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ABSTRACT 

 

The complex life cycle and widespread range of infection of Plasmodium parasites, the 

causal agent of malaria in humans, makes them the perfect organism for the study of 

various evolutionary mechanisms. In particular, multigene families are considered one of 

the main sources for genome adaptability and innovation. Within Plasmodium, numerous 

species- and clade-specific multigene families have major functions in the development 

and maintenance of infection. Nonetheless, while the evolutionary mechanisms 

predominant on many species- and clade-specific multigene families have been 

previously studied, there are far less studies dedicated to analyzing genus common 

multigene families (GCMFs). I studied the patterns of natural selection and 

recombination in 90 GCMFs with diverse numbers of gene gain/loss events. I found that 

the majority of GCMFs are formed by duplications events that predate speciation of 

mammal Plasmodium species, with many paralogs being neutrally maintained thereafter. 

In general, multigene families involved in immune evasion and host cell invasion 

commonly showed signs of positive selection and species-specific gain/loss events; 

particularly, on Plasmodium species is the simian and rodent clades. A particular 

multigene family: the merozoite surface protein-7 (msp7) family, is found in all 

Plasmodium species and has functions related to the erythrocyte invasion. Within 

Plasmodium vivax, differences in the number of paralogs in this multigene family has 

been previously explained, at least in part, as potential adaptations to the human host. To 

investigate this I studied msp7 orthologs in closely related non-human primate parasites 

where homology was evident. I also estimated paralogs’ evolutionary history and genetic 
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polymorphism. The emerging patterns where compared with those of Plasmodium 

falciparum. I found that the evolution of the msp7 multigene family is consistent with a 

Birth-and-Death model where duplications, pseudogenization and gene lost events are 

common. In order to study additional aspects in the evolution of Plasmodium, I evaluated 

the trends of long term and short term evolution and the putative effects of vertebrate- 

host’s immune pressure of gametocytes across various Plasmodium species. 

Gametocytes, represent the only sexual stage within the Plasmodium life cycle, and are 

also the transition stages from the vertebrate to the mosquito vector. I found that, while 

male and female gametocytes showed different levels of immunogenicity, signs of 

positive selection were not entirely related to the location and presence of immune 

epitope regions. Overall, these studies further highlight the complex evolutionary patterns 

observed in Plasmodium. 
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CHAPTER 1. INTRODUCTION 

This work focuses on understanding evolutionary mechanisms affecting the 

evolution of multigene families using Plasmodium spp., the causal agent of malaria in 

humans, as a model organism. The putative selective role of host-parasite interactions 

from a complex life cycle is evaluated. In addition, both short and long term evolutionary 

trends of transmissible Plasmodium spp. stages are explored. 

1.1 Plasmodium life cycle 

The Plasmodium life cycle begins when sporozoites are injected into the 

vertebrate host after an Anopheles mosquito feeds from an infected vertebrate host. 

Sporozoites travel to the host liver and within minutes invade the host’s hepatocytes and 

replicate as hepatic schizonts. Eventually, merozoites are produced and released into the 

blood stream completing the exo-erythrocytic cycle. In certain Plasmodium species (P. 

vivax, P. ovale and P. cynomolgi), some of the liver parasites remain quiescent only to 

resume replication after several weeks or months. This life cycle stage, which is known 

as the hypnozoite (Dembélé et al., 2014; Siciliano and Alano, 2015), is thought to cause 

malaria relapses (Markus, 2015).  

After entering the blood stream, parasites invade the host red blood cells and 

undergo several rounds of asexual replication (the erythrocytic cycle). Invasion of new 

red blood cells occurs when already infected ones are ruptured by the formation of 

mature schizonts and the release of new merozoites (Siciliano and Alano, 2015). 

Symptoms associated with malaria infection are caused by the cycle of parasite 

replication, red blood cell invasion, rupture and release of merozoites. Variation in the 
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periodicity of this cycle, as well as in the type of red blood cells infected by the parasite, 

are commonly observed among Plasmodium species (Carlton et al., 2008). A small 

proportion of parasites commit to the sexual pathway and differentiate into male and 

female gametocytes (Kuehn et al., 2010). This differentiation is highly flexible and is 

thought to be mediated by a variety of biological and environmental stressors (Alano, 

2007; Talman et al., 2004). When ingested during the mosquito blood meal, various 

changes in parasite environment (drop of body temperature, presence of xanthurenic acid 

and increase of pH) result in gametocyte activation and the formation of gametes (Sinden, 

2015).  

Finally, gametes fuse in the Anopheles mosquito midgut and produce a zygote, 

which later develops into a motile ookinete capable of traversing the midgut epithelium 

and transforming into an oocyst. The thousands of sporozoites produced by the oocyst 

proceed to navigate towards the mosquito’s salivary glands where they can be injected 

into another vertebrate host and complete the sporogonic cycle (Siciliano and Alano, 

2015).  

1.2 Plasmodium and host interaction  

Parasites of the Plasmodium genus are capable of infecting a wide range of 

vertebrate hosts; however, each Plasmodium species can only infect certain host types 

(e.g., reptiles, birds, rodents and primates). Several studies have shown that parasite 

adaptation can occur as a response to interaction with different types of vertebrates (e.g., 

primates vs. rodents), and variable selective constraints (Assefa et al., 2015; Frech and 

Chen, 2011; Prugnolle et al., 2008). It is possible for host-switch events to occur when 
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closely related vertebrates share a common environment (Krief et al., 2010; Mu, 2005). 

The causal agents of major human malarias, P. vivax and P. falciparum, are thought to 

have originated from two independent host-switch events between humans, Southeast 

Asian macaques (Carlton et al., 2013; Escalante et al., 2005) and African gorillas (Liu et 

al., 2010), respectively. Thus, host-switch events are fundamental in the evolutionary 

history of Plasmodium (Duval and Ariey, 2012).  

Plasmodium parasites also spend part of their life cycle in an Anopheles mosquito 

vector. Parasite-vector associations are thought to be species-specific to a certain extent, 

with some mosquito species having higher vectorial capacity than others (Kamali et al., 

2012; Tainchum et al., 2015). Furthermore, numerous studies have found evidence that 

both P. falciparum and P. vivax are adapted to different Anopheles mosquito species 

worldwide (Sinka et al., 2012), and that selection leading to parasite adaptation to 

different vector species can occur locally (Joy et al., 2008; Molina-Cruz et al., 2012). 

1.3 Origins of Plasmodium spp. - host associations 

Vectorial capacity seems to have been gained independently after the divergence 

of various mosquito lineages (Kamali et al., 2012). Primary P. falciparum vectors, 

Anopheles gambiae and An. funestus diverged between 30-40 Mya, while the main Asian 

and South American vectors of P. vivax (An. stephensi and An. darlingi, respectively) are 

thought to have diverged approximately 100 Mya (Kamali et al., 2014; Neafsey et al., 

2015). In contrast, when measured using protein-coding nuclear genes and the rate of 

pairwise amino acid sequence divergence, Plasmodium parasite associations with their 

respective vertebrate hosts are thought to be more recent. Specifically, the split of P. 
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falciparum and P. reichenowi is thought to have occurred about 3.0–5.5 Mya, a time that 

overlaps with the estimated divergence between humans and chimpanzees (4.9-6.8 Mya) 

(Kumar et al., 2005; Schrago and Voloch, 2013). On the other hand, parasites of the 

rodent clade are estimated to have diverged around 13-25 Mya, coinciding with the 

diversification of the family Muridae (Silva et al., 2015). Overall, mammal malarias are 

thought to have radiated approximately in the late Mesozoic (around 64 Mya), 

establishing an overlap with the divergence between the primate and rodent lineages 

(Silva et al., 2015).  

1.4 Immune response to Plasmodium spp. infection and parasite’s evasion 

Innate immune mechanisms, thought to be triggered by conserved molecules 

among Plasmodium species, limit the initial density of blood-stage parasites irrespective 

of the Plasmodium species or strain (Stevenson and Riley, 2004). Immune mechanisms 

directed at blood-stage parasites involve inflammatory processes and antibody responses. 

Inflammation is triggered by pattern recognition receptors (PRRs) expressed by immune 

cells in response to P. falciparum infection (Crompton et al., 2014).  In addition, 

immunoregulatory cytokines (IL-10 and TGF-ß), which contribute to the regulation of 

innate responses, are produced by the innate (macrophages) and adaptive (T cells) 

immune systems. Production of these cytokines activates the dendritic cells (DC), 

enhances the effect of parasite-derived maturation stimuli, and facilitates clonal 

expansion of antigen-specific CD4+T cells (Pouniotis et al., 2004; Stevenson and Riley, 

2004). Furthermore, high antibody levels, CD4+ and CD8+ T cell responses have also 

been found against proteins expressed in the infective sporozoite stage (CSP, LSA-1 and 
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TRAP), where they are thought to reduce severity of disease in recently infected 

individuals (Offeddu et al., 2012). 

Also, mechanisms such as cytoadherence, rosetting, antigenic variation and 

antigenic diversity, are used by the parasite to evade anti-malarial immunity within the 

vertebrate host (Deroost et al., 2016). Cytoadherence in P. falciparum allows infected 

erythrocytes to sequester in the microvasculature of multiple organs and evade host’s 

immune responses by passage through the spleen (splenic entrapment). In certain species 

(P. vivax and P. yoelii), infection can be maintained in reticulocyte-rich environments 

such as the bone marrow (Malleret et al., 2015), or by creating reticulocyte-rich 

environment that enhances cell invasion (Deroost et al., 2016). Rosetting is thought to 

shield infected erythrocytes from opsonization and facilitate invasion of new erythrocytes 

by decreasing the distance between infected and non-infected cells (Lee et al., 2014; 

Niang et al., 2014). In addition, antigenic variation permits the evasion of vertebrate 

immune responses by altering the expression of surface proteins. Specifically, only one 

antigen type is expressed at a time during infections, while other loci are not transcribed 

(Scherf et al., 2008). This helps the parasite to evade the host immune response and also 

extends the parasite’s survival within a single host (Abdi et al., 2016). 

While the immune response of the vertebrate host involves adaptive and innate 

immune mechanisms, Anopheles mosquitoes combat Plasmodium infection via physical 

barriers (the peritrophic matrix and endothelium) and innate immune mechanisms 

(Crompton et al., 2014). Large bottlenecks are caused by parasite transversal of mosquito 

physical barriers (Saraiva et al., 2016). On the other hand, the innate immune response 
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consists of: 1) hemocytes becoming capable of phagocytosis in regions of high 

hemolymph flow, and 2) production of humoral factors leading to lysis and melanization 

of Plasmodium parasites (King and Hillyer, 2012). 

1.5 Plasmodium spp. multigene families 

Multigene families have a fundamental role as sources of adaptation and 

diversification among Plasmodium species (DeBarry and Kissinger, 2011; Kooij et al., 

2005; Kuo and Kissinger, 2008; Weir et al., 2009). Furthermore, the largest differences 

among species’ genomes have been found within their multigene families (Tachibana et 

al., 2012). Comparative studies performed within three of the major malaria clades have 

found common trends regarding clade-specific multigene family evolution. Repeated 

lineage-specific gene duplication and/or deletion events, evidenced by variation in the 

number of paralogs and paralog composition, have been described in the simian clade 

(Tachibana et al., 2012). A similar trend has been observed in the Laveranian subgenus, 

where certain multigene families (Rifin and Stevor) have variable size and composition, 

while others (Phist, Fikk and var) maintain a common family organization and share 

some easily identifiable orthologs (Otto et al., 2014b). Lineage-specific duplication 

and/or loss events have also been observed in multigene families unique to the rodent 

malaria clade (Otto et al., 2014a). Important functions, many of them related to parasite-

host interaction and cell invasion, are known to be performed by subsets of species- or 

clade-specific multigene families (Frech and Chen, 2011). 

Specifically within Plasmodium, clade- and species-specific multigene families 

have functions associated with cytoadherence and antigenic variation (var, SICAvar, 
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Stevor, Rifin, fikk, pir), recognition and invasion of erythrocytes (msp7, msp3) and 

organelle formation (ETRAMP, Phist) (Reid, 2015; Tachibana et al., 2012). For the most 

part, clade- and species-specific multigene families have a tendency to show large 

numbers of paralogs and variable paralog composition among Plasmodium species, or 

even among strains of the same species, in comparison to multigene families shared by 

largely divergent Plasmodium species (Cheeseman et al., 2009; Iyer et al., 2006; Reid, 

2015; Rice et al., 2014). Many of these multigene families are located in the highly 

recombinant sub-telomeric chromosome regions, or in internal regions with sub-

telomeric-like repeats, a fact that is thought to contribute to facilitating recombination 

and generating variability (Taco W. A. Kooij et al., 2005; Kuo and Kissinger, 2008; Pain 

et al., 2008).  

While many important clade- and species-specific multigene families are 

associated with sub-telomeric chromosome regions, subsets of species- and clade-specific 

genes potentially linked to virulence and transmission have also been found in internal 

regions of chromosomes (Frech and Chen, 2011; Taco W. A. Kooij et al., 2005). Internal 

chromosome regions tend to be highly syntenic among Plasmodium species, particularly 

those that are closely related (DeBarry and Kissinger, 2011). However, changes in 

synteny are usually associated with clade- and species-specific expansions and 

contractions of genus common multigene families (Tachibana et al., 2012).  

The variation of the number of paralogs among Plasmodium species is thought to 

be related to host-specific adaptations (Bethke et al., 2006; Martens et al., 2008). This is a 

possibility since, in addition to the other functions seen in clade- and species-specific 
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multigene families (e.g., immune evasion, cytoadherence, and mediation of cell 

invasion), genus-common multigene families tend to have functions related to 

metabolism (Ponsuwanna et al., 2016), development and maintenance of parasite 

structures (Taco W.A. Kooij et al., 2005), chaperones (Külzer et al., 2012), and life cycle 

regulation (Dorin-Semblat et al., 2011).  

1.6 Multigene family evolutionary models 

For decades, the prevalence and importance of gene duplication as a source of 

genomic innovation and diversification has been widely recognized (Ohno, 1970). Gene 

duplicates arise via two main mechanisms: unequal crossing over and retroposition, each 

can result in different patterns of organization and relationship among multigene family 

members (Walsh and Stephan, 2001; Zhang, 2003). The fixation and loss of multigene 

family members can be categorized under several evolutionary models depending on the 

predominant selective forces in action, divergence dynamics, and the potential effects 

that gene function has on these dynamics (Dittmar and Liberles, 2010; Innan and 

Kondrashov, 2010). These models have been categorized in the following groups: 1) 

models that consider the fixation of duplicated genes to be a neutral process (sub-

functionalization and duplication–degeneration–complementation), 2) models in which 

the duplication itself is positively selected (increase dosage and neo-functionalization), 

and 3) models where duplication occurs in genes with genetic variation in the population 

(adaptive radiation and permanent heterozygote). 

Alternatively, the evolution of multigene families can also be characterized in 

terms of the changes in the number, composition, and phylogenetic relationship among 
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paralogs. Specifically, under the Birth-and-Death model paralogs evolve separately and 

putative gain/loss and loss of function events occur independently. On the other hand, 

under the Concerted Evolution model, multigene family members evolve as a unit and 

tend to be highly homogeneous (Eirín-López et al., 2012; Nei et al., 1997; Nei and 

Rooney, 2005; Szöll\Hosi and Daubin, 2011). Within the Plasmodium genus, 

evolutionary patterns of several multigene families are thought to better reconcile with 

the Birth-and-Death model (Arisue et al., 2011, Garzón-Ospina et al., 2010; Nishimoto et 

al., 2008). 

1.7 This study  

Plasmodium parasites are characterized by a complex life cycle, and a capacity to 

infect a wide range of vertebrate hosts and Anopheles mosquitoes. Considering the 

importance of gene duplication in the development of organismal novelty and 

adaptability, multigene families represent a prime example to study genus-specific 

evolutionary patterns across Plasmodium species. Important roles in cell invasion, 

immune evasion, and other essential aspects of parasite’s life have been attributed to 

many species and clade-specific multigene families. Nonetheless, while the study of 

multigene families found in a reduced number of Plasmodium species is primordial for 

understanding parasite-host interactions, the study of genus common multigene families 

(GCMFs) could aid in gaining insight into the evolutionary trends within the genus. I 

studied gain/loss events and the mechanism (recombination events and long term 

selective forces) shaping multigene family evolution among Plasmodium species with 

variable life history traits, geographic distributions, and host interactions with the 
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objective of gaining a better understanding of the capacity of GCMFs to shape 

organism’s genomes.  

I am particularly interested in evaluating genus-specific evolutionary patterns in 

the merozoite surface protein 7 multigene family (msp7). While many proteins are 

involved in the delicate processes which allow the interaction between merozoite and the 

erythrocyte, msp7 is the only multigene family with members across largely divergent 

Plasmodium species involved is this process. By studying the evolutionary trends this 

multigene family, is possible to can gain a better understanding of the relationship 

between the development of functional divergence in critical points of the Plasmodium 

life cycle, and gain/loss events in multigene family evolution.  

Finally, I have also focused on a specific Plasmodium life stage of potential 

interest in the development of malaria transmission blocking strategies. The reduced 

effectiveness of numerous policies intended for the treatment and eradication of malaria, 

and the complexity of Plasmodium parasite’s immune evasion strategies, furthers the 

need to develop new treatment and eradication protocols. In this regard, besides their 

relevance in understanding genus common evolutionary trends, conserved genes shared 

across largely divergent Plasmodium species are of enormous significance in the 

development of universal malaria treatment and control strategies, especially in regions 

where more than one Plasmodium species co-occur and where transmission is low. I 

characterized the diversity and divergence of genes with gametocyte-biased expression in 

known human malarias and closely related Plasmodium species, and also evaluated the 

putative association between sex-biased expression and immunogenicity.  
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Overall, this dissertation covers a range of critical aspects in the evolution of the 

Plasmodium genome, highlights the importance of these elements in parasite-hosts 

interactions, and in the development of strategies of universal clinical interest for malaria.   
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CHAPTER 2. Evolution of the merozoite surface protein 7 (MSP7) in Plasmodium vivax 

and P. falciparum: a comparative approach. 

2.1 Introduction 

 Malaria is a vector borne disease caused by protozoa of the genus Plasmodium. 

These parasites are found associated with a broad range of vertebrate hosts including 

primates (Garnham 1966). Among the numerous Plasmodium species, there are four that 

typically infect humans. Two of those, Plasmodium falciparum and P. vivax, account for 

most of the malaria morbidity and mortality worldwide (WHO, 2015). These two species 

differ in many epidemiological and biological characteristics including divergent features 

in their genomes. In particular, they markedly differ in terms of their exonic G+C 

content, frequency of low complexity regions, and some distinctive multigene families 

(Battistuzzi et al. 2016; Carlton et al. 2008; Frech and Chen 2011).  

 Multigene families are found in all known genomes of Plasmodium species, 

however, some are shared only by species within particular clades (Wasmuth et al. 2009). 

They are involved in vital functions such as cytoadherence, host cell recognition and 

binding, antigenic variation, and antigenic diversity (Frech and Chen 2011). Out of the 

multigene families found in all known primate malarias, there are two (msp3 and msp7) 

that are expressed on the surface of the asexual stage as part of a group commonly known 

as the Merozoite Surface Proteins (MSPs). These MSPs are involved in the invasion of 

the host red blood cell (Boyle et al. 2014).  

 Putative orthologs of msp3 were originally described in many Plasmodium 

species, including P. falciparum (Pfmsp3) and P. vivax (Pvmsp3). However, recent 

studies have found that the msp3 genes are not homologs among Plasmodium species 

http://www.sciencedirect.com/science/article/pii/S1567134813003523#b0255
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battistuzzi%20FU%5BAuthor%5D&cauthor=true&cauthor_uid=26923229
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(Rice et al 2014). In particular, Pvmsp3 genes and their orthologs from related species 

parasitizing non-human primates have evolved independently from those identified as the 

Pfmsp3 family in P. falciparum and its related species (Rice et al. 2014). This leaves 

msp7 genes as the only MSP family found across the known primate malarial parasites 

and one of the few that seems to be shared across all known Plasmodium lineages 

parasitic to mammals with a role in erythrocyte invasion (Boyle et al. 2014). 

 Indeed, evidence from the msp7 family in P. falciparum (Pfmsp7) indicates that 

some paralogs encode proteins that may play an important role in the invasion of the host 

erythrocyte. Specifically, Pfmsp7 paralogs (e.g., PF3D7_1335100) are known to 

participate in one of many ―complexes‖ with Pfmsp1 (Kadekoppala and Holder 2010; Lin 

et al. 2016; Mello et al. 2002) that bind with the erythrocyte and that appear to be 

fundamental during the erythrocyte invasion (Lin et al. 2016). In addition, the available 

evidence indicates that msp7 paralogous genes may play redundant roles during this 

process (Kadekoppala et al. 2010). Knock-out experiments have shown that the correct 

processing of Pfmsp1 is not affected by the deletion of some of the Pfmsp7 multigene 

family members (Kauth et al. 2006), which is likely due to the fact that there are multiple 

complexes involving Pfmsp1 (Lin et al. 2016). In particular, the disruption of 

PF3D7_1335100, the Pfmsp7 paralog described in the msp1 complex, resulted in a 

reduction of only 20% of the parasite’s ability to invade erythrocytes. Nonetheless, the 

disruption of five of the P. falciparum msp7 paralogs resulted in a null phenotype 

(Kadekoppala et al. 2008).  

 Msp1 also interacts with some msp7 paralogs in other Plasmodium species. 

Experimental evidence from P. yoelii showed that at least one Pymsp7 paralog 
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(PY17X_1354000) definitively interacts with Pymsp1, while the other members of the 

family are expressed independently. This suggests that, as in P. falciparum, msp7 

paralogs are interacting with msp1 during the invasion of the red blood cell. However, not 

all msp7 paralogs might have an essential role (Mello et al. 2002; Mello et al. 2004). 

Indeed, recent investigations suggest that some of the Pfmsp7 paralogs may actually play 

an immunomodulatory role leading to disease severity (Perrin et al. 2015). Furthermore, 

msp7 paralogs may affect the parasite tropism as suggested by experiments with P. 

berghei where knock-out experiments showed an apparent increase in the parasite’s use 

of reticulocytes (Tewari et al. 2005).  

 How the divergence observed among the msp7 paralogs across Plasmodium spp. 

relates to their functional diversity remains unknown. A first step, however, is to improve 

our understanding of the evolutionary history and genetic diversity of the paralogous 

genes belonging to this multigene family. Previous studies have shown that there is a 

large variation in the number of paralogs and composition of the msp7 family among 

Plasmodium species (Kadekoppala and Holder et al. 2010). In particular, an expansion of 

the msp7 multigene family was suggested in P. vivax and its closest relative found in 

Southeast Asian macaques, Plasmodium cynomolgi (Mongui et al. 2006, Tachibana et al. 

2012). However, the limited information on other species within that clade did not allow 

further exploration of this pattern. Here, I characterized msp7 multigene family members 

in simian and Laveranian Plasmodium species with the intention to determine if the 

evolutionary mechanisms affecting the proposed expansion of the msp7 multigene family 

in P. vivax, were different to those of P. falciparum and related species. In addition, I 

evaluate the hypothesis that complex selection patterns are related to ancient events 



15 

 

leading to the introduction of this parasite lineage into Hominines. Furthermore, given the 

proposed functional redundancy across P. falciparum msp7 paralogs; I hypothesize that 

those motifs important for protein binding to the erythrocyte (Garcia et al., 2007) could 

be conserved among msp7 paralogs found in P. falciparum and P. reichenowi (Prmsp7). 

2.2 Material and methods 

2.2.1 Sequence data 

 In this investigation, I will define the size of the msp7 multigene family in each 

Plasmodium species to be the number of paralogs of that family in that species’ genome. 

Furthermore, a specific msp7 paralog in species ―A‖ may have an ortholog in species 

―B‖, thus, msp7 paralogs may have orthologs whenever two species are compared. I will 

use the PlasmoDB Gene IDs (nomenclature) assigned to P. vivax (Salvador I) 

(Aurrecoechea et al. 2009) to refer to specific paralogs.  

 First, I investigated the genetic diversity of each of the msp7 paralogs within P. 

vivax (Pvmsp7) by using all sequences available at PlasmoDB version 26 (Aurrecoechea 

et al. 2009). The data consist of clinical isolates from diverse geographic regions and 

obtained via whole genome sequencing as part of the Hybrid Selection Initiative 

performed by the Broad Institute, where representative samples include NIAID-funded 

International Centers of Excellence for Malaria Research (ICEMRs), as well as non-

ICEMR locations. In addition, the PlasmoDB database included the five sequenced P. 

vivax reference strains (Salvador I, North Korean, India VII, Mauritania I and Brazil I) 

publically available (Neafsey et al. 2012). As a comparison, I also analyzed the genetic 

polymorphism observed in each of the P. falciparum msp7 (Pfmsp7) paralogs. The data 

available in PlasmoDB was obtained from the following sources: (1) whole genome 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Neafsey%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=22863733
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sequencing of isolates collected from symptomatic malaria patients from Mali, generated 

through the 100 Plasmodium Genomes Whitepaper; (2) paired-end short-read sequences 

of clinical isolates from an endemic Gambian population from the Greater Banjul Area; 

and (3) genome sequences obtained from several Senegal isolates. In addition, I also 

included informative Pfmsp7 sequences available in the NCBI database. 

 Second, I studied the msp7 family from different Plasmodium species with 

publicly available genomes found in PlasmoDB and NCBI (Benson et al. 2014) 

databases: P. cynomolgi (Pcmsp7, B-strain), P. inui (Pimsp7, San Antonio strain), P. 

knowlesi (Pkmsp7, H strain), P. coatneyi (Pcomsp7, Hackeri strain), P. falciparum (3D7), 

P. reichenowi (Prmsp7, Dennis strain), and the rodent malarias P. yoelii (Pymsp7, YM 

strain), P. berghei (Pbmsp7, ANKA strain), and P. chabaudi chabaudi (Pchmsp7, AS 

strain). Additionally, I included sequences obtained from 454 reads (Roche, Applied 

Science, Basel, Switzerland) for a parasite from African primates, P. gonderi (Pgmsp7), 

in this study. 

 Finally, I sequenced specific msp7 multigene family paralogs using isolates 

provided by the Center for Disease Control (CDC): P. vivax (Indonesia I, Thailand III, 

Vietnam Palo Alto and Sumatra strains), P. cynomolgi (Berok, Cambodia, PT1, PT2, RO, 

ceylonensis, Gombak and Mulligan strains), P. inui (Perlis, Perak, Philippine, Celebes II, 

Leaf Monkey I and II, Leucosphyrus, OS, Taiwan II, N34 strains), P. knowlesi (Hackeri 

and Malayan strains), Plasmodium fieldi (N-3 strain), P. simiovale, and P. hylobati. 

Information on these species and strains can be found elsewhere (Coatney 1971). 

 DNA extraction from blood samples was performed using QIAamp DNA blood 

mini kit (Qiagen, Hilden, Germany). I created sets of independent degenerated primers 
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for each msp7 paralog using the publicly available genomes of P. vivax, P. cynomolgi and 

P. knowlesi (Table S1). Polymerase chain reactions (PCR) for each msp7 ortholog was 

performed using AmpliTaq polymerase (Applied Biosystems, Roche, USA), followed by 

purification of positive PCR products using QIAquick gel extraction kit (Qiagen, Hilden, 

Germany). Purified products were posteriorly cloned using pGEM-T Easy Vector 

Systems I (Promega, WI, USA). Two to three clones were sequenced using an Applied 

Biosystems 3730 capillary sequencer. The orthology of newly sequenced msp7 multigene 

family members was determined by reciprocal BLAST searches for all the species 

included here (Altschul et al. 1997). In particular, I assessed sequence similarity by 

evaluating the e-values with respect to published msp7 sequences. The orthology of each 

of the P. gonderi msp7 paralogs with those found in P. vivax was established using 

reciprocal BLAST searches. All sequences obtained in this study were deposited in 

GenBank (KU307279-KU307446). 

 In addition to the BLAST e-values, I characterized newly obtained sequences as 

members of the msp7 multigene family based on the existence of a signal peptide in the 

N-terminal region of the protein (Petersen et al. 2011), their amino acid composition 

(Wilkins et al. 1999), and the presence of the C-terminus domain commonly found 

conserved in members of this family (Marchler-Bauer et al. 2011). Furthermore, I 

identified the location and motifs of repetitive tandem regions using the Statistical 

Analysis of Protein Sequences (SAPS) online tool (Brendel et al., 1992).  

2.2.2 Phylogenetic Analyses 

 I performed interspecies alignments independently for the msp7 multigene family 

and for individual msp7 paralogs using the CLUSTALW algorithm incorporated into 
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MEGA 6.06 (Tamura et al. 2013), followed by manual editing of protein and nucleotide 

sequences. For each alignment, the most adequate substitution model was selected using 

the Akaike information criterion (AIC) method incorporated in Jmodeltest (Posada 2008). 

The most supported nucleotide substitution models were, for the most part, specific 

variants of the General Time Reversible (GTR) model. The nucleotide frequencies, 

fraction of invariant sites, and the shape parameter of the gamma distribution of 

substitution rates across sites were estimated in order to use them in Maximum 

Likelihood phylogenetic analysis.   

 I estimated phylogenies of the msp7 paralogs among related species in order to 

explore their origin and diversification. However, many msp7 paralogs do not have 

orthologs across all Plasmodium species (Garzón-Ospina et al. 2010). Thus, in the 

context of this investigation, I found it to be more informative to estimate phylogenetic 

relationships within specific groups. I estimated a phylogeny for the P. vivax clade with 

its closely related species using P. gonderi as an out-group, and then a separate 

phylogenetic analysis was carried out with the msp7 paralogs found in P. falciparum and 

P. reichenowi (Laverania subgenus). Both Maximum Likelihood (ML) and Bayesian 

Inference (BI) methods were used to construct an msp7 multigene family phylogenetic 

tree for both groups. In the case of the P. vivax clade phylogeny, I excluded paralogs 

PVX_082660 (531-567bp) and PVX_082690 (285-315bp) and their respective orthologs 

due to their shorter sequence length relative to other members of the msp7 multigene 

family (828-1,608bp). Likewise, I excluded the msp7 pseudogene PF3D7_1334900 

(1,143bp) and its ortholog gene from the P. falciparum-P. reichenowi comparison. 

PhyML v3.0 (Guindon et al. 2010) with 200 bootstrap pseudo-replications was used to 
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assess node significance on the ML phylogenetic tree construction. The BI analyses were 

performed using MrBayes v3.1.2 (Ronquist et al. 2012) with 2X10
7
 Markov Chain Monte 

Carlo (MCMC) steps; sampling performed every 1,000 generations and a burn-in fraction 

of 50%. Convergence of the BI analysis was diagnosed by requiring a standard deviation 

between 0.01 and 0.05 among runs and a Potential Scale Reduction Factor (PSRF) 

between 1.00 and 1.02. 

2.2.3 Polymorphism and Evolutionary Analyses 

 I evaluated evidence of recombination and/or gene conversion events among 

closely related paralogs, as estimated by the ML and BI phylogenetic trees (see Results 

and Discussion section), by using Recombination Detection Program (RDP3) (Martin et 

al. 2010) with its default parameters and a cut-off value of 0.05. This software combines 

numerous methods to detect and characterize recombination events on large sequence 

alignments and requires no user input regarding non-recombinant reference sequences. 

Nonetheless, the location of recombination breakpoints was also explored with the 

GARD tool available in http://www.datamonkey.org/help/Recomb.php#GARD 

(Kosakovsky Pond et al. 2006). 

I determined the genetic diversity (π) among different isolates and for each msp7 

paralog of P. falciparum, P. vivax, P. cynomolgi, P. inui and P. knowlesi using MEGA 

6.06 (Tamura et al. 2013). Duplicated genes that are expressed and functional could be 

under purifying or positive selection. Patterns consistent with natural selection acting on 

the observed polymorphism were assessed by estimating the differences in the average 

number of synonymous (dS) and non-synonymous substitutions (dN) between isolates 

using the Nei-Gojobori distance method and the Jukes and Cantor correction as 
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implemented in MEGA 6.06. The difference between dS and dN and its standard error 

was estimated by using bootstrap with 1,000 pseudo-replications, as well as a two tailed 

codon based Z-test on the difference between dS and dN (Nei and Kumar 2000). Under 

the neutral model, synonymous substitutions accumulate faster than non-synonymous 

because they do not affect the parasite fitness and/or purifying selection is expected to act 

against non-synonymous substitutions (dS≥dN). Conversely, if positive selection is 

maintaining polymorphism, a higher incidence of non-synonymous substitutions is 

expected (dS<dN). I assumed as a null hypothesis that the observed polymorphism was 

not under selection (dS=dN).  

Evidence of natural selection acting on the divergence among orthologs for each 

msp7 paralog was evaluated in further detail. In particular, in order to evaluate if different 

family members showed variable levels of selection, I tested for evidence indicating 

episodic selection for each msp7 multigene family members using Hyphy’s random 

effects Branch-Site REL model (Kosakovsky Pond et al. 2005; Kosakovsky Pond et al. 

2011). This model does not require the a priori partition between positively selected 

foreground branches and negatively selected or neutral background branches, and instead, 

allows for the independent variation of three selective regimes to the branches in a 

phylogeny at any given site reducing the risk of false positives or negatives.  

2.2.4 Conservation of Highly Activity Binding Peptides (HABP) 

 Five peptides with significantly high binding activity against red blood cells have 

been identified in one of the P. falciparum msp7 paralogs (PF3D7_1335100) (García et 

al. 2007). Three of these high activity binding peptides (HABPs) were identified on the 

conserved C-terminus region of the msp7 multigene family, while the other two were 
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found in the less conserved N-terminus and central regions of the protein. I attempted to 

locate these HABP in P. vivax and related species but there was not clear homology. 

Finally, I inferred the putative ancestral sequence for all five peptides using MEGA 6.06 

and included in the Pfmsp7 and Prmsp7 paralogs phylogeny.  

2.3 Results 

2.3.1 Variation on the msp7 multigene family size 

In all Plasmodium species, msp7 paralogs are arranged in tandem inside syntenic 

blocks. This is the pattern expected when a multigene family is originated via gene 

duplication by unequal crossing over (Innan and Kondrashov 2010). In particular, the 

msp7 family is found on the antisense strand in the chromosome 13 of P. falciparum, P. 

reichenowi, and the rodent Plasmodium species, whereas it is on the sense strand of 

chromosome 12 of P. vivax and the simian non-human primate Plasmodium species with 

publically available genomes (Fig. 1). The Pvmsp7 syntenic block is delimited by a 

flanking conserved hypothetical protein at the 5’ end (PVX_082715) and its orthologs are 

found in all species in the Southeast Asian primate clade. Likewise, the 3’ end is 

delimited by a flanking conserved gene (chaperone binding putative protein, 

PVX_082640) with its respective orthologs in all Plasmodium species with complete or 

partial genomes (Fig. 1). Orthologs for PVX_082640 and PVX_082715 are also found in 

rodent malarias and P. falciparum; but only the orthologs for PVX_082640 are flanking 

the syntenic block at the 5’ end of the msp7 block in those species. Additional open 

reading frames (ORF) unrelated to the msp7 multigene family is present at the 3’ end of 

the syntenic block in P. falciparum (e.g. PF3D7_1335200) and in rodent Plasmodium 

species (PYYM_1351000).  
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Consistent with previous studies (Garzón-Ospina et al. 2010), we observed that 

the number of paralogs varied among the three major clades of mammalian parasites 

considered in this investigation: Laverania subgenus (P. falciparum - P. reichenowi- P. 

gaboni), rodent malarias, and Plasmodium species of Asian primates. All Pvmsp7 

paralogs and their orthologs from closely related species share a similar amino acid 

composition independent of gene length and the similarity tends to be higher among 

orthologs than among paralogs. Amino acids in higher proportions are Lysine (K), 

Leucine (L), Glycine (G), Glutamic Acid (E), Asparagine (N) and Alanine (A) (Fig. S1). 

Paralog PVX_082710 and its corresponding P. cynomolgi ortholog 

(PCYB_122730) have been previously included as members of the msp7 multigene 

family (e.g. Garzón-Ospina et al. 2010). Although both genes share a similar amino acid 

composition to that of msp7 family members (Fig. S1), a detailed analysis showed that 

neither PVX_082710 nor PCYB_122730 contained either the conserved MSP7 C-

terminus domain found in all other family members nor do they have the N-terminus 

signal peptide characteristic of the msp7 multigene family (Kadekoppala and Holder 

2010). Furthermore, they did not have sequence similarity with any other msp7 paralogs 

when BLAST searches were performed. Therefore, these two orthologs were excluded 

from further analyses. Even though PVX_082660 and its corresponding orthologs in P. 

cynomolgi also lacked the conserved MSP7 C-terminus domain, this gene and its 

corresponding orthologs showed sequence similarity with the N-terminus regions of other 

msp7 multigene family members (e.g. PVX_082660 vs. PVX_082665 e-value = 5E-20). 

Thus, I consider it a member of the MSP7 family.  
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It is worth noting that in P. cynomolgi, there is a paralog (PCYB_122760, see Fig. 

1) that is likely the result of a recent duplication event; however, it lacks the typical 

MSP7 N-terminus regions. I corroborated this finding for the strain Berok. Overall, the 

number of confirmed msp7 paralogs shared by P. vivax and P. cynomolgi is 12 (see Fig. 

1). Interestingly, 10 of those paralogs were also found in P. fieldi (Fig. 1), a species that 

shares a recent common ancestor with P. vivax, P. cynomolgi, and P. inui. (Muehlenbein 

et al. 2015; Pacheco et al. 2012). Whether all the paralogs found in P. vivax and P. 

cynomolgi are shared by P. fieldi cannot be ascertained due to the lack of genomic 

information on this parasite; nevertheless, it is clear that many indeed are (at least 10 

paralogs). Likewise, I cannot confirm the actual sizes of the msp7 family in P. simiovale 

(minimum six paralogs) and P. hylobati (minimum four paralogs including the 

pseudogenization of the PVX_082685 ortholog) due to the absence of publicly available 

genomes. P. gonderi, a basal species to the simian clade that is found in Africa (a parasite 

of white-eyelid mangabeys and mandrills; Pacheco et al. 2012) shows a larger multigene 

family size (nine paralogs) in relation to other Plasmodium species such as P. coatneyi, 

P. inui, and P. knowlesi.   

As in the case of P. vivax where all paralogs were shared with a non-human 

primate parasite (P. cynomolgi and this could be the case with P. fieldi), all eight paralogs 

in the human parasite P. falciparum are shared with a chimpanzee parasite, P. reichenowi 

(Fig. 1). I found evidence indicating that seven out of the eight paralogs were also 

conserved in P. gaboni, a more distant member of the Laverania subgenus (Ollomo et al. 

2009; Otto et al. 2014; Pacheco et al. 2013), but the sequences were not of sufficiently 

high quality to be included in my analysis. When compared to the two clades that include 
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P. falciparum and P. vivax, what seems to be a reduction in the msp7 family size is 

observed in the rodent Plasmodium species. The number of msp7 paralogs (three) 

remained constant within the rodent clade and no pseudogenes were found. Importantly, 

these three rodent msp7 paralogs are the ones with putative orthologs in all the primate 

parasites included in this investigation. 

I found no evidence indicating that the msp7 family size (number of paralogs) 

changes within each species (e.g.: P. vivax, P. cynomolgi, P. inui; see Fig. S2), so in that 

regard it differs from Pvmsp3 and its orthologs in non-human primates (Rice et al. 2014). 

However, as in Pvmsp3 (Rice et al. 2014), there is sequence length polymorphism in 

many msp7 paralogs in the P. vivax clade among different isolates within species (Fig. 

S2). This polymorphism is the result of low complexity regions (LCRs) with repetitive 

motifs located in the central regions of msp7 multigene family members. While the size 

polymorphism and paralog composition suggest rapidly acting processes in the evolution 

of the msp7 multigene family in some of the lineages inside the P. vivax clade, both 

features show little to no variation among species of the rodent clade and between P. 

falciparum and P. reichenowi.  

Finally, it is worth noting that I found evidence of ongoing pseudogenization 

processes on some msp7 paralogs. In particular, P. cynomolgi has a pseudogene that is 

orthologous to PVX_082690, P. inui and P. hylobati have pseudogenes that are 

orthologous to PVX_082685, and P. coatneyi has a pseudogene that is orthologous to 

PVX_082660 (Fig. 1). Furthermore, P. falciparum and P. reichenowi share a pseudogene 

(PF3D7_1334900) in addition to their eight paralogs (Fig. 1).   
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Table 1 shows the nucleotide polymorphism of the different Pvmsp7 paralogs; all 

of which exhibited relatively low levels of genetic polymorphism with π below 0.05. This 

measure, however, does not account for length polymorphisms in low complexity 

regions. Although most P. vivax paralogs seems to have higher average dS than dN 

indicative of purifying selection, the null hypothesis of dN=dS was rejected only in five 

Pvmsp7 paralogs. In particular, PVX_082695 exhibited more non-synonymous than 

synonymous substitutions, a pattern consistent with positive selection. On the other hand, 

four paralogs: PVX_082650, PVX_082675, PVX_082680 and PVX_082685 showed 

significant dN<dS, a pattern expected when purifying selection is acting on the gene. In 

the case of P. falciparum (Table 1), the polymorphism was markedly lower when 

compared to those found in P. vivax. Nevertheless, two Pfmsp7 paralogs 

(PF3D7_1334500 and PF3D7_1335100) showed significant dN>dS, indicating that 

positive selection may be acting at those genes. As in P. vivax, the genetic polymorphism 

in orthologous genes from the non-human malarial parasites, P. cynomolgi and P. inui, 

showed evidence for purifying selection (Table 2). In particular, most msp7 paralogs in P. 

cynomolgi have significantly higher average dS than dN. A similar pattern was observed 

in P. inui; however, it was not significant. 

 2.3.2. Phylogenetic analysis of the msp7 simian clade paralogs 

Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees were 

inferred to evaluate the relationships between msp7 paralogs found in the P. vivax clade 

(Fig. 2). I excluded all pseudogenes and short length genes (PVX_082660 and 

PVX_082690 and their orthologs) from these analyses. I labeled closely related paralogs 

that shared comparable amino acid composition (Fig. S1) and presented higher sequence 



26 

 

similarity with identical or analogous color tones (Fig. 1 and Fig. 2). Orthologous genes 

formed well supported independent clades with the exception of PVX_082680 and 

PVX_082685, suggesting that most msp7 orthologs tend to be more closely related to 

each other than to paralogs.  

I subdivided the msp7 paralogs in the P. vivax clade into three major groups (A-

C) based on their phylogenetic relationships. Groups A and C showed the highest 

posterior probability and bootstrap support while group B was somewhat less supported 

(Fig. 2). Group A includes two of the three msp7 paralogs (PVX_082645 and 

PVX_082695) that have orthologs in all the Plasmodium species considered in this study, 

including rodents. The phylogenetic relationships within ortholog PVX_082695 inside 

Group A paralogs clade are similar to those estimated for Plasmodium species using 

other loci and mtDNA (Muehlenbein et al. 2015; Pacheco et al. 2012). Group B, the 

largest in my phylogenetic analysis (Fig. 2), has paralogs that apparently originated 

during the radiation of the P. vivax clade. Group B also includes the msp7 paralog 

PVX_082680 that has orthologs in all Plasmodium with genomic data available. The 

robustness of the group B branching pattern was confirmed by performing independent 

phylogenetic analyses excluding all msp7 paralogs found outside group B (Fig. S3) and 

an additional analysis including only group B msp7 paralogs with the highest sequence 

similarity (Fig. S4). In all of these analyses, no major topological changes were observed 

inside the group B phylogeny and the corresponding P. gonderi msp7 paralogs formed a 

basal monophyletic group with low support. This is consistent with the scenario that 

duplication events may have occurred early on msp7 at the origin of the clade that 

includes P. vivax. All lineages of paralogs included in group B have P. vivax and P. 
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cynomolgi orthologs that are found adjacent in chromosome 12. These P. vivax and P. 

cynomolgi paralogs are shared with P. fieldi and less often with P. simiovale. The 

PVX_082680 gene, for example, underwent a duplication event that gave rise to 

PVX_082685 and its orthologs in a monophyletic group that includes P. vivax and its 

most closely related species, P. cynomolgi, P. fieldi, and P. simiovale (Muehlenbein et al. 

2015; Pacheco et al. 2012).  Importantly, PVX_082685 is undergoing a pseudogenization 

process in the lineage that includes P. inui and P. hylobati.  

