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ABSTRACT 

The most abundantly studied societies, with the exception of humans, are those of 

the eusocial insects, which include all ants. Eusocial insect societies are typically 

composed of many dozens to millions of individuals, referred to as nestmates, which 

require some form of communication to maintain colony cohesion and coordinate the 

activities within them. Nestmate recognition is the process of distinguishing between 

nestmates and non-nestmates, and embodies the first line of defense for social insect 

colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues 

found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons 

(CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain 

colony identity. In this dissertation, I investigate how nestmate recognition is influenced 

by evolutionary, ontogenetic, and environmental factors. First, I contributed to the 

sequencing and description of three ant genomes including the red harvester 

ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in 

nestmate cues may be shaped through evolution by comparatively studying a family of 

genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, 

across seven ant species in comparison with other social and solitary insects. Then, I 

tested how genetic, developmental, and social factors influence CHC profile variation 

in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study 

of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) 

I explored how larger-scale genetic variation in the P. barbatus species complex 

influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste 

determining lineages); and (3) I experimentally examined how CHC development is 
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influenced by an individual’s social environment. In the final part of my work, I resolved 

discrepancies between previous findings of nestmate recognition behavior in P. 

barbatus by studying how factors of territorial experience, i.e., spatiotemporal 

relationships, affect aggressive behaviors among red harvester ant colonies. Through this 

research, I was able to identify promising methodological approaches and candidate 

genes, which both broadens our understanding of P. barbatus nestmate recognition 

systems and supports future functional genetic studies of CHCs in ants. 
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CHAPTER 1 

INTRODUCTION 

Eusociality, Chemical Communication, and Nestmate Recognition 

The most abundantly studied societies (with the exception of humans) are those of the 

highly social, or ‘eusocial,’ insects, which include all ants and termites, as well as some 

bees and wasps. Eusociality is defined by three qualities (1) concentration of reproductive 

functions to a limited number of group members, (2) overlap between adult generations 

within a group such that parents receive some form of support from offspring, and (3) 

cooperation between non-reproductive or less reproductive group members to care for 

young and contribute to other labor (Wilson 1971). Given these conditions, the societies 

of eusocial insects require some form of communication to maintain group (i.e., colony) 

cohesion, identify roles of reproductive and non-reproductive members, and coordinate 

activities between them. In eusocial insects, communication systems take on many forms 

including: visual, tactile, auditory, vibrational, and chemical. 

Social communication occurs when the actions of one organism affects the 

probability pattern of behavior in another, conspecific organism in an adaptive manner 

(Wilson 1975). As such, insect societies must efficiently coordinate communication 

signals in space and time so that they can effectively exploit and defend the resources 

necessary for colony growth and reproduction. Ants, in particular, are known for their 

highly developed systems of communication, which are significantly mediated through 

chemical signals and cues, i.e., pheromones (Hölldobler 1978). Similar to many solitary 

insects, the pheromones of ants can function as releasers of alarm behavior, sexual 

attraction, and recruitment. Importantly, however, because of their eusocial lifestyle ants 
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additionally use these chemical signals and cues to maintain colony organization and 

identity. 

The capacity to identify in-groups and out-groups is a precondition of sociality 

that necessarily entails the operation of a complex communication system. Eusocial 

insects ostensibly distinguish between species (e.g., predators and prey, friends and foes), 

potential mates (e.g., populations, genetic lineages), kin, colonies, castes, and individuals. 

Furthermore, communication among most eusocial insects (with the exception of 

unicolonial species) implies a further layer of complexity insofar as some form of colony 

recognition is necessary to deter members of nearby colonies from entering and 

exploiting neighbor colonies (Hölldobler & Wilson 1990). This phenomenon, commonly 

referred to as nestmate recognition in eusocial insects, allows nestmates to collectively 

establish a territory from which they acquire resources vital for colony survival and 

reproduction, by competing with and effectively excluding non-nestmates from inter- and 

intra-specific colonies. 

 

The Regulation of Nestmate Recognition 

Social communication and nestmate recognition in eusocial insects is considered an 

essential component of the “extended phenotype” of a colony (Dawkins 1982). Eusocial 

insect colonies must compete for resources, and their ability to compete, which partly 

depends on their ability to recognize and communicate with colony members, has some 

genetic basis. Success in resource competition means finding the right balance between 

maximizing a colony’s resource acquisition through optimal foraging strategies, and 

minimizing resource exploitation by non-nestmates through defense of territories. Social 
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insect colonies that employ the most economical combination of these strategies will 

ensure the best success in maximizing their reproductive output potential, and therefore 

the inclusive fitness of all colony members. This results in passing down some part of the 

colony’s nestmate recognition and communication (i.e., “extended”) phenotype through 

the colony-level genotype (Hölldobler 1999; Reeve & Hölldobler 2007). 

Recognition may occur relatively quickly, using a variety of cues, expressed 

under a range of conditions, including exchanges between both inter- and intra-specific 

individuals (Crozier & Pamilo 1996). The predominant medium of recognition cues in 

eusocial insects is thought to be chemical substances; indeed, eusocial insects have been 

described as “walking chemical factories” precisely because they synthesize such a wide 

range of compounds for social communication and other functions (Hölldobler & Wilson 

1990). The prevailing nestmate recognition model proposes that eusocial insects perceive 

recognition cues through a neuronal template matching system in which the detected cue 

is compared with an internal colony odor template, and unfamiliar cues are responded to 

differently than familiar ones (Lacy & Sherman 1983; Crozier 1987; Breed 1998; Lenoir 

et al. 1999; Starks 2004; Loenhardt et al. 2007). Once an individual encounters an 

unfamiliar recognition cue, they then react to that cue, most visibly, in the form of an 

overt, often agonistic, behavior; however, some subtler behavioral reactions can also 

occur that may initially go unnoticed to human observers (Breed 2003). Furthermore, 

these behavioral responses may vary according to the circumstances under which a cue is 

encountered (Reeve 1989; Buczkowski & Silverman 2005; Tanner & Adler 2009; Bos et 

al. 2010). When the recognition process functions adaptively, nestmates are accepted and 

allowed to move freely within a colony and its territory, engaging in behaviors such as 
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foraging, brood care, trophallaxis, allogrooming, etc. By contrast, non-nestmates are 

rejected, and subject to behaviors including: avoidance, prolonged antennation, threat 

displays, physical removal, or attacking behaviors such as biting, stinging, and excreting 

defense chemicals (Wilson 1971). At stake, is the potential life or death of the 

superorganism. 

 

Territoriality and Defense Behavior 

Usually the worker caste carries out defense of colony territories. Many insect societies 

have unique castes for this purpose, which may be morphologically and/or behaviorally 

distinct, e.g., ‘soldiers’ in termites and some ants, ‘guards’ in many social bees and 

wasps, and ‘patrollers’ in harvester ants (Wilson 1971; Gordon 1987). These castes help 

occupy and maintain territorial boundaries through a combination of aggressive and 

passive defense methods (Wilson 1971). In ants, the methods and intensity of defense 

may vary widely between species and context: intruder type (heterospecific, conspecific, 

etc.), habitat, resource availability, season, colony density, colony age and size, and 

reproductive status. As a result, the ways in which ants defend their colony territories can 

range from relatively passive, as seen in crazy ants, Paratrechina longicornis, who 

primarily avoid confrontations when faced with intruders, to the overtly aggressive 

behaviors observed in numerous ant species when attacking intruders and competitors; in 

a dramatic example, it is not uncommon for pavement ants, Tertamorium caespitum, to 

leave hundreds or thousands of individuals dead in the wake of territorial battles 

(Hölldobler & Wilson 1990). As a strategy for avoiding such mutually harmful 

confrontations, some ants are also thought to use chemical cues to demarcate territory, as 
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observed in the chemically marked spaces surrounding some Pogonomyrmex (Hölldobler 

1976; Gordon 1984; Sturgis et al. 2011), Oecophylla (Hölldobler & Wilson 1977), 

Messor (Grasso et al. 2005), and Lasius (Lenoir et al. 2009) territories. The primary form 

of territorial and nest defense, however, is the ants’ ability to recognize and respond to 

potential inter- and intra-specific intruders. 

 

Nestmate Recognition Cues 

Over the past few decades, with advances in chemical detection and analyses, biologists 

have come to a consensus that communication among eusocial insects (and particularly 

ants) is predominantly olfactory in nature (Hölldobler 1999). Furthermore, colony 

recognition in ants is widely thought to occur through chemical cues found on the bodies 

of individuals. These cues, called cuticular hydrocarbons (CHCs) (Lahav et al. 1999; 

Wagner et al. 2000; Akino et al. 2004; Ozaki et al. 2005; Martin et al. 2008), may also 

coincide with other organic compounds such as aldehydes, alcohols, fatty acids, ketones, 

and esters (reviewed by Richard & Hunt 2013). However, CHCs are distinctly associated 

with colony recognition insofar as these compounds comprise the overwhelming majority 

of cuticular profiles (reviewed by Martin & Drijfhout 2009). Colony recognition cues 

have been shown to be complex mixtures of the intrinsic chemical profiles of all workers 

(Hölldobler & Michener 1980; van Zweden et al. 2009), the queen (Carlin & Hölldobler 

1986; Liebig et al. 2000), and the environment (Liang & Silverman 2000; Tissot et al. 

2001, Wagner et al. 2001). The result of the combination of different cues is a gestalt 

odor that is generally thought to be unique from one colony to another (Crozier & Dix 

1979).  
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Insect CHCs are synthesized in specialized cells called oenocytes during adult 

developmental stages (reviewed by Martins & Ramalho-Ortigão 2012). After 

biosynthesis, the CHCs are then transported from oenocytes via hemolymph lipophorins, 

and delivered to the cuticular surface (reviewed by Schal et al. 1998), or in the case of 

ants, transported into the postpharyngeal gland for storage and distribution (Soroker et al. 

1994; Blomquist & Vogt 2003; Lucas et al. 2004). The gestalt colony odor arises, in part, 

from the combined contribution of each individual’s innately developed CHCs. 

Individual ants may distribute CHCs during selfgrooming, allogrooming, trophallaxis, 

and direct body contact (Soroker et al. 1995; Lahav et al. 1998; Dahbi et al. 1999; Hefetz 

et al. 2001; Ichinose & Lenoir 2009). Each of these functions help to generate a 

homogenized colony wide recognition cue. 

To date, nearly 1,000 CHC compounds including: n-alkanes, methylalkanes, 

alkenes and, to a lesser extent, methylalkenes have been identified across 78 ant species 

studied (Martin & Drijfhout 2009). Ant CHC compounds are typically odd-numbered and 

19-35 carbons in length; however, several studies have found evidence of ants with 

longer-chain CHCs in the C37-C47 range (Nelson et al. 2001; Akino 2006). The 

preponderance of CHCs documented on insect cuticles, including ants, are n-alkanes and 

mono-methylalkanes (Martin & Drijfhout 2009) (Table 1.1). 

Given their ubiquity in insects, hydrophobic properties, and their flexible, solid-

liquid phase transition state (Gibbs 1995; Gibbs & Pomonis 1995), cuticular n-alkanes 

and mono-methylalkanes are most often associated with the function of maintaining 

water balance (Gibbs 1998). Ants (and many other insects), however, show an abundance 

of other CHC compound-classes – e.g., di-, tri-, and tetra- methylalkanes as well as 
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mono-, di- and tri- alkenes – and evidence suggests that this otherwise unexplained 

complexity is important for facilitating the recognition systems of eusocial insects (Lucas 

et al. 2005; Dani et al. 2001; Meskali et al. 1995; Martin et al. 2008, van Wilgenburg et 

al. 2011; but see Greene & Gordon 2003; Greene & Gordon 2007). Yet despite such 

detailed studies into the roles of CHCs in eusocial insect chemical communication, little 

is known about genetic basis of CHCs and the genetic architecture of colony recognition 

molecules. What is known, however, indicates a strong correlation between the genetic 

relatedness of individuals and their CHC profile similarity (Espelie et al. 1994; Vander 

Meer & Morel 1998; Vasquez et al. 2009; Drescher et al. 2010; Nehring et al. 2011). 

 

Cuticular Hydrocarbon Variation 

Generally, CHC compounds vary qualitatively between ant species, with some degree of 

interspecific overlap in the types of compounds present. Some of the ‘simplest’ ant CHC 

profiles identified to date have been reported in studies of Formica exsecta and Formica 

hayashi, both of which possess only 9 types of CHCs in some populations (Akino et al. 

2002; Martin et al. 2008), while many ant species show more complex CHC profiles and 

typically possess 50-60 CHC compounds (Martin & Drijfhout 2009). When comparing 

samples from within a species, however, variation is mainly quantitative (Martin & 

Drijfhout 2009). Accordingly, CHC variation among caste groups at the colony level 

usually demonstrate a difference of degree (quantity), rather than kind (quality). For 

example, reproductive castes may exhibit higher quantities of certain CHCs that are 

otherwise also present in other castes, albeit in smaller quantities (Monnin et al. 1998; 

Liebig et al. 2000, Denis et al. 2006; Lommelen et al. 2006; Smith et al. 2009). 
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Considered from the standpoint of individual development (ontogeny), however, CHCs 

follow a slightly different pattern wherein different developmental stages may be 

characterized by qualitatively distinctive profiles. For example, young callows register 

low quantities of CHCs, in general, and occasionally exhibit callow specific compounds 

(Dahbi et al. 1998; Ichinose & Lenoir 2009). Gradually, however, the individual callow 

proceeds to maturity and develops or acquires a CHC profile that is concurrent with the 

given species, colony, and caste (Ichinose & Lenoir 2009). Furthermore, colony-level 

development may also contribute to CHC variation such that smaller (typically younger) 

colonies can be more strongly influenced by the queen’s (or queens’) profile(s) (Carlin & 

Hölldobler 1983, 1986; but see Crosland 1990; Lahav et al. 1998), or colony CHC 

profiles may change as colonies grow larger (Endler et al. 2006), and in the case of 

colony fissions, queen loss can also affect colony CHC profiles (Ichinose et al. 2009). 

Another dimension of eusocial insect CHC variation comes from genetic variation 

within and between colonies. For example, intra-colonial genetic variation can result 

when queens have mated with multiple males (i.e., polyandry), or when multiple queens 

live in colonies together (i.e., polygyny), and the resultant workers produced from 

different patrilines/matrilines show CHC differences that strongly correlate with their 

respective parentage (Page et al. 1991; Arnold et al. 1996; Boomsma et al. 2003; Dani et 

al. 2004; Nehring et al. 2011; van Zweden et al. 2011). Furthermore, comparisons 

between colonies with high genetic relatedness (e.g., monoandrous/monogynous) show 

more similar CHC patterns than comparisons between colonies with low relatedness (e.g., 

polyandrous and/or polygynous) (Vander Meer & Morel 1998; Vasquez et al. 2009; van 

Zweden et al. 2011). Findings such as these, although not directly connected to the roles 
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of specific genes, show the significant influence of genetic variability on nestmate 

recognition cues. 

Finally, a large variety of other life history and environmental factors may also 

contribute to CHC variation. Colony CHC patterns can vary with season (Nielsen et al. 

1999; Liu et al. 2001), temporal differences (Vander Meer et al. 1989), nesting 

conditions (Heinze et al. 1996; Tissot et al. 2001), and food sources (Liang & Silverman 

2000; Richard et al. 2004). Additional factors may include microbial endosymbionts, 

which have been demonstrated to affect nestmate recognition behaviors in termites 

(Matsuura 2001), and larger scale biological symbioses such as insect mutualisms and 

social parasitisms. The specific influences of symbiotic organisms on eusocial insect 

CHC patterns, however, are not yet known. Consequently, when attempting to uncover 

the genetic bases of CHC variation, it is important to consider and/or control for these 

and other factors, which can have confounding effects on eusocial insect CHC patterns. 

 

The Red Harvester Ant, Pogonomyrmex barbatus 

In identifying a model system to study the evolution of eusocial insect nestmate 

recognition I first consider a number of features, i.e., measurable variation in nestmate 

recognition behavior, a good foundational understanding of the recognition cues, and the 

availability of genetic tools. Given this, my research on nestmate recognition primarily 

uses Pogonomyrmex barbatus, a species of harvester ant distributed throughout the 

desert-southwest of United States and Mexico. Aside from its accessibility throughout 

Arizona and my ability to rear colonies in the laboratory, P. barbatus makes an ideal 

study system of nestmate recognition for several reasons. First, P. barbatus is highly 
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aggressive and territorial between neighboring colonies along foraging trails (Hölldobler 

1974), indicating strong selection for an effective means of recognizing and maintaining 

colony identity and boundaries. Second, CHCs in this species have been documented as 

influencing both colony recognition and task-group differentiation (Wagner et al. 1998, 

Wagner et al. 2000). Third, the recently completed genome for P. barbatus (Smith et al. 

2011b) as well as six other ant species comprising four sub-families (Bonasio et al. 2010; 

Nygaard et al. 2011; Smith et al. 2011a; Suen et al. 2011; Wurm et al. 2011) provide the 

necessary and heretofore unavailable tools for exploring the evolution and genetic basis 

of CHCs in eusocial insects.  

Although certain key features of nestmate recognition have already been 

identified in P. barbatus (i.e., the role of CHCs, colony aggression and territoriality, as 

previously noted), several important attributes have yet to be examined, including: 

genetic bases for CHC variation, CHC ontogeny, as well as the effects of intercolony 

dynamics and prior experience on aggressive behavior and nestmate recognition. Given 

this, my work offers a better understanding of the nestmate recognition system in           

P. barbatus, and helps identify methodological approaches and candidate desaturase 

genes involved in CHC alkene biosynthesis; how these genes are evolving, and how they 

affect nestmate recognition cues are also questions I investigated in this dissertation. My 

research, presented below, provides a better understanding of nestmate recognition in     

P. barbatus using a combination of approaches and techniques, namely: comparative 

genomics, genetics, developmental, chemical, and behavioral ecology. 
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Overview 

In this dissertation, I researched how nestmate recognition is influenced by evolutionary, 

genetic, ontogenetic, and behavioral factors, with a special focus on the red harvester ant, 

Pogonomyrmex barbatus. As a first step to investigating evolutionary and genetic 

components of nestmate recognition, I present a detailed description of the sequenced 

genome of P. barbatus (Chapter 2). Next, I studied how variation in nestmate cues may 

be shaped through evolution by comparatively studying a family of genes involved in 

fatty acid and hydrocarbon biosynthesis. I investigated these genes, the acyl-CoA 

desaturases, across seven ant species in comparison with other social and solitary insects 

(Chapter 3). After identifying over 170 CHC-related candidate genes in ants, I then tested 

how genetic, developmental, and social factors influence CHC profile variation in          

P. barbatus, through a three-part study. In this research I explored: (1) how genetic 

variation in the P. barbatus species complex influences CHC variation across two 

genetically isolated lineages (i.e., J1 and J2 genetic caste determining lineages); (2) how 

desaturase gene expression correlates with CHC variation in P. barbatus workers and 

queens; and (3) how CHC profile development is influenced by an individual’s social 

environment (Chapter 4). In the final part of my work, I resolved discrepancies between 

previous findings of nestmate recognition behavior in P. barbatus by studying how 

factors of territorial experience, i.e., spatiotemporal relationships such as colony 

proximity and seasonality, affect aggressive behaviors among red harvester ant colonies 

(Chapter 5). In my final chapter (6), I summarize how this work broadens our 

understanding of P. barbatus nestmate recognition systems and supports future functional 

genetic studies of CHCs in ants. 
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Table 1.1. The classes, structures, numbers, and frequencies (% distribution) of cuticular 
hydrocarbons found in 78 ant species reviewed to date (modified from Martin & 
Drijfhout 2009). 
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CHAPTER 2 

A DRAFT GENOME OF THE RED HARVESTER ANT, POGONOMYRMEX 

BARBATUS: A MODEL FOR REPRODUCTIVE DIVISION OF LABOR AND 

SOCIAL COMPLEXITY 

Abstract 

We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. 

The genome was sequenced using 454 pyrosequencing, and the current assembly and 

annotation were completed in less than one year and for under $100,000. Analyses of 

conserved gene groups (more than 1200 manually annotated genes to date) suggest a high 

quality assembly and annotation comparable to recently sequenced insect genomes using 

Sanger sequencing. The red harvester ant is a model for studying reproductive division of 

labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is 

similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC 

content and compositional organization, and possesses a complete CpG methylation 

toolkit, its predicted genomic CpG content differs markedly from the other 

hymenopterans. Gene networks involved in generating key differences between the queen 

and worker castes (e.g., wings and ovaries) show signatures of increased methylation and 

suggest that ants and bees may have independently co-opted the same gene regulatory 

mechanisms for reproductive division of labor. Gene family expansions (e.g., 343 

functional odorant receptors) and pseudogene accumulation in chemoreception and P450 

genes compared to A. mellifera and N. vitripennis are consistent with major life history 

changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the 

development of the North American deserts. Future comparisons with other ant and 
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social insect genomes will provide insights into novel and shared molecular mechanisms 

for the evolution of sociality, as well as ecological adaptation. 

 

Introduction 

The formation of higher-level organization from independently functioning elements has 

resulted in some of the most significant transitions in biological evolution (Maynard 

Smith & Szathmáry 1995). These include the transition from prokaryotes to eukaryotes 

and from uni- to multicellular organisms, as well as the formation of complex animal 

societies with sophisticated division of labor among individuals. In eusocial insects such 

as ants, distinct morphological castes specialize in either reproduction or labor 

(Hölldobler & Wilson 1990). Currently, very little is known of the genetic basis of caste 

and reproductive division of labor in these societies, where individuals follow different 

developmental trajectories, much like distinct cell lines in an organism (Smith et al. 

2008). The resulting phenotypes, queens and workers, can differ greatly in morphology, 

physiology and behavior, as well as having orders of magnitude differences in lifespan 

and reproductive potential (Hölldobler & Wilson 1990). Ants, of all social insects, 

arguably exhibit the highest diversity in social complexity, such as queen number, mating 

frequency, and the degree of complexity of division of labor (Hölldobler & Wilson 

1990), and most social traits have independent origins within the ants, making them well 

suited to comparative genomic analyses.  

The sequencing of the honey bee (Apis mellifera) genome marked a milestone in 

sociogenomics (Robinson et al. 2005; HBGSC 2006), facilitating research on the 

evolution and maintenance of sociality from its molecular building blocks. Since then, 
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genomes of three closely related species of solitary parasitic hymenopterans, Nasonia 

spp., were published and similarities and differences were extensively discussed in the 

context of the evolution of eusociality (Werren et al. 2012). However, A. mellifera 

represents only one of at least 10 independent evolutionary origins of eusociality within 

the order Hymenoptera (Hines et al. 2007; Brady et al. 2006a; Brady et al. 2006b; 

Schwarz et al. 2007; Moreau et al. 2006), and thus it remains unclear whether differences 

between the honey bee and Nasonia spp. truly reflect differences inherent to sociality. 

