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ABSTRACT

Detecting cyber-attacks in cyber systems is essential for protecting cyber infras-

tructures from cyber-attacks. It is very difficult to detect cyber-attacks in cyber

systems due to their high complexity. The accuracy of the attack detection in the

cyber systems depends heavily on the completeness of the collected sensor information.

In this thesis, two approaches are presented: one to detecting attacks in completely

observable cyber systems, and the other to estimating types of states in partially

observable cyber systems for attack detection in cyber systems. These two approaches

are illustrated using three large data sets of network traffic because the packet-level

information of the network traffic data provides details about the cyber systems.

The approach to attack detection in cyber systems is based on a multimodal artifi-

cial neural network (MANN) using the collected network traffic data from completely

observable cyber systems for training and testing. Since the training of MANN is

computationally intensive, to reduce the computational overhead, an efficient feature

selection algorithm using the genetic algorithm is developed and incorporated in this

approach.

In order to detect attacks in cyber systems in partially observable environments,

an approach to estimating the types of states in partially observable cyber systems,

which is the first phase of attack detection in cyber systems in partially observable

environments, is presented. The types of states of such cyber systems are useful to

detecting cyber-attacks in such cyber systems. This approach involves the use of a

convolutional neural network (CNN), and unsupervised learning with elbow method

and k-means clustering algorithm.
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Chapter 1

INTRODUCTION

Security is the most serious concern of many applications of cyber systems, and

detecting cyber-attacks (referred as “attacks” in this thesis) on cyber systems is

important for protecting cyber systems. It is difficult to detect attacks to cyber

systems due to the complex natures of the cyber systems [1]. In addition, the provision

of access from various mobile smart and stationary devices to cyber systems increases

the difficulty and complexity of attack detection. The accuracy of the attack detection

in the cyber systems depends heavily on the completeness of the collected sensor

information. The information collected from the sensors may be from completely

observable or partially observable.

The types of states exhibit much unusual variations of features of network traffic

when attacks occur on cyber systems, and hence are useful to security [2] for detecting

cyber-attacks and predicting security breaches [3] using Bayesian Network [4] and

Markov Decision Process [5]. However, estimating the types of states of cyber systems

in partially observable environments is much more difficult because certain features of

the input data may be missing.

In this thesis, effective approaches are presented to address these two problems:

1. Detecting attacks in completely observable cyber systems.

2. Estimating types of states in cyber systems in partially observable environments.

Existing attack detection techniques for cyber systems have the following serious

limitations. The signature-based attack detection techniques [6, 7] have low detection

rate for zero-day attacks. Anomaly-based attack detection techniques for cyber systems

1



[8] are difficult to use because monitoring and analysis of a large amount of network and

system events in cyber systems simultaneously are difficult and time-consuming. The

specification-based attack detection [9] is difficult to implement as it is very difficult

to define all possible legal specifications and it is also computationally intensive [10].

Machine learning may be used in attack detection methods in the mentioned three

techniques, but they usually are computation intensive [11, 12]. In this thesis, we

will present an approach to detecting attacks on cyber systems, including access from

remote computing devices using a multimodal artificial neural network (MANN) [13]

and a genetic algorithm [14] to reduce computational overhead. We will illustrate our

approach using comprehensive network traffic data sets of cyber systems to show that

our approach will generate better results than existing techniques [11, 12, 8, 15, 16,

17].

The existing techniques to estimation of types of states of the cyber system also

have the following serious limitations. Hartikainen et al. [18] presented the filter-based

technique for the detecting changes of the network states. However, this technique

needs the complete information of the system. In [19], the state estimation of the

interconnected networks was performed for network security analysis using a stochastic

Extended Kalman Filter (EKF) algorithm. However, the Extended Kalman Filter

algorithm are prone to failure when the system is non-linear. An approach with

predictive capability was proposed in [3] to predict system-wide security breaches

in cyber systems using Bayesian Network (BN) [4] and Markov Decision Process

(MDP) [5]. However, this technique requires inputs from the domain experts for the

estimation of the initial states, based on the system state dependencies of the cyber

systems. Silver and Veness [20] presented an approach to estimating types of states
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using partially observable Markov decision process (POMDP), where the agents take

deterministic actions in a partially observable environment.

Hence, for first problem, we will present an approach to detecting attacks of

completely observable cyber systems, which include access from remote computing

devices. Two comprehensive network traffic data sets [16, 17]will be used for training

and testing our approach, and we will show that the performance of our approach is

better than the existing approaches [15, 17, 21, 22].

For the second problem, in order to detect attacks in cyber systems in partially

observable environments, an approach to estimating the types of states in partially

observable cyber systems, which is the first phase of attack detection in cyber systems

in partially observable environments, is presented. A comprehensive network traffic

data sets [23] will be used for training and testing our approach to estimating types

of states in partially observable environments, and we will show that the performance

of our approach is better than the existing machine learning techniques [24, 25, 26].

The thesis work is organized as follows: Chapter 2 describes the current state of the

art for attack detection in cyber systems and estimating types of states. In Chapter

3, the overall approach for detecting cyber-attacks in completely observable cyber

systems is presented. In Chapter 4, we present the details of detecting cyber-attacks

in completely observable cyber systems. In Chapter 5, we will illustrate our approach

using two examples with two comprehensive network traffic data sets and compare the

performance of our approach with existing approaches. In Chapter 6, we discuss an

overall approach for estimating the types of states in partially observable environments.

In Chapter 7, we present the detailed techniques to estimate the types of states of

the cyber systems in partially observable environments. In Chapter 8, we illustrate

our approach of estimating the types of states of the cyber systems in the partially

3



observable environments. Finally, we conclude the thesis discussion in Chapter 9 with

future work and conclusion.
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Chapter 2

CURRENT STATE OF ART

2.1 Detecting Attacks in Cyber Systems

Existing attack detection techniques for cyber systems have the following serious

limitations. The signature-based attack detection techniques [6, 7] have low detection

rate for zero-day attacks. Anomaly-based attack detection techniques for cyber

systems [8] are difficult to use because monitoring and analysis of a large amount

of network and system events in cyber infrastructures simultaneously are difficult

and time-consuming. For machine-learning type attack detection, Vieira et al. [11]

presented a technique using an artificial neural network (ANN) for cyber systems,

but this technique requires a large amount of time to detect attacks and was based

on the assumption that all the events of the cyber systems are predictable. Su et al.

[12] presented a fuzzy logic based attack detection technique, but the technique takes

much time for training the attack detection algorithm. Modi, et al, [8] presented an

attack-detection approach based on associations among features of network traffic in

cyber infrastructures and support vector machine, but the technique can only be used

for classifying discrete features of the network traffic.

2.2 Estimating Types of States in Partial Observable Cyber Environments

Most of the existing approaches to estimate types of states are based on applying

filter-based method. Erik, et al [18], presented filter-based method for network state
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estimation in to detect a change in the network systems. However, this technique

needs complete information of the network systems. In [19], the state estimation of the

interconnected network was performed for network security analysis using stochastic

Extended Kalman Filter (EKF) algorithm. However, the Extended Kalman Filter

are prone to failure when the system is non-linear and assumes that the state belief

is Gaussian distributed. EKF assumes that both observation models and system

equation are non-linear which is unrealistic for practical situations.

In [27], Moshe, et al, proposed a system to estimate the current state of the system

and predict future conditions for traffic congestion problem. However, the proposed

system is based on the demand and supply stimulation. In practical application, this

approach has the difficulty of rationality and the approach does not consider the

partially observable environment.

Estimating states for predicting potential security breaches on cyber infrastructures

was proposed in [3] through system-wide causal relationship and probabilistic human

behavior. However, this technique requires input from the domain experts and

developing an effective data specification language for domain experts to provide

their input is more complicated. Moreover, the approach also assumes that the initial

system state dependencies are known to the domain expert.

The estimation of states can be done using a partially observable Markov decision

process (POMDP) - a generalization of Markov decision process (MDP) [5], where the

agents take deterministic actions in a dynamic and partially observable environment.

However, POMDP has some serious drawbacks as generating universal plans for

actions become computationally complex which is less useful in practical applications

[20]. Another disadvantage of POMDP is that finding the optimal policy is inflexible

and the existing solutions can handle no more than few hundred states [28]. Hence,
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POMDP cannot be applied for estimating the states of the cyber system as there may

exist several thousand of states in a cyber system.

In [29], the technique for estimating states for the traffic congestion control problem

was proposed using a hidden Markov model (HMM). However, HMM can be applied

where there are discrete “hidden” states and it cannot be applied for a continuous

variable. Moreover, HMM is expensive both in terms of memory and compute time as

it is difficult to compute HMM with a large number of states.
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Chapter 3

OVERALL APPROACH TO DETECTING ATTACKS IN COMPLETELY

OBSERVABLE CYBER SYSTEMS

In this chapter, we will present our overall approach for detecting attacks on

completely observable cyber systems. We assume that the cyber systems have been

used for a period of time, and substantial traffic data on the cyber systems, including

the traffic data with attacks, has been collected during this period. The attacks

detected in our approach are of known categories and all the sensors (monitors) are

reliable and always work. The features extracted from the network traffic data [30]

contain information, such as source packet size, destination packet size, protocol types,

flag and transmission duration, which are sufficient for detecting attacks in cyber

systems [16]. In our approach, the labeled data sets of network traffic are used for

training and testing of supervised machine learning in multimodal artificial neural

network (MANN). The categories of attacks that can be detected depend on the

available labels in the training data set.

Our approach uses the MANN [13] for classifying various categories of attacks on

cyber systems because MANN is relatively simple to implement and generates better

results than existing methods due to the fact that it identifies the nonlinear relationship

between dependent and independent variables (features) in a data set [31]. Since

the training of MANN involves heavy computation, we develop an effective feature

selection algorithm for reducing the amount of computation for classifying attacks [32]

using a genetic algorithm [14]. The MANN detects the attacks in the cyber systems by

classifying monitored network traffic data into different attack categories. The MANN
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Figure 1: System Diagram of our approach

produces better classification results by minimizing the number of incorrectly classified

cases during the training phase [31]. During the testing phase, the MANN analyses the

input testing data set. The trained machine learning algorithm is implemented in the

cyber systems as attack detection web service. The attack detection web service has

the advantage to be used by remote computing devices, both mobile, and stationery,

to detect attacks in cyber systems [33].