It is worth noting that several paralogs with comparable amino acid composition 

and higher sequence similarity in group B did not show potentially adjacent location in 

the chromosome. Although the sampling problem (no genomic data from some species) 

does not allow me to properly describe all duplication events, this pattern implies that 

group B paralogs might have originated from a minimum of two major duplication events 

followed by additional gene duplications. Group C on the other hand, was formed by 

paralogs putatively originated by duplication events early in the radiation of the simian 

clade, but their orthologs are not found in P. knowlesi and P. coatneyi, species with 

complete genome information. Furthermore, none of these msp7 paralogs found in group 

C has orthologs in the rodent clade and Laverania subgenus.  

Based on the phylogeny described above (Fig. 2), I performed a test for episodic 

selection. Table 3 shows the results of a phylogenetic-based test of selection used to 

detect patterns of episodic selection as implemented in HyPhy. Four paralogs show 

evidence of episodic selection. Interestingly, these are the same paralogs where their dS 

and dN patterns rejected neutrality (Table 1). All of them showed more synonymous than 

non-synonymous substitutions consistent with functional constrains.  
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2.3.3 Recombination and selection patters among group B msp7 paralogs  

I evaluated putative recombination events only among group B paralogs (Fig. S3 

and S5) based on their close phylogenetic relationship and the absence of distinct 

monophyly between PVX_082680 and PVX_082685 and their corresponding orthologs. 

An intricate pattern that encompassed all msp7 paralogs of group B was detected between 

P. vivax and P. cynomolgi. These recombination events were observed among three 

major segments: one found in the N-terminus region of the protein and the other two in 

the C-terminus region (Fig. S5). Nonetheless, I also found a large variation in the location 

of the putative recombinant break points. It is not clear how different paralog 

combinations were involved in each putative event detected, making it impossible to 

identify global recombination pattern among the group’s paralogs. The amount of 

phylogenetic information found in recombinant segments in the most generalized single 

recombination event detected (Fig. S5), which encompassed all group B paralogs, was 

lower than those found in non-recombinant and highly conserved segments; therefore, it 

was possible to conclude that recombination should not have a significant effect 

hampering intended phylogenetic and selection analyses. 

2.3.4 Conservation of HABP domains and phylogeny of P. falciparum paralogs 

P. falciparum and P. reichenowi share all msp7 paralogous genes so they 

originated before these extant species shared a common ancestor (Fig. 1 and Fig. 3). 

Although the quality of the P. gaboni data did not allow its inclusion in this analysis, 

seven of the Pfmsp7/Prmsp7 out of the eight genes were also found in P. gaboni (Fig. 1). 

I evaluated the sequence conservation of the five HABPs described in PF3D7_1335100 

(García et al. 2007) among msp7 paralogs in the Laverania subgenus (Fig. S6). No clear 
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homology was detected in other species. A visual inspection of the Laverania alignments 

indicated that these peptides were relatively conserved across P. falciparum paralogs and 

with their orthologous genes in P. reichenowi (Fig. S6). The number of HABPs with 

considerable sequence similarity among Pfmsp7 paralogs varied between 1 and 4 (Table 

4). Epitopes originally located in the C-terminus regions showed higher sequence 

conservation between P. falciparum paralogs. In particular, epitope HA_26114 presented 

the fewest amino acid changes among P. falciparum msp7 paralogs (e.g., 12/21, 60% 

conserved amino acids respect to PF3D7_1334800 and 15/21, 71% conserved amino 

acids respect to PF3D7_1334300; Fig S6). In addition to finding all the HABP domains 

in P. falciparum and P. reichenowi (Fig S6), the msp7 paralogs without HABP domains 

were also shared between the Pfmsp7 and Prmsp7 families as can be observed in the 

phylogeny (Fig. 3). I also inferred the evolution of the HABPs sequences including their 

estimated ancestral sequences. The phylogeny shows that the putative HABPs were 

independently lost in two duplication events.   

2.4 Discussion 

 There are several multigene families involved in immune evasion and host-

parasite interaction making very difficult the development of effective treatment 

strategies against the Plasmodium parasite. These families harbor extraordinary variation 

to the extent that it is difficult to identify clear orthologs even in closely related species 

(Neasfy et al. 2012; Rice et al. 2014). In the case of msp7, orthologs are identifiable 

across species but they have still diverged enough to hamper our ability to describe 

evolutionary processes at the generic level in detail. This is worsened by the fact that the 

genomic information is biased toward those Plasmodium species of biomedical 
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importance. Thus, the existing data has a sampling problem in terms of taxa (Ness et al. 

2011). These issues likely will be solved when more Plasmodium genomes become 

available. Nevertheless, there are some clear patterns that emerged from my 

investigations.  

I observed extensive variation in the numbers of paralog genes for msp7, a pattern 

that has also been observed in the msp3 (Rice et al. 2014) and SERA (Arisue et al. 2011) 

multigene families. However, in other multigene families it is common to find variation 

in the actual number of paralogs within species. This is not the case of msp7. 

Nevertheless, msp7 exhibits complex patterns of gene gain/loss events that can be 

observed even among closely related Plasmodium species. Out of the Plasmodium 

species included in this study, P. vivax and P. cynomolgi contained the largest numbers of 

msp7 paralogs. This high number of paralogs for msp7 in the P. vivax-P. cynomolgi 

lineage follows similar patterns reported for these two species in the SERA and msp3 

families. Nevertheless, there is no evidence of a recent expansion in the P. vivax lineage 

since the human parasite and P. cynomolgi have a comparable number of paralogs that 

are also orthologs between the two species. Thus, the events leading to the high number 

of msp7 paralogs in these two species likely occurred before their most recent common 

ancestor (2.36–5.27 Mya, Pacheco et al. 2012). Furthermore, some of these paralogs 

could be as old as the divergence of these two species with P. fieldi (at least 10 out of 12) 

(Muehlenbein et al. 2015; Pacheco et al. 2012), however, I cannot confirm this older 

origin for all the extant msp7 paralogs in P. vivax due to the absence of publicly available 

P. fieldi genomes. In the case of P. cynomolgi, paralog PCYB_122760, previously 

reported for the genome of strain B, was also found in the Berok strain genome 
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(Tachibana et al. 2012) but no ortholog gene had been identified in any of the P. vivax 

isolates. This suggests that an additional duplication event took place in this species after 

its split from its common ancestor with P. vivax.   

Evidence of a larger ancestral number of paralogs in the clade that includes P. 

vivax can be found in P. gonderi, a basal species to the simian clade that is found in 

Africa (a parasite of white-eyelid mangabeys and mandrills) (Pacheco et al. 2012). In 

particular, the larger family size in Pgmsp7 (at least 9 paralogs) in relation to others in the 

P. vivax clade suggests that numerous paralogs may have an early origin and might have 

even been present in the common ancestor of Asian primate malarias. However, lack of 

evidence from additional basal species does not allow a proper test this hypothesis. It is 

worth noting that the msp7 phylogeny (Fig. 2) showed that many P. gonderi paralogs 

may form a monophyletic group. Although this putative monophyletic group has low 

support in my analyses, it is still possible that some Pgmsp7 paralogs originated 

independently via lineage-specific duplication events in this African, non-human primate 

parasite so the actual high number of Pgmsp7 could be due to convergence. Alternatively, 

gene conversion/recombination events within Pgmsp7 could also result in an apparent 

monophyletic group.  

The gaps in the msp7 sampling of paralogous genes likely lead to an incorrect 

assessment of the number of duplication/loss events (Ness et al. 2011). However, despite 

the obvious limitations in my sampling, gene duplications/losses and pseudogenization 

are evident in some clades (Fig. 1). This is a pattern consistent with a Birth-and-Death 

type of process where duplication events generate new paralogs with some becoming no 

longer functional (Nei et al. 1997; Nei and Rooney 2005). I found that a reduction of the 
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multigene family may have taken place among some of the species that share a recent 

common ancestor with P. vivax. In particular, the number of paralogous genes found in 

the genomes of P. knowlesi (5), P. coatneyi (5), and P. inui (7) is less than in P. vivax 

(12) and P. cynomolgi (12 plus a pseudogene) (Fig.1 and 2). A similar pattern has been 

observed in families such as msp3 (Rice et al. 2014). If a larger number of paralogs is 

ancestral in the group as suggested by the P. gonderi data, the number of gene loss events 

found in P. inui, P. knowlesi and P. coatneyi is noteworthy due to the fact that similar 

reductions have been observed in the same species in other multigene families expressed 

in the parasite’s merozoitic stages (Arisue et al. 2007; Arisue et al. 2011; Rice et al. 

2014). These parasites are remarkably different in terms of their life cycle and host range: 

P. inui (a quartan malaria), P. knowlesi (quotidian) and P. coatneyi (tertian) are parasites 

of macaques and surilis while P. hylobati is found in gibbons (Coatney et al. 1971; 

Cormier 2011). Another important element to consider is that these species diverged as 

part of a series of complex biogeographic processes involving multiple hosts 

(Muehlenbein et al. 2015; Pacheco et al 2012). Thus, many of these events likely took 

place in a relatively short period of time accelerated by the interplay of selection and 

drift. 

 A similar pattern to the one found between P. vivax and P. cynomolgi, where all 

of the human parasite msp7 paralogs predate the origin of the human parasite, can be 

observed in the case of P. falciparum. In particular, the msp7 paralogs are not only 

conserved between P. falciparum (9) and P. reichenowi (9) but also many of them 

(minimum 7) are found in P. gaboni (another parasite from African Apes). The number 

of paralogs found in the primate parasites contrast with Plasmodium species from rodents 
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where only three paralogs constitute the msp7 family. It is important to highlight that 

these three paralogs are the ones that have orthologs in all the species analyzed here (Fig. 

1) a fact that may indicate their functional importance. 

Gene duplication can generate redundancy; however, having genes with identical 

functions need not always be advantageous. Under this scenario, purifying selection is 

expected to relax and genes start to accumulate deleterious mutations that lead to 

pseudogenization. Although I did not find evidence of pseudogenization taking place 

within P. vivax, I have indications of such a process in P. cynomolgi using Sanger 

sequencing (PVX_082690 ortholog). Furthermore, I observed pseudogenization events in 

P. coatneyi (corresponding to the PVX_082660 and PKH_121850 orthologs), as well as 

in P. hylobati and P. inui (corresponding to the PVX_082685 ortholog).  In the case of 

the Laverania subgenus, both P. falciparum and P. reichenowi also have a pseudogene 

(PF3D7_1334900 and PRCDC_1333900). It is also worth noticing that pseudogenization 

events were not detected in the genomes of rodent malarias.  

These differences in family size and composition provide additional evidence for 

a Birth-and-Death type of process for the evolution of msp7 in these species (Nei et al. 

1997; Nei and Rooney 2005). Under this model, paralogs can be produced via tandem or 

block duplications and the degeneration of paralogs via pseudogenization is common. In 

addition, multigene families evolving under the Birth-and-Death model are also prone to 

show subgroups with higher sequence similarity among divergent groups of genes. This 

pattern can be observed in members of the msp7 family (e.g., among paralogs 

PVX_082680, PVX_082685 and PVX_082655, Fig. 1). 
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The number of recombination events detected among closely related paralogs in 

the present study (Fig. S5) suggests that, as in other multigene families (Bethke et al. 

2006), recombination might had been a pivotal force in the expansion of the msp7 family 

via unequal crossing over or that segmental gene conversion has occurred among 

adjacent paralogs; furthermore, the elevated nucleotide diversity observed in recombinant 

regions indicates that recombination might also have a role in generating genetic diversity 

as described in other Plasmodium multigene families (Nielsen et al. 2003). 

Despite the numerous gene duplications and deletions observed in msp7, three 

paralogs (PVX_082645, PVX_082680 and PVX_082695) appear to have persisted in the 

three major Plasmodium clades evaluated in this study (Fig. 1). This suggests functional 

importance. Although the specific function of Pvmsp7 is a matter that needs to be 

investigated, it has been reported that the processing proteolytic patterns of msp7 

multigene family members identified in P. falciparum and P. vivax showed certain 

similarities (Mongui et al. 2006). A hypothesis emerging from all available data is that 

some of the Pvmsp7 paralogs will likely be involved in the invasion of the red blood cell 

and that they could form complexes with msp1 gene as described in both rodent malarias 

and P. falciparum (Lin et al. 2016). Consistent with the functional importance of Pvmsp7, 

the limited transcriptomic data (Aurrecoechea et al. 2009) together with the evidence for 

purifying selection (Table 1), indicate that all Pvmsp7 are expressed and likely still 

producing functional proteins. This pattern of strong purifying selection is observed also 

in P. cynomolgi. In addition, some Pvmsp7 paralogs also showed evidence of episodic 

(positive) selection in their divergence from P. cynomolgi by using phylogenetic methods 

(Table 3). These lines of evidence may look contradictory but they are not. A scenario 



35 

 

consistent with these two observations is that the paralogs diverged, but did not originate, 

as an adaptation in an ancient parasite lineage that shifted from an Asian non-human 

primate (Cercopithecidae) to hominins. Then such paralogs that underwent adaptive 

divergence from their orthologs in the ancestral lineage have been maintained by negative 

selection at the population level within the extant P. vivax populations. Interestingly, 

there is evidence that two of those genes (PVX_082675 and PVX_082680) are 

immunogenic and one in particular (PVX_082680) is recognized by semi-immune 

individuals without fever after being challenged with sporozoites indicating that those 

antibodies could be associated with protection (Arévalo-Herrera et al. 2016; Hostetler et 

al. 2015).  

Whereas the overall genetic polymorphism of msp7 paralogs appears to be under 

functional constraint (purifying selection), the number and type of repetitive motifs of the 

LCRs varied between paralogs and orthologs in some species such as P. inui and P. 

cynomolgi (Table S2). For example, large strings of Glutamic Acid were observed in the 

PVX_082670, PVX_082675 and PVX_082680 orthologs in both P. inui and P. 

cynomolgi. This has been observed previously in other genes such as paralogs in the 

msp3 multigene family (Rice et al. 2014), and the gene encoding the circumsporozoite 

protein (Pacheco et al. 2013). Previous studies have suggested that those LCRs may have 

a role in immune evasion (Chenet et al. 2013; Singh et al. 2004). Whether this is the case 

in msp7 is a matter that needs to be investigated.  

The specific role that Pvmsp7 paralogs play in invasion remains unknown. We 

can only speculate that it may have a similar function as in Pfmsp7. In that regard, 

experimental evidence suggests that more than one Pfmsp7 paralog have the capacity to 
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interact with proteins of the erythrocyte membrane (either band 3 or ~52 kDa MSP1 

protein), as observed in PF3D7_1335100 (García et al. 2007). Consistent with this notion, 

HABP identified in PF3D7_1335100 originally located in the C-terminus regions were 

relatively conserved between Pfmsp7 paralogs (Table 4). These peptides were also 

conserved in P. reichenowi and P. gaboni consistent with the observation made in 

Pfmsp7 regarding their functional importance (Fig. S6). Interestingly, while it is clear that 

HABP epitopes located in the C-terminus region of PfMSP7 have a key role in 

erythrocyte interaction and invasion, the most conserved epitope (HA_26114) did not 

exhibit the highest peptide binding activity and resulted in the lowest percentages in 

invasion inhibited essays (24%) with respect to the other peptides, which displayed 

remarkably higher (50% or larger) inhibitory capacity (García et al. 2007). Thus, some of 

these motifs could actually be under other forms of functional constraints and it is not 

necessarily an indication of their involvement in the invasion of the red blood cell.  

In summary, there is extraordinary diversity in msp7 across Plasmodium species 

as evidenced by the number of paralogs and ongoing pseudogenization processes; a 

pattern consistent with a Birth-and-Death type of dynamic. The msp7 diversity in the 

number of paralogs is particularly high in the clade that includes P. vivax and non-human 

primate parasites from Southeast Asia; such diversity may have been accelerated by the 

interplay of selection and drift (Muehlenbein et al. 2015; Pacheco et al. 2012) as 

suggested by the extraordinary phenotypic diversity and the complex biogeographic 

processes that affected the parasite hosts in the region. Whether there is comparable 

variation in the Laverania subgenus that includes P. falciparum is a matter that cannot be 

addressed at this time. However, what is certain is that the number of msp7 paralogs in P. 
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vivax and P. falciparum predates their origin as human parasites. In particular, P. vivax 

has a conserved number of paralogs when compared to P. cynomolgi, a pattern that is 

also found between P. falciparum and P. reichenowi.   

Although there is a paucity of functional information for Pvmsp7, I found 

evidence indicating that few Pvmsp7 paralogs may have diverged from their orthologs in 

non-human primates by episodic selection. Thus, these paralogs may have been affected 

by the introduction of the lineage leading to P. vivax into Hominins from an ancestral 

host species that likely was a   catarrhine. This observation, together with the 

conservation of the number of paralogs and the population data showing purifying 

selection acting on those paralogs, indicates that Pvmsp7 is functionally important. In 

addition, while different paralogs show diverse levels of interaction with the erythrocyte, 

variable signs of selection across family members show positively maintained 

divergence, suggesting some level of sub-functionalization within the family. Finally, in 

the case of Pfmsp7, I observed some level of conservation of the HABP peptides across 

Pfmsp7 paralogs and their orthologs in P. reichenowi. This pattern is consistent with 

experimental evidence pointing to functional redundancy among some of the Pfmsp7 

paralogs. All of these findings in the clades that include the two major malarial parasites 

support the evidence emerging from P. falciparum that msp7 likely plays an important 

role in the invasion of the red blood cell and that such function may be shared across all 

Plasmodium species, including P. vivax. This hypothesis should be further assessed by 

performing additional knockout studies in P. vivax and other Plasmodium species.  
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Tables 

Table 2-1. Polymorphism in msp7 P. vivax and P. falciparum paralogs. 

Species Paralog ID N π [SE] dS dN 
dN-dS 

[SE] 
Z test 

Neutralit

y 

P.        

vivax 

 

PVX_082645 106 0.001 [0] 0 
0.00

1 
0.001 [0] 

0.061 

(1.892) 
dN = dS 

PVX_082650 17 
0.019 

[0.002] 
0.044 

0.01

3 

-0.031 

[0.009] 
0 (-3.721) dN < dS 

PVX_082655 24 
0.028 

[0.003] 
0.032 

0.02

7 

-0.005 

[0.007] 

0.431 (-

0.791) 
dN = dS 

PVX_082660 97 
0.001 

[0.001] 
0.001 

0.00

1 
0 [0.002] 

0.882 (-

0.148) 
dN = dS 

PVX_082665 37 
0.016 

[0.002] 
0.02 

0.01

5 

-0.005 

[0.004] 

0.219 (-

1.236) 
dN = dS 

PVX_082670 89 0.001 [0] 0 
0.00

1 
0 [0] 

0.337 

(0.965) 
dN = dS 

PVX_082675 31 
0.016 

[0.001] 
0.026 

0.01

3 

-0.013 

[0.005] 

0.004 (-

2.951) 
dN < dS 

PVX_082680 17 
0.036 

[0.003] 
0.073 

0.02

6 

-0.047 

[0.011] 
0 (-4.375) dN < dS 

PVX_082685 53 
0.012 

[0.001] 
0.022 

0.00

9 

-0.014 

[0.005] 

0.007 (-

2.767) 
dN < dS 

PVX_082690 106 
0.002 

[0.002] 
0.001 

0.00

3 

0.002 

[0.002] 

0.393 

(0.857) 
dN = dS 

PVX_082695 96 
0.003 

[0.001] 
0 

0.00

3 

0.003 

[0.001] 

0.004 

(2.939) 
dN > dS 

PVX_082700 89 0.001 [0] 0.002 
0.00

1 

-0.001 

[0.001] 

0.463 

(0.737) 
dN = dS 

P.  

falciparum 

 

PF3D7_1335100 154 
0.002 

[0.001] 
0 

0.00

2 

0.002 

[0.001] 

0.014 

(2.491) 
dN > dS 

PF3D7_1335000 184 0 [0] 0 0 0 [0] 
0.544 

(0.608) 
dN = dS 

PF3D7_1334900 198 0.001 [0] 0 
0.00

1 
0 [0.001] 

0.742 

(0.330) 
dN = dS 

PF3D7_1334800 180 0 [0] 0 0 0 [0] 
0.083 

(1.748) 
dN = dS 

PF3D7_1334700 175 0 [0] 0 0 0 [0] 
0.125 

(1.544) 
dN = dS 

PF3D7_1334600 194 0 [0] 0.001 0 
-0.001 

[0.001] 

0.433 (-

0.787) 
dN = dS 

PF3D7_1334500 103 0.001 [0] 0 
0.00

2 

0.002 

[0.001] 

0.003 

(2.982) 
dN > dS 

PF3D7_1334400 184 0.001 [0] 0 
0.00

1 
0 [0] 

0.396 

(0.852) 
dN = dS 

PF3D7_1334300 196 0 [0] 0 0 0 [0] 
0.615 

(0.504) 
dN = dS 
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Table 2-2. Polymorphism in msp7 multigene family simian clade paralogs. 

Species N Paralog ID* π [SD] dS dN DN-dS [SD] Z test Neutrality 

P. cynomolgi 

8 PVX_082645 0.088 [0.007] 0.186 0.077 0.109 [0.032] 0.002 (-3.220) dN < dS 

9 PVX_082650 0.101 [0.005] 0.189 0.091 0.097 [0.020] 0 (-4.773) dN < dS 

8 PVX_082655 0.073 [0.005] 0.121 0.066 0.055 [0.016] 0.001 (-3.548) dN < dS 

9 PVX_082660 0.073 [0.008] 0.125 0.069 0.056 [0.028] 0.047 (-2.012) dN < dS 

8 PVX_082665 0.083 [0.006] 0.117 0.067 0.111 [0.022] 0 (-5.159) dN < dS 

8 PVX_082670 0.055 [0.004] 0.100 0.048 0.052 [0.014] 0 (-3.634) dN < dS 

8 PVX_082675 0.108 [0.006] 0.204 0.098 0.106 [0.024] 0 (-4.628) dN < dS 

7 PVX_082680 0.060 [0.005] 0.1 0.054 0.046 [0.016] 0.005 (-2.880) dN < dS 

8 PVX_082685 0.079 [0.005] 0.163 0.066 0.096 [0.021] 0 (-4.465) dN < dS 

8 PVX_082690 0.053 [0.009] 0.096 0.048 0.049 [0.033] 0.143 (-1.473) dN = dS 

8 PVX_082695 0.037 [0.004] 0.067 0.031 0.036 [0.014] 0.010 (-2.628) dN < dS 

8 PVX_082700 0.039 [0.003] 0.076 0.031 0.045 [0.012] 0 (-3.729) dN < dS 

P. inui 

8 PVX_082645 0.036 [0.003] 0.051 0.033 0.018 [0.008] 0.026 (-2.248) dN < dS 

9 PVX_082670 0.020 [0.002] 0.027 0.018 0.009 [0.006] 0.157 (-1.424) dN = dS 

10 PVX_082675 0.036 [0.003] 0.032 0.038 -0.006 [0.006] 0.340 (0.958) dN = dS 

9 PVX_082680 0.036 [0.003] 0.059 0.034 0.016 [0.008] 0.051 (-1.972) dN = dS 

6 PVX_082685 0.024 [0.003] 0.027 0.022 0.005 [0.007] 0.472 (-0.722) dN = dS 

9 PVX_082695 0.030 [0.004] 0.044 0.027 0.017 [0.010] 0.102 (-1.649) dN = dS 

9 PVX_082700 0.023 [0.002] 0.025 0.023 0.002 [0.006] 0.764 (-0.301) dN = dS 

P. knowlesi 

3 PVX_082660 0.009 [0.003] 0.029 0.004 0.026 [0.015] 0.081 (-1.758) dN = dS 

3 PVX_082675 0.045 [0.004] 0.026 0.053 -0.026 [0.010] 0.007 (2.725) dN> dS 

3 PVX_082680 0.053 [0.006] 0.073 0.052 0.021 [0.015] 0.175 (-1.365) dN = dS 

3 PVX_082695 0.010 [0.003] 0.013 0.01 0.003 [0.008] 0.683 (-0.410) dN = dS 

 

* P. vivax PlasmoDB nomenclature (Carlton et al. 2008). 
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  Table 2-3. Branch and episodic selection in simian clade msp7 paralogs. 

 

 

 

 

 

 

 

 

 

 

 

 

* P.vivax PlasmoDB nomenclature (Carlton et al. 2008). 

Positively selected branches (model 2, codeml) are indicated by bolted omega values. 

ᵉ Indicate branches with signature of episodic selection (branch-site model, Hyphy). 

 

 

Branch 

Paralogs* 

PVX_08

2645 

PVX_08

2650 

PVX_08

2655 

PVX_08

2660 

PVX_08

2665 

PVX_08

2670 

PVX_08

2675 

PVX_08

2680 

PVX_08

2685 

PVX_08

2695 

PVX_08

2700 

P. vivax 0.29 0.5049ᵉ 0.9424ᵉ 0.382 0.7166 0 0.7002ᵉ 0.3562ᵉ 0.6558ᵉ 0.3434 0.3261 

P. cynomolgi A 0.5686 0.3629 0.4563 1.1777 0.407 0.4941 0.6719 0.6854 0.408 0.5891 0.5792 

P. cynomolgi B 0.366 0.4991 0.6414 0.8418 0.4205 0.6893 0.7768 0.5279 0.6437 0.6125 0.4469 

P. fieldi 0.689 0.9202 0.449 2.4149 0.9976ᵉ - 0.9245 0.833 0.7149ᵉ 0.5441 1.372 

P. simiovale 0.3321 0.4205 - - 0.3877 - - 0.6704ᵉ 0.6179ᵉ 0.8414 - 

P. inui 0.6568 - - - - 0.8482 1.2523 0.6648 - 1.0493 0.8212 

P. hylobati 0.939ᵉ - - - - - - 0.7507 - - 0.8425 

P. knowlesi 0.3012 - - 0.1688 - - 0.8071 0.6998 - 1.005 - 

P. coatneyi 0.3694ᵉ - - - - - 1.6571 1.0023 - 0.4085 - 

P. gonderi 0.13 0.0206 0.1644 - - 0.4781 0.2704 0.1243 0.1524 0.1558 - 
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Table 2-4. Detection of HABPs among P. falciparum MSP7 paralogs.  

Location Region HABPᶵ Sequences 

Paralog* 

PF3D7_ 

1335100ᵠ 

PF3D7_

1335000 

PF3D7_

1334800 

PF3D7_

1334700 

PF3D7_

1334500 

PF3D7_

1334400 

PF3D7_

1334300 

20 kDa fragment’s N- and C-

terminal extremes 

N-terminal 26101 IKNKKLEKLKNIVSGDFVGNY x x x 
  

x 
 

Central 26107 NLGLFGKNVLSKVKAQSETDY x 
      

19 kDa fragment’s C-terminal C-terminal 

26114 EKDKEYHEQFKNYIYGVYSYA x x x x x x x 

26115 KQNSHLSEKKIKPEEEYKKF x x 
   

x x 

26116 EKPEEEYKKFLEYSFNLLNTM x x 
   

x x 

 

Paralogs with similar HABP sequences in the corresponding genomic region are indicated by x. 

*P. falciparum PlasmoDB nomenclature (Mello et al. 2002). 

ᶵ P. falciparum HABPs (García et al. 2007). 

ᵠ HABP epitopes have been described in PF3D7_1335100 (Garcia et al., 2007). 
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Figure 2-1. Msp7 multigene family organization. Data on the chromosome and the 

position of the msp7 family is limited to those species with complete annotated genomes. 

Syntenic msp7 blocks are found in the P. vivax clade (Chromosome 12), and the rodent 

clade and Laverania subgenus (Chromosome 13). Ortholog genes are indicated by 

vertical lines connecting across different species, while paralogs are depicted in 

horizontal lines for each Plasmodium species with genomic data available. Most paralogs 

are represented by diamond shapes; PVX_082660 and PVX_082690 and their respective 

orthologs are represented by triangles showing their similarity only to the C-terminus or 

N-terminus regions, respectively. Paralogs with the same coloration are more closely 

related phylogenetically and share overall similar sequence patterns. Pseudogenes are 

indicated by non-continuous lines. Plasmodium species without annotated genomes are 

indicated by a red rectangle. Question marks indicate paralogs that were not obtained 

experimentally but are present in closely related Plasmodium species.  
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Figure2-2. Bayesian inference (BI) and Maximum Likelihood (ML) multigene family 

phylogenetic tree for simian msp7 paralogs. BI and ML trees showed almost identical 

topologies, so only BI topology is shown with asterisks (*) indicating conflicting 

branching patterns. Posterior probabilities (PP) and bootstrap values (BV) are shown next 

to the phylogenetic tree nodes (PP/BV).  Branch with the same coloration are not only 

closely related but share overall similar sequence patterns. The tree was constructed from 

233 msp7 paralogs excluding those short sequence length (PVX_082660 and 

PVX_082690 and respective orthologs). A total of 858 nucleotide positions were 

included in the analysis and the GTR+I+Γ nucleotide model (inv. sites = 0.0060; 

α=1.6470) was used. Paralogs were divided into three mayor groups (Group A, Group B 

and Group C). 
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Figure 2-3. Bayesian inference (BI) and Maximum Likelihood (ML) phylogenetic tree of 

msp7 multigene family paralogs found in Plasmodium species from the Laverania 

subgenus. BI and ML trees showed similar topologies, so only BI topology is shown with 

asterisks (*) indicating conflicting branching patterns. Posterior probabilities (PP) and 

bootstrap values (BV) are shown next to the phylogenetic tree nodes (PP/BV).  Branch 

which share the same coloration are more closely related and share overall similar 

sequence patterns. The tree was constructed from 16 msp7 multigene family members. A 

total of 2,157 nucleotide positions were included in the analysis and the GTR+Γ 

nucleotide model (α= 2.9310) was used. Putative ancestral sequences and extant 
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sequences of epitope HABP26114 were determined for each paralog. Amino acid 

changes are colored with changes between same type amino acid sharing the same color.  
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CHAPTER 3. Evolutionary rates in gametocyte expressed genes and transmission 

blocking vaccine candidates in Plasmodium spp. 

 

3.1 Introduction 

By the end of 2015, an estimated 214 million malaria cases and approximately 

438,000 malaria related deaths occurred worldwide with cases developing in the African 

(90%), South-East Asian (7%) and Eastern Mediterranean (2%) regions (WHO, 2015). 

The implementation of control and eradication strategies has resulted in an 18% decline 

of estimated malaria cases and 48% decline in worldwide mortality rates since the year 

2000 (WHO, 2015; Zhou et al., 2014). While these policies have had a positive effect in 

reducing global malaria prevalence, Plasmodium resistance to antimarial drugs has 

become well-established in numerous malaria-endemic countries and is spreading into 

others (Fairhurst, 2015; Hastings et al., 2015; Mvumbi et al., 2015; WHO, 2015). 

Additional factors such as Anopheles resistance to insecticides (Riveron et al., 2015), 

complexity of transmission patterns, and the intricate array of antigens expressed during 

the parasite’s life cycle (Kirkman and Deitsch, 2012), have hindered parasite eradication 

and negatively impact efforts to inhibit its expansion (Keitany et al., 2014). In order to 

address these issues, alternative malaria control and treatment strategies are being 

approached and the development of malaria vaccines has gained renewed interest.  

Malaria vaccines can be classified into three groups depending on the parasite 

stage to which they are targeted: 1) pre-erythrocytic vaccines are aimed at the sporozoitic 

stage (e.g., RTS,S currently in Phase 3 trial), they target the parasite when infection is 
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still asymptomatic and prevent blood stage infection (Agnandji et al., 2011); 2) blood 

stage vaccines are aimed at asexual blood stages, and negatively affect malaria 

transmission by preventing and controlling the progress of the disease in the vertebrate 

host (Carter, 2001); and 3) transmission blocking vaccines (TBVs), utilize antibodies 

produced by the immune response against Plasmodium gametocyte antigens (pre-zygotic) 

and antigens found in the mosquito (post-zygotic) to inhibit parasite development after 

ingestion via a blood meal (Miura et al., 2013; Nikolaeva et al., 2015). Pre- zygotic 

vaccine candidates are known to induce higher and more sustained antibody responses, 

which result in more efficient transmission blocking activity. On the other hand, post-

zygotic candidates are not exposed to immune pressure in the vertebrate host, are subject 

to a lower antibody response, and tend to have lower polymorphism (Nikolaeva et al., 

2015). Presently, there are approximately 24 suggested proteins described as potential 

transmission blocking antigens, the majority of which require further characterization 

before being considered as feasible TBV candidates (Sinden et al., 2012).  

It has been proposed that high levels of nucleotide diversity may hamper the 

development of an effective malaria vaccine (Girard et al., 2007). Among the 6-cysteine 

family TBVs, limited levels of polymorphism have been found in Pfs16 and Pfs230, 

when compared to erythrocyte-stage antigens (Niederwieser et al., 2001), as well as in 

Pfs25, Pfs48/45 and their respective Plasmodium vivax orthologs (Da et al., 2013; 

Tachibana et al., 2015). Low levels of polymorphism have also been observed in 

PvWARP, among samples from a temperature gradient (Gholizadeh et al., 2009; Miura et 

al., 2013).  
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In addition to low polymorphism, universal TBVs also require potential 

candidates that are conserved among different Plasmodium species, and that are capable 

of eliciting an immune response in more than one Plasmodium species (Alonso et al., 

2011; Vaccines and others, 2011). This type of approach would be highly beneficial in 

regions where mixed infections by different parasite strains and/or species occur. The 

development of a single TBV effective against major human malarias is one of the 

proposed objectives of the PATH Malaria Vaccine Initiative and other research groups 

(Schwartz et al., 2012). Immunogenicity and effectiveness against both P. falciparum and 

P. vivax is of particular importance in locations where these species co-occur and where 

transmission is low; hence, evaluating evolutionary trends in these and closely related 

Plasmodium species can be vital in the development of vaccines that interrupt malaria 

transmission (Vaccines and others, 2011). Most of the preclinical development of sexual 

stage vaccines has been performed on Plasmodium falciparum with only two of them 

having currently reached Phase 1 trails (Pfs25-EPA/AS01 and Pfs230-EPA/AS01) 

(Schwartz et al., 2012). There are comparatively few studies conducted using other 

human malarias (Ouattara and Laurens, 2015), particularly P. vivax. So far, transmission-

blocking activity against P. falciparum and P. vivax antibodies has been described for a 

single and highly conserved protective epitope of AnAPN1, a midgut molecule critical for 

ookinete invasion (Armistead et al., 2014). However, this finding could lead to the 

development of a future universal TBVs.  

Another issue relevant to the development of TBV candidates is sex-dependent 

variation in responses to treatment and to the host’s immune system. It has been 

suggested that the Plasmodium parasite’s investment in the production of transmissible 
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stages (gametocytes) can be associated with the presence of numerous stressors such as 

antimalarial drugs, vaccines or changes of the in-host environment (Josling and Llinás, 

2015). Under these circumstances, investment in asexual or sexual stages, or even among 

male or female gametocytes, appears to be adapted to maximize the parasite’s fitness and 

transmission success (Carter et al., 2014). Specifically, investment in male or female 

gametocytes has been associated with sex-specific immune responses mounted during the 

course of infection (Bousema and Drakeley, 2011). Furthermore, there is evidence 

suggesting that male gametocytes are more vulnerable targets to drug treatment than 

female gametocytes (Delves et al., 2013). This collection of factors suggests that sex-

specific responses to numerous stressors may result in divergent evolution of 

Plasmodium gametocytes, which in turn, could affect the effectiveness of pre- zygotic 

TBV candidates.  

Previous studies have also suggested that differences in the number of P. 

falciparum immune epitopes in loci with male- or female-biased expression may be 

associated with different responses to the host immune system (Khan et al., 2012). In 

certain vaccine candidates, highly polymorphic domains, thought to be driven by host 

immune recognition, have been found within epitope regions of natural parasite 

populations. Also, although known TBV candidates have been described as showing low 

levels of polymorphism (Da et al., 2013; Tachibana et al., 2015), some variation in 

gamete-specific epitopes has been described in endemic Plasmodium strains (Stone et al., 

2016). For example, significant geographical differentiation related to the presence of 

continent- and region-specific mutations has been found in Pfs48/45, even though this 

gene shows high sequence conservation worldwide (Feng et al., 2015). Thus, the putative 
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location of immune epitope regions could affect the distribution of positively selected 

sites in TBV candidate sequences. Furthermore, the association between the presence of 

immune epitopes and gametocyte sex could be of relevance in the selection and 

development of new TBV candidates. 

In the present study, I characterized polymorphism and divergence of genes with 

gametocyte-biased expression in known human malarias and closely related non-primate 

Plasmodium species. I also evaluated the association between sex-biased expression, 

epitope distribution, and evolutionary signals of these genes.  

3.2 Materials and Methods 

3.2.1 Sequence data. 

In a previous study, the male and female gametocyte proteomes of P. berghei 

were characterized using the partitioned P. falciparum gametocyte proteome as a baseline 

(Khan et al., 2012; Tao et al., 2014). I used the reanalyzed P. berghei proteome to select a 

sample of genes with gametocyte biased expression. Genes were selected based on their 

expression profile, orthology, and absence of paralogs. I also used the P. falciparum 

transcriptome of sexual and asexual life stages (López-Barragán et al., 2011), publicly 

available in PlasmoDB version 27.0 (Autorrecochea, 2009), to identify genes with 

pronounced gametocyte expression. Genes prominently expressed in other stages of the 

Plasmodium life cycle, such as members of the Merozoite Surface Protein family (msp1 

and msp9) or circumsporozoite-related antigens, were excluded from the present analysis. 

Multigene family members were also excluded regardless of their expression profile (e.g., 

SERA) with the exception of known TBV candidates (P28). Species-specific or clade-
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specific genes were also excluded. These selection criteria lead to the inclusion of 381 

orthologs from the original P. berghei gametocyte proteome re-analysis (784 male- and 

female-specific proteins). Expression for each gene was identified as male, female, or 

male-female common following previous categorization (Tao et al., 2014). In addition, I 

categorized genes as putative membrane and non-membrane located following the criteria 

used in the P. berghei female and male proteome (Khan et al., 2012).  

I identified the 381 orthologs using reciprocal BLAST (Altschul et al., 1997) 

searches against 8 of the Plasmodium species with publicly available genomes. The 

PlasmoDB version 27.0 (Autorrecochea, 2009) database was used for  a sequence search 

of all primate malarias included in this study: P. vivax (Salvador I strain), P. cynomolgi 

(B strain), P. knowlesi (H strain), P. falciparum (3D7 strain) and P. reichenowi (CDC 

strain); and the rodent malarias: P. yoelii (YM strain), P. berghei (ANKA strain) and P. 

chabaudi chabaudi (AS strain). Interspecies alignments were performed independently 

for each gene using the MUSCLE (Edgar, 2004) algorithm incorporated into SeaView 

version 4 (Gouy et al., 2010), followed by manual editing of protein and nucleotide 

sequences. I used an unrooted topology constructed using previously published 

Plasmodium species phylogenies (Pacheco et al., 2012) to perform each independent 

analysis. 

3.2.2 Synonymous and non-synonymous substitutions rates and MLEs of synonymous and 

non-synonymous branch lengths. 

I obtained estimates of synonymous and non-synonymous evolutionary rates over 

a specific time frame in order to identify variation of selective pressures among different 
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Plasmodium lineages. The absolute rates of synonymous and non-synonymous 

substitutions were estimated for each multisequence alignment using CodonRates v1.0 

(Seo, 2004). Time constraints were fixed for all of the analyses using previously 

published time estimates for the split of Plasmodium species (Pacheco et al., 2012). The 

node estimating the split of rodent malarias was fixed to 12-14 Mya, and the P. 

reichenowi- P. falciparum split was fixed to 5-6 Mya. Significant differences in the 

overall absolute rate of synonymous and non-synonymous substitutions for each analyzed 

gene were evaluated with a two way ANOVA using the sex (Tao et al., 2014) and 

location categories (Khan et al., 2012) as factors. In addition, the maximum likelihood 

estimates (MLEs) of synonymous and non-synonymous branch lengths were also 

calculated. Significant differences among the branch MLEs were assessed with a three 

way ANOVA which included Plasmodium species, sex, and location as factors. Potential 

variation among sex (male, female, and male-female common) and location (membrane 

and non-membrane) categories was also assessed using box and whiskers plots. All 

statistical analyses were performed using R version 3.2.2. 

3.2.3 Evolutionary analyses. 

When developing effective elimination and control strategies, it is of interest to 

consider variations in the nature and strength of selective pressures acting on different 

Plasmodium species, particularly if the intention is for those strategies to be effective in 

regions where more than one Plasmodium species co-occurs. In the present study, I 

evaluated putative variation amidst the selective signals in different branches of the 

Plasmodium topology using Hyphy’s random effects Branch-Site REL model (BSREL) 
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(Kosakovsky Pond et al., 2011; Pond and Muse, 2005). This analysis was executed 

independently for the 381 multisequence alignments and using the same topology. The 

number of classes in each branch was set equal to three and the alpha (α) and omega (ω) 

values were allowed to vary among branches and branch-site combinations. Internal and 

terminal branches with a corrected p-value <0.05 were considered to be under significant 

episodic selection. I recorded the strength of episodic selection and proportion of sites 

under this selective regime.  

I further analyzed genes that  showed significant signs of episodic selection in 

internal or terminal branches for signals of gene-wide positive selection using the branch-

site unrestricted statistical test for episodic diversification (BUSTED) (Murrell et al., 

2015). The test was performed using lineages in which signs of significant episodic 

selection were previously detected by BSREL as the a priori subset of foreground 

branches. This allowed me to test if branches with potential signals of episodic selection 

also showed signs of diversification, while also permitting flexible selection elsewhere in 

the phylogenetic tree. 

3.2.4 Codon selection analyses. 

3.2.4.1 Genes with gametocyte biased expression. 

Previous studies have suggested that the trends of accelerated evolution observed 

in genes expressed in male gametocytes, may be associated with the presence of a 

significantly higher percentage of immune epitopes in comparison to genes with female-

biased expression (Khan et al., 2012). In order to further test this hypothesis, I estimated 

the site-specific variation in the selective pressures along a multisequence alignment 
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using Hyphy’s random effects likelihood analysis (REL)  (Pond and Muse, 2005). The 

analysis was  performed using publicly available P. falciparum (3D7, IT, 303.1, 7G8, 

BM-0008, CS2, Dd2, GB4, H209, HB3, M113-A, N011-A, RV3600, Santa Lucia, 

Senegal, UGK-396, O314, P164-C, T9-94 and TRIPS) and P. reichenowi (CDC) isolates. 

As previously suggested, I focused the analysis of P. falciparum immune epitopes due to 

their more detailed characterization (Khan et al., 2012). I obtained information regarding 

the location and length of immune epitopes reported in P. falciparum sequences from the 

Immune Epitope Database (IEDB) section found in PlasmoDB version 27.0 

(Autorrecochea, 2009). The number of available sequences varied among loci due to 

differences in sequence quality among P. falciparum isolates, resulting in a minimum of 

13 and a maximum of 20 P. falciparum sequences included in each REL test.  

I determined the proportion of genes showing at least one significant positively 

selected site for the 381 genes. In addition, I determined the proportion of positively 

selected sites in relation to alignment length for all genes which showed at least one site 

under significant positive selection. In the case of genes with reported immune epitopes, I 

also estimated the proportion of these sites inside and outside putative epitope regions. In 

addition, I measured these values for each of the previously established sex (male, 

female, and male-female common) and location (membrane and non-membrane) 

categories, as well as in combinations of these categories (e.g., male non-membrane 

genes).  
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3.2.4.2 TBV candidates. 

I performed additional REL analyses for both P. falciparum and P. vivax for TBV 

candidates taking advantage of the large number of available worldwide isolates. P. vivax 

isolates were obtained from the database for clinical isolates representing diverse 

geographic regions, as part of the Hybrid Selection Initiative performed by the Broad 

Institute  (Autorrecochea, 2009). In addition, the five sequenced P. vivax reference strains 

(Salvador I, North Korean, India VII, Mauritania I and Brazil I) publically available via 

the Malaria Research and Reference Reagent Resource Center were included. 

Alternatively, P. falciparum isolates were obtained from the following sources: (1) whole 

genome sequencing of isolates collected from symptomatic malaria patients from Mali, 

generated through the 100 Plasmodium Genomes Whitepaper; (2) paired-end short-read 

sequences of clinical isolates from an endemic Gambian population from the Greater 

Banjul Area; and (3) genome sequences obtained from several Senegal isolates. In 

addition, P. falciparum sequences available in the NCBI database (Benson et al., 2014) 

were included. 

