
Properties of Divergence-Free Kernel Methods for Approximation and Solution of

Partial Differential Equations

by

Arthur Araujo Mitrano

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2016 by the
Graduate Supervisory Committee:

Rodrigo Platte, Chair
Grady Wright
Bruno Welfert
Anne Gelb

Rosemary Renaut

ARIZONA STATE UNIVERSITY

August 2016

ABSTRACT

Divergence-free vector field interpolants properties are explored on uniform and

scattered nodes, and also their application to fluid flow problems. These interpolants

may be applied to physical problems that require the approximant to have zero

divergence, such as the velocity field in the incompressible Navier-Stokes equations

and the magnetic and electric fields in the Maxwell’s equations. In addition, the

methods studied here are meshfree, and are suitable for problems defined on complex

domains, where mesh generation is computationally expensive or inaccurate, or for

problems where the data is only available at scattered locations.

The contributions of this work include a detailed comparison between standard

and divergence-free radial basis approximations, a study of the Lebesgue constants

for divergence-free approximations and their dependence on node placement, and an

investigation of the flat limit of divergence-free interpolants. Finally, numerical solvers

for the incompressible Navier-Stokes equations in primitive variables are implemented

using discretizations based on traditional and divergence-free kernels. The numerical

results are compared to reference solutions obtained with a spectral method.

i

DEDICATION

To my parents and Lin.

ii

ACKNOWLEDGMENTS

First, I would like to thank my committee members for all the help, time and valuable

additions towards this dissertation.

I also thank Grady Wright for suggesting the use of polynomial stream functions as a

way to derive divergence-free finite difference schemes and many others fruitful

discussions that improved this document. I’m grateful to Varun Shankar for

explaining the importance of projections schemes for incompressible fluid flows and

suggesting many references in the literature.

A special thanks has to go to my advisor, Rodrigo Platte, for his continuous effort and

dedication, not only concerning this dissertation, but also during my whole PhD. I

appreciate his endless patience and detailed explanations in the middle of our meetings.

Finally, I show my gratitude to my parents and my girlfriend Lin for all the eternal

emotional support provided in and out of my PhD.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 The Contribution of This Work . 3

1.2 Organization . 4

2 BACKGROUND . 6

2.1 Radial Basis Function Interpolation . 6

2.1.1 Existence of Radial Basis Function Interpolants 7

2.1.2 Example and Properties of Radial Basis Function Interpolation 12

2.1.3 Application to Partial Differential Equations 13

2.1.4 Radial Basis Function Generated Finite Differences – RBF-FD 15

2.2 Divergence-Free Interpolation . 17

2.2.1 Two-Dimensional Vector Fields . 17

2.2.2 Three-Dimensional Vector Fields . 19

2.2.3 Divergence-Free Polynomial Approximation 20

3 PROPERTIES OF DIVERGENCE-FREE APPROXIMATIONS 21

3.1 Numerical Results . 21

3.1.1 Global Divergence-Free Numerical Results 22

3.1.2 Local Divergence-Free Numerical Results 24

3.1.3 Three Dimensional Case . 28

3.2 Convergence Analysis of Local Divergence-Free Polynomials. 30

3.3 Lebesgue Constants and the Kosloff & Tal-Ezer Map 37

3.4 Limit of the Divergence-Free Interpolant as ε→ 0 41

iv

CHAPTER Page

3.5 Remarks . 44

4 APPLICATION TO FLUID PROBLEMS . 47

4.1 Fluid Flow Equations . 48

4.1.1 The Lid Driven Cavity Flow . 51

4.1.2 Buoyancy Driven Flow . 52

4.2 The Spectral Method Discretization . 54

4.3 Finite Differences Discretizations . 55

4.3.1 Projection Method and Time Stepping Scheme 55

4.3.2 Traditional and Divergence-Free RBF Spatial Discretizations 58

4.4 Fluid Flow Numerical Experiments. 61

4.4.1 Lid Driven Cavity Flow . 62

4.4.2 Buoyancy Driven Flow . 66

5 FINAL REMARKS AND FUTURE DIRECTIONS . 73

REFERENCES . 76

v

LIST OF TABLES

Table Page

3.1 Condition Number of Interpolation Matrices . 24

3.2 Error Decay for Derivatives . 25

3.3 Finite Difference Weights in a Cartesian Stencil: n = 2 33

3.4 Finite Difference Weights in a Cartesian Stencil: n = 3 34

3.5 Finite Difference Weights for the Rotated Stencil . 35

3.6 Finite Difference Weights in a Cartesian Stencil: n = 5 36

3.7 Finite Difference Weights in a Rotated Stencil: n = 5 37

3.8 Legesgue Constant for Divergence-Free RBF Interpolants 40

vi

LIST OF FIGURES

Figure Page

2.1 Gaussian RBF Intepolation . 12

2.2 Numerical Solution of Poisson Equation Using RBFs 15

2.3 Runge Phenomenon in RBF Interpolation . 15

3.1 Divergence-Free Interpolant . 22

3.2 Error Decay for Divergence-Free and RBF Interpolation 23

3.3 Derivatives Error Decay for Divergence-Free Polynomial Method 26

3.4 Derivatives Error Decay Using Divergence-Free RBF-FD 27

3.5 Error Decay as a Function of the Polynomial Degree 28

3.6 Error Decay for Divergence-Free RBF-FD on Scattered Nodes 28

3.7 Derivatives Error Decay for RBF-FD in 3-Dimensional Cartesian Grid . 29

3.8 Error Decay for RBF-FD in 3-Dimensional Scattered Nodes 29

3.9 Cardinal Functions for Divergence-Free RBF Interpolation 38

3.10 Lebesgue Constant Growth for Divergence-Free Methods 39

3.11 Cardinal Functions for Divergence-Free RBF Interpolation with Optimal

K–T-E Parameter . 41

3.12 RBF Interpolant for Complex Valued Shape Parameters 42

3.13 Divergence-Free RBF Interpolant Using Contour-Padé Algorithm 43

3.14 Divergence-Free RBF Interpolant for ε = 0 . 44

4.1 Lid Driven Cavity Flow . 52

4.2 Lid Driven Cavity Flow Re = 10: Streamlines & Vorticity 63

4.3 Lid Driven Cavity Flow Re = 10: Velocity & Pressure 63

4.4 Lid Driven Cavity Flow Re = 10: Vorticity & Velocity Error 64

4.5 Lid Driven Cavity Flow Re = 100: Streamlines & Vorticity 64

4.6 Lid Driven Cavity Flow Re = 100: Velocity & Pressure 65

vii

Figure Page

4.7 Lid Driven Cavity Flow Re = 100: Vorticity & Velocity Error 65

4.8 Lid Driven Cavity Flow Re = 1000: Streamlines & Vorticity. 66

4.9 Lid Driven Cavity Flow Re = 1000: Velocity & Pressure 67

4.10 Lid Driven Cavity Flow Re = 1000: Vorticity & Velocity Error 67

4.11 Buoyancy Ra = 100: Streamlines & Vorticity . 68

4.12 Buoyancy Ra = 100: Velocity & Temperature . 69

4.13 Buoyancy Ra = 100: Vorticity & Velocity Error . 69

4.14 Buoyancy Ra = 500: Streamlines & Vorticity . 70

4.15 Buoyancy Ra = 500: Velocity & Temperature . 70

4.16 Buoyancy Ra = 500: Vorticity & Velocity Error . 71

4.17 Buoyancy Ra = 1000: Streamlines & Vorticity . 71

4.18 Buoyancy Ra = 1000: Velocity & Temperature . 72

4.19 Buoyancy Ra = 1000: Vorticity & Velocity Error . 72

viii

Chapter 1

INTRODUCTION

In this dissertation, we explore properties of solenoidal vector field interpolants

on uniform and scattered nodes and their application to fluid flow problems. These

interpolants can be applied to physical problems that require the approximant to

have zero divergence, such as the velocity field in the incompressible Navier-Stokes

equations and the magnetic and electric fields in the Maxwell’s equations. In addition,

the methods we explore here are meshfree, and are suitable for problems defined on

complex domains, where mesh generation is computationally expensive or inaccurate,

or for problems where the data is only available at scattered locations.

Scattered data interpolation and meshfree methods have been in fast development

in the past years. This growth is due to important applications such as terrain modeling

in geology; surface reconstruction in computer graphics; fluid-structure interaction

in engineering; numerical solution of PDEs in applied mathematics; option pricing

in mathematical finance; and many others, where rectangular grids or triangular

meshes are difficult to implement or not cost effective. Radial basis functions (RBFs)

approximation, in particular, have been applied successfully to a wide range of

problems.

The origin of RBF interpolation is usually credited to Hardy, due to his 1971

original paper [35]. However, existence, uniqueness, and stability results date back

to 1930s (Bochner [3] and Schoenberg [60]). Other notable papers on RBF methods

are due to Kansa [39, 40], where treatment of PDEs was introduced. Many of the

theoretical and practical results for RBF interpolation has been well documented in

the literature, in particular in the monographs by Buhmann [4], Iske [38], Wendland

1

[69], Fasshauer [14] and the more recent [17]. The last mentioned reference presents

RBF methods as a generalization of pseudospectral methods, which is the point of

view we consider in our work as well.

As previously mentioned, in physical applications such as fluid mechanics, me-

teorology, and electromagnetics, vectorial data needs to be interpolated on a given

set of nodes. This can be done by interpolating each component of the vector field

independently. However, it reasonable to think that when the field is divergence-free or

curl-free, more accurate approximations might be obtained if the connection between

the components of the vector field is taken into consideration.

The present work is motivated by incompressible fluid flow simulations with

constant density, where the velocity field is divergence-free because of mass conservation.

It is well known that instability can arise in incompressible fluid flow simulations if the

divergence-free condition is not met [28]. When approximations are not divergence-free,

projection methods applied at each time step can enforce numerical mass conservation

[6, 37]. An alternative to those projection methods is to use a divergence-free basis to

approximate such vector fields, as proposed in [26].

Divergence-free radial kernels were explored in [1, 9, 10, 33, 34] using a variational

spline setting. In 1994, matrix-valued radial basis functions (RBFs) were introduced

to approximate generalized interpolation problems on scattered data [48]. In that

framework, the divergence-free kernels are generated using linear side conditions.

Stability estimates for those interpolants were given in [45, 48] and improved in

[25], while error estimates for functions on native spaces were derived in [44] and

later extended for rougher functions in [23], where Sobolev-type error estimates were

derived. Similar divergence-free interpolants were developed in [49], where the inter-

polant fits a vector field of zero divergence that is tangent to an orientable surface.

Error and stability estimates for those interpolants on the sphere were presented in [24].

2

1.1 The Contribution of This Work

This dissertation presents several results that have not yet been reported by others

in the literature. Part of this work has been published by the author in [47].

This is the first work to compare accuracy between approximations by traditional

RBF methods, in which the components of a vector field are treated independently,

and by divergence-free kernel methods. Not surprisingly, the latter is more accurate,

in particular in the finite difference mode. The main improvement, however, is the

directions of the derivatives that are constrained by the zero divergence condition.

Approximations in the other directions decay at the same rate as for traditional RBF

methods. This is only true when the field being interpolated is solenoidal, otherwise

divergence-free approximations will fail to converge. An additional comparison is

made with divergence-free polynomial approximation and similar convergence patterns

are observed. For small stencil sizes, exact finite difference weights are derived and

convergence rates are proved using symbolic computations.

Another contribution is a numerical study of the Lebesgue constants for divergence-

free approximations and their dependence on node placement. Lebesgue constants

are a measure of the sensitivity of the approximation process to perturbations on the

data. It is well known that standard global RBF approximations are very sensitive to

node placement, as reported in [51]. Here we show a similar trend for divergence-free

approximations. It is also shown that clustering the nodes more densely near the

boundaries is an effective strategy to stabilize the interpolation process for global

approximations.

The flat limit (ε → 0) of divergence-free interpolants is also explored. As for

standard RBF approximations, we provide strong numerical evidence, and proof for

3

small number of points using symbolic computations, that the limit of these interpolants

is also a polynomial. What makes this study challenging, even though, such limits

are expected to exist and be unique, is their difficult computation because the basis

functions used in the expansions (without special treatments) become extremely

ill-conditioned as ε → 0. To circumvent this difficulty, the contour Padé algorithm

introduced in [20], was adapted to the divergence-free case.

Finally, numerical solvers for the incompressible Navier-Stokes equations in primi-

tive variables are implemented using discretizations based on traditional RBFs and

divergence-free kernels. Two standard problems are considered: the lid driven cavity

flow and the buoyancy driven cavity flow. For comparison we use spectral collocation

to generate reference solutions. The difficulty in using divergence-free finite differences

to approximate derivatives is that the velocity field at each time step must be projected

into a divergence-free space. Truncation errors in the projection step may lead to

inaccurate results. Although our implementation is able to simulate certain flows,

improvements are needed to make the code more broadly applicable.

1.2 Organization

The remaining of this monograph is organized as follows. In Chapter 2 we review

the relevant and basic concepts of standard RBF and divergence-free approximations

in two and three dimensions, including the derivation of finite difference weights.

Chapter 3 presents most of the contributions listed above (first three items). In this

chapter we present the numerical study of several properties of divergence-free based

approximations, including accuracy of finite difference formulas, Lebesgue constants

and the flat limit. In Chapter 4 we use localized interpolants based on traditional

radial basis function and divergence-free kernels introduced in Chapter 3 to simulate

incompressible fluid flows. Particular attention is given to the projection step. Final

4

remarks and future directions are presented in Chapter 5.

5

Chapter 2

BACKGROUND

This chapter presents fundamental results related to RBF interpolation. Of particular

interest is the theory that establishes existence and uniqueness of scattered data

interpolants and their dependence on the shape parameter. For convenience, the most

relevant theorems are provided but not proved. Additional details on their derivation

and proofs may be found in the monographs of Wendland [69] and Fasshauer [14],

for instance. In addition, we review main results from [48, 49], which provide the

main foundation for divergence-free interpolation of vector fields using positive-definite

kernels. The concept of divergence-free polynomial interpolation for two-dimensional

vector fields is also introduced. Besides this, differentiation matrices and finite

difference operators are derived in this chapter.

2.1 Radial Basis Function Interpolation

In many scientific applications, it is necessary to infer processes only by mea-

sured data at specific locations. One way to approximate those processes is to use

interpolation. Specifically, given the information f1, . . . , fN ∈ R at the locations

x1, . . . ,xN ∈ Rd, we look for function s that satisfies s(xi) = fi for i = 1, . . . , N .

Even more desirable is the possibility to apply calculus operations to the interpolant

s, requiring certain smoothness.

For the univariate case, polynomials of degree up to N−1 form a good approximant

space, PR
N−1. The functions are smooth and can be uniquely determined by any given

data (xi, fi), i = 1, . . . , N . To generalize this concept to scattered data interpolation,

we consider Haar spaces.

6

Definition 1. Suppose that Ω ⊆ Rd contains at least N points. Let V ⊆ C(Ω) be an

N -dimensional vector space. Then V is called an N -dimensional Haar space on Ω if

for any distinct points x1, . . . ,xN ∈ Ω and any f1, . . . , fN ∈ R there exists exactly

one function s ∈ V with s(xi) = fi, i = 1, . . . , N .

Haar spaces guarantee the existence and uniqueness of an interpolant depending

only on the number of points and space dimension, independently of the data or where

it is sampled. Surprisingly, multivariate polynomials do not form a Haar space on Rd

for d > 1. This is due to the Mairhuber-Curtis theorem.

Theorem 1 (Mairhuber-Curtis). Suppose that Ω ⊆ Rd, d ≥ 2, contains an interior

point. Then there exists no Haar space on Ω of dimension N ≥ 2.

Theorem 1 not only shows the impossibility to interpolate any data with multi-

variate polynomials, but also with other bases that do not depend on the given data.

Next we will introduce an interpolation process that explicitly depends on the given

data location (nodes) and is uniquely determined.

2.1.1 Existence of Radial Basis Function Interpolants

The Mairhuber-Curtis theorem states that it is not possible to find a Haar space

in the multivariate setting. Thus, to solve the scattered interpolation problem, the

approximant space must depend at least on the data location {xk}Nk=1. A common

way to address this issue is to consider a fixed kernel Φ: Rd × Rd → R and construct

the interpolant as

s(x) =
N∑
k=1

αkΦ(x,xk), (2.1)

where the interpolation conditions

s(xk) = fk, k = 1, . . . , N, (2.2)

7

lead to the following linear system for the coefficients αk:
Φ(x1,x1) · · · Φ(x1,xN)

...