Our attack detection approach for cyber systems can be summarized as follows,

and is depicted in Figure 1:

Step 1) Analyze the collected traffic data on each connection link of the network

of the cyber systems using tools, such as packet sniffer tools [34] to determine the

categories of past attacks to the cyber systems. Continue to collect the data and

update the data.

Step 2) After collecting substantial network traffic data, extract the features of

individual packets from the collected data using tools, such as tcptrace [35]. Generate

the training data set and the testing data set by applying a cross-validation method

[36].

Step 3) Select effective features for attack detection from the packets in the

training and testing data generated in Step 2) using a genetic algorithm [14].

Step 4) Train the MANN using back-propagation algorithm [37] and sigmoid

9



activation function [37] with the effective features selected for attack detection in Step

3).

Step 5) Use the trained MANN to detect attacks in the input network traffic data

(unlabeled).

In our approach, the network traffic data set is used as network traffic is encapsu-

lated in network packets and it provides various security parameters of cyber systems.

In cyber systems, the network data is captured in the form of network packets. In

Step 1), packet sniffer tools, such as TCPDUMP [34] and Wireshark [38], are used to

capture network traffic and are used for intercepting and displaying network packets

on the network interface. The output of these tools is the packet capture file (pcap).

In Step 2), each extracted feature contains the packet-level information on each

connection link. The network traffic data is labeled based on the attack categories

determined in Step 1). Cross validation is used to generate the data sets for training

and testing as there is no overlapping between training and testing data sets [36]. In

cross-validation method [36], the network traffic data is randomized into k equal size

partitions. The kth partition is selected as a testing data set and (k − 1) partitions

are selected as the training data set. Since the training data set is labeled, we can

estimate the classification accuracy of our trained MANN by comparing the estimated

label and the actual label.

In Step 3), the effective features are selected from labeled network traffic data

set using a genetic algorithm. The feature selection algorithm will select the feature

subset from the overall set of features of network traffic data. We also use multimodal

neural network (MNN) in feature selection to evaluate the accuracy. The reduced

number of features will reduce the computational complexity of training of MANN.

In Step 4) , multimodal artificial neural network (MANN) is selected as a machine
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learning algorithm. The selected features identified in Step 3) are fed as inputs into

MANN for training the machine learning algorithm. The trained MANN is used

to detect attacks in the cyber systems based on the attack categories. The back-

propagation algorithm and a sigmoid activation function is used to train the MANN.

In Step 4), the trained MANN is implemented as attack detection service which can

be used by various computing and storage devices and applications (both mobile and

stationary) connected to cyber systems to detect the attack. The testing data are feed

from remote computing devices into the trained MANN to test attack detection using

feed-forward algorithm. The testing data which is used during the attack detection

phase contains attacks along with the normal data. MANN takes each observation

of network traffic from the testing data set and classifies them based on the attack

categories.

In Step 5), the trained MANN is used to detect attacks in the cyber systems by

feeding the input data of network traffic (unlabeled).

Thus, the thesis aims at techniques to select an effective features from the network

traffic data set for the detection of attacks. The reduced number of features improve the

overall efficiency for training of the MANN without significantly affecting the overall

accuracy metrics. The thesis also provides an innovative approach for attack detection

service which is used as Security-as-a-Service (SECaaS) [39] for cyber systems. In this

thesis, we aim to detect attacks of known attack categories. Our trained ML algorithm

will aim to detect those attack categories which are mentioned in the training data

set.
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Chapter 4

DETECTING ATTACKS IN COMPLETELY OBSERVABLE CYBER SYSTEMS

4.1 Overview

This chapter explains the technique used to detect cyber-attacks in completely

observable cyber systems. In Section 4.2, we present the technique of selecting

features of the network traffic data set using a genetic algorithm. In Section 4.3,

we present the technique to train the supervised machine learning algorithm using

the multimodal artificial neural network (MANN). In Section 4.4, we present the

approach of implementing the trained machine learning algorithm as web service in

cyber systems. In Section 4.5, we present the technique to detect cyber-attacks in the

cyber systems from remote computing devices.

4.2 Feature Selection

The features need to be selected carefully from the network traffic data set for

training the MANN; else it will degrade the performance and accuracy to detect the

cyber-attacks in the cyber systems. Researchers have proposed many feature selection

algorithm, but they have comprised either efficiency or accuracy. Our feature selection

algorithm maintains a trade-off between accuracy and efficiency for detecting attacks

in the cyber systems.

The goal of our feature selection is to select a proper subset of the set of all

features generated in Step 2) that reduces the computational complexity without
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Algorithm 1 Feature Selection Algorithm using Genetic Algorithm
Input: Final Feature Set Ffinal = {}
Output: Final Feature Set

Initialization : Initialize all Groups = {g1, g2, g3, ...., gn}.
Calculate accuracy for each group using multimodal neural network classifier,
Calculate overall accuracy by applying all features {fz} using multimodal neural
network,
Sort the Groups according to the accuracy of each group

1: while accuracy of the set of the remaining features drops below the error margin
of original overall accuracy or all the feature sets are exhausted do

2: for each group gi ∈ {g1, g2, ....., gm} do
3: Pick the group with the lowest accuracy and eliminate the group {gn} from

set of groups.
Group Elimination Step

4: end for
5: for each feature of discarded group{gn}, fa ∈ {gn} = {f1, f2, ....., fb} do
6: Select a set of feature {fx} from {fa} such that fx ⊆ {fa}

Feature Selection Step
Feature selection is done using Genetic Search algorithm and multimodal
neural network classifier

7: end for
Add the selected feature into the Final Feature Set Ffinal

Calculate the overall accuracy by applying the remaining set of features fx ∪
(fz − fa) using multimodal neural network

8: end while

significantly affecting the overall accuracy metrics. In order to achieve this goal,

we use a genetic algorithm for feature selection [14]. The genetic algorithm has

the capability of effectively solving optimization problem and the ability to handle

multiple solution search spaces [40]. Hence, the genetic algorithm can determine the

effective features that affect the overall accuracy for attack detection. In order to

estimate the effectiveness of the features, we use multimodal neural network (MANN)

algorithm [41] to generate the performance metrics. As MANN has the ability to

detect nonlinear relationship between the dependent and independent features, it can

detect the possible interactions among features of the network traffic data.
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In order to benchmark and assess the effectiveness of the feature selection technique,

as presented in Algorithm 1, we calculate the accuracy of the MANN for the data

set with all the features. Our feature selection technique then groups the features

into feature sets based on the feature similarity in terms of characteristics of network

packets, such as payload, transmission duration, and protocol. The feature sets are

then evaluated individually with the MANN to determine their accuracy.

The genetic algorithm is applied to the individual feature sets starting with the

one having the lowest accuracy. The genetic algorithm then identifies the irrelevant

features based on the fitness function with the objective to improve the accuracy

while reducing the number of features [14]. All the irrelevant features are eliminated

from the overall feature set and the remaining features are evaluated with MANN

and accuracy are generated. The process is repeated on the feature set with the next

lowest accuracy until we exhaust all the feature sets or when the accuracy of the set

of the remaining features drops below the error margin of original overall accuracy

of the MANN model with all the features. The error margin can be set heuristically

to overcome the local optimum problem. The acceptable error margin of accuracy

for attack detection in cyber system is set by domain expert. The procedure for the

feature selection based on genetic algorithm is shown in Figure 2.

4.3 Training of Supervised Machine Learning Algorithm

In this section, we explain how to use a multimodal artificial neural network

(MANN) as a machine learning algorithm to detect attacks in cyber systems.

The input features selected in the previous section are used to train the machine
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Figure 2: Our feature selection algorithm
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learning algorithm. In this section, we use the MANN as machine learning algorithm

which will help to determine attacks in the cyber systems.

4.3.1 Artificial Neural Network

An artificial neural network (ANN) is composed of many artificial neurons which

are connected together is specific network architecture. The objective of the artificial

neural network is to generate significant outputs from the provided inputs.

The ANN consists of three layers:

1. Input Layer: The features selected are fed into the ANN from the input layer.

2. Hidden Layer: The activities of the input layer and the weight on the connection

between hidden and input layer determine the activity of the each hidden layer.

3. Output Layer: The activity of the output layer is determined by the activity

of the hidden layer and the weights on the connection between hidden and an

output layer.

For binary classification, the output layer of the ANN contains two nodes, whereas for

the MANN the number of nodes in the ouput layer depends on the number of class

labels. Multimodal artificial neural network (MANN) is used to learn representations

from multiple modalities. The input layer of the MANN has the same number of

nodes as the number of features selected determined in Step 3). The number of nodes

in the output layer is the same as the number of attack categories for detection. Only

one hidden layer is needed to overcome the vanishing gradient problem [42]. The

sigmoid function is used as the activation function of the MANN as sigmoid function

is bounded, monotonic, and differentiable [43]. The MANN is fully-connected, which

means that the output layer of the MANN is fully connected to the hidden layer and
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Figure 3: Multimodal artificial neural network with back-propagation algorithm

the hidden layer is fully connected to the input layer. The learning rate of the MANN

is set to 0.1 since a higher rate can easily overshoot local minima. The learning

iteration of the MANN is set 50 because higher learning rate will slow down the

training process. The number of nodes in the hidden layer is taken as 22 since the

number of hidden layer nodes is generally set approximately two-third of the number

of nodes in the input layer [44].

4.3.2 Back Propagation Neural Network

In the training phase, the back-propagation algorithm [45] is used to train the

MANN. The training data set is fed as input to MANN and the weights of input

layer which are randomly assigned are multiplied with the input data and it goes into

the hidden layer. The nodes of the MANN activate depending on the output of the

sigmoid function. In back-propagation algorithm, the errors from output layer are
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back-propagated to the input layer. As the hidden layer does not have target values,

the back-propagation algorithm helps to fine tune the weights. The calculated value

is compared with the target value of the output layer and the connection weights

are adjusted continuously as the errors back-propagated through the nodes. This

weight updating process will continue till error, measured by comparing target values

and real values stops improving. Figure 3 provide the diagram for an MANN with

back-propagation algorithm. Algorithm 2 describes the back-propagation algorithm

used in the training of MANN. The back-propagation algorithm [45] is used to train

the MANN as follows:

Step 4.1) Randomly assign the initial weights of the edges of the input layer

of the MANN, and use an arbitrary number for the initial threshold value of the

activation function.