With at least six ant genomes on the horizon (Smith et al. 2010), among other solitary 

and social insects, sociogenomic comparisons are likely to yield exciting new insights 

into the common molecular basis for the social lifestyle. Ant genomics will also allow us 

to gain a better understanding of variation in social organization, elaborate variations of 

physical and behavioral division of labor, invasion biology, and convergent evolution of 

life histories and diets. It also remains a major question whether there are many 

evolutionary routes to eusociality, especially at the molecular level, or whether we can 

extract generalities and rules for the molecular evolution of eusociality (Smith et al. 

2008; Robinson et al. 2005; Toth & Robinson 2007). While it is likely that much 

variation in social structure is due to changes in the regulation of conserved pathways, it 

is undetermined what, if any, role novel genes or pathways have played in the solitary to 

social transition and diversification of social phenotypes (Page & Amdam 2007). 

 The genus Pogonomyrmex contains species that vary greatly in social 

organization (Johnson 2000), is among the best studied of ant genera (Taber 1998, 

Gordon 1999), is sister to almost all other genera in the diverse subfamily Myrmicinae 

(Brady et al. 2006a, Moreau et al. 2006), and contains species of major ecological 
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importance as granivores in both North and South America (Pirk et al. 2006, MacMahon 

et al. 2000). Colonies can contain over ten thousand workers, and a single multiply-mated 

queen that may live for decades. Some P. barbatus populations have a unique system of 

genetic queen-worker caste determination (Figure 2.1) where individuals are essentially 

hard-wired to develop as either queens or workers compared to environmentally 

determined diphenism (Anderson et al. 2008; Helms Cahan et al. 2002; Julian et al. 

2002; Cahan et al. 2004; SI Appendix, Chapter 1). As a consequence, individuals can be 

genotyped using genetic markers to determine their caste even prior to caste 

differentiation. This unique system of caste determination provides a means of studying 

the genes and regulatory networks employed in caste determination. 

The goals of this paper are to 1) demonstrate the quality of one of the first de novo 

genome assemblies of an eukaryotic species solely using pyrosequencing, and 2) present 

genomic and evolutionary findings derived from the red harvester ant (Pogonomyrmex 

barbatus) genome.  

 

Results and Discussion 

Genome coverage is 10.5-12X based on the estimates of genome size for Pogonomyrmex 

ants being 250-284 Mb (Tsutsui et al. 2008). The assembly consists of 4,646 scaffolds 

(mean contig/scaffold = 7.22) spanning 235 Mb (~88%) of the genome and harbors 220 

Mb (~83%) of DNA sequence (15 Mb are of gaps within scaffolds). The N50 scaffold 

size of the assembly is 793 kb and the largest scaffold is 3.8 Mb in length; the N50 contig 

size is 11.6 kb. The transcriptome assembly yielded 7,400 isogroups with a N50 contig 

size of 1.3 kb.  
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The MAKER annotation pipeline predicted 16,331 genes and 16,404 transcripts. 

InterProScan (Quevillon et al. 2005) identified additional genes from the in silico 

prediction programs, which were added to the MAKER predicted genes. The final official 

gene set, OGS1.1, which was used for computational analyses, consisted of 17,177 genes 

encoding 17,250 transcripts. Out of these, 7,958 (> 46%) had complete or partial EST 

support from the P. barbatus transcriptome assembly. The results of the assembly and 

annotation of the P. barbatus genome are well within the range of other insect genomes 

(Table 2.1). 

More than 1200 genes have been manually annotated to improve models 

generated by MAKER (SI Appendix, Chapter2) and were used in gene family centered 

analyses (see discussion below and SI Appendix, Chapters 3, 6-8, 14, and 16-29). There 

were two fundamentally different reasons for our choice of gene families. One set 

comprises highly conserved gene families for quality assessment (e.g., sequencing error, 

genome completeness) whereas the second set was based on biologically interesting 

functional groups associated with the evolution and regulation of social behavior or 

adaptations of P. barbatus to a desert seed-harvesting lifestyle. These manual annotations 

are included in the P. barbatus OGS1.2, which is being submitted to NCBI (Genome 

Project #45803, Assembly Project ID 45797, Transcriptome Project ID 46577), and is 

currently available, along with other data and tools, at the Hymenoptera Genome 

Database (http://HymenopteraGenome.org/pogonomyrmex). 
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Quality of genome assembly  

The core eukaryotic gene mapping approach (CEGMA) (Parra et al. 2007) provides a 

method to rapidly assess genome completeness because it comprises a set of highly 

conserved, single copy genes, present in all eukaryotes. In P. barbatus, 245 of the 248 

(99%) CEGMA genes were found and 229 of 248 were complete (92%). Cytoplasmic 

ribosomal protein genes are another highly conserved set of genes which are widely 

distributed across the physical genome in animals (Uechi et al. 2001; Marygold et al. 

2007). A full complement of 79 proteins was found within the P. barbatus genome 

encoded by 86 genes (SI Appendix, Chapter 6). Because ribosomal proteins are highly 

conserved, their manual annotation also provided an estimate of sequencing errors, such 

as frameshift-inducing homopolymers (a potential problem inherent to pyrosequencing) 

(Huse et al. 2007). Six erroneous frameshifts were found in ribosomal protein genes 

(only one homopolymer); extrapolating from the number of nucleotides encoding the 

ribosomal genes suggests that 1 in 7,200 coding nucleotide positions (0.014%) may be 

affected by frameshifts. Analyses of other highly conserved gene families, including the 

oxidative phosphorylation (Saraste 1999) pathway and the Hox gene cluster (Hughes & 

Kaufman 2002; Gellon & McGinnis 1998), also suggest high coverage and good genome 

assembly (SI Appendix, Chapters 7 and 8). Interestingly, the mitochondrial genome did 

not auto-assemble into scaffolds greater than 2 kb, but 71% of the mitochondrial genome 

could be manually assembled with the longest contig containing 5,835 bp (SI Appendix, 

Chapter 9; Dataset S1). The largest missing fragment of the mitochondrial genome is 

typically very high in AT content (96% in A. mellifera ligustica) (Crozier & Crozier 

1993) and may not have sequenced due to PCR biases. 
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In silico predicted gene models gain significant support through EST sequences. 

Another way to confirm predicted gene models is a proteomics approach, which has the 

additional benefit that it demonstrates that a gene is not only transcribed but also 

translated. A proteomic analysis of the poison gland and antennae confirmed 165 gene 

and protein models with at least 2 peptides (SI Appendix, Chapter 10). It also resulted in 

the identification of proteins likely associated with nest defense (poison gland) and 

chemoperception (antenna). 

Chromosomal coverage in the current draft assembly was assessed by the 

identification of telomeres. Most insects outside of the Diptera have telomeres consisting 

of TTAGG repeats. On the basis of karyotype data (n = 16), we expected 32 telomeres in 

P. barbatus (Taber et al. 1988). We searched the assembled genome and mate pair reads 

for TTAGG repeats and extended these where possible (Werren et al. 2010). In total, 27 

of the expected 32 telomeres (88%) were found (SI Appendix, Chapter 11). These 

telomeres are even simpler than those of A. mellifera (Robertson & Gordon 2006). While 

most other insect telomeres commonly include retrotransposon insertions, these seem to 

be absent from the telomeres of P. barbatus.  

 

Genome-wide analyses 

The mean GC content of the P. barbatus genome is 36.5% and the mean ratio of 

observed to expected CpG [CpG(o/e)] is 1.57, both of which are within the ranges 

reported for other Hymenoptera (HBGSC 2006; Werren et al. 2010). We define 

compositional domains as sequence stretches of variable lengths that differ widely in 

their GC compositions. A comparison of GC compositional-domain lengths among 



	

20 

insects shows that P. barbatus and A. mellifera have similar compositional domain-length 

distributions (SI Appendix, Chapter 4). Among the compared insect genomes, the 

hymenopterans have the smallest proportion (0.1-0.5%) of long compositional domains 

(> 100 kb) as well as the widest range in GC compositional domains. Similar to the other 

sequenced hymenopteran genomes, but in contrast to other insect orders, genes in           

P. barbatus occur in the more GC-poor regions of the genome. Although the mean 

CpG(o/e) values of hymenopteran genomes are among the highest observed, species-

specific patterns of CpG(o/e) within each genome are not consistent between the 

hymenopterans studied (Figure 2.2). The distribution of CpG(o/e) in P. barbatus exons is 

similar to insects without CpG methylation (although with greater variance) (Elango et 

al. 2009) and suggests little germ line methylation despite the presence of a complete 

methylation toolkit (see below and SI Appendix, Chapter 24). We used an indirect 

method [single nucleotide polymorphisms (SNP) frequency: CpG – TpG] and direct 

method [methylation-sensitive amplified fragment length polymorphism (AFLP) assay; 

SI Appendix, Chapter 4) to determine the presence and frequency of active CpG 

methylation in P. barbatus. We found that CpG/TpG (and vice versa) SNPs constitute 

84% of all CpG-to-NpG polymorphisms. This is an indirect measure of CpG methylation 

because it has been shown that a methylated cytosine in a CpG has a higher probability to 

mutate into thymine (SI Appendix, Chapter 30). The more direct measure of CpG 

methylation comes from an AFLP analysis that used methylation-sensitive and -

insensitive restriction enzymes. In a comparison of 209 individuals from every female 

and developmental caste, 33% of all AFLP fragments showed the signature of 

methylation (SI Appendix, Chapter 4). These findings suggest a role of DNA methylation 
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in genome regulation, but additional data are necessary to confirm these predictions and 

discern the biological role of DNA methylation in P. barbatus. 

  Gene ontology analyses detected significant enrichments in genes associated with 

sensory perception of smell, cognition, and neurological processes (SI Appendix, Chapter 

5). These enrichments may reflect the heavy reliance on chemical communication in ants. 

Consistent with this and detailed analyses of chemosensory and cytochrome P450 gene 

families (see below), a gene orthology analysis including Drosophila melanogaster,       

A. mellifera, and Nasonia vitripennis found expansions of genes involved in responses to 

chemical stimuli and electron transport. The orthology analysis also found a small 

fraction of genes (3.2% of those in the analysis) common to both social insects studied 

(SI Appendix, Chapter 5); these genes may be important in processes related to the 

evolution or maintenance of sociality.  

 

Repetitive DNA 

Previous results for the A. mellifera (HBGSC 2006) and N. vitripennis (Werren et al. 

2010) genomes illustrate two extreme cases of genomic repeat composition for 

Hymenoptera: A. mellifera is devoid of all except a few mariner (Robertson 1993) and 

rDNA-specific R2 (Kojima & Fujiwara 2005) transposable elements whereas N. 

vitripennis has an unusual abundance of repetitive DNA (Werren et al. 2010). The         

P. barbatus genome assembly contains 18.6 Mb (8% of genome) of interspersed elements 

(SI Appendix, Chapter 12). A total of 9,324 retroid element fragments and 13,068 DNA 

transposons were identified; however, the majority of interspersed elements (55,373, 

8.8Mb, 3.75% of genome) could not be classified to a specific transposable element 
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family. Gypsy/DIR1 and L2/CR1/Rex elements were the most abundant transposable 

elements; however, we discovered most families of known insect retrotransposable 

elements. Nearly 1% (269 loci/1 Mb) of the scaffolded genome is microsatellite DNA (SI 

Appendix, Chapter 13), greater than in most insects (Pannebakker et al. 2010), which are 

valuable markers for mapping and population genetic studies. 

 

Chemoreceptor gene family expansions 

One special focus of the manual annotation was proteins involved in chemoperception 

because of its important role in colony communication, a cornerstone of social living. 

Below we report insights from four gene families involved in odorant reception, the 

ionotropic receptors (IRs), gustatory receptors (Grs), odorant receptors (Ors), and 

cytochrome P450s.  

The IR family in P. barbatus consists of 24 genes, compared with 10 in               

A. mellifera and 10 in N. vitripennis (Croset et al. 2010). Phylogenetic analysis and 

sequence comparison of IRs identified putative orthologs of conserved IRs that are 

present in other insect genomes and that are expressed in insect antennae (e.g., IR25a, 

IR8a, IR93a, IR76b) (Benton et al. 2009), but a number of ant-specific divergent IRs 

display no obvious orthology to other hymenopteran or insect receptors (SI Appendix, 

Chapter 14). Some of these IRs may fulfill contact chemosensory functions, by analogy 

to the gustatory neuron expression of species-specific IRs in D. melanogaster (Croset et 

al. 2010). 

The P. barbatus Gr family contains 73 genes compared with just 11 in                

A. mellifera and 58 in N. vitripennis. Phylogenetic analysis of the Gr proteins (SI 
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Appendix, Chapter 14) supports several conclusions about the evolution of this gene 

family. A. mellifera has lost multiple Gr lineages and failed to expand any of them 

(Robertson & Wanner 2006; Robertson et al. 2010), but gene losses are not restricted to 

A. mellifera, with some occurring in N. vitripennis and/or P. barbatus. The existence of at 

least 18 Gr lineages is inferred, with A. mellifera having lost function in 10 of them,       

P. barbatus 4, and N. vitripennis 5. P. barbatus has expanded two gene lineages 

independently of the two expansions seen in N. vitripennis. Expansion A is considered to 

be orthologous to the NvGr48-50 gene lineage and a large set of ≈50 highly degraded 

pseudogenes in A. mellifera (represented by AmGrX-Z), and expansion B is somewhat 

younger. We hypothesize that these are bitter taste receptors that lost function in             

A. mellifera at the time at which they transitioned to nectar feeding, ≈100 Mya, (Poinar & 

Danforth 2006). Bitter taste perception may be essential for P. barbatus to avoid 

unpalatable seeds (e.g., plant secondary chemicals).  

The Or family also appears to be considerably expanded in P. barbatus, with 344 

apparently functional genes among a total of 399 genes (the largest total known for any 

insect) compared with a total of 177 in A. mellifera and 225 in N. vitripennis (SI Dataset 

2). We counted 365 ± 10 and 345 ± 10 glomeruli in 5 queens and 5 workers respectively 

(SI Appendix, Chapter 15), supporting an ≈1:1 relationship of Or genes to glomeruli 

resulting from convergence of the axons of all neurons expressing a particular Or on one 

glomerulus (Mombaerts 1999; Gao et al. 2000). A particularly large expansion of a        

9-exon gene subfamily to 169 genes suggests that these genes might comprise the 

cuticular hydrocarbon receptors (SI Appendix, Chapter 14). Cuticular hydrocarbons have 
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gained many novel functions important in the context of social behavior, such as colony 

recognition and queen signaling (Endler et al. 2004; Hefetz 2007). 

P. barbatus has 72 genes in the cytochrome P450 superfamily, compared with 46 

in A. mellifera and 92 in N. vitripennis (HBGSC 2006; Werren et al. 2010). P450 

subfamilies involved in detoxification of xenobiotics show some expansion, while those 

implicated in pheromone metabolism are enigmatically less expanded (SI Appendix, 

Chapter 16). 

 

Evolutionary rate and pseudogene accumulation 

An evolutionary rate analysis based on amino acid substitutions of the three 

hymenopteran species with a genome sequence, and D. melanogaster as an outgroup, 

showed that a significant part of the P. barbatus genome (4,774 orthologous genes 

conserved over approximately 350 million y) evolves at a similar rate as the A. mellifera 

genome, and the A. mellifera and P. barbatus genomes show slightly higher substitution 

rates than the N. vitripennis genome (Fig. 3, SI Appendix, Chapter 31). This analysis 

suggests that the slow evolutionary rate reported for A. mellifera may not be associated 

with sociality, but specific to the Hymenoptera. 

A notable feature of P. barbatus chemosensory and P450 genes is that the 

pseudogenes commonly have multiple major mutations suggesting that they are mostly 

“middle-aged” pseudogenes. Normally a range of pseudogene ages can be inferred in the 

chemoreceptor gene families, from young pseudogenes with single mutations to gene 

fragments. We estimated the relative ages of the pseudogenes in Ors, Grs, and 

cytochrome P450s in P. barbatus, A. mellifera, and N. vitripennis by counting the number 
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of obvious pseudogene-causing (“pseudogenizing”) mutations per gene (stop codons, 

intron boundary mutations, small frameshift insertions or deletions, or large insertions or 

deletions). As shown in Figure 2.3, there is a contingent of considerably older 

pseudogenes in these gene families in P. barbatus. The pattern in P. barbatus is in 

contrast to A. mellifera and N. vitripennis, which have a greater number of young 

pseudogenes. We hypothesize that the ant lineages that gave rise to P. barbatus 

experienced a major change in chemical ecology ≈10-30 Mya, possibly as a consequence 

of the increase in elevation of the Sierras and Andes to their present height (Poulsen et al. 

2010; Cassel et al. 2009). These western mountain ranges created rain shadows on their 

eastern sides and spawned the great American deserts. The North American members of 

the genus Pogonomyrmex underwent a significant radiation adapting to these new 

habitats (Taber 1998), so the gene expansions in the chemoreceptors and P450s might be 

adaptations to novel seeds and plant families and their associated toxic components and 

chemical signatures. Accumulated pseudogenes may therefore reflect a shift towards a 

more specialized diet concurrent to the adaptive radiation of Pogonomyrmex spp. 

(McBride 2007).  

 

Innate immunity genes 

Social insects live in dense groups with high connectivity, putting them at increased risk 

for disease outbreaks, but they also have social immunity to minimize introduction and 

spread of pathogens (Walker & Hughes 2009; Fefferman & Traniello 2008). Very 

efficient social defenses (e.g., hygienic behaviors) or novel immune pathways were 

hypotheses put forth to explain the presence of few (roughly half) innate immunity genes 
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in A. mellifera compared with D. melanogaster (and more recently the red flour beetle, 

Tribolium castaneum) (HBGSC 2006; TGSC 2008). However, the more recently 

sequenced genomes of N. vitripennis (Werren et al. 2010) and Acyrthosiphon pisum (pea 

aphid) (IAGC 2010) also have “depauperate” complements of immune genes relative to 

flies and beetles, which suggests that the gene complement of flies and beetles might be a 

derived condition within insects. Indeed, the number of innate immune genes in             

P. barbatus is more similar to the other hymenopterans (SI Appendix, Chapter 17). 

Although all of the major signaling pathways are present in P. barbatus (IMD, Toll, 

Jak/STAT, and JKN), only a few recognition proteins were identified, which suggests 

either a highly focused immune system or an alternative unknown pathogen recognition 

system. Interestingly, we found expansions of antimicrobial peptides relative to              

A. mellifera. These expansions may correspond to a transition to living within the soil and 

an increased exposure to bacterial and fungal pathogens.  

 

Developmental networks and polyphenism 

The production of alternative phenotypes during development may occur through the 

regulation of several key nodes in specific networks during development (Davidson 

2006; Abouheif & Wray 2002; Khila & Abouheif 2008). In ant colonies, queens and 

workers fill divergent adaptive roles - dispersal and reproduction vs. colony maintenance- 

and their functional differences are reflected in differences in morphology, physiology 

and behavior, such as in wings and ovaries. P. barbatus workers are completely devoid of 

wings at the adult stage and have ovaries a fraction of the size of the queen’s. In analogy 

to honey bees (Kucharski et al. 2008), we hypothesized that CpG DNA methylation may 
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play a role in the differential regulation of genes in wing and reproductive development 

networks of workers and queens. This hypothesis was computationally evaluated by 

examining the CpG dinucleotide content (Elango et al. 2009) of wing and reproductive 

developmental pathway genes relative to the genome (SI Appendix, Chapter 18). These 

developmental networks contain significantly fewer CpGs than random genes, suggesting 

that they are more methylated than most genes because methylated cytosines are more 

prone to deamination (Werren et al. 2010; Elango et al. 2009; Foret et al. 2009). These 

results are in contrast to data in A. mellifera, where housekeeping genes are the main 

targets of methylation (Elango et al. 2009; Foret et al. 2009) (which is also in contrast to 

vertebrates), and suggest a potentially divergent role of methylation in harvester ants 

compared with honeybees.  

 

Gene regulation and reproductive division of labor 

Various gene families/pathways were specifically targeted for manual annotation because 

of their known role in queen-worker caste determination (Smith et al. 2008). These 

families/pathways included the insulin/TOR-signaling pathway (SI Appendix, Chapter 

19), yellow/major royal jelly genes (SI Appendix, Chapter 20), biogenic amine receptors 

(SI Appendix, Chapter 21), and hexamerin storage proteins (SI Appendix, Chapter 19). 

These candidate caste genes will be targeted for studying gene expression differences 

between castes using RNAi. The RNAi pathway is intact in P. barbatus (SI Appendix, 

Chapter 22) and RNAi has already been successfully implemented in another ant (Lu et 

al. 2009). 
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 Similar to the other sequenced hymenopterans, P. barbatus has a full methylation 

toolkit (SI Appendix, Chapter 24). All three DNA methyltransferase genes (Dnmt1-3), 

and three methyl-binding proteins (MBD) are present in P. barbatus, but interestingly 

there is only a single copy of Dnmt1 compared to two in A. mellifera and three in N. 

vitripennis (Werren et al. 2010). The loss of multiple copies of maintenance 

methyltransferase(s) in ants may have implications for the inheritance of epigenetic 

information. 

 We analyzed genes within 100 kb of four microsatellite markers diagnostic for the 

J-lineages (Schwander et al. 2007) with the hypothesis that some genes physically linked 

to the markers may cause the incompatibility between the lineages that leads to the loss 

of phenotypic plasticity and genetic caste determination (Cahan et al. 2004) (SI 

Appendix, Chapter 19). One interesting candidate from this analysis, lozenge (lz), has 

many described mutants in D. melanogaster, including sterility due to a loss of oogenesis 

and a spermathecum (Anderson 1945; Perrimon et al. 1986; Bloch et al. 2003; Khila & 

Abouheif 2010), two traits characteristic of worker ants.  

 

Material and Methods 

Genome sequencing and assembly 

The genome and transcriptome of P. barbatus were sequenced entirely on the 454 XLR 

Titanium platform at SeqWright. Five runs were dedicated to unpaired shotgun reads on 

DNA isolated from a single haploid male ant, which generated over 6 million reads 

averaging 370 bp in length (after trimming). Two runs used 8-kb paired-end libraries 

based on DNA from four brothers of the previous male ant; this yielded a total of nearly 
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2.9 million reads, each averaging 262 bp in length (after trimming). The assembly 

presented in this paper was created by CABOG 5.3 (Miller et al. 2008) open source 

assembler. We substituted the OVL overlap module for the recommended MER 

overlapper for performance reasons (see CABOG documentation at 

http://sourceforge.net/apps/mediawiki/wgs-assembler). 