Φ(xN ,x1) · · · Φ(xN ,xN)

︸ ︷︷ ︸

AΦ,X

α1

...

αN

︸ ︷︷ ︸
α

=

f1

...

fN

︸ ︷︷ ︸
f

. (2.3)

The interpolation matrix AΦ,X depends on the centers X = {x1, . . . ,xN} and the

kernel Φ. The challenge is to choose Φ that guarantees a nonsingular interpolation

matrix, and therefore a unique interpolant. Although invertibility is sufficient for the

well-posedness of the scattered data interpolation problem, it is easier to characterize

positive definite matrices of the form AΦ,X using the concept of positive definite kernels.

Definition 2. A continuous kernel Φ: Rd × Rd → C is positive semi-definite if, for

all N ∈ N, all pairwise distinct centers X = {x1 . . . ,xN} ⊂ Rd, and all α ∈ CN , the

quadratic form
N∑
j=1

N∑
k=1

αjαkΦ(xj,xk)

is non-negative. The kernel Φ is positive definite if the quadratic form is positive for

all α ∈ CN \ {0}.

In other words, provided a positive definite kernel is used, a unique interpolant

can be found. Fortunately, much has been done to characterize special cases of those

kernels: positive semi-definite functions by Bochner [3] and positive semi-definite

radial functions by Schoenberg [60]. Bellow we list the necessary definitions and the

characterization results for convenience of the reader. Details and proofs of those

characterizations, can be found in the monograph by Wendland [69].

Definition 3. The multivariate function Φ̃ : Rd → C is a positive (semi-)definite func-

tion if the associated kernel Φ(x,y) := Φ̃(x−y), x,y ∈ Rd, is positive (semi-)definite.

8

Definition 4. The univariate function ϕ : [0,∞) → R is a positive (semi-)definite

radial function if the corresponding multivariate function Φ̃(x) := ϕ(‖x‖), x ∈ Rd, is

positive (semi-)definite.

Theorem 2 (Bochner). A continuous function Φ̃ : Rd → C is positive semi-definite if

and only if it is the Fourier transform of a finite non-negative Borel measure µ on Rd,

i.e.,

Φ̃(x) = µ̂(x) =
1√

(2π)d

∫
Rd

e−ix
ᵀωdµ(ω), x ∈ Rd.

Bochner’s theorem characterizes positive semi-definite functions in terms of Fourier

transforms. Schoenberg’s characterization uses completely monotone functions to

classify all positive semi-define radial functions on all Rd, avoiding computation of

Fourier transforms of complicated functions.

Definition 5. A continuous function ϕ : [0,∞) → R is completely monotone if

ϕ ∈ C∞((0,∞)) and

(−1)`ϕ(`)(r) ≥ 0

for all ` ∈ N ∪ {0} and all r > 0.

Theorem 3 (Schoenberg). A function ϕ is completely monotone on [0,∞) if and

only if Φ̃ := ϕ(‖·‖2) is positive semi-definite on every Rd.

The characterization of positive semi-definite kernels is not enough to guarantee ex-

istence and uniqueness of the interpolation problem. However, for most commonly used

kernels, it is possible to determine whether a positive semi-definite kernel is also posi-

tive definite. Nevertheless, developments towards a complete integral characterization

of positive definite kernels are available in [5].

9

Although there are several kernels that are positive definite, there are still inter-

esting and commonly used kernels that are not. The interpolation form (2.1) can be

augmented with multivariate polynomials such that the scattered data interpolation

problem is still well-posed for a larger set of kernels. Consider the interpolant of the

data {(xk, fk)}Nk=1 of the form

s(x) =
N∑
k=1

αkΦ(x,xk) +

Q∑
k=1

βkpk(x). (2.4)

where p1, . . . pQ is a basis of PRd

m−1. Due to the additional degrees of freedom introduced

by the extra polynomial bases, the interpolation conditions (2.2) are complemented

by Q vanishing moment conditions

N∑
k=1

αkpj(xk) = 0, j = 1, . . . , Q. (2.5)

The conditions (2.2) and (2.5) lead to the linear systemAΦ,X PX

PX
ᵀ 0

︸ ︷︷ ︸

ÃΦ,X

α
β

 =

f
0

 , (2.6)

where AΦ,X is as before, and (PX)kj = pj(xk) with j = 1, . . . , Q and k = 1, . . . , N .

The interpolant (2.4) will exist and be unique if the matrix ÃΦ,X is invertible. To find

a condition on Φ and the centers X, we need the concept of conditionally positive

definite and m-unisolvent set.

Definition 6. A continuous kernel Φ: Rd × Rd → C is conditionally positive semi-

definite of order m if, for all N ∈ N, all pairwise distinct centers x1, . . . ,xN ∈ Rd, and

all α ∈ CN satisfying

N∑
k=1

αkp(xk) = 0 for any p ∈ PCd

m−1,

10

the quadratic form
N∑
j=1

N∑
k=1

αjαkΦ(xj,xk)

is non-negative. The kernel Φ is said to be conditionally positive definite of order m if

the quadratic form is positive, unless α is zero.

Similar to Definition 3 and Definition 4, one can define conditionally positive

(semi-)definite functions and conditionally positive (semi-)definite radial functions.

Definition 7. A set of points X = {x1, . . . ,xN} ⊂ Rd is m-unisolvent if the only

polynomial in PCd

m interpolating the zero data on X is the zero polynomial.

Theorem 4. Suppose that Φ is conditionally positive definite of order m and X is

(m− 1)-unisolvent set of centers. Then the system (2.6) is uniquely solvable.

Proof. Assume that α and β satisfy

AΦ,Xα+ PXβ = 0,

PX
ᵀα = 0.

Hence,

αᵀAΦ,Xα+αᵀPXβ = αᵀAΦ,Xα+ (PX
ᵀα)ᵀβ = αᵀAΦ,Xα = 0.

Therefore, since Φ is conditionally positive definite, α = 0. Moreover, due to (m− 1)-

unisolvency,

PXβ = 0 =⇒ β = 0.

This shows that 0 is the only element of the null space of ÃΦ,X , i.e., ÃΦ,X is non-

singular.

A generalization of Bochner’s theorem for conditionally positive semi-definite

functions is shown in [63] and a characterization similar to Schoenberg’s theorem can

11

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y

x
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y

x
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y

x

ε = 4ε = 10 ε = 1

Figure 2.1: Gaussian RBF interpolation of f(x) = exp(x) + 0.1 sin(10x) using three
values of ε.

be found in [32]. For more details and conditions under Φ the reader is refered to the

monographs [38, 69].

2.1.2 Example and Properties of Radial Basis Function Interpolation

Due to its simple structure and straightforward implementation, radial kernels are

often used in practical computations. In this case, Φ(x,y) = ϕ(ε‖x− y‖). The shape

parameter ε controls how wide or narrow the kernel is. Examples of radial functions

that result in unique interpolants are

ϕ(r) = exp(−r2) Gaussians,

ϕ(r) =
√

1 + r2 multiquadrics,

ϕ(r) = 1/
√

1 + r2 inverse multiquadrics,

ϕ(r) = 1/(1 + r2) inverse quadratics.

The convergence properties of a RBF expansion depend on the smoothness of ϕ

and the node distribution. The functions in the list above are all analytic and lead to

approximations that converge exponentially when the target function is sufficiently

smooth [51].

The parameter ε plays a key role in the accuracy of the approximation and

conditioning of the interpolation matrix. Figure 2.1 shows the role of ε and how it

12

changes the interpolant. Larger values of ε lead to more localized interpolants, and

smaller values result in global approximations. In the limit ε→ 0, it was shown in [11],

for the univariate case, and in [42, 43, 59], for multivariate interpolation, that smooth

RBF interpolants converge to polynomial interpolants on the same nodes. This is

known as the flat limit and one of the goals in this dissertation is to explore the flat

limit of divergence-free interpolants. A detailed study in this direction is presented in

the next chapter.

Basis functions of finite smoothness are also popular. They include linear splines,

ϕ(r) = r, cubic splines ϕ(r) = r3 and compactly supported radial functions, also

known as Wendland’s functions [69]. Due to singularities in the RBF expansion (jump

in derivatives), these functions lead to approximations that converge algebraically,

with the order depending on the number of smooth derivatives. For simplicity, we

focus only on Gaussians and inverse multiquadrics.

2.1.3 Application to Partial Differential Equations

One can use the collocation approach to compute solutions of partial differential

equations using RBF interpolants. Similar to pseudospectral methods, discretized

differential operators are used to approximate differential operators present on PDEs.

To construct a matrix DL that discretizes a linear operator L, we apply the continuous

operator L to the interpolant (2.1),

Ls(x) =
N∑
k=1

αkLΦ(x,xk).

Evaluating this last expression at the collocation points X = {xi}Ni=1 leads to

fL = ALα,

13

where (AL)ik = LΦ(x,xk)
∣∣∣
x=xi

and (fL)i = Lf(x)
∣∣∣
x=xi

for i = 1, . . . , N . Using (2.3),

we also have that α = A−1
Φ,Xf . Thus,

fL = ALA
−1
Φ,Xf ,

such that the discretized differential operator is given by

DL = ALA
−1
Φ,X .

If the kernel Φ is conditionally positive definite we apply L to the interpolant (2.4) to

obtain a similar discretized operator.

As an example, consider the Poisson equation

∆u(x, y) = f(x, y) = −5

4
π2 sin(πx) cos

(πy
2

)
, (x, y) ∈ Ω = [0, 1]2,

u(x, y) = g(x, y) =

sin(πx), (x, y) ∈ Γ1,

0, (x, y) ∈ Γ2,

(2.7)

where Γ1 = {(x, y) ∈ Ω | y = 0} and Γ2 = ∂Ω \ Γ1. Given a set of N nodes, X =

XI

⋃
XB, with XI = {x1, . . . ,xNI

} the interior points and XB = {x1, . . . ,xNB
} the

boundary points. Then, we can approximate the solution of (2.7) by solving the linear

system D∆

B

u =

f
g

 ,
where D∆ is the NI ×N finite dimension approximation of ∆ on XI , B the NB ×N

discrete boundary operator, f = f
∣∣∣
XI

and g = g
∣∣∣
XB

. In Figure 2.2 we display

the solution of PDE (2.7) and the collocation points. For this problem a simple

geometry is used, however, since our interpolant is based on radial basis function, a

similar implementation can be used for complicated geometries and nonuniform node

distributions.

14

x

0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Collocation points

1

Numerical solution of ∆u = f

0.5

x00

0.5

y

1

0.5

0

1

u

E
rr
o
r
(l
o
g
10
)

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

Figure 2.2: Solution of Poisson equation using a uniform distribution using 40
boundary points and 225 interior points.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

ε =30

x

y

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

ε =8

x

y

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

ε =1.5

x

y

Figure 2.3: Gaussian RBF interpolant of f(x) = 1/(1 + 25x2) on 21 equally spaced
points. The Runge phenomenon is clearly noticeable for ε = 1.5.

2.1.4 Radial Basis Function Generated Finite Differences – RBF-FD

Global RBF interpolants have a few drawbacks. Among them are the conditioning

of the interpolation matrix, the presence of Runge phenomenon (see Figure 2.3) and

high computational cost due to dense matrices. To avoid those issues, there are a few

methods available: compactly support RBFs [52, 67, 71], partition of unity methods

[68] and RBF generated finite differences (RBF-FD) [15, 17, 62, 70]. Those localized

approaches allow sparse and better conditioned interpolation matrices, reducing the

computational cost. In this dissertation we will focus on RBF-FD methods as the

alternative to global approximations.

Similar to standard finite differences, an approximation for the differential operator

15

L at xc is approximated by applying the operator to a RBF interpolant over a local

stencil Sxc that includes xc. Choosing a positive definite kernel we write

LΦ(x,xk)
∣∣∣
x=xc

=
∑
`∈[Sxc]

w
(c)
` Φ(x`,xk) for k = 1, . . . , N, (2.8)

where w(c)
` are weights to be calculated and [Sxc] is the set of indices of the nodes

{xk}Nk=1 in the local stencil Sxc . Hence, applying the differential operator L to the

local interpolant s(c) we have

Ls(c)(x)
∣∣∣
x=xc

=
∑

k∈[Sxc]

α
(c)
k LΦ(x,xk)

∣∣∣
x=xc

=
∑

k∈[Sxc]

α
(c)
k

∑
`∈[Sxc]

w
(c)
` Φ(x`,xk)

=
∑
`∈[Sxc]

w
(c)
`

∑
k∈[Sxc]

α
(c)
k Φ(x`,xk)

=
∑
`∈[Sxc]

w
(c)
` s(c)(x`)

=
∑
`∈[Sxc]

w
(c)
` f`.

That is, the approximation to the differential operator at the point xc can be written

as linear combination of the values of the function on the stencil. Therefore, the

discrete operator DL is given by

DL =

w

(1)
1 · · · w

(1)
N

...

w
(N)
1 · · · w

(N)
N

 ,

where w(c)
` = 0 for x` 6∈ Sxc , i.e., DL will be sparse if the amount of points used in

each stencil is small. To calculate the nonzero weights we must solve the linear system

(2.8) for each xc, which can be precomputed and stored for a choice of data points

{xk}Nk=1 and kernel Φ.

16

2.2 Divergence-Free Interpolation

We now arrive to the main topic of this dissertation, the approximation of

divergence-free vector fields. In the preceding sections, the methods presented can

be used to approximate each component of a vector field individually. The kernels

presented in this section, on the other hand, take advantage of the fact that the

components to solenoidal vector fields are related by the divergence-free condition. It

is reasonable to think that leveraging this constraint increases accuracy.

2.2.1 Two-Dimensional Vector Fields

In [49], a method for fitting divergence-free vector fields tangent to a two-dimen-

sional surface was presented. Here, we use the kernels presented in [49] restricted to a

planar region in R2.

Let t1, . . . , tN be samples of a vector field at the points x1, . . . ,xN , then, according

to [49], a divergence-free interpolant is similar to (2.1),

t(x) =
N∑
k=1

Ψ(x,xk)αk, (2.9)

with the coefficient vectors {αk}Nk=1 calculated to ensure data interpolation and the

matrix-valued kernel defined by

Ψ(x,y) = F (r)(nyn
T
x − nTynxI)−G(r)(nx × (x− y))(ny × (x− y))T ,

where

F (r) =
1

r
ϕ′(r), G(r) =

1

r

(
1

r
ϕ′(r)

)′
=

1

r
F ′(r),

nv denotes the surface normal at the point v, r = ‖x− y‖ is the Euclidean distance

from x to y, and ϕ is a positive definite radial function.

If the surface is a plane perpendicular to the z-axis and the vector field has no

17

component in the z direction, then the kernel is simplified to

Ψ(x,y) = −F (r)

1 0

0 1

−G(r)

 (x2 − y2)2 −(x1 − y1)(x2 − y2)

−(x1 − y1)(x2 − y2) (x1 − y1)2

 .
To find the coefficient vectors {αk}Nk=1, we evaluate the interpolant at the nodes xj

tj = t(xj) =
N∑
k=1

Ψ(xj,xk)αk j = 1, . . . , N,

leading to the linear system
t1
...

tN

︸ ︷︷ ︸
t

=

Ψ(x1,x1) · · · Ψ(x1,xN)

...

Ψ(xN ,x1) · · · Ψ(xN ,xN)

︸ ︷︷ ︸

AΨ,X

α1

...

αN

︸ ︷︷ ︸

α

, (2.10)

where t and α are stacks of tjs and αks, respectively, and the divergence-free interpo-

lation matrix AΨ,X is a 2N × 2N matrix compose by the blocks {Ψ(xi,xj)}Ni,j=1.

If Ψ1 and Ψ2 denote the first and second columns of Ψ(x,xk), respectively, and

αk = (αuk , α
v
k) then

∇ · t(x) =
N∑
k=1

∇ ·Ψ(x,xk)αk

=
N∑
k=1

[αuk∇ ·Ψ1 + αvk∇ ·Ψ2] = 0,

since a direct calculation shows that ∇ ·Ψ1 = 0 = ∇ ·Ψ2.