Step 4.2) Update the weights of the edges with backpropagation algorithm [45]

using the training data set in Step 2).

Step 4.3) Repeat Steps 4.1) – 4.2) until the error rate between the correct output

and the actual output stabilizes for each epoch.

Algorithm 2 Back Propagation Algorithm
Initialize weights(typically random)
repeat

Keep doing epochs
for all Example e in training set do

Forward pass to compute
O ← neural − net− output(network, e)
miss← (T −O)ateachoutputunit
backward pass to calculate deltas to weights
update all weights

end for
until Tuning set error stops improving

The sigmoid function [46] used in the hidden layer. Let g(x) represents the
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Figure 4: Sigmoid function

mathematical function of sigmoid function of input x and β ∈ R+ [47] is the slope

parameter. Figure 4 is the graph of the sigmoid function. Sigmoid function is special

case of linear regression [48] and is defined by:

g(x) = 1/(1 + exp(−βx))

Here each node passes the output to the next layer and finally it reaches the output

layer. The error ‘e’ is calculated by comparing the real output θR and the final output

θF .
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e = (θR − θF )/θR

The error is used to update the weights in the neural network. Multimodal artificial

Neural Network can deal with both discrete and continuous variables in the same way.

The training of the MANN terminates when the value of e stops improving.

4.4 Implementing Trained Machine Learning Algorithm as Web Service

The multimodal artificial neural network is trained using training data set using

back propagation algorithm. We implemented the trained MANN as web service in

the completely observable cyber systems which can be used as attack detection service

by the various applications connected to the completely observable cyber system to

determine the attacks. The web service is exposed for external use to detect attacks in

the completely observable cyber system. The trained attack detection algorithm can

be used as Security-as-a-Service (SECaaS) [39] by various normal as well as resource

constrained devices to detect an attack in completely observable cyber systems and

thus protecting from constant security threats.

4.5 Detecting Attacks in Completely Observable Cyber System

The testing data set is fed into the input layer of the trained MANN. The feed-

forward algorithm [13] is used in the MANN to classify network traffic data into

different attack categories. The label of the classified data of the testing set and the

actual label of the testing data set are compared to determine the accuracy for attack

detection.
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Chapter 5

CASE STUDY OF DETECTING ATTACKS IN COMPLETELY OBSERVABLE

CYBER SYSTEMS

5.1 Overview

In this chapter, a case study for detecting attacks in the completely observable

cyber systems is provided. In 5.2, the description of two comprehensive network traffic

data sets is provided. In 5.3, the results of each step of our feature selection algorithm

are provided. In 5.4, the steps to train of multimodal artificial neural network (MANN)

are shown. In 5.5, we conclude with the results of the detection of attacks in the

completely observable cyber systems.

5.2 Description of the Network Traffic Data Set

We use two comprehensive network traffic data sets, the NSL-KDD Cup [49] and

UNSW-NB15 [16] data sets to train the MANN and detect attacks in the completely

observable cyber systems. We use Microsoft Azure to implement and facilitate the

training of supervised machine learning. The NSL-KDD data set is based on the

original KDD’99 data set which is collected by DARPA as compressed raw TCP

dump data for a period of 7 weeks. The dataset has approximately 4,900,000 single

connection links and each contains 43 features. On the other hand, the UNSW-NB15

dataset was created by the Cyber Range Lab of the Australian Centre for Cyber
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Security (ACCS). The data set contains 257,673 records of network traffic and has 49

features.

In the NSL-KDD Cup data set, there are the following four categories of attacks:

1. Denial of Service (DoS) : In this type of attacks, the attacker tries to consume

resources to deny requests or authorized users to access the systems.

2. Probing Attack (Probe) : The attacker attempts to gain access security controls

by gathering information about the systems.

3. Remote to Local Attack (R2L): In this attack, the attacker who is unauthorized

to a system gains access to the system by sending packets over the network.

4. User to Root (U2R) : The attacker tries to exploit some vulnerabilities to gain

root access to the system after gaining access to a normal user account on the

system.

In UNSW-NB15 data set, there are nine categories of attacks:

1. Fuzzers: In this attack, randomly generated data is feed into a suspend program

or network.

2. Reconnaissance: Attacker gathers information from the system and stimulates

the attacks.

3. Shellcode: It is code used as the payload of a network packet to exploit network

attacks.

4. Analysis: This attack includes port scan, spam and HTML files penetrations.

5. Backdoors: Access of a system is gained by silently bypassing the security

mechanism.

6. Denial of Service
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7. Exploits: The attacker exploits the vulnerabilities of the system through the

known loopholes of the system.

8. Generic: The attack is implemented without knowing how the cryptographic

primitive is implemented and works for all block ciphers.

9. Worms: The attack replicates itself to spread through the network.

As various services are provisioned through the internet, cyber systems suffer from

the different types of attacks as mentioned in these two data sets. Hence, these two

data sets are suitable for detecting attacks in completely observable cyber systems as

these attack categories are common in cyber systems.

5.3 Attack Distribution

In NSL-KDD data set, few additional attack types are added testing data set which

is not present in the training data set. Hence, the NSL-KDD data set is more robust

to evaluate MANN to detect attacks in the completely observable cyber systems. Each

attack category may contain different attack types. Table 1 and Table 2 exhibit the

attack-type based on the attack category for NSL-KDD Cup [49] and UNSW-NB15

[16] data set respectively.

Step 1) and Step2) of our approach have already been done for the NSL-KDD

Cup and UNSW-NB15 data sets. Hence, we will start with Step 3) i.e. with feature

selection.

23



Table 1: Attack Types in NSL-KDD dataset

Attack Cat-
egory

Attack-type in NSL-
KDD Training dataset

Additional attack-type
in NSL-KDD Test
dataset

DoS back, neptune, smurf,
teardrop, land, pod.

apache2, mailbomb, pro-
cesstable

Probe satan, portsweep, ipsweep,
nmap

mscan, saint

R2L warezmaster, warezclient,
ftpwrite, guesspassword,
imap, multihop, phf, spy

sendmail, named, snmpge-
tattack, snmpguess, xlock,
xsnoop, worm

U2R rootkit, bufferoverflow, load-
module, perl

httptunnel, ps, sqlattack,
xterm

5.4 Feature Selection

In this section, we will select the number of features required to train multimodal

artificial neural network using a genetic algorithm. Based on the identified five

characteristics (fundamental, payload, time dependent, system dependent, and data

dependent) of every feature of network traffic in the NSL-KDD data set, we have five

groups, one group for one of these five characteristics. For UNSW-NB15 data set,

each feature has the five characteristics (basic, content, time, general purpose, and

connection) of features, and hence the data set is also divided into five groups. Table

3 and Table 4 details the distribution of features of NSL-KDD Cup and UNSW-NB15

data sets respectively according to the groups.

For our algorithm, we use multimodal neural network (MANN) classifier for

accuracy measurement and performed genetic search using Weka. In the beginning,

the accuracy of each group, as well as the overall accuracy (including all features),
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Table 2: Attack Types in UNSW-NB15 dataset

Attack Cate-
gory

Attack-type in UNSW-NB15 Training and Testing
data set

Fuzzers FTP, HTTP, RIP, SMB, Syslog, PPTP, DCERPC, OSPF,
TFTP, DCERPC, BGP

Reconnaissance Telnet, SNMP, SunRPC Portmapper, NetBIOS, DNS,
HTTP, ICMP, SCTP, MSSQL, SMTP

Shellcode FreeBSD, HP-UX, NetBSD, AIX, SCO Unix, Linux, De-
coders, IRIX, OpenBSD, Mac OS X, BSD, Windows, BSDi,
Multiple OS, Solaris

Analysis HTML, Port Scanner, Spam
Backdoors Backdoors
DoS Ethernet, Microsoft Office, VNC, IRC, RDP, TCP, VNC,

FTP, LDAP, Oracle , TCP, TFTP, DCERPC, XINETD,
IRC, SNMP, ISAKMP, NTP, Telnet, CUPS, Hypervisor,
ICMP, SunRPC, IMAP, Asterisk, Browser, Cisco Skinny,
SIP, SMTP, SNMP, SSL, TFTP, SMTP, DNS, IIS Web
Server, Miscellaneous, RTSP, Common Unix Print System
(CUPS), SunRPC, IGMP, Microsoft Office, HTTP, LDAP,
NetBIOS/SMB, Oracle, Windows Explorer

Exploits Evasions, SCCP, SSL, VNC, Backup Appliance, Browser,
Clientside Microsoft Office, Interbase, Miscellaneous Batch,
SOCKS, TCP, Apache, IMAP, Microsoft IIS, SOCKS,
Clientside, Microsoft Paint, IDS, SSH, ICMP, IDS,
DCERPC , FTP, RADIUS, SSL, WINS, Clientside Mi-
crosoft, POP3, SSH, TCP, Unix Service, WINS, Cisco
IOS, Clientside Microsoft Media Player, Dameware, IMAP,
LPD, MSSQL, Office Document, RTSP, SCADA, VNC,
Webserver, All, LDAP, NNTP, Office Document, RTSP,
IGMP, Oracle, RDesktop, Telnet, Unix ’r’ Service, LPD,
All, Apache, ICMP , Microsoft IIS, PHP, SMB, SunRPC,
Web Application, PHP, DNS, Evasions, NNTP, SMTP, RA-
DIUS, Browser FTP, Miscellaneous, PPTP, SCCP, SIP,
TFTP

Generic SIP, HTTP, SMTP, IXIA, TFTP, IXIA, Superflow, HTTP,
TFTP

Worms worms
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Table 3: Feature distribution according to groups for NSL-KDD Cup data set

Group Name Feature No. of NSL-KDD data set
Fundamental 1, 2, 3, 4, 5, 6, 7, 8, 9
Payload Dependent 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22
Time Dependent 23, 24, 25, 26, 27, 28, 29, 30, 31
System 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
Data Dependent 42, 43

