz ceramic resonator for clock. A multiplexer shield is 

connected over the Arduino board to extend its capacity from 6 to 48 analog I/O ports. 

The communications channels and protocols for all the sensors have been listed in 

Table 3.2. The USB cable connected from the Arduino to the PC provides power for the 

sensors and a UART serial communication channel for transmission of sensor data. Then, 

using LABVIEW on the local PC, web server data can be displayed on a PC or mobile 

device. 

Software Design 

Software design was completed in multiple phases, including Arduino IDE 

programming, LABVIEW programming, HTML programming and smartphone app 

programming. We describe the details in the following. 

Arduino IDE Programming 

Arduino can be programmed using Arduino IDE in what is called a sketch. The 

sketch contains code to run a mux shield, temperature sensor, current sensor, irradiance 

sensor, etc. by using multiple support libraries for each sensor. A snapshot of the sketch 

using Arduino IDE is shown in Figure 3.5. The communication link is established when 

Arduino board is connected to the local PC running LABVIEW before transmission of 

data. 

The Arduino board communicates with the PC using a serial connection with 

Baud rate 115200 bits/s. The first data packet transmitted is the temperature reading. 

After constant intervals of time voltage, current, and irradiance readings are transmitted. 
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The next packets of data consist of 16 computed voltage readings, 4 current readings and 

1 irradiance reading. 

 

Figure 3.5 Arduino Sketch in Arduino IDE. 

LABVIEW Programming 

The LABVIEW project includes programs related to communication with 

Arduino, a display GUI for use on the local PC, and a web service for remote viewing of 

system data. Once the communication link is established between Arduino and PC, the 

character data is converted to numeric data, which is then displayed on the LABVIEW 

GUI as shown in the Figure 3.6. The PC GUI is divided into 5 tabs.  The first 4 tabs each 

display the current through one string and the voltages of the 4 modules within that 

string. The final tab displays a scatter plot of the V-I operating points and the I-V and P-

V characteristics of the array. 
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Figure 3.6 LABVIEW GUI Displaying Voltages, Current, Temperature and Irradiance. 

At the right side of the GUI, temperature and irradiance are displayed. The block 

diagram of the LABVIEW program (Figure 3.7) also shows connections between 

different LABVIEW blocks to run the LABVIEW web server. 

 

Figure 3.7 Block Diagram of LABVIEW Program. 

Measurements are logged in .csv files at all times. The LABVIEW block diagram 

also makes data variables available to an app that is running on a smartphone or tablet. 
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Webpage and Smartphone App Programming 

The LABVIEW web server has a webpage running on it which displays a 

description of the project and the data from the PV array setup. Using this webpage, 

sensor data stored in .csv files can be accessed remotely and analyzed with ease. 

Previously stored data for multiple operating conditions is also available as sample data 

when the web server is offline. The app required to display data remotely is Data 

Dashboard for LABVIEW (available on major mobile platforms). The app’s GUI display 

is similar to the PC GUI, but with additional optimizations for widely varying screen 

sizes of smartphones and data is sampled at every 0.3s. Larger screens devices like tablets 

automatically display more data than a smaller screen device like a smartphone. 

 

Figure 3.8 App Running on Tablet and Smart Phone. 

Figure 3.8 shows a snapshot of the app displaying four analog voltages of series 

connected solar panels (A1-A4) on a tablet and another snapshot of the app displaying 

analog voltage of single solar panel (A1) on a smartphone. 
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3.3 Operation and Results 

The experiments were performed by using the experimental setup shown in Figure 

3.9. The complete PV array setup, measurement circuit, a tablet, and a PC are connected 

with each other and various parameters are varied to observe their effects. 

 

Figure 3.9 Complete Experimental Setup. 

A) Halogen lamp B) LABVIEW on PC C) PV array setup D) Tablet with app E) 

Measurement circuit. 

The I-V characteristic curve is plotted for a single solar panel and resulted in a 

curve nearly identical to the one provided on the manufacturer’s data sheet (Figure 3.10). 