The existence of a solution to the linear system (2.10) depends on the invertibility

of the matrix AΨ,X . For positive definite radial functions ϕ, it was shown in [49] that

this matrix is positive definite, and therefore invertible.

Differentiation matrices based on divergence-free kernels can be computed by

repeating the steps presented in Subsection 2.1.3 and we omit the details.

18

2.2.2 Three-Dimensional Vector Fields

To deal with three-dimensional vector fields, we use the divergence-free kernel

introduced by Narcowich and Ward in [48]. The interpolant has the same form of

(2.9), except that now the vectors lie in R3 and the matrix-valued kernel is

Ψ(x,y) =
(
−∆I +∇∇T

)
ϕ(‖x− y‖)

=
(
−∆I +∇∇T

)
e−ε‖x−y‖

2

=
[(

2ε− 4ε2‖x− y‖2
)
I + 4ε2(x− y)(x− y)T

]
e−ε‖x−y‖

2

, ε > 0,

(2.11)

where ∇ is the gradient operator, ∆ is the Laplacian and I the 3× 3 identity matrix.

For our numerical experiments, we use the same kernel in [48], ϕ(r) = eεr
2 . In R2,

this kernel is exactly the same as the one introduced in the previous section. It is not

hard to show that the columns of the matrix Ψ(x,y) also have zero divergence with

respect to x, which guarantees a divergence-free interpolant.

Using the given data, t¯̀j = t¯̀(xj), we have

t
¯̀

j =
N∑
k=1

3∑
`=1

α`kΨ ¯̀̀ (xj,xk) =
3∑
`=1

(
A

¯̀×`α`
)
j
,

where A¯̀×`
jk = Ψ ¯̀̀ (xj,xk), t

¯̀
= [t

¯̀
1, . . . , t

¯̀
N]

ᵀ
and α` = [α`1, . . . , α

`
N]

ᵀ for ¯̀, ` = 1, 2, 3

and j, k = 1, . . . , N . Defining

A =

A1×1 A1×2 A1×3

A2×1 A2×2 A2×3

A3×1 A3×2 A3×3

 , α =

α1

α2

α3

 and t =

t1

t2

t3

 ,
we can summarize the interpolation conditions in the linear system t = Aα, which was

proved to have a unique solution in [48]. Other choices for ϕ in (2.11) are also possible,

still maintaining the invertibility of the interpolation matrix as proven in [48]. Note

that we use a different ordering than in the two dimensional case because it simplifies

19

the implementation. Again, we follow the same procedure used in Subsection 2.1.3 to

acquire differentiation matrices.

2.2.3 Divergence-Free Polynomial Approximation

In addition to the kernels presented in the preceding section, we shall also explore

approximations by polynomial vector fields. To this end, consider a polynomial stream

function of degree n given by

ψ(x, y) =
n∑
i=0

n∑
j=0

aijx
iyj, n ∈ N. (2.12)

If the components of the polynomial vector field are given by p = (pu, pv, 0) =

∇× (0, 0, ψ) = (ψy,−ψx, 0), then ∇ · p = 0. To find the coefficients aij, we use the

interpolation condition

p(xk) = (pu, pv)
∣∣∣
(xk,yk)

= (u, v)
∣∣∣
(xk,yk)

= f(xk), k = 1, . . . , N, (2.13)

for each interpolation point xk = (xk, yk) and the target vector field f . Depending on

the degree n of the stream function, the linear system for the coefficients aij may or

may not have a solution. In the latter case, we use the solution in the least square

sense, which is unique if the interpolation matrix is full rank. If the system does not

have a solution and is rank deficient there will be multiple least square solutions. If

multiple solutions or least square solutions are available, we use the basic solution [30,

Chapter 5] computed by the QR decomposition with column pivoting (the algorithm

used by Matlab). Notice that we can take a00 = 0 since the vector field does not

depend on the constant term. We discuss the relationship between the polynomial

degree n and the number of data points in Subsection 3.1.2.

20

Chapter 3

PROPERTIES OF DIVERGENCE-FREE APPROXIMATIONS

In this chapter we study divergence-free methods using several procedures. One

objective is to explore the methods presented in the previous chapter through careful

numerical experiments. Of particular interest are the convergence rates of divergence-

free finite difference formulas based on polynomial and RBF expansions, Lebesgue

constants and their dependence on node distributions, and the flat limit (ε→ 0) of

such approximations.

It is important to point out that although many of our observations stem from

numerical experiments, we are able to prove convergence rates of divergence-free finite

difference formulas for stencils of small size, as well as provide exact finite difference

weights for partial derivatives. Analytic expressions for the flat limit are also provided

for certain stencils. Most results presented in these chapter are novel contributions

of the author and have appeared in [47]. The convergence analysis presented in

Section 3.2 was developed more recently and was not included in [47].

3.1 Numerical Results

In order to study the accuracy of our divergence free approximations, we consider

the test function defined by

f(x, y) =

(
sin(k1(x− a)) cos(k2(y − b))

k1

,−cos(k1(x− a)) sin(k2(y − b))
k2

)
,

(x, y) ∈ R2,

(3.1)

which satisfies ∇ · f = 0 for all k1, k2 ∈ R \ {0} and a, b ∈ R. We fix a = 0.1 and

b = 0.2 to avoid symmetries in the vector field which could lead to biased observations.

21

In our numerical experiments we set k1 = 7 and k2 = 7. We first consider global

interpolants and later local approximations.

3.1.1 Global Divergence-Free Numerical Results

Figure 3.1 illustrates the vector field and its divergence-free interpolant computed

using (2.9). We use a Gaussian kernel with shape parameter ε = 2. There are N = 256

data sites distributed equally on both dimensions of the unit square [−1, 1]2.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Interpolant (blue) and vector field (red)

x

y

Figure 3.1: Divergence-free interpolant (thin −→) and the vector field at the data
sites (thick −→) for N = 256.

Figure 3.2 shows how the error decays for the u-component (horizontal direction)

of the vector field using the regular RBF interpolation and the divergence-free RBF

method. We see that both methods achieve a precision of about 10−6 when
√
N = 30.

For larger values of N , the error ceases to decrease. This behavior occurs because the

interpolation matrices for both methods, although invertible, became ill-conditioned.

Table 3.1 shows how fast the condition numbers grow for regular and divergence-free

RBF interpolation.

22

10 15 20 25 30 35 40

10
−6

10
−4

10
−2

√

N

E
rr
o
r

Error on u component

Divergence-free method

Traditional method

Figure 3.2: Error decay for the first component of the vector field for both methods
of interpolation.

We point out that the interpolation matrix is N×N for the traditional method and

2N×2N for the divergence-free method, which makes the generation of divergence-free

interpolants more computationally expensive. Moreover, Table 3.1 exhibits a larger

condition number for the divergence-free method when the same shape parameter is

used.

In Table 3.2, we present the error decay for the partial derivative of the u-component

of the vector field as N increases. Note that we get a slightly more accurate result using

the divergence-free interpolant when compared with the traditional RBF interpolant.

The same feature is observed for local divergence-free interpolants in Subsection 3.1.2.

Notice that we only comment on the u-component of the field. Due to symmetry,

the same observations hold for the vertical component of the vector field (v), with vy

behaving analogously to ux and vx to uy.

23

cond(A)
√
N divergence-free regular

3 1.52× 100 1.11× 100

5 1.12× 102 1.87× 101

7 2.48× 105 2.82× 103

9 4.36× 109 2.03× 106

11 2.62× 1014 5.06× 109

13 7.21× 1018 3.36× 1013

15 3.05× 1018 8.69× 1016

Table 3.1: Condition number of the interpolation matrices of the divergence-free and
regular RBF method.

3.1.2 Local Divergence-Free Numerical Results

We now focus on the accuracy of local approximations. Our first example uses a

rectangular 3× 3 grid. The derivatives are evaluated at the center point and compared

to the exact derivatives of f defined in (3.1).

Figure 3.3 shows two experiments, one using degree n = 2 and the other one using

degree n = 3 for the polynomial expansion of the stream function (2.12). In the case

n = 2, there are 8 unknown coefficients in (2.12) (discarding the constant term) and

18 data values to fit in the 3× 3 grid (9 for u and 9 for v), resulting in an 18× 8 least

squares system that is full rank. For n = 3 the size of the linear system is 18× 15 and

is rank deficient, with 14 linearly independent columns.

These experiments illustrate how the degree n can change the rate of convergence

of the method. For n = 3, ux is accurate to fourth order and uy to second. On the

other hand, both directions are second order accurate for n = 2. Note that the results

are similar for the partial derivatives of the vertical component of the vector field.

24

ux uy
√
N divergence-free traditional divergence-free traditional

3 1.23× 10−1 1.26× 10−1 7.08× 10−1 6.17× 10−1

5 1.91× 10−1 1.63× 10−1 8.20× 10−1 7.97× 10−1

7 4.52× 10−3 7.09× 10−3 1.26× 10−1 3.46× 10−2

9 7.91× 10−5 1.89× 10−3 4.94× 10−3 9.23× 10−3

11 1.46× 10−6 4.06× 10−4 4.08× 10−4 1.98× 10−3

13 3.06× 10−8 5.13× 10−5 9.27× 10−5 2.50× 10−4

15 1.03× 10−7 4.16× 10−6 7.31× 10−6 2.03× 10−5

Table 3.2: Error decay for the derivatives of the first component of the vector field
(u). Note that the divergence-free interpolant provides more accurate results for ux
and slightly better for uy for most values of

√
N .

One possible explanation for this improvement in the convergence rates is that ux and

vy are the derivative components that appear in the divergence operator. Writing

u(x, y) = u1(x, y) + u2(y) and v(x, y) = v1(x, y) + v2(x),

we have that the divergence-free condition is satisfied whenever (u1)x + (v1)y = 0,

independently of the functions u2 and v2. Because our stencil is rectangular and we

are using three points in each direction, the derivatives of u2 and v2 can only be

accurate to second order, while u1 and v1 are accurate to fourth order in the x and

y directions respectively. In Section 3.2, we show that error of the generated finite

difference formulas originated from those polynomial approximations of f , have indeed

the order of decay as h→ 0 displayed in Figure 3.3.

Figure 3.4 shows the error decay for the same numerical experiment, but using the

RBF-FD method. The divergence-free RBF-FD method has the same order of decay

as the divergence-free FD method. One difference is that RBF-FD does not require

25

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: FD

h2

h4

ux: h
3.97

uy: h
1.99

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: FD

h2

h4

ux: h
1.95

uy: h
1.99

Figure 3.3: ux and uy denote the approximation of the partial derivatives of the first
component of f using 9 point stencils. The right picture uses a polynomial stream
function of degree n = 2 and the left picture degree n = 3.

the solution of a least squares problem to find a divergence-free approximation, that

is, an interpolant is guaranteed to exist.

It is important to point out that for the polynomial finite differences method we

need to choose an adequate degree in order to obtain faster convergence rates for the

derivatives. For example, for a 3× 3 stencil, n = 3 is the smallest degree for fourth

order convergence in ux and vy (and larger degrees will not improve accuracy, see

Figure 3.5). In the scattered node case, the choice of degree is less obvious. Figure 3.5

displays the error decay for a fixed number of points as the degree n of the stream

function is increased. For the scattered nodes case, the error does not decrease for

degrees larger than 5 when using a 9 point approximation. Notice that the linear

system to be solved in this case is 18 × 35 and the coefficients of (2.12) are chosen

as the basic solution computed by Matlab’s backslash (mldivide) command (see

Subsection 2.2.3).

We point out that the accuracy of the results are significantly different for scattered

nodes. Our next experiment shows that neither direction is necessarily favored (in

contrast to rectangular grids). We generate N random points uniformly distributed

26

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: RBF-FD

h2

h4

ux: h
4.07

uy: h
2.29

Figure 3.4: Error decay of the derivatives of u using divergence-free RBF-FD method
on 9 point stencils. The dashed lines represent the decay of a 2nd and a 4th order
methods.

in [−1, 1]2 and then select the closest 8 points to where we want to approximate the

derivatives. Those 9 points are used to create our local divergence-free interpolant for

the RBF and polynomial cases.

Figure 3.6 shows the error decay for the derivative of the first component of the

vector field for both methods. We note the methods seem to converge with a rate

between second and fourth order. The plot in Figure 3.6 shows the error as a function

of the fill distance

h = sup
x∈Ω

min
xj∈X
‖x− xj‖2,

where Ω = [−1, 1]2 and X is the set of interpolation points.

Unfortunately, the higher convergence rates for ux and vy are not maintained for

scattered nodes. It is not completely clear from our numerical experiments, but in

Section 3.2 we study the error decay rates analytically for the polynomial method

using a 3× 3 Cartesian stencil rotated by π/4 angle. The decay rates in this scenario

are only second order.

27

2 4 6 8 10
10

−7

10
−6

10
−5

10
−4

10
−3

n

E
r
r
o
r

Error on u derivatives: h = 0.010526

ux
uy

2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

n

E
r
r
o
r

Error on u derivatives: h = 0.010587

ux
uy

Figure 3.5: Error decay as a function of the polynomial degree n for fixed number
of points. Left: Using a 3 × 3 rectangular stencil. Right: Using 9 scattered points.
For the rectangular grid case, polynomial degrees larger than 3 do not improve the
approximation, while for the unstructured case, degrees larger than 5 saturate the
approximation.

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: RBF-FD

h2

h4

ux: h
2.96

uy: h
3.09

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: FD

h2

h4

ux: h
3.93

uy: h
3.1

Figure 3.6: Error decay for divergence-free RBF-FD method on scattered nodes.
Left: Divergence-free RBF-FD; Right: Divergence-free polynomial FD using n = 5 for
the degree of the stream function (2.12).

3.1.3 Three Dimensional Case

To test the local accuracy of the three-dimensional kernel described in Subsec-

tion 2.2.2 we use the function f(x, y, z) = ∇ × ψ(x, y, z), where ψ = (ψ1, ψ2, ψ3)

28

and

ψ1(x, y, z) = sin
(
(x− 1)2 + (y − 1)2 + (z − 1)2

)
,

ψ2(x, y, z) = cos
(
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

)
,

ψ3(x, y, z) = sin
(
(x+ 0.5)2 + (y − 1)2 + (z + 1)2

)
.

Figure 3.7 shows the error decay for evenly spaced 3× 3× 3 Cartesian stencils using

divergence-free kernels based on Gaussians. Just as in the two-dimensional case, we

have an increase in the convergence rate of the derivatives present in the divergence

operator (ux, vy and wz), however this precision is due to the disposition of our grid

points. In Figure 3.8, we repeat the experiment using a set of scattered nodes formed

by the origin and the 26 nearest points. As in the 2D case, a convergence rate between

second and fourth order is observed. For both experiments we use a fixed shape

parameter ε = 8.

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: RBF-FD

h2

h4

ux: h
3.98

uy: h
2

uz: h
1.96

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on v derivatives: RBF-FD

h2

h4

vx: h
1.71

vy: h
4.2

vz: h
1.93

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on w derivatives: RBF-FD

h2

h4

wx: h
1.98

wy: h
1.9

wz: h
4.05

Figure 3.7: Error in the approximation of the derivatives of a divergence-free vector
field using the 3D divergence-free RBF method with Gaussians and ε = 8.

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on u derivatives: RBF-FD

h2

h4

ux: h
2.75

uy: h
3.24

uz: h
3.1

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on v derivatives: RBF-FD

h2

h4

vx: h
3.63

vy: h
3.34

vz: h
3.5

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

E
r
r
o
r

Error on w derivatives: RBF-FD

h2

h4

wx: h
2.93

wy: h
3.5

wz: h
2.96

Figure 3.8: Error on the derivatives of the 3D divergence-free RBF interpolant using
scattered nodes and ε = 8 (Gaussians).

29

3.2 Convergence Analysis of Local Divergence-Free Polynomials

In this section, we present analytical results that support the achieved decay rates

of the finite difference schemes presented in Subsection 3.1.2. For simplicity, we focus

on the two dimensional case, but the results can be extended to three dimension as

well.

The idea is to compute the finite difference weights analytically and study the local

truncation error in approximating the partial derivatives of the vector field. Specifically,

we Taylor expand u
∣∣∣
xk

and v
∣∣∣
xk

around 0 (the center point), for k = 1, . . . , 9, where

xk are the stencil points. Two stencils will be considered: a 3× 3 squared Cartesian

stencil; and its rotation by π/4 angle.