I assessed genetic diversity (π) and patterns consistent with natural selection 

acting on the observed polymorphism by calculating the differences of the average 

number of synonymous (dS) and non-synonymous substitutions (dN) between isolates 

using the Nei-Gojobori distance method (Nei and Gojobori, 1986), with the Jukes and 

Cantor correction implemented in MEGA 6.06 (Tamura et al., 2013). The difference 

between dS and dN and its standard error was estimated by using bootstrap with 500 

pseudo-replications, as well as a two-tailed, codon-based Z-test on the difference between 
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dS and dN (Nei and Kumar 2000). Under the neutral model, synonymous substitutions 

accumulate faster than non-synonymous because they do not affect the parasite fitness 

and/or purifying selection is expected to act against non-synonymous substitutions 

(dS≥dN). Conversely, if positive selection is maintaining polymorphism, a higher 

incidence of non-synonymous substitutions is expected (dS<dN). I assumed as a null 

hypothesis that the observed polymorphism was not under selection (dS=dN). 

3.2 Results 

3.3.1 Synonymous and non-synonymous substitution rates and MLEs of synonymous and 

non-synonymous branch lengths. 

The differences in the overall absolute rates of synonymous substitutions among 

sex categories (male, female, and male-female common) were statistically significant (F= 

3.20, p-value= 0.04). Also, a significant variation of the non-synonymous branch lengths 

MLEs was observed among location (F= 22.42, p-value= 2.342e-06), Plasmodium 

species (F= 104.0846, p-value= 2.2e-16) and the interaction of sex and location (F= 

8.6625, p-value= 0.0001798).  

Overall, synonymous branch length MLEs showed larger values than non-

synonymous MLEs (Fig. 1). This trend was observed independently of the sex (male, 

female, and male-female common; Fig. 2 and Fig. 3) and location (membrane and non-

membrane; Fig. 4 and Fig. 5) categories. Compared to other Plasmodium clades, species 

of the Laveranian subgenus had lower mean synonymous and non-synonymous branch 

length MLEs (Fig. 2-5). Notwithstanding, a large standard error and mean were observed 

in the Laveranian synonymous MLE branch length of the male-female common and non-
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membrane categories (Fig. 2 and Fig. 4). Larger synonymous and non-synonymous 

branch length MLEs were observed in P. vivax and closely related species. Similar to the 

aforementioned case, the mean value and standard error of the synonymous MLEs of 

genes with male- and female-biased expression were noticeably larger in P. knowlesi 

(Fig. 2). Additionally, the means of synonymous and non-synonymous branch length 

MLEs were comparable in membrane genes; however, synonymous branch length MLEs 

were largely variable (Fig. 4 and Fig. 5). Genes with putative non-membrane expression 

showed slightly larger means of synonymous branch MLEs compared to non-

synonymous branch MLEs (Fig. 4 and 5).  

3.3.2 Evolutionary analyses. 

Purifying selection was the dominant force for the majority of genes regardless of 

sex and location categories. Nevertheless, in 14 genes, I detected strong signals of 

diversifying selection in a small proportion of sites along certain branches of the 

phylogeny (Table S1). The most common annotated functions found were related to 

metal and nucleic acid binding activity (PVX_001080 and PVX_099105), as well as 

peptidase activity (PVX_082500 and PVX_098665). With the exception of gene 

PVX_098665, all sequences which showed signs of episodic selection in the BSREL 

analysis also presented evidence of gene-wide positive selection in the same branches of 

the Plasmodium topology (Table S2).  

Both the P. cynomolgi and P. berghei terminal branches showed significant signs 

of episodic selection in the majority of the 14 genes, with P. berghei presenting the 

strongest selective signal. Five of these genes had characterized low confidence immune 
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epitopes in P. falciparum; nonetheless, no association between the strength of episodic 

selection and the presence of immune epitopes was found. Furthermore, no significant 

signals of episodic selection were found in P. vivax or P. falciparum, even though they 

were observed in closely related species.  

3.3.3 Codon selection analyses. 

3.3.3.1 Genes with gametocyte biased expression. 

The number of genes with reported P. falciparum immune epitopes varied among 

the established sex and location categories. A larger proportion of genes with male-biased 

expression and genes with non-membrane location had reported immune epitopes. 

Furthermore, a significant proportion of male-female common expressed genes also 

harbored reported immune epitopes (Table S3). The proportion of genes with at least one 

site evolving under significant positive selection was larger in genes with reported 

epitopes from the male, male-female common and non-membrane categories. 

Alternatively in the female category, the proportion of genes with positively selected sites 

was lower in genes with reported epitopes. No variation in the proportion of genes with at 

least one site evolving under significant positive selection was observed between 

membrane-located genes regardless of the existence of epitopes (Table S3).  

With the exception of the male-female common sex and the non-membrane 

location categories, the proportion of positively selected sites was marginally larger in 

genes with no reported epitopes than in those with epitopes. When the location of 

positively selected sites in genes with reported immune epitopes in relation to the 

locations of the epitopes was assessed, the proportion of positively selected sites was 
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slightly biased to the regions inside the reported immune epitopes in the non-membrane, 

male, and female categories. Thus, the presence of epitopes was associated with 

accelerated evolution in certain sex and location categories; however, there is little 

evidence of enrichment of positively selected sites within epitopes. The majority of the 

epitopes found in this study are of low confidence, and hence, sequence variation among 

isolates is to be expected. In order to address this, I evaluated the distribution of 

positively selected sites in genes where experimental epitopes have been characterized 

(high confidence); nonetheless, I found no association between the location of the epitope 

and the distribution of positively selected sites in the sequence.   

3.3.3.2 TBV candidates.  

Polymorphism levels were markedly low in all the evaluated TBV candidates 

with only Pvs230, PvsApiAP2 and Pfs47showing significant deviation from neutrality. A 

comparable proportion of sites under significant positive selection were found in both P. 

falciparum and P. vivax orthologs for some members of the 6-cyteine protein family: 

P230, P230p, P47 and P48/45, as well as ApiAP2. Evidence of positive selection was 

also detected in a single species in other TBV candidates (Pfs25 and Pvs28), with the 

proportion of sites being particularly large in Pfs25 (Table 1).  

3.4 Discussion 

Only Plasmodium gametocytes can infect the Anopheles mosquito vector and 

mediate the onward transmission of the disease. In P. falciparum, approximately 33% of 

the proteome is composed of gametocyte unique proteins (Florens et al., 2002; Lasonder 

et al., 2002). Furthermore, approximately 250 to 300 genes have shown specific mRNA 
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up-regulation in transcriptome analyses (Silvestrini et al., 2005; Young et al., 2005). 

Thus, it is possible that few critical expressed or up regulated genes during the 

gametocyte stages could be used to influence parasite transmission. However, although 

the gametocyte stage is common to all Plasmodium species, there are species-specific 

differences in gametocyte development. To begin with, the length of the sexual stage 

varies among Plasmodium species, with the longest cycle observed in P. falciparum (9-

11 days) and the shortest in P. vivax and P. berghei (approximately 2 days). Also, P. 

vivax shows earlier onset of gametogenesis and a larger number of gametocytes in blood 

than P. falciparum (McKenzie et al., 2006). This type of inter-specific variation hinders 

the development of transmission-blocking strategies that can be effectively used in more 

than one species, a factor of particular relevance in areas where several Plasmodium 

species co-occur.  

The effectiveness of transmission-blocking strategies can also be affected by 

genetic variation among Plasmodium parasites. Plasmodium species have markedly 

different evolutionary histories (Martinsen et al., 2008), and distinct evolutionary trends 

(Nikbakht et al., 2014). In some cases, these differences have been observed only in 

specific genes of human interest (Nikolaeva et al., 2015) or in the whole genome. Hence, 

the study of species-specific patterns is highly significant when making inferences about 

the long-term effects of transmission blocking strategies.  

When comparing the rodent clade and Laveranian subgenus, previous studies 

have found no significant variation in non-synonymous substitutions rates in genes 

expressed in a single stage or those expressed in several life stages. Nonetheless, lower 
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selective constraints have been reported on gametocyte-expressed genes within the 

Laverania subgenus (Prugnolle et al., 2008). Variation of the synonymous and non-

synonymous substitution rates in species from the simian and rodent clade, and the 

Laveranian subgenus suggest that genes with gametocyte-biased expression tend to 

evolve in a clade dependent manner (Fig. 1). While the mean synonymous substitutions 

MLEs are similar between species of the simian clade and Laveranian subgenus, the 

mean non-synonymous substitution MLEs is lower in the Laveranian subgenus (Fig. 1). 

This indicates that species of the simian clade could be evolving at an accelerated rate 

with respect to those of the Laverania subgenus. A possible explanation for this is that 

differences in the substitution rate could reflect the distinctive evolutionary history of 

Plasmodium species from both groups. The more recent divergence of Plasmodium 

species in the simian clade compared with those in the Laveranian subgenus (Pacheco et 

al., 2011), and their association with  different vertebrate hosts  (Mu, 2005; Prugnolle et 

al., 2013) may affect the strength of selective constrains. This could result in larger non-

synonymous substitution rates in species of the simian clade as observed here.  

Alternatively, the larger number of gametocytes in blood and an earlier onset of 

gametogenesis in P. vivax (McKenzie et al., 2006) is likely to result in a larger proportion 

of gametocytes exposed to the host immune system, which could also generate a pattern 

such as the one described here. Overall, these results suggest that, in the long term, 

immune selective pressures and the larger diversity in the P. vivax and P. cynomolgi 

genomes when compared to P. falciparum might be influencing a more rapid evolution of 

gametocyte expressed genes in certain species. Therefore, potential transmission blocking 

strategies could be less effective in P. vivax and closely related species. This is clinically 
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important because P. vivax is the most widespread human malaria species, and also 

because sporadic human infections caused by species closely related to P. vivax have 

been reported: P. knowlesi (White, 2008), and P. cynomolgi (Ta et al., 2014).  

On the other hand, the large variation in the synonymous substitution rates 

estimated in P. knowlesi, P. falciparum and P. reichenowi indicates that certain genes 

with gametocyte-biased expression evolve more rapidly within these Plasmodium species 

(Fig. 1). The absence of a similar pattern in the non-synonymous substitution MLEs 

suggests that this variation might be either the result of relaxation of selective pressures 

or higher substitution rates in certain genes (Fig. 1). Overall, these results show that 

selective forces act differentially among Plasmodium species.  

Parasite exposures to external stressors (e.g., antimalarial drug treatments) or 

biological stressors (e.g., high parasitemia) have been associated with increased 

commitment to gametogenesis in vitro; however, this association is less pronounced 

when gametogenesis is not completely regulated by environmental factors (Josling and 

Llinás, 2015) and instead is partially associated with naturally acquired immunity to 

asexual parasite stages (Bousema and Drakeley, 2011). It has been suggested that under 

stressful conditions, Plasmodium parasites may adjust gametocyte sex ratio in order to 

maximize reproduction by favoring a less female biased sex ratio when male parasites are 

too numerous (Reece et al., 2008; West et al., 2002), and that different gametocyte sexes 

have distinct responses to transmission blocking therapies (Delves et al., 2013). In 

addition, higher gametocyte density, particularly that of male gametocytes, positively 

affects transmission success, even when the majority of natural infections are female-



 

65 
 

biased (Mitri et al., 2009). Differences between gametocyte sexes are not limited to life 

history but can also be traced to protein expression. particularly, a proportion of  proteins 

expressed exclusively in either male or female gametocytes in P. falciparum and P. 

berghei (Khan et al., 2005; Tao et al., 2014). My results show little variation between the 

synonymous and non-synonymous substitution rates in genes with male, female, and 

male-female common expression among different Plasmodium species (Fig. 2 and Fig. 3) 

suggesting that long term evolution is not markedly different between sexes. 

 The limited variation observed in synonymous substitution rates within each sex 

category, with the exception of P. knowlesi (male and female categories; Fig. 2) and P. 

falciparum and P. reichenowi (male-female common category; Fig. 2), suggests that 

substitution rates are somehow constant within the specified time frame. The greater 

variation of synonymous substitution rates previously mentioned in the Laveranian 

subgenus, and in P. knowlesi, are restricted to specific sex categories. This could imply 

that accelerated evolution might be sex-dependent within certain species, particularly 

those with lengthy gametocyte stages such as P. falciparum, or it could be a result of 

accelerated evolution of specific genes.  Alternatively, the common variation in non-

synonymous substitution rates observed in each sex category for all Plasmodium species 

(Fig. 3) suggests that, while certain lineages might show signs of accelerated evolution, 

there is generally little variation in the selective pressures affecting genes within each 

lineage.  

Non-membrane located genes and male-female common expressed genes from 

the Laveranian subgenus show a large variation of synonymous substitution rates, 
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indicating that both groups contain genes under accelerated evolution. Likewise, the 

larger variation of non-synonymous substitution rates observed in membrane-located 

genes compared with non-membrane genes (Fig. 5) suggest that certain membrane-

located genes are exposed to higher selective pressures than others. This trend could be 

explained by the notion that  exposure to the host’s immune system results in accelerated 

evolution, which is something more likely to be observed in membrane than non-

membrane located genes (Khan et al., 2012). Previous studies have found that, while non-

membrane genes evolve more slowly than membrane genes with female and asexual 

expression, no significant variation is observed among membrane and non-membrane 

genes with male-biased expression. Furthermore, male non-membrane genes have been 

shown to evolve faster than female non-membrane genes (Khan et al., 2012). 

 In the present study, a small but significant variation in the non-synonymous 

branch lengths MLEs was observed among location categories. Male non-membrane 

genes showed signs of accelerated evolution relative to female, and male-female common 

non-membrane genes. The accelerated evolution of male, non-membrane genes could be 

driven by a parasite’s life history traits. For instance, it has been found that low 

gametocyte density, as observed in some species (e.g., P. falciparum) (McKenzie et al., 

2006), favors a less female-biased sex ratio and affects local mate competition and 

fertilization success (Neal and Schall, 2014).  

Genes showing signs of episodic selection were not found in Plasmodium species 

of human interest; however, episodic selection was commonly observed in P. cynomolgi 

and P. berghei (Table S1 and Table S2). This suggests that, while certain genes with 
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gametocyte biased expression could evolve under long-term diversifying selection, this 

trend does not seem to be observed in the main causal agents of human malarias. 

Nonetheless, given the cases of human infections by traditionally non-human malaria 

parasites (White, 2008; Ta et al., 2014), genes with gametocyte-biased expression should 

be evaluated in detail when presenting with this type of pattern, whether is in human 

malarias or not. The majority of genes with signs of episodic selection were hypothetical 

proteins with an unknown function (Table S1). It is likely that genes involved in 

functions related to host-parasite interaction or immune evasion are more prone to be 

positively selected (Kuo and Kissinger, 2008). Thus, it is possible that these genes could 

perform the aforementioned functions, but remain to be characterized. These results, 

however, should be taken with caution since, while efforts were made to include species 

representing three of the main malaria clades, there are only a few species representing 

each one. Therefore, it is possible that the power to detect significant estimates of 

adaptive evolution is reduced in our analyses. While larger power could be obtained by 

incorporating other species of the simian clade, no other rodent malaria genomes are 

currently available, and the P. gaboni genome, while available, is largely incomplete.   

Even when using the reanalyzed P. berghei proteome (Tao et al., 2014), non-

membrane located genes with male biased expression presented a larger proportion of 

immune epitopes relative to other categories. This result is in agreement with previous 

reports that show the proportion of genes with epitopes in the male, non-membrane 

category (0.292) to be larger than in the male membrane (0.107), female membrane 

(0.167), and female non-membrane (0.158) categories (Khan et al., 2012). In addition, the 

male-female common category, previously not included, also presented a similar level of 
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immunogenicity. Among genes where immune epitopes were reported, the proportion of 

genes with signs of positive selection was the largest in the male and non-membrane 

categories (Table 1). Nonetheless, when the distribution of positively selected sites along 

the sequences is taken into account, approximately less than half of the genes with 

reported immune epitopes show positively selected sites located inside the immune 

epitope region. This suggests that while selection caused by immune pressure does have 

an effect on gametocyte-expressed genes, particularly in those of the female-male 

common and non-membrane categories, selective forces do not seem to act 

disproportionately in the regions where immune epitopes are located.  

The higher proportion of positively selected sites in genes with reported immune 

epitopes could indicate that evolution in a portion of gametocyte-expressed genes is 

indeed driven by the host’s immune system. However, it is possible that alternative 

immunogenic regions remain to be described, or that additional forces shaping the 

evolution of these genes remain to be explored (e.g., interaction with the mosquito 

vector). Furthermore, the distribution of positively selected sites was not significantly 

skewed to the putative location of immune epitope regions even when only high 

confidence immune epitopes were considered. This shows that the aforementioned trend 

can be observed regardless of the low confidence epitopes included in this analysis.  

In the case of leading TBV candidates, lower levels of genetic variability have 

been observed in comparison to those of asexual and pre-erythrocytic vaccine candidates. 

It is possible that these differences are caused, in part, by the variable selective pressures 

generated by exposure to the vertebrate host and vector immune systems (Carter, 2001; 
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Da et al., 2013). Only a few studies have highlighted the importance of assessing the 

effect of long term evolution of known and potential TBV candidates, even when such 

studies are key for  detecting novel TBV candidates (Sinden et al., 2012). Overall, 

leading TBV candidates included in the present study did not show significant signs of 

episodic selection with the exception of P28 (Table S1 and Table S2).  

When I independently evaluated the presence of positively selected sites and the 

effects of natural selection in P. vivax and P. falciparum orthologs, I was found that 

positively selected sites were present in P47, P48/45, P230 and P230p in both species, 

with Pfs47 and Pvs230 respectively showing significant signs of positive and negative 

selection (Table 1). These results are in agreement with previously reported trends 

observed in both TBV candidates, where is has been observed that the distribution of 

non-synonymous polymorphisms is geographically skewed (Anthony et al., 2007; Doi et 

al., 2011). Antibodies that produce effective transmission blocking activity have been 

described in P48/45 (Roeffen et al., 2001; Tachibana et al., 2015) and P230 (Tachibana et 

al., 2012; Williamson, 2003); however, transmission blocking activity has been described 

in Pvs47 but not Pfs47 (van Schaijk et al., 2006). These differences highlight the 

complexity of developing effective antimalarial treatments, and further emphasize the 

need to explore additional TBV candidates with consistent selective signals and 

transmission blocking activity across Plasmodium species. Positively selected sites were 

also found in Pvs28 even though there was no deviation from neutrality. This suggests 

that P28 might be under diversifying selection in the former (Table 1).  
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Overall, my present results indicate that different patterns of accelerated evolution 

can be found across Plasmodium species, but are likely limited to a reduced number of 

genes. Different sex and location categories showed variable levels of immunogenicity; 

however, this variation did not seem to affect long term evolutionary trends among sex or 

location. Furthermore, short term evolutionary trends were not uniquely associated with 

the putative location of immune epitopes suggesting that immune pressures might not be 

the only factor shaping the evolution of gametocyte-expressed genes. Finally, while signs 

of episodic selection were not observed in known TBV candidates, with the exception of 

P28, Plasmodium species of human interest did show patterns consistent with positive 

selection acting on the observed polymorphism.  
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7
1
 

Tables 

Table 3-1. Polymorphism and positively selected sites (REL) in putative TBV candidates. 

Species Name Gene ID* N π [SD] Ds Dn Dn-Ds [SD] Z test 
Neutralit

y 

Prop. + selected 

sites (REL) 

P. vivax p230p PVX_003900 80 0.001 [0] 0.001 0 0.001 [0.001] 0.233 (-1.200) Dn = Ds 0.011410315 

p230 PVX_003905 111 0.001 [0] 0.002 0.001 -0.001 [0.001] 0.040 (-2.081) Dn < Ds 0.010905125 

p48/45 PVX_083235 369 0.001 [0] 0.001 0.001 0.001 [0.001] 0.166 (1.392) Dn = Ds 0.029748284 

p47 PVX_083240 166 0.003 [0.001] 0.002 0.003 0.001 [0.002] 0.543 (0.610) Dn = Ds 0.043373494 

Hado PVX_084290 101 0 [0] 0 0 0 [0] 1 (0) Dn = Ds 0 

Soap PVX_086220 108 0.001 [0.001] 0.002 0.001 -0.001 [0.002] 0.761 (-0.304) Dn = Ds 0 

Gamer PVX_093500 103 0.001 [0.001] 0.003 0 -0.003 [0.003] 0.283 (-1.078) Dn = Ds 0 

Warp PVX_093675 151 0.001 [0.001] 0.001 0.002 0.001 [0.001] 0.363 (0.913) Dn = Ds 0 

p25 PVX_111175 315 0.003 [0.001] 0.003 0.003 0.001 [0.001] 0.538 (0.617) Dn = Ds 0 

p28 PVX_111180 201 0.004 [0.001] 0.002 0.004 0.002 [0.001] 0.112 (1.601) Dn = Ds 0.061674009 

ApiAP2 PVX_123760 56 0.001 [0] 0.002 0.001 -0.001 [0.001] 0.014 (-2.499) Dn < Ds 0.012030516 

P. falciparum 
p230p PVX_003900 113 0.001 [0] 0.001 0 -0.001 [0.001] 0.081 (-1.759) Dn = Ds 0.008309688 

p230 PVX_003905 90 0.001 [0] 0.001 0.001 0 [0] 0.475 (0.719) Dn = Ds 0.004163997 

p48/45 PVX_083235 244 0.002 [0.001] 0.001 0.002 0.001 [0.001] 0.123 (1.553) Dn = Ds 0.015873016 

p47 PVX_083240 245 0.001 [0] 0 0.001 0.001 [0] 0.007 (2.762) Dn > Ds 0.057831325 

Hado PVX_084290 145 0 [0] 0 0 0 [0] 0.299 (-1.044) Dn = Ds 0 

Soap PVX_086220 197 0.001 [0.001] 0.001 0.001 0 [0.001] 0.531 (0.628) Dn = Ds 0 

Gamer PVX_093500 195 0 [0] 0 0 0 [0] 1 (0) Dn = Ds 0 

Warp PVX_093675 197 0 [0] 0 0 0 [0] 0.451 (0.756) Dn = Ds 0 

p25 PVX_111175 215 0.001 [0] 0 0.001 0.001 [0.001] 0.125 (1.545) Dn = Ds 0.870689655 

p28 PVX_111180 194 0 [0] 0 0 0 [0] 0.500 (0.676) Dn = Ds 0 

ApiAP2 PVX_123760 87 0.001 [0] 0.001 0.001 0 [0] 0.747 (0.324) Dn = Ds 0.008291874 

 

* P. vivax nomenclature taken from Carlton et al., 2009
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Figures 

 

Figure 3-1. Species-specific synonymous and non-synonymous branch MLEs in genes 

with gametocyte biased expression. Mean values of synonymous (A) and non-

synonymous (B) branch MLEs are marked as circles. Upper and lower confidence 
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intervals are indicated by error bars. Error bars larger than the graph scale are not 

included.  

 

 

Figure 3-2. Species-specific synonymous branch MLEs in genes with gametocyte biased 

expression classified by sex categories. Mean values of synonymous branch MLEs of 

genes with female (green triangle), male (red square), and female-male common (blue 

circle) expression are marked as circles. Upper and lower confidence intervals are 

indicated by error bars.  
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Figure 3-3. Species-specific non-synonymous branch MLEs in genes with gametocyte 

biased expression classified by sex categories. Mean values of non-synonymous branch 

MLEs of genes with female (green triangle), male (red square), and female-male 

common (blue circle) expression are marked as circles. Upper and lower confidence 

intervals are indicated by error bars.  
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Figure 3-4. Species-specific synonymous branch MLEs in genes with gametocyte biased 

expression classified by location categories. Mean values of synonymous branch MLEs 

of genes with membrane (purple diamonds), and non-membrane (orange lines) location 

are marked as circles. Upper and lower confidence intervals are indicated by error bars.  
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Figure 3-5. Species-specific non-synonymous branch MLEs in genes with gametocyte 

biased expression classified by location categories. Mean values of non-synonymous 

branch MLEs of genes with membrane (purple diamonds), and non-membrane (orange 

lines) location are marked as circles. Upper and lower confidence intervals are indicated 

by error bars in each mean value.  
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CHAPTER 4. Evolutionary trends in Plasmodium spp. genus common multigene families 

(GCMFs). 

4.1 Introduction 

Understanding the mechanisms of multigene family evolution and reconciling 

them with various evolutionary models has important implications for the study of 

organismal evolution and gene duplication dynamics (Okuda-Ashitaka et al., 1998; 

Rooney, 2004). Within parasitic protists (phylum Apicomplexa), several studies have 

pointed out the fundamental role of multigene families as a source of adaptation to 

biological niches and diversification among species (DeBarry and Kissinger, 2011; Kooij 

et al., 2005; Kuo and Kissinger, 2008; Weir et al., 2009). Specifically within the genus 

Plasmodium (the parasites which cause malaria), the largest differences among species’ 

genomes have been found within their multigene families, with lineage-specific 

duplications and deletions being observed even among closely related species (Tachibana 

et al., 2012). Furthermore, differences in genome size and variation in selective pressures 

have been associated with adaptation to specific host types (Frech and Chen, 2011).    

In their complex life cycle, parasites of the genus Plasmodium have to withstand a 

wide range of environments and selective pressures in order to successfully invade both 

Anopheles mosquitos and vertebrate hosts. The immune response of Anopheles 

mosquitoes acts as an important barrier to malaria transmission, and has led to specific 

evasive mechanisms by the parasite (Habtewold et al., 2008; Molina-Cruz and Barillas-

Mury, 2014). Anopheles mosquitoes can combat Plasmodium infection using two defense 

mechanisms: 1), the presence of two physical barriers (the peritrophic matrix and midgut 
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epithelium) that hinder Plasmodium passage; and 2) the development of membrane-

bound receptors that mark parasite cells for lysis or melanization (Saraiva et al., 2016). In 

humans, the humoral immune response targets both Plasmodium asexual blood stages 

and gametocyte-infected erythrocytes (Beeson et al., 2016; Stone et al., 2016). It also 

prevents the development of infections via the following mechanisms: blockage of 

erythrocyte invasion, opsonization and lysis of parasitized erythrocytes, and interference 

of infected erythrocyte adherence to the vascular endothelium (Ryg-Cornejo et al., 2016).  

Within Plasmodium, certain multigene families are involved in immune evasion 

and mediation of host-parasite interactions. Clade-specific families found in species of 

the Laveranian subgenus: P. falciparum and P. reichenowi (var, Rifin and Stevor) are 

involved in functions related to immune evasion via antigenic variation, development of 

virulence, mediation of host-parasite interactions, and cytoadherence (Claessens et al., 

2014; Kyes et al., 2007; Niang et al., 2009; Petter et al., 2008). Other multigene families 

are species-specific; for example, the SICAvar family (involved in antigenic variation) is 

unique to P. knowlesi (Lapp et al., 2009). Hypervariable multigene families, usually 

found in the sub-telomeric regions of Plasmodium chromosomes, are thought to be 

widely affected by recombination events (Claessens et al., 2014). It is believed that high 

recombination leads to rapid evolution and large gene turnover within these families 

(Kuo and Kissinger, 2008). Rapid turnover rates can also create species-specific arrays of 

paralogs in clade-specific families (Frech and Chen, 2013). The involvement of 

multigene families in functions related to both immune evasion and cell invasion shows 

that interactions with different types of host have the capacity to shape the evolution of 

Plasmodium parasites in their own unique ways. The complex life cycle and wide range 
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of vertebrate hosts within Plasmodium, provide an excellent opportunity to use 

comparative genomics as a mean to assess this hypothesis in genus common multigene 

families (GCMFs).  

Variation in the number of paralogs and paralog composition within GCMFs is 

rarely as drastic as that observed in species-specific multigene families (Aoki et al., 2002; 

Gupta et al., 2015). However, many of these families also have highly important 

functions in cytoadherence, merozoite invasion, and immune evasion (Arisue et al., 2011; 

Gupta et al., 2015; Tachibana et al., 2012). On the other hand, many GCMFs perform a 

variety of housekeeping functions across different Plasmodium species, such as 

involvement in metabolic pathways, and participating in the formation and maintenance 

of several parasitic structures. While the mechanisms shaping the evolution of specific 

GCMFs have been examined, genome-wide trends have been characterized in far less 

detail. A more thorough description of GCMFs evolvability would be of great 

significance in understanding genus-specific evolutionary trends, and might also 

highlight additional families of clinical interest. 

In the present study, I evaluate the evolutionary trends of GCMFs found in 

Plasmodium parasites. I also explore the putative variation of the composition and 

number of paralogs in each multigene family, and their relationship to recombination 

events and long term selective. Furthermore, I assess the putative role of host-parasite 

interactions in shaping these trends. 
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4.2 Methods 

4.2.1 Sequence data and classification of multigene family paralogs based on 

transcriptomic data. 

I identified multigene family members using BLAST (Altschul et al., 1997) 

searches against 11 Plasmodium species with current publicly available genomes. I used 

the PlasmoDB version 28.0 (Autorrecochea, 2009) and NCBI (Benson et al., 2015) 

databases for sequence searches of all primate malarias included in this study: P. vivax 

(Salvador I strain), P. cynomolgi (B-strain), P. knowlesi (H strain), P. inui (San Antonio 

strain), P. coatneyi (Hackeri strain), P. falciparum (3D7 strain) and P. reichenowi (CDC 

strain); and the rodent malarias: P. yoelii (YM strain), P. berghei (ANKA strain) and P. 

chabaudi chabaudi (AS strain). In addition, I obtained P. gonderi sequences from 454 

reads (Roche, Applied Science, Basel, Switzerland) were also included.  

I used the OrthoMCL database version 5.0. to select GCMFs. I established 

GCMFs as having at least one ortholog and a minimum of one paralog in any of the 

included Plasmodium species. This method assured the inclusion of multigene families 

with species- or clade-specific duplication events (referred henceforth as in-paralog 

families), and families with genus-specific duplication events (referred henceforth as out-

paralog families). I found a total of 97 GCMFs. I performed interspecies alignments 

independently for each multigene family using the MUSCLE (Edgar, 2004) algorithm 

incorporated into SeaView version 4 (Gouy et al., 2010), followed by manual editing of 

protein and nucleotide sequences. Of the 97 selected families, I excluded seven  (1-cys-

glutaredoxin-like protein, Akrin repeat, cytosolic Fe-S cluster assembly factor, dynein 
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light chain type 2, tRNA pseudouridine synthase, leucine rich repeat antigen and alpha-

beta hydrolase 2) from further analyses due to the presence of large unalignable regions 

and reduced numbers of informative sites. I also excluded paralogs with dramatically 

shorter sequence length from further analyses. Thus, I effectively obtained multisequence 

alignments for 90 multigene families.  

I categorized paralogs as vector-specific, vertebrate-specific, or generalist based 

on the expression patterns found in the P. falciparum (López-Barragán et al., 2011) and 

P. berghei (Otto et al., 2014a) transcriptomes. I classified paralogs presenting twice the 

expression levels in stages associated to the vector host (gametocyte V and ookinete) in 

comparison to other life cycle stages as vector-specific. Similarly, I classified paralogs 

with twice the expression levels in stages associated to the vertebrate host (ring 

trophozoite, trophozoite and schizont) as vertebrate-specific. Finally, I classified paralogs 

with an expression profile less than double in either life cycle stage as generalist. 

Classification of paralogs was repeated independently using both transcriptomes.  

4.2.2 Phylogenetic tree construction. 

A Python pipeline was developed in order to automatize the multigene family tree 

building process. For each alignment, the most adequate substitution model was selected 

using the Akaike information criterion (AIC) method incorporated in Jmodeltest (Posada, 

2008). Nucleotide frequencies, fraction of invariable sites, and the shape parameter 

(alpha) of the gamma distribution were specified for each analysis. Both Maximum 

Likelihood (ML) and Bayesian Inference (BI) methods were used to construct 

phylogenetic trees for each analyzed multigene family. PhyML v3.1 (Guindon et al., 
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2010) with 1000 bootstrap pseudo-replications was used to assess node significance on 

ML phylogenetic tree construction. The BI analyses were performed using MrBayes 

v3.1.2 (Ronquist et al., 2012) with 2×10
7
 Markov Chain Monte Carlo (MCMC) steps. 

The prior parameters for each BI analysis were incorporated from the Jmodeltest results 

using the established Python pipeline. For each BI tree, the corresponding multigene 

family topology, stationary nucleotides frequencies, nucleotide substitution rates, 

proportion of invariable sites, and the shape parameter (alpha) of the gamma distribution 

were specified. Sampling was performed every 1000 generations with a burn-in fraction 

of 50%. Convergence of the BI analysis was diagnosed by requiring a standard deviation 

lower than 0.01 and a Potential Scale Reduction Factor (PSRF) close to 1.0. 

4.2.3 Number of multigene family paralogs. 

I used the software package Count (Csuos, 2010) to identify changes in the 

number of multigene family paralogs along the Plasmodium phylogeny and to make 

inferences about the evolutionary history of each multigene family. Count makes 

evolutionary inferences of family sizes along a phylogeny by using Wagner parsimony 

(Farris, 1970). Under Wagner parsimony loss and gain of individual family members are 

penalized independently, resulting in an inferred multigene family history that minimized 

penalty of gain/loss events (Csuos, 2010). I used the same tree topology, constructed 

using published Plasmodium species phylogenies (Pacheco et al., 2011), to infer lineage-

specific gain/loss events across the 90 multigene families.  
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4.2.4 Episodic Selection and recombination. 

I measured the putative effects of episodic selection acting on different branches 

of the multigene family tree using Hyphy’s random effects Branch-Site REL model 

(BSREL) and its adaptive version (aBSREL) (Kosakovsky Pond et al., 2011; Pond et al., 

2005; Smith et al., 2015). Neither the BSREL or aBSREL models require a priori 

partitions between positively selected foreground branches and negatively selected or 

neutral background branches. Nonetheless, the aBSREL model optimizes the number of 

selective regimes necessary to better assess evolution of each branch and reduces 

computational time. I executed the aBSREL model independently for the 90 multigene 

families using the ML phylogeny obtained from PhyML as input. The alpha (α) and 

omega (ω) values were allowed to vary among branches and branch-site combinations. 

Internal and terminal branches with a corrected p-value <0.01 were considered to be 

under significant episodic selection. I recorded the strength of episodic selection and 

proportion of sites under this selective regime on each case. Also, I evaluated significant 

differences in the distribution of the omega (ω) values and proportion of sites with an 

ANOVA test. I used the expression categories established by the P. falciparum and P. 

berghei transcriptomic data (vector-specific, vertebrate-specific, and generalist) as 

factors. All statistical analyses were performed using R version 3.2.2. 

In addition, I performed Hyphy’s test of Relaxed Selection (RELAX) (Wertheim 

et al., 2015) in multigene families showing significant signs of episodic selection. Given 

two subsets of branches in a phylogeny, RELAX can determine whether selective 

strength was relaxed or intensified in one subset relative to the other (Wertheim et al., 
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2015). For each alignment, branches with signs of positive selection are included in a first 

subset while all other branches are included in a second subset. Then, using the RELAX 

test, the selective strength of branches on the first subset can be classified as relaxed or 

intensified in comparison to branches of the second subset.   

I also assessed the role that recombination events might have in the evolution of 

GCMFs using the Recombination Detection Program, RDP4 (Martin et al., 2015) by 

performing  independent analyses for each multigene family. I recorded the number of 

recombination events and multigene family members involved in each event. In addition, 

I evaluated the existence of potentially spurious signs of episodic selection due to 

recombination by repeating the aBSREL test using the FastNJ non-recombinant tree 

generated in RDP4. 

4.2.5 Polymorphism of larger GCMFs. 

I assessed the genetic diversity (π) among different isolates in the seven multigene 

families with largest variation in the number and composition of paralogs: Acyl-CoA 

synthase, Cytoadherence-linked asexual protein (CLAG), Lysophospholipase, NIMA 

related kinase (NEK), Papain, Plasmepsin, and Serine repeat antigen (SERA). I 

performed the analysis in both P. vivax and P. falciparum using the large number of 

worldwide isolates currently available for both species. I assessed patterns consistent with 

natural selection acting on the observed polymorphism by calculating the differences in 

the mean number of synonymous (dS) and non-synonymous substitutions (dN) using the 

Nei-Gojobori distance method (Nei and Gojobori, 1986), with the Jukes and Cantor 

correction implemented in MEGA 6.06 (Tamura et al., 2013). The difference between dS 
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and dN and its standard error was estimated by using bootstrap with 500 pseudo-

replications, as well as a two-tailed codon based Z-test of the difference between dS and 

dN (Nei and Kumar 2000). Under the neutral model, synonymous substitutions 

accumulate faster than non-synonymous because they do not affect the parasite fitness 

and/or purifying selection is expected to act against non-synonymous substitutions 

(dS≥dN). Conversely, if positive selection is maintaining polymorphism or driving 

divergence, then a higher incidence of non-synonymous substitutions is expected 

(dS<dN). I assumed as a null hypothesis that the observed polymorphism was not under 

selection (dS=dN).  

I used worldwide P. vivax isolates from the database for clinical isolates 

representing diverse geographic regions as part of the Hybrid Selection Initiative 

performed by the Broad Institute available in PlasmoDB version 28.0 (Autorrecochea, 

2009). In addition, the five sequenced P. vivax reference strains (Salvador I, North 

Korean, India VII, Mauritania I and Brazil I) publically available via the Malaria 

Research and Reference Reagent Resource Center were included. Alternatively, I 

obtained P. falciparum isolates, also available in PlasmoDB version 28.0 (Autorrecochea, 

2009), from the following diverse sources: (1) whole genome sequencing of isolates 

collected from symptomatic malaria patients from Mali, generated through the 100 

Plasmodium Genomes Whitepaper; (2) paired-end short-read sequences of clinical 

isolates from an endemic Gambian population from the Greater Banjul Area; and (3) 

genome sequences obtained from several Senegal isolates. 
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4.3 Results 

4.3.1 Phylogenetic tree construction. 

Among the 90 analyzed multigene families, I found evidence that orthologs were 

more closely related than paralogs in 58. Tree topologies in these families showed 

paralogs clearly separated into two clades, with each clade including all species orthologs 

(Fig. S1). This is indicative of historical gene duplication events that predate speciation 

within the clade. The remaining gene family tree topologies indicated of species- and 

clade-specific duplication events, with putative evidence of lineage-dependent gain/loss 

events (Fig. S1). Tree topologies for six of the multigene families (conserved 

Plasmodium protein unknown function 6, conserved Rodent malaria protein unknown 

function, CLAG, Elongation factor1, Eukaryotic initiation factor 2a, and Glutathione 

synthetase) revealed higher sequence similarity among paralogs than among orthologs, 

suggesting predominance of different evolutionary mechanisms than those potentially 

acting on other GCMFs (Fig. S2).  

4.3.2 Number of multigene family paralogs. 

Of the 90 analyzed multigene families, 36 shared similarly biased P. berghei and 

P. falciparum expression profiles to the Anopheles mosquito (vector-specific = 14), 

vertebrate host (vertebrate-specific = 15), or both vector- and vertebrate hosts (generalist 

= 7). The expression profile varied in one paralog, but remained unchanged in other 

family members in 39 multigene families. The remaining 15 multigene families showed 

entirely different expression profiles (Table 1). Regardless of their expression profile, the 

majority of analyzed multigene families had just two paralogs in all included Plasmodium 
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species (Fig. 1, Fig. 2). Furthermore, with few notable exceptions (Table 2), I observed 

little variation in the number of multigene family paralogs across extant Plasmodium 

species or in the number of paralogs inferred for Plasmodium ancestors, independent of 

the paralogs’ expression profile (vector specific, vertebrate specific, or generalist). Larger 

multigene families showed significant changes in the number of paralogs among 

Plasmodium species. This was particularly observed in the following families: CLAG, 

SERA, Plasmepsin, Papain, Acyl-CoA synthetase, and Lysophospholipase. Moreover, 

these families commonly had paralogs with vertebrate-biased expression and 

combinations of paralogs with either vector- or vertebrate-biased expression in both P. 

falciparum and P. berghei (Table 1). On the other hand, multigene families with species- 

or clade-specific duplication events tended to be more commonly associated with life 

stages expressed uniquely in either the mosquito vector or vertebrate host (Table 1).  

4.3.3 Episodic Selection and recombination. 

I found significant signs of episodic selection in 29 (Table S3) of the 90 multigene 

families evaluated. This pattern could be influenced by recombination events. When I 

used the FastNJ non-recombinant tree to confirm these results, signs of episodic selection 

were maintained in 23 of those families. The distribution, strength and proportion of sites 

under episodic selection remained relatively unchanged in the 23 families regardless of 

the use of non-recombinant tree. Signs of episodic selection were distributed in both 

internal and terminal branches of each family phylogeny. However, only 4 cases of 

episodic selection were found in terminal branches leading to Laveranian paralogs or 

their ancestors. The majority of branches in which signs of episodic selection were 
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detected, belonged to either the simian or rodent clades (Fig. S3). With the exception of 

two families (Asparagine tRNA ligase and a hypothetical protein), very strong positive 

selection was limited to a small number of sites (<10%). Furthermore, excluding the 

conserved Plasmodium protein unknown function 6 family, the proportion of sites under 

positive selection was lower in terminal branches of the phylogeny in all evaluated 

families. In contrast, the proportion of sites showing significant signs of positive selection 

was relatively larger in numerous ancestral branches leading to the split of family 

paralogs (Fig. S3).   

I further tested branches that showed significant signs of episodic selection for 

signals of relaxed or intensified selection relative to other branches of the phylogeny 

(Table 3, Table S1). Selection was significantly intensified in 13 of the 23 analyzed 

multigene families, and significantly relaxed in only 3 of them: conserved Plasmodium 

protein, CLAG, and NEK. Intensification of selection was markedly larger in the 

Chaperonin (K=37.05) and hypothetical protein (K=50) multigene families. Nonetheless, 

only the hypothetical protein multigene family showed strong signs of episodic selection 

in the same evaluated branch (Fig. S3). On the other hand, positively selected branches in 

the Chaperonin multigene family tree showed similar strengths and proportions of sites 

under episodic selection as in other multigene families evaluated.  

The intrinsically different nature of the immune response developed by the vector 

and vertebrate hosts against Plasmodium parasites can act as a selective mechanism 

driving the evolution of multigene families. However, I found no significant differences 

in the distribution of the omega (ω) values or their corresponding proportions of sites 
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(Table S4, Table S5) relative to the expression profiles of P. falciparum and P. berghei 

paralogs. This suggests that there are no differential selective patterns among paralogs 

with distinct expression profiles.  

I found significant signals of recombination in 53 of the 90 analyzed multigene 

families (Table 4). Among these, recombination events were less frequently observed 

among ortholog than among paralog members of the same multigene family (Fig. 3). 

Furthermore, when recombination events occurred among paralog members of a 

multigene family, they were observed with a similar frequency among the same species 

paralogs than among paralog genes from different Plasmodium species (Fig. 3). 

Moreover, recombination events occurring among paralogs were more frequently 

observed in families showing duplication events predating species diversification (out-

paralogs) than in families with putatively recent duplication events (in-paralogs). No 

significant signs of recombination were found among the intra-genomic paralogs of the 

previously described six families presenting higher sequence similarity among paralogs 

than orthologs (Fig. S2, Table S2). 

I observed a median of two recombination events and a median length 

recombinant segment of 190 bp. among the analyzed multigene families. Most families 

had between one and two recombination events (Table 4). With the exception of 

Plasmepsin, large multigene families tended to show a larger number of recombination 

events among orthologs and same species paralogs. Multigene families showing two or 

more clearly defined out-paralogs tended to have single recombination events between 

paralogs (e.g., Calcium dependent protein kinase (CDPK) and DHHC type zinc finger 
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protein). Alternatively, families with species- and clade-specific duplications had a 

tendency to show recombination events occurring between orthologs (e.g., Adrenoxin 

reductase and Biotin acyl-CoA carboxylase).  

4.3.4 Polymorphism of larger GCMFs.  

Larger GCMFs showed reduced levels of polymorphism in both P. falciparum 

and P. vivax worldwide isolates. With the exception of a single P. falciparum 

(PF3D7_0215300) paralog of the Acyl-CoA synthetase multigene family, and two P. 

falciparum paralogs (PF3D7_0207400 and PF3D7_0207700) of the SERA multigene 

family, no significant signs of positive selection were found in either P. vivax or P. 

falciparum. On the other hand, excluding paralogs of the Lysophospholipase family, 

numerous P. falciparum paralogs showed significant signs of purifying selection in all 

multigene families evaluated (Table 5). Only some P. vivax paralogs of the CLAG, Acyl-

CoA synthetase, NEK, and SERA families showed signs of purifying selection. 