The slight deviations of the curve at the ends of the I-V curve are due to use of a low 

precision potentiometer which acts as a load to the solar panel. Similarly, the P-V 

characteristic is also plotted in Figure 3.10, with a red circle indicating the maximum 

power point of the panel. 
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Figure 3.10 Characteristic V-I and P-V Curves of a Single Solar Panel. 

Effect of Shading 

Experiments to observe effect of shading were performed when single or multiple 

solar panels were shaded. As expected, the voltage across the series string dropped down 

if one of the panel was shaded as shown in Figure 3.11. But, the current remains the same 

for the series string. 

 

Figure 3.11 Effect of Shading. 
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Effect of Topology 

Variation of topology, i.e. connections between multiple solar panels, was tested. 

It was observed that in parallel combination, the fault in a single solar panel would not 

affect the performance of other solar panels. However, in the case of series-parallel 

connection, a fault in a single solar panel causes the voltage across the whole series string 

to go down. 

The output of the series string is limited by the current of the worst performing 

panel. The above effects can also be shown by using a scatter plot which include the 

sample I-V operating points of each solar panel. If the sample points are scattered (Figure 

3.12), then it indicates that there is a fault in the PV array and if the points are clustered 

together, the array is working normally (Figure 3.13). 

 

Figure 3.12 Scatter Plot for Faulty Operation. 
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Figure 3.13 Scatter Plot for Normal Operation. 

3.4 Android App Development 

An easy to use custom android application to view the collected data is in 

development. Details of the app design are described in this section. On startup of the 

app, the user is prompted for the server address, and then a progress bar is displayed as it 

downloads the necessary data. The main interface consists of three display tabs. The first 

tab displays the power output, temperature, and irradiance of the array. The central graph 

displays the total power production, and each “slice” of the pie chart can be selected for 

additional information. The data of these figures can be real time data or average data 

over a time period according to user settings. The temperature and irradiance have a 

variety of icons (partial cloudy, sunny day, high temperature, low temperature) which 

adjust based on the value. The next tab, “Graph”, expands much of this information into a 

time series plot. The last tab a simplified electrical schematic of the array.  The panel 

icons can be clicked to display unique information of each solar panel, such as real time 
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voltage, current, and power. Future features which will be added include a comparison of 

current power generation to the average, the theoretical predicted power, and the peak 

power for a period. The snapshots for the app in development are shown in Figure 3.14. 

 

Figure 3.14 Snapshot of Custom Monitoring App. 

Usefulness of the Simulator 

 The monitoring simulator is useful in capturing common faults in the system like 

shading, change of load, soiling, line to line fault and ground faults. There are many more 

faulty situations that can’t be captured on the monitoring simulator like effect partial 

shading on a single solar panel, islanding, mismatch loss conditions, etc. This is due to 

limitation of small scale fixed configuration of the array as well as the use of a halogen 

lamp as virtual light source (it does not capture the complete spectrum of natural light). 

Although there are some limits to which simulator can be used, because of the ease of use 

and the compact size makes it suitable for lab usage. 
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Chapter 4 

IRRADIANCE ESTIMATION FOR A SMART PV ARRAY 

4.1 PV Array Under Partial Shading Conditions 

We consider the problem of deriving a circuit model of a PV array under partial 

shading conditions, using only voltage, current, and temperature measurements from 

every module. Several factors complicate this task and make it non-trivial. Since 

measurements are taken on an active and functioning array, I-V curves from individual 

modules are not available. Also, since partial shading is present, we can no longer assume 

that module-level measurements are taken at the modules’ maximum power point (MPP). 

This is because an inverter with maximum power point tracking (MPPT) will seek the 

array’s maximum power point, causing some or all of the modules to operate away from 

their own MPP. Finally, shading affects not only the power of the incoming solar 

radiation, but its spectrum as well. Air mass models exist to predict the effect of changing 

solar spectral characteristics [137], but these typically assume light travels through clear, 

dry air. 