The finite difference schemes based on the polynomial stream function (2.12) has

a simpler structure than the ones based on divergence-free kernels. For this reason

we were able to compute the expression for the weights analytically only for the

polynomial case. First we study the error for n = 2 and n = 3 to verify the decay

rates shown Figure 3.3. Later, we change the polynomial basis such that a full rank

system with a unique solution is acquired. This will simplify the expression of the

finite difference weights and still maintain the faster order of decay for ux and vy.

To calculate the finite difference weights, we rewrite the polynomial stream function

(2.12) as

ψ(x, y) = a0 +
m∑
k=1

akqk(x, y),

where the qks are the bivariate monomial terms in (2.12) and m = (n + 1)2 − 1.

Consequentially, the components of the divergence-free polynomial are expressed as

pu(x, y) = +
m∑
k=1

akqky(x, y),

pv(x, y) = −
m∑
k=1

akqkx(x, y),

30

and the linear system originated from the interpolation condition (2.13) is

q1y(x1, y1) · · · qmy(x1, y1)

...

q1y(xN , yN) · · · qmy(xN , yN)

−q1x(x1, y1) · · · −qmx(x1, y1)

...

−q1x(xN , yN) · · · −qmx(xN , yN)

︸ ︷︷ ︸

M

a1

...

am

︸ ︷︷ ︸
a

=

u(x1, y1)

...

u(xN , yN)

v(x1, y1)

...

v(xN , yN)

︸ ︷︷ ︸

f

. (3.2)

As mention in Subsection 2.2.3, the linear system above might have from infinitely

many solutions to none. For this reason, we use the least squares solution given by

the Moore-Penrose pseudoinverse, that is, we look for a divergence-free polynomial

vector field that best fit the data. Hence,

a = M †f

where † denotes the Moore-Penrose pseudoinverse. Defining the vectors

pu := +
[
q1y · · · qmy

]
and pv := − [q1x · · · qmx] ,

allows approximating the partial derivative of the vector field at the origin as

ux(0, 0) ≈ (pu)x

∣∣∣
(0,0)
a = (pu)x

∣∣∣
(0,0)

M †︸ ︷︷ ︸
wux

f = wuxf,

uy(0, 0) ≈ (pu)y

∣∣∣
(0,0)
a = (pu)y

∣∣∣
(0,0)

M †︸ ︷︷ ︸
wuy

f = wuy f,

vx(0, 0) ≈ (pv)x

∣∣∣
(0,0)
a = (pv)x

∣∣∣
(0,0)

M †︸ ︷︷ ︸
wvx

f = wvxf,

vy(0, 0) ≈ (pv)y

∣∣∣
(0,0)
a = (pv)y

∣∣∣
(0,0)

M †︸ ︷︷ ︸
wvy

f = wvy f,

31

where wux , wuy , wvx and wvy are the weights to approximate the partial derivatives

of the vector field.

In Table 3.3 we show the finite difference weights for the squared Cartesian 3× 3

stencil using n = 2. Moreover, those weights allow us to calculate the truncation error

of the finite difference formulas using Taylor series expansions around 0. Expanding

each element of f and assuming (u, v) is a solenoidal vector field leads to

(pu)xa =
ux − vy

2
+

(
uxxx − vyyy

12
+
uxyy − vxxy

6

)
h2 +O

(
h4
)

= ux +O
(
h2
)
,

(pu)ya = uy +

(
uxxy + uyyy + vxyy

6

)
h2 +O

(
h4
)

= uy +O
(
h2
)
,

(pv)xa = vx +

(
uxxy + vxxx + vxyy

6

)
h2 +O

(
h4
)

= vx +O
(
h2
)
,

(pv)ya = −ux − vy
2

−
(
uxxx − vyyy

12
+
uxyy − vxxy

6

)
h2 +O

(
h4
)

= vy +O
(
h2
)
.

Note that we have a second order finite difference scheme for this case. Table 3.4 have

the weights for the same type of stencil, but using n = 3. Similarly, we obtain

(pu)xa =
360 (ux − vy) + 60 (uxxx + vxxy − uxyy − vyyy)h2 +O (h4)

720h8 + 1440h4 + 720
=

ux +O
(
h4
)
,

(pu)ya = uy +
1

6
(uxxy + uyyy + vxyy)h

2 +O
(
h4
)

= uy +O
(
h2
)
,

(pv)xa = vx +
1

6
(uxxy + vxxx + vxyy)h

2 +O
(
h4
)

= vx +O
(
h2
)
,

(pv)ya =
−360 (ux − vy)− 60 (uxxx + vxxy − uxyy − vyyy)h2 +O (h4)

720h8 + 1440h4 + 720
=

vy +O
(
h4
)
,

Here, higher order of accuracy for ux and vy are achieved due to the divergence-free

condition (ux + vy = 0). Those analytical results explain the observed convergence

rates in Figure 3.3.

Rotating the 3× 3 stencil from before by an π/4 angle and fixing the polynomial

degree of the stream function to n = 3, leads to the weights in Table 3.5. Unfortunately,

32

wux · 12h wuy · 12h wvx · 12h wvy · 12h

(x, y) u v u v u v u v

(−1,−1)h −1 1 −1 −1 −1 −1 1 −1

(−1, 0)h −1 0 0 2 0 −4 1 0

(−1, 1)h −1 −1 1 −1 1 −1 1 1

(0,−1)h 0 1 −4 0 2 0 0 −1

(0, 0)h 0 0 0 0 0 0 0 0

(0, 1)h 0 −1 4 0 −2 0 0 1

(1,−1)h 1 1 −1 1 −1 1 −1 −1

(1, 0)h 1 0 0 −2 0 4 −1 0

(1, 1)h 1 −1 1 1 1 1 −1 1

Table 3.3: Finite difference weights for partial derivatives using n = 2 for the
polynomial stream function.

only second order rates of decay for the partial derivatives of the vector field are

achieved, since the terms of order h2 will not vanish even if the vector field is solenoidal,

as it can be seen below

(pu)xa =
30 (ux − vy) + 10 (uxxx − vyyy)h2 +O (h4)

120h4 + 60

= ux +
1

6
(uxxx − vyyy)h2 +O

(
h4
)
,

(pu)ya = uy +
1

24
(uxxy + 7uyyy − vxxx + vxyy)h

2 +O
(
h4
)

= uy +
1

24
(7uyyy − vxxx)h2 +O

(
h4
)
,

(pv)xa = vx +
1

24
(uxxy + 7vxxx − uyyy + vxyy)h

2 +O
(
h4
)

= vx +
1

24
(7vxxx − uyyy)h2 +O

(
h4
)
,

(pv)ya = −30 (ux − vy)− 10 (uxxx − vyyy)h2 +O (h4)

120h4 + 60

= vy −
1

6
(uxxx − vyyy)h2 +O

(
h4
)
.

33

wux · β wuy · β wvx · β wvy · β

(x, y) u v u v u v u v

(−1,−1)h 1 −1 −1 −1 −1 −1 −1 1

(−1, 0)h −α 0 0 2 0 −4 α 0

(−1, 1)h 1 1 1 −1 1 −1 −1 −1

(0,−1)h 0 α −4 0 2 0 0 −α

(0, 0)h 0 0 0 0 0 0 0 0

(0, 1)h 0 −α 4 0 −2 0 0 α

(1,−1)h −1 −1 −1 1 −1 1 1 1

(1, 0)h α 0 0 −2 0 4 −α 0

(1, 1)h −1 1 1 1 1 1 1 −1

Table 3.4: Finite difference weights for partial derivatives using a polynomial stream
function of degree n = 3. α = 4(3h2 + 2) and β = (h4 + 1)224h.

Hence, the results in Subsection 3.1.2 for unstructured grids will not necessarily have

decay rates faster than 2, indicating that a careful selection of stencil points is needed

to obtain faster convergence rates.

In the three previous cases, the linear system for the coefficients of the polynomial

stream function were all rank deficient. For n = 2, the system had rank 8, while for

n = 3, it had rank 14 for the Cartesian and rotated stencils. In this way, depending

on the right hand side f, the system might have multiple or no solutions.

One alternative to get a full rank matrix is to increase the degrees of freedom of

system by adding more basis terms to the stream function. This strategy might not

work for all point distributions, but it works for the Cartesian and rotated stencils seen

above. Once we have a full rank system, we can eliminate the redundancy of multiple

solutions by removing the basis terms that only add linear dependent columns to M

in (3.2). This can be easily accomplished using the reduced row echelon form of M .

34

wux · 16h5+8h√
2

wuy · 24h√
2

wvx · 24h√
2

wvy · 16h5+8h√
2

(x, y) u v u v u v u v
√

2(−1, 0)h −1 0 0 1 0 −5 1 0
√

2
2

(−1, 1)h 0 0 1 −1 1 −1 0 0
√

2(0, 1)h 0 −1 5 0 −1 0 0 1
√

2
2

(−1,−1)h 0 0 −1 −1 −1 −1 0 0

(0, 0)h 0 0 0 0 0 0 0 0
√

2
2

(1, 1)h 0 0 1 1 1 1 0 0
√

2(0,−1)h 0 1 −5 0 1 0 0 −1
√

2
2

(1,−1)h 0 0 −1 1 −1 1 0 0
√

2(1, 0)h 1 0 0 −1 0 5 −1 0

Table 3.5: Finite difference weights for the 3× 3 stencil rotated by a π/4 angle using
of polynomial stream function with n = 3.

Setting n = 5 for the Cartesian grid case results in a full rank system, that is,

rank (M) = 18. A linear system with unique solution is found by removing the 17

redundant basis terms: y4, y5, x3y3, x3y4, x3y5, x4, x4y, x4y2, x4y3, x4y4, x4y5, x5,

x5y, x5y2, x5y3, x5y4 and x5y5. Using the weights calculated by solving this system

we get the following approximations to the partial derivatives

(pu)xa = ux + (uxxx + vxxy)
h2

6
+O

(
h4
)

= ux +O
(
h4
)
,

(pu)ya = uy + uyyy
h2

6
+O

(
h4
)

= uy +O
(
h2
)
,

(pv)xa = vx + vxxx
h2

6
+O

(
h4
)

= vy +O
(
h2
)
,

(pv)ya = −ux − (uxxx + vxxy)
h2

6
+O

(
h4
)

= vy +O
(
h4
)
.

(3.3)

Note that the expression for the weights (see Table 3.6) and the local truncation error

is much simpler, and we maintained the 4th order error decay for ux and vy.

Similarly, for the rotated grid case, using n = 5 the linear system will also have

35

wux · 12h wuy · 12h wvx · 12h wvy · 12h

(x, y) u v u v u v u v

(−1,−1)h 0 −1 0 0 0 0 0 1

(−1, 0)h −6 0 0 0 0 −6 6 0

(−1, 1)h 0 1 0 0 0 0 0 −1

(0,−1)h 0 2 −6 0 0 0 0 −2

(0, 0)h 0 0 0 0 0 0 0 0

(0, 1)h 0 −2 6 0 0 0 0 2

(1,−1)h 0 −1 0 0 0 0 0 1

(1, 0)h 6 0 0 0 0 6 −6 0

(1, 1)h 0 1 0 0 0 0 0 −1

Table 3.6: Finite difference weights for partial derivatives using the stream function
of polynomial degree n = 5 and removing the redundant terms in a 3 × 3 squared
Cartesian stencil.

rank 18. Moreover, the linear system will have a unique solution if we remove the

17 basis terms: x2y4, x2y5, x3y, x3y4, x3y5, x4, x4y, x4y2, x4y3, x4y4, x4y5, x5, x5y,

x5y2, x5y3, x5y4 and x5y5. Thus, using the calculated weights the partial derivatives

approximations are

(pu)xa = ux + uxxx
h2

3
+O

(
h4
)

= ux +O
(
h2
)
,

(pu)ya = uy + (uxxy − vxxx + vxyy)
h2

3
+O

(
h4
)

= uy +O
(
h2
)
,

(pv)xa = vx + vxxx
h2

3
+O

(
h4
)

= vy +O
(
h2
)
,

(pv)ya = −ux − uxxx
h2

3
+O

(
h4
)

= vy +O
(
h2
)
.

We lose the higher order error decay rates, but the expression for the weights in

Table 3.7 is simpler when comparing with the rank deficient case.

36

wux · 12h√
2

wuy · 12h√
2

wvx · 12h√
2

wvy · 12h√
2

(x, y) u v u v u v u v
√

2(−1, 0)h −3 0 0 4 0 −3 3 0
√

2
2

(−1, 1)h 0 0 4 −4 0 0 0 0
√

2(0, 1)h 0 0 −1 0 0 0 0 0
√

2
2

(−1,−1)h 0 0 −4 −4 0 0 0 0

(0, 0)h 0 0 0 0 0 0 0 0
√

2
2

(1, 1)h 0 0 4 4 0 0 0 0
√

2(0,−1)h 0 0 1 0 0 0 0 0
√

2
2

(1,−1)h 0 0 −4 4 0 0 0 0
√

2(1, 0)h 3 0 0 −4 0 3 −3 0

Table 3.7: Finite difference weights for partial derivatives using a stream function of
polynomial degree n = 5 and removing the redundant basis terms in a rotated stencil.

3.3 Lebesgue Constants and the Kosloff & Tal-Ezer Map

It is well known that polynomial interpolation on equally spaced nodes suffers from

Runge phenomenon – wild oscillations near the boundaries of the domain when certain

analytic functions are interpolated. Classical RBF interpolation with smooth global

kernels are also susceptible to this phenomenon [22, 51, 53]. This is illustrated in

Figure 2.3, where the RBF interpolant of f(x) = 1/(1 + 25x2) is shown for decreasing

values of shape parameters. As mention before, the RBF interpolant approaches the

Lagrange interpolant on a given set of nodes as ε→ 0, therefore the Runge phenomenon

is expected on equispaced points. Associated to this phenomenon is the sensitivity of

the interpolation process. That is, even for functions where convergence should take

place in theory, the exponential ill-conditioning of the interpolation operator causes

divergence in floating point arithmetic.

37

In this section we explore the sensitivity of the interpolation operator for the

divergence-free method to perturbations on the data. To do so, we analyze the values

of the Lebesgue constants. To be precise, we defined the Lebesgue constants as

ΛN = sup
f∈L∞(Ω)
‖f‖N,∞ 6=0

{
‖t‖∞
‖f‖N,∞

}
,

where t is the divergence-free interpolant at N grid points, Ω is the approximation

domain, ‖t‖∞ is the sup norm over Ω, and ‖f‖N,∞ is the sup norm of the values of f

on the grid. Because f is a vector field, we defined these two norms as the maximum

of the norms over each component.

We compute the Lebesgue constant numerically using an equivalent expression

(for the 2D case),

ΛN = max
x∈Ω

(
N∑
i=1

‖ϕui (x)‖+
N∑
i=1

‖ϕvi (x)‖

)
,

where the functions ϕu,vi are the cardinal functions on the nodes xj, i.e., ϕu,vi (xj) =

[0 0]ᵀ if i 6= j, ϕui (xi) = [1 0]ᵀ, and ϕvi (xi) = [0 1]ᵀ. Figure 3.9 shows two cardinal

functions in a 3×3 stencil using Gaussian divergence-free kernels with shape parameter

ε = 2.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Cardinal function u at (0, 0)

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Cardinal function v at (0, 1)

x

y

Figure 3.9: Cardinal functions for divergence-free RBF interpolation with ε = 2 in a
3× 3 stencil. Left: u = 1 at (0, 0). Right: v = 1 at (0, 1).

38

Figure 3.10 displays the growth of the Lebesgue constant for different values of shape

parameter of the divergence-free RBF interpolant described in Subsection 2.2.1 and the

polynomial divergence-free interpolant described in Subsection 2.2.3 when using global

stencils. Unsurprisingly, the polynomial method has the largest Lebesgue constant

values. Polynomial approximations are notoriously ill-conditioned for interpolation on

equispaced nodes [55] and similar behavior is observed in the divergence-free case.

Our experiments in Section 3.4 indicate that the flat limit (ε → 0) of RBF

divergence-free interpolants is also a polynomial. Consequently, we see that for small ε,

divergence-free RBF approximations also have large Lebesgue constants, while larger

values of ε lead to better conditioned approximations.