Orthologs across the two species did not show similar selection patterns, with the 

exception of a single NEK paralog, which suggests that human Plasmodium species of 

the Laveranian subgenus and simian clade maintain different selective profiles. 

Furthermore, the observed signs of purifying selection on family-specific paralogs could 

suggest that they perform significant functions relevant to each multigene family.  

4.4 Discussion 

Repeated lineage-specific gene duplication and/or deletion events, have been 

described in the simian (Tachibana et al., 2012) and rodent clades (Otto et al., 2014a), 

and Laveranian subgenus (Otto et al., 2014b). Regardless of the clade in which they are 
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described, hyper-variable multigene families tend to be involved in functions related to 

immune evasion, cell invasion, sequestration, and virulence (Otto et al., 2014a, 2014b; 

Tachibana et al., 2012). However, while species- and clade-specific multigene families 

have been the source of much research, less is known about GCMFs even though they 

could represent an important source for the development of new malaria treatments and 

help understand the evolutionary forces acting within the Plasmodium genus.  

In the present study, I found little variation in the number and composition of 

GCMFs paralogs. Family tree topologies showed two clearly and highly supported clades 

for each paralog in 58 of the multigene families evaluated (Fig. S1). This pattern suggests 

that a number of genus-common duplication events predate the divergence of three of the 

major Plasmodium clades. Moreover, conservation of the number and composition of 

paralogs observed in largely divergent Plasmodium species, and the reduced number of 

pseudogenization events (Table 2), suggests that gene duplicates are maintained despite 

marked differences in Plasmodium life cycle and in life history traits. Within the 58 

described families, the Gene Ontology (GO) annotated functions included: energy and 

protein transport, metabolism, signaling, regulation of cell cycle processes, formation and 

maintenance of membrane structures, and DNA repair. Thus, it is possible that ancestral 

duplication events are beneficial for the parasite, leading to the preservation of duplicated 

copies after speciation events. Evolutionary models such as dosage balance, shielding 

against deleterious mutations, and positive dosage (Innan and Kondrashov, 2010) could 

be reconciled with the evolutionary patterns observed in these multigene families.  
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On the other hand, multigene families with species- or clade-specific duplication 

events showed variable gene tree topologies. In these cases, duplication events were 

closely related on the tree (Fig. S1). Associated GO functions in these families involved a 

variety of metabolic and regulatory processes (protein oxidation, hydrolases, ligases, 

etc.), but also included functions related to entry to host cell, immune evasion, 

phospholipid metabolism, and hemoglobin degradation. In this case, evolutionary models 

such as shielding against deleterious mutations, duplication degeneration 

complementation (DDC), positive dosage, neo-functionalization, and sub-

functionalization could be reconciled with the gene duplication patterns observed (Innan 

and Kondrashov, 2010). 

In general, GCMFs tended to have a lower number of paralogs than species- or 

clade-specific families. Little variation in the number of multigene family paralogs was 

observed independently of their expression profiles across extant Plasmodium species 

and in the inferred number of paralogs in Plasmodium ancestors (Fig. 1, Fig. 2), 

suggesting that host-parasite associations do not act as drivers for the occurrence and/or 

fixation of duplication events. Moreover, no significant differences in the distribution of 

the omega (ω) values or the corresponding proportion of sites under each selective 

regime, were observed in relation to P. falciparum and P. berghei expression. This is 

indicative that, while parasite-host interactions, and changes in parasite environment 

throughout Plasmodium life cycle are known drivers of adaptive evolution (Assefa et al., 

2015; Molina-Cruz and Barillas-Mury, 2014; Prugnolle et al., 2008), they do not 

universally affect all multigene family members in the same manner. Nonetheless, these 

results should be assessed with caution given that changes in expression profiles were 
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observed between certain P. berghei and P. falciparum orthologs. Such variation shows 

that expression profiles are not entirely conserved across Plasmodium lineages, and 

should not be extrapolated casually into Plasmodium species without available expression 

data. 

Multigene families involved in functions associated with host cell invasion, 

cytoadherence, immune evasion, and hemoglobin metabolism (CLAG, SERA, 

Plasmepsin, Papain and msp7) presented a larger number of family members, and were 

mostly expressed in Plasmodium stages associated with the vertebrate host (Table 1, 

Table 2). Furthermore, these families showed significant variation in the number and 

composition of paralogs among Plasmodium species. This pattern indicates 

predominance of lineage-specific duplication/loss events. The larger number of multigene 

family paralogs observed in primate malarias of both the simian clade and Laveranian 

subgenus suggests that changes in the number and composition of paralogs can be 

adaptive to specific host types.  

Previous studies have proposed diverse hypotheses to explain the increase in the 

number of paralogs observed in primate malarias. Among the proposed hypotheses, it has 

been suggested that the variation could be a product of: repeated adaptation events 

(Ponsuwanna et al., 2016), functional redundancy among paralogs (Gupta et al., 2015), 

neo- or sub-functionalization of recently divergent paralogs (Bethke et al., 2006), or the 

result of an expansion in host range (Arisue et al., 2011). Overall, it is likely that essential 

family functions are performed by paralogs conserved among different Plasmodium 
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species, while species- and clade-specific gene duplicates may be involved in maintaining 

functional redundancy or in facilitating diversification and adaptability within the family.  

Alternatively, some larger multigene families showed little variation in the 

number and composition of paralogs among the analyzed Plasmodium species (NEK, 

CDPK, Biotin acyl-CoA carboxylase, etc.). Expression profiles in these families’ 

paralogs were found to be both vector- and vertebrate-specific (Table 1, Table 2), at least 

between the two Plasmodium species with available expression data (P. berghei and P. 

falciparum). Interestingly, they perform multiple functions throughout the parasite’s life 

cycle, including: fatty acid synthesis (Chen et al., 2014), sexual and asexual development 

and commitment (Dorin-Semblat et al., 2011; Reininger et al., 2012, 2009), parasite 

differentiation and protein secretion (Moreno et al., 2011), and involvement in host-

parasite interaction and development (Thompson et al., 2007). In this case, the conserved 

number of duplication events in different species indicates little involvement in family 

diversification and adaptability, and a more predominant role in sustaining parasite 

survival. 

I found significant signs of episodic selection in 23 of the multigene families 

analyzed suggesting that the majority of GCMFs are evolving neutrally or under 

purifying selection. In families where signs of episodic selection were detected, species 

of the simian (23 branches) and rodent clades (13 branches) showed signs of episodic 

selection in internal and terminal branches more frequently than species of the 

Laveranian subgenus (4 branches) (Fig. S3). This trend shows that while most GCMFs 

do not appear to significantly deviate from neutrality, when adaptive signals are present, 
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they are more likely to be observed in species of the simian and rodent clades. This could 

be the product of: the different evolutionary histories among Plasmodium clades 

(Martinsen et al., 2008), their divergence times (Silva et al., 2015), the different 

associations with their respective vertebrate hosts (Mu, 2005; Prugnolle et al., 2013), or 

the result of lineage-specific processes essential for parasite survival. 

On the other hand, significant episodic selection was also found in the branches 

leading to paralogs split in five multigene families (Fig. S3), implying that in these cases 

the duplicated genes have been positively selected. Previous studies have found that 

positive selection in the branch leading to a paralog split can be linked to emerging 

functions in the duplicated paralog (Hakes et al., 2007; Summers and Zhu, 2008; Van Zee 

et al., 2016). Nonetheless, multigene families where this pattern was observed shared the 

following GO term functions: ATPases, cell division, commitment to sexual and asexual 

stages, and recombination. This makes it difficult to establish what would the putative 

biological advantages of acquiring novel functions in newly duplicated paralogs.  

Intensified selection was observed in all branches with significant signs of 

episodic selection with the exception of three families: CLAG, NEK and a conserved 

Plasmodium protein (Table 3, Table S1). These results support the hypothesis that 

positive selection is being driven by lineage-specific processes in the majority of 

multigene families. However, it also shows that relaxed selection can result in sequence 

diversification of certain paralogs. It is possible that this pattern is the product of a 

duplication event where the original paralogs maintained family function, leaving the 
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newly duplicated copy free of strong selective pressures (Innan and Kondrashov, 2010; 

Ohno, 1970).  

The role of recombination in the divergence and emergence of novel paralogs has 

been previously established in many species- and clade-specific multigene families (Kuo 

and Kissinger, 2008). Here, I detected significant signs of recombination in 53 of the 

multigene families evaluated, indicating that recombination is an important evolutionary 

mechanism in GCMFs regardless of their location on the chromosome (Fig. 3). 

Recombination events were less likely to be detected in multigene families where 

duplication events predated Plasmodium speciation (Fig. 3). Potentially, this is the result 

of large sequence divergence between ancestral family paralogs. However, while less 

frequent, recombination was detected within some ancestral duplications. This could 

imply that recent recombination events have occurred or that highly conserved sequence 

structures are still maintained in ancestral paralogs. Furthermore,  recombination events 

occurring in families with species- and clade-specific duplications shows that 

recombination is an important mechanism in the acquisition of novel paralogs in these 

families as well (Table 4).  

Signs of episodic selection and recombination were found in 16 of the evaluated 

multigene families; nonetheless, the patterns of recombinant sequences and those 

showing significant selective signals did not overlap (Table 4, Fig. S3). This further 

supports the hypothesis that, within selected multigene families, paralogs are evolving 

independently and recombination likely acts as a mechanism for the creation of novel 

duplicated genes (Fawcett and Innan, 2011). Furthermore, the absence of comparable 
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selective patterns among family paralogs with clearly high sequence similarity, suggests 

that concerted evolution is not likely predominant among GCMFs (Fig. S2).  

I also found low levels of polymorphism and signs of purifying selection in P. 

falciparum and P. vivax strains for members of the CLAG multigene family (Table 5). 

This result contrasts with previous reports of high polymorphism and positive selection 

on P. falciparum (Alexandre et al., 2011; Iriko et al., 2008). Sequence diversity was also 

markedly lower in comparison to previous studies performed on P. falciparum strains for 

the Acyl-CoA synthetase family (Bethke et al., 2006). Furthermore, while the previous 

studies using similar analysis methods found signs of positive selection in multiple 

paralogs of this family (Bethke et al., 2006), here only one paralog (PF3D7_0215300) 

showed significant signs of positive selection. The difference could be related to the 

larger number of samples included in this study in comparison to previous ones (5, 39, 

and 21 P. falciparum strains, respectively).  

Also in contrast with previous reports (Ponsuwanna et al., 2016), I found no signs 

of positive selection in the Plasmepsin and Papain multigene families; however, I 

observed signs of purifying selection in P. falciparum paralogs in both families. Among 

other larger GCMFs, P. falciparum strains in the CLAG multigene family and P. vivax 

strains of the SERA multigene family showed the highest levels of polymorphism (Table 

5). Furthermore, signs of positive selection were observed in two P. falciparum SERA 

paralogs (PF3D7_0207500 and PF3D7_0207800). There results further support the 

hypothesis that certain multigene family members are positively driven towards 
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diversification, while a majority of family paralogs are likely selected to maintain family 

function.   

Overall, my results show that Plasmodium GCMFs are not subjected to rapid 

evolution or diversification. However, the conservation of numerous ancestral 

duplications across highly divergent Plasmodium species shows that gene duplication is 

an important aspect of parasite survival. Multigene family function appears as one of the 

most important factors in family evolvability, indicating that host-associated selective 

pressures can be highly relevant for some families and insignificant in others. Knock-out 

studies and characterization of multigene families in more divergent Plasmodium species, 

could help to determine the significance of putative ancestral duplication events in 

parasite survival, as well as their role in the colonization of the mammalian host. 
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Tables 

Table 4-1. Expression category based on P. falciparum & P. berghei transcriptome. 

Multigene family P. falciparum P. berghei 

Actin Generalist-Vertebrate 

Generalist-

Vertebrate 

Acyl-CoA synthase Generalist Vector 

Adrenodoxin reductase Vector Vertebrate 

Alpha-beta hydrolase 2 Generalist-Vector Vector 

Asparagine tRNA ligase Vector-Vertebrate Vertebrate 

ATP-dependent DNA helicase Generalist-Vector Vector-Vertebrate 

Biotin acel-CoA carboxylase Vector Generalist-Vector 

Calcium Dependent Protein Kinase (CDPK) Generalist-Vertebrate Vector-Vertebrate 

Calcium-transporting ATPase (SERCA) Vertebrate Vertebrate 

Casein kinase II beta chain Vertebrate Vector-Vertebrate 

Cell division protein FtsH Generalist-Vertebrate Vertebrate 

Chaperonin (CPN) Vector Vector-Vertebrate 

Chromatin assembly factor 1 subunit Generalist-Vertebrate Vertebrate 

ClpB protein Generalist-Vertebrate Vertebrate 

Conserved and hypothetical Plasmodium protein Generalist 

Generalist-

Vertebrate 

Conserved Plasmodium protein Vertebrate Vertebrate 

Conserved Plasmodium protein, unknown function Vertebrate Vertebrate 

Conserved Plasmodium protein, unknown function 11 Vector Vector 

Conserved Plasmodium protein, unknown function 12 Vector Vertebrate 

Conserved Plasmodium protein, unknown function 2 Vector Generalist-Vector 

Conserved Plasmodium protein, unknown function 3 Vector Vertebrate 

Conserved Plasmodium protein, unknown function 4 Vector Vector 

Conserved Plasmodium protein, unknown function 6 Vertebrate Vector 

Conserved Plasmodium protein, unknown function 8 Vector Vector 

Conserved Rodent malaria protein, unknown function 2 Vertebrate Vertebrate 

Cysteine Repeat Modular Protein (CRMP) Vector Vector-Vertebrate 

Cytoadherence-linked asexual protein (CLAG) Vertebrate Vertebrate 

DEAD-DEAH box ATP-dependent RNA helicase Generalist-Vertebrate Vector-Vertebrate 

DER1-like protein Vector Vertebrate 

DHHC-type zinc finger protein Vector-Vertebrate Generalist-Vector 

Dipeptidyl aminopeptidase (DPAP) Vector-Vertebrate Generalist-Vector 

DNA mismatch repair protein MSH2 Vector-Vertebrate Vector-Vertebrate 

DNA-directed RNA polymerase II Vertebrate Vertebrate 

DNA-directed RNA polymerase II second largest subunit Vertebrate 

Generalist-

Vertebrate 

DnaJ protein2 Vector-Vertebrate Vector 
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Table 4-1. Expression category based on P. falciparum & P. berghei transcriptome 

(continued). 

Multigene family P. falciparum P. berghei 

Dynamin-like protein Vector-Vertebrate Vertebrate 

Dynein heavy chain Vector Vector 

Elongation factor 1 alpha (EF-1alpha) Vertebrate Vertebrate 

Elongation factor G Generalist-Vertebrate Vector-Vertebrate 

Eukaryotic initiation factor 2a Vertebrate Vertebrate 

Exonuclease Vector-Vertebrate Vertebrate 

Folate transporter (FT) Vector Generalist-Vertebrate 

Glutathione reductase (GR) Generalist-Vertebrate Vector-Vertebrate 

Glutathione synthetase (GS) Vector Vertebrate 

Glycerol 3 phosphate dehydrogenase Vertebrate Vertebrate 

Heat shock protein 40 Vector-Vertebrate Vertebrate 

Heat shock protein 70 Vertebrate Vector-Vertebrate 

Heat shock protein 90 Generalist-Vector Vertebrate 

High mobility group protein B1 (HMGB1) Vector-Vertebrate Vector-Vertebrate 

Histidine tRNA ligase Generalist-Vertebrate Vector-Vertebrate 

Histone H2B Vector-Vertebrate Vertebrate 

Histone H3 Vertebrate Vertebrate 

Hypothetical protein Vector Vector 

Inner membrane complex protein 1c (IMC1c) Vector Vector 

Inorganic pyrophosphatase (VP) Vertebrate Vector-Vertebrate 

Iron sulfur assembly protein (SufA) Vector Vector-Vertebrate 

Kinesin-8 Generalist-Vector Vector-Vertebrate 

Lysophospholipase Vector-Vertebrate Vector-Vertebrate 

Malate dehydrogenase (MDH) Vector-Vertebrate Vertebrate 

Meiotic recombination protein DMC Vector Vector 

Meiotic recombination protein SPO11 Vector Vector 

Merozoite Surface Protein 7 (MSP7) Vertebrate Vertebrate 

Methionine aminopeptidase Generalist-Vertebrate Generalist-Vector 

Methyltransferase Vertebrate Generalist-Vertebrate 

NADP specific glutamate dehydrogenase (GDH) Vertebrate Generalist-Vertebrate 

NIMA related kinase  (NEK) Vector Vector 

Novel putative transporter 1 (NPT1) Vector Vertebrate 

Nucleotide binding protein Generalist-Vertebrate Vector-Vertebrate 

P1-s1 nuclease Vertebrate Vertebrate 

P28 Vector Vector 

Papain Vertebrate Vertebrate 
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Table 4-1. Expression category based on P. falciparum & P. berghei transcriptome 

(continued). 

Multigene family P. falciparum P. berghei 

Peptide release factor Generalist-Vector 

Generalist-

Vertebrate 

Peroxiredoxin thioredoxin peroxidase Vector-Vertebrate 

Generalist-

Vertebrate 

Phosducin like protein (PhLP) Vector Vertebrate 

Phosphopantothenoylcysteine synthetase Vector Generalist 

Plasmepsin Vector-Vertebrate Vector-Vertebrate 

Pre mRNA splicing helicase BRR2 Generalist Generalist 

Pre-mRNA-splicing factor ATP-dependent RNA 

helicase Generalist-Vertebrate 

Generalist-

Vertebrate 

Protein phosphatase 2C Vector Vector 

Rhoptry associated protein 2-3 Vertebrate Vertebrate 

SEL-1 protein Generalist-Vertebrate Vertebrate 

Serine Repeat Antigen (SERA) Vertebrate Vertebrate 

Serine tRNA ligase Vector-Vertebrate Vertebrate 

Subpellicular microtubule protein 1 (SPM1) Vector Vector 

Sun-family protein Generalist-Vector Vector-Vertebrate 

Tetratricopeptide repeat protein, putative Vector Vector 

Thioredoxin Generalist Vertebrate 

Translation initiation factor IF-2 Generalist-Vertebrate Vertebrate 

Tubulin Vertebrate Vertebrate 

Ubiquitin conjugating enzyme 2 Vector Vertebrate 

Ubiquitin-conjugating enzyme Vector Vertebrate 
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Table 4-2. Variation of the number multigene family of paralogs across Plasmodium species.  

Family 
P. 

vivax 

P.   

cynomolgi 

P. 

inui 

P. 

knowlesi 

P. 

coatneyi 

P. 

gonderi 

P. 

chabaudi 

P. 

berghei 

P. 

yoelii 

P.  

falciparum 

P.  

reichenowi 

Actin 2 2 2 2 2 1 2 2 2 2 2 

Acyl-CoA synthase 2 2 1 2 7 4 1 1 1 1 1 

Adrenodoxin reductase 4 1 1 1 1 1 1 1 1 1 1 

Alpha-beta hydrolase 2 2 2 2 2 2 2 2 2 2 2 2 

Asparagine tRNA ligase 2 2 2 2 2 2 2 2 2 2 2 

ATP dependent DNA helicase 1 1 1 1 1 1 2 2 2 2 2 

Biotin acel-CoA carboxylase 2 2 2 2 2 2 2 2 2 2 2 

Calcium Dependent Protein Kinase (CDPK) 5 5 5 5 5 5 5 5 5 7 7 

Calcium-transporting ATPase (SERCA) 2 2 2 2 2 2 2 2 2 2 2 

Casein kinase II beta chain 4 4 4 4 4 4 4 4 4 5 5 

Cell division protein FtsH 2 2 2 2 2 2 2 2 2 2 2 

Chaperonin (CPN) 3 3 3 3 3 3 3 3 3 3 3 

Chromatin assembly factor 1 subunit 3 2 2 2 1 2 3 2 2 5 6 

ClpB protein 2 2 2 2 2 2 2 2 2 2 2 

Conserved and hypothetical Plasmodium protein 2 2 1 2 1 1 1 1 1 1 1 

Conserved Plasmodium protein 2 2 1 2 2 2 1 1 1 2 2 

Conserved Plasmodium protein, unknown function 2 1 1 1 1 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 11 1 1 1 2 2 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 12 2 2 2 2 2* 2 2 2 2 2 2 

Conserved Plasmodium protein, unknown function 2 1 1 1 3 1 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 3 2 1 1 1 1 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 4 1 1 1 2 2 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 6 1 1 1 2 1 1 1 1 1 1 1 

Conserved Plasmodium protein, unknown function 8 2 2 2 2 2 2 2 2 2 2 2 

Conserved Rodent malaria protein,  unknown function 2 2 2 2 2 2 2 2 2 2 2 2 

Cysteine repeat modular protein (CRMP) 2 2 2 2 2 1 2 2 2 2 2 

Cytoadherence-linked asexual protein (CLAG) 2 2 2 2 2 2 2 2 2 2 2 

DEAD-DEAH box ATP-dependent RNA helicase 2 2 2 2 2 2 2 2 2 2 2 

DER1-like protein 3 3 3 3 3 3 3 3 3 3 3 

DHHC-type zinc finger protein 2 2 2 2 2 1 2 2 2 2 2 

Dipeptidyl aminopeptidase putative DPAP 2 2 2 2 2 2 2 2 2 2 2 

DNA mismatch repair protein MSH2 2 2 2 2 2 2 2 2 2 2 2 

DNA-directed RNA polymerase II 2 2 2 2 2 2 2 2 2 2 2 

DNA-directed RNA polymerase II second largest subunit 1 1 1 1 1 1 1 1 1 2 2 

DnaJ protein2 2 2 2 2 2 2 2 2 2 2 2 

Dynamin-like protein 4 4 3 4 3 3 4 4 4 4 4 

Dynein heavy chain 4* 2* 3* 4* 3* 3* 4 4 4 4* 4* 

Elongation factor 1 alpha (EF-1alpha) 2 2 2 2 2 2 2 2 2 2 2 

Elongation factor G 1 1 1 2 2 1 1 1 1 1 1 

Eukaryotic initiation factor 2a 1 1 2 2 2 2 2 2 2 2 2 

Exonuclease 2 2 2* 2 2* 2* 2 2 2 2 2 

Folate transporter (FT) 2 2 2 2 2 2 2 2 2 2 2 

Glutathione reductase (GR) 1 1 1 2 2 1 1 1 1 1 1 

Glutathione synthetase (GS) 2 2 2 2 2 2 2 2 2 2 2 

Glycerol-3-phosphate dehydrogenase 2 2 2 2 2 2 1 1 1 2 2 

Heat shock protein 40 2 2 2 2 2 2 2 2 2 3 3 

Heat shock protein 70 2 2 2 2 2 2 1 1 2 1 1 

Heat shock protein 90 2 2 2 1 2 2 2 2 2 2 2 

High mobility group protein B1 (HMGB1) 2 2 2 2 2 2 2 2 3 2 2 
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Table 4-2. Variation of the number multigene family of paralogs across Plasmodium species (continued). 

 

* Represents pseudogenes. 

Family 
P. 

vivax 

P.   

cynomolgi 

P. 

inui 

P. 

knowlesi 

P. 

coatneyi 

P. 

gonderi 

P. 

chabaudi 

P. 

berghei 

P. 

yoelii 

P.  

falciparum 

P.  

reichenowi 

Histidine tRNA ligase 2 2 2 2 2 2 2 2 2 2 2 

Histone H2B 2 2 2 2 2 2 2 2 2 2 2 

Histone H3 2 1 1 1 1 1 1 1 1 1 1 

Hypothetical protein 3 1 1 1 1 1 1 1 1 1 1 

Inner membrane complex protein 1c (IMC1c) 2 2 2 2 2 2 2 2 2 2 2 

Inorganic pyrophosphatase (VP) 3 3 3 3 3 3 3 3 3 3 3 

Iron-sulfur assembly protein (SufA) 2 2 2 2 2 2 2 2 2 2 2 

Kinesin-8 2 2 2 2 2 2 4 2 2 11 13 

Lysophospholipase 3 3 3 3 3 3 3 3 3 3 2 

Malate dehydrogenase (MDH) 2 2 2 2 2 2 2 2 2 2 2 

Meiotic recombination protein DMC 2 2 2 2 2 1 2 2 2 2 2 

Meiotic recombination protein SPO11 2 2 2 2 2 2 2 2 2 2 2 

Methionine aminopeptidase 2 2 2 2 2 2 2 2 2 2 1 

Methyltransferase 12 13 7 5 5 9 3 3 3 9 9 

MSP7 2 2 2 2 2 2 2 2 2 2 2 

NADP-specific glutamate dehydrogenase (GDH) 4 4 4 4 4 4 4 2 4 4 4 

NIMA related kinase  (NEK) 1 1 1 1 1 1 2 1 1 1 1 

Novel putative transporter 1 (NPT1) 2 2 2 2 2 2 2 2 2 2 2 

Nucleotide binding protein 3 2 2 2 2 1 1 1 1 2 2 

P1-s1 nuclease 3 1 1 1 1 1 1 1 1 1 1 

P28 2 2 3 3 3 3 1 1 1 3 3 

Papain 2 2 2 2 2 2 2 2 1 2 2 

Peptide release factor 3 2 3 2 3 3 3 3 3 3 3 

Peroxiredoxin thioredoxin peroxidase 2 2 2 2 2 1 2 2 2 2 2 

Phosducin-like protein (PhLP) 1 1 1 1 1 1 1 1 1 2 2 

Phosphopantothenoylcysteine synthetase 7 7 7 7 7 3 7 7 7 10 10 

Plasmepsin 3 3 3 3 3 3 3 3 3 3 3 

Pre mRNA splicing factor ATP dependent RNA helicase 2 2 2 2 2 2 2 2 2 2 2 

Pre mRNA splicing helicase 2 2 2 2 2 2 2 2 2 2 2 

Protein phosphatase 2C 2 2 2 2 2 4 2 1 1 1 2 

Rhoptry associated protein 2-3 2 2 2 2 2 2 2 2 2 2 2 

SEL-1 protein 14 14 12 8 10 10 5 5 5 9 8 

Serine Repeat Antigen (SERA) 2 2 2 2 2 2 2 2 2 2 2 

Serine tRNA ligase 2 1 1 1 1 1 1 1 1 1 1 

Subpellicular microtubule protein 1 (SPM1) 2 2 2 2 2 2 2 2 2 2 2 

Sun family protein 1 1 2 1 0 2 1 1 1 2 2 

Tetratricopeptide repeat protein 2 2 2 2 2 2 2 2 2 2 2 

Thioredoxin 2 1 2 2 2 2 2 2 2 2 2 

Translation initiation factor IF-2 2 2 2 2 2 2 2 2 2 2 2 

Tubulin 2 2 2 2 2 2 2 2 2 2 2 

Ubiquitin-conjugating enzyme 2 2 2 2 2 1 2 2 2 1 1 

Ubiquitin-conjugating enzyme 2 2 1 2 2 2 1 2 2 2 2 2 
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Table 4-3. Significant RELAX test results for branches under episodic selection. 

 

 

 

 

 

Test for selection  

Intensification Relaxation 

Acyl-CoA synthase Conserved Plasmodium protein 

Alpha beta hydrolase putative 2 Cytoadherence-linked asexual protein (CLAG) 

Chaperonin putative NIMA related protein kinase (NEK) 

Conserved Plasmodium protein unknown function 6 
 Conserved Plasmodium protein unknown function 12 
 Conserved rodent malaria protein unknown function 
 DEAD DEAH box ATP dependent RNA helicase putative 
 DER1 like protein 
 Dipeptidyl amino peptidase putative (DPAP) 
 Hypothetical protein 
 P28 
 Papain 
 Plasmepsin   
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Table 4-4. Summary of recombination events and median recombinant length per 

multigene family. 

Multigene family 

Number of 

recombination 

events 

Median length of 

recombinant 

segment 

Actin 4 140.5 

Acyl-CoA synthase 8 405.5 

Adrenoxin reductase SV 1 121 

Alpha beta hydrolase 2 5 77 

Asparagine tRNA ligase 4 122 

Biotin acyl-CoA carboxylase 1 468 

Calcium transporting ATPase putative SERCA 2 104 

Calcium Dependent Protein Kinase (CDPK) 2 270.5 

Chromatin assembly factor 1 subunit 2 113 

Cytoadherence-linked asexual protein (CLAG) 3 60 

ClpBprotein 1 370.5 

Conserved Plasmodium protein unknown function 1 60 

Conserved Plasmodium protein unknown function 2 2 131 

Conserved Plasmodium protein unknown function 4 1 257 

Conserved Plasmodium protein unknown function 6 3 60 

Conserved Rodent malaria protein unknown function 1 754 

Cysteine Repeat Modular Protein (CRMP) 4 176 

DEAD DEAH box ATP dependent RNA helicase 3 34 

DHHC type zinc finger protein 2 445 

Dipeptidyl amino peptidase putative (DPAP) 2 117 

DNA directed RNA polymerase II 2 42.5 

Dynein heavy chain 2 303.5 

Elongation factor Tu putative tufA 1 402 

Eukaryotic initiation factor 2a 2 299 

Exonuclease 1 109 

Glutathione reductase putative GR 1 46 

Heatshock protein 40 2 478.5 

Heatshock protein 90 3 44 

Histone H2B 1 84 

Histone H3 2 54 

Hypothetical protein 1 368 

Inorganic pyrophosphatase VP 1 45 

Iron sulfur assembly protein SufA 1 100 

Kinesin 8 1 1240 

Lysophospholipase 6 65.5 
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Table 4-4. Summary of recombination events and median recombinant length per 

multigene family (continued). 

Multigene family 

Number of 

recombination 

events 

Median length of 

recombinant 

segment 

Meiotic recombination protein DMC 1 39 

NADP specific glutamate dehydrogenase putative GDH 4 148 

NIMA related protein kinase (NEK) 2 115 

Novel putative transporter 1 NPT1 2 604 

Nucleotide binding protein 2 604 

P1s1 nuclease 2 418 

P28 2 288.5 

Papain 7 190 

Phosducin like protein PhLP 1 52 

Plasmepsin 1 108 

Pre mRNA splicing factor ATP dependent RNA helicase 1 274 

Pre mRNA splicing helicase 3 121 

Protein phosphatase 2C 1 26 

Rhoptry associated protein 23 1 233 

Serine Repeat Antigen (SERA) 18 446.5 

Tetratricopeptide repeat protein putative 1 113 

Tubulin 7 426 

Ubiquitin conjugating enzyme 2 1 84 
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Table 4-5. Polymorphism and selection in paralogs with significant deviation from 

neutrality from larger Plasmodium GCMFs. 

Family Species Gene ID* N π [SD] Ds Dn Dn-Ds [SD] Z test 

Paralogs under significant purifying selection 

Acyl-CoA 

synthase 

P. falciparum PF3D7_1238800 151 0 [0] 0.001 0 0 [0] 0.024 (-2.284) 

P. vivax PVX_002785 87 0.003 [0.001] 0.007 0.002 -0.005 [0.002] 0.005 (-2.861) 

Cytoadherence-
linked asexual 

protein 

(CLAG) 

P. falciparum 

PF3D7_0220800 55 0.004 [0.001] 0.012 0.002 -0.009 [0.002] 0 (-4.015) 

PF3D7_0302200 23 0.002 [0] 0.006 0.001 -0.005 [0.001] 0.001 (-3.533) 

PF3D7_0302500 47 0.002 [0] 0.003 0.001 -0.003 [0.001] 0.016 (-2.445) 

P. vivax PVX_121885 35 0.005 [0.001] 0.009 0.003 -0.006 [0.002] 0.004 (-2.945) 

NIMA related 

kinase (NEK) 

P. falciparum PF3D7_1228300 84 0 [0] 0.002 0 -0.002 [0.001] 0.002 (-3.195) 

P. vivax 
PVX_079950 95 0 [0] 0.001 0 -0.001 [0] 0.049 (-1.986) 

PVX_124045 32 0.001 [0] 0.005 0 -0.004 [0.001] 0.002 (-3.129) 

Papain P. falciparum 
PF3D7_1115300 104 0.004 [0.001] 0.009 0.003 -0.006 [0.003] 0.015 (-2.461) 

PF3D7_1115700 48 0.005 [0.001] 0.014 0.003 -0.011 [0.004] 0.011 (-2.574) 

Plasmepsin P. falciparum 

PF3D7_0808200 191 0.001 [0] 0.003 0 -0.002 [0.001] 0.016 (-2.433) 

PF3D7_1408100 185 0 [0] 0 0 0 [0] 0.039 (-2.086) 

PF3D7_1465700 123 0 [0] 0.001 0 -0.001 [0] 0.042 (-2.060) 

Serine repeat 

antigen 
(SERA) 

P. vivax 

PVX_003810 7 0.009 [0.001] 0.021 0.006 -0.015 [0.004] 0 (-3.706) 

PVX_003820 10 0.010 [0.001] 0.023 0.006 -0.017 [0.004] 0 (-5.106) 

PVX_003845 42 0.004 [0.001] 0.007 0.003 -0.004 [0.002] 0.019 (-2.378) 

Paralogs under significant positive selection 

Acyl-CoA 

synthase 
P. falciparum PF3D7_0215300 157 0.001 [0] 0 0.002 0.001 [0] 0.001 (3.492) 

Serine repeat 

antigen 

(SERA) 

P. falciparum 
PF3D7_0207400 84 0 [0] 0 0 0 [0] 0.025 (2.263) 

PF3D7_0207700 122 0.001 [0] 0 0.001 0.001 [0] 0.002 (3.106) 

 

* P. vivax and P. falciparum PlasmoDB nomenclature (Mello et al. 2002; Carlton et al. 

2008). 
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Figure 4-1. Number of paralogs vs. P. berghei expression patterns. Paralogs were 

classified as vector-specific, vertebrate-specific and generalist based on P. berghei 

transcriptome. Orange bars (A) indicate families composed exclusively of vertebrate-

specific paralogs; green bars (B) indicate families composed exclusively of vector-

specific paralogs; blue bars (C) indicate families composed of a combination of vector-

specific and vertebrate-specific paralogs; yellow bars (D indicate families composed of 

generalist paralogs. The distribution of families with a given number of paralogs in each 

extant Plasmodium species is indicated by the height of the colored bars. 
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Figure 4-2. . Number of paralogs vs. P. falciparum expression patterns. Paralogs were 

classified as vector-specific, vertebrate-specific and generalist based on P. falciparum 

transcriptome Orange bars (A) indicate families composed exclusively of vertebrate-

specific paralogs; green bars (B) indicate families composed exclusively of vector-

specific paralogs; blue bars (C) indicate families composed of a combination of vector-

specific and vertebrate-specific paralogs; yellow bars (D indicate families composed of 

generalist paralogs. The distribution of families with a given number of paralogs in each 

extant Plasmodium species is indicated by the height of the colored bars. 
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Figure 4-3. Recombination patters in GCMFs. The largest pie chart (green and purple) represents the total number of 

multigene families with informative multisequence alignments, families are split into those with significant 

recombination events and those without them. Smaller pie charts further divide groups with (red and blue) and without 
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(yellow and grey) recombination, on the basis of the evolutionary relationship among family members. Groups are 

further divided in the smallest pie charts to indicate the frequency of recombination events among orthologs (dark red 

and dark blue), same species paralogs (light red and light blue), and different species paralogs (medium red and 

medium blue). 
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CHAPTER 5. CONCLUSIONS. 

 

The evolution of the merozoite surface family 7 (msp7) multigene family appears 

to be characterized by two independent expansion events in the simian clade and 

Laveranian subgenus. Furthermore, the lineage-dependent gain/loss events across closely 

related simian species show that the evolution of the msp7 multigene family is consistent 

with the Birth-and-Death model. Within this clade, duplicated genes could have 

potentially originated in the simian ancestor and subsequently diversified by positive 

selection. The predominant signs of intra-specific purifying selection among msp7 

paralogs from the simian clade suggest that duplicated copies are preserved and are likely 

important for family function. On the other hand, the number of High Activity Binding 

Peptides (HABPs), identified for one Pfmsp7 member of the multigene family 

(PF3D7_1353100), varied across Laveranian paralogs, with some paralogs showing a 

reduced number of HABPs. This suggest that members of the msp7 family in the 

Laveranian subgenus might have differential significance or even variable roles during 

erythrocyte invasion. However, additional studies should be performed in order to 

determine if unique HABPs have independently evolved on other members of the msp7 

family. 

Alternatively, long-term evolution of synonymous and non-synonymous 

substitutions shows a species-specific pattern among genes with a gametocyte biased 

expression. Overall, genes with male-biased, female-biased and male-female common 

expression showed similar rates of synonymous and non-synonymous substitutions with 

only a few genes showing significantly longer synonymous branch lengths. MLEs of 



 

117 
 

synonymous branch lengths were highly similar among genes coding for membrane and 

non-membrane located proteins; nonetheless, genes coding for membrane proteins 

showed slightly longer non-synonymous branch lengths. This is likely the result of 

selection imposed by the vertebrate’s immune system. 

On the other hand, genes with a male-biased, male-female common biased 

expression, and genes coding for non-membrane located proteins showed overall higher 

immunogenicity than other sex and location categories evaluated. Additionally, these 

categories also had a higher proportion of genes with specific sites of the coding 

sequence under significant positive selection. This indicates that the presence of immune 

epitopes might act as an indicator of rapid evolution in comparison to genes with no 

reported immune epitopes. Nonetheless, the similar proportion of positive selected sites 

inside and outside epitope regions suggests that these trends are not entirely related to 

immune pressure imposed by the host. An alternative hypothesis to be evaluated is the 

possibility that positive selected sites reflect the effects of interaction with the Anopheles 

vector. 

To conclude, the majority of duplication events found in GCMFs likely predate 

speciation of mammalian Plasmodium species. It is possible that duplicated genes have 

been maintained neutrally across the genus Plasmodium; however, the reduced numbers 

of branches showing inter- and/or intra-specific signs of positive selection could indicate 

that the preservation of duplicated genes across the genus is beneficial for the parasite. 

Exploring the putative relationship between such preservation and multigene family 

function could help to better explain the role of multigene families in the evolution of 

Plasmodium genome. Contrary to expectations, multigene family size and composition 
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did not vary in a manner influenced by interaction with the mosquito vector or the 

vertebrate host. However, given the lineage-dependent variation previously discussed in 

msp7 and gametocyte expressed single copy genes, it is unlikely that expression patterns 

will be universally maintained across the genus. Thus, this result should be re-evaluated 

in the future when additional transcriptomic data becomes available for additional 

Plasmodium species. Alternatively, inter-genic recombination appears to be a 

fundamental force in the development of sequence diversity in GCMFs as well as one of 

the potential mechanisms in duplication/loss events across the genus Plasmodium.  

Overall, the present studies allowed a further exploration of evolutionary trends 

within the genus Plasmodium. A better understanding of the role that biological 

interactions, inter-, intra-specific selection, and recombination have as mechanisms in the 

development of functional novelty and adaptation within the genus has been obtained. 

Moreover, the present study also serves as a starting point for the evaluation of additional 

malaria treatment and prevention strategies, as well as a more detailed exploration of 

potential patterns involved in the evolution of the Apicomplexan genomes.  

 

 

 

 

 

 



 

119 
 

References 

Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, 

Methogo BG, Doucka Y, Flamen A, Mordmüller B, Issifou S, Kremsner PG, Sacarlal J, 

Aide P, Lanaspa M, Aponte JJ, Nhamuave A, Quelhas D, Bassat Q, Mandjate S, Macete 

E, Alonso P, Abdulla S, Salim N, Juma O, Shomari M, Shubis K, Machera F, Hamad AS, 

Minja R, Mtoro A, Sykes A, Ahmed S, Urassa AM, Ali AM, Mwangoka G, Tanner M, 

Tinto H, D'Alessandro U, Sorgho H, Valea I, Tahita MC, Kaboré W, Ouédraogo S, 

Sandrine Y, Guiguemdé RT, Ouédraogo JB, Hamel MJ, Kariuki S, Odero C, Oneko M, 

Otieno K, Awino N, Omoto J, Williamson J, Muturi Kioi V, Laserson KF, Slutsker L, 

Otieno W, Otieno L, Nekoye O, Gondi S, Otieno A, Ogutu B, Wasuna R, Owira V, Jones 

D, Onyango AA, Njuguna P, Chilengi R, Akoo P, Kerubo C, Gitaka J, Maingi C, Lang T, 

Olotu A, Tsofa B, Bejon P, Peshu N, Marsh K, Owusu-Agyei S, Asante KP, Osei-

Kwakye K, Boahen O, Ayamba S, Kayan K, Owusu-Ofori R, Dosoo D, Asante I, Adjei 

G, Adjei G, Chandramohan D, Greenwood B, Lusingu J, Gesase S, Malabeja A, Abdul 

O, Kilavo H, Mahende C, Liheluka E, Lemnge M, Theander T, Drakeley C, Ansong D, 

Agbenyega T, Adjei S, Boateng HO, Rettig T, Bawa J, Sylverken J, Sambian D, 

Agyekum A, Owusu L, Martinson F, Hoffman I, Mvalo T, Kamthunzi P, Nkomo R, 

Msika A, Jumbe A, Chome N, Nyakuipa D, Chintedza J, Ballou WR, Bruls M, Cohen J, 

Guerra Y, Jongert E, Lapierre D, Leach A, Lievens M, Ofori-Anyinam O, Vekemans J, 

Carter T, Leboulleux D, Loucq C, Radford A, Savarese B, Schellenberg D, Sillman M, 

Vansadia P; RTS,S Clinical Trials Partnership. 2011. A Phase 3 Trial of RTS,S/AS01 

Malaria Vaccine in African Infants. N. Engl. J. Med. 367, 2284–2295. 

doi:10.1056/NEJMoa1208394. 

 

Abdi, A.I., Warimwe, G.M., Muthui, M.K., Kivisi, C.A., Kiragu, E.W., Fegan, G.W., 

Bull, P.C., 2016. Global selection of Plasmodium falciparum virulence antigen 

expression by host antibodies. Sci. Rep. 6, 19882. doi:10.1038/srep19882 

 

Alano, P., 2007. Plasmodium falciparum gametocytes: still many secrets of a hidden life. 

Mol. Microbiol. 66, 291–302. doi:10.1111/j.1365-2958.2007.05904.x 

 

Alexandre, J.S., Kaewthamasorn, M., Yahata, K., Nakazawa, S., Kaneko, O., 2011. 

Positive selection on the Plasmodium falciparum clag2 gene encoding a component of 

the erythrocyte-binding rhoptry protein complex. Trop. Med. Health 39, 77–82. 

doi:10.2149/tmh.2011-12 

 

Alonso, P.L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., 

Doumbo, O.K., Greenwood, B., Hall, B.F., Levine, M.M., Mendis, K., Newman, R.D., 

Plowe, C.V., Rodríguez, M.H., Sinden, R., Slutsker, L., Tanner, M., 2011. A Research 

Agenda to Underpin Malaria Eradication. PLoS Med. 8, e1000406. 

doi:10.1371/journal.pmed.1000406 

 



 

120 
 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, 

D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res. 25, 3389-33402. 

 

Anthony, T.G., Polley, S.D., Vogler, A.P., Conway, D.J., 2007. Evidence Of Non-Neutral 

Polymorphism In Plasmodium falciparum Gamete Surface Protein Genes Pfs47 And 

Pfs48/45. Mol. Biochem. Parasitol. 156, 117–123. doi:10.1016/j.molbiopara.2007.07.008 

 

Armistead, J.S., Morlais, I., Mathias, D.K., Jardim, J.G., Joy, J., Fridman, A., Finnefrock, 

A.C., Bagchi, A., Plebanski, M., Scorpio, D.G., Churcher, T.S., Borg, N.A., 

Sattabongkot, J., Dinglasan, R.R., Adams, J.H., 2014. Antibodies to a Single, Conserved 

Epitope in Anopheles APN1 Inhibit Universal Transmission of Plasmodium falciparum 

and Plasmodium vivax. Malaria. Infect. Immun. 82, 818–829. doi:10.1128/IAI.01222-13 

 

Arévalo-Herrera, M., Lopez-Perez, M., Dotsey, E., Jain, A., Rubiano, K., Felgner, P.L., 

Davies, D.H., Herrera, S., 2016. Antibody profiling in naïve and semi-immune 

individuals experimentally challenged with Plasmodium vivax sporozoites. PLoS Negl. 

Trop. Dis. 10(3), e0004563. 

 

Arisue, N., Hirai, M., Arai, M., Matsuoka, H., Horii, T., 2007. Phylogeny and evolution 

of the SERA multigene family in the genus Plasmodium. J. Mol. Evol. 65, 82-91. 