The transcriptome was sequenced using a single 454 Titanium run, which 

generated 10.4 Mb of sequence across 726,000 reads. The transcriptome was assembled 

using the Newbler v2.3 assembly software (Roche). 

The genome of P. barbatus was annotated with the automatic annotation pipeline 

MAKER (Cantarel et al. 2008). The ab initio predictions of MAKER were further refined 

to produce an official gene set used for computational analyses (SI Appendix, Chapter 2). 

This set (OGS1.1) included all non-redundant ab initio predictions from all gene 

predictors used by MAKER that were supported by an InterProScan domain (Quevillon 

et al. 2005) and excluded any that were flagged as possible repeat elements. A second 

official gene set (OGS1.2) was produced to include refined genes based on manual 

annotation and has been submitted to NCBI. Manual annotations followed a standard 

methodology described in the SI Appendix, Chapter 3. Detailed methods for specific 

analyses are given in SI Appendix, Chapters 4-31. 

 

Supplementary Material 

Supporting information (SI) appendix Chapters 1-31 and datasets S01-S02 are available 

at the Proceedings of the National Academy of Sciences of the United States of America 

online (http://www.pnas.org/content/suppl/2011/01/24/1007901108.DCSupplemental). 
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Table 2.1. Comparison of metrics for recently sequenced insect genomes. Abbreviated 
author groups are listed as follows in the sources: HBGSC = Honey Bee Genome 
Sequencing Consortium, IAGC = International Aphid Genomics Consortium, and TGSC 
= Tribolium Genome Sequencing Consortium. 
 

 

  

Pogonomyrmex Hymenoptera
barbatus (Harvester Ant)

Nasonia Hymenoptera
vitripennis (Jewel Wasp)

Hymenoptera 15,314 OGS3.2
(Honey bee) .(10,157). (OGS1)

Acyrthosiphon Sternorrhyncha
pisum (Pea Aphid)

Tribolium Coleoptera Consensus
castaneum (Red Flower Beetle) set

18,822 OGS1.2 Werren et al. 2010

Species Order/Name Coverage (X) N50 (kb) # of      
Genes Gene Set Source

12 793 17,177 OGS1 Smith, C.R. et al. 2011

Elsik et al. 2014; 
(HBGSC 2006)

IAGC 2010

TGSC 2008

Apis mellifera 7.5 362

6.2 88.5 34,604 OGS1

7.3 990 16,404

6.8 709
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Figure 2.1. A pictorial description of the phylogenetic position of the samples used for 
the genome and transcriptome sequencing, with each put in the context of environmental 
and genetic caste determination (for a more complete phylogenetic tree, see SI Appendix, 
Chapter 1). The dependent lineages (H1/H2 or J1/J2) obligately co-occur because 
hybridization between them is necessary to produce workers, although within either J or 
H, the constituent lineages are reproductively isolated because interlineage hybrids 
cannot become queens (red/blue box). In the boxes to the right, workers are represented 
by “horned” female symbols. In all P. barbatus, the queen mates multiply; polyandry in 
genetic caste determining (GCD) colonies is obligate to produce both female castes 
(queens originate from intralineage matings and workers from interlineage matings). In 
environmental caste determination (ECD), alleles from any father have an equal chance 
to be in queens or workers (black box). Photo of gyne and worker P. barbatus by C.R. 
Smith. 
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Figure 2.2. Genome-wide analyses on nucleotide and relative gene content. (A) Synopsis 
of GC and CpG(o/e) content of the P. barbatus genome. (Upper panels) Comparison of 
genome regions with the same GC composition. (Lower panels) Comparison of the same 
features for exons. These distributions are similar to those found in other hymenopterans, 
except that P. barbatus shows no evidence of bimodality in CpG(o/e) for either exons 
(like A. mellifera) or introns (like N. vitripennis) (for comparisons, see SI Appendix, 
Chapter 4). (B) A Venn diagram displaying overlap in orthologous genes in three 
hymenopteran and one dipteran insect (for a detailed description of the method, see SI 
Appendix, Chapter 5). A sub-set of gene ontology terms significantly enriched in           
P. barbatus are displayed to the right of the figure. (*) Hymenoptera-specific genes; (+) 
social Hymenoptera-specific genes.  
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Figure 2.3. Evolutionary rate and the accumulation of pseudogene-causing 
(“pseudogenizing”) mutations in three gene families in the ant P. barbatus (green), the 
honey bee A. mellifera (red), and the jewel wasp N. vitripennis (blue). (A) The 
relationships among analyzed taxa. (B) A comparison of the evolutionary rates based 
amino acid substitutions in a set of 4,774 orthologs shared among the three species and 
D. melanogaster (the outgroup). (C) The accumulation of pseudogenizing mutations in 
three ecologically relevant gene families (Gr, Or, and cytochrome P450s. The number of 
pseudogenes found in each species is written on each panel. Only one gene represents the 
Grs in A. mellifera; all other A. mellifera Gr pseudogenes had accrued a very high 
number of mutations and most are fragments. Of those analyzed here, the pseudogenes in 
P. barbatus tend to be much older than those in A. mellifera and N. vitripennis (ANOVA: 
F2,156 = 4.7, P = 0.01). 
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CHAPTER 3 

EVOLUTION OF THE INSECT DESATURASE GENE FAMILY WITH AN 

EMPHASIS ON SOCIAL HYMENOPTERA 

Abstract 

Desaturase genes are essential for biological processes, including lipid metabolism, cell 

signaling, and membrane fluidity regulation. Insect desaturases are particularly 

interesting for their role in chemical communication, and potential contribution to 

speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene 

families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction 

revealed that the insect desaturases represent an ancient gene family characterized by 

eight subfamilies that differ strongly in their degree of conservation and frequency of 

gene gain and loss. Analyses of genomic organization showed that five of these 

subfamilies are represented in a highly microsyntenic region conserved across 

holometabolous insect taxa, indicating an ancestral expansion during early insect 

evolution. In three subfamilies, ants exhibit particularly large expansions of genes. 

Despite these expansions, however, selection analyses showed that desaturase genes in all 

insect lineages are predominantly undergoing strong purifying selection. Finally, for three 

expanded subfamilies, we show that ants exhibit variation in gene expression between 

species, and more importantly, between sexes and castes within species. This suggests 

functional differentiation of these genes and a role in the regulation of reproductive 

division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA 

desaturases in ants may reflect changes in response to ecological diversification and an 

increased demand for chemical signal variability. This may provide an example of how 
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gene family expansions can contribute to lineage-specific adaptations through structural 

and regulatory changes acting in concert to produce new adaptive phenotypes. 

 

Introduction 

Gene families are sets of homologous genes generated by gene duplication events that 

often display functional similarity and frequently change in size along phylogenetic 

lineages (Tatusov et al. 1997). Expansion of gene families may occur due to gene 

duplication and subsequent divergence, whereas gene loss due to deletion or 

pseudogenization may lead to gene family contraction. The resulting turnover of genes 

has presumably been one of the driving forces behind the phenotypic differentiation 

between species (Olson 1999; Lynch & Conery 2000; Ranson et al. 2002; Robertson et 

al. 2003; Hahn et al. 2007). Both stochastic processes as well as natural selection 

influence the size of gene families (Hahn et al. 2005). Although there is dispute in the 

literature about the relative importance of structural versus regulatory changes (Hoekstra 

& Coyne 2007; Stern & Orgogozo 2008), both are likely important and may even act 

simultaneously, e.g., a recently duplicated gene can acquire a novel function, but at the 

same time the expression of this novel gene can vary significantly between species or 

castes (see below). Gene families that are involved in the perception or production of 

large varieties of semiochemicals (e.g., olfactory and gustatory receptors) or 

detoxification (e.g., cytochrome P450 monooxygenases and glutathione-S-transferases) 

tend to gain and lose genes rapidly, which seems to be correlated with changes in life 

history and ecology (Robertson et al. 2003; Emes et al. 2004; Feyereisen 2006; Després 

et al. 2007; McBride & Arguello 2007; Gardiner et al. 2008; Hansson & Stensmyr 2011). 
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 In insects, chemical communication is a key attribute of recognition and 

communication, and a huge diversity of chemicals involved in this processes have been 

described (Greenfield 2002; Blomquist & Vogt 2003; Schulz 2004; Matthews & 

Matthews 2010. Semiochemicals help mediate interactions between organisms, and can 

be species-specific, sex-specific, and, in the case of eusocial insects, colony-, caste-, and 

task-specific. Insect recognition systems use semiochemicals that function both 

intraspecifically and interspecifically, and are categorized according to the species-

relationship, behavior, and contextual environment in which they are emitted and 

received. Understanding the roles, developmental pathways, and evolution of insect 

chemical communication systems has been an exciting challenge to biologists for over 

five decades. Many initial studies of insect semiochemicals were focused on identifying 

the components of pheromones and how different compounds affected physiology and 

behavior. The first of these, bombykol, was identified as an important sex pheromone in 

the silkworm moth, Bombyx mori (Butenandt et al. 1959). Later, when its complete 

metabolic pathway was described, the desaturase gene Bmpgdesat1 was found to be 

critically involved in both the production and perception of bombykol (Moto et al. 2004). 

In the years since, thousands of other insects and their semiochemicals have been 

investigated (catalogued in an online database, the Pherobase, 

http://www.pherobase.com), which have raised many new questions regarding their 

contribution to complex evolutionary processes including speciation, symbiosis, and 

sociality. With the ongoing advancement of chemical analysis and synthesis techniques, 

and the relatively recent advent of genomic and transcriptomic tools, new avenues of 

insight are now possible for our comprehension of these complex communication 
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systems in insects. Despite these advancements, relatively few genes involved in the 

synthesis of species-specific semiochemicals are actually known (Dallerac et al. 2000; 

Labeur et al. 2002; Roelofs et al. 2002; Moto et al. 2004; Chertemps et al. 2006; Niehuis 

et al. 2013). 

 The chemical components of insect communication systems have been studied 

extensively in Coleoptera, Diptera, Lepidoptera, and social Hymenoptera (Symonds and 

Elgar 2008). A majority of the compounds identified have been acetates, alcohols, 

aldehydes, ketones, and long chain hydrocarbons (10–30C), many of which contain 

carbon-carbon double bonds in varied positions and spatial formations (El-Sayed 2014). 

Since the 1980’s, numerous studies have been conducted with the goal of understanding 

how insect semiochemicals are biosynthesized, i.e., de novo or from minimally modified, 

environmentally obtained chemical precursors, and furthermore, how specific 

modifications like hydrocarbon chain length alteration and carbon-carbon double bond 

introduction are made (Tillman et al. 1999). In the cockroach Blattella germanica, for 

example, the female contact sex pheromone – a dimethyl ketone hydrocarbon – is 

synthesized de novo through a series of steps following a fatty acid synthesis pathway 

(Chase et al. 1992). Similarly, in several species of dipterans and lepidopterans, a variety 

of semiochemicals are synthesized from fatty acid precursors such as myristic acid, 

palmitic acid, and oleic acid, which are then modified through subsequent biosynthetic 

steps (Bjostad & Roelofs 1981, 1983; Dillwith et al. 1981; Wicker-Thomas et al. 1997; 

Dallerac et al. 2000). Among the insects studied to date, a wide variety of semiochemical 

biosynthetic modification steps have been identified, e.g., acetylation, aromatization, 

decarboxylation, desaturation, elongation, hydrolysis, hydroxylation, methyl-branch 
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incorporation, oxidation, and reduction reactions (Tillman et al. 1999). Although all of 

these steps are likely important for semiochemical biosynthesis generally, desaturation 

appears to be especially important for the structural variation in semiochemicals (Knipple 

et al. 2002; Roelofs & Rooney 2003; Fang et al. 2009). This is due to the fact that 

desaturation occurs on a diverse range of substrates with both cis (Z) and trans (E) 

stereoselectivities, which gives rise to unsaturated compounds with variation in chain 

length, double-bond number, double-bond position, and double-bond orientation. 

Because of this, a large number of insect semiochemical studies in Lepidoptera, and a 

moderate number in Diptera, have focused on understanding the biochemical and genetic 

diversity of desaturation reactions in recent years (Knipple et al. 2002; Roelofs & Rooney 

2003; Hashimoto et al. 2008; Fang et al. 2009; Keays et al. 2011).  

 The primary group of proteins responsible for desaturation reactions are the 

desaturases, which are specialized to introduce carbon-carbon double bonds into fatty 

acyl chains, and are categorized into two main phylogenetic groups (Los and Murata 

1998; Sperling et al. 2003). One of these two groups includes the soluble acyl-acyl carrier 

protein (ACP) desaturases, which are largely found in the plastids of higher plants 

(Sperling et al. 2003), and are involved in the conversion of saturated fatty acids to 

monounsaturated fatty acids, e.g., oleic acid synthesis (Kachroo et al. 2007). The second 

group is made up of membrane-bound acyl-lipid desaturases and membrane-bound acyl-

coenzyme A (CoA) desaturases. Evidence suggests that a subset of these proteins may be 

distantly related to the acyl-ACP desaturases (Shanklin & Cahoon 1998; Sperling et al. 

2003). Acyl-lipid desaturases appear to be primarily limited to plants and cyanobacteria 

(Los & Murata 1998), whereas acyl-CoA desaturases are more ubiquitously found in 
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animals, yeast, and fungi, as well as many bacteria (Sperling et al. 2003). These 

membrane-bound desaturases are important for basic biological processes, including lipid 

metabolism, cell signaling, and maintaining fluidity in lipid membranes in response to 

changing temperature (Hazel & Williams 1990; Vigh et al. 1993; Tiku et al. 1996; Pyne 

& Pyne 2000; Miyazaki & Ntambi 2003). What is more, the biochemical functions of 

membrane-bound desaturases are quite diverse, in that they have been identified to 

catalyze at least 12 different regioselectivities (i.e., D4 – D15). However, regioselective 

function has been shown to inconsistently match with overall sequence similarity, which 

has made desaturase genes historically challenging to categorize (Ternes et al. 2002; 

Sperling et al. 2003; Tripodi et al. 2006).  

 In the past three decades, the functional characterization of desaturase genes has 

been carried out in a wide variety of organismal models. A key function is their role in 

the biosynthesis of mono- and poly-unsaturated fatty acids in a range of organisms, 

including cyanobacteria (Murata & Wada 1995), protists (Tripodi et al. 2006), fungi 

(Stukey et al. 1989), plants (Domergue et al. 2005; Smith et al. 2013), nematodes, (Watts 

and Browse 2000; Zhou et al. 2011), insects (Zhou et al. 2008), and mammals (de 

Antueno et al. 2001; Miyazaki et al. 2001). Furthermore, a number of acyl-CoA 

desaturase genes have been demonstrated to be crucially involved in semiochemical 

biosynthesis in many solitary insects, e.g., Drosophila fruit flies (Dallerac et al. 2000; 

Fang et al. 2002; Labeur et al. 2002), the silkworm Bombyx mori (Moto et al. 2004), and 

several additional lepidopteran species (Knipple et al. 2002). With this growing body of 

functional data, Hashimoto et al. (2008) found that membrane-bound desaturase genes 

could be subdivided into four subfamilies: 1) First Desaturases (primarily D9 and D11 



	

41 

desaturases), which introduce the first double bond into the saturated acyl chain; 2) 

Omega Desaturases (D12 and D15 desaturases), which introduce a double bond between 

an existing double bond and the acyl end; 3) Front-End Desaturases (D4, D5, and D6 

desaturases), which introduce a double bond between an existing double bond and the 

carboxyl end of an acyl chain; and 4) Sphingolipid Desaturases (sphingolipid D4 

desaturases), which introduce a double bond into sphingolipids at the D4 position. In this 

study we adopted Hashimoto's nomenclature. 

 Given the role of acyl-CoA desaturases in insect semiochemical production, these 

genes have recently become an interesting family for study in social insects (Smith et al. 

2011a; Smith et al. 2011b; Suen et al. 2011; Simola et al. 2013), and offer a promising 

pathway to further our understanding of their recognition systems (Tsutsui 2013). In this 

study, we determined the diversity of acyl CoA desaturase genes in 15 insects 

emphasizing the variation in social Hymenoptera (ants and bees). These desaturases have 

been demonstrated to be involved in the production of alkenes as part of the cuticular 

hydrocarbon profile of Drosophila (Dallerac et al. 2000; Fang et al. 2002; Labeur et al. 

2002), and are crucial for courtship behavior in this genus (Chertemps et al. 2006; 

Bousquet et al. 2012). Furthermore, evidence suggests that changes in gene number and 

expression of desaturases affect semiochemical diversity between closely related insect 

species (Takahashi et al. 2001; Knipple et al. 2002; Roelofs and Rooney 2003; 

Greenberg et al. 2006; Xue et al. 2007; Fang et al. 2009). Since social insects have a 

highly developed communication system, largely based on cuticular hydrocarbons 

(Hölldobler & Wilson 1990; Blomquist 2010), we expected an expansion of the 

desaturase gene family in social Hymenoptera. The annotation of the complete acyl-CoA 
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desaturase repertoire allowed us to study the evolutionary history and mechanisms 

generating novel genes in these lineages. Furthermore, we present sex- and caste-specific 

gene expression patterns of three ant species, highlighting the importance of regulatory in 

addition to structural changes for the evolution of new phenotypes.  

 

Results 

Gene annotation and nomenclature 

Searching the genome assemblies and predicted gene sets of 15 insect species allowed us 

to identify 218 putatively functional acyl-CoA desaturase genes characterized by a fatty 

acid desaturase type I domain (Table 3.1). We manually improved upon the annotation of 

many of these genes, with particular emphasis on the seven ant species represented in this 

study. Our comprehensive search also revealed 75 putative pseudogenes characterized by 

an interrupted reading frame, short length (less than 250 amino acids or two thirds of the 

average desaturase gene length in D. melanogaster), or the lack of a fatty acid desaturase 

type I domain. Although some of these genes may result from sequencing or genome 

assembly artifacts, most are likely remnants of once functional genes. Additionally, some 

genes may have been missed during annotation, yet their number is likely to be very 

small because we not only searched the genome assemblies for all 15 species, but also 

unassembled contigs for 8 of the 15 species (Supplementary Table S1). A small number 

of genes could not be equivocally identified as either functional or non-functional. 

 According to our similarity-based homology assessment and phylogenetic 

analyses (Figures 3.1 and 3.2; Supplementary Figures S1 and S2), insect acyl-CoA 

desaturases comprise eight orthologous groups. These subfamilies are referred to as Desat 
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A1 (desat1, 2, F), A2, B, C, D, E, Ifc (ifc) and Cyt-b5-r (Cyt-b5-r) in this study 

(designated D. melanogaster genes in parentheses). Genes of subfamilies Desat A1 

through E have previously been described as First Desaturases, predominantly stearoyl-

CoA ∆9 and ∆11 desaturases that introduce the first double bond at the 9th or 11th position 

of a saturated acyl chain (Hashimoto et al. 2008). In contrast, Ifc genes are putatively 

Sphingolipid Desaturases (Hashimoto et al. 2008) with ∆4 activity (Ternes et al. 2002), 

and bear little sequence similarity to the remaining desaturase genes. The same is true for 

Cyt-b5-r genes, whose molecular function is unknown. The latter two groups were 

therefore treated separately in the phylogenetic analyses. 

 All subfamilies form highly supported monophyletic groups, with the exception 

of Desat A1 and A2, whose monophyly and sister-group relationship is only weakly 

supported in the main analysis (Figure 3.2). However, this relationship is corroborated by 

the taxonomic distribution of these genes, indicating a deep split during insect evolution, 

as well as the increase of confidence values for each clade after removing a small number 

of divergent genes. The uncertain but likely sister-group relationship between Desat A1 

and A2 is reflected in the names of these subfamilies. A possible sister-group relationship 

could also be inferred for Desat B and C. Overall, the phylogenetic relationships between 

the subfamilies could not be resolved confidently, though. Due to a lack of suitable 

outgroups (high sequence divergence would have led to a loss of ingroup information 

during sequence alignment and editing), the direction of evolution could also not be 

determined in the main analysis, leaving the tree unrooted. A pruned dataset with 

additional non-insect eukaryote desaturase genes was also found insufficient to resolve 

this issue (Supplementary Figure S3). 



	

44 

 Based on these phylogenetic results, we propose a new nomenclature for insect 

First Desaturase genes. Following a four-letter abbreviation of the species name (e.g., 

Dmel for D. melanogaster), this nomenclature incorporates the subfamily name as 

outlined above (e.g., desatE for subfamily Desat E) and a one-letter designation for each 

paralog copy. Paralog designation was chosen independently of phylogenetic position 

within each subfamily and includes putatively functional genes and putative 

pseudogenes. Well-supported subclades within subfamilies are thus not indicated in gene 

names, and only illustrated in Figure 3.1 (e.g., Desat B I, II and III). We chose not to 

adopt a naming scheme that fully reflects the homology relations as resolved by the 

phylogenetic analyses presented here (Van der Heijden et al. 2007) because of the lack of 

confidence in some parts of the gene tree. Subsequent phylogenetic analyses with 

improved resolution and accuracy might render such names obsolete. We also suggest 

retaining established gene names for functionally annotated genes of model organisms 

(e.g., D. melanogaster desat1, 2 and F) to avoid confusion with already published results. 

 

Gene copy variation 

The insect acyl-CoA desaturase subfamilies differ considerably in the number of genes 

and the complexity of their evolutionary history. With an average number of genes per 

insect species of 0.9 and 1.1, subfamilies Desat D and E are mostly comprised of single-

copy genes, although rare cases of lineage-specific gene duplication and loss can be 

observed as well. Desat C also represents a small, yet slightly more complex group. 

Besides limited expansions in B. mori and N. vitripennis, multiple independent cases of 

gene loss can be inferred from the gene tree, which results in an average number of genes 
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across insects of just 0.7. Multiple losses have particularly affected Hymenoptera, in 

which only the ants H. saltator and C. floridanus have retained a functional copy apart 

from N. vitripennis. Desat C is also the only one lacking a copy in D. melanogaster, 

exposing the risk of overly relying on homology assessment by the reciprocal BLAST 

method against a single model organism. All three subfamilies mentioned above have in 

common that evidence for once functional genes is missing in almost all insects, the only 

exception being two putative pseudogenes identified in A. gambiae. This suggests that the 

observed gene loss has occurred sufficiently in the past to eradicate all traces of former 

genes, and that little gene turnover (duplication followed by loss) has taken place more 

recently. 