3 4 5 6 7 8 9 10 11 12 13
10

0

10
1

10
2

10
3

10
4

10
5

RBF vs Polynomial divergence-free interpolants

√

N

L
e
b
e
sg
u
e
c
o
n
st
a
n
t

polynomial
ε = 2
ε = 5
ε = 10

Figure 3.10: Lebesgue constant growth for divergence-free methods.

One can improve the values of the Lebesgue constant using a mapping technique.

In [51], the Kosloff & Tal-Ezer mapping

xkte(α) :=
arcsin(αxcheb

j)

arcsin(α)
, j = 1, . . . , N,

where xcheb
j = cos(π(j − 1)/(N − 1)). Here we use the same parameter α in each

spatial direction. The K–T-E mapping, introduced in [41], maps Chebyshev points

into more evenly spaced ones as α→ 1, and as α→ 0 the map becomes the identity.

39

By choosing α ∈ (0, 1) one can tune the clustering of nodes near the boundaries of

the domain.

In Table 3.8 we show the values of the optimized Lebesgue constants together

with the values of the corresponding mapping parameters α. For the RBF case, it

can be observed that mapping nodes greatly improves the Lebesgue constant. For

instance, in Figure 3.11 we display the cardinal function on a 11× 11 grid using the

shape parameter ε = 2 with u = 1 at (0, 0) (u and v are zero at the other nodes).

This figure shows that the cardinal function for equally spaced nodes becomes large

near the boundaries, contributing to a large value of the Lebesgue constant for the

interpolation process. Using the K–T-E mapping with α = 0.967, on the other hand,

leads to smaller values near the boundaries resulting in lower values for the Lebesgue

constant. For the polynomial case, using Chebyshev points for both spatial directions

leads to small Lebesgue constants (around 40 in our experiments), indicating that this

node distribution is also a good choice for divergence-free polynomial bases.

ε = 2 ε = 5 ε = 10
√
N Λα=1 Λαmin

αmin Λα=1 Λαmin
αmin Λα=1 Λαmin

αmin

3 1.7 1.7 0.788 1.0 1.0 1.000 1.0 1.0 1.000

5 8.2 5.8 0.817 1.2 1.6 0.624 1.0 1.0 0.797

7 14.4 13.6 0.980 2.9 2.9 0.973 1.0 1.6 0.690

9 36.2 24.0 0.992 6.7 5.4 0.964 1.2 1.6 0.974

11 250.4 44.4 0.967 18.3 15.7 0.949 1.9 1.9 0.998

13 1.2× 104 166.9 0.950 26.3 24.7 0.998 2.9 2.9 1.000

Table 3.8: Value of the Lebesgue constant Λ for equally spaced points (α = 1)
and optimized nodes (Λαmin

). Lebesgue constants calculated for divergence-free RBF
interpolants using ε = 2, 5, 10.

40

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Cardinal function u at (0.00, 0.00)

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Cardinal function u at (0.00, 0.00)

x

y

Figure 3.11: Cardinal functions for divergence-free RBF interpolation with ε = 2
in a 11× 11 stencil for u = 1 at (0, 0). Left: Using equispaced points. Right: using
K–T-E mapping with α = 0.967.

3.4 Limit of the Divergence-Free Interpolant as ε→ 0

It has been shown in [11], for the unidimensional case, and in [42, 43, 59] for the

multivariate case, that the limit of increasingly flat RBF interpolants converge to

polynomials. In the multivariate case, the limit is only guaranteed to exist if the node

set is polynomial unisolvent, except for Gaussians (see also [21] for details). In this

section we present numerical results that indicate that the flat limit of divergence-free

RBF interpolants is also a polynomial. We only show results for two divergence-free

kernels: Gaussians (G) and generalized inverse multiquadrics. Nevertheless, similar

behavior is expected for other kernel choices.

For a few nodes, the flat limit can be found using symbolic computations. For more

than a few nodes, exact computation grows too complex to provide useful information

about the limit. Computations in this case were carried out in double precision. As the

shape parameter decreases to zero, the condition number of the interpolation matrix

becomes too large for practical computations (even with only 9 points). Fortunately,

a technique presented in [20] allows the computation of the interpolant at the limit

ε→ 0. The main idea is to consider ε (the shape parameter) a complex variable. The

41

RBF interpolant is an analytic function of ε near ε = 0. We can then compute the

interpolant at the flat limit by evaluating a contour integral around the origin. The

computational cost of this technique is too high for large scale problems, but works

well for the problem at hand. This idea is illustrated in Figure 3.12.

U ε(0.75, 0.75) with
√
N = 7

ℜ

ℑ

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

V ε(0.75, 0.75) with
√
N = 7

ℜ

ℑ

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.12: Absolute value of u (left) and v (right) at (0.75, 0.75) as the shape
parameter varies in the complex plane. The main idea to calculate the limit via the
contour-Padé algorithm is to evaluate the interpolant for complex values of ε. The
limit is calculated via a contour integral, where the contour is chosen (dashed line)
to avoid the ill-conditioned region of the interpolation matrix and the poles of the
interpolant.

Using the contour integral method, we evaluate the flat limit interpolant at several

points. To verify whether the limit is a polynomial or not, we interpolate the values

using a tensor product of Chebyshev polynomials. In all our test cases, only a few

nonzero coefficients are needed for this representation. The non-zero coefficients

are O(1) while the zero coefficients are about machine precision. We use the two-

dimensional capability of Chebfun [12, 54, 65] to obtain the polynomial representation.

Figure 3.13 shows the divergence-free interpolant for a five point stencil with data

given by f(0, 0) = [1 0]ᵀ and f(1, 0) = f(0, 1) = f(−1, 0) = f(0,−1) = [0 0]ᵀ. In this

case we were able to find the interpolant analytically, which allowed us to compare

42

with the chebfun2 approximation and see that they agree up to machine precision.

The expression for the limit is:

pG(x, y) =

−x2 − y2 + 1

2xy

 = pIM(x).

Note that the limit is the same for both basic functions (G and IM), however this is

not always the case.

−1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant u at ε = 0

y −1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant v at ε = 0

y

Figure 3.13: Divergence-free RBF interpolant for f(0, 0) = [1 0]ᵀ and f(0, 1) =
f(1, 0) = f(0,−1) = f(−1, 0) = [0 0]ᵀ, using the contour-Padé algorithm. In this
case, the difference between analytically and numerically computed limits is O(10−15).

For an interpolant passing through [1 0]ᵀ at the origin and [0 0]ᵀ for all the other

points on a 3× 3 rectangular stencil we obtain

p∗G(x, y) =

2
3
x4 + x2y2 − 5

3
x2 − y2 + 1

−8
3
x3y − 2

3
xy3 + 10

3
xy

 ,
p∗IM(x, y) =

2
3
x4 + x2y2 − 5

3
x2 + 47

429
y4 − 476

429
y2 + 1

−8
3
x3y − 2

3
xy3 + 10

3
xy

 .
Here the interpolation points are {(i, j) ∈ R2 | i, j = −1, 0, 1}. These interpolants are

displayed in Figure 3.14. For this case we were not able to acquire the interpolant

analytically, however the approximation via chebfun2 of the numerical limit given by

the contour-Padé algorithm is a polynomial (we truncate the terms of the polynomial

expansion that have coefficients numerically zero). Moreover, here we see that the

43

limits can be different for different kernels. In this case, the difference between pG and

pIM is of the order 10−2 in the square [−1, 1]2 but grows larger outside this region.

−1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant u at ε = 0

y −1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant v at ε = 0

y

−1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant u at ε = 0

y −1
−0.5

0
0.5

1

−1

0

1
−0.5

0

0.5

1

x

Interpolant v at ε = 0

y

Figure 3.14: Divergence-free RBF interpolant for f(0, 0) = [1 0]ᵀ and f(0, 1) =
f(1, 0) = f(0,−1) = f(−1, 0) = f(1, 1) = f(−1, 1) = f(1,−1) = f(−1,−1) =
[0 0]ᵀ. Top: Gaussians. Bottom: inverse multiquadrics. The difference between the
top and bottom interpolants is approximately 2.7× 10−2 on [−1, 1]2.

3.5 Remarks

Divergence-free vector fields can be more accurately represented by solenoidal bases

than with independent componentwise approximations. On a rectangular grid, the

main gain in accuracy is in the directions of the derivatives present in the divergence

operator. Two additional orders of accuracy were observed using RBF kernels in two

and three dimensions, as well as in polynomial based approximations in 2D Cartesian

stencils. When random or scattered nodes are used, the gain in accuracy is more

evenly distributed in all directions. In this case, using a 9-point approximation in 2D

resulted in an effective convergence rate between O(h2) and O(h4).

44

We point out that the computational cost for computing a divergence-free inter-

polant is O((dN)3), in the global case and using a direct solver, where d is the vector

dimension and N the number of nodes. Using traditional approximations on each

vector component, on the other hand, requires O(N3), since factorizations need only

to be done once and can be reused for the approximation of each entry of the vector.

Therefore, for 2-dimensional problems the cost would be increase by a factor of 8 and

for 3-dimensional problems by a factor of 27 which is rather expensive and seems to

offset gains in accuracy.

The computational cost for solving time dependent PDEs with explicit time

stepping, on the other hand, is dictated by matrix-vector multiplications (if the

problem is formulated using differentiation matrices, for instance). At each time

step, the cost of calculating all the derivatives of a 2D (3D) vector field is 4×O(N2)

(9 × O(N2)) for the traditional method and 2 × O((2N)2) (3 × O((3N)2)) for the

divergence-free approach. This leads to an increase in computational cost by a factor

of 2 (3) due to the larger differentiation matrices of the divergence-free method. Thus,

looking back at Table 3.2, the error between the two approaches seems comparable for

a fixed flops budget, however the divergence-free approach guarantees a numerically

zero divergence, which is a desirable feature in certain applications.

As for regular RBF approximations, our results indicate that the flat limit (ε→

0) of divergence-free kernels is also a polynomial (in each component). For small

problems (less than ten points), the limit can be obtained analytically using symbolic

computations depending on the kernel and node distribution. For the more general

cases, and larger number of points, the limit can be computed using the contour

integral technique introduced in [21]. We have not been able to draw a connection

between the limiting polynomial and the polynomial approximation computed using

the method presented in Subsection 2.2.3. In some instances, the same limit was

45

obtained with Gaussians and inverse multiquadrics, but like in the standard RBF case

[42], the limit can be different polynomials for these two kernels depending on the

node distribution.

Our results also show that the condition number of the approximation procedure

can be very large on an equispaced Cartesian grid. This is true for both polynomial

and smooth divergence-free RBF kernels, although Lebesgue constants do not grow as

fast in the latter case if the shape parameter is not close to zero. Clustering nodes

more densely near boundaries was shown to lead to significantly smaller Lebesgue

constants. The clustering was performed by optimizing the Kosloff–Tal-Ezer mapping

(one parameter optimization). Unfortunately, even if Lebesgue constants are of

moderate size, condition number of interpolation matrices can still grow exponentially

for smooth kernels, a problem that can be addressed by a change of basis using a

procedure similar to the RBF-QR method presented in [18, 19].

46

Chapter 4

APPLICATION TO FLUID PROBLEMS

In this chapter, we use localized interpolants based on traditional radial basis

function and divergence-free kernels introduced in Chapter 2 to simulate incompressible

fluid flows. As proof of concept, we simulate flows inside a square cavity where spectral

methods generate a reference solution for our simulations. Two types of problems are

considered: one driven by the motion of the cavity’s lid (the lid driven cavity flow)

[29], and the other induced by a heat transfer at the bottom boundary (the buoyancy

driven flow) [58].

The flows in both problems are assumed to be incompressible. In this case it is well

known that after time stepping the solution with a time integrator, we must ensure

that the velocity field is divergence-free to avoid instabilities and maintain accuracy.

Two well known ways to numerically stablish incompressibility are:

• the use of vorticity and stream function formulation and

• the use of projection schemes that recover the divergence-free part of the velocity

field at each time step.

In two dimensions, the vorticity-stream function formulation is an easy way to

assure incompressibility of the velocity field. In higher dimensions, however, it has an

elevated computational cost besides the difficulty to implement vorticity boundary

conditions. Projection methods, introduced by Chorin [6], allow us to use the more

efficient primitive variable formulation in three dimensional problems. Our goal in

this chapter is to combine these projection methods with the RBF finite difference

methods studied in the preceding chapters. For simplicity, we restrict our studies to

47

two dimensions.

To measure the accuracy of numerical computations, one could use the method

of manufactured solutions in which a solution is assumed and an external force

function is added to the PDE to guarantee the model conforms to the desired solution.

Unfortunately, except in rare cases, manufactured solutions do not resemble flow

dynamics of practical interest. Thus, when testing our algorithms we solve the original

fluid flow problem (without artificial forcing terms) and use spectral methods to find

a reference solution.

Chapter 4 is organized as follows. First we describe the fluid flow equations in

primitive variables and in vorticity-stream function formulation. Second, we present the

spectral method used to compute our target solutions. Third, finite difference schemes

based on traditional and divergence-free RBFs are described for each flow problem.

Moreover, we explain the projection method used to guarantee incompressibility in

the primitive variables formulation. Last, we compare the numerical results obtained

by both schemes.

4.1 Fluid Flow Equations

We are interested in solving viscous incompressible homogeneous fluid flows, which

are modeled by the incompressible Navier-Stokes equations
ut + (u · ∇)u = −∇p+ ν∆u+ f

∇ · u = 0

in Ω, (4.1)

subject to the no-slip boundary conditions

u = g on ∂Ω.

Here, u, p, f and ν are the velocity, the kinematic pressure, the mass density of body

forces, and kinematic viscosity, respectively.

48

The system (4.1) presents the velocity-pressure formulation of the incompressible

Navier-Stokes equations. In what follows, we will also make use of the vorticity-stream

function formulation. The vorticity is defined as ω = ∇× u. Taking the curl of the

momentum equation leads to

∇× ut +∇× [(u · ∇)u] = −∇× (∇p) + ν∇× (∆u) +∇× f . (4.2)

To simplify this expression, we will use the following identities,

(u · ∇) =
1

2
∇(u · u)− u× (∇× u)︸ ︷︷ ︸

=ω

=
1

2
∇(u · u)− u× ω,

and

∇× (u× ω) = (∇ · ω)︸ ︷︷ ︸
=0

u− (∇ · u)︸ ︷︷ ︸
=0

ω + (ω · ∇)u− (u · ∇)ω

= (ω · ∇)u− (u · ∇)ω,

We can now rewrite (4.2) as

(∇× u)t +∇×
[

1

2
∇(u · u)− u× ω

]
= ν∆(∇× u) +∇× f

ωt +
1

2
∇×∇(u · u)︸ ︷︷ ︸

=0

−∇× (u× ω) = ν∆ω +∇× f

ωt − (ω · ∇)u+ (u · ∇) = ν∆u+∇× f .

Furthermore, because ∇ · u = 0, there exist a ψ such that u = ∇ × ψ. It is also

possible to take ψ such that ∇ ·ψ = 0. To demonstrate this, consider the Helmholtz

decomposition of a general vector field ψ

ψ = ∇×A+∇b,

Hence,

u = ∇×ψ = ∇× (∇×A+∇b) = ∇× (∇×A),

49

that is, the vector field generated by the curl of ψ only depends on the divergence-free

part of ψ. Finally, we point out that ψ must satisfy the following Poisson equation,

ω = ∇× u = ∇× (∇×ψ) = ∇(∇ ·ψ)︸ ︷︷ ︸
=0

−∆ψ = −∆ψ.

Summarizing, the vorticity-stream function formulation of the incompressible

Navier-Stokes equation is expressed as
ωt − (ω · ∇)u+ (u · ∇)ω = ν∆ω +∇× f

∆ψ = −ω
in Ω, (4.3)

with appropriate boundary conditions.

In the two dimensional case, the velocity and the mass density of body forces will

only vary in the x and y directions. Hence, the stream function must be given by

ψ = (0, 0, ψ) and

ω = ∇× u = (−vz, uz, vx − uy) = (0, 0, ω)

∇× f = (−f vz , fuz , f vx − fuy︸ ︷︷ ︸
fω

) = (0, 0, fω).

Additionally, the terms in (4.3) simplify to

(ω · ∇)u =ω
∂u

∂z
= 0,

(u · ∇)ω =

(
u
∂

∂x
+ v

∂

∂y

)
ω(0, 0, uωx + vωy),

∆ω = (0, 0,∆ω),

∆ψ = (0, 0,∆ψ).