Table 4: Feature distribution according to groups for UNSW-NB15 data set

Group Name Feature No. of UNSW-NB15 data
set

Basic 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
Content 19, 20, 21, 22, 23, 24, 25, 26
Time 27, 28, 29, 30, 31, 32, 33, 34, 35
General Purpose 36, 37, 38, 39, 40
Connection 41, 42, 43, 44, 45, 46, 47

are measured using MANN. In group elimination step, the groups are sorted based

on their accuracy and the group with the lowest accuracy is eliminated and is not

be considered in next iteration. In the feature selection step, the features from the

eliminated group are evaluated and selected using genetic search algorithm. In MANN,

we set the number of hidden layers to 1 to avoid vanishing gradient problem, learning

rate to 0.3 and the number of training iteration to 50. Table 5 illustrates the accuracy

for every iteration along with the group that is eliminated and features that are

selected along for NSL-KDD Cup data set. Similarly, Table 6 shows the accuracy for

every iteration along with the group that is eliminated and features that are selected

for the UNSW-NB15 data set.
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Table 5: Feature selection in each iteration of algorithm for NSL-KDD Cup data set

Iteration# Group
Eliminated

Features Selected from Elimi-
nated Group

Accuracy
(%)

1 Payload 10, 11, 12, 13, 14, 16, 17, 21, 22 85.71
2 Fundamental 2, 3, 4, 5, 6, 7 87.20
3 Time 23, 24, 25, 26, 29, 30, 31 88
4 System 33, 34, 35, 37, 38, 39, 40 90.36
5 Time 23, 24, 25, 26, 29, 30, 31 91.98

Table 6: Feature selection in each iteration of algorithm for UNSW-NB15 data set

Iteration# Group
Eliminated

Features Selected from Elimi-
nated Group

Accuracy
(%)

1 General Pur-
pose

36, 37, 37, 40 89

2 Content 20, 21, 22, 23, 24, 25 90.41
3 Connection 42, 43, 44, 45, 46, 47 92.79
4 Time 27, 28 , 33, 34, 35 94.36
5 Basic 7, 8, 10, 11, 12, 13, 15, 16, 17 95.46

5.5 Training Phase

We used Microsoft Azure to build, and deploy the MANN in the completely

observable cyber environment. Microsoft Azure will facilitate our training of supervised

machine learning algorithm and attack detection in completely observable cyber

systems. The machine learning algorithm was trained separately using two large data

sets of network traffic, NSL-KDD, and UNSW-NB15 and then the trained MANN

is used as web services in Microsoft Azure. This web service is used by the many

applications connected to the cyber environment to detect attacks. In order to train

the fully-connected MANN, we used back-propagation algorithm with initial learning
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weight diameter of 0.5 and a learning rate of 0.01. The binning normalizer is used as

feature normalizer for a better result as it creates bins of equal size and values of each

bin are normalized. The MANN is trained as fully connected with a number of hidden

neurons as 46 and with learning iteration of 50. The full NSL-KDD and UNSW-NB15

training data set are used for the training the MANN. Finally, each trained algorithm

is evaluated to find the accuracy of the detection of the attacks in the cyber systems.

5.6 Result

The full NSL-KDD and UNSW-NB15 test data sets are used to test and evaluate

the trained MANN using the feed-forward algorithm.Table 7 and Table 8 demonstrate

the number of attacks detected for each attack category respectively for NSL-KDD

Cup and UNSW-NB15 data sets. We find that that attacks detected in the NSL-KDD

and UNSW-NB15 data sets are promising. We found that the Exploits attack category

in the UNSW-NB15 data set have low attack detection rate because content-based

filtering technique was not used to extract the features of the UNSW-NB15 data set

during the UNSW-NB15 data set generation [50].

Table 7: Number of attacks detected for each attack category of NSL-KDD Cup data
set

Attack category Original number
of attacks

Number of at-
tacks detected

DoS 7456 6738
Probe 2420 2210
R2L 2754 2210
U2R 200 50
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Table 8: Number of attacks detected for each attack category of UNSW-NB15 data
set

Attack category Original number
of attacks

Number of at-
tacks detected

Analysis 2000 1052
Backdoor 1747 1037
DoS 12665 9341
Exploits 33393 19917
Fuzzers 18185 13358
Generic 40001 39212
Reconnaissance 10492 7301
Shellcode 1134 748
Worms 130 94

Figure 5: Number of attacks detected for each attack category of NSL-KDD Cup data
set

29



Figure 6: Number of attacks detected for each attack category of UNSW-NB15 Cup
data set

5.7 Evaluation and Comparison

In the evaluation, the results of classification technique are compared with standard

metrics are evaluated. It helps to evaluate the efficiency of trained MANN. Figure 7

shows the confusion matrix for NSL-KDD Cup dataset which describes the performance

the trained classification algorithm.

Figure 7: Confusion Matrix for NSL-KDD Cup data set

The performance of our attack detection technique is compared to that of six most

recent techniques. These six techniques are designated as follows: based multimodal
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artificial neural network (MANN) [22], multimodal logistic regression (LR) [24],

multimodal decision forest (DF) [24], multimodal decision tree (DT) [17], multimodal

Naïve Bayes (NB) [17] and multimodal support vector machine (SVM) [15]. Our

results have been compared to the results of these techniques using the same data

sets. As shown in Tables 9 and 10, our approach has substantial better performance

than these existing techniques.

Table 9: Comparison of attack detection technique for NSL-KDD Cup data set

Existing Approaches on technique for NSL-KDD Cup data set Our Approach
Techniques Existing Approaches Accuracy(%) Accuracy(%)
MANN Singh & Navjit [21] 81.20 91.98
LR - - 91.54
DF - - 91.11
DT Tavallaee & Bagheri

[17]
81.05 89.65

NB Tavallaee & Bagheri
[17]

76.56 85.70

SVM Huy A. N. [15] 81.38 90.94

Table 10: Comparison of attack detection technique for UNSW-NB15 data set

Existing Approaches on technique on UNSW-NB15 data set Our Approach
Techniques Existing Approaches Accuracy(%) Accuracy(%)
MANN Nour & Jill [22] 81.34 95.49
LR Nour & Jill [22] 83.15 91.70
DF - - 90.76
DT Nour & Jill [22] 85.56 92.90
NB Nour & Jill [22] 82.07 90.12
SVM - - 94.44
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Chapter 6

OVERALL APPROACH TO ESTIMATING TYPES OF STATES OF CYBER

SYSTEMS IN PARTIALLY OBSERVABLE ENVIRONMENTS

In this chapter, our overall approach for estimating the types of states of a cyber

system in the partial observable environments is presented. In this thesis, a type

of state of the cyber system is fully identified by values of a suitable set of features

of network traffic [30] of the cyber system. Let F = {f1, f2, ...., fn} be the set of

features of the network traffic and fi = (fi1, fi2, fi3, ...., fin) be the ith instance of F ,

the state of the cyber system is defined by sk = (fa1, fa2, fa3, ..., faj). Each cluster cj

of the instances (state of the cyber system) cj = {sk, k = 1, 2, 3....} generated by a

selected clustering algorithm (such as K-means clustering algorithm) is defined as a

type of states of the cyber systems. The network traffic raw data (packet capture)

[51] is used for estimating the types of states of the cyber systems as the network

traffic data provides various information about the cyber systems. The network

traffic data is pre-processed [52] to select the packet with a valid header and then

various attributes of each packet are extracted. In feature extraction step, three types

of features namely network-behavior, signal-based and entropy-based features are

extracted by aggregating the packet-level data [53]. The unsupervised feature selection

algorithm [54] is used to select the relevant features subset from the original features

that contribute most to the formation of clusters. The number of types of states of

the cyber systems is determined by the elbow method [55] as this method measures

how closely each data point is matched to data within its cluster [56]. K-means

clustering algorithm [57] is used to partition each data point into different clusters
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and it produces labeled data set of the network traffic based on the number of types

of states of the cyber system. The labeled network traffic data set is split into training

and testing data sets. Some data of one or multiple features of the testing data

set are randomly deleted. The convolutional neural network (CNN) [58] is trained

with complete training data set as CNN learns the features deeply and determine

the amount of overlap of one feature over another [59]. The trained CNN is used to

estimate the probability of the types of states of the cyber systems using incomplete

testing data set. In Figure 2, the system diagram of the overall approach of estimating

the types of state of the cyber system in the partially observable environments is

presented.

In this section, the estimation of the types of states of the cyber systems in the

partially observable environments is presented using machine learning techniques. In

this thesis, a benchmark and comprehensive network traffic data set [23] is used to

determine the number of types of states of the cyber systems and to estimate the types

of states of cyber systems in the partially observable environments. The estimation

of types of states of the cyber systems in the partially observable environments is

done mainly in 2 steps as shown in Figure 2. Each step is sub-divided into various

sub-steps.

• Step A) Determining the number of types of states of the cyber systems

Step A.1) The network traffic data [23] is collected from the cyber systems in

packet capture file format [51] as the network traffic records the various activities

of the cyber systems. The network traffic can be captured using a packet sniffer

tools [34] like TCPDUMP [34] and Wireshark [38]. The captured network traffic

data is pre-processed to keep only the packets with a valid header. The corrupted

network packets are discarded. Various attributes of each network packet like
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payload length, flags and time stamp [51] are extracted from the network traffic

data.

Step A.2) Three types of features are extracted from the attributes of the

packets of network traffic. Apart from network behavior related features, signal-

based (DFT) and entropy-based features of the cyber systems are also extracted

[53]. The features are selected using unsupervised feature selection algorithm

to determine the features that contribute most to the formation of clusters.

Multi-Cluster Feature Selection (MCFS) algorithm is used as unsupervised

feature selection algorithm as it finds the relevant feature subset of the original

features that facilitates clustering [60].

Step A.3) The number of clusters formed by the network traffic data set

determines the number of types of states of the cyber systems. The number

of types of states of the cyber systems is determined by elbow method [55].

K-means clustering algorithm [57] is used to label the network traffic data set

based on the number of types of states of the cyber systems. K-means clustering

algorithm makes sure that there is at least one instance in each cluster and

clusters do not overlap with each other.

• Step B) Estimation of types of states of cyber systems in partially observable

environments

Step B.1) The labeled network traffic data set obtained in Step A) is split

into training and testing data sets using cross-validation method [36]. Some

data of one or multiple features are randomly deleted from the testing data set

because in partially observable environments the features which are missing are

not known.

Step B.2) The estimation of types of states of the cyber systems is done using
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supervised machine learning algorithm. Convolutional neural network (CNN)

[58] is used as a supervised machine learning algorithm for the estimation of the

types of states of the cyber systems as CNN learns the features deeply and is

capable of incremental learning.