 

Arisue, N., Kawai, S., Hirai, M., Palacpac, N.M.Q., Jia, M., Kaneko, A., Tanabe, K., 

Horii, T., 2011. Clues to Evolution of the SERA Multigene Family in 18 Plasmodium 

Species. PLoS ONE 6, e17775. doi:10.1371/journal.pone.0017775 

 

Aoki, S., Li, J., Itagaki, S., Okech, B.A., Egwang, T.G., Matsuoka, H., Palacpac, N.M.Q., 

Mitamura, T., Horii, T., 2002. Serine Repeat Antigen (SERA5) Is Predominantly 

Expressed among the SERA Multigene Family of Plasmodium falciparum, and the 

Acquired Antibody Titers Correlate with Serum Inhibition of the Parasite Growth. J. 

Biol. Chem. 277, 47533–47540. doi:10.1074/jbc.M207145200 
 

Assefa, S., Lim, C., Preston, M.D., Duffy, C.W., Nair, M.B., Adroub, S.A., Kadir, K.A., 

Goldberg, J.M., Neafsey, D.E., Divis, P., Clark, T.G., Duraisingh, M.T., Conway, D.J., 

Pain, A., Singh, B., 2015. Population genomic structure and adaptation in the zoonotic 

malaria parasite Plasmodium knowlesi. Proc. Natl. Acad. Sci. 112, 13027–13032. 

doi:10.1073/pnas.1509534112 

 

Aurrecoechea, C., Brestelli, J., Brunk, B.P., Dommer, J., Fischer, S., Gajria, B., Gao, X., 

Gingle, A., Grant, G., Harb, O.S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J.C., 

Kraemer, E., Li, W., Miller, J.A., Nayak, V., Pennington, C., Pinney, D.F., Roos, D.S., 

Ross, C., Stoeckert, C.J. Jr., Treatman, C., Wang, H., 2009. PlasmoDB: a functional 

genomic database for malaria parasites. Nucleic Acids Res. 37, D539-D543. 

 



 

121 
 

Battistuzzi, F.U., Schneider, K.A., Spencer, M.K., Fisher, D., Chaudhry, S., Escalante, 

A.A., 2016. Profiles of low complexity regions in Apicomplexa. BMC Evol. Biol. 29, 

16:47. 

 

Benson, D.A., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 

2014. GenBank. Nucleic Acids Res. 42, D32-D37. 

 

Beeson, J.G., Drew, D.R., Boyle, M.J., Feng, G., Fowkes, F.J.I., Richards, J.S., 2016. 

Merozoite surface proteins in red blood cell invasion, immunity and vaccines against 

malaria. FEMS Microbiol. Rev. fuw001. doi:10.1093/femsre/fuw001 

 

Bethke, L.L., Zilversmit, M., Nielsen, K., Daily, J., Volkman, S.K., Ndiaye, D., 

Lozovsky, E.R., Hartl, D.L., Wirth, D.F., 2006. Duplication, gene conversion, and 

genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium 

falciparum. Mol. Biochem. Parasitol. 150, 10–24. doi:10.1016/j.molbiopara.2006.06.004 

 

Brendel V , Bucher P , Nourbakhsh IR , Blaisdell BE , Karlin S. 1992.  Methods and 

algorithms for statistical analysis of protein sequences. Proc. Natl. Acad. Sci. USA. 89, 

2002-6  

 

Bethke, L.L., Zilversmit, M., Nielsen, K., Daily, J., Volkman, S.K., Ndiaye, D., 

Lozovsky, E.R., Hartl, D.L., Wirth, D.F., 2006. Duplication, gene conversion, and 

genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium 

falciparum. Mol. Biochem. Parasitol. 150, 10-24.  

 

Bousema, T., Drakeley, C., 2011. Epidemiology and Infectivity of Plasmodium 

falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and 

Elimination. Clin. Microbiol. Rev. 24, 377–410. doi:10.1128/CMR.00051-10 

 

Boyle, M.J., Langer, C., Chan, J.A., Hodder, A.N., Coppel, R.L., Anders, R.F., Beeson, 

J.G., 2014. Sequential processing of merozoite surface proteins during and after 

erythrocyte invasion by Plasmodium falciparum. Infect. Immun. 82, 924-936. 

 

Carlton, J.M., Escalante, A.A., Neafsey, D., Volkman, S.K., 2008. Comparative 

evolutionary genomics of human malaria parasites. Trends Parasitol. 24, 545-550. 

 

Carlton, J.M., Das, A., Escalante, A.A., 2013. Genomics, Population Genetics and 

Evolutionary History of Plasmodium vivax. Advances in Parasitology. Elsevier, pp. 203–

222. 

 

Carter, L.M., Schneider, P., Reece, S.E., 2014. Information use and plasticity in the 

reproductive decisions of malaria parasites. Malar. J 13, 115. 

 

Carter, R., 2001. Transmission blocking malaria vaccines. Vaccine 19, 2309–2314. 

 



 

122 
 

Cheeseman, I.H., Gomez-Escobar, N., Carret, C.K., Ivens, A., Stewart, L.B., Tetteh, 

K.K.,  

 

Conway, D.J., 2009. Gene copy number variation throughout the Plasmodium falciparum 

genome. BMC Genomics 10, 353. doi:10.1186/1471-2164-10-353 

 

Chen, N., LaCrue, A.N., Teuscher, F., Waters, N.C., Gatton, M.L., Kyle, D.E., Cheng, 

Q., 2014. Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in 

Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum. 

Antimicrob. Agents Chemother. 58, 4773–4781. doi:10.1128/AAC.02647-14 
 

Chenet, S.M., Pacheco, M.A., Bacon, D.J., Collins, W.E., Barnwell, J.W., Escalante, 

A.A., 2013. The evolution and diversity of a low complexity vaccine candidate, 

merozoite surface protein 9 (MSP-9), in Plasmodium vivax and closely related species. 

Infect. Genet. Evol. 20, 239-248.  

 

Claessens, A., Hamilton, W.L., Kekre, M., Otto, T.D., Faizullabhoy, A., Rayner, J.C., 

Kwiatkowski, D., 2014. Generation of Antigenic Diversity in Plasmodium falciparum by 

Structured Rearrangement of Var Genes During Mitosis. PLoS Genet. 10, e1004812. 

doi:10.1371/journal.pgen.1004812 

 

Coatney, R.G., Collins, W.E., Warren, M., Contacos, P.G., 1971. The Primate Malarias. 

US Government Printing Office, Washington. 

 

Cormier, L.A., 2011. New frontiers in historical ecology: ten-thousand year fever: 

rethinking human and wild-primate malarias. Left Coast Press, Walnut Creek. 

 

Crompton, P.D., Moebius, J., Portugal, S., Waisberg, M., Hart, G., Garver, L.S., Miller, 

L.H., Barillas-Mury, C., Pierce, S.K., 2014. Malaria Immunity in Man and Mosquito: 

Insights into Unsolved Mysteries of a Deadly Infectious Disease. Annu. Rev. Immunol. 

32, 157–187. doi:10.1146/annurev-immunol-032713-120220 

 

Csuos, M., 2010. Count: evolutionary analysis of phylogenetic profiles with parsimony 

and likelihood. Bioinformatics 26, 1910–1912. doi:10.1093/bioinformatics/btq315 

 

Cunningham, D., Lawton, J., Jarra, W., Preiser, P., Langhorne, J., 2010. The pir 

multigene family of Plasmodium: Antigenic variation and beyond. Mol. Biochem. 

Parasitol. 170, 65–73. doi:10.1016/j.molbiopara.2009.12.010 

 

Da, D.F., Dixit, S., Sattabonkot, J., Mu, J., Abate, L., Ramineni, B., Ouedraogo, J.B., 

MacDonald, N.J., Fay, M.P., Su, X. -z., Cohuet, A., Wu, Y., 2013. Anti-Pfs25 Human 

Plasma Reduces Transmission of Plasmodium falciparum Isolates That Have Diverse 

Genetic Backgrounds. Infect. Immun. 81, 1984–1989. doi:10.1128/IAI.00016-13 

 



 

123 
 

DeBarry, J.D., Kissinger, J.C., 2011. Jumbled Genomes: Missing Apicomplexan Synteny. 

Mol. Biol. Evol. 28, 2855–2871. doi:10.1093/molbev/msr103 

 

Dembélé, L., Franetich, J.-F., Lorthiois, A., Gego, A., Zeeman, A.-M., Kocken, C.H.M., 

Le Grand, R., Dereuddre-Bosquet, N., van Gemert, G.-J., Sauerwein, R., Vaillant, J.-C., 

Hannoun, L., Fuchter, M.J., Diagana, T.T., Malmquist, N.A., Scherf, A., Snounou, G., 

Mazier, D., 2014. Persistence and activation of malaria hypnozoites in long-term primary 

hepatocyte cultures. Nat. Med. 20, 307–312. doi:10.1038/nm.3461 

 

Delves, M.J., Ruecker, A., Straschil, U., Lelievre, J., Marques, S., Lopez-Barragan, M.J., 

Herreros, E., Sinden, R.E., 2013. Male and Female Plasmodium falciparum Mature 

Gametocytes Show Different Responses to Antimalarial Drugs. Antimicrob. Agents 

Chemother. 57, 3268–3274. doi:10.1128/AAC.00325-13 
 

Deroost, K., Pham, T.-T., Opdenakker, G., Van den Steen, P.E., 2016. The 

immunological balance between host and parasite in malaria. FEMS Microbiol. Rev. 40, 

208–257. doi:10.1093/femsre/fuv046 

 

Doi, M., Tanabe, K., Tachibana, S.-I., Hamai, M., Tachibana, M., Mita, T., Yagi, M., 

Zeyrek, F.Y., Ferreira, M.U., Ohmae, H., Kaneko, A., Randrianarivelojosia, M., 

Sattabongkot, J., Cao, Y.-M., Horii, T., Torii, M., Tsuboi, T., 2011. Worldwide sequence 

conservation of transmission-blocking vaccine candidate Pvs230 in Plasmodium vivax. 

Vaccine 29, 4308–4315. doi:10.1016/j.vaccine.2011.04.028 

 

Dorin-Semblat, D., Schmitt, S., Semblat, J.-P., Sicard, A., Reininger, L., Goldring, D., 

Patterson, S., Quashie, N., Chakrabarti, D., Meijer, L., Doerig, C., 2011. Plasmodium 

falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality 

for the erythrocytic asexual cycle. Microbiology 157, 2785–2794. 

doi:10.1099/mic.0.049023-0 

 

Duval, L., Ariey, F., 2012. Ape Plasmodium parasites as a source of human outbreaks. 

Clin. Microbiol. Infect. 18, 528–532. doi:10.1111/j.1469-0691.2012.03825.x 

 

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high 

throughput. Nucleic Acids Res. 32, 1792–1797. doi:10.1093/nar/gkh340 

 

Escalante, A.A., Cornejo, O.E., Freeland, D.E., Poe, A.C., Durrego, E., Collins, W.E., 

Lal, A.A., 2005. A monkey’s tale: the origin of Plasmodium vivax as a human malaria 

parasite. Proc. Natl. Acad. Sci. U. S. A. 102, 1980–1985. 

 

Farris, J.S., 1970. Methods for Computing Wagner Trees. Syst. Zool. 19, 83. 

doi:10.2307/2412028 

 

Fairhurst, R.M., 2015. Understanding artemisinin-resistant malaria: what a difference a 

year makes. Curr. Opin. Infect. Dis. 28, 417–425. doi:10.1097/QCO.0000000000000199 

 



 

124 
 

Fawcett, J., Innan, H., 2011. Neutral and Non-Neutral Evolution of Duplicated Genes 

with Gene Conversion. Genes 2, 191–209. doi:10.3390/genes2010191 

 

Feng, H., Gupta, B., Wang, M., Zheng, W., Zheng, L., Zhu, X., Yang, Y., Fang, Q., Luo, 

E., Fan, Q., Tsuboi, T., Cao, Y., Cui, L., 2015. Genetic diversity of transmission-blocking 

vaccine candidate Pvs48/45 in Plasmodium vivax populations in China. Parasit. Vectors 

8. doi:10.1186/s13071-015-1232-4 

 

Frech, C., Chen, N., 2013. Variant surface antigens of malaria parasites: functional and 

evolutionary insights from comparative gene family classification and analysis. BMC 

Genomics 14, 1. 

 

Frech, C., Chen, N., 2011. Genome Comparison of Human and Non-Human Malaria 

Parasites Reveals Species Subset-Specific Genes Potentially Linked to Human Disease. 

PLoS Comput. Biol. 7, e1002320. doi:10.1371/journal.pcbi.1002320 
 

Florens, L., Washburn, M.P., Raine, J.D., Anthony, R.M., Grainger, M., Haynes, J.D., 

Moch, J.K., Muster, N., Sacci, J.B., Tabb, D.L., others, 2002. A proteomic view of the 

Plasmodium falciparum life cycle. Nature 419, 520–526. 

 

García, Y., Puentes, A., Curtidor, H., Cifuentes, G., Reyes, C., Barreto, J., Moreno, A., 

Patarroyo, M.E., 2007. Identifying merozoite surface protein 4 and merozoite surface 

protein 7 Plasmodium falciparum protein family members specifically binding to human 

erythrocytes suggests a new malarial parasite-redundant survival mechanism. J. Med. 

Chem. 50, 5665-5675.  

 

Garnham, P.C.C., 1966. Malaria parasites and other haemosporidia. Blackwell Scientific 

Publications, Oxford. 

 

Garzón-Ospina, D., Cadavid, L.F., Patarroyo, M.A., 2010. Differential expansion of the 

merozoite surface protein (msp)-7 gene family in Plasmodium species under a birth-and-

death model of evolution. Mol. Phylogenet. Evol. 55, 399–408. 

doi:10.1016/j.ympev.2010.02.017 

 

Gholizadeh, S., Djadid, N., Basseri, H., Zakeri, S., Ladoni, H., 2009. Analysis of von 

Willebrand factor A domain-related protein (WARP) polymorphism in temperate and 

tropical Plasmodium vivax field isolates. Malar. J. 8, 137. doi:10.1186/1475-2875-8-137 

 

Girard, M., Reed, Z., Friede, M., Kieny, M., 2007. A review of human vaccine research 

and development: Malaria. Vaccine 25, 1567–1580. doi:10.1016/j.vaccine.2006.09.074 

 

Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView Version 4: A Multiplatform 

Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. 

Biol. Evol. 27, 221–224. doi:10.1093/molbev/msp259 

 



 

125 
 

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. 

New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the 

performance of PhyML 3.0. Syst. Biol. 59, 307-321. 

 

Gupta, A., Thiruvengadam, G., Desai, S.A., 2015. The conserved clag multigene family 

of malaria parasites: Essential roles in host–pathogen interaction. Drug Resist. Updat. 18, 

47–54. doi:10.1016/j.drup.2014.10.004 

 

Habtewold, T., Povelones, M., Blagborough, A.M., Christophides, G.K., 2008. 

Transmission Blocking Immunity in the Malaria Non-Vector Mosquito Anopheles 

quadriannulatus Species A. PLoS Pathog. 4, e1000070. 

doi:10.1371/journal.ppat.1000070 

 

Hastings, I.M., Kay, K., Hodel, E.M., 2015. How Robust Are Malaria Parasite Clearance 

Rates as Indicators of Drug Effectiveness and Resistance? Antimicrob. Agents 

Chemother. 59, 6428–6436. doi:10.1128/AAC.00481-15 

 

Hakes, L., Pinney, J.W., Lovell, S.C., Oliver, S.G., Robertson, D.L., 2007. All duplicates 

are not equal: the difference between small-scale and genome duplication. Genome Biol 

8, R209. Hostetler, J.B., Sharma, S., Bartholdson, S.J., Wright, G.J., Fairhurst, R.M., 

Rayner, J.C., 2015. A library of Plasmodium vivax recombinant merozoite proteins 

reveals new vaccine candidates and protein-protein interactions. PLoS Negl. Trop. Dis. 

9(12), e0004264. 

 

Innan, H., Kondrashov, F., 2010. The evolution of gene duplications: classifying and 

distinguishing between models. Nat. Rev. Genet. 11, 4. doi:10.1038/nrg2689 

 

Iriko, H., Kaneko, O., Otsuki, H., Tsuboi, T., Su, X., Tanabe, K., Torii, M., 2008. 

Diversity and evolution of the rhoph1/clag multigene family of Plasmodium falciparum. 

Mol. Biochem. Parasitol. 158, 11–21. 

 

Iyer, J.K., Fuller, K., Preiser, P.R., 2006. Differences in the copy number of the py235 

gene family in virulent and avirulent lines of Plasmodium yoelii. Mol. Biochem. 

Parasitol. 150, 186–191. doi:10.1016/j.molbiopara.2006.07.012  

 

Janssen, C.S., 2004. Plasmodium interspersed repeats: the major multigene superfamily 

of malaria parasites. Nucleic Acids Res. 32, 5712–5720. doi:10.1093/nar/gkh907 

 

Josling, G.A., Llinás, M., 2015. Sexual development in Plasmodium parasites: knowing 

when it’s time to commit. Nat. Rev. Microbiol. 13, 573–587. doi:10.1038/nrmicro3519 

 

Joy, D.A., Gonzalez-Ceron, L., Carlton, J.M., Gueye, A., Fay, M., McCutchan, T.F., Su, 

X. -z., 2008. Local Adaptation and Vector-Mediated Population Structure in Plasmodium 

vivax Malaria. Mol. Biol. Evol. 25, 1245–1252. doi:10.1093/molbev/msn073 

 



 

126 
 

Kadekoppala, M., Holder, A., 2010. Merozoite surface proteins of the malaria parasite: 

the MSP1 complex and the MSP7 family. Int. J. for Parasitol. 40, 1155-1161. 

 

Kadekoppala, M., O’Donnell, R.A., Grainger, M., Crabb, B.S., Holder, A.A., 2008. 

Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite 

invasion of erythrocytes. Eukaryot. Cell 7, 2123-2132. 

 

Kadekoppala, M., Ogun, S.A., Howell, S., Gunaratne, R.S., Holder, A.A., 2010. 

Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals 

differences in protein expression, location, and importance in asexual growth of the 

blood-stage parasite. Eukaryot. Cell 9, 1064-1074. 

 

Kamali, M., Marek, P.E., Peery, A., Antonio-Nkondjio, C., Ndo, C., Tu, Z., Simard, F., 

Sharakhov, I.V., 2014. Multigene Phylogenetics Reveals Temporal Diversification of 

Major African Malaria Vectors. PLoS ONE 9, e93580. 

doi:10.1371/journal.pone.0093580 

 

Kamali, M., Xia, A., Tu, Z., Sharakhov, I.V., 2012. A New Chromosomal Phylogeny 

Supports the Repeated Origin of Vectorial Capacity in Malaria Mosquitoes of the 

Anopheles gambiae Complex. PLoS Pathog. 8, e1002960. 

doi:10.1371/journal.ppat.1002960 
 

Kauth, C.W., Woehlbier, U., Kern, M., Mekonnen, Z., Lutz, R., Mücke, N., Langowski, 

J., Bujard, H., 2006. Interactions between merozoite surface proteins 1, 6, and 7 of the 

malaria parasite Plasmodium falciparum. J. Biol. Chem. 281, 31517-31527. 

 

Keitany, G.J., Vignali, M., Wang, R., 2014. Live attenuated pre-erythrocytic malaria 

vaccines. Hum. Vaccines Immunother. 10, 2903–2909. 

doi:10.4161/21645515.2014.972764 

 

Khan, S.M., Franke-Fayard, B., Mair, G.R., Lasonder, E., Janse, C.J., Mann, M., Waters, 

A.P., 2005. Proteome Analysis of Separated Male and Female Gametocytes Reveals 

Novel Sex-Specific Plasmodium Biology. Cell 121, 675–687. 

doi:10.1016/j.cell.2005.03.027 

 

Khan, S.M., Reece, S.E., Waters, A.P., Janse, C.J., Kaczanowski, S., 2012. Why are male 

malaria parasites in such a rush?: Sex-specific evolution and host-parasite interactions. 

Evol. Med. Public Health 2013, 3–13. doi:10.1093/emph/eos003 

 

King, J.G., Hillyer, J.F., 2012. Infection-Induced Interaction between the Mosquito 

Circulatory and Immune Systems. PLoS Pathog. 8, e1003058. 

doi:10.1371/journal.ppat.1003058 

 

Kirkman, L.A., Deitsch, K.W., 2012. Antigenic variation and the generation of diversity 

in malaria parasites. Curr. Opin. Microbiol. 15, 456–462. doi:10.1016/j.mib.2012.03.003 

 



 

127 
 

Kooij, T.W.A., Carlton, J.M., Bidwell, S.L., Hall, N., Ramesar, J., Janse, C.J., Waters, 

A.P., 2005. A Plasmodium Whole-Genome Synteny Map: Indels and Synteny 

Breakpoints as Foci for Species-Specific Genes. PLoS Pathog. 1, e44. 

doi:10.1371/journal.ppat.0010044 

 

Kooij, T.W.A., Franke-Fayard, B., Renz, J., Kroeze, H., van Dooren, M.W., Ramesar, J., 

Augustijn, K.D., Janse, C.J., Waters, A.P., 2005. Plasmodium berghei α-tubulin II: A role 

in both male gamete formation and asexual blood stages. Mol. Biochem. Parasitol. 144, 

16–26. doi:10.1016/j.molbiopara.2005.07.003 

 

Kosakovsky Pond, S.L., Frost, S.D., Muse, S.V., 2005. HyPhy: hypothesis testing using 

phylogenies. Bioinformatics 21, 676-679. 

 

Kosakovsky Pond, S.L., Murrell, B., Fourment, M., Frost, S.D., Delport, W., Scheffler, 

K., 2011. A random effects branch-site model for detecting episodic diversifying 

selection. Mol. Biol. Evol. 28, 3033-3043. 

 

Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D., 2006. 

GARD: a genetic algorithm for recombination detection. Bioinformatics 22, 3096-3098.  

 

Krief, S., Escalante, A.A., Pacheco, M.A., Mugisha, L., André, C., Halbwax, M., Fischer, 

A., Krief, J.-M., Kasenene, J.M., Crandfield, M., Cornejo, O.E., Chavatte, J.-M., Lin, C., 

Letourneur, F., Grüner, A.C., McCutchan, T.F., Rénia, L., Snounou, G., 2010. On the 

Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum 

from Bonobos. PLoS Pathog. 6, e1000765. doi:10.1371/journal.ppat.1000765 

Kuehn, A., Pradel, G., Kuehn, A., Pradel, G., 2010. The Coming-Out of Malaria 

Gametocytes, The Coming-Out of Malaria Gametocytes. BioMed Res. Int. BioMed Res. 

Int. 2010, 2010, e976827. doi:10.1155/2010/976827, 10.1155/2010/976827 

 

Külzer, S., Charnaud, S., Dagan, T., Riedel, J., Mandal, P., Pesce, E.R., Blatch, G.L., 

Crabb, B.S., Gilson, P.R., Przyborski, J.M., 2012. Plasmodium falciparum -encoded 

exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte: 

Chaperones in the P. falciparum -infected host cell. Cell. Microbiol. 14, 1784–1795. 

doi:10.1111/j.1462-5822.2012.01840.x 

 

Kumar S, Filipski A, Swarna V, Walker A, Hedges SB. 2005. Placing confidence limits 

on the molecular age of the human–chimpanzee divergence. Proceedings of the National 

Academy of Sciences of the United States of America.102:18842-18847. 

doi:10.1073/pnas.0509585102. 

 

Kuo, C.-H., Kissinger, J.C., 2008. Consistent and contrasting properties of lineage-

specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol. Biol. 

8, 108. doi:10.1186/1471-2148-8-108 

 



 

128 
 

Kyes, S.A., Kraemer, S.M., Smith, J.D., 2007. Antigenic Variation in Plasmodium 

falciparum: Gene Organization and Regulation of the var Multigene Family. Eukaryot. 

Cell 6, 1511–1520. doi:10.1128/EC.00173-07 

 

Lapp, S.A., Korir, C.C., Galinski, M.R., 2009. Redefining the expressed prototype 

SICAvar gene involved in Plasmodium knowlesi antigenic variation. Malar. J. 8, 181. 

doi:10.1186/1475-2875-8-181 

 

Lasonder, E., Ishihama, Y., Andersen, J.S., Vermunt, A.M., Pain, A., Sauerwein, R.W., 

Eling, W.M., Hall, N., Waters, A.P., Stunnenberg, H.G., others, 2002. Analysis of the 

Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 

537–542. 
 

Lee, W.-C., Malleret, B., Lau, Y.-L., Mauduit, M., Fong, M.-Y., Cho, J.S., Suwanarusk, 

R., Zhang, R., Albrecht, L., Costa, F.T., others, 2014. Glycophorin C (CD236R) mediates 

vivax malaria parasite rosetting to normocytes. Blood 123, e100–e109. 

 

Lin, C.S., Uboldi, A.D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P.E., Cowman, A.F., 

2016. Multiple Plasmodium falciparum merozoite surface protein 1 complexes mediate 

merozoite binding to human erythrocytes. J Biol Chem. 291, 7703-7715. 

 

Liu, W., Li, Y., Learn, G.H., Rudicell, R.S., Robertson, J.D., Keele, B.F., Ndjango, J.-

B.N., Sanz, C.M., Morgan, D.B., Locatelli, S., Gonder, M.K., Kranzusch, P.J., Walsh, 

P.D., Delaporte, E., Mpoudi-Ngole, E., Georgiev, A.V., Muller, M.N., Shaw, G.M., 

Peeters, M., Sharp, P.M., Rayner, J.C., Hahn, B.H., 2010. Origin of the human malaria 

parasite Plasmodium falciparum in gorillas. Nature 467, 420–425. 

doi:10.1038/nature09442 

 

López-Barragán, M.J., Lemieux, J., Quiñones, M., Williamson, K.C., Molina-Cruz, A., 

Cui, K., Barillas-Mury, C., Zhao, K., Su, X., 2011. Directional gene expression and 

antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC 

Genomics 12, 587. 

 

Malleret, B., Li, A., Zhang, R., Tan, K.S., Suwanarusk, R., Claser, C., Cho, J.S., Koh, 

E.G.L., Chu, C.S., Pukrittayakamee, S., others, 2015. Plasmodium vivax: restricted 

tropism and rapid remodeling of CD71-positive reticulocytes. Blood 125, 1314–1324. 

Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-

Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., 

Jackson, J.D., Ke, Z., Lanczycki, C.J., Lu, F., Marchler, G.H., Mullokandov, M., 

Omelchenko, M.V., Robertson, C.L., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., 

Zhang, N., Zheng, C., Bryant, S.H., 2011. CDD: a Conserved Domain Database for the 

functional annotation of proteins. Nucleic Acids Res 2011, 39, D225-D229. 

 

Markus, M.B., 2015. Do hypnozoites cause relapse in malaria? Trends Parasitol. 31, 239–

245. doi:10.1016/j.pt.2015.02.003 



 

129 
 

 

Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., 2010. RDP3: a 

flexible and fast computer program for analyzing recombination. Bioinformatics 26, 

2462-2463. 
 

Martinsen, E.S., Perkins, S.L., Schall, J.J., 2008. A three-genome phylogeny of malaria 

parasites (Plasmodium and closely related genera): Evolution of life-history traits and 

host switches. Mol. Phylogenet. Evol. 47, 261–273. doi:10.1016/j.ympev.2007.11.012 

 

Martens, C., Vandepoele, K., Van de Peer, Y., 2008. Whole-genome analysis reveals 

molecular innovations and evolutionary transitions in chromalveolate species. Proc. Natl. 

Acad. Sci. 105, 3427–3432. 

 

McKenzie, F.E., Wongsrichanalai, C., Magill, A.J., Forney, J.R., Permpanich, B., Lucas, 

C., Erhart, L.M., O’Meara, W.P., Smith, D.L., Sirichaisinthop, J., others, 2006. 

Gametocytemia in Plasmodium vivax and Plasmodium falciparum infections. J. Parasitol.  

 

Mello, K., Daly, T.M., Long, C.A., Burns, J.M., Bergman, L.W., 2004. Members of the 

merozoite surface protein 7 family with similar expression patterns differ in ability to 

protect against Plasmodium yoelii malaria. Infect. Immun. 72, 1010-1018. 

 

Mello, K., Daly, T.M., Morrisey, J., Vaidya, A.B., Long, C.A., Bergman, L.W., 2002. A 

multigene family that interacts with the amino terminus of Plasmodium MSP-1 identified 

using the yeast two-hybrid system. Eukaryot. Cell 1, 915-25.92, 1281–1285. 

 

Mitri, C., Thiery, I., Bourgouin, C., Paul, R.E.L., 2009. Density-dependent impact of the 

human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito 

infection rates. Proc. R. Soc. B Biol. Sci. 276, 3721–3726. doi:10.1098/rspb.2009.0962 

 

Miura, K., Takashima, E., Deng, B., Tullo, G., Diouf, A., Moretz, S.E., Nikolaeva, D., 

Diakite, M., Fairhurst, R.M., Fay, M.P., Long, C.A., Tsuboi, T., 2013. Functional 

Comparison of Plasmodium falciparum Transmission-Blocking Vaccine Candidates by 

the Standard Membrane-Feeding Assay. Infect. Immun. 81, 4377–4382. 

doi:10.1128/IAI.01056-13 

 

Mongui, A., Perez-Leal, O., Soto, S.C., Cortes, J., Patarroyo, M.A., 2006. Cloning, 

expression, and characterization of a Plasmodium vivax MSP7 family merozoite surface 

protein. Biochem. Biophys. Res. Commun. 351, 639-644. 

 

Molina-Cruz, A., DeJong, R.J., Ortega, C., Haile, A., Abban, E., Rodrigues, J., Jaramillo-

Gutierrez, G., Barillas-Mury, C., 2012. Some strains of Plasmodium falciparum, a human 

malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. 

Proc. Natl. Acad. Sci. 109, E1957–E1962. doi:10.1073/pnas.1121183109 

 



 

130 
 

Moreno, S.N.J., Ayong, L., Pace, D.A., 2011. Calcium storage and function in 

apicomplexan parasites: Figure 1. Essays Biochem. 51, 97–110. doi:10.1042/bse0510097 

 

Mu, J., 2005. Host Switch Leads to Emergence of Plasmodium vivax Malaria in Humans. 

Mol. Biol. Evol. 22, 1686–1693. doi:10.1093/molbev/msi160 

 

Muehlenbein, M.P., Pacheco, M.A., Taylor, J.E., Prall, S.P., Ambu, L., Nathan, S., 

Alsisto, S., Ramirez, D., Escalante, A.A., 2015. Accelerated diversification of nonhuman 

primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol. 

Biol. Evol. 32, 422-439. 

 

Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., Eren, K., 

Pollner, T., Martin, D.P., Smith, D.M., Scheffler, K., Kosakovsky Pond, S.L., 2015. 

Gene-Wide Identification of Episodic Selection. Mol. Biol. Evol. 32, 1365–1371. 

doi:10.1093/molbev/msv035 

 

Mvumbi, D.M., Kayembe, J.-M., Situakibanza, H., Bobanga, T.L., Nsibu, C.N., Mvumbi, 

G.L., Melin, P., De Mol, P., Hayette, M.-P., 2015. Falciparum malaria molecular drug 

resistance in the Democratic Republic of Congo: a systematic review. Malar. J. 14. 

doi:10.1186/s12936-015-0892-z 

 

Neafsey, D.E., Galinsky, K., Jiang, R.H., Young, L., Sykes, S.M., Saif, S., Gujja, S., 

Goldberg, J.M., Young, S., Zeng, Q., Chapman, S.B., Dash, A.P., Anvikar, A.R., Sutton, 

P.L., Birren, B.W., Escalante, A.A., Barnwell, J.W., Carlton, J.M., 2012. The malaria 

parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium 

falciparum. Nat. Genet. 44, 1046-50. 

 

Neafsey, D.E., Waterhouse, R.M., Abai, M.R., Aganezov, S.S., Alekseyev, M.A., Allen, 

J.E., Amon, J., Arca, B., Arensburger, P., Artemov, G., Assour, L.A., Basseri, H., Berlin, 

A., Birren, B.W., Blandin, S.A., Brockman, A.I., Burkot, T.R., Burt, A., Chan, C.S., 

Chauve, C., Chiu, J.C., Christensen, M., Costantini, C., Davidson, V.L.M., Deligianni, E., 

Dottorini, T., Dritsou, V., Gabriel, S.B., Guelbeogo, W.M., Hall, A.B., Han, M.V., 

Hlaing, T., Hughes, D.S.T., Jenkins, A.M., Jiang, X., Jungreis, I., Kakani, E.G., Kamali, 

M., Kemppainen, P., Kennedy, R.C., Kirmitzoglou, I.K., Koekemoer, L.L., Laban, N., 

Langridge, N., Lawniczak, M.K.N., Lirakis, M., Lobo, N.F., Lowy, E., MacCallum, 

R.M., Mao, C., Maslen, G., Mbogo, C., McCarthy, J., Michel, K., Mitchell, S.N., Moore, 

W., Murphy, K.A., Naumenko, A.N., Nolan, T., Novoa, E.M., O’Loughlin, S., Oringanje, 

C., Oshaghi, M.A., Pakpour, N., Papathanos, P.A., Peery, A.N., Povelones, M., Prakash, 

A., Price, D.P., Rajaraman, A., Reimer, L.J., Rinker, D.C., Rokas, A., Russell, T.L., 

Sagnon, N., Sharakhova, M.V., Shea, T., Simao, F.A., Simard, F., Slotman, M.A., 

Somboon, P., Stegniy, V., Struchiner, C.J., Thomas, G.W.C., Tojo, M., Topalis, P., 

Tubio, J.M.C., Unger, M.F., Vontas, J., Walton, C., Wilding, C.S., Willis, J.H., Wu, Y.-

C., Yan, G., Zdobnov, E.M., Zhou, X., Catteruccia, F., Christophides, G.K., Collins, 

F.H., Cornman, R.S., Crisanti, A., Donnelly, M.J., Emrich, S.J., Fontaine, M.C., Gelbart, 

W., Hahn, M.W., Hansen, I.A., Howell, P.I., Kafatos, F.C., Kellis, M., Lawson, D., 

Louis, C., Luckhart, S., Muskavitch, M.A.T., Ribeiro, J.M., Riehle, M.A., Sharakhov, 



 

131 
 

I.V., Tu, Z., Zwiebel, L.J., Besansky, N.J., 2015. Highly evolvable malaria vectors: The 

genomes of 16 Anopheles mosquitoes. Science 347, 1258522–1258522. 

doi:10.1126/science.125852 

 

Neal, A.T., Schall, J.J., 2014. Testing sex ratio theory with the malaria parasite 

Plasmodium mexicanum in natural and experimental infections: malaria sex ratio. 

Evolution 68, 1071–1081. doi:10.1111/evo.12334 

 

Nei, M., Gu, X., Sitnikova, T., 1997. Evolution by the birth-and-death process in 

multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. USA. 

94,7799-806. 

 

Nei, M., Gojobori, T., 1986. Simple methods for estimating the numbers of synonymous 

and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426. 

 

Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University 

Press, NY. Nei, M., Rooney, A.P., Concerted and birth-and-death evolution of multigene 

families. Annu. Rev. Genet. 39, 121-152. 

 

Ness, R.W., Graham, S.W., Barrett, S.C., 2011. Reconciling gene and genome 

duplication events: using multiple nuclear gene families to infer the phylogeny of the 

aquatic plant family Pontederiaceae. Mol. Biol. Evol. 28, 3009-18. 

 

Nielsen, K.M., Kasper, J., Choi, M., Bedford, T., Kristiansen, K., Wirth, D.F., Volkman, 

S.K., Lozovsky, E.R., Hartl, D.L., 2003. Gene conversion as a source of nucleotide 

diversity in Plasmodium falciparum. Mol. Biol. Evol. 20, 726-734. 

 

Niang, M., Yan Yam, X., Preiser, P.R., 2009. The Plasmodium falciparum STEVOR 

Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte. PLoS 

Pathog. 5, e1000307. doi:10.1371/journal.ppat.1000307 

 

Niederwieser, I., Felger, I., Beck, H.-P., 2001. Limited polymorphism in Plasmodium 

falciparum sexual-stage antigens. Am. J. Trop. Med. Hyg. 64, 9–11. 

 

Niang, M., Bei, A.K., Madnani, K.G., Pelly, S., Dankwa, S., Kanjee, U., Gunalan, K., 

Amaladoss, A., Yeo, K.P., Bob, N.S., Malleret, B., Duraisingh, M.T., Preiser, P.R., 2014. 

STEVOR Is a Plasmodium falciparum Erythrocyte Binding Protein that Mediates 

Merozoite Invasion and Rosetting. Cell Host Microbe 16, 81–93. 

doi:10.1016/j.chom.2014.06.004 

 

Nikbakht, H., Xia, X., Hickey, D.A., Golding, B., 2014. The evolution of genomic GC 

content undergoes a rapid reversal within the genus Plasmodium. Genome 57, 507–511. 

doi:10.1139/gen-2014-0158 

 



 

132 
 

Nikolaeva, D., Draper, S.J., Biswas, S., 2015. Toward the development of effective 

transmission-blocking vaccines for malaria. Expert Rev. Vaccines 14, 653–680. 

doi:10.1586/14760584.2015.993383 
 

Nishimoto, Y., Arisue, N., Kawai, S., Escalante, A.A., Horii, T., Tanabe, K., Hashimoto, 

T., 2008. Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in 

the genus Plasmodium. Mol. Phylogenet. Evol. 47, 45–53. 

doi:10.1016/j.ympev.2008.01.031 
 

Offeddu, V., Thathy, V., Marsh, K., Matuschewski, K., 2012. Naturally acquired immune 

responses against Plasmodium falciparum sporozoites and liver infection. Int. J. Parasitol. 

42, 535–548. doi:10.1016/j.ijpara.2012.03.011 

 

Ohno, S., 1970. Evolution by Gene Duplication. Springer Berlin Heidelberg, Berlin, 

Heidelberg. 

 

Okuda-Ashitaka, E., Minami, T., Tachibana, S., Yoshihara, Y., Nishiuchi, Y., Kimura, 

T., Ito, S., 1998. Nocistatin, a peptide that blocks nociceptin action in pain transmission. 

Nature 392, 286–289. 

 

Ollomo, B., Durand, P. Prugnolle, F., Douzery, E., Arnathau, C., Nkoghe, D., Leroy, E., 

Renaud, F., 2009. A new malaria agent in African hominids. PLoS Pathog. 5(5), 

e1000446. 

 

Otto, T.D., Böhme, U., Jackson, A.P., Hunt, M., Franke-Fayard, B., Hoeijmakers, W.A., 

Religa, A.A., Robertson, L., Sanders, M., Ogun, S.A., others, 2014a. A comprehensive 

evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 12, 1. 

 

Otto, T.D., Rayner, J.C., Böhme, U., Pain, A., Spottiswoode, N., Sanders, M., Quail, M.,  

Ollomo, B., Renaud, F., Thomas, A.W., Prugnolle, F., Conway, D.J., Newbold, C., 

Berriman, M., 2014b. Genome sequencing of chimpanzee malaria parasites reveals 

possible pathways of adaptation to human hosts. Nat. Commun. 5, 4754. 

doi:10.1038/ncomms5754 
 

Ouattara, A., Laurens, M.B., 2015. Vaccines Against Malaria. Clin. Infect. Dis. 60, 930–

936. doi:10.1093/cid/ciu954 

 

Pacheco, M.A., Battistuzzi, F.U., Junge, R.E., Cornejo, O.E., Williams, C.V., Landau, I., 

Rabetafika, L., Snounou, G., Jones-Engel, L., Escalante, A.A., 2011. Timing the origin of 

human malarias: the lemur puzzle. BMC Evol. Biol. 11, 299. 

 

Pacheco, M.A., Cranfield, M., Cameron, K., Escalante, A.A., 2013. Malarial parasite 

diversity in chimpanzees: the value of comparative approaches to ascertain the evolution 

of Plasmodium falciparum antigens. Malar J. 17, 12:328. 

 



 

133 
 

Pacheco, M.A., Reid, M.J., Schillaci, M.A., Lowenberger, C.A., Galdikas, B.M., Jones-

Engel, L., Escalante, A.A., 2012. The origin of malarial parasites in orangutans. PLoS 

One. 7(4), e34990. 

 

Pain, A., Böhme, U., Berry, A.E., Mungall, K., Finn, R.D., Jackson, A.P., Mourier, T., 

Mistry, J., Pasini, E.M., Aslett, M.A., Balasubrammaniam, S., Borgwardt, K., Brooks, K., 

Carret, C., Carver, T.J., Cherevach, I., Chillingworth, T., Clark, T.G., Galinski, M.R., 

Hall, N., Harper, D., Harris, D., Hauser, H., Ivens, A., Janssen, C.S., Keane, T., Larke, 

N., Lapp, S., Marti, M., Moule, S., Meyer, I.M., Ormond, D., Peters, N., Sanders, M., 

Sanders, S., Sargeant, T.J., Simmonds, M., Smith, F., Squares, R., Thurston, S., Tivey, 

A.R., Walker, D., White, B., Zuiderwijk, E., Churcher, C., Quail, M.A., Cowman, A.F., 

Turner, C.M.R., Rajandream, M.A., Kocken, C.H.M., Thomas, A.W., Newbold, C.I., 

Barrell, B.G., Berriman, M., 2008. The genome of the simian and human malaria parasite 

Plasmodium knowlesi. Nature 455, 799–803. doi:10.1038/nature07306 

 

Perrin, A.J., Bartholdson, S.J., Wright, G.J., 2015. P-selectin is a host receptor for 

Plasmodium MSP7 ligands. Malar. J. 14, 238. 

 

Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating 

signal peptides from transmembrane regions. Nat. Methods 8, 785-786. 

 

Petter, M., Bonow, I., Klinkert, M.-Q., 2008. Diverse Expression Patterns of Subgroups 

of the rif Multigene Family during Plasmodium falciparum Gametocytogenesis. PLoS 

ONE 3, e3779. doi:10.1371/journal.pone.0003779 

 

Pond, S.L.K., Muse, S.V., 2005. HyPhy: hypothesis testing using phylogenies, in: 

Statistical Methods in Molecular Evolution. Springer, pp. 125–181. 

 

Ponsuwanna, P., Kochakarn, T., Bunditvorapoom, D., Kümpornsin, K., Otto, T.D., 

Ridenour, C., Chotivanich, K., Wilairat, P., White, N.J., Miotto, O., Chookajorn, T., 

2016. Comparative genome-wide analysis and evolutionary history of haemoglobin-

processing and haem detoxification enzymes in malarial parasites. Malar. J. 15. 

doi:10.1186/s12936-016-1097-9 

 

Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253-

1256. 

 

Pouniotis, D.S., Proudfoot, O., Minigo, G., Hanley, J.L., Plebanski, M., others, 2004. 

Malaria parasite interactions with the human host. J. Postgrad. Med. 50, 30. 

 

Prugnolle, F., McGee, K., Keebler, J., Awadalla, P., 2008. Selection shapes malaria 

genomes and drives divergence between pathogens infecting hominids versus rodents. 

BMC Evol. Biol. 8, 223. doi:10.1186/1471-2148-8-223 

 

Prugnolle, F., Rougeron, V., Becquart, P., Berry, A., Makanga, B., Rahola, N., Arnathau, 

C., Ngoubangoye, B., Menard, S., Willaume, E., Ayala, F.J., Fontenille, D., Ollomo, B., 



 

134 
 

Durand, P., Paupy, C., Renaud, F., 2013. Diversity, host switching and evolution of 

Plasmodium vivax infecting African great apes. Proc. Natl. Acad. Sci. 110, 8123–8128. 

doi:10.1073/pnas.1306004110 

 

Reece, S.E., Drew, D.R., Gardner, A., 2008. Sex ratio adjustment and kin discrimination 

in malaria parasites. Nature 453, 609–614. doi:10.1038/nature06954 

 

Reid, A.J., 2015. Large, rapidly evolving gene families are at the forefront of host–

parasite interactions in Apicomplexa. Parasitology 142, S57–S70. 

doi:10.1017/S0031182014001528 

 

Reininger, L., Garcia, M., Tomlins, A., Muller, S., Doerig, C., 2012. The Plasmodium 

falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to 

sexual differentiation. Malar J 11, 250. 