50

Then, (4.3) is reduced to 2 scalar equations in ω and ψ
ωt + uωx + vωy = ν∆ω + fω

∆ψ = −ω
in Ω

w = −∆ψ

∣∣∣
∂Ω

ψy = gu, ψx = −gv
at ∂Ω.

(4.4)

This formulation is more efficient than the velocity-pressure formulation that has 3

unknowns (u,v,p) in the 2D case. However, in three dimensions, the u-p formulation

is more efficient because there are only 4 unknowns to be calculated (u,v,w,p) versus

6 unknowns in (4.3) (3 components for the vorticity and stream function).

4.1.1 The Lid Driven Cavity Flow

The lid driven cavity flow has long been used as a benchmark for fluid flow

algorithms [29]. Despite its simple geometry, complex flow dynamics can be observed,

including chaotic solutions for large Reynolds numbers. One of the difficulties in the

numerical simulation of the conventional lid driven cavity flows is the singularity at

the top corners of the domain, where the horizontal component of the velocity is

discontinuous. We shall address this problem later by regularizing the velocity of the

lid. At this moment, we describe the problem with a constant velocity at the top of

the cavity.

Let u = (u, v) and p denote the dimensionless velocity and pressure, respectively.

Then, the flow inside a cavity (Figure 4.1) is given by the incompressible Navier-Stokes

51

equation
ut + (u · ∇)u = −∇p+ 1

Re∆u,

∇ · u = 0,

in Ω = [0, 1]2,

u = (1, 0), on Γ = [0, 1]× {1} ,

u = 0, on ∂Ω \ Γ,

in the primitive variables formulation. Here Re = LUref/ν is the Reynolds number,

where L is a characteristic width (the length of one of the sides of the cavity), Uref is

a reference speed and ν is the kinematic viscosity.

The equivalent vorticity-stream function formulation in this case is
ωt + uωx + vωy = 1

Re∆ω,

∆ψ = −ω,
in Ω = [0, 1]2,

ω = −∆ψ

∣∣∣
∂Ω
,

ψ = constant,
on ∂Ω,

where u = ψy and v = −ψx.

Figure 4.1: Lid driven cavity problem using nondimensional variables.

4.1.2 Buoyancy Driven Flow

The second fluid flow problem of our study is the natural convection in a cavity.

The motion is modeled by the incompressible Navier-Stokes equation with a forcing

52

term that depends on the temperature and the velocity field. In primitive variables

formulation

ut + (u · ∇)u = −∇p+ Pr∆u+ PrRa

0

T

︸ ︷︷ ︸

f

,

∇ · u = 0,

Tt + (u · ∇)T = ∆T,

in Ω = [−1, 1]2, (4.5)

subject to the no-slip boundary conditions u = 0 and

T (t, x, y) =

tanh4(100t)e−30x2

, on Γ = [−1, 1]× {0}

0, on ∂Ω \ Γ.

(4.6)

Here, u = (u, v), p and T are the dimension less velocity, pressure and the temperature.

The Prandtl number Pr measures the ratio of the kinematic viscosity and the thermal

diffusivity, while the Rayleigh number Ra measures how much the buoyancy forces

contribute to the fluid motion in respect to the viscosity forces.

To obtain the ω-ψ formulation of (4.5), we rewrite the momentum equation of

(4.4) as

ωt + uωx + vωy = Pr∆ω +∇× f︸ ︷︷ ︸
PrRaTx

,

∆ψ = −ω,

Tt + (u · ∇)T = ∆T,

in ∂Ω,

with u = ψy and v = −ψx and boundary conditions
ω = −∆ψ

∣∣∣
∂Ω

ψy = 0 = −ψx =⇒ ψ = constant
on ∂Ω.

The temperature on the boundary is still described by (4.6).

53

4.2 The Spectral Method Discretization

The spectral method described in this section will be used to compare the accuracy

of the numerical solution of the methods based on RBF generated finite differences. We

specifically use the vorticity-stream function formulation to guarantee incompressibility

of the flow of our reference solutions. The spatial discretization is obtained using

Chebyshev collocation as described in [66].

We point out that although the buoyancy driven flow, as stated in (4.5) with

temperature described by (4.6) and zero velocity on the boundaries, does not present

discontinuities, large gradients will develop in the solution of flows with high Rayleigh

numbers requiring very fine discretizations to maintain accuracy. For this reason in

our numerical experiments we consider low to moderate Rayleigh numbers.

Similarly, the lid driven cavity flow will contain high gradients for large Reynolds

numbers, which can be addressed with enough discretization points. Nevertheless, the

problem (as proposed in Subsection 4.1.1) presents a discontinuous boundary condition,

which affects the accuracy of the whole numerical solution due to the global character

of spectral methods. To circumvent this issue, we consider a regularized version of the

lid driven cavity flow problem [61]. More specifically, we use the boundary condition

us(t, x) = 16x2(x− 1)2 tanh2(100t) for the velocity at the top wall.

In the buoyancy driven flow we use a 32× 32 tensor product grid of Chebyshev

points, while for the lid driven cavity low a 64× 64 grid. Moreover, we use Euler’s

method to time step the temporal part. The spectral solution together with the

finite difference schemes based on RBFs will be displayed in Section 4.4. The error is

calculated by evaluating the spectral solution on the same nodes used by the traditional

and divergence-free schemes. This interpolation can be done easily using the chebfun2

[65], ensuring that the error in the interpolation process is only due to rounding errors

54

(which are negligible in this case).

4.3 Finite Differences Discretizations

The goal of this section is to solve the fluid flow problems stated in Subsection 4.1.1

and Subsection 4.1.2 using the velocity-pressure formulation and approximating the

partial derivatives with finite differences schemes based on traditional and divergence-

free RBFs. First, we present the projection method used to ensure the incompressibility

of the velocity field. Next we describe the spatial RBF discretization and later compare

the solutions with the ones computed with the spectral method.

4.3.1 Projection Method and Time Stepping Scheme

When using primitive variables, it is important to ensure that ∇ · u = 0 at each

time step. Failure to do so often results in unstable simulations. An efficient way

to impose this condition was proposed by [6, 64] – the so called projection methods.

This method is based on an evolution equation for the velocity field

ut = P(−(u · ∇)u+ ν∆u). (4.7)

Here, P denotes the Leray projector. That is, given a vector field w ∈ Ω, Pw is

divergence-free and tangent to ∂Ω. The existence of such operator comes from the

Helmholtz-Hodge decomposition [2, 7, 16, 57].

Theorem 5 (Helmholtz-Hodge decomposition). A vector field w ∈ Ω can be uniquely

decomposed in the form

w = u+∇q,

where ∇ · u = 0 and u · n = 0 on ∂Ω.

55

Proof. Using the identity ∇ · (qu) = (∇ · u)q + u · ∇q,∫
Ω

u · ∇qdV =

∫
Ω

∇ · (qu)− (∇ · u)︸ ︷︷ ︸
=0

qdV =

∫
∂Ω

qu · n︸ ︷︷ ︸
=0

dS = 0 (4.8)

[Uniqueness]: Let w = u1 +∇q1 = u2 +∇q2, then

0 =

∫
Ω

‖u1 − u2 +∇(q1 − q2)‖2dV
(4.8)
=

∫
Ω

‖u1 − u2‖2dV +

∫
Ω

‖∇(q1 − q2)‖2dV,

which implies u1 = u2 and ∇q1 = ∇q2.

[Existence]: Let w = u+∇q. Then, the problem
∆q = ∇ ·w in Ω,

n · ∇q = n ·w on ∂Ω,

(4.9)

has a unique solution up to a constant, since the compatibility condition∫
Ω

∇ ·wdV =

∫
∂Ω

w · ndS

is satisfied by the divergence theorem [8]. Defining u = w −∇q we note that

∇ · u = ∇ ·w −∇ · ∇q (4.9)
= ∇ ·w −∇ ·w = 0 in Ω,

and

u · n = w · n−∇q · n (4.9)
= w · n−w · n = 0 on ∂Ω.

Therefore, q defined by (4.9) and u = w −∇q is a unique decomposition of w such

that ∇ · u = 0 in Ω and u · n = 0 on ∂Ω.

Thus, P is an orthogonal projection operator defined by

P(w) = u, w ∈ Ω,

where w = u+∇q is the Helmholtz-Hodge decomposition of w. Hence, applying P

to (4.1) leads to (4.7).

56

Based on the formulation (4.7) of the incompressible Navier-Stokes equation,

Chorin [6] and Tèmam [64] proposed a fractional step method to effectively decouple

the pressure term from the velocity term. This method has been the first numerical

scheme enabling a cost-effective solution of the 3D time dependent problems [57]. The

scheme consists of two parts:

1. Calculate an intermediate velocity field u∗ from the time discretized momentum

equation omitting the pressure term. This approximation to the velocity field

does not need to satisfy the incompressibility condition due to mass conservation.

For instance, one could use Euler’s method in time to obtain

u∗ − un

∆t
= −(un · ∇)un + ν∆un

u∗ = un + ∆t[−(un · ∇)un + ν∆un + fn],

and impose the no-slip boundary conditions u∗ = gn+1.

2. Enforce the incompressibility using the projection operator P, i.e., decompose

u∗ in a solenoidal field un+1 tangent to the boundary plus a gradient field

u∗ = un+1 +∇q,

∇ · un+1 = 0 and n · un+1
∣∣∣
∂Ω

= 0.

Here, q is the unique solution (up to a constant) of (4.9) with w replaced by u∗.

A similar way to arrive to the same scheme, is to consider the time discretization

of the momentum equation including the pressure term

un+1 = un + ∆t[−∇φn+1 − (un · ∇)un + ν∆un + fn],

un+1 = u∗ −∆t∇φn+1,

(4.10)

where φn+1 is an approximation to the pressure at time tn+1. The idea is to calculate

the pressure term such that ∇ · un+1 = 0 and un+1 · n = 0. Taking the divergence of

57

(4.10)

∇ · un+1 = ∇ · u∗ −∆φn+1∆t→ ∆φn+1 = − 1

∆t
∇ · u∗

n · un+1 = n · u∗ −∆tn · ∇φn+1 → n · ∇φn+1 =
1

∆t
(un+1 − u∗) · n = − 1

∆t
n · u∗,

assuming n · un+1
∣∣∣
∂Ω

= 0. In other words, we end up with the same system as before

(4.9), with q = ∆t∇φn+1. Basically we are calculating the pressure such that un+1 is

divergence-free and tangent to the boundary.

4.3.2 Traditional and Divergence-Free RBF Spatial Discretizations

Using the fractional time stepping scheme of the previous subsection, we must

approximate the Laplacian operator and the derivatives with respect to x and y in

order to generate a spatial discretization for the intermediate step u∗. For this task, we

use the traditional or divergence-free RBF interpolants in a local stencil and calculate

the differentiation weights that will approximate the differential operators of the local

interpolants, as described in Chapter 2. Using Euler’s method as a time integrator,

the first fractional step of the fully discrete scheme is

~u∗ = ~un + ∆t[− ~F n − νL~un + ~fn], (4.11)

where

~F n =

~un
~un

 ◦Dx~u
n +

~vn
~vn

 ◦Dy~u
n

with L, Dx and Dy being discrete operators approximating the vector Laplacian and

the derivatives in respect to x and y, respectively. If f is a scalar function, ~f denotes

its discretization over the interpolation nodes, while the vector function ~f is the

stacked discretization of each component of the vector f =
[
fu
fv

]
, i.e., ~f =

[
~fu
~fv

]
. The

◦ represent the Hadamard product, i.e., the entrywise product of matrices.

58

When using divergence-free interpolation the discrete operators above will be

2N × 2N matrices, where N is the total number of nodes in the domain. However, the

traditional RBFs, we interpolate in each component of the vector field separately, giving

rise to N ×N matrices. Thus, for (4.11), when using traditional RBF interpolants

Dx =

Dtrad
x

Dtrad
x

 , Dy =

Dtrad
y

Dtrad
y

 and L =

Ltrad
Ltrad

 .
with the superscript trad denoting the discrete differential operators coming from

traditional RBF interpolation.

In Section 2.2 we have seen that the divergence-free interpolants can always be

found in a given set of nodes, even when the discrete vector field is not solenoidal.

This of course will lead to a bad approximation of the derivatives using such an

interpolant. For this reason, in the second step of the fractional method, we will use

only traditional RBFs. Consequentially, approximating the differential operators in

(4.9)
IiDG~q = IiD~u

∗ for the interior nodes,

NIbG~q = NIb~u
∗ for the boundary nodes,

(4.12)

where D = [Dtrad
x Dtrad

y], G =
[
Dtrad

x

Dtrad
y

]
, N = [diag (~nx) diag (~ny)] with n = (nx, ny)

being the normal vector at the boundary. Additionally, the matrices Ii and Ib selects

the interior and boundary elements of the discretized solution, respectively.

The Neumann problem (4.9) has a unique solution up to a constant, so the linear

system (4.12) is expected to be singular. There are a couple ways to avoid the

singularity of the matrix A originated from (4.12). One is to add an extra Dirichlet

boundary condition. Another approach is to enforce the mean of the solution to be

zero. Although both ways are straightforward to implement, the resulting system

is not square. Moreover, it is known that assigning an arbitrary value to a node in

59

place of the Neumann condition (at that node) causes spurious values depending on

the spatial discretization [13]. Instead of using those techniques, we follow the same

approach used in [36], which is based on bordered matrices [31].

Consider the augmented systemA c

dᵀ 0

~q
α

 =

b
β

 −→

A~q + αc = b,

dᵀ~q = β,

(4.13)

where c 6∈ R(A) and d 6∈ R(Aᵀ). This system is nonsingular and can be used to

compute ~q. Let l ∈ N (Aᵀ) be the left singular vector of A, this way

lᵀA~q + αlᵀc = lᵀb =⇒ α =
lᵀb

lᵀc
.

The first constrain A~q + αc = b is satisfied, since

lᵀ(b− αc) = lᵀb− lᵀcl
ᵀb

lᵀc
= 0,

that is, b − αc ∈ N (Aᵀ)⊥ = R(A). Denoting this particular solution by ~qp and

observing that

A(~qp + γr) + αc = A~qp + αc = b,

for r ∈ N (A), we conclude that [~qp+γr
α] is the solution of (4.13) where γ is determined

such that dᵀ~q = β is satisfied. The advantage of solving the augmented system is that

we will end up with a nonsingular square and sparse linear system where iterative

methods can be applied more efficiently than direct solvers. The caveat with this

concept is how to choose the vectors c and d.

When dealing with usual finite difference schemes, a good choice for d is a normal-

ized constant vector, because A approximates a differential operator. Nevertheless,

when using only RBFs to approximate differential operators, we will recover constant

functions only in the flat limit of the shape parameter (ε→ 0). This can be a daunting

60

task without using stable computations for the finite difference weights to avoid the

severe ill-conditioning in the interpolation process. We remediate this by adding a

constant term to the RBF expansion using formulation (2.4) for presented in Chapter 2

to reproduce the constant function exactly.

Choosing c is more complicated because we lack information about the N (Aᵀ),

except when A is symmetric, which only happens in structured grids and with a careful

implementation of boundary conditions. The approach used here is to calculate the

left singular vector associated with the zero singular value of A. Although we only

need d 6∈ R(A), if c = l

A~q = b− αc = b− llᵀb = (I − llᵀ)b,

that is, by solving the augmented linear system with this choice of c, we are solving

the least squares problem A~q = b in case the compatibility condition is not satisfied.

This is a preferable way to solve the discrete Neumann problem when l is available

[56].

4.4 Fluid Flow Numerical Experiments

In this section we present numerical simulations of the lid driven cavity flow and

buoyancy driven flow. In our simulations we use a uniform Cartesian grid with 101

points in x- and y-directions for the spatial discretization of the generated finite

differences schemes. We calculate the weights using interpolation on a local 3 × 3

stencil and approximate the derivatives at the center node. For boundary points,

we use the closest 8 grid points generating a sided finite difference approximation.

We choose the shape parameter such that the condition number of the interpolation

matrix was kept constant at 108 and we add polynomial basis terms that guarantees

constant reproduction to standard RBF and divergence-free kernel expansions.