4.2 The UW-Madison PV Circuit Model 

 

Figure 4.1 Single-Diode Model of PV Module with Parasitic resistances. 

IL

ID

Icell

+

-

Rsh

Rs

Sunlight

Vcell



52 

 

 

Figure 4.2 Normalized Error in Irradiance Estimates as a Function of Error in 

Temperature. Sharp NT-175U Module at Standard Reference Conditions and Maximum 

Power Point. 

Multiple models exist to predict PV module behavior as a function of 

environmental conditions, including the Sandia model developed by King et al. [138] and 

the UW-Madison model developed by De Soto [139]. For the work described here, the 

UW- Madison model was chosen for several reasons. First and most importantly, it is 

acceptably accurate for modeling the behavior of crystalline silicon PV modules under a 

variety of conditions. Second, the model requires only the information from a 

manufacturer’s data sheet, with no additional measurements needed. Finally, the model 

gives an explicit representation of a PV module as an electrical circuit (Fig 4.1), allowing 

easy simulation of arrays as soon as model parameters are determined. In contrast, the 

Sandia model is highly accurate, but depends on extensive measurements of modules 

beyond what is typically available from manufacturers and does not give an easily 

simulated circuit representation of a module. 
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The Single-Diode Circuit Model 

The heart of the UW-Madison model is the single-diode PV Cell model with 

series and shunt (parallel) resistances, shown in Fig. 4.1. This model captures the 

essential behavior of conventional crystalline silicon PV models. The UW-Madison 

model extends the single-diode representation with a semi-empirical model of the 

variation in circuit parameters as environmental conditions change. The diode current ID 

as a function of diode voltage VD is given by the Shockley diode equation, 

𝐼𝐷 = 𝐼0(exp[𝑉𝐷] − 1)                                            (12) 

where I0 is the diode reverse saturation current and a is the modified ideality factor of the 

module, described below. a reflects more than the ideality factor of the P-N junction in 

the PV cell; it also includes the effect of temperature and the fact that PV modules 

contain many cells in series. “a” is defined as 

𝑎 =
𝑁𝑠𝑛1𝑘𝑏𝑇𝑐

𝑞
                                                  (13) 

where Tc is the absolute cell temperature, kb is the Boltzmann constant, q is the electron 

charge, n1 is the ideality factor as it is usually defined, and Ns is the number of cells in 

series. n1 typically takes values between 1 and 2, while NS typically takes values on the 

order of 10-100 cells, leading to a diode with a threshold voltage in the tens of volts. 

This diode model leads to the following transcendental equation for module 

current I as a function of module voltage V: 

𝐼 = 𝐼𝐿 − 𝐼0 (𝑒𝑥𝑝 [
𝑉+𝐼𝑅𝑠

𝑎
] − 1) −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
                             (14) 
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Variation with Environmental Conditions 

The single-diode PV cell model described in previous section determines the 

behavior of a PV module at the manufacturer’s specified operating conditions. The UW-

Madison model extends this representation by defining the values of the circuit 

parameters as environmental conditions vary. Current IL in (14) varies as a function of 

incoming irradiance S, air mass A, and cell temperature TC. Its behavior is given by 

𝐼𝐿 =
𝑆

𝑆𝑟𝑒𝑓
𝑓1(𝑀)[𝐼𝐿,𝑟𝑒𝑓 + 𝛼𝐼𝑆𝐶

(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓)]                          (15) 

where Sref, Mref, and Tref are the values of irradiance, air mass, and temperature at the 

manufacturer’s reference conditions. αISC is the temperature coefficient of short circuit 

current, given by the manufacturer. f1(M) is the air mass modifier and is common to all 

modules of the same type (e.g. crystalline silicon). f1 has been determined empirically in 

[138]. 