 

Reininger, L., Tewari, R., Fennell, C., Holland, Z., Goldring, D., Ranford-Cartwright, L., 

Billker, O., Doerig, C., 2009. An Essential Role for the Plasmodium Nek-2 Nima-related 

Protein Kinase in the Sexual Development of Malaria Parasites. J. Biol. Chem. 284, 

20858–20868. doi:10.1074/jbc.M109.017988 

 

Rice, B.L., Acosta, M.M., Pacheco, M.A., Carlton, J.M., Barnwell, J.W., Escalante, A.A., 

2014. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene 

family in Plasmodium vivax and related parasites. Mol. Phylogenet. Evol. 78, 172–184. 

doi:10.1016/j.ympev.2014.05.013 

 

Riveron, J.M., Chiumia, M., Menze, B.D., Barnes, K.G., Irving, H., Ibrahim, S.S., 

Weedall, G.D., Mzilahowa, T., Wondji, C.S., 2015. Rise of multiple insecticide 

resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. 

Malar. J. 14. doi:10.1186/s12936-015-0877-y 

 

Roeffen, W., Teelen, K., van As, J., vd Vegte-Bolmer, M., Eling, W., Sauerwein, R., 

2001. Plasmodium falciparum: Production and Characterization of Rat Monoclonal 

Antibodies Specific for the Sexual-Stage Pfs48/45 Antigen. Exp. Parasitol. 97, 45–49. 

doi:10.1006/expr.2000.4586 

 

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, 

B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian 

phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-

542. 
 

Rooney, A.P., 2004. Mechanisms Underlying the Evolution and Maintenance of 

Functionally Heterogeneous 18S rRNA Genes in Apicomplexans. Mol. Biol. Evol. 21, 

1704–1711. doi:10.1093/molbev/msh178 

 



 

135 
 

Ryg-Cornejo, V., Ly, A., Hansen, D.S., 2016. Immunological processes underlying the 

slow acquisition of humoral immunity to malaria. Parasitology 1–9. 

doi:10.1017/S0031182015001705 
 

Saraiva, R.G., Kang, S., Simões, M.L., Angleró-Rodríguez, Y.I., Dimopoulos, G., 2016. 

Mosquito gut antiparasitic and antiviral immunity. Dev. Comp. Immunol. 

doi:10.1016/j.dci.2016.01.015 

 

Scherf, A., Lopez-Rubio, J.J., Riviere, L., 2008. Antigenic Variation in Plasmodium 

falciparum. Annu. Rev. Microbiol. 62, 445–470. 

doi:10.1146/annurev.micro.61.080706.093134 
 

Schrago CG, Voloch CM. 2013. The precision of the hominid timescale estimated by 

relaxed clock methods. J Evol Biol. 26:746-55. doi: 10.1111/jeb.12076.  

Schwartz, L., Brown, G.V., Genton, B., Moorthy, V.S., 2012. A review of malaria 

vaccine clinical projects based on the WHO rainbow table. Malar. J. 11, 1. 

Seo, T.-K., 2004. Estimating Absolute Rates of Synonymous and Nonsynonymous 

Nucleotide Substitution in Order to Characterize Natural Selection and Date Species 

Divergences. Mol. Biol. Evol. 21, 1201–1213. doi:10.1093/molbev/msh088. 

Siciliano, G., Alano, P., 2015. Enlightening the malaria parasite life cycle: 

bioluminescent Plasmodium in fundamental and applied research. Front. Microbiol. 6. 

doi:10.3389/fmicb.2015.00391 
 

Silva, J.C., Egan, A., Arze, C., Spouge, J.L., Harris, D.G., 2015. A New Method for 

Estimating Species Age Supports the Coexistence of Malaria Parasites and Their 

Mammalian Hosts. Mol. Biol. Evol. 32, 1354–1364. doi:10.1093/molbev/msv005 

 

Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Giulio, E.D., Bultrini, E., Picci, L., deRisi, 

J.L., Pizzi, E., Alano, P., 2005. Genome-wide identification of genes upregulated at the 

onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 143, 

100–110. doi:10.1016/j.molbiopara.2005.04.015 

 

Smith, M.D., Wertheim, J.O., Weaver, S., Murrell, B., Scheffler, K., Kosakovsky Pond, 

S.L., 2015. Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient 

Detection of Episodic Diversifying Selection. Mol. Biol. Evol. 32, 1342–1353. 

doi:10.1093/molbev/msv022 
 

Sinden, R.E., 2015. The cell biology of malaria infection of mosquito: advances and 

opportunities: Malaria infection of the mosquito. Cell. Microbiol. 17, 451–466. 

doi:10.1111/cmi.12413 

 



 

136 
 

Singh, S., Soe, S., Mejia, J.P., Roussilhon, C., Theisen, M., Corradin, G., Druilhe, P., 

2004. Identification of a conserved region of Plasmodium falciparum MSP3 targeted by 

biologically active antibodies to improve vaccine design. J. Infect. Dis. 190, 1010-1018. 

 

Sinka, M.E., Bangs, M.J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, 

M., Mbogo, C.M., Hemingway, J., Patil, A.P., Temperley, W.H., others, 2012. A global 

map of dominant malaria vectors. Parasit Vectors 5, 69. 

 

Stevenson, M.M., Riley, E.M., 2004. Innate immunity to malaria. Nat. Rev. Immunol. 4, 

169–180. doi:10.1038/nri1311 

 

Stone, W.J.R., Dantzler, K.W., Nilsson, S.K., Drakeley, C.J., Marti, M., Bousema, T., 

Rijpma, S.R., 2016. Naturally acquired immunity to sexual stage P. falciparum parasites. 

Parasitology 1–12. doi:10.1017/S0031182015001341 

 

Summers, K., Zhu, Y., 2008. Positive Selection on a Prolactin Paralog Following Gene 

Duplication in Cichlids: Adaptive Evolution in the Context of Parental Care. Copeia 

2008, 872–876. doi:10.1643/CI-07-177 

 

Ta, T.H., Hisam, S., Lanza, M., Jiram, A.I., Ismail, N., Rubio, J.M., 2014. First case of a 

naturally acquired human infection with Plasmodium cynomolgi. Malar J 13, 68. 

 

Tachibana, M., Sato, C., Otsuki, H., Sattabongkot, J., Kaneko, O., Torii, M., Tsuboi, T., 

2012. Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine 

candidate. Vaccine 30, 1807–1812. doi:10.1016/j.vaccine.2012.01.003 

 

Tachibana, M., Suwanabun, N., Kaneko, O., Iriko, H., Otsuki, H., Sattabongkot, J., 

Kaneko, A., Herrera, S., Torii, M., Tsuboi, T., 2015. Plasmodium vivax gametocyte 

proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA 

immunization. Vaccine 33, 1901–1908. doi:10.1016/j.vaccine.2015.03.008 

Tachibana, S.-I., Sullivan, S.A., Kawai, S., Nakamura, S., Kim, H.R., Goto, N., Arisue, 

N., Palacpac, N.M.Q., Honma, H., Yagi, M., Tougan, T., Katakai, Y., Kaneko, O., Mita, 

T., Kita, K., Yasutomi, Y., Sutton, P.L., Shakhbatyan, R., Horii, T., Yasunaga, T., 

Barnwell, J.W., Escalante, A.A., Carlton, J.M., Tanabe, K., 2012. Plasmodium cynomolgi 

genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. 

Nat. Genet. 44, 1051–1055. doi:10.1038/ng.2375 

 

Tainchum, K., Kongmee, M., Manguin, S., Bangs, M.J., Chareonviriyaphap, T., 2015. 

Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends 

Parasitol. 31, 109–119. doi:10.1016/j.pt.2015.01.004 

 

Talman, A.M., Domarle, O., McKenzie, F.E., Ariey, F., Robert, V., 2004. 

Gametocytogenesis: the puberty of Plasmodium falciparum. Malar. J. 3, 24. 

 

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular 

evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. 



 

137 
 

 

Tao, D., Ubaida-Mohien, C., Mathias, D.K., King, J.G., Pastrana-Mena, R., Tripathi, A., 

Goldowitz, I., Graham, D.R., Moss, E., Marti, M., Dinglasan, R.R., 2014. Sex-

partitioning of the Plasmodium falciparum Stage V Gametocyte Proteome Provides 

Insight into falciparum-specific Cell Biology. Mol. Cell. Proteomics 13, 2705–2724. 

doi:10.1074/mcp.M114.040956 

 

Tewari, R., Ogun, S.A., Gunaratne, R.S., Crisanti, A., Holder, A.A., 2005. Disruption of 

Plasmodium berghei merozoite surface protein 7 gene modulates parasite growth in vivo. 

Blood 105, 394-396. 

 

Thompson, J., Fernandez-Reyes, D., Sharling, L., Moore, S.G., Eling, W.M., Kyes, S.A., 

Newbold, C.I., Kafatos, F.C., Janse, C.J., Waters, A.P., 2007. Plasmodium cysteine 

repeat modular proteins 1?4: complex proteins with roles throughout the malaria parasite 

life cycle. Cell. Microbiol. 9, 1466–1480. doi:10.1111/j.1462-5822.2006.00885.x 

 

Vaccines,  malERA C.G. on, others, 2011. A research agenda for malaria eradication: 

vaccines. PLoS Med 8, e1000398. 
 

van Schaijk, B.C.L., van Dijk, M.R., van de Vegte-Bolmer, M., van Gemert, G.-J., van 

Dooren, M.W., Eksi, S., Roeffen, W.F.G., Janse, C.J., Waters, A.P., Sauerwein, R.W., 

2006. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface 

protein in Plasmodium falciparum. Mol. Biochem. Parasitol. 149, 216–222. 

doi:10.1016/j.molbiopara.2006.05.015 

 

Van Zee, J.P., Schlueter, J.A., Schlueter, S., Dixon, P., Sierra, C.A.B., Hill, C.A., 2016. 

Paralog analyses reveal gene duplication events and genes under positive selection in 

Ixodes scapularis and other ixodid ticks. BMC Genomics 17. doi:10.1186/s12864-015-

2350-2 

 

Wasmuth, J., Daub, J., Peregrín-Alvarez, J.M., Finney, C.A.M., Parkinson, J., 2009. The 

origins of apicomplexan sequence innovation. Genome Res. 19, 1202-1213. 

Weir, W., Sunter, J., Chaussepied, M., Skilton, R., Tait, A., de Villiers, E.P., Bishop, R., 

Shiels, B., Langsley, G., 2009. Highly syntenic and yet divergent: A tale of two 

Theilerias. Infect. Genet. Evol. 9, 453–461. doi:10.1016/j.meegid.2009.01.002 

 

Wertheim, J.O., Murrell, B., Smith, M.D., Pond, S.L.K., Scheffler, K., 2015. RELAX: 

detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832. 

 

White, N.J., 2008. Plasmodium knowlesi: The Fifth Human Malaria Parasite. Clin. Infect. 

Dis. 46, 172–173. doi:10.1086/524889 

 

Williamson, K.C., 2003. Pfs230: from malaria transmission-blocking vaccine candidate 

toward function. Parasite Immunol. 25, 351–359. 

 



 

138 
 

Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., 

Hochstrasser, D.F., 1999. Protein identification and analysis tools in the ExPASy server. 

Methods Mol. Biol. 112, 531-552. 

 

WHO., 2015. World Malaria Report 2015. World Health Organization, Geneva, 280. 

 

Young, J.A., Fivelman, Q.L., Blair, P.L., de la Vega, P., Le Roch, K.G., Zhou, Y., 

Carucci, D.J., Baker, D.A., Winzeler, E.A., 2005. The Plasmodium falciparum sexual 

development transcriptome: A microarray analysis using ontology-based pattern 

identification. Mol. Biochem. Parasitol. 143, 67–79. 

doi:10.1016/j.molbiopara.2005.05.007 

 

Zhou, S., Rietveld, A.E., Velarde-Rodriguez, M., Ramsay, A.R., Zhang, S., Zhou, X., 

Cibulskis, R.E., 2014. Operational research on malaria control and elimination: a review 

of projects published between 2008 and 2013. Malar. J. 13, 1–7. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 
 

APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 
 

Tables 

Table S2-1. Primers used in the amplification of msp7 simian clade paralogs.  

Paralog Forward sequence  Reverse sequence bp 
Temperature 

(°C) 

PVX_082645 

CTC CYT CAS CGC AAT GAA G 
 

19 57.5-59 

 
CTC TTA AAS CTC AAG VGT G 19 53-55 

CTC CYT SAS CGC AAT GAA G 
 

19 57-59.5 

 
CTC TTA AAS CWC AAG VGT G 19 53-55 

PVX_082650 

CAA CAA AAT GAG GAA AMA AAT 
TG 

  23 54-55.5 

 
CAC CTS AAG AGT GYT CAT C 19 55-57.5 

PVX_082655 

CAA AAW GAT GAA KAA AAC GAT 

CG  
  23 55-57.6 

 
CTA CAC CAC YTC AAK CGT G 19 55-59.5 

PVX_082660 

TCC TRC TGG GKT CCA TTT TG   20 56.4-60.5 

 
TAA CCC GCC ACT TTA CCA G 19 57.6 

 
AAT CTG CCA CTT CAC TGT CC 20 58.4 

TCC TRS TGK GBT CCA TTT TG 
 

20 54.3-60.5 

 
CCT AAC CCG CCA CTT TAC 18 56.3 

PVX_082665 
TTG CAA AAA TGA RMR GAG TC   20 50.2-56.4 

  TGT WCA TSA AGY TGA TGG C 19 53-55 

PVX_082670 

GGA AAA AAA DTG CWC TMT TCC   21 53.4-57.5 

 
TYG TGT TGA GGA AAC TTA GC 20 54.3-56.4 

GYT GGM AAA AAG GTG GAC 
 

18 51.4-56.3 

PVX_082675 

GRT TAA TTT RTT TTY CTC CTC C   22 52.7-58.4 

 
GTG TTC ATC AAG YTR AWG GC 20 54.3-58.4 

CTC GTT GAA RAA AAA AYT GC 
 

20 50.2-54.3 

AGA AGA RAA TGT AGA AGT GG 
 

20 52.3-54.3 

  AWG TAC TTA ATT TTG ACA TCG 21 51.7 

PVX_082680 

TGG GGG CGA CAA AAT GAA G 
 

19 57.5 

 
CAC TTG CTC AGT TGG CTT C 19 57.5 

TYT TYG GTT CCC TCT TTG TG 
 

20 54.3-58.4 

 
CTT YAY TTC AAT CGT GTT YAG C 22 54.7-60.1 

GGC YTT RAA GAA ACA GAT TG 
 

20 52.3-56.4 

  CCT TCT GTK GYT TTA AGT AG 20 52.3-56.4 

PVX_082685 
AWG TAY GTG ATG WTG TCT TCC 

 
21 55.4-57.5 

  TTC ATY CTC TSG YCC CTC 18 53.8-58.4 

PVX_082690 
AAT TTA GGA TGA WCG AGC GG   20 56.4 

  CWA AAA TTG CTG TCC ASC TC 20 56.4-58.4 

PVX_082695 
TTA ACG CTC AYC ATG AAC GG   20 56.4-58.4 

  TCT GAA ACA RCR TGW GGT AC 20 54.3-58.4 

PVX_082700 

AYA AAA RTA CTA TTC WTC TTG 

CC 
  23 53.9-57.6 

  TGC AAC ATC CKV TTG ABC AAC 21 55.4-61.2 
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Table S2-2. Repetitive motifs found on Plasmodium species from the simian clade.  

Paralog Species (strain) Repeat motive Location Length 

PVX_082645 

P.cynomolgi (RO) [VNPTAN]2  209-222 351 

P. hylobati [PQNQA]2-PQNQ 245-258 504 

P.inui (Celebes II) 

[DADNN/EE/NN]3  
35-55 

507 
DADNN/EE/NN  

[GASGG]4  166-186 

[APGPS]3-APDPS-APGAS  293-318 

P.inui (Leucosphyrus) 

[ADNKNSH/D]2  36-52 

573 

[DADNN/EE/NN]3  49-69 

[SGE/GGT]3  193-208 

[APGPS]2-APDPS-APGAS  313-333 

[GSSVSSGSA/SG/VSA/S]3  393-428 

P.inui (Perlis) 

[DADNN/EE/NN]3  34-54 

538 [APGAS]2  297-307 

VSSESSGSSGSSGSA VSSGSSVSSGSSVSS GSSVSSGSAVSSESS GSSGPSGSA 343-396 

P.inui (OS) 
[DADNN/EE/NN]3-DAD-NENN 42-69 

429 
[SESSGSAVSSGSAVL]2-SESSGS 245-280 

P.inui (Taiwan II) 
GTSGGGASGG GTSGGGT 182-198 

458 
[SSESSG]3- SAVSSGSAGSSG- SSGSSR- SAVSSGSAGSSG  267-316 

P.inui (Perak) 

[ENDADNN]2 -NNDADNENN 47-69 

555 [ATDPS]3   312-327 

[SSGSAVSAV]2 -SAVSSGSAV  370-397 

P.inui (Leaf Monkey II) 
[DADNN/EE/NN]3 42-62 

505 
[GASGA]2  184-197 

P.knowlesi (H) STGSAA- [STGSTA]2 -[STGSTG]2 -STAST 204-238 383 

PVX_082650 P.vivax (Sumatra) ARGDPQSPA ARGDPQSPA A 279-297 470 

PVX_082660 
P.cynomolgi (B-Mulligan-PT1) [AGGT]2  154-163 188 

P. fieldi AASKLVSK AASKSVSK A 145-161 196 

PVX_082665 P. fieldi VTPQPTERPA VTPQPTERPA VTPEPT 243-267 403 

PVX_082670 

P.vivax (6 strain) [EADEGV]2  197-211 411 

P.cynomolgi (Berok) VEEEQGEEDLQGIFQLEEEPGEEDLQGIFQ LEDEPGEEYLQGIFQLEDEPGEEYLHGSFE SEEEAEQGE 241-304 457 

P.cynomolgi (Mulligan) 
[AEEDEG]2  184-200 

469 
[LEEEQGEEDLQGIFQLEEEQGEEDLQGSFE]2 LEEEAKQGE  248-316 

P.cynomolgi (Gombok) LEEEQGEEDLQGIFQLEDEPGEEYLQGSFG SEEEAGEEDLQGIFQLEEKPGEEYLQGSFE SEEEAEQGE 254-317 471 

P.cynomolgi (Ceylonensis) KEEEQGEEDLQGIFQLEEEQGEEDLQGAFH LEEEQGEEDLQGVFHLEEE 238-287 442 

P.cynomolgi (Bstrain) 
[AEEDEG]2  194-210 

479 
[LEEEQGEEDLQGIFQLEEEQGEEDLQGSFE]2 -LEEEAKQGE 258-326 

P.cynomolgi (PT1) 
EEEEEK -EEEEK EKEKEK EEE 218-237 

486 
[LEEEQGEEDLQGSFELEEEQGEEDLQGAFH]2 -LEEEAKQGE 264-332 

P.cynomolgi (PT2) LEEEPGEEDLQGIFQLEDEPGEEYLQGIFQ LEDEPGEEYLQGIFQLEDEPGEEYLHGSFE SEEEAEQGE 251-304 447 

P.cynomolgi (RO) 
[AEEDEG]2  183-199 

470 
[LEEEQGEEDLQGIFQLEEEQGEEDLQGSFE]2 LEEEAKQGE 247-315 

PVX_082675 

P.cynomolgi (Berok) [EEQEEEQEGEQE]2 -QEQEEEQEQEQE -EEQEQEQEEEQE -QEQEEEQEQEQE EEQ—EQEQ 87-151 492 

P.cynomolgi (PT2) [EEQEEEQEGEQE]2 -QEQEEEQEQEQE -EEQEQEQEEEQE -QEQEEEQEQEQE EEQ—EQEQ 87-151 481 

P.cynomolgi (Gombok) EEQEEEQEEEHG EEQEEEQEEEL EEEQEEEQE 86-117 430 

P.cynomolgi (PT1) EEEQEVEQEVEQGEEQGEEQ EEEQDEEQGEEQGEEQGEE 86-124 456 

P.cynomolgi (RO) EEEQEEEQEEEQ EEEQEVEQEVEQ EEEQEEEQGEE 86-120 450 

P.cynomolgi (Ceylonensis) EEKEEEQGEEQE VEQGEEQEEEQ GEEQEEEQEEE QGEEQEEEQEEE 83-128 465 

P.cynomolgi (Mulligan) EEEQEEEQEEEQ EEEQEVEQEVEQ EEEQEEEQGEE 86-120 450 

P.cynomolgi (Bstrain) EEEQEEEQEEEQ EEEQEVEQEVEQ EEEQEEEQGEE 86-120 461 

P. fieldi [EEEQEQQ]2 -[EGEQEQQ EEEQEQQ]2 -[EEEQEQQ]3   86-168 488 

P.inui (Perlis) EDQEEEQV EDQEEEPV EDQEEDQ EQQE 95-121 455 

P.inui (Leaf Monkey I) EEQEEQQEEEHEEEHEE EQEEQQEEEQEE DQEEDQE 92-127 469 

P.inui (Perak) EDQEEEQV EDQEEEPV EDQEEDQ EQQE 95-121 456 

P.inui (Philippines) EDQEEEQK EEQKEDQE EEQVEDQE EEQVEDQE 97-128 469 

P.inui (Celebes II) EQEEEQEE [DQEEEQKE]2 -DQEEEQK EEQKEDQE 83-127 482 

P.inui (Leaf Monkey II) EDQEEDQE EEQVEEQK EDQEEEQVE DQEEEQVE DQEEEQVE 89-121 485 

P.inui (N34) [QEEEQGEE]2 -QEEEQEED -QEEDQEEE QKEE 87-122 466 

P.inui (OS) [EEQQ]2 - [EEQQ]2  84-103 485 

PVX_082680 

P.inui (Perak) EKEEEEEETDK EKEEEEEEETDK EKEEEEETDK EKEEEEEETDK EKEEEEETDKE KEEEEEEETDK  140-217 509 

P.inui (Taiwan II) EEEKKEEKEEEKKA EEEKKEEEEKKE EEEKEEEEEETDK [EKD/EEEEEETDK]2  132-237 536 

P.inui (OS) [EEEKK/EEEKEEEK]2 EEEKEEEKKE-- QEEKEEE-GEET DKEKEEEEEEET  130-197 481 

P.inui (Leaf Monkey II) EKEEEEEETDK EKEEEEEEID KEKEEEEEETDK EKEEEEEETDK EK-EEEEATDK EKEEEEETDK  166-241 533 

P.inui (Philippines) EEEEKKEEKEEEE EKEEEEEETDK EKDEEEEETGK EKEEEEETDK EKEEEEEETDK EKEEEEEETDK  131-220 519 

P.inui (Perlis) EKEEEKKEEEE EKEEEEEETDK EKDEEEEETDK EKEEEEEEETDK EKEEEEEETDK EKEEEEETDK  131-215 514 

P.inui (N34) [EKEEEEEETDK]6   151-270 556 

P.inui (Celebes II) 
[EKEEEEEEA/TDK]3 -EK-EEEEETDK 144-186 

500 
PSSTGEV PSSTGEV PSSTGEV PS 274-296 

P. hylobati [DPSHEET]5- DP -[PQGTVPS]2                             238-329 384 

PVX_082695 

P.vivax (all strain) [GGEE]2 -SGEL TGE 129-143 311 

P.cynomolgi (all strain) [QTGE]3-4  128-139 307 

P.inui (Hawking) QSDEKTAE QSDEKTAH QSDEKTA 124-146 311 

P.inui (Leaf Monkey II) QSEEKTAE QSDEKTAH QSDEKTA 122-144 311 

P.inui (Celebes II) [EQSDEKTA]2 -QQSDEKTA -QQ -[QTTE]6  129-178 340 

P. simiovale QSGE [QTGE]2  124-135 284 

PVX_082700 
P.cynomolgi (Berok) DTHTDTVADTN TDTHTDTVADTN 228-251 448 

P. fieldi EEQTPSESNEGKAEEEQTPSDSNEGKTE EEKTP 98-130 406 
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Figures 

 

Figure S2-1. Msp7 multigene family amino acid composition.  The msp7 paralogs share 

a similar amino acid composition independently of gene length. The similarity tends to be 

higher between orthologs than among paralogs within the same species. Amino acids in 

higher proportion are Lysine (K), Leucine (L), Glycine (G), Glutamic Acid (E), 

Asparagine (N) and Alanine (A). 



 

143 
 

 

 

 



 

144 
 

 

Figure S2-2. Sequences obtained for P. vivax, P. cynomolgi, P. inui and P. knowlesi in 

the laboratory. Putative location of paralogs on the chromosome follows the same order 
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of paralogs observed on the published P. vivax genome. Sequence length of each paralog 

and isolated is provided above the paralog by diamond and triangle shapes following Fig. 

1. Paralogs marked with an X represent publicly available sequences which length could 

not be confidently measured due to partially missing data (Ns) or incomplete sequences 

found in a contig. Question marks indicate isolates for which laboratory amplification 

was not possible but are otherwise present in other Plasmodium species analyzed by 

different means.  
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Figure S2-3. Bayesian inference (BI) and Maximum Likelihood (ML) of six paralogs of 

msp7 multigene family phylogenetic tree. BI and ML trees showed almost identical 

topologies, so only BI topology is shown with asterisks (*) indicating conflicting 

branching patterns. Posterior probabilities (PP) and bootstrap values (BV) are shown next 

to the phylogenetic tree nodes (PP/BV). Branch which share the same coloration are more 

closely related and share overall similar sequence patterns. The tree was constructed from 

123 sequences including only 6 paralogs (PVX_082650, PVX_082655, PVX_082665, 

PVX_082675, PVX_082680 and PVX_082685). A total of 1,158 nucleotide positions 

were included in the analysis and the GTR+I+Γ nucleotide model (inv. sites = 0.0390; 

α=1.4110) was used. 
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Figure S2-4. Bayesian inference (BI) and Maximum Likelihood (ML) of five paralogs 

MSP7 multigene family phylogenetic tree. BI and ML trees showed almost identical 



 

149 
 

topologies, so only BI topology is shown with asterisks (*) indicating conflicting 

branching patterns. Posterior probabilities (PP) and bootstrap values (BV) are shown next 

to the phylogenetic tree nodes (PP/BV). Branch which share the same coloration are more 

closely related and share overall similar sequence patterns. The tree was constructed from 

96 sequences including only 5 paralogs (PVX_082650, PVX_082655, PVX_082665, 

PVX_082680 and PVX_082685). A total of 1,158 nucleotide positions were included in 

the analysis and a special case of the GTR nucleotide model (012032) I+Γ (inv. sites = 

0.0770; α=1.5510) was used. 
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Figure S2-5. Recombination analysis of msp7 multigene family paralogs. Six closely related msp7 paralogs 

(PVX_082650, PVX_082655, PVX_082665, PVX_082675, PVX_082680 and PVX_082685) were analyzed using 

RDP3 with default parameters. (A.) Seven different recombination events were detected among the analyzed 

sequences. The nucleotide position of independent recombination brake points is indicated relatively to the alignment 

length (1-2,400bp). Recombination segments are indicated by the use of different color blocks (blue, orange and 
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yellow). (B.) Recombination patterns within msp7 paralogs included in the analysis. The same coloration is shared by 

closely related paralogs with overall similar sequence patterns. Paralogs that were part of recombination events are 

indicated as: (R.) Recombinant, (M.) Mayor Parental, (m.) Minor Parental. Unmarked paralogs indicate that those were 

not part of a specific recombination event. (e.g., recombination event 7 was not detected on paralogs PVX_082675 and 

PVX_082680). 
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Figure S2-6. Conservation of HABP in msp7 P. falciparum paralogs. Alignment of 

HABPs (Garcia et al., 2007) and Laverania subgenus msp7 paralogs. Relative position on 

the alignment is indicated above each analyzed paralog. Asterisks (*) indicate conserved 

amino acid positions.  
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Tables 

Table S3-1. Branches under significant episodic selection in gametocyte expressed genes. 

 

(♀) Female, (♂) Male, (NM) Non-membrane.* P. vivax nomenclature taken from Carlton et al., 2009 Branches with 

significant signature of episodic selection are shown in bolted values.  

 

 

 

 

Gene 

ID* 
Sex Loc. Gene product 

P. cynomolgi P. knowlesi P. berghei P. chabaudi P. yoelii P. reichenowi 
P. berghei-P. 

yoelii 

ω+ 
Prop. 

sites+ 
ω+ 

Prop. 

sites+ 
ω+ 

Prop. 

sites+ 
ω+ 

Prop. 

sites+ 
ω+ 

Prop. 

sites+ 
ω+ 

Prop. 

sites+ 
ω+ 

Prop. 

sites+ 

PVX_00

1080 
♀ - 

hypothetical 

protein, conserved 
2.19 12% 0.575 0.62% 14.1 0.44% 0 2.50% 0.248 11% 15.7 0.93% 71.2 0.49% 

PVX_08

2500 
♀ - 

signal peptidase 21 

kDa subunit, 
putative 

0.2 33% 66.4 8.70% 10000 1.20% 2.21 7.60% 0.122 0.00% 0.126 0.00% 102 5.30% 

PVX_08

4240 
♂ - 

hypothetical 

protein, conserved 
36.9 6.50% 0.145 0.83% 12.2 7.90% 0.0762 0.00% 6.78 2.30% 0.118 6.40% 12.9 100% 

PVX_08

6280 
♂ NM 

hypothetical 

protein, conserved 
8.78 6.90% 103 9.30% 1.07 93% 0.776 14% 0.112 1.60% 0.122 0.00% 8.9 4.50% 

PVX_08

8915 
♂ NM 

hypothetical 

protein, conserved 
51.4 1.40% 1.75 30% 0.742 1.60% 1.21 12% 1470 0.24% 0.176 0.15% 0.0783 87% 

PVX_08
9245 

♂ NM 
hypothetical 

protein, conserved 
0.234 100% 3.13 21% 3330 2.40% 0.0964 100% 6.02 13% 0.137 2.30% 0.121 0.00% 

PVX_09

4335 
♀ NM 

hypothetical 

protein, conserved 
0.124 0.00% 4.6 8.60% 10000 0.42% 18.3 0.62% 0.206 2.60% 0.142 0.00% 8640 8.10% 

PVX_09

6350 
♀ - 

hypothetical 

protein, conserved 
1.97 13% 1.67 3.90% 2.87 14% 3.79 0.90% 3.64 2.60% 3330 0.58% 8.65 75% 

PVX_09
8665 

♀ - 

signal peptidase 

complex subunit 3, 

putative 

0.123 0.00% 0.0749 0.00% 0 0.12% 64.4 13% 0.0878 0.00% 5.49 53% 0.101 0.00% 

PVX_09

9105 
♀ NM 

hypothetical 

protein, conserved 
10000 9.50% 0.143 0.00% 136 10% 0.567 0.00% 5.11 8.70% 0.131 0.00% 2610 17% 

PVX_09

9190 
♂-♀ NM 

ribonuclease H2 

subunit C, putative 
73.8 3.70% 2360 81% 0.124 0.00% 19.2 24% 0.0923 0.00% 0.133 0.00% 1210 0.66% 

PVX_09

9520 
♂-♀ NM 

ubiquitin-like 

protein, putative 
0.835 0.00% 0.734 26% 136 0.65% 4000 0.81% 0.17 48% 0.779 0.00% 3330 1.10% 

PVX_11

1180 
♀ - 

28 kDa ookinete 

surface protein, 

putative (P28) 

6.39 27% 6.95 20% 4.65 19% 63.8 8.90% 15.6 16% 15 5.00% 10000 4.80% 

PVX_11

1535 
♂ NM 

hypothetical 

protein, conserved 
40 4.80% 5.31 14% 7.72 4.50% 0.822 26% 43.9 0.54% 0 1.80% 0.52 0.00% 
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Table S3-2. Episodic diversifying selection on gametocyte expressed genes. 

 

 

Gene ID* Model log L AICc Total tree length ω1 ω2 ω3 

PVX_001080 

Unconstrained Model -22195.53 44465.25 8.2 0.202 (93%) 0.218 (6.1%) 3330 (0.42%) 

(background branches) 
   

0.00129 (55%) 0.347 (41%) 2.89 (3.7%) 

Constrained Model -22201.34 44474.87 6.55 0.00 (24%) 0.00 (54%) 1.00 (22%) 

Evidence of episodic diversifying selection in the divergence between P. berghei-P. yoelli, with LRT p-value of 0.003 

PVX_082500 

Unconstrained Model -1912.79 3901.54 9.29 0.00 (95%) 0.00 (3.7%) 3460 (1.1%) 

(background branches) 
   

0.0229 (88%) 0.0310 (8.5%) 3.01 (3.9%) 

Constrained Model -1920.37 3914.61 4.05 0.00 (95%) 0.0672 (0.0%) 1.00 (5.1%) 

Evidence of episodic diversifying selection on P. berghei, with LRT p-value of 0.001 

PVX_084240 

Unconstrained Model -1751.55 3579.74 7.93 0.0437 (82%) 0.00 (12%) 40.6 (6.2%) 

(background branches) 
   

0.0467 (90%) 0.971 (0.0%) 1.51 (10%) 

Constrained Model -1760.13 3594.76 7.81 0.00 (31%) 0.00 (39%) 1.00 (29%) 

Evidence of episodic diversifying selection on P. cynomolgi, with LRT p-value of 0.000 

PVX_086280 

Unconstrained Model -1969.94 4016.25 6.22 0.753 (63%) 1.00 (28%) 84.6 (9.2%) 

(background branches) 
   

0.00 (47%) 0.434 (48%) 0.405 (5.0%) 

Constrained Model -1980.77 4035.79 5.64 1.00 (2.8%) 0.00 (54%) 1.00 (43%) 

Evidence of episodic diversifying selection on P. knowlesi, with LRT p-value of 0.000 

PVX_088915 

Unconstrained Model -10556.68 21187.78 7.43 0.137 (83%) 0.139 (15%) 51.3 (1.4%) 

(background branches) 
   

0.0426 (77%) 0.454 (16%) 1.48 (7.0%) 

Constrained Model -10569.96 21212.33 7.15 0.00 (81%) 0.0189 (0.0%) 1.00 (19%) 

Evidence of episodic diversifying selection on P. cynomolgi, with LRT p-value of 0.000 

PVX_089245 

Unconstrained Model -4939.45 9953.94 46.36 0.107 (86%) 0.762 (12%) 10000 (2.5%) 

(background branches) 
   

0.0261 (63%) 0.481 (33%) 2.02 (3.2%) 

Constrained Model -4945.73 9964.44 6.8 0.00 (77%) 0.921 (0.0%) 1.00 (23%) 

Evidence of episodic diversifying selection on P. berghei, with LRT p-value of 0.002 
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Table S3-2. Episodic diversifying selection on gametocyte expressed genes (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene ID* Model log L AICc Total tree length ω1 ω2 ω3 

PVX_094335 

Unconstrained Model -5993.48 12061.61 8.32 0.110 (92%) 0.177 (7.2%) 8210 (0.43%) 

(background branches) 
   

0.0220 (82%) 0.366 (16%) 3.32 (2.2%) 

Constrained Model -6000.18 12072.97 6.01 0.00 (86%) 0.931 (0.0%) 1.00 (14%) 

Evidence of episodic diversifying selection on P. berghei, with LRT p-value of 0.001 

PVX_096350 

Unconstrained Model -11453.59 22981.7 12.24 0.128 (91%) 0.130 (8.3%) 3330 (0.59%) 

(background branches) 
   

0.00 (44%) 1.00 (19%) 0.262 (38%) 

Constrained Model -11463.52 22999.53 8.8 0.0664 (0.0%) 0.00 (84%) 1.00 (16%) 

Evidence of episodic diversifying selection on P. reichenowi, with LRT p-value of 0.000 

PVX_098665 

Unconstrained Model -1878.25 3832.45 4.5 1.00 (73%) 1.00 (22%) 40.2 (5.1%) 

(background branches) 
   

0.00 (74%) 0.210 (25%) 3.57 (1.3%) 

Constrained Model -1881.22 3836.28 5.08 1.00 (4.6%) 0.00 (60%) 1.00 (36%) 

NO evidence of episodic diversifying selection on P. chabaudi, with LRT p-value of 0.052 

PVX_099105 

Unconstrained Model -666.22 1413.17 58.47 0.247 (83%) 1.00 (7.3%) 
10000 

(9.5%) 

(background branches) 
   

0.00 (87%) 0.00777 (0.0%) 0.920 (13%) 

Constrained Model -674.05 1426.45 6.68 0.00 (70%) 0.932 (0.0%) 1.00 (30%) 

Evidence of episodic diversifying selection on P. cynomolgi, with LRT p-value of 0.000 

PVX_099190 

Unconstrained Model -3307.38 6690.29 6.81 0.340 (81%) 0.358 (16%) 70.5 (3.7%) 

(background branches) 
   

0.00 (60%) 0.581 (23%) 0.479 (17%) 

Constrained Model -3313.3 6700.05 6.3 0.00 (4.8%) 0.00 (59%) 1.00 (37%) 

Evidence of episodic diversifying selection on P. cynomolgi, with LRT p-value of 0.003 

PVX_099520 

Unconstrained Model -9092.72 18259.96 10.83 0.375 (90%) 0.376 (9.5%) 129 (0.63%) 

(background branches) 
   

0.0115 (70%) 0.496 (29%) 91.3 (0.27%) 

Constrained Model -9098.63 18269.76 10.76 0.00 (21%) 0.00 (43%) 1.00 (35%) 

Evidence of episodic diversifying selection on P. berghei, with LRT p-value of 0.003 
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Table S3-2. Episodic diversifying selection on gametocyte expressed genes (continued). 

 

 

 

 

 

* P. vivax nomenclature taken from Carlton et al., 2009 

Gene ID* Model log L AICc Total tree length ω1 ω2 ω3 

PVX_111180 

Unconstrained Model -3184.61 6445.02 18.44 0.297 (60%) 0.413 (23%) 9.67 (16%) 

(background branches) 
   

0.0330 (73%) 1.00 (17%) 11.4 (10%) 

Constrained Model -3190.5 6454.71 17.67 0.00 (38%) 0.00 (2.6%) 1.00 (59%) 

Evidence of episodic diversifying selection on P. knowlesi, with LRT p-value of 0.003 

Unconstrained Model -3183.6 6443.01 17.06 0.579 (70%) 0.577 (20%) 72.3 (9.5%) 

(background branches) 
   

0.0334 (74%) 1.00 (13%) 7.35 (14%) 

Constrained Model -3195.37 6464.46 16.16 1.00 (3.3%) 0.00 (55%) 1.00 (42%) 

Evidence of episodic diversifying selection on P. chabaudi, with LRT p-value of 0.000 

Unconstrained Model -3186.06 6447.92 17.33 0.00 (75%) 0.00 (8.0%) 14.3 (17%) 

(background branches) 
   

0.0318 (72%) 1.00 (16%) 9.05 (12%) 

Constrained Model -3192.39 6458.49 16.66 0.00 (37%) 0.00 (4.1%) 1.00 (59%) 

Evidence of episodic diversifying selection on P. yoelii, with LRT p-value of 0.002 

Unconstrained Model -3182.22 6440.25 30.96 1.00 (75%) 1.00 (20%) 10000 (4.7%) 

(background branches) 
   

0.0344 (73%) 1.00 (13%) 7.73 (14%) 

Constrained Model -3189.24 6452.19 18.83 0.923 (0.0%) 0.922 (0.0%) 1.00 (100%) 

Evidence of episodic diversifying selectionin the divergence between P. berghei-P. yoelli, with LRT p-value of 0.001 

PVX_111535 

Unconstrained Model -4108.97 8293.02 7.22 0.393 (76%) 0.395 (19%) 52.2 (4.8%) 

(background branches) 
   

0.0359 (70%) 0.243 (23%) 2.36 (6.9%) 

Constrained Model -4118.55 8310.12 6.33 0.00 (4.9%) 0.00 (51%) 1.00 (44%) 

Evidence of episodic diversifying selection on P. cynomolgi, with LRT p-value of 0.000 
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Table S3-3. Distribution of positively selected sites (REL) in genes with and without known P. falciparum epitopes. 

 

 

Legend. (♀) Female, (♂) Male, (# genes) Total number of genes, (# genes +) Total number of genes with positive 

selected sites, (Prop. Genes +) Proportion of genes with positive selected sites, (# NE genes +) Number of genes 

without immune epitopes with positive selected sites, (Prop. NE genes +) Proportion of genes without immune 

epitopes with positive selected sites, (Prop. + sites in NE genes) Proportion of positive selected sites in genes without 

immune epitopes, (# E genes) Total number of genes with immune epitopes, (Prop. E genes) Proportion of genes with 

immune epitopes, (# E genes +) Number of genes with immune epitopes with positive selected sites, (Prop. E genes +) 

Proportion of genes with immune epitopes and positive selected sites, (Prop. E genes + from E) Proportion of genes 

with immune epitopes and positive selected sites from genes with immune epitopes, (# E genes + inside) Number of 

genes with immune epitopes with positive selected sites inside putative immune epitope region, (Prop. E genes + 

inside from E +) Proportion of genes with immune epitopes and positive selected sites inside putative immune epitope 

region from genes with immune epitopes, (Prop. + sites in E genes) Proportion of positive selected sites in genes with 

immune epitopes, (Prop. + sites in E genes inside) Proportion of positive selected sites inside putative immune 

epitopes region, (Prop. + sites in E genes outside) Proportion of positive selected sites outside putative immune 

epitopes region

Category 

# 

gene

s 

# 

genes 

+ 

Prop. 

Genes 

+ 

# NE 

genes 

+ 

Prop. 

NE 

genes 

+ 

Prop. + 

sites in NE 

genes 

# E 

genes 

Prop. E 

genes 

# E 

genes 

+ 

Prop. E 

genes + 

Prop. E 

genes + 

from E 

# E genes 

+ inside 

Prop. E 

genes + 

inside 

from E + 

Prop. + 

sites in E 

genes 

Prop. + 

sites in E 

genes 

inside 

Prop. + 

sites in E 

genes 

outside 

Female (♀) 146 32 0.219 20 0.625 0.034 25 0.171 12 0.375 0.480 5 0.417 0.025 0.034 0.042 
Male (♂) 151 49 0.325 20 0.408 0.022 46 0.305 29 0.592 0.630 13 0.448 0.013 0.015 0.015 

Male-female 

common 
84 23 0.274 10 0.435 0.019 28 0.333 13 0.565 0.464 4 0.308 0.019 0.037 0.035 

Membrane 35 6 0.171 3 0.500 0.035 6 0.171 3 0.500 0.500 1 0.333 0.019 0.022 0.017 

Non-membrane 210 57 0.271 22 0.386 0.015 62 0.295 35 0.614 0.565 15 0.429 0.019 0.021 0.025 

♀ Membrane 15 2 0.133 2 1.000 0.038 1 0.067 0 0.000 0.000 0 0.000 0.000 0.000 0.000 

♀ Non-membrane 38 12 0.316 9 0.750 0.031 5 0.132 3 0.250 0.600 2 0.667 0.050 0.040 0.058 

♀ N/A 93 18 0.194 9 0.500 0.036 19 0.204 9 0.500 0.474 3 0.333 0.014 0.028 0.018 

♂ Membrane 9 2 0.222 0 0.000 0.000 2 0.222 2 1.000 1.000 1 0.500 0.027 0.022 0.017 

♂ Non-membrane 104 25 0.240 5 0.200 0.022 32 0.308 20 0.800 0.625 9 0.450 0.013 0.015 0.016 

♂ N/A 38 22 0.579 15 0.682 0.021 12 0.316 7 0.318 0.583 3 0.429 0.011 0.011 0.009 

♂-♀ common 

Membrane 
11 2 0.182 1 0.500 0.020 3 0.273 1 0.500 0.333 0 0.000 0.008 0.000 0.000 

♂-♀ common 

Non-membrane 
68 20 0.294 8 0.400 0.019 25 0.368 12 0.600 0.480 4 0.333 0.021 0.037 0.035 

♂-♀ common N/A 5 1 0.200 1 1.000 0.007 0 0.000 0 0.000 0.000 0 0.000 0.000 0.000 0.000 

Total 381 104 0.273 50 0.481 0.025 99 0.260 54 0.519 0.545 22 0.407 0.017 0.021 0.022 
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Tables 

Table S4-1. RELAX results for GCMFs with positively selected branches. 