 Similarly, the subfamilies Ifc and Cyt-b5-r also lean towards low copy numbers. 

However, while Ifc is almost exclusively composed of single-copy genes, most insect 

species studied here possess two Cyt-b5-r copies. Interestingly, these duplications have 

occurred independently in all species (Supplementary Figure S2).  

In contrast, subfamilies Desat A1, A2 and B are characterized by a much higher 

number of genes and a more dynamic evolutionary history involving frequent episodes of 

gene gain and loss in multiple lineages. With 2.3 genes on average across insects, 

subfamily A1 features mostly single-copy genes and duplicates next to several significant 

lineage-specific expansions in A. pisum, D. melanogaster (desat1, desat2 and desatF),    

S. invicta and most notably B. mori (8 genes). Ants are the only taxon in which we were 

able to find putative pseudogenes, including 18 in S. invicta, suggesting a high rate of 

gene turnover in this lineage. Similarly, 2.4 genes on average were found in subfamily 

A2 across insects. Large expansions here include A. mellifera and most notably              
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T. castaneum (9 genes). The gene tree topology also suggests that the gene copies in ants 

can be traced back to one of two ancestral genes that originated in the Hymenopteran 

lineage before the divergence of ants (Figures 3.1 and Figure 3.2). 

 Finally, Desat B forms the single largest group of desaturase genes in insects with 

4.3 genes per species on average. Apart from a substantial, recent expansion in B. mori  

(7 genes), the vast majority of these genes are found in Hymenoptera, where multiple 

episodes of gene family expansion and contraction can be inferred from the phylogenetic 

tree. The first of these episodes seems to have occurred near or after the evolutionary 

origin of Hymenoptera, but before the emergence of ants, giving rise to three subclades 

(I, II and III) represented in all ant and some of the non-ant Hymenopteran taxa (some 

genes have presumably been lost in N. vitripennis and the two bee species). This initial 

expansion was followed by more recent, lineage-specific expansions in most ant species 

and, to a lesser degree, N. vitripennis. Further evidence for considerable gene turnover 

regarding this subfamily in ants comes from a number of putative pseudogenes, all except 

one of which are found in ants. The highest number was observed in L. humile, whose 

genome harbors no less than 22 pseudogenes, more than any other lineage with regard to 

desaturases. 

 

Genomic organization in insects 

We studied the location, order and orientation of desaturase genes to shed light on the 

mechanisms that generated new genes and the evolutionary history of the gene family in 

insects. In five out of seven ants, the majority of functional desaturase genes are located 

on the same scaffold spanning a region of 100–150 kb, and are highly conserved with 
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respect to order and orientation (Figure 3.3, A–C). In H. saltator this cluster is broken up 

into two scaffolds, but the position of the genes on these scaffolds suggests they still map 

to the same chromosomal region. Only in L. humile most genes are found on separate 

scaffolds, a fact that might be partially explicable by the low degree of contiguity of the 

assembly. A notable exception to the microsynteny exhibited by most desaturase genes in 

ants is made by members of the Hymenoptera-specific Desat B subclade I (see Figure 

3.1), which are consistently found on a different scaffold. The position of genes on the 

scaffolds and their sizes suggest that these genes and the desaturase core cluster are 

effectively unlinked, and most likely situated in different chromosomal regions. Many 

additional members of the highly expanded subfamilies Desat B and Desat A, both 

functional and pseudogenized, are located on their own scaffolds as well. Some form 

smaller, often tandemly arrayed clusters like Desat B genes in L. humile and H. saltator, 

while others are dispersed across many private scaffolds like Desat A1 genes in S. 

invicta. Finally, another exception is made by genes of the subfamily Desat C, which 

have only been retained by H. saltator and C. floridanus, and the ant orthologs of ifc and 

Cyt-b5-r, all of which are also found on separate scaffolds.  

 In the remaining Hymenoptera, the arrangement is similar (Figure 3.3, D). In both 

bee species, the desaturase core cluster spans about 80 kb (split across two scaffolds in  

A. mellifera, with additional Desat A2 genes occupying another). However, the single 

Desat B copy in bees is situated on separate scaffold at least Megabases away. The 

situation is slightly more complicated in the wasp N. vitripennis, where the core cluster is 

broken up into two groups located on different, unlinked scaffolds. As in ants, several 

Desat B paralogs are found in close proximity to the desat1 ortholog, while others reside 
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on their own scaffolds. Likewise, ifc and Cyt-b5-r genes occupy a different genomic 

region than all other desaturase genes. 

 Dipteran First Desaturase genes are found on a single chromosome arm – 3R in 

D. melanogaster (except desatF, which is on 3L) and 2R in A. gambiae – which displays 

a high degree of synteny between the species (Zdobnov et al. 2002). In both species, a 

tightly linked block of CG9747, CG15331 and CG9743 or their orthologs is separated 

from desat1 and CG8630 by several to many Megabases (only the relative position of 

CG8630 differs between both species) (Figure 3.3, E).  

 This synteny is also displayed by B. mori, the closest relative of the Dipteran 

species in our taxon sampling. Here, members of all First Desaturase subfamilies are 

found in a 125 kb region, in an order reminiscent of that in A. gambiae (Figure 3.3, F). As 

seen in ants, genes produced by recent, lineage-specific expansions can be traced back to 

different genomic regions, and sometimes form smaller clusters (e.g., several Desat B 

paralogs). T. castaneum core genes occupy two smaller, unplaced scaffolds and may 

therefore be microsyntenic as well, while more recently generated Desat A2 paralogs 

comprise several independent clusters. In contrast to all other species studied, only         

A. pisum provides little evidence for synteny. With the exception of three genes from two 

subfamilies, Desat A1 and Desat E, all genes are scattered across different scaffolds. Like 

in Hymenoptera, ifc and Cyt-b5-r genes are physically unlinked from First Desaturase 

genes in all non-Hymenopteran species studied. 
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Selective forces acting on desaturase genes 

The results of the signature of selection analysis provide little evidence for positive 

selection acting on desaturase genes in insects (Table 3.2). Under the most basic model 

M0, which assumes that the ratio of non-synonymous to synonymous substitutions is 

invariable among sites and branches, ω (= dN/dS) ranges from 0.08 to 0.21 among the 

desaturase subfamilies. More realistically allowing ω to vary among sites following a 

beta-distribution (models M7 and M8) results in a strongly L-shaped distribution in all 

subfamilies, indicating that most sites represent very small ω values and are thus under 

purifying selection. Adding another class for sites under positive selection (M8) results in 

a significantly better fit according to likelihood ratio tests (LRT) in two subfamilies, 

Desat A2 and Desat D. However, the estimated proportion of positively selected sites is 

either very small, or the ω values for this site class are very close to 1, attesting neutral 

rather than positive selection. Moreover, Bayes Empirical Bayes (BEB) analyses (Yang 

et al. 2005) fail to detect sites under positive selection with posterior probability > 95% 

in all subfamilies. 

 We then looked whether strongly expanded subclades of desaturase genes, and 

ant-specific genes in general, evolved under different selective pressures than the 

remaining (background) genes by assigning different ω values to foreground and 

background branches. Tested foreground branches included all ant-specific genes in each 

subfamily, as well as the B. mori-specific expansions in Desat A1 and Desat B, and the  

T. castaneum-specific expansion in Desat A2. In all cases, the branch-specific model (BA 

in Table 3.2, shown for ants only) proved to fit the data significantly better than the basic 

model M0. Foreground ω values with respect to ants were significantly higher than 
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background ω values in all subfamilies, with the biggest difference found in Desat B 

(0.27 and 0.11, respectively). In contrast, foreground ω values for B. mori and                

T. castaneum were significantly smaller than background ω values. Fixing ω for the 

foreground branches at 1 (model B0) did not lead to an improved fit over the 

unconstrained model BA because foreground ω values were estimated to be much 

smaller than 1. 

 Allowing ω to vary both among sites and branches using a branch-site model did 

not provide evidence for sites under positive selection in ants only (AA in Table 3.2). In 

fact, ω for sites allowing positive selection in ants only was estimated to be 1 in all 

subfamilies, confirming the role of purifying selection in desaturase genes across insect 

lineages. The branch-site test of positive selection was therefore non-significant. 

 

Gene expression in ants 

We found strong differences in the transcription levels of the First Desaturase genes 

across the sexes and castes in three ant species (Figure 3.4). The expression of three 

reference genes, however, did not vary strongly between sexes and castes within a 

species (coefficients of variation ≤ 0.38) but varied moderately between species 

(coefficients of variation ≤ 0.70), e.g., P. barbatus showed an overall lower expression 

level than the other two species. Hence, comparisons of expression patterns within a 

species reflect quantitative differences whereas interspecific comparisons can only be 

qualitative, i.e., presence or absence of clade specific expression, or expression ratios 

between clades. 
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In H. saltator, desaturase genes are generally expressed at very low levels (RPKM 

< 100) in workers relative to the reference genes. The expression profiles of adult, virgin 

queens and males are however dominated by the Desat E ortholog and several Desat B 

genes, some of which reach very high levels (RPKM > 1000) (Figure 3.4, A). This stands 

in contrast to C. floridanus (Figure 3.4, B), where the cumulative expression levels in 

minor workers, virgin queens and males are more balanced, and dominated by genes of 

Desat A1 and A2, whereas Desat B genes are barely represented. However, there is 

agreement between the two species in the moderate expression of Desat E and Desat D 

orthologs. P. barbatus expression profiles (Figure 3.4, C) resemble more closely those 

found in H. saltator in the fact that Desat B genes are more highly expressed than genes 

of any other subfamily. However, these genes hail from a different subclade within Desat 

B (I) than most that are overrepresented in H. saltator (II). Also in contrast, P. barbatus 

workers express First Desaturase genes more than virgin queens (data for adult males is 

not available). Overall expression levels, though similar or lower than in the other two 

species in absolute terms, seem to be higher relative to the reference genes. Consistent 

across all three species and most castes seems to be the proportionately moderate 

expression of the Desat E and Desat D orthologs. Lastly, several desaturase genes are 

strongly overrepresented in particular castes or sexes within a species. Most notably, 

desatB_b in queens and desatB_a in gamergates of H. saltator, and desatA2_c in            

C. floridanus workers were found to be expressed almost exclusively in these castes. 
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Discussion 

Evolution of genomic organization 

Studying the location, order and orientation of the acyl-CoA desaturase genes at the 

genomic level revealed a high degree of microsynteny within genomes, and strong 

organizational conservation across insect species. We found a cluster of genes including 

members of all First Desaturase subfamilies except Desat C in a wide range of species 

from ants and bees to B. mori, with only slight variations in gene order and orientation 

(Figure 3.3). Although in D. melanogaster and N. vitripennis, this cluster has apparently 

been broken up into smaller blocks by large-scale genomic rearrangements, it is still 

evident in microsynteny retained within those blocks. Conservation of the cluster-like 

organization of First Desaturase genes between species separated by millions of years of 

evolution suggests that these genes are ancestral to holometabolous insects. Hence, 

homologous recombination by unequal crossing-over seems to be the dominant 

mechanism generating these genes from a single ancestral gene. Since the aphid A. pisum 

possesses a full complement of acyl-CoA desaturase genes, these events must have 

preceded the split between hemipterans and holometabolous insects, even though 

genomic rearrangements have obliterated most traces of ancient microsynteny in this 

species. Phylogenetic analyses further suggest that the ancestral expansion of the First 

Desaturase genes occurred presumably along the insect lineage, as orthologs found in 

non-insect arthropods, nematodes and vertebrates seem to be derived from duplication 

events succeeding the divergence between these lineages and insects (Hashimoto et al. 

2008; Supplementary Figure S3). 
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 The genes making up this ancestral cluster are thus the source from which new, 

lineage-specific desaturase genes were generated in insects. The genomic organization of 

these novel lineage-specific genes suggests two mechanisms shaping the evolution of 

desaturase genes in insects, homologous recombination and chromosomal mutations. 

Closely linked or even tandemly arrayed gene copies provide evidence that homologous 

recombination gave rise to many novel genes, both within and outside of the original 

cluster. For instance, the expansion of Desat B genes in the Attines, A. cephalotes and     

A. echinatior, can be traced back to such events (Figure 3.3, A). The duplications of the 

ancestral genes which generated the ant-specific subclades Desat B II and III, and Desat 

A2 I and II (Figures 3.1 and 3.2) seem to have involved homologous recombination as 

well, because extant copies are found in close proximity to each other in most ant species 

(Figure 3.3, A–C). Finally, most recent, species-specific expansions have resulted in 

tandem arrays of novel genes, e.g., the expansion of Desat B subclade II genes in            

H. saltator, Desat A2 genes in T. castaneum and most likely Desat B genes in B. mori 

(Figure 3.3, F).  

 However, the presence of unlinked desaturase genes in many insect species, most 

notably the members of the ant-specific Desat B subclade I, indicates another mechanism 

generating novel genes. Since functional genes of this category closely resemble gene 

copies located in the core cluster in terms of intron-exon structure and thus contain 

intronic sequence, retrotransposition seems not to be involved in the process (Long 

2001). Instead, chromosomal mutations like segmental duplication followed by 

chromosome rearrangement could be responsible, an ill-understood process frequently 

observed in other animal lineages (Samonte & Eichler 2002). Segmental duplication 
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results in longer stretches of identical sequence, including non-coding intergenic DNA. 

We did not find evidence for high sequence similarity between regions adjacent to genes 

located in the core cluster and unlinked genes, although since little selection pressure is 

expected to act on intergenic DNA, mutations accumulated over time might have erased 

these traces.  

 

Evolution of gene repertoire 

The acyl-CoA desaturase gene family is characterized by a highly dynamic evolutionary 

history in insects. Careful annotation and phylogenetic analysis of both functional and 

pseudogenized genes allowed us to infer eight subfamilies which differ strongly in their 

degree of conservation and frequency of gene gain and loss (Figures 3.1 and 3.2; 

Supplementary Figures S1 and S2). Three of the eight subfamilies are characterized by 

frequent expansions and higher rates of gene turnover, which also do not affect insect 

lineages equally. While the First Desaturase subfamilies Desat C, D and E as well as the 

Ifc and Cyt-b5-r subfamilies are largely comprised of single-copy genes, subfamilies 

Desat A1, A2 and B harbor a much higher number of genes (Figures 3.1 and 3.2). Some 

cases of gene family expansion, most notably the episode of gene gain that gave rise to 

the ant-specific Desat B subclades I, II and III, can be traced back to deeper splits in the 

insect phylogeny. However, the vast majority of expansions seem to have occurred more 

recently. Taxa that are disproportionally affected by such lineage-specific expansions 

include B. mori, T. castaneum, N. vitripennis and most ant species, particularly              

H. saltator, L. humile, C. floridanus and S. invicta (Table 3.1). Similarly, the majority of 

pseudogenes are found in only a few species, most notably the two invasive ant species   
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L. humile and S. invicta, indicating a particularly high rate of gene turnover in these 

lineages. In contrast, Dipteran (D. melanogaster, A. gambiae) and bee (A. mellifera,       

B. terrestris) genomes contain a lower number of functional and non-functional 

desaturase genes on average than most other insects, and do not show extensive lineage-

specific expansions (Table 3.1). It is worth noting that the unequal taxonomic distribution 

of the lineages represented here may mask more ancient expansions in some cases, 

though. For instance, the expansion of Desat A1 in B. mori might have occurred early 

during Lepidopteran evolution, in line with the long branches characterizing this group of 

genes in our study (Figure 3.1). This is further supported by the finding of Knipple et al. 

(2002), which found orthologous copies of these genes in multiple Lepidopteran species. 

As genome data of more species is becoming available to fill taxonomic gaps, the pattern 

of gene gain and loss in other lineages might turn out to more closely resemble that 

observed in ants, with multiple independent episodes of expansion and contraction along 

their evolutionary trajectories. 

 The consistently low copy-number and lack of pseudogenes in the subfamilies 

Desat C, D and E as well as the subfamilies including ifc and Cyt-b5-r (Figure 3.1; 

Supplementary Figures S1–S2) suggest that these genes are housekeeping genes, possibly 

serving a basic function in lipid metabolism pathways. Unsaturated fatty acids, the 

products of the enzymatic activity of desaturases, are essential for many basic cellular 

functions, including energy storage, cell signaling and the regulation of membrane 

fluidity (Hazel & Williams 1990; Vigh et al. 1993; Tiku et al. 1996; Pyne & Pyne 2000; 

Miyazaki & Ntambi 2003). In contrast, high gene turnover rates in the other subfamilies 

are more indicative of lineage specific adaptations and potentially play an important role 



	

56 

in the phenotypical differentiation between clades (Olson 1999; Lynch & Conery 2000; 

Ranson et al. 2002; Robertson et al. 2003; Hahn et al. 2007; Khalturin et al. 2008; 

Colbourne et al. 2011; Voolstra et al. 2011). While both stochastic processes as well as 

selection influence the size of gene families, particularly large differences in gene family 

size between genomes may be attributed to adaptation (Hahn et al. 2005). We have 

previously shown that size variation of the acyl-CoA desaturase gene family along the 

insect phylogeny differs significantly from expectation due to neutral mutation and 

genetic drift (Simola et al. 2013). Such significant differences in gene family size 

between clades can be indicative of selection.  

 Gene duplication is thought to free one copy from the selective pressures 

operating on the ancestral gene; therefore we expected to find signatures of relaxed 

selective constraint or positive selection in the genes of the expanded desaturase 

subfamilies (Ohno 1970). Unexpectedly, the results of our signature of selection analysis 

provided little evidence for either, and instead revealed generally strong purifying 

selection acting on all desaturase genes in insects (Table 3.2). The ratio of non-

synonymous to synonymous substitutions ω proved to be slightly higher in the expanded 

subfamilies Desat A2 and B than in the more conserved subfamilies, but still remains 

very low (ω < 0.25). Desat A1 did not display an elevated ratio ω, despite harboring 

expansions in multiple lineages. Results from the more accurate site model analyses 

(Yang et al. 2000) revealed that the low average values of ω are due to an abundance of 

sites under purifying selection in contrast to only a small number of sites under neutral or 

weak positive selection. Since even recent gene duplicates from the same species differ 

by at least 10% on the amino acid sequence level, the low ratios of non-synonymous to 
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synonymous substitutions cannot be attributed to a lack of sequence variation. We also 

found no indication of strong differences in the selective pressure acting on lineages 

defined by large gene expansions in individual subfamilies. Although we were able to 

detect significantly higher values of ω in ant genes in comparison to genes from other 

taxa, the differences were small and remained indicative of strong purifying selection. 

The slight relaxation of selective pressure relative to other insects seems more likely to be 

intrinsic to ants than related to differences in gene turnover and gene family size because 

both more conserved (Desat C, D, and E) and more variable (Desat A1, A2, and B) 

subfamilies were affected equally. A reason for this might be the decreased efficiency of 

selection in ants due to the smaller effective population sizes typical for social insects 

(Crozier & Pamilo 1996; Gadau et al. 2012). The lack of positive selection in the single-

copy desaturase subfamilies is in line with the hypothesis that these genes constitute 

housekeeping genes performing essential metabolic functions. The strength of purifying 

selection remains puzzling in the larger subfamilies, though, where redundant copies are 

expected to evolve more freely and acquire novel, lineage-specific functions. However, it 

is consistent with small ω ratios reported previously from desaturases in D. melanogaster 

(Keays et al. 2011) and B. mori (Knipple et al. 2002). These studies included desat1 and 

Bmpgdesat1, two genes that have been shown to be involved in pheromone production in 

these two species, and members of the expanded subfamily Desat A1. This observation 

may indicate that although duplicated desaturase genes can change function rapidly it 

may not be due to fundamental changes in the enzymatic function and coding sequence of 

the gene, which would remain under strong purifying selection, but rather in the 

differential expression of these new copies in time and space. 
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Functional differentiation in ants 

The comparison of the First Desaturase gene expression levels in three ant species 

provided evidence for both highly conserved as well as species-, sex- and caste-specific 

expression patterns depending on desaturase subfamily (Figure 3.4). Genes from 

subfamilies Desat D and E are expressed consistently across all categories, supporting the 

notion that they represent housekeeping genes involved in basic lipid metabolic 

processes. Desat C genes, which are present only in H. saltator and C. floridanus, are 

barely expressed in any category. This may indicate that these genes, which have been 

lost in many insect species including the bee and most ant species represented in this 

study, no longer fulfill an essential function in most insects. 

 In contrast to the single-copy genes mentioned above, genes of the expanded 

subfamilies Desat A1, A2 and B display variation in gene expression between species, 

and between sexes and castes within species. Notably, we see no consistent sex-, and 

caste-specific use of orthologous genes between ant species as has been observed for 

other genes expanded in ants like vitellogenin (Corona et al. 2013). Instead, the 

expression pattern in each species is largely dominated by either Desat A1 and A2        

(C. floridanus), or Desat B genes (H. saltator, P. barbatus), but never both. Moreover, 

only Desat B genes of subclade II are expressed at high cumulative levels in H. saltator 

(with the exception of desatB_b of subclade I in virgin queens), whereas P. barbatus 

exhibits predominantly subclade I gene expression. As these data were compiled from 

several studies, the differences across species observed here might have been influenced 

by different laboratory conditions and RNA sequencing methodologies. However,          

C. floridanus and H. saltator, which exhibit some of the most pronounced gene 
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expression differences discussed above, were raised in the same laboratory space at 

Arizona State University under highly similar conditions, and their RNA was sequenced 

at the same time by the same research group (Bonasio et al. 2010). Additionally, the 

expression levels of the reference genes within each species show only moderate 

differences (coefficients of variation ≤ 0.38), whereas the differences between species are 

somewhat more pronounced (coefficients of variation ≤ 0.70), thus preventing detailed 

quantitative comparisons. Notwithstanding, we can still compare expression patterns 

between species in terms of differences in the relative frequency of individual clades. For 

example, one notable pattern includes the Desat A1 subfamily, which is relatively 

frequent in C. floridanus and H. saltator, but almost undetectable in P. barbatus (Figure 

3.4). Another, even more convincing example is the expression differences in Desat B 

Subclade I and Desat B subclade II between P. barbatus and H. saltator in all castes and 

sexes with the exception of H. saltator workers which have an overall reduced expression 

of all desaturase genes (Figure 3.4). In P. barbatus, Desat B subclade I is very 

prominently expressed whereas Desat B subclade II shows very little expression. In 

contrast, H. saltator shows the opposite pattern, which cannot be explained by generally 

lower expression in P. barbatus. In contrast to the previous two species, C. floridanus has 

very low expression of both Desat B subclades I and II (Figure 3.4). Hence, the caste and 

sex specific expression pattern between these three species representing three ant 

subfamilies (diverged approximately 100 mya) demonstrates that each lineage has 

radically modified the expression patterns of First Desaturase subclades. 