61

We compare the solutions of the approximations based on RBFs with the spectral

solution of each problem using the vorticity-stream function formulation. For the

buoyancy driven flow, we use a 32× 32 tensor product of Chebyshev points for the

cases of Rayleigh numbers of 10, 500 and 1000. For the lid driven cavity flow, a 32×32

resolution was used for Reynolds number 10, and a 64× 64 was necessary for Reynolds

number 100 and 1000.

4.4.1 Lid Driven Cavity Flow

Re = 10

Figure 4.2 displays the contour lines of the stream function and vorticity for Re = 10.

Figure 4.4 shows the relative error for the vorticity and the components of the velocity

at time tf = 50 where a time step size ∆t = 1× 10−5 was used for the time steeping

scheme. We see that the divergence-free scheme introduce more error than the

traditional RBF-FD scheme. This result was unexpected at first since in Chapter 3

we observe that the divergence free schemes have a higher order of decay for ux and

vy. A possible reason for the inaccuracy in the divergence-free kernel based code, and

possible corrections, are discussed in Chapter 5. In Figure 4.3 we display the velocity

field color by speed (in log scale) with normalized arrows indicating flow direction.

Re = 100

For the case Re = 100, we use a 64 × 64 grid for the spectral method, which is

sufficient to resolve the flow well – see Figure 4.5. The velocity field and the pressure

are displayed in Figure 4.6. We used a time step of ∆t = 3.9× 10−5 and all the plots

are for tf = 50. Figure 4.7 shows one more time that the error on the vorticity and

velocity components are smaller for the scheme based on traditional RBF interpolation.

62

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.2: Contour levels of vorticity and stream function Re = 10 at tf = 50 using
∆t = 1× 10−5. (1st column): spectral method. (2nd column): traditional RBFs. (3rd
column): divergence-free RBFs.

Figure 4.3: Velocity field and pressure for Re = 10 at tf = 50 and using ∆t = 1×10−5.
(Top): traditional RBFs. (Bottom): divergence-free RBFs

63

Figure 4.4: Vorticity and velocity field components error at tf = 50 and using
∆t = 1× 10−5. (Top): traditional RBFs. (Bottom): divergence-free RBFs.

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.5: Contour levels of vorticity and stream function for Re = 100 at tf = 50
using ∆t = 3.9 × 10−5. (1st column): spectral method. (2nd column): traditional
RBFs. (3rd column): divergence-free RBFs.

64

Figure 4.6: Velocity and pressure for Re = 100 at tf = 50 using ∆t = 3.9 × 10−5.
(Top): traditional RBFs. (Bottom): divergence-free RBFs.

Figure 4.7: Vorticity and velocity error for Re = 100 at tf = 50 using ∆t = 3.9×10−5.
(Top): traditional RBFs. (Bottom): divergence-free RBFs.

65

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1

Streamlines

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

x

0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.8: Contour levels of vorticity and stream function for Re = 1000 at tf = 50
using ∆t = 3.9 × 10−5. (1st column): spectral method. (2nd column): traditional
RBFs. (3rd column): divergence-free RBFs.

Re = 1000

Figure 4.8 shows the stream lines and the vorticity for all three schemes. For this case

we kept a 64× 64 grid of Chebyshev points for the reference solution and time step

with ∆t = 3.9× 10−5. The velocity field and the pressure are displayed on Figure 4.9.

The error in the vorticity and velocity components are shown on Figure 4.10.

4.4.2 Buoyancy Driven Flow

The simulations of the buoyancy driven flow present similar results to the lid driven

cavity flow simulations. Figures 4.13, 4.16, 4.19 all show better approximation for the

traditional RBF scheme over the divergence-free scheme. In Figures 4.11, 4.14, and

4.17 we present streamlines and the vorticity for Ra = 100, 500, and 1000, respectively.

66

Figure 4.9: Velocity field and pressure for Re = 1000 at tf = 50 using ∆t = 3.9×10−5.
(Top): traditional RBFs. (Bottom): divergence-free RBFs.

Figure 4.10: Vorticity and velocity field components error for Re = 1000 at time
tf = 50 using ∆t = 3.9× 10−5. (Top): traditional RBFs. (Bottom): divergence-free
RBFs.

67

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.11: Contour levels of vorticity and stream function Ra = 100 at tf = 1 and
using ∆t = 2.22× 10−5. (1st column): spectral method. (2nd column): traditional
RBFs. (3rd column): divergence-free RBFs.

The temperature inside the cavity, the temperature error, and the velocity field at

tf = 1 for each value of Ra are shown in Figures 4.12, 4.15, and 4.18.

68

Figure 4.12: Velocity field, temperature and temperature error for Ra = 100 at tf = 1
and using ∆t = 2.22 × 10−5. (Top): traditional RBFs. (Bottom): divergence-free
RBFs.

Figure 4.13: Vorticity and velocity field error for Ra = 100 at tf = 1 using ∆t =
2.22× 10−5. (Top): traditional RBFs. (Bottom): divergence-free RBFs.

69

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.14: Contour levels of vorticity and stream function Ra = 500 at tf = 1 and
using ∆t = 4.44× 10−6. (1st column): spectral method. (2nd column): traditional
RBFs. (3rd column): divergence-free RBFs.

Figure 4.15: Velocity field, temperature and temperature error for Ra = 500 at tf = 1
and using ∆t = 4.44 × 10−6. (Top): traditional RBFs. (Bottom): divergence-free
RBFs.

70

Figure 4.16: Vorticity and velocity field error for Ra = 500 at tf = 1 using ∆t =
4.44× 10−6. (Top): traditional RBFs. (Bottom): divergence-free RBFs

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Streamlines (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Streamlines

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity (spectral)

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

x

-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Vorticity

Figure 4.17: Contour levels of vorticity and stream function Ra = 1000 at tf = 1 and
using ∆t = 2.22× 10−6. (1st column): spectral method. (2nd column): traditional
RBFs. (3rd column): divergence-free RBFs.

71

Figure 4.18: Velocity field, temperature and temperature error for Ra = 1000 at
tf = 1 and using ∆t = 2.22×10−6. (Top): traditional RBFs. (Bottom): divergence-free
RBFs.

Figure 4.19: Vorticity and velocity field error for Ra = 1000 at tf = 1 using
∆t = 2.22× 10−6. (Top): traditional RBFs. (Bottom): divergence-free RBFs

72

Chapter 5

FINAL REMARKS AND FUTURE DIRECTIONS

In this dissertation we were primarily concerned with properties of divergence-free

based approximations. In particular, in Chapter 3 we were able to demonstrate

that finite differences schemes based on divergence-free kernels improve the rate of

convergence of partial derivatives when Cartesian stencils are used, assuming the

vector field being approximated is divergence-free. Besides this, we derived weights for

a divergence-free polynomial method on rectangular stencils. In the polynomial setting,

the restriction to have the vector field solenoidal may be relaxed to ∇ ·u = O(h4) and

still obtain convergence rates of O(h4) for the derivatives ux and uy (see (3.3)). Strong

evidence that the flat limit of divergence-free kernel approximations is polynomial was

provided in Section 3.4. As for standard RBF approximations, the Lebesgue constants

for global approximations by divergence-free kernel methods are strongly dependent

on node distributions. As demonstrated in Section 3.3, clustering of nodes near the

boundary of the domain is effective for controlling the growth of such constants (and

hence stabilizing the approximation process).

Although the numerical experiments of Chapter 4 showed that approximations

by divergence-free kernel methods were less accurate when compared to traditional

RBFs methods, we must point out that we are using different shape parameters for

each method. In our experiments, instead of fixing the shape parameter, we fixed

the condition number of the interpolation matrix. Table 3.1 shows the conditioning

of divergence-free kernels increasing faster than traditional RBFs when the amount

points in the stencil increases and fixing the shape parameter. In other words, when

using a flatter basis the condition number of the divergence-free scheme will be higher

73

than the one for traditional RBFs, and consequentially produce better approximations.

Hence, we should be more careful with our comparison and the value we choose for

the conditioning of each interpolation matrix.

Another reason the divergence-free generated finite differences did not perform well

in our simulations is the presence of uy and vx in the incompressible Navier-Stokes

equations, which did not present higher convergence rates in our experiments in

Chapter 2. Better accuracy is only expected for the ux and vy derivatives. When uy

and vx are combined in the momentum equation to march the velocity field forward

in time, we lose the higher order accuracy.

In the simulation of fluid flow problems, we use the projection scheme due to Chorin

[6] and Tèmam [64]. Although straightforward to implement for traditional RBF

schemes, when only using divergence-free kernels, it fails to work. We point out that the

equation (4.12) would not make sense if the discrete divergence operator D comes from

a divergence-free kernel, since applying D returns zero by construction even for vector

fields that are not solenoidal. Nevertheless, there has been a successful approach to

approximate the Leray projector using divergence-free and curl-free kernels [26] based

on the Helmhotz-Hodge decomposition introduce in [27]. Using this approximation to

the Leray projector, instead of solving (4.12), has the advantage of not only imposing

normal boundary conditions but also tangential boundary conditions.

There are many areas that remain to be investigated in using divergence-free

approximations. One of them is to study the eigenvalue stability of these methods,

and how they compare to traditional RBF approximations. In [50] it was shown

that differential operators originated from Gaussian RBF approximations might lead

to eigenvalues with positive real part, hindering the possibility to use explicit time

stepping schemes. A similar study for divergence-free differential operators should

be a valuable addition, and a detailed study is necessary, in particular when working

74

with scattered nodes.

Part of the source code used to generate the numerical results presented in this

dissertation is available at [46].

75

REFERENCES

[1] Amodei, L. and M. Benbourhim, “A vector spline approximation”, Journal
of Approximation Theory 67, 1, 51–79, URL http://dx.doi.org/10.1016/
0021-9045(91)90025-6 (1991).

[2] Bhatia, H., G. Norgard, V. Pascucci and P.-T. Bremer, “The Helmholtz-Hodge
decomposition – A survey”, Visualization and Computer Graphics, IEEE Transac-
tions on 19, 8, 1386–1404, URL http://dx.doi.org/10.1109/TVCG.2012.316
(2013).

[3] Bochner, S., “Monotone funktionen, Stieltjessche integrale und harmonische
analyse”, Mathematische Annalen 108, 1, 378–410, URL http://dx.doi.org/
10.1007/BF01452844 (1933).

[4] Buhmann, M. D., Radial basis functions: theory and implementations, vol. 12
(Cambridge university press, 2003).

[5] Chang, K.-F., “Strictly positive definite functions”, Journal of Approximation
Theory 87, 2, 148–158, URL http://dx.doi.org/10.1006/jath.1996.0097
(1996).

[6] Chorin, A. J., “Numerical solution of the Navier-Stokes equations”, Mathe-
matics of Computation 22, 104, 745–762, URL http://dx.doi.org/10.1090/
S0025-5718-1968-0242392-2 (1968).

[7] Chorin, A. J. and J. E. Marsden, A mathematical introduction to fluid mechanics,
vol. 3 (Springer-Verlag, 1990).

[8] Courant, R. and D. Hilbert, Methods of mathematical physics, vol. 1 (Wiley,
1953).

[9] Dodu, F. and C. Rabut, “Vectorial interpolation using radial-basis-like functions”,
Computers & Mathematics with Applications 43, 3–5, 393–411, URL http:
//dx.doi.org/10.1016/S0898-1221(01)00294-2 (2002).

[10] Dodu, F. and C. Rabut, “Irrotational or divergence-free interpolation”, Nu-
merische Mathematik 98, 3, 477–498, URL http://dx.doi.org/10.1007/
s00211-004-0541-x (2004).

[11] Driscoll, T. A. and B. Fornberg, “Interpolation in the limit of increasingly flat
radial basis functions”, Computers & Mathematics with Applications 43, 3,
413–422, URL http://dx.doi.org/10.1016/S0898-1221(01)00295-4 (2002).

[12] Driscoll, T. A., N. Hale and L. N. Trefethen, “Chebfun guide”, URL http:
//www.chebfun.org/docs/guide/chebfun_guide.pdf (2014).

[13] Escobar-Vargas, J., P. Diamessis and C. Van Loan, “The numerical solution of the
pressure poisson equation for the incompressible navier–stokes equations using a
quadrilateral spectral multidomain penalty method”, J. Comp. Phys.(submitted)
(2011).

76

http://dx.doi.org/10.1016/0021-9045(91)90025-6
http://dx.doi.org/10.1016/0021-9045(91)90025-6
http://dx.doi.org/10.1109/TVCG.2012.316
http://dx.doi.org/10.1007/BF01452844
http://dx.doi.org/10.1007/BF01452844
http://dx.doi.org/10.1006/jath.1996.0097
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1016/S0898-1221(01)00294-2
http://dx.doi.org/10.1016/S0898-1221(01)00294-2
http://dx.doi.org/10.1007/s00211-004-0541-x
http://dx.doi.org/10.1007/s00211-004-0541-x
http://dx.doi.org/10.1016/S0898-1221(01)00295-4
http://www.chebfun.org/docs/guide/chebfun_guide.pdf
http://www.chebfun.org/docs/guide/chebfun_guide.pdf

[14] Fasshauer, G. F., Meshfree Approximation Methods with MATLAB (World Scien-
tific Publishing Co., Inc., River Edge, NJ, USA, 2007).

[15] Flyer, N., E. Lehto, S. B. Blaise, G. B. Wright and A. St-Cyr, “A guide to RBF-
generated finite differences for nonlinear transport: Shallow water simulations on
a sphere”, Journal of Computational Physics 231, 11, 4078–4095, URL http://
www.sciencedirect.com/science/article/pii/S0021999112000587 (2012).

[16] Foias, C., O. Manley, R. Rosa and R. Témam, Navier-Stokes equations and
turbulence, vol. 83 (Cambridge University Press, 2001).

[17] Fornberg, B. and N. Flyer, A primer on radial basis functions with applications
to the geosciences, vol. 87 (SIAM, 2015).

[18] Fornberg, B., E. Larsson and N. Flyer, “Stable computations with Gaussian radial
basis functions”, SIAM Journal on Scientific Computing 33, 2, 869–892, URL
http://dx.doi.org/10.1137/09076756X (2011).

[19] Fornberg, B. and C. Piret, “A stable algorithm for flat radial basis functions
on a sphere”, SIAM Journal on Scientific Computing 30, 1, 60–80, URL http:
//dx.doi.org/10.1137/060671991 (2007).

[20] Fornberg, B. and G. B. Wright, “Stable computation of multiquadric interpolants
for all values of the shape parameter”, Computers & Mathematics with Applica-
tions 48, 5, 853–867, URL http://dx.doi.org/10.1016/j.camwa.2003.08.010
(2004).

[21] Fornberg, B., G. B. Wright and E. Larsson, “Some observations regarding inter-
polants in the limit of flat radial basis fuctions”, Computers & Mathematics with
Applications 47, 1, 37–55, URL http://dx.doi.org/10.1016/S0898-1221(04)
90004-1 (2004).

[22] Fornberg, B. and J. Zuev, “The Runge phenomenon and spatially variable shape
parameters in RBF interpolation”, Computers & Mathematics with Applications
54, 3, 379–398, URL http://www.sciencedirect.com/science/article/pii/
S0898122107002210 (2007).

[23] Fuselier, E., “Sobolev-type approximation rates for divergence-free and curl-
free RBF interpolants”, Mathematics of Computation 77, 263, 1407–1423, URL
http://dx.doi.org/10.1090/S0025-5718-07-02096-0 (2008).

[24] Fuselier, E., F. Narcowich, J. Ward and G. Wright, “Error and stability esti-
mates for surface-divergence free RBF interpolants on the sphere”, Mathemat-
ics of Computation 78, 268, 2157–2186, URL http://dx.doi.org/10.1090/
S0025-5718-09-02214-5 (2009).

[25] Fuselier, E. J., “Improved stability estimates and a characterization of the native
space for matrix-valued RBFs”, Advances in Computational Mathematics 29, 3,
269–290, URL http://dx.doi.org/10.1007/s10444-007-9046-3 (2008).