The diode behavior is affected by both the temperature dependence in (13) and by 

changes in I0. I0 is dependent on temperature through changes in the density of charge 

carriers and changes in the band gap of the material. This dependence is modeled as 

𝐼0 = 𝐼0,𝑟𝑒𝑓 (
𝑇𝐶

𝑇𝐶,𝑟𝑒𝑓
)

3

𝑒𝑥𝑝 [(
𝐸𝑔,𝑟𝑒𝑓

𝑇𝐶,𝑟𝑒𝑓
−

𝐸𝑔

𝑇𝐶
) (

𝑞

𝑘𝑏
)]                          (16) 

𝐸𝑔 = 𝐸𝑔,𝑟𝑒𝑓[1 − 0.0002677(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓)]                             (17) 

where Eg is the material’s band gap and I0,ref, Tc,ref, and Eg,ref are the values of I0, TC, and 

Eg at reference conditions. The parasitic resistance Rs and Rsh are modeled as follows. RS 
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is found to have a minimal effect on the I-V curve and is assumed constant at its 

reference value. Rsh is modeled as being inversely proportional to incoming irradiance: 

𝑅𝑠ℎ = 𝑅𝑠ℎ,𝑟𝑒𝑓
𝑆𝑟𝑒𝑓

𝑆
                                                 (18) 

Taken together, (12), (15), and (18) define a circuit model for the PV module under all 

operating conditions. 

4.3 Irradiance Estimation Procedure 

The PV array model described in Section 4.2 can be used to derive a method for 

estimating the irradiance S from measurements of I, V, and TC. Solving the system of 

(14), (15), and (18) for S yields the expression 

𝑆 = 𝑆𝑟𝑒𝑓 (
𝐼+𝐼0(𝑒𝑥𝑝[

𝑉+𝐼𝑅𝑠
𝑎

]−1)

𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶−𝑇𝐶,𝑟𝑒𝑓)]−

𝑉+𝐼𝑅𝑠
𝑅𝑠ℎ,𝑟𝑒𝑓

)                                    (19) 

4.4 Sources of Error 

The irradiance estimation procedure described in Section 4.3 is clearly accurate when 

V, I, M, and TC are perfectly known and the model perfectly matches the behavior of the 

device. However, none of these conditions holds true in practice: measurements are 

always noisy and the UW-Madison model is only an approximation of device behavior. 

Furthermore, cell temperature TC in our implementation is estimated from module back-

surface temperature. King gives a model [138] for estimating the temperature difference 

between cell and module back surface temperatures, but this is of course not perfectly 

accurate. Finally, Air mass M is typically calculated based on the solar zenith angle [137] 

but these functions are unlikely to be accurate under partial shading conditions. The 
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source and intensity of shade (e.g. clouds vs. buildings) will affect air mass in ways that 

cannot be feasibly predicted by any method we are aware of. This section examines the 

effects of several potential sources of error on the accuracy of estimated irradiance S, and 

maximum power current, voltage, and power IMP, VMP, PMP. 

Measurement Noise 

The relationship between noise in model inputs and error in output is extremely 

important, but the complex and non-linear input/output relationship makes evaluating 

these effects non-trivial. We examine this important relationship between input noise and 

output error using the widely used first-order propagation of error equation. Assuming 

statistical independence between sources of error, this relationship is given by 

𝑣𝑎𝑟(𝑓(𝑥, 𝑦, 𝑧, … )) ≈
𝜕2

𝜕𝑥
(𝜎𝑥

2) +
𝜕2

𝜕𝑦
(𝜎𝑦

2) +
𝜕2

𝜕𝑧
(𝜎𝑧

2) + ⋯                   (20) 

 

Figure 4.3 Airmass Factor f1(m). 



57 

 

 

Figure 4.4 Normalized Error in Estimated Irradiance for Varying Air Mass for Sharp NT-

175U1 Module, Other Parameters held at STC. 

Evaluating each partial derivative in (20), we arrive at the following expressions. 