The intraspecific expression differences between castes and sexes are not as 

extreme as the interspecific differences; however, there are significant and possibly 
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functionally relevant caste and sex differences (Figure 3.4). For instance, desatB_b is 

expressed almost exclusively in H. saltator virgin queens, but not workers or males, and 

only very lowly in gamergates (Figure 3.4). On the other hand, desatB_a expression is 

specific to H. saltator gamergates, whereas desatB_d is strongly overrepresented in 

virgin queen and males, which in turn express much more desatB_f than gamergates and 

virgin queens (Figure 3.4). Another example includes the worker-specific C. floridanus 

gene desatA2_c. These cases of genes originating from recent lineage-specific expansions 

with differential intraspecific expression patterns are suggestive of gene duplication 

followed by neofunctionalization (Ohno 1970). Another noteworthy observation 

regarding First Desaturase gene expression in ants is that these genes do not seem to 

fulfill metabolically essential roles, as workers in H. saltator display very low expression 

levels, particularly of Desat A1, A2 and B. This pattern of functional differentiation 

among lineages and within species, and the fact that genes stemming from expanded 

subfamilies do not seem to be essential for survival, fit the expectation of genes involved 

in the production of semiochemicals, as described for several desaturase genes in           

D. melanogaster (desat 1, 2, F; Dallerac et al. 2000; Fang et al. 2002; Labeur et al. 2002) 

and B. mori (Bmpgdesat1; Moto et al. 2004). 

 Changes in the expression and number of acyl-CoA desaturase genes have been 

shown to affect the diversity of semiochemicals between closely related insect species 

(Takahashi et al. 2001; Knipple et al. 2002; Roelofs & Rooney 2003; Greenberg et al. 

2006; Xue et al. 2007; Fang et al. 2009). In ants, the use of cuticular hydrocarbons in 

chemical communication is widespread (Hölldobler & Wilson 1990; Blomquist 2010), 

and unsaturated compounds like alkenes have been suspected of providing sufficient 
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diversity to act as key discriminatory compounds (Martin & Drijfhout 2009). Indeed, 

cuticular hydrocarbon profiles differ strongly between species, sexes, castes and 

developmental stages in ants, including H. saltator, C. floridanus and P. barbatus 

(Wagner et al. 1998; Liebig et al. 2000; Endler et al. 2004). For instance, cuticular 

hydrocarbon profiles, including unsaturated compounds, have been shown to undergo a 

shift when individuals transition from non-reproductive to reproductive status in            

H. saltator (Liebig et al. 2000), a change that may be correlated with the caste-specific 

gene expression pattern described above. Differences in the relative proportions of 

various alkenes have also been found between workers and queens of P. barbatus     

(Cash EI, unpublished data). As the evolution of castes in ants added another layer of 

complexity to the chemical communication system employed by insects, its genetic 

regulation might have been facilitated by novel genes with variable expression patterns. 

This case may thus provide an example for both structural and regulatory changes acting 

in concert to produce a new phenotype. 

 The production of cuticular hydrocarbons is not the only function of desaturase 

genes in insects. Desaturases have also been shown to be involved in the synthesis of 

bombykol (Moto et al. 2004) and other unsaturated compounds serving as volatile 

pheromones (Roelofs & Rooney 2003). Moreover, many components of insect chemical 

communication systems that have been studied in Coleoptera, Diptera, Lepidoptera, and 

social Hymenoptera include carbon-carbon double bonds (El-Sayed 2014), and thus 

presumably also require the activity of desaturases for synthesis. Many more may still 

await discovery, including a significant portion of the abundance of recruitment and 

alarm pheromones and other glandular secretions employed by ants, only a fraction of 
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which have been described (Hölldobler & Wilson 1990). Desaturase gene expansions in 

solitary species like B. mori, N. vitripennis and T. castaneum that rival those seen in ants 

may be involved in the production of such undiscovered compounds. 

 Furthermore, differences in the repertoire of insect desaturase genes may also be 

due to differences in diet and climatic conditions requiring changes in lipid metabolic 

pathways. Again, the large number and frequent turnover of desaturase genes in many 

insect lineages may reflect their enormous ecological success and diversity. This seems to 

be especially plausible for beetles (T. castaneum) and ants, two groups that have 

colonized nearly every terrestrial habitat, and are also extremely diverse in terms of their 

diet. For instance, ants include generalists (e.g., C. floridanus) and specialists (e.g., the 

leaf-cutters), herbivores, detritivores, omnivores (e.g., C. floridanus) and predators (e.g., 

H. saltator), and residents of diverse ecosystems ranging from deserts (e.g., P. barbatus) 

to tropical rainforests (e.g., the leaf-cutters), and thus rely on very different diets and are 

exposed to very different climatic conditions. The same is true for beetles, one of the 

most speciose, ecologically diverse, and successful insect lineages. Thus, changes in the 

desaturase gene repertoire may reflect changes in both ecological niches and chemical 

communication needs which arose during the evolution of various insect lineages. 

Indeed, novel genes have been shown to underlie lineage-specific adaptations including 

responses to changing environmental stimuli (Colbourne et al. 2011; Voolstra et al. 

2011). Patterns of repeated size changes are also found in other gene families in ants, like 

P450 cytochromes and olfactory receptors, possibly for similar reasons (i.e., the need to 

detoxify or perceive compounds encountered in new environments, respectively; Simola 

et al. 2013). 
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 Social organization alone may not require an expanded repertoire of desaturase 

genes, as demonstrated by the fact that the two bee species represented in this study 

revealed the smallest number of genes. As opposed to bees, however, ants display a much 

wider range of social complexity in terms of colony size, number of queens and queen-

worker differentiation, and possess a more elaborate chemical communication system 

(Hölldobler & Wilson 1990). Combined with their ecological diversity, this may explain 

why the number of desaturase genes is so much higher in ants than in bees. The 

particularly high number of both functional and non-functional genes in L. humile and     

S. invicta may even be a testimony to these lineages' ability to quickly adapt to new 

ecological niches and changes in social organization in the past, features which more 

recently became instrumental in their success as invasive species. 

 

Conclusions 

Genomic organization and phylogeny testify that acyl-CoA desaturases represent an 

ancient gene family characterized by multiple episodes of expansion and contraction 

during evolution of insects. Subfamilies differ strongly in their degree of conservation 

and frequency of gene gain and loss, which also do not affect insect lineages equally. 

Ants display particularly large expansions in three First Desaturase subfamilies, in stark 

contrast to bees. Hence, eusociality itself cannot explain this pattern of disproportionate 

gene gain. As the number of genes in N. vitripennis, a solitary hymenopteran, rivals that 

of ants in some parts of the desaturase tree, the richness of desaturase genes in ants seems 

to be a part of the Hymenopteran heritage that has been lost in bees. What are the driving 

forces promoting and maintaining this rich gene repertoire in ants? Multiple causes 
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appear to provide plausible explanations: Variation in gene expression between ant 

species, and more importantly, between sexes and castes within species, suggest 

functional differentiation of these genes and a role in the regulation of reproductive 

division of labor in ants. Since First Desaturase genes found in these subfamilies are 

involved in the production of mating signals in D. melanogaster and B. mori, we 

hypothesize that the homologous genes in ants serve a role in the elaborate chemical 

communication system of ants. The expansions observed in ant First Desaturase genes 

may therefore have provided genetic raw material facilitating social evolution in ants as 

the evolution of castes and social organization added another layer of complexity to this 

system. On the other hand, ants also vary considerably in life history traits and the 

environment they live in, leading to very different diets and exposure to different climatic 

conditions. Desaturases could therefore have contributed to lineage-specific adaptations 

with regard to these differences, requiring changes in lipid metabolic pathways. Finally, 

the dynamic evolution of acyl-CoA desaturases may reflect changes in both ecology and 

chemical communication systems, responding to ecological diversification and an 

increased demand for chemical signal variability during ant evolution. This may provide 

an example for how gene family expansions can contribute to lineage-specific 

adaptations and how structural and regulatory changes act in concert to produce new 

adaptive phenotypes. Further studies elucidating the molecular function of acyl-CoA 

desaturases, and members of the expanded subfamilies in particular, are required to 

discern their significance for the ecology, chemical communication, and social evolution 

in ants. 
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Materials and Methods 

Identification of insect desaturase genes 

Genome assemblies and predicted gene sets of 15 insect species, including seven ant 

species (Acromyrmex echinatior, Atta cephalotes, Camponotus floridanus, Harpegnathos 

saltator, Linepithema humile, Pogonomyrmex barbatus and Solenopsis invicta), three 

non-ant Hymenoptera (Apis mellifera, Bombus terrestris and Nasonia vitripennis), and 

representatives of Diptera (Drosophila melanogaster and Anopheles gambiae), 

Lepidoptera (Bombyx mori), Coleoptera (Tribolium castaneum), and non-holometabolous 

insects (Acyrthosiphon pisum) were obtained from their respective community databases 

(Supplementary Table S1). 

 We chose all ten acyl-CoA desaturase genes characterized by a fatty acid 

desaturase type I domain in D. melanogaster (Keays et al. 2011), namely CG15531, 

CG9743, CG9747, CG8630, desat1, desat2, desatF, ifc (infertile crescent), CG17928, 

and Cyt-b5-r (Cytochrome b5-related) as queries to find homologous sequences in the 14 

other species. First, predicted gene sets were searched with BlastP (Altschul et al. 1997) 

using an e-value cut-off of 0.0001 to obtain the majority of putatively functional genes as 

identified by automatic annotation pipelines. In the case of A. cephalotes, L. humile and 

P. barbatus, manually annotated desaturase gene repertoires were already available based 

on previous work (Suen et al. 2011; Smith et al. 2011a; Smith et al. 2011b). To identify 

genes and gene fragments not represented in the predicted gene sets, we also searched the 

genome assemblies of all 15 species, and unassembled contigs for 8 of 15 species 

(Supplementary Table S1) with TBlastN using an e-value cut-off of 0.001. Genomic 

regions surrounding hits that were found to be lacking an existing gene model were then 
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subjected to a GeneWise (Birney et al. 2004) analysis to predict the gene structure. The 

same strategy was used to guide manual editing of existing gene models that did not align 

well with the D. melanogaster query. Information about all genes used in this study, 

including their genomic location, is compiled in the supplementary material 

(Supplementary Table S2). Nucleotide and amino acid sequences are available from the 

authors upon request. 

 Genes were categorized as functional if they contained an open reading frame of 

at least 250 amino acids (approximately two thirds of the average desaturase gene length 

in D. melanogaster) and a fatty acid desaturase type I domain (IPR005804) according to 

InterPro (Hunter et al. 2009). Shorter genes or genes lacking this domain were classified 

as pseudogenes unless the truncation resulted from unresolved or misassembled sequence 

in the genome assembly. In rare cases, genes could not be assigned to either category, for 

example if a substantial part of the gene was masked by unresolved sequence. Fragments 

on very short scaffolds which were identical in sequence to parts of full-length desaturase 

genes were assumed to be assembly artifacts and excluded from the analyses. 

 

Phylogenetic reconstruction 

Preliminary phylogenetic analyses revealed that the D. melanogaster genes ifc and      

Cyt-b5-r bear little sequence similarity to the remaining desaturases and each other. To 

improve the quality of the alignment, we therefore excluded all ifc and Cyt-b5-r 

orthologs, as well as all pseudogenes and some ambiguous genes from the main 

phylogenetic analysis. The resulting amino acid dataset contained 170 genes classified as 

First Desaturases by Hashimoto et al. (2008) from 15 species, and was aligned with the 
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L-INS-i algorithm implemented in MAFFT version 7 (Katoh et al. 2002; Katoh & Toh 

2008). To remove divergent and poorly aligned positions, we used Gblocks version 0.91b 

(Castresana 2000) on the lowest stringency settings, resulting in a final alignment of 218 

amino acid positions. According to the Akaike Information Criterion corrected for small 

sample size, ProtTest version 2.4 (Abascal et al. 2005) revealed LG with four discrete 

gamma rate categories (Le & Gascuel 2008; Yang 1996) as the model of molecular 

evolution with the best fit to the data (models combining gamma rates and a proportion of 

invariable sites, G+I, were omitted from the analysis following the argument of 

redundancy put forward by A. Stamatakis, RAxML version 7.0.4 manual, page 20). 

Based on this model, a maximum likelihood tree was reconstructed with RAxML version 

7.2.6 (Stamatakis 2006), and nodal confidence values obtained with 1000 rapid bootstrap 

replicates (Stamatakis et al. 2008). 

 Phylogenetic trees were computed as outlined above for Ifc (314 amino acid 

positions derived from 17 putatively functional genes) and Cyt-b5-r (384 amino acid 

positions derived from 25 putatively functional genes). All alignments are available from 

the authors upon request. 

 

Signature of selection analysis 

To evaluate the role of natural selection during the evolution of the desaturase gene 

family in insects, the ratios of non-synonymous (dN) and synonymous (dS) substitution 

rates were determined using codon substitution models implemented in the software 

package PAML version 4.4 (Yang 2007). For each First Desaturase subfamily identified 

in the main phylogenetic analysis (Desat A1 through E), we computed and trimmed an 
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amino acid alignment using MAFFT and Gblocks as described above, and converted it 

into a codon alignment with PAL2NAL version 14 (Suyama et al. 2006). Maximum 

likelihood trees were calculated for each subclade using RAxML based on the LG model 

as outlined above, and used to inform the PAML analyses alongside the codon 

alignments. Genes of each subfamily were then analyzed using the following site-, 

branch- and branch-site-specific models of codon substitution: 

 The basic model M0 assumes that the ratio ω = dN/dS is invariable among sites 

and branches (Goldman & Yang 1994). In contrast, the site-specific models M7 and M8 

are based on the more realistic assumption that ω varies among sites, but not branches 

(Yang et al. 2000). As M8 allows for a fraction of sites to be under positive selection    

(ω > 1), but M7 does not, this pair forms a likelihood ratio test (LRT) of positive 

selection with degrees of freedom (df) = 2. We also investigated whether selection acted 

differently on desaturases in ants, B. mori and T. castaneum, because these taxa are 

characterized by especially large gene expansions. To this end, we first applied an LRT 

with df = 1 comparing M0 and a branch-specific model estimating ω separately for 

branches specified a priori (foreground branches, i.e., all branches leading to and within 

ants, or B. mori and T. castaneum, respectively) and the background branches. The latter 

model, which allows for positive selection, was also tested (df = 1) against a null model 

which fixes ω at 1 to determine whether ω is significantly higher than 1 along the 

foreground branches (Yang 1998). Finally, we investigated whether only some sites are 

under positive selection along the foreground branches by applying the branch-site test of 

positive selection. This test (df = 1) is based on a branch-site model, which allows ω to 
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vary both among sites and branches, and a null model which caps ω at 1 (Yang et al. 

2005). Substitution rates were not studied in Ifc and Cyt-b5-r genes. 

 

Gene expression analysis 

Sex- and caste-specific desaturase gene expression levels were gathered from RNA-seq 

data of three ant species, H. saltator, C. floridanus and P. barbatus and. RNA-seq data of 

H. saltator and C. floridanus was obtained from Bonasio et al. (2010) and are described 

there in more detail. Briefly, pools of non-reproductive (H. saltator) or minor                

(C. floridanus) workers of various ages, queens and males were used to construct cDNA 

libraries from poly-A RNA and sequenced on a Illumina 1G Genome Analyzer (Illumina, 

San Diego, CA) with a paired-end module. Reads were aligned to the most recent 

genome assemblies using TopHat (Kim et al. 2013), and read counts expressed as RPKM 

values to account for differences in gene length and total number of reads (Mortazavi et 

al. 2008).  

 P. barbatus RNA-seq data was acquired individually from two adult workers and 

two virgin queens. cDNA libraries were constructed from poly-A RNA using the Nextera 

XT DNA Sample Preparation Kit (Illumina, San Diego, CA) and sequenced from both 

ends on the HiSeq 2000 Sequencing System (Illumina, San Diego, CA) with current v3 

chemistry. Reads were aligned to the P. barbatus genome assembly v1.0 using TopHat 

v2.0.8 (Kim et al. 2013) and mapped to the Official Gene Set v1.2 using Cufflinks v2.0.2 

(Trapnell et al. 2010). RPKM values were calculated from read counts as above, and 

averaged across worker and queen datasets, respectively. 
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 Whereas the H. saltator and C. floridanus datasets were obtained from specimens 

raised in the same laboratory and by using the same sequencing protocol, the P. barbatus 

data were acquired under different conditions. In order to control for these differences, 

we determined gene expression levels (as RPKM values) and variance of seven 

housekeeping genes commonly used to normalize gene expression across samples 

(Scharlaken et al. 2008; Cheng et al. 2013). Four of these, including actin and GAPDH, 

proved to be highly variable within species, which is in line with previous studies 

advising against their use (reviewed in Bustin 2000). The remaining housekeeping genes, 

EF1-beta, RPL18 and RPL13A, showed consistency within species (coefficients of 

variation ≤ 0.38), and to a lower extent, between species (coefficients of variation ≤ 

0.70), and were thus used as reference genes allowing the comparison of First Desaturase 

gene expression levels both within and between species. 

 

Supplementary Material 

Supplementary figures S1–S3 and supplementary tables S1–S2 are available at Molecular 

Biology and Evolution online (http://mbe.oxfordjournals.org/content/suppl/2014/12/03 

/msu315.DC1). 
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Table 3.1. Number of putatively functional and pseudogenized (in parentheses) acyl-CoA desaturase genes in insects. 
 

 
Note — a includes pseudogenes that could not be assigned unambiguously to a particular desaturase subfamily,          

b includes partially sequenced or otherwise ambiguous genes which may be either functional or pseudogenized.

 Desat A1 Desat A2 Desat B Desat C Desat D Desat E Ifc Cyt-b5-r Total

Acyrthosiphon pisum 4 2 2 1 0 1 1 2 (1b) 13 (1 ) b

Tribolium castaneum 2 9 (1) 1 1 1 1 1 2 18 (1)

Bombyx mori 8 1 7 2 (1) 1 1 1 2 23 (1)

Drosophila melanogaster 3 1 1 0 1 1 1 2 10 (0)

Anopheles gambiae 2 1 3 (1) 1 (1) 1 1 (1) 2 2 13 (3)

Nasonia vitripennis 2 1 8 4 0 1 1 2 19 (2a)

Apis mellifera 1 4 (1) 1 0 1 2 1 2 12 (1)

Bombus terrestris 1 1 1 0 1 1 1 1 7 (1a)

Harpegnathos saltator 2 2 8 1 1 1 1 1 17 (0)

Camponotus floridanus  1 3 6 1 1 1 1 3 (2b) 17 (4    ab)

Linepithema humile 1 (1) 1 (5b) 7 (22) 0 1 1 1 1 13 (28  b)

Pogonomyrmex barbatus 1 (3) 3 (2) 4 (2) 0 1 1 1 1 12 (7)

Solenopsis invicta 5 (18) 3 2 (1) 0 1 1 2 2 (3) 16 (22) 

Atta cephalotes 1 2 6 (2) 0 1 1 1 1 13 (2)

Acromyrmex echinatior 1 2 8 0 1 1 1 1 15 (0)

Total 35 (22) 36 (10b) 65 (28) 11 (2) 13 (0) 16 (1) 17 (0) 25 (6b)

72 
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Table 3.2. Signatures of selection acting on First Desaturase genes in insects. Select 
parameter estimates and likelihood ratio test (LRT) results are shown for each of the six 
subfamilies. 

 

 Note — ω: ratio of non-synonymous to synonymous substitution rates, p, q: beta 
distribution shape parameters (M7), p1: proportion of sites under positive selection (M8), 
ω0, ω1: background and foreground ω values, respectively, P: likelihood ratio test          
P-value (significant results in bold). 
 