Step B.3) The incomplete testing data set is fed into the trained CNN to

estimate the probabilities of types of states of the cyber systems in the different

types of partially observable environments.

In this thesis we focus on the following:

• Step A, Determining the number of types of states of the cyber systems.

• Step B, Estimating the types of states of the cyber systems in the partially observable

environments.
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Figure 8: System diagram for estimating types of states of the cyber systems in
partially observable environments
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Chapter 7

ESTIMATION OF TYPES OF STATES OF CYBER SYSTEMS IN PARTIALLY

OBSERVABLE ENVIRONMENTS

7.1 Overview

This chapter explains an approach used to estimate the types of states of the cyber

systems in partially observable environments. In 7.2, we present the technique of

capturing raw network traffic data and the technique to extract attributes from the

packets of the network traffic data. In 7.3, we present an approach of extracting and

selecting the features from the network traffic data. In 7.4, we present a technique

to determine the number of types of states of the cyber systems and the technique

to label the network traffic data set using K-means clustering algorithm. In 7.5, we

present the technique of preparing the training and testing network traffic data set.

In 7.6, we present the technique to train the convolutional neural network (CNN). In

7.7 we present the approach of estimating the probabilistic value of the types of states

of the cyber systems in the partially observable environments.

7.2 Collection of Network Traffic Data and Attribute Extraction

Network traffic contains the data moving across the network of the cyber systems

[61]. In the cyber systems, the network data is captured in the form of network

packets and the network traffic data provide various information regarding the types

of states of the cyber systems. The types of states of the cyber systems are useful in
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the traffic management [27], cyber state change identification [18], detecting attacks

and predicting security breaches [3]. For example, if there is a lot of unusual traffic

on a particular port and there is an unusual change in the types of cyber systems, it

could possibly indicate the cyber attack. Thus, the change of types of cyber states due

to the unusual activity of the cyber systems provide vital information about the cyber

systems. Various packet sniffer tools like TCPDUMP [34] and Wireshark [38] are used

to capture network traffic and these tools are also used for intercepting and displaying

network packets on the network interface. The output of the captured network traffic

is the packet capture (pcap) file which is handy in estimating the types of states of

the cyber systems. The packet capture files contain various information about the

cyber systems and parameters like source and destination IP address, protocols, and

payloads [51] etc. These parameters provide information about the various types of

states of the cyber systems. In this thesis, we shall use a large and comprehensive

network traffic data [62] for estimating the types of states of the cyber systems.

The network traffic collected from the cyber system may be dirty in nature because

of noise in the network traffic [63]. The raw network traffic data is cleaned and

sanitized as dirty data can lead to poor state estimation of the cyber system. The

network traffic data may also contain missing values, duplicates, typos [64]. Hence,

the pre-processing of network traffic data is essential or else it produces poor results.

During pre-processing, the raw network traffic data are converted into processed data

of network traffic. This is done by selecting and filtering [65] of the parameters of

each packet of network traffic. Each packet of the network traffic is processed and

packets with valid header are selected. The corrupted packets of the network traffic

with null payload lengths are also discarded. These corrupted packets are discarded

and is not considered in the attribute extraction process.
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The network traffic data has various quantitative and qualitative attributes about

types of states of the cyber systems. The packet capture file of network traffic is in

binary format and hence the attributes need to be extracted in human readable format.

As network traffic data of cyber systems is encapsulated in the network packets, the

attributes of each packet of network traffic are extracted. The attributes like source

IP, destination IP, protocol, port, payload, and time-stamp [51] are extracted from

each packet of the network traffic. In the pre-processing, the packet capture (pcap) file

is provided as input to obtain various attributes of network packets. The attributes

extracted from each packet of the network traffic data will be used to extract various

types of features of the cyber systems.

7.3 Feature Extraction and Feature Selection

In this section, we present the technique of extracting features [66] of the cyber

systems from network traffic data. As the estimation of types of states of the cyber

systems is done for the partially observable environment, effective features are selected.

In the feature extraction step, the conversations of the cyber systems are created by

aggregating the packet-level data. Each conversation is identified by the source and

destination IP address. Narang et al [53], presented that three types of features of

network traffic are effective in detecting attacks and identifying changes in the cyber

systems. In this thesis, three types of features of the cyber systems are extracted from

network traffic data:

1. Network behavior based features: The network behavior based features provide

details about the packet signatures of the network traffic. It also provides vital

details about the different configurations of the cyber systems. The network
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behavior based features help to estimate different types of states of the cyber

system. The network behavior based features provide details related to cyber

security, cyber traffic change, attack detection, security breach detection and

prediction. The features like network traffic flow, total payload, payload sent,

payload received and inter-arrival time etc. [53] are extracted as network behavior

based features as these features provide information about the cyber systems.

2. Signal based features: Discrete Fourier Transformation (DFT) [67] is applied on

the payload and the inter-arrival time of each packet in a conversation of the

network traffic [53]. DFT captures hidden information patterns of the cyber

systems; thus, the signal based featurse are useful in estimating the types of

states of the cyber systems in the partially observable environments [61]. Given

a time sequence X = X(0), X(1), X(2). . . . . . ., X(w − 1) , its DFT is given as

DFT (X) =
1√
w

w−1∑
k=0

X(k).e
−2jΠkn

w

In [68], it is presented that DFT on network traffic is effective in detecting

anomalous traffic data from large-scale time series data that exhibit patterns

over time. Most of the hidden information (energy) about the types of states of

cyber systems is concentrated in the first few coefficients of DFT [69]. Moreover,

DFT has an attractive property that the amplitude of Fourier coefficients is

invariants under shifts. Thus, using DFT in feature extraction has potential

that it can be extended to finding a similar sequence in features of the cyber

systems. Thus, in this thesis, first three coefficients are evaluated to capture the

hidden communication patterns of the cyber systems.

3. Entropy-based feature: The size of the payload of each packet of network traffic

exhibits more variation when there is any unusual change in the states of the
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cyber system [53]. In [70], the entropy-based feature is used to track changes

in the cyber system. The variation is observed in payload size of the packet

of the network traffic when there is an unusual activity or change in types of

state of the cyber systems [53]. Hence, the entropy-based feature is implemented

on the payload size of the network packet in order to calculate the amount of

randomness or entropy in payload size variation. The unusual change in the

types of states of the cyber systems will have high entropy (or lower compression

size) than the normal activity of the cyber systems. The compressed size of

the payload is determined based on the optimal encoding limit established by

Shannon. The expected payload length L of an encoding of X with associated

probability p(x) is given by [71]:

L(x) =
∑
x∈X

p(x) log2(p(x))

Feature selection is one of the important steps in estimating types of states of the

cyber systems as feature selection helps in reducing high-dimensional data for machine

learning problem. Feature selection also helps to reduce the computational complexity

of the machine learning algorithms [72]. Due to lack of label information of the network

traffic data set, the evaluation of the contribution of features for estimating types of

states of the cyber systems is done using unsupervised feature selection algorithm.

The unsupervised feature selection algorithm selects the subset of features from the

network traffic data set. The unsupervised feature selection algorithm is designed for

clustering problem and seek an alternative criterion to define the relevance of features

such as data dissimilarity and local discriminative information [73]. In this thesis,

Multi-Cluster Feature Selection (MCFS) algorithm [60] is selected as unsupervised

feature selection algorithm because MCFS guides in selecting features without the
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class labels. MCFS facilitates to select the relevant features that contribute most to

the formation of clusters, and MCFS consider the possible correlation between different

features and produce optimal feature subset [72]. Thus, MCFS is effective in selecting

features from the network traffic data because it will consider the correlation between

the features of the network traffic data. Moreover, MCFS select only those features

from the data set that preserve the multi-cluster structure of the data and MCFS is

more effective than the other existing unsupervised feature selection algorithms [60].

7.4 Determining the Number of Types of States and Labeling the Network Traffic

Data Set

Determining the number of types of states of the cyber systems is one of the

important steps in estimating the probabilistic state of the cyber systems. As the

network traffic data set is not labeled, the number of types of states of the cyber

systems are not known. The classifier algorithm is used to determine the number

of types of states of the cyber systems. The classifier algorithm produces different

clusters based on the data points of the network traffic data set. In the thesis, each

cluster produced by the classifier algorithm is considered as types of state of the cyber

system. Thus, each type of state of the cyber system is represented by each cluster

of the clustering algorithm because each cluster represents the set of variables used

to describe a type of state of the cyber system. In this thesis, elbow method [55] is

used to determine the number of types of states of the network traffic data set. The

computational complexity of elbow method is less compared to other existing methods

and the elbow method has high accuracy and is based on the idea that adding another

cluster to the data set does not yield better results [74]. This is important in practical
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applications in estimating the types of states of the cyber systems. The elbow method

measures at the percentage of variance as a function of the number of clusters [75].

The method is based on the idea that one should choose a number of the clusters so

that adding another cluster does not give better modeling of the data. The elbow

method tries to minimize the total intra-cluster variation which is helpful in measuring

the compactness of the clusters.

Initially, the elbow method computes the sum of squared error (SSE) for some

value of k, where k represents the number of types states of the cyber systems. The

SSE is the sum of the squared distance between each member of the cluster and its

centroid. Thus, mathematically it can be represented by

SSE =
K∑
i=1

∑
x∈ci

dist(x, ci)
2

Thus, elbow method measures how closely the members is matched to data within

its cluster and how loosely it is matched to data of the neighboring cluster. The value

of SSE decreases with the increase of a number of types of states of the cyber systems

because the distortion becomes smaller with the increase in the number of types of

states of the cyber system. According to elbow method, the number of types of states

of cyber systems is selected for the value of k where SSE decreases abruptly. The

algorithm for elbow method is shown in the Algorithm 3.

Algorithm 3 Elbow Method to determine the number of types of states of the cyber
systems
Require: Initialize k
1: repeat
2: Increment the value of k

Measure the value of SSE
3: until The value of k where the value to SSE drops dramatically
4: Select that k
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A classifier algorithm is used to label each observation of the network traffic data

set into a number of types of states. In the thesis, K-means clustering algorithm [57] is

used as a classifier algorithm which divides the observations of the network traffic data

set into k number of clusters. Each cluster is considered as a state of the cyber system.