Multigene family Test for selection Model log L 
#  

par  
AICc Ltree Branch  ω+ p+ ωn pn ω- p- 

Acyl-CoA 

synthase 

Intensification (K = 4.56) 

significant                                                         

(p = 7.10E-09,                                        

LR = 33.51) 

Partitioned MG94xREV -35696.7 93 71580.1 7.56 
Reference 0.171 100% 

    
Test 0.45 100% 

    
General Descriptive -34883.1 172 70112.6 308.9 All 0.0102 78% 0.943 21% 104 0.57% 

Null -35101.7 96 70396.1 4662 
Reference 9.86E-05 71% 0.443 25% 3.51 3.5% 

Test 9.86E-05 71% 0.443 25% 3.51 3.5% 

Alternative -35084.9 97 70364.6 4486 
Reference 9.00E-05 67% 0.287 26% 2.12 6.9% 

Test 3.5E-19 67% 3.36E-03 26% 30.8 6.9% 

Partitioned Exploratory -35084.8 101 70372.5 4495 
Reference 9.06E-05 68% 0.306 26% 2.27 6.2% 

Test 6.75E-15 67% 1.4E-12 26% 30.3 7% 

Alpha beta 

hydrolase 

putative 2 

Intensification (K = 1.88), 

significant                                         

(p = 0.022,                                                         

LR = 5.23) 

Partitioned MG94xREV -7568.94 37 15212.5 2.44 
Reference 0.18 100% 

    
Test 0.36 100% 

    
General Descriptive -7403.53 60 14928.6 96.73 All 0.0145 79% 0.967 20% 71.4 0.97% 

Null -7416.69 40 14914.1 22.02 
Reference 0 46% 0.0869 45% 3.34 8.4% 

Test 0 46% 0.0869 45% 3.34 8.4% 

Alternative -7414.08 41 14910.9 21.33 
Reference 0 46% 0.0837 45% 2.86 9% 

Test 0 46% 9.34E-03 45% 7.25 9% 

Partitioned Exploratory -7413.93 45 14918.7 21.19 
Reference 0 46% 0.0865 45% 2.94 8.7% 

Test 1.79E-12 43% 2.91E-08 47% 6.62 10% 

Asparagine tRNA 

ligase 

Relaxation (K = 0.91), 

significant                     (p = 

0.572,                                         

LR = 0.32) 

Partitioned MG94xREV -14897 55 29904.6 5.5 
Reference 0.104 100% 

    
Test 0.482 100% 

    
General Descriptive -14504.9 96 29203.6 137.9 All 1.88E-03 80% 0.9 20% 592 0.64% 

Null -14603.2 58 29323.1 302.2 
Reference 0.0205 90% 1 10% 1470 0.37% 

Test 0.0205 90% 1 10% 1470 0.37% 

Alternative -14603 59 29324.8 306.1 
Reference 0.02 90% 1 10% 3330 0.37% 

Test 0.0281 90% 1 10% 1640 0.37% 

Partitioned Exploratory -14593.1 63 29313 221.4 
Reference 0.0214 90% 0.998 9.80% 1470 0.27% 

Test 0 72% 1 23% 117 4.7% 

Cell division 

protein FtsH 

Relaxation (K = 1.00) significant                                    

(p = 0.986,                                                          

LR = 0.00) 

Partitioned MG94xREV -14778.3 77 29711.5 10.35 
Reference 0.0267 100% 

    
Test 0.412 100% 

    
General Descriptive -14462 140 29206.7 73.05 All 2.24E-03 80% 0.477 20% 933 0.02% 

Null -14525.9 80 29212.7 406.8 
Reference 5.99E-04 78% 0.0572 21% 1 1.4% 

Test 5.99E-04 78% 0.0572 21% 1 1.4% 

Alternative -14525.9 81 29214.8 406.9 
Reference 5.99E-04 78% 0.0573 21% 1 1.4% 

Test 6.00E-04 78% 0.0573 21% 1 1.4% 

Partitioned Exploratory -14524 85 29219 430.1 
Reference 4.95E-04 75% 0.0482 24% 1 1.5% 

Test 3.45E-04 68% 6.25E-03 27% 1.09 5.2% 
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Table S4-1. RELAX results for GCMFs with positively selected branches (continued). 

 

   

Multigene 

family 
Test for selection Model log L # par  AICc Ltree Branch set ω+ p+ ωn pn ω- p- 

Chaperonin 

Intensification 

(K = 37.05) 

significant                                                       

(p = 1.07E-04,                                                            

LR = 15.01) 

Partitioned MG94xREV -1715.12 55 3544.13 7.7 
Reference 0.0523 100% 

    
Test 2.37 100% 

    
General Descriptive -1662.87 96 3529.82 24.54 All 1.29E-04 57% 0.778 43% 9980 0.06% 

Null -1690.81 58 3501.96 41.23 
Reference 0 22% 0.0401 76% 8.05 1.2% 

Test 0 22% 0.0401 76% 8.05 1.2% 

Alternative -1683.31 59 3489.1 43.27 
Reference 0 22% 0.0296 74% 1.14 4.2% 

Test 0 74% 0 22% 119 4.2% 

Partitioned Exploratory -1680.85 63 3492.82 31.35 
Reference 0 22% 0.046 77% 3.28 0.75% 

Test 0 1.8% 0 89% 143 8.7% 

Conserved 

Plasmodium 

protein 

Relaxation (K = 

0.36) significant                      

(p = 6.08E-05,                                         

LR = 16.08) 

Partitioned MG94xREV -7514.52 41 15111.9 3.13 
Reference 0.274 100% 

    
Test 1.27 100% 

    
General Descriptive -7397.57 68 14933.4 179.8 All 0.118 72% 0.704 27% 12.1 1% 

Null -7444.29 44 14977.5 18.56 
Reference 0.0668 75% 1 24% 52.4 0.54% 

Test 0.0668 75% 1 24% 52.4 0.54% 

Alternative -7436.26 45 14963.5 101.6 
Reference 0.0676 78% 1 22% 

1000

0 
0.4% 

Test 0.375 78% 1 22% 28.7 0.4% 

Partitioned Exploratory -7428.97 49 14957.1 18.86 
Reference 0.0641 78% 1 22% 63.9 0.37% 

Test 0.803 62% 0.897 34% 28.7 4.1% 

Conserved 

Plasmodium 

protein unknown 

function 6 

Intensification 

(K = 1.41) 

significant                                         

(p = 0.0338,                                                      

LR = 4.51) 

Partitioned MG94xREV -6716.47 37 13507.8 2.62 
Reference 0.684 100% 

    
Test 0.808 100% 

    
General Descriptive -6629.17 60 13380.5 320.8 All 0.124 37% 0.744 57% 10.8 6% 

Null -6649.03 40 13379 13.9 
Reference 3.7E-15 34% 0.725 58% 7.94 8.6% 

Test 3.7E-15 34% 0.725 58% 7.94 8.6% 

Alternative -6646.78 41 13376.6 13.28 
Reference 0 32% 0.652 57% 5.58 11% 

Test 0 32% 0.546 57% 11.4 11% 

Partitioned Exploratory -6644.99 45 13381.2 12.81 

Reference 0 34% 0.846 60% 8.63 6% 

Test 0 43% 
0.00000

22 
34% 5.83 23% 

Conserved 

Plasmodium 

protein unknown 

function 12 

Intensification 

(K = 13.02) 

significant                                       

(p = 5.01E-07,                                                    

LR = 25.26) 

Partitioned MG94xREV -3970.18 37 8015.26 1.42 
Reference 0.204 100% 

    
Test 0.575 100% 

    

General Descriptive -3917.28 60 7956.92 6.25 All 0.101 90% 1 
9.30

% 
9.89 0.89% 

Null -3927.28 40 7935.61 6.5 
Reference 0.065 85% 1 15% 62.1 0.26% 

Test 0.065 85% 1 15% 62.1 0.26% 

Alternative -3914.65 41 7912.41 5.27 
Reference 0.066 85% 1 12% 1.41 2.8% 

Test 4.33E-16 85% 1 12% 89.9 2.8% 

Partitioned Exploratory -3914.42 45 7920.16 5.26 
Reference 0.0656 85% 1 

5.90

% 
1.06 9.3% 

Test 1.3E-16 61% 0.458 36% 103 2.9% 
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 Table S4-1. RELAX results for GCMFs with positively selected branches (continued). 

 

 

 

Multigene family Test for selection Model log L # par. AICc Ltree Branch set ω+ p+ ωn pn ω- p- 

Conserved rodent 

malaria protein 

unknown function 

Intensification (K 

= 2.35) significant                                                  

(p = 1.24E-07,                                       

LR = 27.96) 

Partitioned MG94xREV -11340.5 51 22783.7 3.21 
Reference 0.398 100% 

    
Test 1.61 100% 

    
General Descriptive -11138.3 88 22454.7 419.9 All 0.144 71% 0.947 26% 7.34 2.9% 

Null -11205.1 54 22519.1 32.26 
Reference 0 25% 0.0983 55% 3.18 20% 

Test 0 25% 0.0983 55% 3.18 20% 

Alternative -11191.2 55 22493.2 27.55 
Reference 2.68E-16 25% 0.108 55% 2.63 20% 

Test 0 25% 5.31E-03 55% 9.75 20% 

Partitioned Exploratory -11188.9 59 22496.7 30.15 
Reference 0 24% 0.0931 54% 2.49 21% 

Test 1 11% 1 87% 132 2.2% 

Cytoadherence-

linked asexual 

protein (CLAG) 

Relaxation (K = 

0.51), significant                                       

(p = 5.23E-06,                                                   

LR = 20.75) 

Partitioned MG94xREV -42634.4 63 85395.1 5.46 
Reference 0.219 100% 

    
Test 0.169 100% 

    
General Descriptive -41792.9 112 83810.7 85.97 All 2.15E-03 72% 0.958 27% 486 0.44% 

Null -42007.8 66 84148 22.44 
Reference 6.24E-03 62% 0.39 35% 4.79 3.20% 

Test 6.24E-03 62% 0.39 35% 4.79 3.2% 

Alternative -41997.5 67 84129.3 20.04 
Reference 1.07E-03 69% 0.49 28% 4.39 3.2% 

Test 0.0315 69% 0.697 28% 2.11 3.2% 

Partitioned Exploratory -41975.8 71 84094.1 23.78 
Reference 0 71% 0.501 25% 3.81 3.5% 

Test 8.06E-03 58% 0.605 38% 11.2 4.3% 

DEAD DEAH 

box ATP 

dependent RNA 

helicase putative 

Intensification (K 

= 8.22) significant                                                 

(p = 3.70E-09,                                       

LR = 34.78) 

Partitioned MG94xREV -10738.5 57 21591.8 5.46 
Reference 0.0671 100% 

    
Test 0.171 100% 

    
General Descriptive -10478.8 100 21159.8 53.22 All 3.25E-04 82% 0.893 18% 3440 0.16% 

Null -10532.4 60 21185.6 4151 
Reference 3.80E-05 66% 0.0921 31% 2.08 3% 

Test 3.80E-05 66% 0.0921 31% 2.08 3% 

Alternative -10515 61 21152.9 3995 
Reference 3.88E-05 66% 0.0917 30% 1.41 3.6% 

Test 0 66% 2.98E-09 30% 16.5 3.6% 

Partitioned Exploratory -10511.8 65 21154.7 3972 
Reference 3.76E-05 65% 0.0661 29% 1 5.7% 

Test 0 78% 0.198 20% 54.3 2% 

DER1 like 

protein 

Intensification (K 

= 8.03) significant                                             

(p = 1.22E-07,                                              

LR = 27.99) 

Partitioned MG94xREV -4510.24 57 9135.98 12.41 
Reference 0.0395 100% 

    
Test 0.942 100% 

    
General Descriptive -4438.4 100 9081.44 44.01 All 0.0181 96% 0.905 4.10% 61.1 0.08% 

Null -4466.22 60 9054.11 4953 
Reference 9.47E-05 48% 0.0593 52% 83 0.33% 

Test 9.47E-05 48% 0.0593 52% 83 0.33% 

Alternative -4452.22 61 9028.17 3327 
Reference 8.18E-05 44% 0.0361 55% 2.4 1.8% 

Test 0 44% 2.64E-12 55% 1120 1.8% 

Partitioned Exploratory -4451.77 65 9035.5 3309 
Reference 8.24E-05 44% 0.0382 54% 2.34 1.6% 

Test 0 53% 4.78E-12 45% 2150 2.7% 
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Table S4-1. RELAX results for GCMFs with positively selected branches (continued). 

 

 

Multigene 

family 

Test for 

selection 
Model log L 

# 

par. 
AICc Ltree Branch set ω+ p+ ωn pn ω- p- 

Dipeptidyl 

amino 

peptidase 

putative 

(DPAP) 

Intensificat

ion (K = 

3.47) 

significant                                       

(p = 2.85E-

04,                                                      

LR = 

13.17) 

Partitioned MG94xREV -14753.5 53 29613.6 4.95 
Reference 0.138 100% 

    
Test 0.259 100% 

    
General Descriptive -14434.6 92 29054.9 797.3 All 1.44E-04 63% 0.696 36% 9980 0.35% 

Null -14520.7 56 29154.1 5132 
Reference 1.97E-05 59% 0.21 38% 3.15 3.2% 

Test 1.97E-05 59% 0.21 38% 3.15 3.2% 

Alternative -14514.1 57 29142.9 5276 
Reference 1.96E-05 59% 0.201 37% 2.66 3.8% 

Test 4.71E-17 59% 3.82E-03 37% 29.8 3.8% 

Partitioned Exploratory -14512.4 61 29147.7 6346 
Reference 1.83E-05 58% 0.175 37% 2.12 4.7% 

Test 0 60% 4.25E-03 36% 229 3.9% 

Heatshock 

protein 70 

Intensificati

on (K = 

1.00)                                              

significant 

(p = 0.964,                                                      

LR = 0.00) 

Partitioned MG94xREV -13700.1 61 27522.7 42.17 
Reference 0.0131 100% 

    
Test 2.17E-03 100% 

    
General Descriptive -13284.3 108 26786.2 10622 All 3.69E-04 78% 0.771 22% 3510 0.04% 

Null -13387.1 64 26902.8 3537 
Reference 1.89E-05 78% 0.028 21% 3.5 0.27% 

Test 1.89E-05 78% 0.028 21% 3.5 0.27% 

Alternative -13387.1 65 26904.8 3552 
Reference 1.87E-05 78% 0.028 22% 3.5 0.27% 

Test 1.87E-05 78% 0.028 22% 3.5 0.27% 

Partitioned Exploratory -13385.9 69 26910.5 15785 
Reference 1.82E-03 94% 0.0774 6.10% 3.99 0.23% 

Test 1.79E-05 77% 0.0288 0% 4.36 23% 

Histone H3 

Relaxation 

(K = 0.57) 

significant                                 

(p = 0.069,                                                        

LR = 3.31) 

Partitioned MG94xREV -2076.83 57 4269.91 1.33 
Reference 0.0151 100% 

    
Test 0.349 100% 

    
General Descriptive -2034.58 100 4276.15 3.89 All 3.71E-03 92% 0.814 7.80% 331 0% 

Null -2062.72 60 4247.93 22.14 
Reference 0.0102 98% 0.0311 1.5% 1090 0.16% 

Test 0.0102 98% 0.0311 1.5% 1090 0.16% 

Alternative -2061.06 61 4246.71 17.75 
Reference 0.0106 98% 0.0107 1.5% 

1000

0 
0.12% 

Test 0.0764 98% 0.077 1.5% 182 0.12% 

Partitioned Exploratory -2051.16 65 4235.25 4.51 
Reference 8.91E-03 98% 0.0404 1.7% 1.45 0.29% 

Test 0.03 1.2% 0.0305 95% 182 3.6% 

Hypothetical 

protein 

Intensificat

ion (K = 

50.00) 

significant                                             

(p = 7.77E-

16,                                             

LR = 

65.06) 

Partitioned MG94xREV -2280.61 37 4636.89 1.75 
Reference 0.136 100% 

    
Test 2.26 100% 

    
General Descriptive -2228.05 60 4580.52 11.17 All 0.0888 97% 1 0% 11.3 3.2% 

Null -2256.83 40 4595.61 8.11 
Reference 1.00E-04 0.44% 0.0891 97% 12.2 2.3% 

Test 1.00E-04 0.44% 0.0891 97% 12.2 2.3% 

Alternative -2224.3 41 4532.65 6.66 
Reference 0.0623 16% 0.0662 90% 1.15 8.7% 

Test 0 1.6% 0 90% 1000 8.7% 

Partitioned Exploratory -2222.49 45 4537.46 6.92 

Reference 0.0857 96% 0.49 1.5% 2.6 2.2% 

Test 0 1.7% 0 87% 
1100

0000 
12% 
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Table S4-1. RELAX results for GCMFs with positively selected branches (continued). 

 

 

 

Multigene 

family 
Test for selection Model log L # par. AICc Ltree Branch set ω+ p+ ωn pn ω- p- 

Meiotic 

recombinatio

n protein 

(DMC) 

Relaxation(K = 

0.70) significant                                                

(p = 0.109,                                                 

LR = 2.57) 

Partitioned 

MG94xREV 
-7067.32 51 14237.5 7.76 

Reference 0.0328 100% 
    

Test 3.8 100% 
    

General Descriptive -6862.51 88 13903.6 75.87 All 1.47E-04 43% 0.679 57% 9990 0.27% 

Null -6945.34 54 13999.6 742 
Reference 7.67E-04 40% 0.032 60% 1460 0.53% 

Test 7.67E-04 40% 0.032 60% 1460 0.53% 

Alternative -6944.06 55 13999.1 714.2 
Reference 7.65E-04 39% 0.0321 60% 10000 0.51% 

Test 6.80E-03 39% 0.0914 60% 606 0.51% 

Partitioned 

Exploratory 
-6911.27 59 13941.7 84.24 

Reference 0 34% 0.0163 64% 5.31 1.2% 

Test 0.114 93% 0.515 2.9% 606 4.3% 

Methyltransfe

rase 

Intensification (K 

= 1.80) significant                                    

(p = 0.077,                                               

LR = 3.12) 

Partitioned 

MG94xREV 
-4937.78 53 9983.02 6.28 

Reference 0.12 100% 
    

Test 0.592 100% 
    

General Descriptive -4832.79 92 9853.98 39.7 All 0.0129 77% 0.879 23% 88.2 0.13% 

Null -4858.78 56 9831.18 574.1 
Reference 1.23E-03 73% 0.437 27% 35.3 0.20% 

Test 1.23E-03 73% 0.437 27% 35.3 0.20% 

Alternative -4857.22 57 9830.13 550.8 
Reference 1.21E-03 73% 0.42 27% 8.21 0.57% 

Test 5.76E-06 73% 0.21 27% 43.9 0.57% 

Partitioned 

Exploratory 
-4844.68 61 9813.29 75.5 

Reference 0 20% 0.0313 68% 1 12% 

Test 0.286 66% 0.287 33% 1050 1.2% 

NIMA related 

protein kinase 

(NEK) 

Relaxation (K = 

0.63) significant                           

(p = 0.024,                                                   

LR = 5.12) 

Partitioned 

MG94xREV 
-10324.9 91 20833.7 21.51 

Reference 0.037 100% 
    

Test 2.92 100% 
    

General Descriptive -9994.56 168 20331.4 298.4 All 4.15E-03 64% 0.42 36% 574 0.09% 

Null -10168 94 20525.9 
2666

7 

Reference 4.14E-05 66% 0.101 34% 1470 0.12% 

Test 4.14E-05 66% 0.101 34% 1470 0.12% 

Alternative -10165.4 95 20522.8 
2515

6 

Reference 4.14E-05 65% 0.099 35% 10000 0.11% 

Test 1.78E-03 65% 0.234 35% 323 0.11% 

Partitioned 

Exploratory 
-10141.4 99 20483.1 6030 

Reference 3.98E-05 64% 0.084 36% 3.16 0.4% 

Test 0.394 1.50% 0.395 95% 323 3.5% 

P28 

Intensification 

(K = 2.00) 

significant                       

(p = 0.005,                                                          

LR = 8.01) 

Partitioned 

MG94xREV 
-4455.56 37 8986.3 2.06 

Reference 0.518 100% 
    

Test 1.71 100% 
    

General Descriptive -4344.73 60 8812.58 347.9 All 0.0621 62% 0.973 29% 16.5 9.3% 

Null -4362.3 40 8805.99 15.13 
Reference 0.0341 68% 1 21% 8.28 11% 

Test 0.0341 68% 1 21% 8.28 11% 

Alternative -4358.3 41 8800.05 14 
Reference 0.0315 67% 1 20% 6.26 13% 

Test 9.91E-04 67% 1 20% 39.3 13% 

Partitioned 

Exploratory 

-4356.93 
45 8805.61 13.98 

Reference 0.0391 70% 1 16% 5.6 14% 

 
Test 0.999 27% 1 63% 123 9.7% 
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Table S4-1. RELAX results for GCMFs with positively selected branches (continued). 

 

 

 

Multigene 

family 
Test for selection Model log L # par. AICc Ltree Branch set ω+ p+ ωn pn ω- p- 

Papain 

Intensification (K = 

3.73) significant                  

(p = 4.04E-06,                                                   

LR = 21.24) 

Partitioned MG94xREV -20869.5 83 41906.1 7.48 
Reference 0.221 100% 

    
Test 0.753 100% 

    
General Descriptive -20440.3 152 41188.2 216.9 All 1.06E-04 68% 0.947 31% 9980 0.78% 

Null -20552.7 86 41278.5 96.74 
Reference 2.33E-03 60% 0.329 34% 2.9 6.3% 

Test 2.33E-03 60% 0.329 34% 2.9 6.3% 

Alternative -20542.1 87 41259.3 40 
Reference 0 41% 0.12 46% 1.63 13% 

Test 0 41% 3.67E-04 46% 6.18 13% 

Partitioned Exploratory -20540.4 91 41264.1 38.99 
Reference 0 42% 0.142 47% 1.92 11% 

Test 0.164 28% 0.271 64% 7.69 7.7% 

Plasmepsin 

Intensification (K = 

1.33) significant               

(p = 7.316E-9,                                            

LR = 33.45) 

Partitioned MG94xREV -21423.2 133 43114.5 16.23 
Reference 0.11 100% 

    
Test 0.0765 100% 

    
General Descriptive -20781.8 252 42075.3 2158 All 1.19E-04 78% 0.844 22% 9980 0.18% 

Null -21026.1 136 42326.3 
2185

1 

Reference 3.33E-05 73% 0.371 27% 1090 0.12% 

Test 3.33E-05 73% 0.371 27% 1090 0.12% 

Alternative -21009.3 137 42294.9 
2715

1 

Reference 4.74E-05 75% 0.436 25% 1040 0.1% 

Test 1.79E-06 75% 0.332 25% 
1030

0 
0.1% 

Partitioned Exploratory -20996.5 141 42277.3 
2895

2 

Reference 4.77E-05 75% 0.437 25% 904 0.13% 

Test 2.35E-03 88% 0.869 12% 18.1 0% 

Serine repeat 

antigen SERA 

Relaxation (K = 

0.52) significant             

(p = 0,                                                                  

LR = 92.78) 

Partitioned MG94xREV -79776.4 159 159872 13.89 
Reference 0.244 100% 

    
Test 0.629 100% 

    

General Descriptive -77836.3 304 156285 775.4 All 1.07E-04 60% 0.931 39% 
1000

0 
1.20% 

Null -78517.7 162 157360 254.3 
Reference 0.0221 73% 1 26% 585 0.49% 

Test 0.0221 73% 1 26% 585 0.49% 

Alternative -78471.3 163 157270 381.6 
Reference 0.0156 74% 1 26% 

1000

0 
0.52% 

Test 0.113 74% 1 26% 124 0.52% 

Partitioned Exploratory -78350.4 167 157036 70.5 
Reference 0.0256 76% 1 23% 46 0.58% 

Test 0 47% 1 45% 28.8 8.20% 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal.  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Actin 

91 

PIN1 PGO2 

PVX_085830 PYYM_1463300 

PCYB_134420 
 

PKH_133510 
 

PCOA1   

88 

PBANKA_145930 PCHAS_103090 

PCHAS_146160 
 

PYYM_1463300 
 

373 

PBANKA_145930 PCHAS_103090 

PIN2 PBANKA_103010 

PGO2 
 

PCHAS_146160 
 

PYYM_1463300 
 

PF3D7_1246200 
 

PRCDC_1245600   

190 PYYM_1032200 PCHAS_103090 

Acyl-CoA synthase 

413 

 PF3D7_1479000 PF3D7_1253400 

PF3D7_0301000 PRCDC_1370300 

PRCDC_0935600   

410 
PF3D7_1479000 

 

PRCDC_1370300 

 

198 

PRCDC_1370500 PRCDC_1370300 

PF3D7_1200700 

 PRCDC_1200100   

1620 

PCHAS_145560 PF3D7_1479000 

PBANKA_145330 PGO1 

PYYM_1457300 PF3D7_1200700 

PF3D7_1238800 PRCDC_1200100 

PRCDC_1238000 PRCDC_1370500 

PVX_100890 PRCDC_0214200 

PKH_145350 PRCDC_0935400 

PGO2 PRCDC_0935600 

 

PF3D7_1253400 

 

PRCDC_1370300 

 

PRCDC_1476900 

 

PF3D7_1477900 

  PRCDC_0728400 

401 
PRCDC_1370500 PF3D7_0301000 

PF3D7_1200700   

302 

PRCDC_0935400 PRCDC_1370300 

 

PF3D7_1372400 

  PF3D7_1253400 

86 
PRCDC_0935600 PF3D7_1253400 

  PF3D7_1372400 

1256 PF3D7_1200700 PRCDC_0728400 

Adrenoxin reductase (SV) 121 

PKH_093720 PVX_092585 

 
PVXcontig7021 

  PVX_202290 

 

 

 



 

167 
 

Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Alpha beta hydrolase putative 2 

50 

PRCDC_1400600 PIN1 

PF3D7_1401300 PVX_089050 

 
PKH_050460 

  PCOA1 

946 
PF3D7_0826200 PF3D7_1401300 

PRCDC_0825500 PRCDC_1400600 

128 
PYYM_0704600 PRCDC_1400600 

PCHAS_093360 PF3D7_1401300 

75 

PGO1 PKH_050460 

 
PVX_089050 

 
PIN1 

  PCOA1 

77 PF3D7_1401300 PIN1 

Asparagine tRNA ligase 

38 
PBANKA_030860 PCHAS_110890 

PCHAS_031080   

350 
PVX_002940 PRCDC_0508800 

PIN1 PF3D7_0509600 

27 
PGO1 PGO2 

    

206 PKH_102330 PVX_098040 

Biotin acetylCoA carboxylase 468 PRCDC_1459300 PBANKA_132360 

Calcium transporting ATPase 

putative SERCA 
104 PVX_081455 PGO1 

Calcium Dependent Portein 

Kinase (CDPK) 

252 

PRCDC_1336800 PF3D7_0717500 

PCYB_122510 PVX_000555 

PGO4 PCYB_032120 

PBANKA_135150 PKH_030080 

PCHAS_135610 PIN1 

PYYM_1353200 PGO1 

PF3D7_1337800 PYYM_0617000 

 
PBANKA_061520 

 
PCHAS_061690 

  PRCDC_0714800 

289 

PCYB_032120 PBANKA_135150 

PVX_000555 PCHAS_135610 

PIN1 
 

PCOA1 
 

    

Chromatin assembly factor 1 

subunit 

26 

PRCDC_1432600 PF3D7_1329300 

PBANKA_101160 PRCDC_1328300 

PCHAS_101240 
 

PF3D7_1433300 
 

PYYM_1013100 
 

PCYB_132560 
 

PCOA3 
 

PGO3   

200 
PCYB_123320 PF3D7_1433300 

 
PRCDC_1432600 

ClpBprotein 
52 

PGO1 PYYM_0714300 

 

PBANKA_071420 

  PCHAS_072330 

484 PIN2 PF3D7_1116800 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Conserved Plasmodium protein 

unknown function 4 
257 

PIN1 PF3D7_1449800 

PCYB_126530 PRCDC_1449100 

PVX_231290 

 PVX_117995 

 PKH_125650   

Conserved Plasmodium protein 

unknown function 2 

90 

PGO2 PCHAS_131760 

PVX_101220 PBANKA_131430 

  PYYM_1315100 

64 
PF3D7_1246500 PCHAS_131760 

PRCDC_1245900 PBANKA_131430 

Conserved Plasmodium protein 

unknown function 6 

198 
PCYB_113750 PKH_112930 

PVX_114125   

316 PCYB_113750 PCOA1 

31 

PF3D7_0620000 PCOA A 

PRCDC_0618400 PCOA B 

 

PKH_112930 

  PKH_112990 

Conserved Plasmodium protein 

unknown function 
60 

PRCDC_1104200 PGO2 

PVX_090965 

 PCYB_091270 

 PKH_090290 

 PIN1 

 PCOA1 

 PGO1 

 PBANKA_094120 

 PCHAS_090310 

 PF3D7_1105700   

Conserved Rodent malaria 

protein unknown function 
754 PBANKA_080030 PYYM_1001800 

Cysteine Repeat Modular 

Protein (CRMP) 

6554 

PBANKA_061590 PIN1 

PCHAS_061760 PVX_099005 

PYYM_0617700 PCYB_071910 

  PKH_070870 

160 PVX_096410 PYYM_0815400 

103 PBANKA_081240 PGO1 

368 
PCHAS_061760 PF3D7_0718300 

PYYM_0617700 PRCDC_0715500 

Cytoadherence-linked asexual 

protein (CLAG) 

192 

PF3D7_0935800 PKH_073370 

PRCDC_0933900 PGO1 

 

PCOA1 

 

PIN1 

  PVX_086930 

99 

PRCDC_0830800 PYYM_0839400 

PF3D7_0831600 PBANKA_083630 

  PCHAS_083660 

46 
PF3D7_0935800 PRCDC_0219700 

 

PF3D7_0220800 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

DEAD DEAH box ATP 

dependent RNA helicase 

putative 

34 

PCHAS_131290 PIN1 

PBANKA_130970 PVX_118190 

PYYM_1310500 PKH_126040 

PF3D7_1445900 PCOA1 

PRCDC_1445200   

12 

PCOA2 PYYM_1310500 

PVX_123985 

 PCYB_145280 

 PKH_144390 

 PIN2   

1186 

PRCDC_1445200 PCHAS_144390 

PGO1 PBANKA_144190 

PF3D7_1445900 PYYM_1446000 

DHHC type zinc finger protein 
378 PBANKA_051200 PKH_113920 

512 PCYB_114680 PCHAS_010890 

Dipeptidyl amino peptidase 

putative DPAP 

51 

 PCOA1 PVX_101280 

PVX_091465 PCYB_147220 

PCYB_092280 PKH_146510 

PKH_091410 

 PIN1 

 PBANKA_093130 

 PCHAS_091300 

 PYYM_0932700 

 PF3D7_1116700 

 PRCDC_1115100   

183 

PIN1 PCHAS_146300 

PVX_091465 PBANKA_146070 

PCYB_092280 PYYM_1464700 

DNA directed RNA polymerase 

II 

38 

PCOA2 PBANKA_080700 

PVX_082395 PCHAS_080730 

PCYB_123350 

 PKH_122370 

 PIN2   

47 
PCOA1 PRCDC_1328000 

  PF3D7_1329000 

Dynein heavy chain 
30 

PRCDC_0726700 PGO2 

PKH_021460 

 PIN1 

 PF3D7_0729900   

577 PF3D7_0729900 PGO1 

Elongation factor Tu putative 

tufA 
402 PCOA1 PIN1 

Eukaryotic initiation factor 2a 

570 
PBANKA_061080 PKH_131130 

PCHAS_061250 PCOA1 

28 

PYYM_0612400 PIN1 

PBANKA_061080 

 PCHAS_061250   

Exonuclease 109 PCHAS_081090 PCYB_071720 

Glutathione reductase putative 

GR 
46 

PGO2 PKH_072100 

 

PCYB_073140 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Heatshock protein 40 
593 PYYM_0310800 PKH_127060 

364 PYYM_0310800 PIN2 

Heatshock protein 90 

26 

PRCDC_1221600 PCOA1 

PVX_123745 PVX_087950 

PCYB_144800 PIN1 

PKH_143880 PCYB_011550 

PIN2 PBANKA_080570 

PCOA2 PCHAS_080600 

PGO2 PYYM_0808700 

PBANKA_143730 PF3D7_0708400 

PCHAS_143930 PRCDC_0706600 

PYYM_1441400 
 

PF3D7_1222300 
 

1386 
PYYM_1441400 PF3D7_1222300 

PBANKA_143730 PRCDC_1221600 

44 

PBANKA_080570 PIN2 

PCHAS_080600 PCYB_144800 

PYYM_0808700 
 

Histone H2B 84 

PYYM_0943400 PVX_122930 

PVX_090935 
 

PCOA1 
 

PCHAS_090250 
 

PRCDC_1103600 
 

Histone H3 

19 

PGO1 PVX_113665 

PCYB_113960 PGO2 

PBANKA_111710 PKH_113870 

PCHAS_111660 PIN2 

PYYM_1119100 
 

PF3D7_0617900 
 

PRCDC_0616300 
 

89 
PVX_114020 PGO2 

 
PYYM_0109800 

Hypothetical protein 368 

PBANKA_131130 PCOA1 

PCHAS_131460 PVX_118120 

PYYM_1312100 PCYB_126760 

 
PKH_125890 

 
PIN1 

 
PGO1 

Inorganic pyrophosphatase VP 45 PVX_100710 PKH_145370 

Iron sulfur assembly protein 

SufA 
100 PKH_041280 PVX_080115 

Kinesin 8 1240 

PVX_081250 PYYM_0205600 

PIN1 
 

PCOA1 
 

PKH_020210 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Lysophospholipase 

236 

PCOA3 PCYB_053800 

PGO1 PVX_090280 

PVX_112700 PKH_052800 

PCYB_002250 PCOA5 

  PCOA4 

68 

PKH_010790 PCOA2 

PVX_088015 PIN2 

PIN1 
 

PCOA1   

80 

PIN3 PCOA2 

 
PVX_090280 

 
PCYB_053800 

  PKH_052800 

48 

PCOA1 PCHAS_122100 

 
PBANKA_122030 

 
PYYM_1223000 

      

63 

PIN3 PCOA3 

 
PCOA6 

  PCOA2 

51 PIN3 PVX_112700 

Meiotic recombination protein 

DMC 
39 

 PVX_091045 PKH_051570 

PIN2 PVX_089570 

PKH_090470 PBANKA_071400 

PCOA2 PCHAS_072310 

PGO2 PYYM_0714100 

PBANKA_093950 PF3D7_0816800 

PCHAS_090480 PRCDC_0816100 

PYYM_0941100 

 PF3D7_1107400 

 PRCDC_1105900   

NADP specific glutamate 

dehydrogenase putative GDH 

53 

PCOA1 PIN2 

PCYB_132800 PVX_085625 

PKH_131960 PCYB_134020 

  PGO1 

64 

PKH_131960 PIN2 

PCOA1 PVX_085625 

  PCYB_134020 

571 PKH_131960 PCYB_132800 

232 

PIN2 PGO1 

PVX_085625 

 PCYB_134020 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued).  

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

NIMA related protein kinase 

(NEK) 

17 

 PBANKA_061670 PVX_079950 

PVX_096360 PKH_100620 

PCYB_032330 PGO4 

PKH_031300 

 PIN3 

 PCOA3 

 PCHAS_061840 

 PYYM_0618500 

 PF3D7_0719200 

 PRCDC_0716400   

213 PRCDC_1201000 PIN3 

Novel putative transporter 1 

NPT1 

1036 

PIN1 PYYM_0211200 

PKH_020840 PBANKA_020830 

PCOA1 PCHAS_114680 

  PCHAS_020670 

172 
PF3D7_0104800 PKH_020840 

PRCDC_0102700 PCYB_021900 

Nucleotide binding protein 

38 

PVX_092045 PIN1 

PCYB_093480 PVX_098980 

PKH_092640 

 PCOA2 

 PF3D7_1128500   

97 

PRCDC_1127000 PF3D7_0910800 

PVX_092045 

 PCHAS_092470 

 PF3D7_1128500 

 

P1s1 nuclease 

723 

PBANKA_103060 PGO3 

PCHAS_103140 

 PYYM_1032700   

113 
PKH_133560 PCOA3 

PCOA1   

P28 

406 

PCYB_007100 PF3D7_1030900 

PVX_111180 

 PKNH_0615600 

 PIN   

171 
PCYB_007100 PCHAS_0515000 

PVX_111180 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued). 

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Papain 

308 
PKH_091260 PVX_091405 

PCOA3   

114 

PCOA3 PVX_091405 

PCOA2 

 PKH_091260   

216 
PKH_091260  PVX_091415 

PCOA3 PIN3 

190 

PCYB_092160 PGO3 

PVX_091410 

 PIN2   

44 PKH_091240 PCOA3 

130 
 PVX_091405 PVX_091410 

  PIN2 

633 
PCYB_125710 PBANKA_132170 

PKH_124810   

Phosducin like protein PhLP 52 

PBANKA_120480 PYYM_0520200 

PCHAS_120550 PBANKA_051970 

PYYM_1207400 PCHAS_051990 

Plasmepsin 108 PRCDC_1407400 PCHAS_101530 

Pre mRNA splicing factor ATP 

dependent RNA helicase PRP22 
274 

PKH_071490  PYYM_1142600 

PIN2 PBANKA_114020 

PCOA2 PCHAS_113970 

Pre mRNA splicing helicase 

121 
PRCDC_0419700 PGO1 

PF3D7_0422500 PKH_052600 

131 
 PKH_052600 PGO1 

PVX_090165   

100 

PF3D7_1439100 PCYB_053590 

PBANKA_130300 PVX_090165 

PCHAS_130620 

 PYYM_1303800 

 PRCDC_1438400 

 

Protein phosphatase 2C 26 

PCYB_141870 PRCDC_1308200 

PVX_122290 

 PKH_140810 

 PIN1 

 PCOA1   

Rhoptry associated protein 23 233 
PBANKA_110140 PKH_103190 

PYYM_1103600 PGO1 
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued). 

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

SERA 

746 

Pi18610-18643 PYYM_0305900 

PCYB_042210 PBANKA_030490 

PCYB_042230 PBANKA_030500 

PCYB_042280 PCHAS_030720 

PVX_003840 PF3D7_0207600 

PVX_003830 PF3D7_0207700 

PVX_003805 PF3D7_0207800 

Pc12410-12443 PF3D7_0208000 

 

PRCDC_0206600 

 

PRCDC_0206700 

 

PRCDC_0206800 

 

PRCDC_0206900 

 

PYYM_0305800 

  PYYM_0306000 

834 

PKH_041210 PVX_003795 

PCOA1 PCYB_042300 

 

PKH_041260 

 

Pi41952-41985 

  PCOA2 

697 
PCOA1 PVX_003845 

  PCYB_042200 

337 PCOA3 PKH_041200 

236 

PVX_003810 PVX_003840 

PCYB_042270 PCYB_042210 

PKH_041230 PCYB_042220 

PIN3 PCYB_042230 

PCOA3 PKH_041210 

 

PVX_003830 

 

PIN1 

 

PCOA1 

  PGO1 

678 

PGO2 PCOA4 

PGO3 PCYB_042190 

PGO4 PVX_003850 

  PIN4 

326 

PRCDC_0206700 PRCDC_0206600 

PF3D7_0207700 PF3D7_0207600 

PF3D7_0207900 

 PRCDC_0206800   

891 PVX_003820 PVX_003840 

816 
PCYB_042220 PCYB_042200 

PVX_003835 PVX_003845 

94 
PKH_041260 PCOA4 

PCYB_042300 PVX_003850 

255 
PCOA5 PVX_003840 

PKH_041210 PCYB_042230 

920 

PVX_003820 PVX_003830 

 

PCYB_042210 

  PVX_003840 

791 PVX_003820 PVX_003830 

498 PCYB_042220 PVX_003835 

395 PVX_003830 PVX_003805 

198 

PKH_041250 PVX_003850 

PCHAS_030710 PCYB_042190 

PCYB_042290 PIN5 

PVX_003800 

 PIN6 

 PCOA6 

 PGO5   

269 PCYB_042220 PVX_003845 

74 

PCYB_042200 PVX_003850 

PVX_003845 PIN5 

PIN7 PCOA4 

PCOA7   
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Table S4-2. List of recombinant sequences, number of recombination events, and length 

of recombinant segments in GCMFs with significant recombination signal (continued). 

Multigene family Length recombinant segment Sequence code Recombinant 1 Sequence code Recombinant 2 

Tetratricopeptide repeat protein 113 

PKH_111790 PF3D7_0601600 

PVX_114650 PF3D7_0631000 

PCYB_112700 PRCDC_0629400 

Tubulin 

724 

 PVX_098630 PBANKA_041770 

PCYB_071150 PCHAS_041860 

PIN2 PYYM_0420500 

PKH_070090 

 PCOA2   

802 

PCOA1 PIN2 

PCYB_053570 PVX_098630 

  PCYB_071150 

426 

PCYB_053570 PCHAS_041860 

PVX_090155 PBANKA_041770 

PIN1 PYYM_0420500 

PCOA1   

772 

PGO2 PRCDC_0901800 

 

PBANKA_041770 

  PF3D7_0903700 

182 

PVX_090155 PF3D7_0422300 

PKH_052580 PRCDC_0419500 

PCOA1   

147 

PKH_070090 PVX_090155 

PVX_098630 PCYB_053570 

PCYB_071150 PIN1 

PIN2 

 PCOA2 

 PGO1   

196 PVX_090155 PGO1 

Ubiquitin conjugating enzyme 2 84 

PYYM_1031800 PYYM_1360500 

PBANKA_102970 PBANKA_135840 

PF3D7_1412900. PCHAS_136300 

PRCDC_1412200.   
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Table S4-3. List of multigene families with branches under significant episodic selection.    

Multigene family 

Acyl-CoA synthase 

Alpha beta hydrolase 2 

Asparagine tRNA ligase 

Calcium Dependent Protein Kinase (CDPK) 

Cell division protein FtsH 

Chaperonin 

Conserved Plasmodium protein 

Conserved Plasmodium protein unknown function 6 

Conserved Plasmodium protein unknown function 12 

Conserved rodent malaria protein unknown function 

Cytoadherence-linked asexual protein (CLAG) 

DEAD DEAH box ATP dependent RNA helicase 

DER1 like protein 

DHHC type zinc finger protein 

Dipeptidyl amino peptidase putative (DPAP) 

DNA directed RNA polymerase II 

Eukaryotic initiation factor 2a 

Heat Shock protein 70 

Heat Shock protein 90 

Histone H3 

Hypothetical protein 

Lysophospholipase 

Meiotic recombination protein DMC 

Methyltransferase 

NIMA-related protein kinase (NEK) 

P28 

Papain 

Plasmepsin 

Serine repeat antigen (SERA) 
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Table S4-4. Distribution of strength and proportion on sites under three different 

selective regimes in P. falciparum paralogs. 

Name B Test p-value ω- 
Prop. 

Sites - 
ωN 

Prop. Sites 

N 
ω+ 

Prop. 