77

http://www.sciencedirect.com/science/article/pii/S0021999112000587
http://www.sciencedirect.com/science/article/pii/S0021999112000587
http://dx.doi.org/10.1137/09076756X
http://dx.doi.org/10.1137/060671991
http://dx.doi.org/10.1137/060671991
http://dx.doi.org/10.1016/j.camwa.2003.08.010
http://dx.doi.org/10.1016/S0898-1221(04)90004-1
http://dx.doi.org/10.1016/S0898-1221(04)90004-1
http://www.sciencedirect.com/science/article/pii/S0898122107002210
http://www.sciencedirect.com/science/article/pii/S0898122107002210
http://dx.doi.org/10.1090/S0025-5718-07-02096-0
http://dx.doi.org/10.1090/S0025-5718-09-02214-5
http://dx.doi.org/10.1090/S0025-5718-09-02214-5
http://dx.doi.org/10.1007/s10444-007-9046-3

[26] Fuselier, E. J., S. Varun and G. B. Wright, “A radial basis function (RBF)-based
Leray projection method for the incompressible unsteady Stokes equations”, Com-
puters & Fluids 128, 41–52, URL http://dx.doi.org/10.1016/j.compfluid.
2016.01.009 (2016).

[27] Fuselier, E. J. and G. B. Wright, “A radial basis function method for computing
Helmholtz-Hodge decompositions”, IMA Journal of Numerical Analysis URL http:
//arxiv.org/abs/1502.01575v2, accepted. preprint arXiv:1502.01575 (2016).

[28] Gerbeau, J.-F., C. Le Bris and M. Bercovier, “Spurious velocities in
the steady flow of an incompressible fluid subjected to external forces”,
International Journal for Numerical Methods in Fluids 25, 6, 679–695,
URL http://dx.doi.org/10.1002/(SICI)1097-0363(19970930)25:6<679::
AID-FLD582>3.0.CO;2-Q (1997).

[29] Ghia, U., K. N. Ghia and C. T. Shin, “High-re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method”, Journal of
Computational Physics 48, 3, 387–411, URL http://dx.doi.org/10.1016/
0021-9991(82)90058-4 (1982).

[30] Golub, G. H. and C. Van Loan, “Matrix computations, 4th edition”, (2012).

[31] Govaerts, W. J., Numerical methods for bifurcations of dynamical equilibria,
vol. 66 (SIAM, 2000), URL http://dx.doi.org/10.1137/1.9780898719543.

[32] Guo, K., S. Hu and X. Sun, “Conditionally positive definite functions
and Laplace-Stieltjes integrals”, Journal of Approximation Theory 74,
3, 249–265, URL http://www.sciencedirect.com/science/article/pii/
S0021904583710658 (1993).

[33] Handscomb, D., “Interpolation and differentiation of multivariate functions
and interpolation of divergence-free vector fields using surface splines”, Tech.
Rep. 91/5, Numerical Analysis Group, Oxford University Computing Labora-
tory, URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
50.533&rep=rep1&type=pdf (1991).

[34] Handscomb, D., “Local recovery of a solenoidal vector field by an extension
of the thin-plate spline technique”, Numerical Algorithms 5, 2, 121–129, URL
http://dx.doi.org/10.1007/BF02212043 (1993).

[35] Hardy, R. L., “Multiquadric equations of topography and other irregular surfaces”,
Journal of Geophysical Research 76, 8, 1905–1915, URL http://dx.doi.org/
10.1029/JB076i008p01905 (1971).

[36] Henshaw, W. D., “A fourth-order accurate method for the incompressible navier-
stokes equations on overlapping grids”, Journal of Computational Physics 113, 1,
13–25, URL http://dx.doi.org/10.1006/jcph.1994.1114 (1994).

[37] Hirsch, C., Numerical computation of internal and external flows: the fundamen-
tals of computational fluid dynamics, vol. 2 (Butterworth-Heinemann, 2007).

78

http://dx.doi.org/10.1016/j.compfluid.2016.01.009
http://dx.doi.org/10.1016/j.compfluid.2016.01.009
http://arxiv.org/abs/1502.01575v2
http://arxiv.org/abs/1502.01575v2
http://dx.doi.org/10.1002/(SICI)1097-0363(19970930)25:6<679::AID-FLD582>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-0363(19970930)25:6<679::AID-FLD582>3.0.CO;2-Q
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1137/1.9780898719543
http://www.sciencedirect.com/science/article/pii/S0021904583710658
http://www.sciencedirect.com/science/article/pii/S0021904583710658
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.533&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.533&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02212043
http://dx.doi.org/10.1029/JB076i008p01905
http://dx.doi.org/10.1029/JB076i008p01905
http://dx.doi.org/10.1006/jcph.1994.1114

[38] Iske, A., Multiresolution methods in scattered data modelling, vol. 37 (Springer,
2004).

[39] Kansa, E. J., “Multiquadrics—A scattered data approximation scheme with ap-
plications to computational fluid-dynamics—I surface approximations and partial
derivative estimates”, Computers & Mathematics with Applications 19, 8–9,
127–145, URL http://dx.doi.org/10.1016/0898-1221(90)90270-T (1990).

[40] Kansa, E. J., “Multiquadrics—A scattered data approximation scheme with ap-
plications to computational fluid-dynamics—II solutions to parabolic, hyperbolic
and elliptic partial differential equations”, Computers & Mathematics with Appli-
cations 19, 8–9, 147–161, URL http://dx.doi.org/10.1016/0898-1221(90)
90271-K (1990).

[41] Kosloff, D. and H. Tal-Ezer, “A modified Chebyshev pseudospectral method with
an O(N−1) time step restriction”, Journal of Computational Physics 104, 2,
457–469, URL http://dx.doi.org/10.1006/jcph.1993.1044 (1993).

[42] Larsson, E. and B. Fornberg, “Theoretical and computational aspects of multi-
variate interpolation with increasingly flat radial basis functions”, Computers &
Mathematics with Applications 49, 1, 103–130, URL http://dx.doi.org/10.
1016/j.camwa.2005.01.010 (2005).

[43] Lee, Y. J., G. J. Yoon and J. Yoon, “Convergence of increasingly flat radial
basis interpolants to polynomial interpolants”, SIAM Journal on Mathematical
Analysis 39, 2, 537–553, URL http://dx.doi.org/10.1137/050642113 (2007).

[44] Lowitzsch, S., “Error estimates for matrix-valued radial basis function inter-
polation”, Journal of Approximation Theory 137, 2, 238–249, URL http:
//dx.doi.org/10.1016/j.jat.2005.09.008 (2005).

[45] Lowitzsch, S., “Matrix-valued radial basis functions: stability estimates and
applications”, Advances in Computational Mathematics 23, 3, 299–315, URL
http://dx.doi.org/10.1007/s10444-004-1786-8 (2005).

[46] Mitrano, A. A., “divfree-src”, URL http://dx.doi.org/10.5281/zenodo.15647
(2015).

[47] Mitrano, A. A. and R. B. Platte, “A numerical study of divergence-free kernel
approximations”, Applied Numerical Mathematics 96, 94–107, URL http://dx.
doi.org/10.1016/j.apnum.2015.05.001 (2015).

[48] Narcowich, F. J. and J. D. Ward, “Generalized Hermite interpolation
via matrix-valued conditionally positive definite functions”, Mathematics
of Computation 63, 208, 661–687, URL http://dx.doi.org/10.1090/
s0025-5718-1994-1254147-6 (1994).

[49] Narcowich, F. J., J. D. Ward and G. B. Wright, “Divergence-free RBFs on
surfaces”, Journal of Fourier Analysis and Applications 13, 6, 643–663, URL
http://dx.doi.org/10.1007/s00041-006-6903-2 (2007).

79

http://dx.doi.org/10.1016/0898-1221(90)90270-T
http://dx.doi.org/10.1016/0898-1221(90)90271-K
http://dx.doi.org/10.1016/0898-1221(90)90271-K
http://dx.doi.org/10.1006/jcph.1993.1044
http://dx.doi.org/10.1016/j.camwa.2005.01.010
http://dx.doi.org/10.1016/j.camwa.2005.01.010
http://dx.doi.org/10.1137/050642113
http://dx.doi.org/10.1016/j.jat.2005.09.008
http://dx.doi.org/10.1016/j.jat.2005.09.008
http://dx.doi.org/10.1007/s10444-004-1786-8
http://dx.doi.org/10.5281/zenodo.15647
http://dx.doi.org/10.1016/j.apnum.2015.05.001
http://dx.doi.org/10.1016/j.apnum.2015.05.001
http://dx.doi.org/10.1090/s0025-5718-1994-1254147-6
http://dx.doi.org/10.1090/s0025-5718-1994-1254147-6
http://dx.doi.org/10.1007/s00041-006-6903-2

[50] Platte, R. and T. Driscoll, “Radial basis functions and related multivariate
meshfree approximation methods: Theory and applications eigenvalue stability
of radial basis function discretizations for time-dependent problems”, Computers
& Mathematics with Applications 51, 8, 1251–1268, URL http://dx.doi.org/
10.1016/j.camwa.2006.04.007 (2006).

[51] Platte, R. B., “How fast do radial basis function interpolants of analytic functions
converge?”, IMA Journal of Numerical Analysis 31, 4, 1578–1597, URL http:
//imajna.oxfordjournals.org/content/31/4/1578.abstract (2011).

[52] Platte, R. B., “C∞ compactly supported and positive definite radial kernels”,
SIAM Journal on Scientific Computing 37, 4, A1934–A1956, URL http://dx.
doi.org/10.1137/14M1000683 (2015).

[53] Platte, R. B. and T. A. Driscoll, “Polynomials and potential theory for Gaussian
radial basis function interpolation”, SIAM Journal on Numerical Analysis 43, 2,
750–766, URL http://dx.doi.org/10.1137/040610143 (2005).

[54] Platte, R. B. and L. N. Trefethen, “Chebfun: A new kind of numerical computing”,
in “Progress in Industrial Mathematics at ECMI 2008”, vol. 15 of Mathematics
in Industry, pp. 69–87 (Springer, 2010), URL http://dx.doi.org/10.1007/
978-3-642-12110-4_5.

[55] Platte, R. B., L. N. Trefethen and A. B. Kuijlaars, “Impossibility of fast stable
approximation of analytic functions from equispaced samples”, SIAM Review 53,
2, 308–318, URL http://dx.doi.org/10.1137/090774707 (2011).

[56] Pozrikidis, C., “A note on the regularization of the discrete poisson–neumann
problem”, Journal of Computational Physics 172, 2, 917–923, URL http://dx.
doi.org/10.1006/jcph.2001.6857 (2001).

[57] Quartapelle, L., Numerical solution of the incompressible Navier-Stokes equations,
vol. 113 (Birkhäuser-Verlag, 1993).

[58] Sarris, I., I. Lekakis and N. Vlachos, “Natural convection in rectangular tanks
heated locally from below”, International Journal of Heat and Mass Transfer 47,
14–16, 3549–3563, URL http://dx.doi.org/10.1016/j.ijheatmasstransfer.
2003.12.022 (2004).

[59] Schaback, R., “Multivariate interpolation by polynomials and radial basis func-
tions”, Constructive Approximation 21, 3, 293–317, URL http://dx.doi.org/
10.1007/s00365-004-0585-2 (2005).

[60] Schoenberg, I. J., “Metric spaces and completely monotone functions”, An-
nals Mathematics 39, 4, 811–841, URL http://dx.doi.org/10.2307/1968466
(1938).

[61] Shen, J., “Hopf bifurcation of the unsteady regularized driven cavity flow”, Journal
of Computational Physics 95, 1, 228–245, URL http://dx.doi.org/10.1016/
0021-9991(91)90261-I (1991).

80

http://dx.doi.org/10.1016/j.camwa.2006.04.007
http://dx.doi.org/10.1016/j.camwa.2006.04.007
http://imajna.oxfordjournals.org/content/31/4/1578.abstract
http://imajna.oxfordjournals.org/content/31/4/1578.abstract
http://dx.doi.org/10.1137/14M1000683
http://dx.doi.org/10.1137/14M1000683
http://dx.doi.org/10.1137/040610143
http://dx.doi.org/10.1007/978-3-642-12110-4_5
http://dx.doi.org/10.1007/978-3-642-12110-4_5
http://dx.doi.org/10.1137/090774707
http://dx.doi.org/10.1006/jcph.2001.6857
http://dx.doi.org/10.1006/jcph.2001.6857
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.12.022
http://dx.doi.org/10.1007/s00365-004-0585-2
http://dx.doi.org/10.1007/s00365-004-0585-2
http://dx.doi.org/10.2307/1968466
http://dx.doi.org/10.1016/0021-9991(91)90261-I
http://dx.doi.org/10.1016/0021-9991(91)90261-I

[62] Shu, C., H. Ding and K. Yeo, “Local radial basis function-based differential quadra-
ture method and its application to solve two-dimensional incompressible Navier-
Stokes equations”, Computer Methods in Applied Mechanics and Engineering
192, 7, 941–954, URL http://dx.doi.org/10.1016/S0045-7825(02)00618-7
(2003).

[63] Sun, X., “Conditionally positive definite functions and their application to multi-
variate interpolations”, Journal of Approximation Theory 74, 2, 159–180, URL
http://dx.doi.org/10.1006/jath.1993.1059 (1993).

[64] Témam, R., “Sur l’approximation de la solution des équations de navier-stokes
par la méthode des pas fractionnaires (ii)”, Archive for Rational Mechanics
and Analysis 33, 5, 377–385, URL http://dx.doi.org/10.1007/BF00247696
(1969).

[65] Townsend, A. and L. N. Trefethen, “An extension of Chebfun to two dimensions”,
SIAM Journal on Scientific Computing 35, 6, C495–C518, URL http://dx.doi.
org/10.1137/130908002 (2013).

[66] Trefethen, L. N., Spectral methods in MATLAB, vol. 10 (SIAM, 2000), URL
http://dx.doi.org/10.1137/1.9780898719598.

[67] Wendland, H., “Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree”, Advances in Computational Mathematics 4,
1, 389–396, URL http://dx.doi.org/10.1007/BF02123482 (1995).

[68] Wendland, H., “Fast evaluation of radial basis functions: Methods based on parti-
tion of unity”, in “Approximation Theory X: Wavelets, Splines, and Applications”,
pp. 473–483 (Vanderbilt University Press, 2002).

[69] Wendland, H., Scattered data approximation, vol. 17 (Cambridge University Press,
2005).

[70] Wright, G. B. and B. Fornberg, “Scattered node compact finite difference-type
formulas generated from radial basis functions”, Journal of Computational Physics
212, 1, 99–123, URL http://dx.doi.org/10.1016/j.jcp.2005.05.030 (2006).

[71] Wu, Z., “Compactly supported positive definite radial functions”, Advances in
Computational Mathematics 4, 1, 283–292, URL http://dx.doi.org/10.1007/
BF03177517 (1995).

81

http://dx.doi.org/10.1016/S0045-7825(02)00618-7
http://dx.doi.org/10.1006/jath.1993.1059
http://dx.doi.org/10.1007/BF00247696
http://dx.doi.org/10.1137/130908002
http://dx.doi.org/10.1137/130908002
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1007/BF02123482
http://dx.doi.org/10.1016/j.jcp.2005.05.030
http://dx.doi.org/10.1007/BF03177517
http://dx.doi.org/10.1007/BF03177517

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	The Contribution of This Work
	Organization

	BACKGROUND
	Radial Basis Function Interpolation
	Existence of Radial Basis Function Interpolants
	Example and Properties of Radial Basis Function Interpolation
	Application to Partial Differential Equations
	Radial Basis Function Generated Finite Differences – RBF-FD

	Divergence-Free Interpolation
	Two-Dimensional Vector Fields
	Three-Dimensional Vector Fields
	Divergence-Free Polynomial Approximation

	PROPERTIES OF DIVERGENCE-FREE APPROXIMATIONS
	Numerical Results
	Global Divergence-Free Numerical Results
	Local Divergence-Free Numerical Results
	Three Dimensional Case

	Convergence Analysis of Local Divergence-Free Polynomials
	Lebesgue Constants and the Kosloff & Tal-Ezer Map
	Limit of the Divergence-Free Interpolant as 0
	Remarks

	APPLICATION TO FLUID PROBLEMS
	Fluid Flow Equations
	The Lid Driven Cavity Flow
	Buoyancy Driven Flow

	The Spectral Method Discretization
	Finite Differences Discretizations
	Projection Method and Time Stepping Scheme
	Traditional and Divergence-Free RBF Spatial Discretizations

	Fluid Flow Numerical Experiments
	Lid Driven Cavity Flow
	Buoyancy Driven Flow

	FINAL REMARKS AND FUTURE DIRECTIONS

	REFERENCES