K-means clustering algorithm aims to minimize the intra-cluster sum of squares (SSE)

and partition data points into k clusters so that each observation belongs to cluster

with the nearest mean. Thus, K-means clustering algorithm helps to form types of

states of the cyber systems based on each observation of the network traffic data set.

Each data point of network traffic data set is labeled according to the clusters formed

by the K-means clustering algorithm. In K-means clustering algorithm, k stands for

the number of clusters and it is a user input to the algorithm. We have determined

the value of k in the previous step using the elbow method. K-means clustering

algorithm is chosen over the other existing data clustering algorithms (like hierarchical

clustering algorithm and expectation maximization clustering algorithm) as k-means

clustering algorithm is ideal for huge data set and large number of clusters and it is

computational complexity is less compared to other existing clustering algorithms

[76].

K-means clustering algorithm is one of the simplest unsupervised machine algorithm

used in clustering problems. In K-means clustering algorithm, the k number of centroids

are defined, one for each cluster and the centroids are placed far from each other. The

K-means algorithm associates each observation of the network traffic data set to the

nearest centroid. K-means clustering algorithm then re-calculate k new centroids and

binding is done between the same observations of the network traffic data set and the

nearest new centroid. This continues till there is no more change in the position of
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the centroid. Thus, K-means clustering algorithm aims to minimize the value of the

squared error function, given by

J =
k∑

j=1

n∑
i=1

|xji − cj|2

, where |xji − cj|2 is the distance between the observation |xji | and cluster center

|cj|. Algorithm 4 describes the steps of the K-means clustering algorithm.

Algorithm 4 K-means clustering algorithm
Require: Initialize c1, c2, ....., ck ∈ Rn

1: repeat
2: For every i, set c(i) = argminj||xji − cj||2

For each j, set cj =
∑m

i=1(c
(i)=j)x(i)∑m

i=1(c
(i)=j)

3: until until convergence
4: Select that k

K-means clustering algorithm always makes sure that there are k number of types

of states during the estimation of types of states for the cyber system and there is at

least one observation in each types of state. The types of states of the cyber system,

which is determined by the K-means clustering algorithm make sure that the type of

states do not overlap with each other. Hence, there is no ambiguity with the existence

of same observation in two types of states of the cyber system, thus making sure that

each observation shares only one type of state of the cyber system.

7.5 Preparing Training and Testing Data Set of Network Traffic

The labeled data set is used as the training and testing data set for training and

testing machine learning algorithm respectively. Splitting the labeled network traffic

data set into training and testing data sets is an important step in the estimation of
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the types of states of the cyber systems. Typically, when splitting the data set into

the training and testing data set, the training data set is larger in size compared to

the testing data set. The data set is split into training and testing data set using

K-fold cross validation method [36] where the data set is randomized into K equal size

partitions. The Kth partition is selected as a testing data set and K − 1 partitions

are selected as the training data set. K-fold cross validation is used to split the data

set into training and testing data set as it helps in unbiased classification results and

there is no overlapping between training and testing data set [36].

In this thesis, the complete training network traffic data set is used to train the

machine learning algorithm. If the training data set is incomplete, it is made complete

by replacing the missing values by either one of the method:

1. Replace with mean

2. Replace with median

3. Replace with mode

The completeness of the incomplete training data set will increase the effectiveness of

estimating the types of states of the cyber systems in partially observable environments.

But we shall use incomplete testing data set to estimate the types of states in cyber

systems in partially observable environments.The machine learning algorithm is used

as a classifier to estimate the probabilistic values of the types of states of the cyber

system. As the estimation of the types of states of the cyber system is performed

in the partially observable environments, the testing data set is made incomplete.

The incompleteness of the testing data set is performed by randomly selecting each

observation of testing data set and deleting the value. The making of the incomplete

testing data set is performed in following ways:
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1. Randomly selecting one feature of each observation of the network traffic data

set.

2. Randomly selecting two features of each observation of the network traffic data

set.

3. Randomly selecting three features of each observation of the network traffic data

set.

4. Randomly selecting few data points of one feature of the network traffic data

set.

5. Randomly selecting few data points of two features of the network traffic data

set.

6. Randomly selecting few data points of three features of the network traffic data

set.

The complete training data set will be used to train the machine learning algorithm

and the incomplete testing data set to estimate the probabilistic value of the types of

states of the cyber systems in the partially observable environments.

7.6 Training of Convolutional Neural Network

Deep Learning has attained significant outcomes in the field of computer vision

and speech recognition in recent years. In this thesis, convolutional neural network

(CNN) is used as deep learning algorithm to estimate the types of states of cyber

systems in the partially observable environments. CNN is the feed forward deep neural

network which includes some convolutions in some layers [77]. A convolutional neural

network is composed of one or more convolution layers, a sub-sampling layer followed

by one fully connected layer. In convolution layer, the convolution operation is applied
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where the parameters are reduced by weight sharing technique [77]. In sub-sampling

layer, non-linear function and pooling operation are applied for distortion-invariant

features. Thus, CNN leverage the idea of local connectivity, parameter sharing and

pooling [78]. The convolution layer produces feature maps by linear convolution filter

followed by a nonlinear activation function [77]. The feature map can be given by:

fi,j,k = max(wT
k xi,j, 0)

where (i, j) is the index of the feature map, xij stands for the input patch centered

at the location (i, j) and k is used to index the channel of the feature map. For

classification task, softmax is applied as loss function in the output layer and the

output layer has one neuron per class.

Traditionally, 2-D CNN is used [79] for image classification; but in this thesis 1-D

CNN is used for classification to estimate the types of states of the cyber systems

in the partially observable environments. Back-propagation algorithm is used for

efficient training of the 1-D CNN. In 1-D CNN, 1-D arrays are used in each neuron

for its kernels, input and output variables for both forward propagation [80] and

back-propagation algorithm [13]. Thus, 1-D array operations like 1-D convolution and

reverse are performed instead of 2-D operations. Also, the kernel size and sub-sampling

[81] are used as single scalar values. The forward propagation of 1-D CNN is presented

by the below equation

xlk = blk +

Nl−1∑
i=1

con1D(wl−1
ik , sl−1i )

where con1D() represents the 1- convolution, xlk is the input, blk is the bias of the

kth neuron at layer l, sl−1i represent the output of the ith neuron for layer l − 1 and

wl−1
ik denotes the kernel from ith neuron of layer l − 1 to the kth neuron of layer l [81].
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In 1-D CNN, the delta error ∆slk for back-propagation is represented by the below

equation:

∆slk =

Nl+1∑
i=1

con1Dz(∆l+1
l , rev(wl

ki))

, where rev(.) reverse the array and conv1Dz(., .) executes full convolution in 1-D

[13].

In CNN, the individual neurons are arranged in such a fashion that they respond

to the overlapping regions of features. This helps in the estimating types of states

of the cyber systems when the environments are partially observable. CNN learns

deeply the features of the cyber systems and expresses the amount of overlap of one

feature of network traffic over another; thus measuring the similarity of two features

of network traffic [59]. CNN can be trained easily and is computationally efficient as

they do not need specialized hardware for implementation [82]. Moreover, CNN has

the capability of online incremental learning; this is more effective in estimating types

of states for cyber systems where the environments are partially observable.

In this thesis, the number of nodes in the input layer of CNN is same as the

number of features selected by MCFS algorithm. The number of nodes in the output

layer of CNN is the same as the number of types of states in the cyber system. Our

CNN has two hidden layers, out of which the one which is connecting to the input

layer is convoluted; and another is fully connected to the output layer. The number

of nodes in two hidden layers are same as the number of nodes in the input layer.

The learning rate for the CNN is set to 0.01 since higher learning rate can over shoot

the local minima. The initial weights of the edges of the input layer of the CNN

is assigned to 0.9 as larger weights will slow down the process of learning of nodes

of CNN. The learning iteration of the ANN is set 20 because higher learning rate
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will slow down the training process. In the output layer, softmax function is used as

softmax function is the gradient log normalizer and it is used in various probabilistic

multiclass classification methods. Moreover, softmax function can be used with both

discrete and continuous data [83].

7.7 Estimation of Types of States of Cyber Systems in Partially-Observable Envi-

ronments

The complete training network traffic data set is used to train the 1-D CNN as

this will facilitate the estimation of the types of states of the cyber systems in the

partially observable environments. There are six different kinds of testing data set

of network traffic are used to estimate the types of states of the cyber systems. In

this thesis, the analysis of the accuracy for classification of the trained 1-D CNN is

done and the results of the classification are compared with other existing multimodal

classifier algorithms. In the evaluation, the result of the classification technique is

evaluated with the standard metrics like accuracy, recall and precision. This helps to

measure the efficiency of the trained 1-D CNN. The probabilistic values of types of

states of the cyber system are estimated based on the results of the classification done

by CNN. The probabilistic values of types of states of the cyber system are expressed

by

P (si) =

∑i
i=1 xi∑n
n=1Xn

, where Σi
i=1xi represents the total number of expected observation for state i as

estimated by 1-D CNN and Σn
n=1Xn is the total number of observations in the testing

data set.

50



Chapter 8

CASE STUDY OF ESTIMATING TYPES OF STATES OF CYBER SYSTEMS IN

PARTIALLY OBSERVABLE ENVIRONMENTS

8.1 Overview

In this chapter, a case study is conducted to estimate types of the states of the

cyber systems in the partially observable environment. A large and comprehensive

network traffic data set is used for the case study. In 8.2, the detailed description of

the network traffic data used in this thesis and the technique to extract attributes

from the packets of network traffic. The techniques for feature extraction and feature

selection are presented in 8.3. In 8.4, the mechanism to determine the number of

types of states of the cyber system and the technique to label network traffic data set

using unsupervised clustering algorithm is presented. The technique for generating

the training and testing data set in shown in section 8.5. In 8.6, the convolutional

neural network is trained using the training network traffic data set. Finally, in 8.7

the results for estimating types of states of the cyber systems is presented and our

approach is compared with other existing machine learning algorithms.

8.2 Overview of Network Traffic Data Set and Attributes Extraction

In the thesis, UNB ISCX Intrusion Detection Evaluation data [23] is used to

estimate the types of states of the cyber systems in the partially observable environment.