Sites + 
Expression 

PF3D7_1246200 0 1 0.000 1.00 0.202 0.00 0.144 0.00 Vertebrate 

PF3D7_0211800 0.003 1 0.198 0.63 0.358 0.00 0.315 0.37 Vertebrate 

PF3D7_0106300 0.009 1 0.046 0.47 0.496 0.00 0.051 0.53 Vertebrate 

PF3D7_1211900 8E-04 1 1.000 0.51 0.984 0.00 29.900 0.49 Vertebrate 

PF3D7_1103700 0.007 1 0.000 0.88 0.000 0.11 0.000 0.01 Vertebrate 

PF3D7_1342400 0.025 1 0.016 0.79 0.058 0.00 0.050 0.21 Vertebrate 

PF3D7_0717500 0.015 1 0.016 0.77 0.017 0.23 0.139 0.00 Vertebrate 

PF3D7_0217500 0.011 1 0.000 0.74 0.000 0.22 0.000 0.04 Vertebrate 

PF3D7_0310100 0.021 1 0.041 1.00 0.080 0.00 0.138 0.00 Vertebrate 

PF3D7_1119600 0.011 1 0.000 1.00 0.206 0.00 0.133 0.00 Vertebrate 

PF3D7_1464900 0.006 1 0.000 1.00 0.000 0.00 0.116 0.00 Vertebrate 

PF3D7_1329300 0.006 1 0.057 0.96 0.435 0.00 0.057 0.04 Vertebrate 

PF3D7_1433300 0.004 1 0.000 0.71 0.000 0.24 0.000 0.05 Vertebrate 

PF3D7_0816600 0.017 1 0.000 0.84 0.000 0.16 0.120 0.00 Vertebrate 

PF3D7_1409600 0.01 1 1.000 0.58 1.000 0.41 382.000 0.01 Vertebrate 

PF3D7_0620000 0.014 1 0.889 0.00 0.859 0.00 56.500 1.00 Vertebrate 

PF3D7_1105700 0.026 1 0.010 0.86 0.120 0.00 0.084 0.14 Vertebrate 

PF3D7_1222000 0.025 1 1.000 0.52 1.000 0.46 9350.000 0.02 Vertebrate 

PF3D7_0803600 0.022 1 0.254 1.00 0.219 0.00 0.120 0.00 Vertebrate 

PF3D7_0935800 0.021 1 1.000 0.48 0.414 0.23 5.600 0.29 Vertebrate 

PF3D7_0831600 0.02 0.828 0.434 0.70 0.000 0.07 14.300 0.23 Vertebrate 

PF3D7_0302200 0.011 1 0.000 0.94 0.000 0.00 15.900 0.06 Vertebrate 

PF3D7_0220800 0.005 1 0.811 1.00 0.735 0.00 0.589 0.00 Vertebrate 

PF3D7_0302500 0.008 1 0.818 1.00 0.816 0.00 0.620 0.00 Vertebrate 

PF3D7_1445900 9E-04 1 0.000 0.83 0.000 0.15 0.000 0.02 Vertebrate 

PF3D7_0609800 0.006 1 0.102 0.50 0.418 0.00 0.174 0.50 Vertebrate 

PF3D7_1116700 0.018 1 0.000 0.99 0.000 0.00 12.400 0.01 Vertebrate 

PF3D7_0318200 0.012 1 0.000 0.86 0.000 0.14 0.120 0.00 Vertebrate 

PF3D7_1329000 0.019 1 0.013 1.00 0.117 0.00 0.091 0.00 Vertebrate 

PF3D7_0215700 0.006 1 0.000 1.00 0.001 0.00 0.112 0.00 Vertebrate 

PF3D7_1206600 0.008 1 0.000 1.00 0.182 0.00 0.130 0.00 Vertebrate 

PF3D7_1149600 0.03 1 1.000 0.87 1.000 0.01 39.200 0.12 Vertebrate 

PF3D7_1427500 0.001 1 0.901 0.00 1.000 0.03 14.200 0.97 Vertebrate 

PF3D7_1145400 0.028 1 0.032 0.83 0.076 0.00 0.036 0.17 Vertebrate 

PF3D7_1357100 0.005 1 0.000 1.00 0.196 0.00 0.146 0.00 Vertebrate 

PF3D7_1357000 0.003 1 0.000 1.00 0.001 0.00 0.126 0.00 Vertebrate 

PF3D7_0602400 0.011 1 0.000 1.00 0.157 0.00 0.114 0.00 Vertebrate 

PF3D7_1438000 0.42 0.717 0.000 1.00 0.468 0.00 3330.000 0.00 Vertebrate 

PF3D7_1106300 0 1 0.001 0.79 0.204 0.16 0.133 0.04 Vertebrate 

PF3D7_1419800 0.002 1 0.957 0.00 1.000 0.43 23.400 0.57 Vertebrate 

PF3D7_0501100 0.003 1 0.390 0.00 0.464 0.92 0.609 0.08 Vertebrate 

PF3D7_0201800 0.021 1 0.000 0.93 0.000 0.00 4.490 0.07 Vertebrate 

PF3D7_0818900 0.014 1 0.000 1.00 0.001 0.00 0.120 0.00 Vertebrate 

PF3D7_0917900 0.003 1 0.000 0.84 0.000 0.13 0.000 0.03 Vertebrate 

PF3D7_0831700 0.021 1 0.075 0.87 0.080 1.00 0.078 0.00 Vertebrate 

PF3D7_0708400 0.014 1 0.000 1.00 0.190 0.00 0.142 0.00 Vertebrate 

PF3D7_1202900 0.019 1 0.000 1.00 0.203 0.00 0.135 0.00 Vertebrate 

PF3D7_1445100 0.021 1 0.034 1.00 0.567 0.00 0.142 0.00 Vertebrate 

PF3D7_0714000 0 1 0.000 0.92 0.222 0.07 0.146 0.01 Vertebrate 

PF3D7_0610400 0 1 0.001 0.92 0.221 0.07 0.145 0.01 Vertebrate 

PF3D7_0617900 0 1 0.001 0.80 0.221 0.19 0.160 0.02 Vertebrate 

PF3D7_1456800 0.017 1 0.030 0.60 0.038 0.00 0.033 0.40 Vertebrate 

PF3D7_1235200 0.016 1 0.043 0.33 0.152 0.00 0.042 0.67 Vertebrate 

PF3D7_1372400 0.084 0.0004 0.000 0.93 0.000 0.01 28.300 0.06 Vertebrate 

PF3D7_1200700 0.033 0.6272 0.000 0.91 0.000 0.01 7.340 0.08 Vertebrate 

PF3D7_0731600 0.032 1 0.000 0.85 0.000 0.03 7.330 0.13 Vertebrate 

PF3D7_1479000 0.1 1 0.094 0.91 0.119 0.02 2.490 0.07 Vertebrate 

PF3D7_0215300 0.016 1 0.390 0.09 0.388 0.13 0.385 0.78 Vertebrate 

PF3D7_0301000 0.086 1 0.089 0.94 1.000 0.06 0.089 0.00 Vertebrate 

PF3D7_1324900 0.01 1 0.000 1.00 0.198 0.00 0.143 0.00 Vertebrate 

PF3D7_1015300 0.002 1 0.916 0.19 1.000 0.71 1.580 0.10 Vertebrate 

PF3D7_0409300 0.032 1 1.000 0.98 0.548 0.00 225.000 0.02 Vertebrate 

PF3D7_1455200 0.002 1 0.000 0.31 0.001 0.00 67.400 0.69 Vertebrate 

PF3D7_1430700 0.004 1 0.434 0.59 0.470 0.18 0.449 0.22 Vertebrate 

PF3D7_1416500 0.001 1 1.000 0.37 1.000 0.29 23.400 0.34 Vertebrate 

PF3D7_0910800 0.021 1 0.039 1.00 0.000 0.00 0.116 0.00 Vertebrate 

PF3D7_1412000 0.018 1 0.155 0.90 0.155 0.09 0.155 0.01 Vertebrate 

PF3D7_1411900 0.009 1 0.756 1.00 0.966 0.00 0.575 0.00 Vertebrate 

PF3D7_1030900 0 1 0.001 0.88 0.213 0.10 0.140 0.01 Vertebrate 
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Table S4-4. Distribution of strength and proportion on sites under three different 

selective regimes in P. falciparum paralogs (continued). 

Name B Test p-value ω- 
Prop. 

Sites - 
ωN 

Prop. Sites 

N 
ω+ 

Prop. 

Sites + 
Expression 

PF3D7_1115300 0.009 1 0.000 0.93 0.000 0.02 10000.000 0.06 Vertebrate 

PF3D7_1115400 0.004 1 0.774 0.00 0.458 0.00 65.000 1.00 Vertebrate 

PF3D7_1115700 0.01 1 0.168 1.00 0.192 0.00 0.141 0.00 Vertebrate 

PF3D7_1458000 0.032 1 0.050 1.00 0.072 0.00 0.069 0.00 Vertebrate 

PF3D7_1438900 0.008 1 0.000 0.85 0.000 0.15 0.120 0.00 Vertebrate 

PF3D7_0808200 0.003 1 0.047 0.00 0.701 0.00 1.570 1.00 Vertebrate 

PF3D7_1033800 0.015 1 0.250 0.00 0.297 0.00 0.295 1.00 Vertebrate 

PF3D7_0917600 0.008 1 0.000 0.89 0.000 0.10 0.000 0.01 Vertebrate 

PF3D7_1364300 0.016 1 0.000 0.87 0.000 0.13 0.123 0.00 Vertebrate 

PF3D7_0702200 0.04 1 0.187 0.68 0.217 0.32 6.620 0.00 Vertebrate 

PF3D7_0501500 0.013 1 0.000 0.94 1.000 0.07 0.051 0.00 Vertebrate 

PF3D7_0501600 0.025 1 0.000 0.83 0.921 0.00 2.980 0.17 Vertebrate 

PF3D7_1448400 0.003 1 0.881 0.00 0.942 0.00 30.100 1.00 Vertebrate 

PF3D7_0207400 0.004 1 0.680 0.00 0.736 0.00 1.230 1.00 Vertebrate 

PF3D7_0207500 0.008 1 0.510 0.00 0.469 0.12 0.472 0.88 Vertebrate 

PF3D7_0207600 0.018 1 0.349 0.13 0.190 0.00 0.349 0.87 Vertebrate 

PF3D7_0207700 0.013 1 0.994 0.84 1.000 0.06 15.800 0.10 Vertebrate 

PF3D7_0207800 0.302 1 0.188 0.83 0.986 0.13 15.600 0.04 Vertebrate 

PF3D7_0207900 0.017 1 0.591 0.00 0.695 0.00 1.510 1.00 Vertebrate 

PF3D7_0208000 0.012 1 0.089 0.59 0.089 0.41 0.052 0.00 Vertebrate 

PF3D7_0902800 0.008 1 0.383 0.00 0.425 0.00 0.357 1.00 Vertebrate 

PF3D7_0717700 0.013 1 0.005 0.82 0.450 0.00 0.017 0.18 Vertebrate 

PF3D7_0516600 0.007 1 0.526 1.00 0.224 0.00 0.399 0.00 Vertebrate 

PF3D7_0903700 0.006 1 0.000 1.00 0.202 0.00 0.146 0.00 Vertebrate 

PF3D7_0422300 0.023 1 0.000 1.00 0.202 0.00 0.146 0.00 Vertebrate 

PF3D7_1139700 0.005 1 0.966 0.00 1.000 0.08 10000.000 0.92 Vector 

PF3D7_0826200 0.012 1 0.418 0.00 0.534 0.00 0.638 1.00 Vector 

PF3D7_0509600 0.019 1 0.026 0.78 0.015 0.00 0.031 0.22 Vector 

PF3D7_1429900 0.002 1 0.458 0.98 0.620 0.00 0.726 0.02 Vector 

PF3D7_1026900 0.035 1 0.153 1.00 0.125 0.00 0.137 0.00 Vector 

PF3D7_1460000 0.038 0.073 0.167 0.98 0.152 0.00 78.700 0.01 Vector 

PF3D7_1333000 0.005 1 0.901 0.00 1.000 0.06 66.200 0.94 Vector 

PF3D7_1215300 0 1 0.001 0.91 0.219 0.08 0.145 0.01 Vector 

PF3D7_1450600 0.007 1 0.155 0.00 0.193 0.81 0.192 0.19 Vector 

PF3D7_1246500 0.012 1 0.054 0.89 0.130 0.11 0.055 0.01 Vector 

PF3D7_0519000 0.007 1 0.987 0.00 0.808 0.00 6.890 1.00 Vector 

PF3D7_1449800 0.019 1 0.000 1.00 0.191 0.00 0.137 0.00 Vector 

PF3D7_1469100 0 1 0.000 0.94 0.184 0.05 0.139 0.01 Vector 

PF3D7_1213400 0.008 1 0.134 1.00 0.126 0.00 0.244 0.00 Vector 

PF3D7_1213200 0.014 1 0.349 0.15 0.351 0.85 0.271 0.00 Vector 

PF3D7_0911300 0.305 1 0.525 1.00 1.000 0.00 10000.000 0.00 Vector 

PF3D7_0718300 0.01 1 0.081 0.53 0.781 0.00 0.090 0.47 Vector 

PF3D7_1032500 0.002 1 1.000 0.27 1.000 0.12 31.200 0.60 Vector 

PF3D7_1468500 0 1 0.001 0.83 0.211 0.14 0.139 0.03 Vector 

PF3D7_1027900 0.002 1 0.659 0.00 0.648 0.00 14.100 1.00 Vector 

PF3D7_0528400 0 1 0.001 0.74 0.199 0.19 0.129 0.07 Vector 

PF3D7_1247800 0.003 1 0.982 0.00 0.993 0.00 53.800 1.00 Vector 

PF3D7_0523400 0.012 1 0.000 1.00 0.193 0.00 0.139 0.00 Vector 

PF3D7_0706700 0.031 1 0.067 0.94 0.094 0.04 8.700 0.01 Vector 

PF3D7_1037500 0.001 1 0.938 0.61 1.000 0.07 1.730 0.32 Vector 

PF3D7_0729900 0.014 1 0.028 1.00 1.000 0.00 199.000 0.00 Vector 

PF3D7_1023100 0.004 1 0.086 0.64 0.105 0.36 0.477 0.00 Vector 

PF3D7_1122900 0.004 1 0.057 0.86 0.033 0.00 0.130 0.14 Vector 

PF3D7_0905300 0.003 1 0.053 0.89 0.104 0.11 0.113 0.00 Vector 

PF3D7_1330600 0.038 1 0.013 1.00 0.077 0.00 0.128 0.00 Vector 

PFC10_API0028 0.011 1 0.000 0.88 0.534 0.00 0.000 0.12 Vector 

PF3D7_0909400 0.013 1 0.061 1.00 0.156 0.00 0.326 0.00 Vector 

PF3D7_0828600 0.014 1 0.103 1.00 0.188 0.00 0.176 0.00 Vector 

PF3D7_1116500 0.045 1 0.009 1.00 0.012 0.00 0.140 0.00 Vector 

PF3D7_0512200 0.013 1 0.095 0.67 0.072 0.21 5.640 0.12 Vector 

PF3D7_1114800 0.001 1 1.000 0.50 0.909 0.00 11.700 0.50 Vector 

PF3D7_1216200 0.003 1 1.000 0.80 0.999 0.00 658.000 0.20 Vector 

PF3D7_0213100 0.013 1 0.000 1.00 0.001 0.00 0.116 0.00 Vector 

PF3D7_1222300 0.007 1 0.000 1.00 0.001 0.00 0.128 0.00 Vector 

PF3D7_0817900 0.004 1 0.000 0.86 0.000 0.13 0.000 0.02 Vector 

PF3D7_1105100 0 1 0.001 0.92 0.222 0.08 0.146 0.01 Vector 

PF3D7_1447500 0.023 1 0.174 0.00 0.212 0.30 0.233 0.70 Vector 

PF3D7_1003600 0.006 1 0.000 0.88 0.000 0.11 0.000 0.01 Vector 

PF3D7_0111000 0.021 1 0.032 1.00 0.026 0.00 0.118 0.00 Vector 
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Table S4-4. Distribution of strength and proportion on sites under three different 

selective regimes in P. falciparum paralogs (continued). 

Name B Test p-value ω- 
Prop. 

Sites - 
ωN 

Prop. Sites 

N 
ω+ 

Prop. 

Sites + 
Expression 

PF3D7_0215000 0.008 1 0.171 0.00 0.935 1.00 0.620 0.00 Vector 

PF3D7_1477900 0.02 1 0.085 0.00 0.129 0.83 0.129 0.17 Vector 

PF3D7_0709700 0.019 1 0.094 1.00 0.049 0.00 0.057 0.00 Vector 

PF3D7_0618500 0.004 1 1.000 0.33 1.000 0.14 56.500 0.53 Vector 

PF3D7_0816800 0.013 1 0.000 1.00 0.001 0.00 0.119 0.00 Vector 

PF3D7_1107400 0.007 1 0.000 0.84 0.000 0.16 0.119 0.00 Vector 

PF3D7_1027600 0.012 1 0.038 1.00 0.493 0.00 0.575 0.00 Vector 

PF3D7_1217100 0.02 1 0.094 0.74 0.097 0.26 0.121 0.00 Vector 

PF3D7_1201600 0.016 1 0.137 1.00 0.200 0.00 0.098 0.00 Vector 

PF3D7_1228300 0.007 1 0.000 1.00 0.001 0.00 0.124 0.00 Vector 

PF3D7_0719200 0 1 0.001 0.89 0.219 0.10 0.144 0.01 Vector 

PF3D7_0525900 0 1 0.001 0.78 0.220 0.20 0.144 0.03 Vector 

PF3D7_0104800 0.004 1 0.976 0.00 1.000 0.54 3.190 0.46 Vector 

PF3D7_1428600 0.002 1 0.997 0.00 1.000 0.73 943.000 0.27 Vector 

PF3D7_1215000 0.002 1 1.000 0.28 0.995 0.00 66.000 0.72 Vector 

PF3D7_1036700 0 1 0.001 0.88 0.219 0.10 0.139 0.02 Vector 

PF3D7_1006600 0.024 1 0.095 0.80 0.087 0.20 0.105 0.00 Vector 

PF3D7_1102400 0.012 1 0.000 1.00 0.228 0.00 0.107 0.00 Vector 

PF3D7_0412300 0.006 1 0.797 0.00 0.910 0.00 4.340 1.00 Vector 

PF3D7_1465700 0.021 1 0.000 1.00 0.363 0.00 80.100 0.00 Vector 

PF3D7_0311700 0.005 1 0.000 0.98 0.000 0.00 3000.000 0.02 Vector 

PF3D7_1430200 0.014 1 0.000 0.60 0.000 0.25 0.000 0.14 Vector 

PF3D7_1407900 0.006 1 0.001 0.00 0.384 0.00 72.100 1.00 Vector 

PF3D7_1408100 0.033 1 0.055 0.28 0.100 0.00 0.055 0.72 Vector 

PF3D7_1407800 0.002 1 0.000 0.24 0.402 0.00 0.000 0.76 Vector 

PF3D7_1408000 0.01 1 0.068 0.22 0.070 0.00 0.068 0.78 Vector 

PF3D7_1309200 0.02 1 0.000 0.74 0.000 0.26 0.122 0.00 Vector 

PF3D7_0810300 0 1 0.001 0.85 0.212 0.12 0.140 0.02 Vector 

PF3D7_1216000 0.016 1 0.000 0.98 0.000 0.00 47.500 0.02 Vector 

PF3D7_0909500 0.007 1 0.852 0.00 0.528 0.00 67.100 1.00 Vector 

PF3D7_1230600 0.005 1 0.000 0.77 0.000 0.20 0.000 0.04 Vector 

PF3D7_0601600 0.002 1 0.000 1.00 0.001 0.00 0.124 0.00 Vector 

PF3D7_0631000 0.001 1 1.000 0.69 0.479 0.00 3050.000 0.31 Vector 

PF3D7_0319300 0.012 1 0.183 1.00 0.192 0.00 0.137 0.00 Vector 

PF3D7_0812600 0 1 0.000 0.82 0.000 0.17 0.118 0.01 Vector 

PF3D7_1345500 0.006 1 0.000 0.79 0.000 0.18 0.000 0.03 Vector 

PF3D7_1412900 0 1 0.001 0.78 0.194 0.17 0.119 0.05 Vector 

PF3D7_1412500 0.01 1 0.000 1.00 0.001 0.00 0.124 0.00 Generalist 

PF3D7_1401300 0.012 1 0.753 0.00 0.823 0.00 16.800 1.00 Generalist 

PF3D7_0918600 0.03 1 0.678 1.00 0.874 0.00 10000.000 0.00 Generalist 

PF3D7_1337800 0.002 1 1.000 0.45 1.000 0.30 45.600 0.25 Generalist 

PF3D7_0610600 0.005 1 0.258 0.00 0.126 0.01 0.126 0.99 Generalist 

PF3D7_1239700 0 1 0.000 0.87 0.000 0.10 0.116 0.02 Generalist 

PF3D7_0110700 0.016 1 0.066 0.93 0.066 0.07 0.066 0.00 Generalist 

PF3D7_1116800 0.003 1 0.184 0.66 0.200 0.34 0.074 0.00 Generalist 

PF3D7_1143800 0.003 1 0.961 0.00 0.910 0.00 10.800 1.00 Generalist 

PF3D7_1416300 0.006 1 0.450 1.00 0.326 0.00 0.347 0.00 Generalist 

PF3D7_1227100 0.005 1 0.082 0.00 1.000 1.00 0.154 0.00 Generalist 

PF3D7_1233000 0.024 1 0.000 0.98 0.000 0.00 3.310 0.02 Generalist 

PF3D7_0923800 0.002 1 0.000 1.00 0.001 0.00 0.114 0.00 Generalist 

PF3D7_0934000 0.036 1 0.131 0.00 0.158 0.69 0.158 0.31 Generalist 

PF3D7_0319400 0.001 1 1.000 0.59 0.979 0.00 25.300 0.41 Generalist 

PF3D7_1253400 0.018 1 0.000 0.98 0.000 0.01 34.500 0.01 Generalist 

PF3D7_1238800 0.03 1 0.047 0.97 0.087 0.00 0.047 0.03 Generalist 

PF3D7_0527300 0.012 1 0.390 0.00 0.332 1.00 1.030 0.00 Generalist 

PF3D7_1128500 0.03 1 0.060 0.00 0.060 0.03 0.060 0.97 Generalist 

PF3D7_0932400 0.007 1 0.847 0.00 0.846 0.00 8.620 1.00 Generalist 

PF3D7_0802200 0.002 1 0.940 0.00 0.981 0.00 18.400 1.00 Generalist 

PF3D7_1030100 0 1 0.001 0.76 0.217 0.21 0.142 0.03 Generalist 

PF3D7_0422500 0.021 1 0.045 1.00 0.039 0.00 0.050 0.00 Generalist 

PF3D7_1439100 0.013 1 0.058 0.22 0.057 0.78 0.088 0.00 Generalist 

PF3D7_0313100 0.007 1 0.026 0.47 0.229 0.33 0.268 0.20 Generalist 

PF3D7_1129400 0.028 1 0.016 0.00 0.015 1.00 0.011 0.00 Generalist 

PF3D7_0925500 0.011 1 0.000 1.00 0.197 0.00 0.143 0.00 Generalist 

PF3D7_1457200 0 1 0.001 0.77 0.218 0.21 0.143 0.03 Generalist 

PF3D7_0827100 0.008 1 0.734 0.00 0.827 0.00 1.460 1.00 Generalist 
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Table S4-5. Distribution of strength and proportion on sites under three different 

selective regimes in P. berghei paralogs. 

Gene ID B P-value ω- 
Prop. Sites 

- 
ωN Prop. Sites N ω+ Prop. Sites + Expression 

PBANKA_145930 0.03 1 0.0000 0.900 0.0000 0.100 0.1240 0.000 Vertebrate 

PBANKA_090930 1.336 0.0447 0.2540 0.990 1.0000 0.001 3330.0000 0.010 Vertebrate 

PBANKA_030860 3.858 0.0578 0.0130 0.980 0.0000 0.003 1530.0000 0.018 Vertebrate 

PBANKA_110920 0.027 1 0.1380 0.870 0.1400 0.000 0.1380 0.130 Vertebrate 

PBANKA_081950 0.023 1 0.0587 0.500 0.0590 0.500 0.0590 0.000 Vertebrate 

PBANKA_020700 0.027 1 0.0346 1.000 0.4360 0.000 0.1150 0.000 Vertebrate 

PBANKA_061040 0.029 1 0.0635 1.000 0.0522 0.000 0.0645 0.000 Vertebrate 

PBANKA_135550 0.025 1 0.0230 1.000 0.0255 0.000 0.1250 0.000 Vertebrate 

PBANKA_031420 0.018 1 0.0000 0.720 0.0000 0.280 0.1200 0.000 Vertebrate 

PBANKA_061520 0.013 1 0.0000 1.000 0.1920 0.000 0.1200 0.000 Vertebrate 

PBANKA_135150 0.028 1 0.0501 0.490 0.0513 0.510 0.1200 0.000 Vertebrate 

PBANKA_092850 0.018 1 0.0389 1.000 0.2840 0.000 0.1330 0.000 Vertebrate 

PBANKA_132830 0.02 1 0.0000 1.000 0.1870 0.000 0.1330 0.000 Vertebrate 

PBANKA_145410 0.019 1 0.0652 0.900 0.0701 0.000 0.0650 0.100 Vertebrate 

PBANKA_143105 0.015 1 0.0359 0.540 0.2790 0.000 0.2580 0.460 Vertebrate 

PBANKA_020300 0.018 1 0.0346 0.790 0.0356 0.210 0.1360 0.000 Vertebrate 

PBANKA_134430 0.016 1 0.0657 0.720 0.0661 0.000 0.0656 0.280 Vertebrate 

PBANKA_071420 0.03 1 0.0164 1.000 0.0921 0.000 0.1200 0.000 Vertebrate 

PBANKA_093120 0.449 1 0.0665 1.000 0.0658 0.000 1470.0000 0.005 Vertebrate 

PBANKA_102640 0.028 1 0.0167 1.000 0.5020 0.000 0.1360 0.000 Vertebrate 

PBANKA_103290 0.068 1 0.0990 0.780 0.0000 0.000 1.5600 0.220 Vertebrate 

PBANKA_123380 0.018 1 0.1310 0.730 0.1250 0.000 0.1270 0.270 Vertebrate 

PBANKA_142900 0.02 1 0.1950 0.690 0.1940 0.310 0.1220 0.000 Vertebrate 

PBANKA_094120 0.006 1 0.0472 0.930 0.5400 0.000 0.0832 0.067 Vertebrate 

PBANKA_080030 0.105 0.9895 0.4540 0.980 0.4530 0.001 23.9000 0.019 Vertebrate 

PBANKA_100050 0.045 1 0.0000 0.690 0.3710 0.000 2.0800 0.310 Vertebrate 

PBANKA_081240 0.045 0.0375 0.4330 0.930 0.1980 0.000 7.9300 0.068 Vertebrate 

PBANKA_083630 0.047 1 0.8830 0.000 0.8830 0.000 1.1200 1.000 Vertebrate 

PBANKA_140060 0.036 1 1.0000 1.000 0.4820 0.000 1.0600 0.000 Vertebrate 

PBANKA_144190 0.028 1 0.0307 0.900 0.0310 0.096 0.1170 0.000 Vertebrate 

PBANKA_051630 0.006 1 0.1530 0.860 0.2060 0.110 0.1790 0.031 Vertebrate 

PBANKA_133180 0.017 1 0.0000 0.830 0.0000 0.140 0.0000 0.030 Vertebrate 

PBANKA_080700 0.017 1 0.0263 0.780 0.0316 0.220 0.0294 0.000 Vertebrate 

PBANKA_134400 0.032 1 0.0193 0.970 0.0895 0.000 0.0193 0.025 Vertebrate 

PBANKA_060520 0.016 1 0.0373 1.000 0.3710 0.000 0.1240 0.000 Vertebrate 

PBANKA_101710 0.007 1 0.0662 0.550 0.0843 0.380 0.0673 0.062 Vertebrate 

PBANKA_052040 0.013 1 0.0066 0.930 0.1740 0.000 0.0936 0.071 Vertebrate 

PBANKA_090360 0.064 1 0.0177 0.950 0.0177 0.051 0.1310 0.000 Vertebrate 

PBANKA_113330 0 1 0.0008 0.920 0.2220 0.071 0.1460 0.007 Vertebrate 

PBANKA_113340 0 1 0.0008 0.920 0.2220 0.071 0.1460 0.007 Vertebrate 

PBANKA_144770 0.028 1 0.0324 1.000 0.0261 0.000 0.0692 0.000 Vertebrate 

PBANKA_134560 0.014 1 0.0571 0.920 0.0590 0.000 0.0575 0.079 Vertebrate 

PBANKA_061080 0.039 1 0.1300 0.820 0.2370 0.000 0.1300 0.180 Vertebrate 

PBANKA_081060 0.017 1 0.0565 0.140 0.0576 0.440 0.0564 0.410 Vertebrate 

PBANKA_094060 0.029 1 0.0520 0.900 0.0737 0.000 0.0521 0.100 Vertebrate 

PBANKA_082470 0.029 1 0.0593 0.880 0.0592 0.120 0.0504 0.000 Vertebrate 

PBANKA_111180 0.572 1 0.2470 1.000 0.2470 0.000 3330.0000 0.003 Vertebrate 

PBANKA_093290 0.02 1 0.1310 1.000 0.2130 0.000 0.1200 0.000 Vertebrate 

PBANKA_143190 0.015 1 0.0000 0.980 0.0000 0.003 11.5000 0.013 Vertebrate 

PBANKA_031000 0.107 1 0.0094 1.000 0.0004 0.000 0.1360 0.000 Vertebrate 

PBANKA_081890 0.01 1 0.0975 0.180 0.1160 0.820 0.1830 0.000 Vertebrate 

PBANKA_080570 0.012 1 0.0178 0.830 0.2610 0.000 0.0965 0.170 Vertebrate 

PBANKA_143730 0.011 1 0.0514 0.990 0.2940 0.000 0.0522 0.007 Vertebrate 

PBANKA_060190 0.024 1 0.0000 1.000 0.0008 0.000 0.1150 0.000 Vertebrate 

PBANKA_130890 0.023 1 0.0802 0.770 0.0821 0.029 0.0836 0.200 Vertebrate 

PBANKA_094180 0.008 1 0.0508 0.390 0.2250 0.540 0.3070 0.064 Vertebrate 

PBANKA_142060 0.009 1 0.0000 0.920 0.0000 0.075 0.0000 0.007 Vertebrate 

PBANKA_010880 0.004 1 0.0000 1.000 0.0014 0.000 0.1380 0.000 Vertebrate 

PBANKA_111710 0.006 1 0.0000 1.000 0.0008 0.000 0.1450 0.000 Vertebrate 

PBANKA_144980 0.027 1 0.0651 0.270 0.0659 0.730 0.0685 0.000 Vertebrate 

PBANKA_080590 0.01 1 0.3140 0.100 0.3120 0.900 0.2500 0.000 Vertebrate 

PBANKA_031180 0.067 1 0.0000 0.670 0.0000 0.030 1.7400 0.300 Vertebrate 

PBANKA_111770 0.027 1 0.2660 1.000 0.2620 0.000 0.2610 0.000 Vertebrate 

PBANKA_134010 0.008 1 0.0000 1.000 0.1920 0.000 0.1430 0.000 Vertebrate 

PBANKA_100690 0.018 1 0.0397 0.950 0.0333 0.021 8.5400 0.033 Vertebrate 

PBANKA_101400 0.036 1 0.0713 0.590 0.0728 0.410 0.1410 0.000 Vertebrate 

PBANKA_020830 0.024 1 0.1690 0.000 0.1630 1.000 0.1430 0.000 Vertebrate 

PBANKA_091970 0.025 1 0.0325 0.300 0.0132 0.000 0.0327 0.700 Vertebrate 

PBANKA_103060 0.039 1 0.2020 0.000 0.2280 1.000 0.2060 0.000 Vertebrate 
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Table S4-5. Distribution of strength and proportion on sites under three different 

selective regimes in P. berghei paralogs (continued). 

Gene ID B P-value ω- 
Prop. Sites 

- 
ωN Prop. Sites N ω+ Prop. Sites + Expression 

PBANKA_0514900 0.083 0.9299 0.0000 0.800 0.0000 0.007 4.2400 0.200 Vertebrate 

PBANKA_093240 0.039 1 0.2650 0.830 0.2660 0.160 146.0000 0.002 Vertebrate 

PBANKA_132170 0.04 1 0.0000 0.660 0.6990 0.300 0.7760 0.036 Vertebrate 

PBANKA_101610 0.113 1 0.0000 0.780 0.0000 0.001 3.2600 0.220 Vertebrate 

PBANKA_130280 0.012 1 0.1370 0.510 0.1390 0.150 0.1370 0.340 Vertebrate 

PBANKA_143080 0.031 1 0.0197 1.000 0.1230 0.000 0.1390 0.000 Vertebrate 

PBANKA_051970 0.013 1 0.5020 0.530 0.5010 0.000 0.5010 0.470 Vertebrate 

PBANKA_120480 0.02 1 0.0574 0.000 0.0581 0.910 0.0586 0.090 Vertebrate 

PBANKA_101450 0.02 1 0.1660 0.000 0.2580 1.000 0.1580 0.000 Vertebrate 

PBANKA_103440 0.033 1 1.0000 0.880 0.9030 0.000 122.0000 0.120 Vertebrate 

PBANKA_081860 0.032 1 0.0159 1.000 0.1330 0.000 0.1420 0.000 Vertebrate 

PBANKA_114020 0.017 1 0.0250 1.000 0.0243 0.000 15.9000 0.004 Vertebrate 

PBANKA_052290 0.041 1 0.0942 0.670 0.2310 0.330 13.1000 0.003 Vertebrate 

PBANKA_130300 0.149 1 0.1330 1.000 0.1330 0.003 3330.0000 0.001 Vertebrate 

PBANKA_122020 0.047 1 0.2540 0.000 0.2860 1.000 0.1600 0.000 Vertebrate 

PBANKA_110140 0.086 0.1805 1.0000 0.890 1.0000 0.042 24.7000 0.071 Vertebrate 

PBANKA_041080 0.031 1 0.0628 0.840 1.0000 0.045 1.7700 0.110 Vertebrate 

PBANKA_131220 0.038 1 0.0764 0.000 0.0955 1.000 0.0952 0.000 Vertebrate 

PBANKA_030480 0.044 1 0.0000 0.680 1.0000 0.062 1.0500 0.260 Vertebrate 

PBANKA_030490 0.035 1 0.1840 1.000 0.1670 0.000 0.1020 0.000 Vertebrate 

PBANKA_030500 0.052 1 0.0000 0.420 0.8260 0.440 0.7930 0.140 Vertebrate 

PBANKA_030510 0.041 1 0.0058 0.770 0.7890 0.000 2.4000 0.230 Vertebrate 

PBANKA_061540 0.022 1 0.1070 1.000 0.0987 0.000 0.1060 0.000 Vertebrate 

PBANKA_143170 0.013 1 0.3390 0.000 0.3560 0.000 0.3390 1.000 Vertebrate 

PBANKA_091880 0.024 1 0.0000 0.960 0.0000 0.011 4.6800 0.027 Vertebrate 

PBANKA_082630 0.027 1 0.1050 0.000 0.1160 0.530 0.1180 0.470 Vertebrate 

PBANKA_132090 0.011 1 0.1170 0.280 0.1640 0.630 0.2780 0.089 Vertebrate 

PBANKA_070360 0.042 1 0.0696 0.000 0.0783 0.000 0.0748 1.000 Vertebrate 

PBANKA_123140 0.041 1 0.1800 0.000 0.1650 0.000 0.1650 1.000 Vertebrate 

PBANKA_041770 0.016 1 0.0000 1.000 0.0008 0.000 0.1260 0.000 Vertebrate 

PBANKA_052270 0.027 1 0.0000 0.910 0.0000 0.089 0.1260 0.000 Vertebrate 

PBANKA_080600 0.027 1 0.0631 0.360 0.0643 0.640 0.0687 0.000 Vertebrate 

PBANKA_142490 0.016 1 0.0000 0.830 0.0000 0.170 0.1180 0.000 Vertebrate 

PBANKA_135840 0.014 1 0.0000 0.950 0.0008 0.000 8.7200 0.047 Vertebrate 

PBANKA_102970 0.034 1 0.0000 0.980 1.0000 0.019 0.1030 0.000 Vertebrate 

PBANKA_070440 0.095 0.0106 0.0000 0.900 0.8350 0.000 6.3500 0.100 Vector 

PBANKA_101480 0.049 1 0.0824 1.000 0.0900 0.000 0.0504 0.000 Vector 

PBANKA_051100 0.021 1 0.2550 0.320 0.2550 0.680 0.1780 0.000 Vector 

PBANKA_094320 0.032 1 0.0875 1.000 0.0675 0.000 0.1110 0.000 Vector 

PBANKA_040820 0.012 1 0.0205 0.750 0.0227 0.250 0.1180 0.000 Vector 

PBANKA_134780 0.009 1 0.8910 0.000 1.0000 0.120 10000.0000 0.880 Vector 

PBANKA_131430 0.017 1 0.2450 0.530 0.2610 0.000 0.2460 0.470 Vector 

PBANKA_131350 0.039 1 0.0945 0.700 0.0999 0.047 0.1050 0.250 Vector 

PBANKA_111920 0.038 1 0.9810 0.000 0.2130 0.000 1.1000 1.000 Vector 

PBANKA_133230 0.025 1 0.1820 1.000 0.1790 0.000 0.1250 0.000 Vector 

PBANKA_142920 0.02 1 0.6200 0.920 0.5950 0.000 0.6250 0.083 Vector 

PBANKA_061590 0.021 1 0.2260 0.920 0.3560 0.020 1.2000 0.063 Vector 

PBANKA_130970 0.017 1 0.0476 0.520 0.0231 0.000 0.0482 0.480 Vector 

PBANKA_051200 0.009 1 0.2270 0.400 0.2270 0.600 0.0871 0.000 Vector 

PBANKA_124300 0.016 1 0.1230 1.000 0.0926 0.000 0.0536 0.000 Vector 

PBANKA_146070 0.042 1 0.1760 1.000 0.1560 0.000 0.1230 0.000 Vector 

PBANKA_123820 0.024 1 0.1210 1.000 0.1160 0.000 0.7630 0.000 Vector 

PBANKA_080430 0.018 1 0.1290 1.000 0.1190 0.000 0.1090 0.000 Vector 

PBANKA_021400 0.016 1 0.0912 1.000 0.1410 0.000 0.1050 0.000 Vector 

PBANKA_050730 0.011 1 0.0318 0.910 0.6040 0.058 0.5660 0.032 Vector 

PBANKA_092540 0.015 1 0.0883 0.840 0.0888 0.160 0.1820 0.000 Vector 

PBANKA_041610 0.018 1 0.0204 1.000 0.0186 0.000 0.1190 0.000 Vector 

PBANKA_010120 0.021 1 0.0523 0.890 0.0553 0.000 0.0543 0.110 Vector 

PBANKA_093150 0.016 1 0.0385 1.000 0.5050 0.000 0.2600 0.000 Vector 

PBANKA_102340 0.022 1 0.0489 0.650 0.0510 0.350 0.1230 0.000 Vector 

PBANKA_071190 0.023 1 0.0000 1.000 0.0008 0.000 0.1220 0.000 Vector 

PBANKA_071290 0.021 1 0.0000 1.000 0.2210 0.000 0.1350 0.000 Vector 

PBANKA_083480 0.039 1 0.2150 0.410 0.2170 0.590 0.2910 0.000 Vector 

PBANKA_131130 0.041 1 0.2710 0.000 0.3090 0.740 0.3060 0.260 Vector 

PBANKA_120200 0.021 1 0.1720 1.000 0.1700 0.000 0.1240 0.000 Vector 

PBANKA_132050 0.017 1 0.0974 0.200 0.1270 0.000 0.1020 0.800 Vector 

PBANKA_020270 0.025 1 0.1710 0.250 0.1400 0.000 0.1710 0.750 Vector 

PBANKA_145330 0.03 1 0.0539 0.970 0.9120 0.029 0.2630 0.000 Vector 

PBANKA_122030 0.032 1 0.0000 0.930 0.0000 0.015 2.7700 0.057 Vector 
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Table S4-5. Distribution of strength and proportion on sites under three different 

selective regimes in P. berghei paralogs (continued). 

Gene ID B P-value ω- 
Prop. Sites 

- 
ωN Prop. Sites N ω+ Prop. Sites + Expression 

PBANKA_071400 0.027 1 0.0430 0.610 0.0430 0.390 0.0411 0.000 Vector 

PBANKA_093950 0.018 1 0.0191 0.920 0.0192 0.084 0.1180 0.000 Vector 

PBANKA_051170 0.014 1 0.2670 1.000 0.2230 0.000 0.2410 0.000 Vector 

PBANKA_143270 0.028 1 0.2540 0.980 0.2540 0.013 25.8000 0.007 Vector 

PBANKA_124210 0.032 1 0.1650 1.000 0.1790 0.000 0.1230 0.000 Vector 

PBANKA_061670 0 1 0.0008 0.770 0.2190 0.200 0.1440 0.028 Vector 

PBANKA_124070 0.012 1 0.0000 1.000 0.2000 0.000 0.1250 0.000 Vector 

PBANKA_081190 0.013 1 0.0277 0.950 0.1180 0.008 0.0794 0.046 Vector 

PBANKA_122250 0.031 1 0.0377 1.000 0.0923 0.000 0.0912 0.000 Vector 

PBANKA_051760 0.015 1 0.1050 0.310 0.1050 0.690 0.0681 0.000 Vector 

PBANKA_132910 0.051 1 0.0668 1.000 0.0669 0.000 253.0000 0.004 Vector 

PBANKA_040970 0.021 1 0.0274 0.350 0.0282 0.520 0.0279 0.130 Vector 

PBANKA_081070 0.067 1 0.0614 1.000 0.1980 0.000 24.5000 0.000 Vector 

PBANKA_144530 0.02 1 0.0000 0.940 0.0000 0.043 4.0600 0.013 Vector 

PBANKA_112980 0.032 1 0.0322 0.900 0.8940 0.028 2.0600 0.075 Vector 

PBANKA_103010 0.019 1 0.0168 1.000 0.1440 0.000 1.3100 0.000 Generalist 

PBANKA_101160 0.023 1 0.0000 0.890 0.0000 0.041 3.5900 0.073 Generalist 

PBANKA_090520 0.025 1 0.0607 1.000 0.0224 0.000 0.0114 0.000 Generalist 

PBANKA_145960 0.021 1 0.1560 0.820 0.1560 0.000 0.1540 0.180 Generalist 

PBANKA_010830 0.035 1 0.0000 0.980 0.0000 0.006 4.9100 0.014 Generalist 

PBANKA_093130 0.029 1 0.0425 0.980 0.0452 0.009 12.1000 0.011 Generalist 

PBANKA_031240 0.034 1 0.0054 0.980 0.0836 0.009 2.1600 0.006 Generalist 

PBANKA_API0028 0.019 1 0.0000 0.980 0.0000 0.003 6.8000 0.012 Generalist 

PBANKA_070210 0.034 1 0.1190 0.770 0.1210 0.230 0.1110 0.000 Generalist 

PBANKA_121370 0.017 1 0.1390 0.520 0.1410 0.480 0.1160 0.000 Generalist 

PBANKA_131890 4E-04 1 0.0000 1.000 0.1050 0.000 0.0903 0.000 Generalist 

PBANKA_102620 0.031 1 0.0843 0.510 0.0846 0.490 0.1210 0.000 Generalist 

PBANKA_083320 0.029 1 0.0924 0.860 0.0929 0.000 0.0929 0.140 Generalist 

PBANKA_122800 0.026 1 0.2180 1.000 0.1870 0.000 0.1920 0.000 Generalist 

PBANKA_061360 0.013 1 0.4680 0.150 0.4680 0.140 0.4680 0.700 Generalist 

PBANKA_051410 0.037 1 0.0129 1.000 0.1700 0.000 0.1420 0.000 Generalist 

PBANKA_140770 0.017 1 0.0827 1.000 0.0896 0.000 0.0847 0.000 Generalist 

PBANKA_142720 0.005 1 0.1130 0.890 0.7290 0.000 0.1140 0.110 Generalist 
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Figure S4-1. Bayesian Inference (BI) and Maximum Likelihood (ML) trees showed almost identical topologies, so 

only BI topology is shown. Asterisks (*) indicate conflicting branching patterns. Posterior probabilities (PP) and 

bootstrap values (BV) are shown next to the phylogenetic tree nodes (PP/BV). Paralogs identities are indicated by a 

combination of the species name and PlasmoDB identification numbers. The name of each multigene family is 

indicated at the bottom of each tree. The number of sequences and nucleotide positions varied among aligned multigene 

families. The most informative nucleotide substitution model was estimated for each multigene family alignment. 
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Figure S4-2. Bayesian Inference (BI) and Maximum Likelihood (ML) trees showed almost identical topologies, so 

only BI topology is shown. Asterisks (*) indicate conflicting branching patterns. Posterior probabilities (PP) and 
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bootstrap values (BV) are shown next to the phylogenetic tree nodes (PP/BV). Paralogs identities are indicated by a 

combination of the species name and PlasmoDB identification numbers. The name of each multigene family is 

indicated at the bottom of each tree. The number of sequences and nucleotide positions varied among aligned multigene 

families. The most informative nucleotide substitution model was estimated for each multigene family alignment. 
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Figure S4-3. Bayesian Inference (BI) and Maximum Likelihood (ML) trees showed almost identical topologies, so 

only BI topology is shown. Asterisks (*) indicate conflicting branching patterns. Posterior probabilities (PP) and 

bootstrap values (BV) are shown next to the phylogenetic tree nodes (PP/BV). Paralogs identities are indicated by a 

combination of the species name and PlasmoDB identification numbers. The name of each multigene family is 

indicated at the bottom of each tree. The number of sequences and nucleotide positions varied among aligned multigene 

families. The most informative nucleotide model was estimated for each multigene family alignment. Branches under 

significant episodic selection are marked in red. Paralogs names are indicated in red fonts when terminal branches 

showed significant signs of episodic selection. The strength of the selective signal (ω) and the percentage of positively 

selected sites are shown alongside branches under episodic selection. 

 

 