Model – parameters Desat A1

(desat1)

Desat A2

(CG8630)

Desat B

(CG9747)

Desat C

–

Desat D

(CG9743)

Desat E

(CG15531)

Basic/site models

    M0:  0.09 0.13 0.21 0.08 0.09 0.14 

    M7: p, q 0.65, 5.09 0.51, 2.50 0.62, 1.81 0.78, 5.23 0.33, 2.18 1.15, 6.03

    M8: p1,  0.00, 3.74 0.02, 1.08 0.00, 1.00 0.01, 1.18 0.06, 1.00 0.01, 1.00

Branch models 

(ants)

 

B0: 0 ( 1 = 1) 0.01 0.09 0.08 0.05 0.04 0.10

BA: 0, 1  0.05, 0.14 0.10, 0.16 0.11, 0.27 0.06, 0.15 0.05, 0.12 0.11, 0.16

Branch-site models 

(ants) 

A0: p2a ( 2 = 1) 0.07 0.10 0.08 0.16 0.03 0.12

AA: p2a, 2 0.07, 1.00 0.10, 1.00 0.08, 1.00 0.16, 1.00 0.03, 1.00 0.12, 0.09

LRT, P 

M7 vs. M8 1 0.037 1 0.678 0.001 0.698

M0 vs. BA 0.010 <0.001 0.001 <0.001 <0.001 <0.001
B0 vs. BA <0.001<0.001 <0.001 <0.001 <0.001 <0.001
A0 vs. AA 1 1 1 1 1 1
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Figure 3.1. Reconstruction (part 1) of the phylogeny of insect First Desaturase genes, 
illustrating the division of the gene family into six subfamilies. Given its large size, the 
tree was separated into two parts for better viewing. The dotted line indicates where this 
separation was made. See part 2 (Figure 3.2) for the remaining clades: Desat A2 
(CG8630) and Desat A1 (desat1, 2, F). The unrooted maximum likelihood tree was 
obtained from 170 genes of 15 species, with confidence values at the edges derived from 
1000 rapid bootstrap replicates. Gene names follow the updated nomenclature proposed 
in this study, except for genes that have previously been characterized in the literature (in 
bold). Species are indicated by four-letter prefixes as follows: Aech = Acromyrmex 
echinatior, Acep = Atta cephalotes, Cflo = Camponotus floridanus, Hsal = Harpegnathos 
saltator, Lhum = Linepithema humile, Pbar = Pogonomyrmex barbatus and Sinv = 
Solenopsis invicta (all ants, in color), and Acpi = Acyrthosiphon pisum, Amel = Apis 
mellifera, Agam = Anopheles gambiae, Bmor = Bombyx mori, Bter = Bombus terrestris, 
Dmel = Drosophila melanogaster, Nvit = Nasonia vitripennis and Tcas = Tribolium 
castaneum. 
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Figure 3.2. Reconstruction (part 2) of the phylogeny of insect First Desaturase genes, 
illustrating the division of the gene family into six subfamilies. See part 1 (Figure 3.1) for 
the remaining clades: Desat E (CG15531), Desat D (CG9743), Desat C (no Dmel 
ortholog), and Desat B (CG9747). The unrooted maximum likelihood tree was obtained 
from 170 genes of 15 species, with confidence values at the edges derived from 1000 
rapid bootstrap replicates. Gene names follow the updated nomenclature proposed in this 
study, except for genes that have previously been characterized in the literature (in bold). 
Species are indicated by four-letter prefixes as follows: Aech = Acromyrmex echinatior, 
Acep = Atta cephalotes, Cflo = Camponotus floridanus, Hsal = Harpegnathos saltator, 
Lhum = Linepithema humile, Pbar = Pogonomyrmex barbatus and Sinv = Solenopsis 
invicta (all ants, in color), and Acpi = Acyrthosiphon pisum, Amel = Apis mellifera, 
Agam = Anopheles gambiae, Bmor = Bombyx mori, Bter = Bombus terrestris, Dmel = 
Drosophila melanogaster, Nvit = Nasonia vitripennis and Tcas = Tribolium castaneum. 
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Figure 3.3. Genomic organization of First Desaturase genes in insects: Acromyrmex 
echinatior (A), Solenopsis invicta (B), Camponotus floridanus (C), Bombus terrestris 
(D), Drosophila melanogaster (E) and Bombyx mori (F). Scaffold names refer to the 
genome assemblies listed in supplementary table S1, Supplementary Material Online. 
Closed scaffold symbols indicate scaffold ends, while open symbols indicate that the 
illustrated region is located away from scaffold ends. Colors and lower case letters are 
used to identify genes as presented in the phylogeny (Figures 3.1 and 3.2). 
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Figure 3.4. Gene expression levels of reference genes and First Desaturase genes in 
different sexes and castes of three ant species: Harpegnathos saltator (A), Camponotus 
floridanus (B), and Pogonomyrmex barbatus (C). Data is shown in reads per exon 
kilobase per million (RPKM), and were obtained from independent RNA-seq 
experiments. Medium grey, light grey, and white bars represent reference genes        
(EF1-beta, RPL18, and RPL13A respectively), while colored bars and lower case letters 
are used to identify desaturase genes as presented in the phylogeny (Figures 3.1 and 3.2). 
Asterisks indicate desaturase genes showing strong differential expression in a particular 
caste within a species. Also note that C. floridanus workers were of the ‘minor’ worker 
caste, queens of all three species were virgin (unmated) queens, and data was not 
available for P. barbatus males. 
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CHAPTER 4 

GENETIC, DEVELOPMENTAL, AND SOCIAL INFLUENCES ON CUTICULAR 

HYDROCARBON VARIATION IN THE RED HARVESTER ANT, 

POGONOMYRMEX BARBATUS 

Introduction 

Communication among ants is predominantly olfactory in nature (Hölldobler, 1999), and 

nestmate recognition typically occurs through chemical cues called cuticular 

hydrocarbons (CHCs; Lahav et al. 1999; Wagner et al. 2000; Akino et al. 2004; Ozaki et 

al. 2005; Martin et al. 2008). CHCs are believed to have evolved for the primary function 

of maintaining water balance and preventing desiccation (Gibbs, 1998), but were later 

coopted for insect recognition systems. In ants, although CHCs are primarily associated 

with nestmate recognition, they are also important for reproductive and mate signals 

(reviewed by Martin and Drijfhout, 2009). Nestmate recognition cues are complex 

mixtures of the intrinsic chemical profiles of all workers (Hölldobler and Michener, 

1980; van Zweden et al. 2009), the queen (Carlin and Hölldobler, 1986; Liebig et al., 

2000), and the environment (Liang and Silverman, 2000; Tissot et al., 2001, Wagner et 

al., 2001), which results in a “gestalt” odor unique to each colony (Crozier and Dix, 

1979). Although much is known about ant nestmate recognition systems, many questions 

still remain about the relative contributions of genetics, development, and environment, 

to the individual and colony-level CHC profile of many species. Furthermore, the 

availability of numerous ant genomes in the past 5 years provide new exciting tools for 

genetic studies of CHCs (Tsutsui 2013). In order to explore these genetic effects, 

however, it is first necessary to disentangle the effects of other factors of CHC variation 
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such as caste, population, development, and environment. With this in mind, and with the 

goal of performing future, functional genetic studies of CHCs in Pogonomyrmex 

barbatus, I carried out a descriptive analysis of two genetic components, and one 

developmental/environmental component of CHC trait variation in P. barbatus. 

An important step to understanding the genetic architecture and evolution of 

nestmate recognition cues was through a collaboration with the P. barbatus genome 

project (Smith et al. 2011b) as well as three other ant genome projects (Smith et al. 

2011a; Suen et al., 2011; Simola et al., 2013). In these studies, I used manual annotation 

and phylogenetic analyses to identify 170 first desaturase genes across seven ant species 

as well as eight other insect species (Chapter 3; Helmkampf et al. 2014). Among these, I 

identified ten candidate desaturase genes potentially involved in CHC alkene biosynthesis 

and recognition cues in P. barbatus, which includes Pbar_desat1: a gene that is 

orthologous to known Drosophila desaturase genes involved in cuticular alkene 

biosynthesis (Dallerac et al. 2000; Fang et al. 2002; Labeur et al. 2002). Differences in 

the relative proportions of various cuticular alkenes have also been found between 

workers and queens of P. barbatus. Given these findings, I tested for the relationship 

between desaturase gene expression and CHC alkene abundance among P. barbatus 

queens and workers. 

Another interesting, potential source of genetic influence on CHC profile 

variation in P. barbatus is the presence of genetically distinguishable castes, i.e., a 

genetic caste determination (GCD) system, wherein workers feature a genotype distinct 

from the queens (Helms Cahan et al. 2002; Julian et al. 2002; Volny & Gordon 2002). 

GCD populations are selectively disbursed throughout P. barbatus populations with 
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environmental caste determination (ECD), and are believed to have evolved from 

complex hybridization events between P. barbatus and its ‘sister species’ P. rugosus 

(Helms Cahan & Keller 2003). As a result, the P. barbatus system consists of a ‘pure 

species’ ECD lineage, and two P. barbatus/P. rugosus hybrid GCD lineages (J1 and J2). 

Since the discovery of these hybrid genetic lineages within P. barbatus, new questions 

have arisen about lineage-related differences leading to CHC variation. One important 

feature currently known about the genetics of these three lineages is that J1 and J2 (GCD) 

lineages are dependent on each other in order to produce queens and workers (but not 

males, since they develop from haploid, unfertilized eggs). Given this, selection should 

act on gynes such that they successfully mate with males from each lineage so that they 

can achieve a fully functional colony (i.e., production of workers, new gynes, and males). 

On the other hand, males should be selected to mate only with gynes of the same lineage, 

since interlineage matings result in an evolutionary dead-end (i.e., workers).  

Investigating the role of genetic lineages in CHC variation will be a significant 

aspect of understanding the genetic bases of CHCs and recognition systems in                

P. barbatus. To date, only one study has investigated the role of genetic lineage in CHC 

variation in P. barbatus, which was restricted to a small sample (n = 13) of only males 

(Volny et al. 2006). Here, I expand on previous findings of lineage differences in males, 

and explore CHC variation in a larger sample consisting of males and gynes of both 

lineages (J1/J2). Furthermore, given that P. barbatus workers from GCD lineages are 

J1/J2 hybrids, it will be important to determine what, if any, contribution maternal 

lineage makes to worker CHC variation. Field studies in the sister species, P. rugosus, 

have shown no significant differences in the worker interaction between GCD and ECD 
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lineages or within GCD lineages (Julian & Helms Cahan 2006), but the influence of 

lineage on CHC variation is not yet known for GCD Pogonomyrmex workers. 

Finally, in addition to genetic components, CHCs may also be affected by a 

variety of developmental and environmental factors. To date, several studies have looked 

at CHC variation in P. barbatus, and identified effects such as: worker task-group 

(Wagner et al. 1998; Sturgis & Gordon 2013), worker colony membership (Wagner et al. 

1998; Sturgis & Gordon 2013), worker task-related environment (Wagner et al. 2001), 

and colony rearing conditions (Tissot et al. 2001). Missing from these studies, however, 

is a basic understanding of how P. barbatus ontogeny affects CHC variation. Initial 

studies of CHC variation in P. barbatus (Wagner et al. 1998) found that field-collected 

workers performing tasks outside the nest (i.e., foragers and patrollers) tend to have a 

relatively lower proportion of CHC methylalkanes and alkenes when compared with 

inside-nest workers (i.e., nest maintenance workers). In a follow-up experiment Wagner 

et al. (2001) showed that temperature and humidity can significantly contribute to this 

variation, such that hotter/drier conditions increase the abundance of cuticular n-alkanes, 

therefore reducing the relative proportions of cuticular methylalkanes and alkenes. These 

findings were necessary for understanding how environmental differences affect CHC 

proportions within a colony among task-groups. Since then, however, little has been done 

to show how other factors like ontogeny and social environment contribute to CHC 

variation in P. barbatus. Previous studies of ant CHC ontogeny in Aphaenogaster senilis 

have shown that quantities of CHCs can increase with individual age (Ichinose & Lenoir 

2009), and that proportions of CHCs in Camponotus aethiops vary depending on genes 

and environment (van Zweden et al. 2009). In order to gain an understanding of the role 
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of specific genes in CHC biosynthesis, it was first necessary to determine the 

development of the recognition cue phenotype, i.e., the CHC profile. Doing so allowed 

me to identify the relative contributions of worker age and social environment to CHC 

profile variation, which were important for future studies of gene function and CHC 

biosynthesis.  

 

Materials and Methods 

Cuticular alkene and desaturase gene expression analysis 

To study the relationship between desaturase gene expression and cuticular alkene 

abundance, I collected foundress queens the morning after a mating flight which occurred 

in August 2014 at Scottsdale Community College (SCC; Latitude: 33.516804, Longitude: 

-111.879994). Newly mated P. barbatus foundresses were identified and collected as 

they actively dug nests in the soil. To avoid injuring the foundresses, I waited for queens 

to emerge naturally during the digging process, carefully picked each up with 

featherweight forceps, and placed them separately into collection tubes. Upon returning 

to the lab, foundresses were then transferred to glass tubes half-filled with water and 

stoppered with cotton balls, and reared in complete darkness at 30°C for five weeks until 

CHC profiles and desaturase gene mRNA levels could be sampled. An additional sample 

of workers were collected from two-year-old, lab-reared colonies, each containing one 

queen, brood, and ≈ 500 workers (rearing conditions described in detail below). 

Measurements of CHC (alkene) abundance were acquired with solid-phase micro 

extraction (SPME), by gently rubbing a fiber (SUPELCO, coated with a 30µm 

polydimethylsiloxane film) for 5 min on the dorsal gaster of each queen (n = 31)) and 
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worker (n = 12). This non-fatal technique was preferable over solvent techniques to 

ensure that mRNA levels were not significantly degraded during CHC sampling. CHC 

coated fibers were then inserted into the injection port of a gas chromatograph (GC) 

equipped with a flame ionization detector (FID) to determine the abundance and 

proportions of cuticular alkenes present. The integrated CHC peaks areas were measured 

with Enhanced ChemStation (Agilent Technologies 2005), and the peaks of cuticular 

alkenes were identified based on Kovats indices. The abundances of cuticular alkenes 

were them summed together based on double-bond position (i.e., Z5, Z7, or Z9) for each 

peak, and used in subsequent desaturase gene correlation analyses. Double bond positions 

in cuticular alkenes were determined from a separate sample of 10 gynes using a 

dimethyl disulfide (DMDS) protocol previously described by Liebig et al. (2009). The 

abundances of cuticular alkenes were them summed together based on double-bond 

position (i.e., Z5, Z7, or Z9) for each peak, and were statistically analyzed with the 

statistical package R (version 3.2.2) using MANOVA to determine the effects of caste on 

levels of alkenes between queens and workers. Finally, post hoc one-way ANOVAs 

(corrected for multiple comparisons) were used to determine which alkene classes 

showed significant differences in the abundance between P. barbatus queens and 

workers. 

Immediately after CHCs were collected, ants were placed separately in micro 

centrifuge tubes and snap frozen in liquid nitrogen to preserve mRNA levels. Expression 

of three internal reference genes and 9 desaturase genes were measured by quantitative 

reverse transcriptase PCR (qRT–PCR), using the oligonucleotide primers listed in Table 

4.1. Desaturase gene expression was normalized to the three internal reference genes 
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(ef1beta, RPL13A, and RPL18; Table 4.1), and expression differences between queens 

and workers were statistically analyzed using the ∆∆CT method. 

 

CHC sampling and genetic lineage (J1/J2) analysis 

To assess the role of genetic lineage (J1/J2) on CHC profile variation, I collected live     

P. barbatus alates (reproductive ants), and foraging workers for CHC analyses. This 

occurred during the summer mating swarm (July 2013), also located at Scottsdale 

Community College (Latitude: 33.516804, Longitude: -111.879994). Alate gynes (virgin 

queens) and males were allowed to fly to the swarm and immediately collected (n ≈ 100 

each sex) as individuals dropped to the ground. Two hours after sampling was complete, 

ants were then frozen and stored (-80°C) for later CHC and genetic lineage analyses. 

Because the lineages of alate gynes and males were unknown upon collection, they were 

selected randomly from stored samples during CHC collection and lineage analysis (n = 

21 per per sex, total n = 42). 

To collect CHC profiles, each ant (i.e., gyne or male) was placed in a glass vial 

containing 200 µL hexane and allowed to soak for 10 min. Ants were gently swirled in 

the vial for 10 sec at the beginning and end of the soak period. Hexane extracts 

containing dissolved CHCs were transferred directly to glass, microvolume inserts, and 

dried under a stream of high-purity nitrogen gas. CHC samples were finally redissolved 

in 20 µL of hexane, and 1 µL of the final sample was analyzed. 

All CHC profiles were analyzed on an Agilent 6980N series gas chromatograph 

(GC) equipped with a DB1-MS (Agilent J&W) non-polar capillary column (length, 30 m; 

ID, 0.25 mm; film thickness, 0.25 µm) and connected to an Agilent 5975 mass selective 
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detector (MSD; −70 eV, electron impact ionization; Transfer Line 300°C; Quad 150°C; 

Source 230°C). Samples were injected using an automatic liquid sampler (ALS) in the 

splitless mode through the GC injection port set at 260°C. Helium was used as the carrier 

gas at 1 ml min−1. The column temperature was initially held at 60°C for 2 min before 

increasing to 200°C at a rate of 20°min−1, and then to 320°C at a rate of 5°C min−1, 

where it was finally held for 5 min. Hydrocarbons were characterized using a 

combination of diagnostic ions, Kovats indices, and comparisons to already published P. 

barbatus CHC profiles (Tissot et al. 2001). To determine the effect of genetic lineage (J1 

and J2) on CHC variation, I measured the peak areas of the 43 most abundant CHCs in 

Enhanced ChemStation (Agilent Technologies 2005), and analyzed the results through 

non-metric multidimensional scaling analysis (NMDS) of Euclidean distances calculated 

from the relative proportions of CHCs for each sample. 

Genetic lineage was determined by isolating genomic DNA from males’ gasters 

and queens’ thoraces using the Chelex isolation method (Gadau 2009). DNA samples 

were then used in a standard PCR with primers (“LCO” and “HCO”) that target 

amplification of a segment of the mitochondrial cytochrome oxidase 1 (cox1) gene. 

Partial cox1 fragment amplifications were checked on a 1% agarose gel for expected 

fragment size (630-bp), and then sequenced. Resultant sequence chromatograms were 

checked for quality, and aligned with previously generated Pogonomyrmex cox1 

sequences (Anderson et al., 2006a) using the L-INS-i algorithm implemented in MAFFT 

v7 (Katoh, 2002). Sample sequences were manually trimmed to match the reference 

dataset, and a neighbor joining tree was reconstructed with MAFFT v7. Nodal support 

values were obtained by a rapid bootstrap analysis of 1000 replicates. The final cox1 
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phylogeny allowed me to identify lineage relationships between my samples and ones 

previously classified (Anderson et al., 2006a). 

 

Colony rearing and ontogeny experiment 

For the study of development and social environment, workers form lab-reared colonies 

of P. barbatus were used. The study was conducted in the summer of 2014 with two-

year-old colonies each containing one queen, brood, and ≈ 500 workers. Queens were 

acquired similar to the methods described for collection of desaturase gene foundresses, 

differing only in the collection date, July 2012, and the specific location of the swarm at 

SCC (Latitude: 33.516775, Longitude: -111.882810). Colonies were maintained in the 

lab at 30°C in stacked plastic containers (5 levels, each level 4 in Í 4 in Í 2 in high) and 

connected interiorly with plastic tubing (ID: 1/2 in). Each container/level was lined on the 

inside walls with Fluon ® to prevent escape of ants, and stocked with 2–4 water-filled 

tubes to maintain hydration. All three bottom levels were coated exteriorly with mat-

black spray paint to minimize light infiltration, and the top two levels were left clear to 

allow for light. In all colonies, the queen and brood naturally stayed into the lower (i.e., 

darker) levels, and the workers moved throughout all levels as needed. Colonies were fed 

ad libitum with seeds (a 50:50 mixture of Kentucky bluegrass and Nyjer), and 

supplemented once a week with artificial ant diet (Bhatkar & Whitcomb 1970). 

 Six P. barbatus lab-reared colonies were selected based on similar worker 

numbers (≈500 per colony, with representatives of both GCD lineages (J1 and J2; n = 3 

each). Genetic lineage had been previously determined by sampling workers (n = 2) from 

each colony using the same methods described earlier. At the start of the experiment, 
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newly eclosed adult workers (callows, n = 10) were collected and marked with paint dots 

and wire belts tied around the petiole (paint mark: Sharpie ® oil-based paint markers; 

wire belts: 34 gauge, silver plated, colored wire) to keep track of individuals and their 

respective ages. After the initial CHC sample was collected (T = 0 days; SPME method 

described below), half of the marked workers from each colony were then placed in a 

social isolation treatment (n = 30), and the other half were placed back into their natal 

colony (n = 30). Isolation nest conditions were similar to full-colony nests, except for the 

number of levels provided (i.e., one black level on the bottom and one clear level on top), 

and the complete lack of queen, nestmates, and brood. Feeding and watering regimes 

were kept identical. To test for the effect of social interacts on CHC profile development, 

each isolated worker was reared alone into an isolation nest for the duration of the 

experiment, only being removed briefly from treatment for CHC sampling (7 samples,    

< 10 min each). Using non-fatal, solid-phase micro extraction (SPME; described above), 

I sampled each marked worker’s CHCs at eight time points throughout treatment (T = 0, 

1, 3, 5, 7, 10, 20, and 30 days), and determined the abundance and proportions of CHCs 

present using a gas chromatograph equipped with a flame ionization detector (GC-FID).  

The integrated CHC peaks areas were measured with Enhanced ChemStation 

(Agilent Technologies 2005), and the 46 most abundant CHC peaks were used to 

calculate the total abundance, proportional abundances, and Euclidean distances of CHCs 

for each worker/time point. Average CHC abundances (i.e., the total profile) and relative 

abundances of different compound classes (i.e., n-alkanes, alkenes, and methyl-branched 

alkanes) were then compared between the treatment types. Repeated measures ANOVAs 

(corrected for multiple comparisons) were used to determine the effects of age (i.e., post 
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eclosion developmental time point), social environment, and genetic lineage on levels of 

CHC compound classes. Post hoc Bonferroni tests were used to determine which groups 

showed significant differences in the amount of CHCs between P. barbatus workers. 

Finally, nonmetric multidimensional scaling (NMDS) analyses were used to look for 

overall patterns of CHC profile differences in younger (day 0) and older (day 30) 

workers. 

 

Results and Discussion 

Alkene abundance and desaturase gene expression 

Study of cuticular alkene variation revealed that queens and workers have qualitatively 

similar alkene profiles, but differ in alkene abundance (F1,45 = 22.458, P < 0.0001; Wilk’s 

Λ = 0.38958). Post hoc one-way ANOVA tests show that queens have a significantly 

higher abundance of Z7 alkenes compared with workers (F1,45 = 14.661 P < 0.001), but 

no significant differences were found between queens and workers for Z9 alkenes (F1,45 = 

4.0405 P = 0.0504) or Z5 alkenes (F1,45 = 2.2414 P = 0.1413; Figure 4.1, A). After 

identifying variation in cuticular alkene abundance, I then examined variation in 

desaturase gene expression for the same set of samples. Despite the higher abundance of 

Z7 alkenes found in queens, only one of nine desaturase genes, i.e., Pbar_desatA1, 

showed higher expression in queens compared with workers, and minimally so (0.10 fold 

higher; Figure 4.1, B). The remaining eight desaturase genes showed higher expression in 

workers ranging from 0.10 fold to 2.62 fold more than queens (Figure 4.1, B). 

 

 



	

89 

Genetic lineage (J1/J2) effects on CHCs 

Phylogenetic analysis of the mitochondrial cox1 gene sequence revealed that 6 of 21 

gynes (29%) and 7 of 21 males (33%) were of the J1 lineage, with the remaining gynes 

(15/21; 71%) and males (14/21; 67%) coming from the J2 lineage. A similar skew 

between the two lineages has been identified at this site before (Anderson et al. 2006b). 

NMDS analyses of alate CHCs show differences in the cuticular hydrocarbon profiles 

among the four groups tested (Figure 4.2); however, separation based on genetic lineage 

(J1/J2) only appears to occur among the males, with little to no lineage separation 

occurring in the gynes.  

The CHC differences found in males could potentially serve as a mechanism for 

mating decisions in this GCD population of P. barbatus where queens are dependent on 

mating with both lineages. On the other hand, the lack of lineage differences found in 

gyne CHCs suggests that selection may be favoring a more diverse female signal in GCD 

populations. The GCD interlineage dependency likely serves as a selective force acting 

on mating behavior, and may allow gynes to discriminate between potential male mates. 

Recent studies of P. barbatus mating behavior in another GCD population showed that 

males transfer sperm at a significantly higher rate during intralineage matings compared 

with interlineage matings, and intralineage matings are significantly shorter than 

interlineage crosses (Herrmann & Helms Cahan 2014). These findings are indicative of 

antagonistic sexual coevolution, in which both males and gynes are capable of adjusting 

their mating behavior according to the type of cross (intra- versus inter-lineage), and 

suggests that each sex/lineage are using cues to discriminate between mates. In my study 

population, I found GCD lineage differences in CHCs between P. barbatus males, but not 
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in gynes. This suggests that CHCs may only be useful for P. barbatus gynes in making 

mating decisions - at least for the GCD population studied here. Alternatively, the lack of 

lineage-related differences found among gynes may be due to the small number of J1 

gynes sampled (because of the strong lineage skew). Future work would need to be 

carried out that directly investigate the potential use of CHCs in mating behavior in GCD 

P. barbatus populations. Despite their function remaining unknown, this study shows that 

GCD lineage affects CHC profile variation among P. barbatus males. 