The network traffic data is generated using a systematic approach which includes
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dynamic and evolving network behaviors and patterns. The network traffic data was

generated by Information Security Centre of Excellence (ISCX) of University of New

Brunswick and consists of data for a period of 7 days of network activity (normal and

malicious). The network traffic data is selected for estimating the types of states of the

cyber systems because the network traffic data processes the following characteristics:

1. The network traffic data consists of the realistic network traffic and does not

contain any artificial post-capture trace insertion.

2. The network traffic data contains total interaction capture which is essential in

estimating states of the cyber system.

3. The network traffic provides complete capture including privacy settings related

to sharing real network traces.

4. The network traffic data includes diversified attack scenarios and has considered

new types of complex attacks.

5. The network traffic data includes real traffic for HTTP, SMTP, SSH, IMAP,

POP3, and FTP.

The network traffic data was generated using 21 interconnected Windows worksta-

tions as a diverse set of known vulnerabilities can be generated in Windows operating

systems [23]. The workstations are divided into 5 LANs consists of real internetwork

connections, web server, email, Domain Name System (DNS) and Network Address

Translation (NAT).

Network traffic captures the information moving across the network at a given

point of time. The network traffic contains encapsulated network packets and it

provides various information about the states of the cyber system. The network traffic

can be captured using Wireshark [38] which is a network analysis tool. The tool helps

to capture the network packets by sniffing on the interface(s) of various connected
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devices of the cyber system [34]. The output of the capture network traffic is the

packet capture (pcap) files which are handy in estimating the probabilistic value of

the types of states of the cyber system. The packet capture file contains information

about the source IP, destination IP, protocols, and payloads etc [51].

In this module of attribute extraction, the captured network traffic i.e. the packet

capture files are processed to remove the corrupted packets and the attributes are

extracted from the network traffic data. The module, which obtains the packet-level

data from the packet capture file was developed in Python 2.7 [84] and TShark [53]

on Amazon Web Service [85] E2 instance (m4.4xlarge) running Ubuntu 16.0 OS. The

program iterates over all the captured network traffic files and extract the different

attributes of each network traffic and save it as a comma separated values (CSV)

file. In order to pre-process the captured network traffic, the packets with the valid

TCP/UDP header are kept. The program ignores those packets where if both TCP

and UDP payload lengths are null and subtract 8 bytes from UDP payload to account

for UDP header. The program then extracts the attributes of each packets using the

TShark [86] which is later used to extract various types of features of the network

traffic data. For each packet, Table 11 lists the details of the attributes [53] extracted

from the network traffic data. The payload length and the flags depend on the protocol

(TCP or UDP).

8.3 Feature Extraction and Feature Selection

In this module, the features are extracted based on the packet-level information as

described in Section 8.2. Like before, the module was developed using Python 2.7 [84]

on Amazon Web Service [85] E2 instance (m4.4xlarge) running Ubuntu 16.0 OS where
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Table 11: List of attributes extracted from each packet

Attribute Name Description
Source IP The IP address of the source
Destination IP The IP address of the destination
Protocol The field denotes the current IP protocol be-

gin used
Frame Time Epoch Epoch time
TCP Length The length of TCP segment data
UDP Length The length of UDP segment data
TCP Flags The flags of TCP packet
TCP Flags Reset Control bit to reset the connection if the

sender encountered any problem
TCP Flags Syn Control bit to synchronize sequence number

and initialize the connection
TCP Flags Fin The sender of the segment request to close

the connection
TCP Flags Ack The acknowledgment bit is set to 1 when this

segment is carrying on an acknowledgment.
TCP Flags Urg This control bit is set to 1 when the priority

data transfer feature has been called.
TCP Flags Push This denotes that the data in the segment is

pushed immediately on the application of the
receiving end.

TCP Source Port Port number for the TCP source port
TCP Destination Port Port number for the TCP destination port
UDP Source Port Port number for the UDP source port
UDP Destination Port Port number for the UDP destination port

the output of the pre-processing and attribute extraction module is fed as input. The

features are extracted from each flow which is identified by source and destination

IP address and the maximum inter-arrival time taken between two packets. This

module extracts three types of features – network behavior-based features, signal-based

features, and entropy-based feature. Discrete Fourier Transformation [87] was applied

on the payload length of each packet and inter-arrival time for each flow to extract the

signal-based features. The entropy-based feature was extracted by applying optimal
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encoding limit on the payload size of each packet. Table 12 demonstrate the list of 35

features [53] that are extracted along with their descriptions.

After the features are extracted from the UNB ISCX Intrusion Detection Evaluation

data, statistical analysis is performed on the result of the output in R programming

[88] at AWS EC2 instance. Thus, the data set has 31 features and there are 1,951,464

connection links of network traffic. The summary of the network traffic data set is

presented in Table 13.

Principal Component Analysis (PCA) [89] is performed on the network traffic data

set to extract important information from the multivariate network traffic data set

and to direct a set of new features called principal components. PCA helps to find

directions where the variation of the network traffic data set is maximal. Figure 9

describes the importance of principal components in the form of scree plot. It shows

that the first five principal components hold 61% (approx.) of the variances.
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Table 12: List of extracted features

Feature Type Feature Name Description

network-based features

Flow duration Duration of each flow
Sender payload Total payload size for sender
Receiver payload Total payload size for receiver
First packet size The size of the first packet
Maximum packet size The maximum size of packet in

each flow
Median inter-arrival
time

Median of total inter-arrival time
in each flow

Inter-arrival sent Total inter-arrival time for sending
Inter-arrival received Total inter-arrival time for receive
Packets sent Total number of packets sent
Packets received Total number of packets received
Average payload Average payload in each flow
Variance payload Variance of total payload

Entropy-based fea-
tures

Compression Compression ratio

Signal-based features

Prime wave magnitude
payload

The magnitude of the prime wave
for the payload

Prime wave phase pay-
load

The phase of the prime wave for
the payload

DFT payload magni-
tude 1-3

The first three magnitude coeffi-
cient of DFT for the payload

DFT payload phase 1-
3

The first three phase coefficient of
DFT for the payload

DFT variance magni-
tude payload

The variance of magnitude of the
payload for the DFT

Prime wave magnitude
inter-arrival time

The magnitude of the prime wave
of the inter-arrival time

Prime wave phase
inter-arrival time

The phase of the prime wave for
the inter-arrival time

DFT inter-arrival time
magnitude 1-3

The first three magnitude coeffi-
cient of DFT for the inter-arrival
time

DFT inter-arrival time
phase 1-3

The first three phase coefficient of
DFT for the inter-arrival time

DFT variance magni-
tude inter-arrival time

The variance of magnitude of the
inter-arrival time for the DFT
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Table 13: Summary of the network traffic data set

Feature Name Minimum
value

Median
value

Mean
value

Maximum
value

Flow Duration 0.0000 0.0428 21.4272 1999.9877
Sender Payload 0.0000 72.0 909.6 75416.0
Receiver Payload 0.0000 51 2097 42340
First Packet Size 0.0000 1380 1051 1460
Maximum Packet Size 0.0000 1430 1122 1460
Median Total Inter Arrival Time 0.0000 0.0000 0.0242 873.9208
Inter Arrival Sent 0.0000 0.0000 0.0242 873.9208
Inter Arrival Receive 0.0000 0.0000 0.0006937 1.3202727
Packets Sent 1.0000 1.0000 1.359 68.000
Packets Received 3.0000 3.0000 3.512 40.000
Average Payload 0.0000 1380.0 1059.7 1460.00
Variance Total Payload 0.0000 0.0000 34312 532170
Compression Ratio 2.526 12.202 17.479 480.0
Prime Wave Magnitude Payload 0.0000 108 2703 94900
Prime Wave Phase Payload -9e+01 0e+00 9e-03 9e+01
DFT Payload Magnitude 1 0.0000 1764 3007 75416
DFT Payload Phase 1 -84.000 0.0000 0.02089 90.0000
DFT Payload Magnitude 2 -90.000 0.0000 -0.4513 90.000
DFT Payload Magnitude 3 0.0000 1460 1324 123214
DFT Payload Phase 3 -90.000 0.000 1.57 90.000
Variance Magnitude DFT Payload 0.0000 1460 1433 3265
Prime Wave Magnitude Inter Ar-
rival Time

0.0000 0.0000 0.0394 1747.8417

Prime Wave Phase Inter Arrival
Time

-90.000 0.000 2.706 90.000

DFT Inter Arrival Time Magni-
tude 1

0.0000 0.0000 0.0582 1747.8417

DFT Inter Arrival Time Phase 1 -60.000 0.000 -14.42 0.00
DFT Inter Arrival Time Magni-
tude 2

0.0000 0.0000 0.01749 1747.6688

DFT Inter Arrival Time Phase 2 -90.00 0.000 2.706 90.000
DFT Inter Arrival Time Magni-
tude 3

0.0000 0.0000 0.0121 1747.6688

DFT Inter Arrival Time Phase 3 -90.00 0.00 11.71 90.00
Variance Magnitude DFT Inter
Arrival Time

0.0000 0.0000 0.0574 1747.8417
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Figure 9: PCA Scree Plot of UNB ISCX Intrusion Detection Evaluation data set

The features that are correlated with the principal components 1 to 5 plays an

important role in the variability of the data set. Figure 10 shows the features that are

associated with the first five principal components and they contribute more to the

components.
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Figure 10: Contribution of features of UNB ISCX Intrusion Detection Evaluation
data set to principal components

The unsupervised feature selection algorithm is applied to the network traffic data

set in order to select the features that contribute most to the formation of the clusters.

Multi-cluster feature selection (MCFS) [60] algorithm is selected as unsupervised

feature selection algorithm as it selects the features that cover the multi-cluster

structure of the data and it uses spectral analysis to correlate between the features.