𝜕

𝜕𝑇𝑐
(

𝑆

𝑆𝑟𝑒𝑓
) =

𝐼0 [𝑒𝑥𝑝 [
(𝑉 + 𝐼𝑅𝑠)𝑞
𝑁𝑠𝑛1𝑘𝑏𝑇𝑐

] (
3𝑇𝐶

2

𝑇𝐶,𝑟𝑒𝑓
3 −

(𝑉 + 𝐼𝑅𝑠)𝑞
𝑁𝑠𝑛1𝑘𝑏𝑇𝐶

2 +
𝐸𝑞

𝑇𝐶
2

𝑞
𝑘𝑏

)]

𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓)] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ,𝑟𝑒𝑓

 

−
[𝐼+𝐼0(𝑒𝑥𝑝[

(𝑉+𝐼𝑅𝑠)𝑞

𝑁𝑠𝑛1𝑘𝑏𝑇𝑐
]−1)]𝑓1(𝑀)𝛼𝐼𝑆𝐶

[𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶−𝑇𝐶,𝑟𝑒𝑓)]−

𝑉+𝐼𝑅𝑠
𝑅𝑠ℎ,𝑟𝑒𝑓

]

2                              (21) 

𝜕

𝜕𝐼
(

𝑆

𝑆𝑟𝑒𝑓
) =

1 + 𝐼0
𝑅𝑠

𝑎 𝑒𝑥𝑝 [
𝑉 + 𝐼𝑅𝑠

𝑎 ]

𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓)] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ,𝑟𝑒𝑓

 

−
𝑅𝑠/𝑅𝑠ℎ,𝑟𝑒𝑓[𝐼+𝐼0(𝑒𝑥𝑝[

𝑉+𝐼𝑅𝑠
𝑎

]−1)]

[𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶−𝑇𝐶,𝑟𝑒𝑓)]−

𝑉+𝐼𝑅𝑠
𝑅𝑠ℎ,𝑟𝑒𝑓

]

2                           (22) 
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𝜕

𝜕𝑉
(

𝑆

𝑆𝑟𝑒𝑓
) =

𝐼0

𝑎 𝑒𝑥𝑝 [
𝑉 + 𝐼𝑅𝑠

𝑎 ]

𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓)] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ,𝑟𝑒𝑓

 

−
1/𝑅𝑠ℎ,𝑟𝑒𝑓[𝐼+𝐼0(𝑒𝑥𝑝[

𝑉+𝐼𝑅𝑠
𝑎

]−1)]

[𝑓1(𝑀)[𝛼𝐼𝑆𝐶
(𝑇𝐶−𝑇𝐶,𝑟𝑒𝑓)]−

𝑉+𝐼𝑅𝑠
𝑅𝑠ℎ,𝑟𝑒𝑓

]

2                           (23) 

The following sections further explore the robustness of the algorithm. 

Air Mass 

Absorption and scattering of light by the atmosphere changes the spectrum of 

incoming radiation, which in turn affects the output power of a PV cell. The air mass 

environmental parameter is used to model this effect. Air mass M is a dimensionless 

quantity representing the number of atmospheres light must travel through in order to 

reach the module. Orbiting satellites receive radiation with M=0, while a module at sea 

level with the sun directly overhead receives M=1. Air mass 1.5 has been arbitrarily 

chosen as a typical value, balancing the low airmass of midday with the higher air mass 

experienced when the sun is at a lower angle. In the PV performance models considered 

here, the air mass modifier f1(M) summarizes the effect of changing air mass on power 

output. f1(M) is a fourth-degree polynomial with empirically determined coefficients: 

𝑓1(𝑀) = 𝑎0 + 𝑎1𝑀 + 𝑎2𝑀2 + 𝑎3𝑀3 + 𝑎4𝑀4                        (24) 

Figure 4.3 shows King et al.’s values for f1(M) for a typical crystalline silicon PV 

module, with airmass ranging from 1 to 35, corresponding to solar zenith angles of 

approximately 0 to 90 degrees. The air mass modifier is potentially problematic for the 

irradiance estimation procedure presented here, since the effect of partial shading on the 
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spectrum of incoming light is unknown. However, the air mass modifier f1(M) is very 

near 1 for air mass 1<M<4. The vast majority of available solar energy arrives at a zenith 

angle of 75 degrees or less, indicating that the effect of air mass can be neglected without 

destroying the fidelity of the estimation, at least as far as modeling of partial shading is 

concerned. Figure 4.4 shows the effect of error in airmass on estimated irradiance at STC. 