 

Ontogeny study 

Analysis of CHC ontogeny shows that CHCs of P. barbatus are significantly more 

abundant in older (20 -30 day) adult workers regardless of rearing treatment (Figure 4.3, 

A), and that all four classes of CHC compounds (i.e., n-alkanes, alkenes, monomethyl-

alkanes, and dimethyl-alkanes) are significantly affected by worker age (Table 4.2). In 

contrast, social environment only significantly affected worker alkenes and dimethyl-

alkanes. NMDS analysis of CHCs at T = 0 (i.e., 0 days post eclosion) show that workers 

of both treatment groups initially showed high variation and overlap (i.e., no clear 

separation) between the colonies and lineages tested (Figure 4.3, B). On day 30 (i.e., T = 

30 days post eclosion), however, NMDS analysis shows that the treatment groups (i.e., 

colony versus isolation) had a clear effect on CHC variation, with separation occurring 

between the two treatments (Figure 4.3, B). These results indicate that both ontogeny and 

social environment both contribute to the “gestalt” nestmate recognition cues of             

P. barbatus workers, whereas genetic lineage does not appear to have a significant 
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contribution to worker CHC variation. Future investigations of the genetic bases of 

cuticular hydrocarbon variation should be careful to control for these factors. 

 

Conclusions 

Given the established importance of CHCs in social insect communication, and 

specifically recognition systems, it was important to begin with an examination of          

P. barbatus hydrocarbons themselves, i.e., their production and composition. My 

investigation of the genetic, developmental, and social environmental factors affecting 

variation in CHCs within P. barbatus colonies showed that genetic differences related to 

CHC production are likely occurring at multiple levels including population (i.e., J1/J2 

lineage differences), sex (i.e., gyne versus male differences), and caste (i.e., queen versus 

worker differences). Furthermore, differences between queen and worker desaturase gene 

expression suggest that these genes may be important for recognition systems (i.e., queen 

reproductive signals and/or nestmate recognition cues), with Pbar_desatA1 being of 

particular interest for future functional studies. Future investigations of desaturase gene 

function in P. barbatus may be best focused on their role in alate (gyne) and queen CHC 

production, since these castes show the highest abundance and variation in cuticular 

alkenes. Alternatively, functional studies of desaturase genes might also be successful in 

targeting alkene production in either late pupal or late-stage callow workers. Given the 

significant effects of ontogeny on CHC abundance (Figure 4.3, A), targeting desaturase 

genes in early developmental stages might show greater effects on alkene abundance if 

this development is disrupted. Finally, manipulation of the social environment must be 

carefully considered in the context of CHCs and recognition systems, as both may be 
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affected by such a change. Similar findings have been reported in Aphaenogatser senilis 

where postpharyngeal gland (PPG) hydrocarbons significantly increased in social groups 

compared with isolated workers, but cuticular hydrocarbons did not (Ichinose & Lenoir 

2009). My findings additionally support the role of the colony (i.e., the social 

environment) in the “gestalt” model of nestmate cues (i.e., CHCs), but also suggest the 

importance of innate components (i.e., genetics and development) in ant CHCs.  

The genetics of recognition systems in social insects is largely unexplored. This 

poses a gap not only in eusocial insect biology, but also in studies of complex adaptive 

systems such as chemical communication. My findings concerning the genetic, 

developmental, and social basis of recognition cues provide insight into the major drivers 

of the evolution of colony recognition and social insect communication, while laying the 

necessary foundational work for future genetic examinations. Functional genetic studies 

(e.g., using techniques such as RNA interference) hold considerable promise for 

understanding the genetic bases of social insect nestmate recognition systems, and have 

been successfully implemented in studies of Drosophila CHCs (Dallerac et al. 2000; 

Fang et al. 2002; Labeur et al. 2002). Using these tools to further the advancement of 

molecular studies of CHC production, e.g., acyl-CoA desaturases, in social insects offer 

exciting opportunities to discern their significance for ecology, chemical communication, 

and social evolution in ants. 
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Table 4.1. Desaturase gene and mitochondrial cox1 oligonucleotide sequences, target 
fragment lengths, and qPCR metrics for gene expression and genetic lineage studies. 
 

 
 
 
 
 
 
 

Forward: CCAGAAGTCAGGGAGAAGGG
Reverse: TTCGTCCATGTCTCGTTCCA

Forward: AAACCCATGTACGCCTGGTA
Reverse: TATAGCTGTCGGTGGAGCTG

Forward: CCATATAATGCACGCCGAGG
Reverse: ATCGCTGCAATCAATCGTGG

Forward: TGGGGCGAAAGTTTCTGGTA
Reverse: AGACTGCAGCATTGTTGACG

Forward: ACTTGGCTTGTACCGTCTCA
Reverse: AGATCGGGGTTTGGTGTCTT

Forward: CTGGTTGTAACTGGCGAAGG
Reverse: CGATAAAGAACGCCGAGTGA

Forward: TTGCGATACTGATGCCGATC
Reverse: TTCATCATCACCCAGCCACA

Forward: AGATGATGAGCCAGCGATCA
Reverse: TCGCTTTGTACGCCTTATGC

Forward: CTGCACGCCTGATGATAACA
Reverse: CGTCAACCGGGAATTTGTCT

Forward: CTCAACACCTACCTCGCTGA
Reverse: TTCGCCGGGAAGTGACTTAA

Forward: ACTTGGACGATTGGCTGCTA
Reverse: GGACCACGTGCAGGATTTAC

Forward: CGATGACGCCAGGATCTTTG
Reverse: ACCACCAGCCTTCAAAATGC

LCO: GGTCAACAAATCATAAAAGATATTGG 
HCO: TAAACTTCAGGGTGACCAAAAAATCA

102

Target Gene Oligo Sequence Fragment 
Length (bp)

R^2qPCR 
Efficiency (%) 

120 0.9979798Pbar_desatA1

Pbar_desatA2_a 134 0.99946

Pbar_desatA2_c

Pbar_desatB_b

108

0.99812102109

Pbar_desatA2_b 105 0.99789

95 0.99964103

96 0.99530106

101 0.99717

0.99812102

0.9989695

0.99851104

0.99947105

0.99185103

NANACO1

Pbar_RPL18

Pbar_RPL13A

94

630

Pbar_ef1beta

Pbar_desatE

Pbar_desatD

Pbar_desatB_d

Pbar_desatB_c

75

137

96

168

165
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Table 4.2. Repeated measures ANOVA effects of ontogeny, social environment, and 
colony of origin on CHC abundance in P. barbatus workers. Significant effects are 
highlighted in bold. 
 

 
 
 
 
 
 

Ontogeny (age) n-alkanes 7 50.24 <0.001
alkenes 7 36.33 <0.001
monomethyl-alkanes 7 25.35 <0.001
dimethyl-alkanes 7 12.54 <0.001

Social Environment n-alkanes 1 2.72 0.100
alkenes 1 5.65 0.018
monomethyl-alkanes 1 1.91 0.168
dimethyl-alkanes 1 4.03 0.045

Colony of Origin n-alkanes 4 5.01 0.001
alkenes 4 2.20 0.068
monomethyl-alkanes 4 1.57 0.181
dimethyl-alkanes 4 1.26 0.285

Error 385

Treatment CHC class df PF
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Figure 4.1. Cuticular alkene abundance and desaturase gene expression differences in   
P. barbatus queens and workers. (A) Mean cuticular alkene abundance (+/- SEM) in 
queens (gray bars) and workers (white bars).  (B) Bar graph of normalized desaturase 
gene expression (+/- SEM) representing fold differences between queens and workers. 
Positive values indicate normalized expression that was higher in queens, whereas 
negative values indicate normalized expression that was higher in workers. Bars are color 
coded according to desaturase genes and their respective clades identified in Chapter 3 
(Figures 3.1 and 3.2; Helmkampf et al. 2014) 
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Figure 4.2. Non-metric multidimensional scaling analyses of CHC variation among alate 
gynes and males of two P. barbatus lineages (J1/J2). Gynes (filled circles) and males 
(open circles) are color coded according to their genetic lineage (J1 lineage = red; J2 
lineage = blue). 
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Figure 4.3. Effects of ontogeny and social environment on cuticular hydrocarbon 
variation in P. barbatus workers. (A) Boxplots (average, upper and lower quartiles, 95% 
confidence intervals, and outliers) representing the abundance of CHCs on P. barbatus 
workers across eight timepoints (days) after pupal eclosion. Workers were placed in one 
of two treatment groups: those reared in their natal colony (orange boxes), or those reared 
in isolation (yellow boxes). (B) NMDS plots of 46 most abundant peaks in P. barbatus 
worker CHC profiles at two timepoints (T = 0 days and T = 30 days) for both treatments 
(Colony/J1 = orange dots; Colony/J2 = orange squares; Isolated/J1 = yellow dots; 
Isolated/J2 = yellow squares). 
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CHAPTER 5 

CONTEXTUALIZING COMBAT: THE EFFECTS OF PRIOR EXPERIENCE, 

CUTICULAR HYDROCARBONS, AND SEASONALITY ON NESTMATE 

RECOGNITION BEHAVIOR IN THE RED HARVESTER ANT,   

POGONOMYRMEX BARBATUS 

Abstract 

Territorial behavior, including aggressive interactions with neighbors, is adaptive when 

the benefits of securing resources outweigh the costs of defending a territory. Costs may 

come from conspecific neighbors encroaching on a territory or from floaters passing 

through. To reduce the costs of territoriality, organisms may restrict aggression to those 

who pose the greatest threat. A growing body of evidence shows that some group-living 

animals (including ants and termites) exhibit the “nasty neighbor” phenomenon, i.e., 

groups behave more aggressively towards individuals from neighboring groups than 

towards individuals from more distant groups. In ants, neighboring colonies may pose the 

greater threat, because recruitment and invasions can be achieved more easily, given their 

relatively close proximity. The nasty neighbor phenomenon has strong implications for 

the nestmate recognition systems of social insects that exhibit these territorial differences 

in behavior. In this study, I explored the effects of prior experience, cuticular 

hydrocarbons (CHCs), and seasonality on territorial aggressive behavior in the harvester 

ant Pogonomyrmex barbatus. I tested these three factors using two types of behavioral 

assays across three seasons. The first, a pair-wise aggression assay, tested the amount of 

aggression between worker-worker interactions of known experience and neighboring 

relations in P. barbatus. The second, a chemically coated “dummy” assay, used CHC 
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coated glass beads to determine their specific effects on the amount of aggressive 

behaviors exhibited by P. barbatus. My results show that P. barbatus worker ants are 

significantly more aggressive towards non-nestmate workers from neighboring colonies 

than non-nestmates from more distant colonies, and both prior experience with non-

nestmates and familiarity with non-nestmates have significant effects on nestmate 

recognition behavior. Furthermore, when presented with glass beads coated with different 

CHC profiles alone, worker ants exhibited significantly more aggression towards 

neighboring colony non-nestmate CHC profiles than distant colony non-nestmate 

profiles, thus corroborating the findings of the paired, worker-worker behavior assays. 

Notably, however, these effects were strongly dependent on the season in which the 

workers were tested, suggesting that aggression is limited to seasons when colony growth 

and reproduction are important, and thus resource competition is high. These results 

indicate that P. barbatus shows qualities of the “nasty neighbor” phenomenon, with 

evidence for seasonal plasticity, and that variation in this territoriality aggression is due, 

in part, to associative learning of neighboring colony recognition cues (i.e., CHCs) with 

territorial experience. 

 

Introduction 

Territoriality is a ubiquitous phenomenon observed across a diverse range of animals. 

Territorial behaviors in ants may consist of inter/intraspecific signaling, monitoring, and 

aggression; they can be instinctive or learned, and primarily exist as a way of accessing 

and protecting valuable resources (Wilson 1975). Depending on the environmental 

conditions in which a population or species has evolved, the spatiotemporal distribution 
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of resources including: nutritional needs, nesting/dwelling materials and space, access to 

mates, and safety of offspring, among others, can effect territorial strategies (Hölldobler 

& Lumsden 1980; Kaufmann 1983). Given the complexity of these dynamics, territorial 

behaviors can vary widely across taxa, yet some notable patterns have emerged. In 

particular, two territoriality phenomena, one named the “dear enemy” effect (Fischer 

1954) and the other named the “nasty neighbor” effect (Temeles 1990), involve the 

intraspecific relationships between neighboring biological entities, e.g., individuals, 

breeding pairs, and colonies. 

The “dear enemy” effect describes a relationship between neighbors whereby 

each entity tends to direct significantly less aggression and territorial behavior towards 

their nearest neighbors than towards more distant neighbors or unsettled passersby 

(Fischer 1954). This phenomenon has largely been observed in solitary species (Temeles 

1994), but also in several eusocial, ant species (Heinze et al. 1996; Beye et al. 1998; 

Langen et al. 2000; Pirk et al. 2001; Dimarco et al. 2010). Two hypotheses commonly 

cited when explaining the “dear enemy” phenomenon are the threat-level hypothesis and 

the familiarity hypothesis. The threat-level hypothesis argues that neighbors and strangers 

may be competing for different resources, and therefore represent different threats to an 

established territory holder. In this scenario, strangers may represent ‘floaters’ trying to 

find a new territory, and are thus perceived as a higher threat (Temeles 1994). The 

familiarity hypothesis, on the other hand, argues that relationships between neighbors 

become established as a result of habituation to the familiar neighbor, which leads to 

reduced aggression (Wilson 1975). 
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Conversely, the “nasty neighbor” effect, involves entities that direct significantly 

more intraspecific aggression towards nearest neighbors than more distant ones (Temeles 

1994; Müller & Manser 2007). This phenomenon has been observed primarily in group-

living taxa, but also some solitary species, including: termites (Dunn & Messier 1999), 

ants (Gordon 1989; Sanada-Morimura et al. 2003; van Wilgenburg et al. 2007; Thomas 

et al. 2007; Newey et al. 2010), mammals (Herbinger et al. 2007; Müller & Manser 

2007; Schradin et al. 2010), and birds (Temeles 1990; Olendorf et al. 2004; Brunton et 

al. 2008; Yoon et al. 2012; Gentry & Jawor 2015). Several studies have argued that 

group-living likely contributes to this phenomenon, because groups compete for more 

resources than individuals and pairs, and, as group-size increases, resource demands 

increase (Müller & Manser 2007; Newey et al. 2010). In such a context, a conspecific 

“outsider” individual may represent a real threat, because additional members of the other 

group could be recruited to that territory if it is not aggressively defended. This is 

especially relevant for neighboring groups, where recruitment and invasions can be 

achieved more easily, because of their relatively close proximity. Given these findings, 

neighboring relationships may have significant effects on nestmate recognition in ants, 

because neighboring colonies may pose greater threats than distant colonies in 

environments where there is colony overlap. 

In recent years, several authors have demonstrated notable intraspecific and 

intercolonial variation in territorial relationships, including plasticity in the direction of 

aggressive behaviors, e.g., variation between monodomous and polydomous populations 

of Formica pratensis ants (Benedek & Kóbori 2014), and higher levels of aggression 

between colonies of intermediate distances, e.g., in Crematogaster scutellaris ants, likely 
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due to polydomy (Frizzi et al. 2014; Frizzi et al. 2015). Furthermore, territorial 

aggression in ants has been shown to vary based on context (Buczkowski & Silverman 

2005; Tanner & Adler 2009), task-group (Newey et al. 2010; Sturgis & Gordon 2013), 

and experience (van Wilgenburg et al. 2010a). Findings like these indicate that, even 

within a species, territorial relationships may differ due to a variety of genetic, 

developmental, and environmental conditions (reviewed in Sturgis & Gordon 2012). 

Establishing complex territorial relationships such as these necessitates the ability 

of organisms to learn cues from their neighbors. In ants, (non)nestmate recognition cues 

are largely communicated by a class of chemicals known as cuticular hydrocarbons 

(CHCs; Lahav et al. 1999; Wagner et al. 2000; Akino et al. 2004; Ozaki et al. 2005; 

Martin et al. 2008), but the relative contributions of genetic and environmental factors to 

nestmate recognition is still poorly understood in many species (d’Ettorre & Lenoir 

2010). Studies of the unicolonial Argentine ant, Linepithema humile, for example, show 

strong effects from exogenous cues such as environmental conditions and diet (Chen & 

Nonacs 2000; Liang & Silverman 2000), which may be capable of overriding heritable 

effects in populations introduced in California (Buczkowski et al. 2005) where genetic 

variability is low due to recent invasion by a small population (Tsutsui & Case 2001). 

Argentine ants introduced to Europe, on the other hand, do not show evidence of an 

overall genetic bottleneck, and instead have been argued to be fixed for different 

recognition alleles (Giraud et al. 2002). Moreover, in several other ant species, 

recognition cues are strongly affected by genetic components. For example, comparisons 

between colonies with high genetic relatedness (e.g., monogynous/monoandrous) show 

more similar CHC patterns than comparisons between colonies with low relatedness (e.g., 
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monogynous/polyandrous and polygynous) (Vander Meer & Morel 1998; Vasquez et al. 

2009; van Zweden et al. 2011). Notably, in addition to CHC variation eliciting 

intraspecific aggression among ant colonies, previous territorial experience has also been 

shown to affect the propensity to fight (van Wilgenburg et al. 2010). Therefore, having 

sufficient nestmate recognition cue variation, as well as opportunities to learn these cues 

through prior experience with intraspecific non-nestmates, may be essential to 

maintaining territorial relationships. 

In this study, I investigated territorial relations in the red harvester ant, 

Pogonomyrmex barbatus. Two previous studies bear relevance to the question of the 

complexity of neighboring relationships, and thus nestmate recognition in this species. 

The first showed that P. barbatus distinguishes between members of near and distant 

colonies by exhibiting a stronger reduction in foraging in response to the former than the 

latter (Gordon 1989). By contrast, a more recent study found that P. barbatus does not 

significantly differentiate near from distant neighbors when tested in the context of 

intercolony aggression (Sturgis & Gordon 2013). To address this ambiguity, I conducted 

a series of behavior assays measuring responses between P. barbatus colonies 

representing three types of colony experience/relationships: isolated colonies (i.e., 

inexperienced with intraspecific non-nestmates), distant colonies (i.e., experienced with 

non-nestmates, but not familiar with those tested against), and neighboring colonies (i.e., 

experienced with non-nestmates, and familiar with those tested against). Doing so 

allowed me to reassess the effect of colony (in)experience and spatial relationships on 

territorial aggression, and thus, nestmate recognition in P. barbatus. Furthermore, a 

growing body of evidence shows that territorial relationships may fluctuate, especially 
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when the level of resource competition varies across seasons. Previous examples of 

seasonal effects on territoriality have been found in ants (Mabelis 1979; Ichinose 1991; 

Katzerke et al. 2001), birds (Golabek et al. 2012), and mammals (Schradin et al. 2010). 

Therefore, testing for the effects of seasonal variation in P. barbatus aggression may help 

explain the disagreement of previous results, and provide important contextual 

information for interpreting how territorial behavior and relationships, as well as 

nestmate recognition cues, change over a colony’s annual life cycle. Better understanding 

how experiential and seasonal factors affect territoriality will be beneficial to advancing 

theoretical models of nestmate recognition in social insects, and help explain 

contradictory results in the literature (e.g., Gordon 1989, and Sturgis & Gordon 2013). 

 

Materials and Methods 

Colony distribution and sampling 

The study was carried out in the greater Phoenix, AZ area from June 2013 to April 2016. 

Worker ants from 31 colonies of Pogonomyrmex barbatus were collected at two sites 

within the Phoenix metropolitan area over the course of the experiments. I sampled 

eleven colonies from site “UPR,” located along a Union Pacific railroad line in Tempe, 

AZ (33.330985°, -111.951833°), and the remaining fourteen colonies were sampled at 

site “SCC,” located around Scottsdale Community College in Scottsdale, AZ on 

undeveloped land surrounding the campus (33.513481°, -111.879575°). For each site, 

colonies were mapped within the sampled range, and intercolony distances (m) were 

recorded to determine average distance between all isolated colonies, distant colonies, 

and neighboring colonies tested (Figure 5.1). 
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Paired-worker behavior assays 

To test for significant differences in aggressive/territorial behavior between 

colonies, I collected P. barbatus workers from field colonies at two sites in the Phoenix 

metropolitan area: Scottsdale Community College (SCC; Figure 5.1, A) and along the 

Union Pacific railroad in Tempe, AZ (UPR; Figure 5.1, B). Live workers were sampled 

in the morning between 7:00 am and 9:00 am, a two-hour period of time overlapping with 

the onset of colony foraging activity (Gordon 1986). Focal workers were observed on the 

nest mound (i.e., within 50 cm from the colony entrance), and collected only if they were 

both (a) carrying no objects (i.e., not foraging for resources or performing nest 

maintenance tasks), and (b) walking around the mound antennating other workers (≥ 2 

interactions of 1-3 sec each). Previous studies have described similar behavioral castes, 

but termed them differently, i.e., “guards” in honey bees (Butler & Free 1952; Seeley 

1985) and “patrollers” in ants (Gordon 1987). Our collection criteria differed slightly 

from these descriptions, so, to minimize confusion, we avoided theses terms and simply 

refer to these ants as “workers” for this assay. Field-collected workers were then brought 

directly from the sites to the lab, and immediately paint marked with a unique three-color 

combination code, i.e., one color on the head, and two colors on the thorax, using Sharpie 

® oil-based paint markers. After paint-marking, ants were regrouped by colony, placed in 

clear plastic containers (4 in Í 4 in Í 2 in high) lined with Fluon ® to prevent escape, 

and provided with water-filled tubes to avoid dehydration. Workers were given a 

minimum of 30 min to acclimate, in order to reduce aggression due to handling and 

manipulation, before being used in a 3 min video-recorded, one-on-one aggression assay. 
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All ants were used in behavior assays on the same day that they were collected in order to 

minimize changes in behavior due to lab conditions. 

For each trial, two workers were placed separately in open-ended, Fluon ® lined 

glass tubes (3/4 in diameter Í 1 in high), which were previously placed within the test 

arena - a Fluon ® lined, white porcelain dish (2 in diameter Í 1.5 in high). Glass tubes 

were used to keep ants separate while they acclimated for 1 min to the test arena, and the 

arena floor was previously lined with lightly dampened (water) filter paper (Whatman ® 

No. 1). During the experiments, glass tubes (30 total) and arena dishes (14 total) were 

continually rotated throughout the trials, filter paper liners were discarded and replaced 

after each trial to avoid chemical contaminant effects on the ants’ behavior, and each was 

lightly cleaned with ethanol (200 proof) soaked cotton balls prior to reuse.  