Note that if an airmass of 1.5 is assumed by the algorithm, an irradiance error of only 

approximately 4% is observed, even if actual airmass is a relatively large value of 3.5. 

Temperature Bias 

Module back surface temperature measurements are easy to acquire, but do not 

accurately represent the cell temperature. A reasonably accurate method has been 

proposed to estimate cell temperature [140], but this remains a potential source of error 

for the irradiance estimation algorithm. Persistent temperature errors of up to 4◦ C may 

occur. 

A first-order description of the relationship between temperature bias and error 

has already been given in Section 4.4. Figure 4.2 extends this model by plotting the error 

in irradiance as a function of the error in temperature bias at STC (standard test 

conditions), as well as three other temperature and irradiance conditions. Temperature 

errors of 4 degrees or less produce at most a 0.2% error in estimated irradiance, 

corresponding to an error of only 2 W/m2. In a mismatch mitigation application this is an 

acceptable level of error. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

The third chapter considers a PV array monitoring system where smart sensors are 

attached to the PV modules and transmit data to a monitoring station through wireless 

links. These smart monitoring devices can be used for fault detection and management of 

connection topologies. And, a compact hardware simulator of the smart PV array 

monitoring system is described. The voltage, current, irradiance, and temperature of each 

PV module are monitored and the status of each panel along with all data is transmitted to 

a mobile device. The system is implemented with an Arduino board to measure, record 

and analyze data from multiple sensors connected to a series-parallel configuration 4x4 

PV array system. LABVIEW and Arduino board programs have been developed to 

display and visualize the monitoring data from sensors. The simulator was successfully 

tested for demonstrations in a laboratory environment. Various PV array conditions 

including shading, faults, and loading are simulated and demonstrated.  All data is saved 

on servers and mobile devices and desktops can easily access analytics from anywhere. 

The smartphone app has also made the system data accessible from anywhere on any 

device. Improvements can be achieved by customizing the smartphone app so that a 

technician can easily decipher the information and check for faults in the system. Finally, 

our implementation can also be used for educational purposes in classrooms, where 

students can observe and better understand the operation of PV arrays. 

In the fourth chapter, the algorithm presented accurately estimates circuit parameters 

when air mass and cell temperature are known and measurements are accurate, Further, it 
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shows graceful degradation when measurements are noisy. While the irradiance 

estimation method shows sufficiently good performance to be useful, there are several 

potential improvements. This method is not known to be optimal. To this end, work is in 

progress to formulate and solve the problem in a Bayesian framework. This would allow 

several desirable behaviors, such as automatically rejecting irradiance values greater than 

what is possible from full sun. This would be especially useful for modules operating at 

higher voltages than VMP, where estimation is expected to become less accurate. Another 

effect which should be taken into account is the presence of bypass diodes in each 

module. Under sufficient shading, a PV module becomes reverse biased and a diode 

activates to protect the module and conduct excess current beyond the module’s short 

circuit current ISC. Also, this presents potential problems for the estimator, since it was 

developed without regard for the presence of bypass diodes. However, we believe that 

larger errors due to the action of bypass diodes are only mildly problematic, since the 

primary purpose of the algorithm is to identify shaded modules; this task is relatively 

trivial if shading is severe enough to activate bypass diodes. In this case, our method’s 

estimated irradiance is expected to act as an upper bound on the module’s actual 

irradiance. In spite of these shortcomings, however, the irradiance estimation procedure 

serves its intended purpose. Errors under 5% are unlikely to result in incorrect decisions 

regarding array electrical configuration. As part of a larger system of array monitoring 

and control, the method presented here allows for increased power output under partial 

shading conditions. 
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//Firmware Code burned onto the Arduino board to transmit all the sensors data to the 

control PC running LABVIEW. 

//Mux Shield for analog inputs 

#include <MuxShield.h> 

#include <Wire.h> 

//Current Sensor 

#include <Adafruit_INA219.h> 

//Temperature Sensor 

#include <OneWire.h> 

#include <DallasTemperature.h> 

// Data wire is plugged into pin 5 on the Arduino 

#define ONE_WIRE_BUS 5 

//Initialize the Mux Shield 

MuxShield muxShield; 

//Arrays to store analog values after recieving them 

int IO1AnalogVals[16]; 

int IO2AnalogVals[16]; 

int IO3AnalogVals[16]; 

//Intialize Four Current Sensors 

Adafruit_INA219 ina219_A; 

Adafruit_INA219 ina219_B(0x41); 

Adafruit_INA219 ina219_C(0x44); 

Adafruit_INA219 ina219_D(0x45); 

// Setup a oneWire instance to communicate with any OneWire devices (not just 

Maxim/Dallas temperature ICs) 

OneWire oneWire(ONE_WIRE_BUS); 

// Pass our oneWire reference to Dallas Temperature.  

DallasTemperature sensors(&oneWire); 

//Variables for Timing and establishing connection 

int ledPin=13; 
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//   double t = 0; 

//   double s = 0; 

void setup(void)  

{ 

//Temperatur Reading 

// Start up the One Wire And Temperature Sensor Library 

sensors.begin(); // IC Default 9 bit. If you have troubles consider upping it 12. Ups the 

delay giving the IC more time to process the temperature measurement 

// call sensors.requestTemperatures() to issue a global temperature  

// request to all devices on the bus 

sensors.requestTemperatures(); // Send the command to get temperatures 

//delay(6000); 

//Set I/O 1, I/O 2, and I/O 3 as analog inputs 

muxShield.setMode(1,ANALOG_IN); 

muxShield.setMode(2,ANALOG_IN); 

muxShield.setMode(3,ANALOG_IN); 

//CurrentSensing Frequency 

uint32_t currentFrequency; 

//Current Sensing Begin 

ina219_A.begin();// Initialize first board (default address 0x40) 

ina219_B.begin();// Initialize second board with the address 0x41 

ina219_C.begin();// Initialize second board with the address 0x44 

ina219_D.begin();// Initialize second board with the address 0x45 

// s=millis();  

// start serial port at 115200 bps:     

Serial.begin(115200); 

digitalWrite(ledPin,HIGH); 

//establishContact();  // send a byte to establish contact until receiver responds 

digitalWrite(ledPin,LOW); 
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Serial.println(sensors.getTempCByIndex(0)); // Why "byIndex"? You can have more 

than one IC on the same bus. 0 refers to the first IC on the wire} 

void loop(void)  

{float current_mA_A = 0; 

float current_mA_B = 0; 

float current_mA_C = 0; 

float current_mA_D = 0; 

current_mA_A = ina219_A.getCurrent_mA(); 

current_mA_B = ina219_B.getCurrent_mA(); 

current_mA_C = ina219_C.getCurrent_mA(); 

current_mA_D = ina219_D.getCurrent_mA(); 

//Current values 

for (int i=0; i<13; i++) 

{ 

Serial.print(float(muxShield.analogReadMS(1,i)*4.96 / 1023)); 

Serial.print(" ");} 

Serial.print(current_mA_A);Serial.print(" "); 

Serial.print(current_mA_B);Serial.print(" "); 

Serial.print(current_mA_C);Serial.print(" "); 

Serial.println(current_mA_D);} 

//Code For Establishing Connection with the COM port 

void establishContact() { 

while (Serial.available() <= 0) { 

Serial.println('B');   // send a capital A 

delay(100);}} 