Four main treatments were used to test for aggressive/territorial behavior between 

paired-worker introductions: (a) two nestmates (n = 34 colonies; negative control), (b) 

two non-nestmates from isolated colonies with no nearby neighbors (n = 7 colonies; 

“inexperienced” treatment), (c) two non-nestmates from distant colonies, but with other 

neighboring colonies nearby (n = 27 colonies; “experienced” but unfamiliar treatment), 

and (d) two non-nestmates from neighboring colonies (n = 27 colonies; “experienced” 

and familiar treatment). Colonies were considered neighbors if they were < 40 m apart, 

and isolated if their nearest “neighbor” was > 40 m apart. Mean (±SD) neighbor colony 

distance was 18.08 ± 10.41 m, mean (±SD) distant colony distance was 285.77 ± 151.79 

m, and mean (±SD) isolated colony distance from its nearest “neighbor” was 68.53 ± 

27.05 m. Each individual worker ant was used only once in a bioassay, and treatments 

were replicated such that all possible colony pairings were evenly distributed within a 
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treatment type. These experiments were repeated over two time periods, summer (June – 

July) and fall (September – October), to test for seasonal differences in territorial 

behavior. A total of 240 trials were conducted over the course of the experiment 

(summer: 120 trials; fall: 120 trials). Each trial was video recorded (Canon EOS 6D 

DLSR camera body; Canon EF 100mm F2.8 L IS USM macro lens; 60 fps) for a 

minimum of 3 min after contact was initiated between the ants.  

The duration (sec) of two behavioral categories, i.e., (i) antennation and (ii) 

biting/grappling, were recorded by an observer who was ‘blind’ to the treatment type to 

avoid confirmation bias (van Wilgenburg & Elgar 2013). Video observations were 

performed at 0.5Í playback speed to ensure accuracy of scoring, and were scored twice - 

focusing each time on only one of two ants per assay. We documented ethogram scores 

with the assistance of the computerized event recording software, ETHOM (Shih & Mok 

2000). The behavioral results were then averaged for each pair and were statistically 

analyzed with the statistical package R (version 3.2.2) using one-way ANOVA (corrected 

for multiple comparisons) to determine the effects of treatment and seasonality on levels 

of aggression between workers. Finally, post-hoc Tukey’s HSD tests were used to 

determine which treatment types and seasons showed significant differences in the 

amount of antennation and aggressive behavior between P. barbatus workers. 

 

Chemical analysis 

For both seasons, i.e., summer and fall, we collected 36 live foraging ants each 

from eight neighbor colony pairs used in subsequent CHC “dummy” assays. Foragers 

were collected if they were observed on the nest mound carrying a seed in the direction of 
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the colony entrance. We chose to focus on this behavioral caste for study of CHCs, 

because previous work has shown that the highest levels of aggression are exhibited 

towards P. barbatus foragers (Sturgis & Gordon 2013). Ants were brought to the lab and 

freeze-killed (-80°C) prior to cuticular hydrocarbon extraction. Four ants were arbitrarily 

selected from each colony sample to test for individual-level CHC quantity and percent 

composition. The remaining 32 ants were reserved for extractions used in CHC “dummy” 

assays (described below). Each forager was placed in a glass vial containing 200 µL 

hexane and allowed to soak for 10 min. Ants were gently swirled in the vial for 10 sec at 

the beginning and end of the soak period, to ensure contact between the solvent and 

cuticular surface. We chose to forego an additional sample fractionation step (e.g., using 

silica gel filled minicolumns), because previous analyses showed that non-hydrocarbon 

chemicals and contaminants were undetectable. Therefore, 200 µL hexane extracts 

containing dissolved CHCs were transferred directly to glass, microvolume inserts, and 

dried under a stream of high-purity nitrogen gas. CHC samples were redissolved in 20 µL 

of hexane containing an internal standard (C19, nonadecane) of known concentration, 

and 1 µL of the final sample was analyzed. 

All CHC profiles were analyzed on an Agilent 6980N series gas chromatograph 

(GC) equipped with a DB1-MS (Agilent J&W) non-polar capillary column (length, 30 m; 

ID, 0.25 mm; film thickness, 0.25 µm) and connected to an Agilent 5975 mass selective 

detector (MSD; −70 eV, electron impact ionization; Transfer Line 300°C; Quad 150°C; 

Source 230°C). Samples were injected using an automatic liquid sampler (ALS) in the 

splitless mode through the GC injection port set at 260°C. Helium was used as the carrier 

gas at 1 ml min−1. The column temperature was initially held at 60°C for 2 min before 
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increasing to 200°C at a rate of 20°min−1, and then to 320°C at a rate of 5°C min−1, 

where it was finally held for 5 min. Hydrocarbons were characterized using a 

combination of diagnostic ions, Kovats indices, and comparisons to already published    

P. barbatus CHC profiles (Tissot et al. 2001). 

To determine the effect of intercolony CHC variation, we measured the peak 

areas of the 21 most abundant CHCs (Figure 5.3, A) in Enhanced ChemStation (Agilent 

Technologies 2005). The internal standard (C19) was also measured for each sample and 

used to calculate the total abundance (ng) of CHCs present. Additionally, the relative 

proportions of CHCs were calculated for each sample to determine overall intercolony 

CHC variation, as well as the relationship between intercolony CHC distance, spatial 

distance, and aggression. Overall CHC variation was determined through non-metric 

multidimensional scaling analysis (NMDS) of Euclidean distances that were calculated 

from the relative proportions of CHCs for each sample. 

 

Cuticular hydrocarbon “dummy” assays 

To understand the role of CHCs in maintaining territorial relationships between  

P. barbatus colonies, we carried out a series of assays to test how workers behave 

towards CHC coated glass beads (i.e., “dummies”). CHC dummies were prepared by 

placing two pools of 16 foragers from each colony, previously reserved from CHC 

analyses, into two glass vials (3 mL, 16 ants each) and soaking them in 1600 µL of 

hexane for 10 min. As with individual extractions, the pools of ants were gently swirled 

in the vial for 10 sec at the beginning and end of the soak period, to ensure contact 

between the solvent and cuticular surface. While ants soaked, we evenly distributed 16 
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clean, glass beads (4mm diameter; previously washed with hexane) across four additional 

vials (3 mL). When the soaking period was complete, the two pools of CHCs in hexane 

(~3200 µL total) were combined in a single glass vial and dried to approximately 2Í 

concentration (1600 µL). From this CHC pool, aliquots (400 µL) of the 2Í CHC-hexane 

extract were transferred to each of the vials containing 4 beads. CHC-bead vials were 

then dried under a stream of N(g), sealed, and kept at 25°C until their use in confirmation 

tests or “dummy” assays.  

Successful transfer of CHCs to glass beads was confirmed by randomly collecting 

1 CHC-bead from each vial preparation and re-extracting their CHCs. Each bead was 

treated as an individual ant and extracted and analyzed with the same methods described 

in the chemical analysis steps above. Total CHC abundance per bead (ng) was calculated 

from an internal standard (C19), and the relative proportions were calculated from the 

sum of peak areas. The abundance and relative proportion values were then compared 

with representative samples of forager ants for each colony to ensure that CHC 

abundances and proportions were not significantly different between CHC-beads and 

individual ants (Figure 5.3, C). 

“Dummy” assays were conducted similarly to paired-worker behavior assays, 

with two modifications: first, one of the workers was replaced with a glass bead (aka a 

“dummy”) from one of four possible treatments; second, assays were video recorded for 

only 2 min after initial contact (preliminary studies indicated that ants rarely interact with 

beads after 2 min, regardless of treatment). Each worker ant was tested only once, and 

placed with one of four treatments: (a) blank bead (negative control; i.e., hexane washed, 

dry glass bead), (b) nestmate bead (positive control; glass bead coated with forager CHCs 
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from the same colony), (c) distant bead (distant non-nestmate treatment; glass bead 

coated with forager CHCs from a distant colony, i.e., > 40m between the focal colonies 

tested), or (d) neighbor bead (neighboring non-nestmate treatment; glass bead coated with 

forager CHCs from a neighboring colony, i.e., < 40m between the focal colonies tested). 

A total of 16 trails per treatment per season were run for CHC “dummy” assays (n = 128 

total trials). As with paired-worker assays, all worker ants were tested in the lab on the 

same day of collection from the field, and all CHC-beads were used within 5 days of 

preparation. Video recordings were made for each trial, and observations were made at 

0.5Í playback speed by an observer who was “blind” to the treatment. For each trail the 

duration (sec) of antennation and biting + grappling were recorded. Behavioral results 

were then analyzed for differences between treatments and seasons using ANOVA and 

post hoc Tukey’s HSD tests.  

 

Results 

Paired-worker aggression 

We found that P. barbatus workers spend significantly more time antennating and biting 

non-nestmate workers from neighboring colonies, and that this behavior is significantly 

affected by season (Figure 5.2). Territorial behaviors between non-nestmates is high in 

the summer season (pre-mating flight, June-July), and drops to low levels in the fall 

season (September-October). ANOVA test results indicate that both treatment and season 

have significant effects on the amount of antennation (treatment: F3, 239 = 26.362, P < 

0.001; season: F1, 239  = 44.119, P < 0.001) and biting/grappling (treatment: F3, 239 = 

623.475, P < 0.001; season: F1, 239  = 12.972, P < 0.001) behaviors exhibited in pairwise 
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aggression assays between P. barbatus non-nestmate workers. Furthermore, pairwise post 

hoc Tukey’s HSD results indicate that non-nestmate workers exhibit significantly more 

antennation and biting/grappling when tested with workers from neighboring colonies 

than workers from distant colonies, but this only holds true for the summer season 

(adjusted P = 0.0001; Figure 5.2). Finally, post hoc Tukey’s HSD comparisons between 

nestmates and non-nestmate workers from isolated colonies show lower levels of these 

behaviors with no significant differences between the two (adjusted P > 0.05). 

 

Cuticular hydrocarbon profile and variation 

P. barbatus foragers from different colonies have qualitatively similar CHC profiles, and 

therefore only differed quantitatively based on the relative and total abundance of CHC 

peaks present (Figure 5.3, A and B). We found that non-parametric, multidimensional 

scaling analysis of the 20 most abundant CHC peaks did not fully distinguish workers 

based on the colony from which they were collected, and instead showed numerous 

instances of CHC profile overlap between colonies (Figure 5.3, B). Additionally, 

variation in the spread of CHC colony profiles appears high, with some colonies showing 

a lot of spread (e.g., colony UPR002, brown diamonds) and others showing much less 

spread (e.g., colony UPR005, yellow diamonds) (Figure 5.3, B). Finally, we confirmed 

that CHC-coated glass bead “dummies” were not quantitatively different (ANOVA, F1, 59 

= 3.142, P = 0.08) from representative foragers of the same colony (Figure 5.3, C). 

Notably, however, post hoc comparisons using the Tukey’s HSD test indicated 

significant quantitative differences in CHC abundance between foragers collected in 

different seasons (adjusted P = 0.02), i.e., summer-collected foragers had significantly 
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higher quantities of CHCs (Mean ± SD = 9001.23 ± 6541.41 ng) than fall-collected 

foragers (Mean ± SD = 5505.46 ± 2181.11 ng; Figure 5.3, C). 

 

CHC-elicited aggression 

In the CHC “dummy” assays, we found that P. barbatus workers spend significantly 

more time antennating and biting non-nestmate coated CHC dummies from neighboring 

colonies. However, as with the paired-worker aggression assays, this behavior is 

significantly affected by season (Figure 5.4). Similarly, CHC-elicited aggression is high 

in the summer and reduces to low levels in the fall. ANOVA test results indicate that 

colony spatial relationships have significant effects on the amount of aggressive 

behaviors exhibited in dummy assays by P. barbatus workers. P. barbatus workers show 

significant differences in antennation of CHC coated dummies based on treatment (F3, 127 

= 6.176, P < 0.001) and season (F1, 127 = 16.756, P < 0.001). The same pattern was found 

for biting/grappling behaviors (treatment: F3, 127 = 6.185, P < 0.001; season: F1, 127  = 

4.573, P < 0.05). Post hoc Tukey’s HSD results indicate that non-nestmate workers only 

exhibit significant differences in antennation when comparing blank beads (the negative 

control) with neighbor coated CHC-beads in the summer season (adjusted P = 0.002; 

Figure 5.4, A); all other comparisons were not significantly different within a given 

season. Finally, for biting + grappling behaviors, only summer-collected neighboring 

workers exhibited significantly more aggression (adjusted P < 0.05; Figure 5.4, B). 
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Discussion 

Territoriality has evolved as a mechanism of securing resources among biological entities 

(Wilson 1975). The challenge is to moderate the costs of territorial behavior, e.g., 

time/energy expenditure, loss of resources, injury, and -in more extreme cases- death, so 

that the benefits outweigh them. (Super)organisms, e.g., ant colonies, may minimize costs 

by limiting aggression to foreign conspecifics posing the greatest threat (Temeles 1994). 

One way to achieve this is to establish territorial relationships, e.g., dear enemies or nasty 

neighbors, with nearby conspecifics (Temeles 1994). In P. barbatus, territorial 

relationships have previously been demonstrated to effect workers’ foraging behavior, 

such that colonies react more strongly to neighbors than distant colonies (Gordon 1989). 

As a result, Gordon (1989) hypothesized that workers may be capable of learning cues 

from neighboring colonies (i.e., a significant conspecific threat), and use this information, 

in part, to better direct aggression towards individuals that pose the greatest threat. More 

recently, however, a follow-up study found that P. barbatus workers do not significantly 

discriminate between different non-nestmates when tested in the context of intercolony 

aggression (Sturgis & Gordon 2013). In their discussion Sturgis and Gordon (2013) 

argued that the lack of support for differences in aggression may have been due, in part, 

to low statistical power. 

In this study, I reviewed aggressive behavior in a large sample size of P. barbatus 

workers/colonies, and tested additional factors that may account for variation in territorial 

responses including seasonality, experience, and cuticular hydrocarbons. I found that     

P. barbatus worker ants are significantly more aggressive towards non-nestmate workers 

from neighboring colonies than non-nestmates from more distant colonies, thus providing 



	

116 

additional support for a “nasty neighbor” relationship in P. barbatus. Importantly, 

however, seasonal comparisons of P. barbatus aggression showed that the nasty neighbor 

effect only held true for workers measured in the summer season (i.e., the months leading 

up to the mating flight). Furthermore, inexperienced workers (i.e., those tested in assays 

where workers came from isolated colonies) showed no significant differences in 

aggression compared with workers tested in nestmate (negative control) assays. Taken 

together, these results indicate that seasonal factors likely contribute significantly to 

variation in aggressive behavior, and both prior experience with non-nestmates and 

familiarity with non-nestmates likely also have significant effects on territoriality 

behavior in P. barbatus. Finally, P. barbatus workers also showed a summer-specific, 

nasty neighbor response to CHC “dummies,” indicating that these chemical cues are 

likely a key component of their non-nestmate recognition system. These findings lend 

further support for the hypothesis that P. barbatus workers are capable of distinguishing 

different types/classes of non-nestmates - a conclusion that has been implicated for 

numerous other ants including: Leptothorax nylanderi (Heinze et al. 1996), Formica 

pratensis (Beye et al. 1998; Pirk et al. 2001; Benedek & Kóbori 2014), Pheidole (Langen 

et al. 2000), Pristomyrmex pungens (Sanada-Morimura et al. 2003), Iridomyrmex 

purpureus (van Wilgenburg et al. 2007), Linepithema humile (Thomas et al. 2007); 

Acromyrmex lobicornis (Dimarco et al. 2010), Oecophylla smargdina (Newey et al. 

2010), and Crematogaster scutellaris (Frizzi et al. 2015).  

Understanding the context and selective pressures under which ants learn non-

nestmate cues has been of particular interest for the past 20 years. Because ants are more 

likely to encounter conspecific non-nestmates from nearby colonies than more distant 
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colonies, opportunities for associative learning of non-nestmate recognition cues (e.g., 

CHCs) paired with aggressive territoriality experience occur primarily through 

neighboring colony interactions. Interestingly, my analysis of the 20 most abundant 

CHCs from the CHC profiles of P. barbatus foragers showed varying degrees of overlap 

between colonies, with only a single colony being completely separated in chemical 

spatial distance (Figure 5.3, B). Despite the low intercolony CHC distance, however, 

workers exhibited significantly more aggression towards neighbor non-nestmate CHCs 

than distant non-nestmate CHCs during the summer season (Figure 5.4, B). This suggests 

that some of the lower abundance CHCs not included in the NMDS analysis may also be 

important for associative learning and nestmate discrimination. Indeed, many of the 

lower level CHCs found on P. barbatus workers include mono- and di-methylalkanes as 

well as alkenes - compound classes that have been implicated as being important for 

chemical recognition systems given their structural variability (Akino et al. 2004; Lucas 

et al. 2005; Martin et al. 2008; Martin & Drijfhout 2009; van Wilgenburg et al. 2010b). 

Therefore, the potential importance of less abundant CHCs in P. barbatus nestmate 

recognition should not be discarded without testing them first. Additionally, more 

detailed studies of the relationship between chemical (CHC profile) distance, neighbor 

relationships, and aggression in P. barbatus may reveal that the CHC profile overlap 

among colonies correlates with variation in aggressive behavior. For example, non-

nestmate workers with more similar CHC profiles may show lower aggression than non-

nestmates with greater CHC differences, regardless of their spatial relationship (e.g., see 

Martin et al. 2012). Teasing apart the role(s) of different CHCs in P. barbatus nestmate 

recognition remains a challenge, in part, because of the number and variety of CHC 



	

118 

compounds present on workers’ cuticles, but also because different colonies may use 

different parts of the CHC profile to discriminate between non-nestmates. Furthermore, 

access to relevant synthetic and/or purified methyl-branched and unsaturated 

hydrocarbons is limited, and would need to be improved in order to proceed with future 

experimental studies. 

Here, I present evidence that P. barbatus shows seasonal differences in non-

nestmate aggression, with a nasty neighbor relationship being detected in the summer 

season. This adds to the growing body of evidence for variation in territorial aggression 

among ants due to neighboring colony relationships. Similar to these findings, several 

studies of territorial aggression in ants have shown behavioral variation across seasons 

(Mabelis 1979; Ichinose 1991; Katzerke et al. 2001) and experience levels (van 

Wilgenburg et al. 2010a). Additional spatiotemporal factors of territorial aggression and 

neighboring relationships may include population differences (Tsutsui et al. 2000; 

Benedek & Kóbori 2014), breeding season (Hölldobler 1975; Rissing & Pollock 1987), 

resource competition (Temeles 1990; Parr & Gibb 2010; Golabek et al. 2012), and 

physiological state (e.g., hormone levels, Kostowski et al. 1975; macronutrient levels, 

Grover et al. 2007; body size, Nowbahari et al. 1999; etc.). Future work on nestmate 

recognition and territorial relationships in P. barbatus would benefit from explicitly 

testing these factors as well as the specific role(s) of CHCs and CHC profile distances. 
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Figure 5.1. Map of P. barbatus colonies at study sites (A) Scottsdale Community 
College (SCC; Scottsdale, AZ), and (B) Union Pacific Railroad (UPR; Tempe, AZ), 
located in the Phoenix metropolitan area. Red dots represent colonies used in neighbor 
(experienced/familiar colony) and distant (experienced/unfamiliar colony) behavioral 
assays, whereas blue dots indicate colonies used in isolated (i.e., nearest “neighbor” 
distance > 40 m; inexperienced/unfamiliar colony) behavioral assays. White dots signify 
other P. barbatus colonies known to be present but not used in assays. (C) Pictured is a 
representative example of territorial aggression between neighboring P. barbatus workers 
in the field. 

40m

A SCC site; Scottsdale Community College
     Scottsdale, AZ

C Territorial aggression between red harvester
     ant, Pogonomyrmex barbatus, workers
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Figure 5.2. Box and whisker plots representing the summary of results (average, upper 
and lower quartiles, 95% confidence intervals, and outliers) for pairwise, worker-worker 
aggression assays. Boxes are color coded according to treatment (see color legend within 
figure), and separated by behavior, (A) antennation and (B) biting + grappling, for the 
three seasons, spring, summer, and fall, in which they were measured. Significant 
differences are indicated above upper most error bars with lower case letters (ANOVA 
associated post hoc Tukey’s HSD test, adjusted P < 0.05). 
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Figure 5.3. Cuticular hydrocarbon variation among P. barbatus workers and CHC 
“dummies.” (A) Representative gas chromatogram of a P. barbatus worker cuticular 
hydrocarbon profile. Numbered peaks indicate the 20 most abundant peaks used in 
comparative analyses of relative CHC abundances (1 = C23; 2 = C24; 3 = C25; 4 = xMe-
C25; 5 = C26; 6 = Z9-C27:1; 7 = Z7-C27:1; 8 = C27; 9 = xMe-C27; 10 = xMe-C27; 11 = 
x,xDiMe-C27; 12 = Z9-C29:1; 13 = C29; 14 = xMe-C29; 15 = xMe-C29; 16 = xMe-C29; 
17 = x,xDiMe-C29; 18 = Z9-C31:1; 19 = C31; 20 = xMe-C31). (B) Nonmetric 
multidimensional scaling (NMDS) plot of chemical distances for 4 representative 
workers from 12 P. barbatus colonies collected in the summer season. Individual ants are 
represented by colored diamonds (UPR site) or circles (SCC site) according to their 
colony of origin. (C) Box and whisker plots representing the summary of results 
(average, upper and lower quartiles, 95% confidence intervals, and outliers) for CHC 
quantities (ng) of CHC “dummies” (white boxes) and P. barbatus foragers (red boxes) 
measured in two seasons (summer and fall). Significant differences are indicated above 
upper most error bars with lower case letters (ANOVA associated post hoc Tukey’s HSD 
test, adjusted P < 0.05). 
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Figure 5.4. Box and whisker plots representing the summary of results (average, upper 
and lower quartiles, 95% confidence intervals, and outliers) for cuticular hydrocarbon 
coated glass bead assays (i.e., CHC “dummies”). Boxes are color coded according to 
treatment (see color legend within figure), and separated by behavior, (A) antennation 
and (B) biting + grappling, for the two seasons, summer and fall, in which they were 
measured. Significant differences are indicated above upper most error bars with lower 
case letters (ANOVA associated post hoc Tukey’s HSD test, adjusted P < 0.05). 
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