MCFS algorithm is implemented in Python 2.7 using the NumPy [90], SciPy [91],

and Scikit-learn [84] packages in AWS EC2 instance (m4.4xlarge) running Ubuntu

16.0 OS. At first, the feature selection module constructs an affinity matrix and then

feature weight matrix are obtained. Finally, the algorithm sorts the features based

on the feature scores of feature weight matrix. Table 14 shows the list of features

selected by the MCFS algorithm along their feature scores.
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Table 14: Features selected by MCFS algorithm

Selected Features Feature Scores
Sender Payload 1.64779830e+04
Receiver Payload 1.64779830e+04
Median Total Inter Arrival Time 3.23631675e-01
DFT Payload Magnitude (1st Co-efficient) 3.22043241e-01
DFT Inter Arrival Time Magnitude(1st Co-efficient) 9.43615546e+04
DFT Inter Arrival Time Phase(1st Co-efficient) 5.16977409e+05
DFT Inter Arrival Time Phase(2nd Co-efficient) 5.16977409e+05
DFT Inter Arrival Time Magnitude(3rd Co-efficient) 2.84661113e-01
DFT Inter Arrival Time Phase(3rd Co-efficient) 5.16977409e+05
Variance Magnitude DFT Inter Arrival Time 5.88219974e-01

8.4 Determining Number of Types of States and Labeling the Network Traffic Data

The number of clusters formed by the network traffic data set represents the

number of types of states of the cyber system. In this thesis, partitioning method i.e.

K-means clustering algorithm is used to label the network traffic data set based on the

number of types of states of the cyber system. The optimal number of clusters need

to be determined as a number of clusters is provided as input to K-means algorithm

[57]. Elbow method [55] is used to determine the number of types of states of the

cyber system as it applies a direct method which involves optimizing a criterion called

cluster sum of squares (SSE). R programming is used to implement the elbow method

for K-means clustering algorithm in AWS EC2 instance. Figure 11 shows the output

of the elbow method and the graph suggests eight types of states for the cyber system.

The graph obtained from the elbow method shows that at the value of k suddenly

drops at the value of 8 and forms an “elbow” shape.
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Figure 11: Number of types of states of cyber system using Elbow method

K-means clustering algorithm is used to label the network traffic data set as

K-means is one of the simplest clustering algorithms to estimate the types of states of

the cyber system. As the network traffic data set does not contain a label column,

K-means algorithm is suitable as it uses unsupervised learning method. K-means

algorithm uses iterative procedures to cluster similar characteristics in a data set. This

helps to identify each observation of the network traffic data set into distinct types of

states. The number of types of states of the cyber system is already determined by

Elbow method. So the number of initial centroids is set to 8. In K-means clustering

algorithm, the data points are randomly placed in a cluster and then the initial means

of a Euclidean distance of the randomly assigned data point from the centroids are

computed. The random number seed is set as 123456789 as it significantly affects

the degree of randomness of the initialization. The K-means clustering algorithm
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is executed in Microsoft Azure Machine Learning Studio and Microsoft Azure for

efficient and effective computation. Table 15 describes the detailed configurations

used in K-Means clustering algorithm. The output of this module labels each data

points of the network traffic data set according to the number of types of states of the

cyber system.

Table 15: Configuration used in K-Means clustering algorithm

Description Configuration Details
Number of Centroids 8
Initialization Random
Random Number Seed 123456789
Metric Euclidean
Number of Iterations 1000

8.5 Preparing Training and Testing Data Set

The labeled network traffic data set is split into training and testing data set

using k-fold cross-validation in order to overcome the problem of over-fitting [59].

The 10-fold cross-validation is performed on the network traffic data set to split into

training and testing data set. The splitting of the network traffic data set using 10-fold

fold cross validation is executed in R programming in AWS EC2 instance running

Ubuntu 16.0 operating system.

If the training data set is incomplete, it is made complete by replacing the missing

values by either one of the method:

1. Replace with mean

2. Replace with median

3. Replace with mode
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The completeness of the incomplete training data set will make increase the effectiveness

of estimating types of states of the cyber systems in partially observable environments.

But we shall use incomplete testing data set to estimating the types of states in cyber

systems in partially observable environments.

In the thesis, the types of states of the cyber system are estimated in the partially

observable environments. Hence, the testing data using to estimate the probabilistic

values of types states of the cyber system is incomplete. A JAVA program is used

to convert the testing data incomplete. There are six different types of incomplete

testing data sets are used to estimate the types of states of cyber system in six types

of partially observable environments:

• Type 1: Randomly selecting one feature of each observation of the network

traffic data set

• Type 2: Randomly selecting two features of each observation of the network

traffic data set

• Type 3: Randomly selecting three features of each observation of the network

traffic data set

• Type 4: Randomly selecting few data points of one feature of the network traffic

data set

• Type 5: Randomly selecting few data points of two features of the network

traffic data set

• Type 6: Randomly selecting few data points of three features of the network

traffic data set
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8.6 Training of Convolutional Neural Network

Convolutional neural network (CNN) [58] is used to estimate the types of states of

the cyber system in the partially observable environment. CNN is implemented using

Net# language in Microsoft Azure Learning Studio. The network traffic data set is

time series data as the data points are made out of successive measurements across

the time [92]. Hence, 1-dimensional CNN is used to estimate the types of states of the

cyber system using the network traffic data set [93]. In CNN, there are kernels that

slide through the dimensions where each kernel describes as a set of weights known as

kernel applications. The central nodes are the node of the source layer of CNN which

correspond to each kernel application. In Net# program, InputShape represents the

dimensionality of the 1-D CNN, KernelShape represents the dimensionality of each

kernel for 1-D CNN, Stride denotes the sliding step sizes of CNN, Sharing denotes the

weight sharing of each dimension and MapCount denotes the number of feature map

for the CNN. The learning rate for the CNN is set to 0.01 and initial weight is set as

0.6 and the number of learning iteration is set as 20.

8.7 Estimation of Types of States of Cyber System

In order to estimate the types of states of the cyber system in the partially

observable environment, the testing data sets which are prepared in Section 8.5 are

used to test and evaluate the machine learning algorithms. The testing data set is also

fed into the trained machine learning algorithms. The testing data set contains 390284

data points. Convolutional neural network classifies each data point of the testing

data set and allocates them to different states. The probability of each type of state
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Table 16: Estimation of Types of States in Different Partially Observable Environments

Types Types of states of the cyber system
State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

Type 1 0.0336 0.1371 0.1411 0.0635 0.0219 0.0891 0.2192 0.2941
Type 2 0.0313 0.1416 0.1419 0.0558 0.0194 0.0793 0.2377 0.0292
Type 3 0.0293 0.1424 0.1415 0.0504 0.0172 0.0719 0.2592 0.2890
Type 4 0.0382 0.1197 0.1316 0.0795 0.0273 0.1117 0.2058 0.2858
Type 5 0.0277 0.2056 0.0957 0.0579 0.0198 0.0809 0.2073 0.3045
Type 6 0.0265 0.1593 0.1370 0.0430 0.0148 0.0601 0.2728 0.2862

of the cyber system is calculated based on the total number of predicted observations

of each type of state of the cyber system and the total number of observations of the

testing data set. Table 16 shows the probabilities of eight types of states of the cyber

system determined by CNN for six types of partially observable environments. The

sum of probabilities of the eight types of states of the cyber system approximate to 1.

Figures 12, 13, 14, 15, 16, 17 shows the confusion matrix for Type 1, Type 2, Type

3, Type 4, Type 5 and Type 6 testing data sets and the confusion matrix describes

the performance of the trained classification algorithm.
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Figure 12: Confusion Matrix in Type 1 partially observable environment

Figure 13: Confusion Matrix in Type 2 partially observable environment
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Figure 14: Confusion Matrix in Type 3 partially observable environment

Figure 15: Confusion Matrix in Type 4 partially observable environment
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Figure 16: Confusion Matrix in Type 5 partially observable environment

Figure 17: Confusion Matrix in Type 6 partially observable environment

In order to evaluate the state estimation technique for the cyber system in the

partially observable environments, the proposed technique is compared with other
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Table 17: Micro-averaged precision

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CNN 90.55 85.88 82.33 99.28 88.75 79.83
MANN 36.83 36.04 35.22 38.12 38.14 34.36
LR 83.27 77.77 74.32 93.97 84.28 77.38
NB 81.10 76.66 73.33 88.60 83.37 78.12
SVM 73.44 69.10 66.10 79.79 72.43 66.21

existing machine learning techniques (Multimodal Artificial Neural Network (ANN)

[13], Multimodal Logistic Regression (LR) [48], Multimodal Naïve Bayes (NB) [25]

and Multimodal Support Vector Machine (SVM) [26]). Table 17 compares the micro-

averaged precision of our trained machine learning algorithm for different types of

partially observable environments. Table 18 compares the macro-averaged precision

of our trained machine learning algorithm for different types of partially observable

environments. Macro-averaged precision provides the average per-class agreement of

the types of states of the cyber systems with those of a multimodal classifier. Table

19 compares the micro-averaged recall of our trained machine learning algorithm for

different types of partially observable environments. Micro-averaged recall provides the

effectiveness of the different classifiers to identify different types of states of the cyber

system. Table 20 compares the macro-averaged recall of our trained machine learning

algorithm for different types of partially observable environments. Macro-averaged

recall provides the average-per class effectiveness of the different classifiers to identify

different types of states of the cyber system. Table 21 compares the accuracy of

various trained machine learning algorithms for different types of partially observable

environments. Accuracy measures the effectiveness of the classifier to identify different

types of states of the cyber system.
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Table 18: Macro-averaged precision

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CNN 92.65 89.71 99.13 99.13 93.10 86.56
ANN NaN NaN NaN NaN NaN NaN
LR 81.15 76.99 75.17 94.04 87.61 82.07
NB 63.75 60.28 58.21 71.93 65.15 61.06
SVM 57.20 54.87 53.33 NaN NaN 52.28

Table 19: Micro-averaged recall

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CNN 90.55 85.88 82.23 99.28 88.75 79.83
ANN 36.83 36.04 35.22 38.12 38.14 34.36
LR 83.27 77.77 74.32 93.97 84.28 77.38
NB 81.10 76.62 73.33 88.60 83.37 78.12
SVM 73.44 69.10 66.10 79.79 72.43 66.21

Table 20: Macro-averaged recall

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CNN 86.61 80.60 75.95 98.70 81.91 71.54
ANN 18.36 18.33 18.21 18.18 18.19 18.09
LR 72.98 67.09 63.51 84.50 70.79 62.39
NB 63.89 59.81 56.73 70.18 63.58 57.96
SVM 55.64 50.96 62.56 62.56 50.08 47.03

Table 21: Accuracy

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
CNN 90.55 85.88 82.23 99.28 88.75 79.83
ANN 36.83 36.04 35.32 38.12 38.14 34.36
LR 83.27 77.77 74.32 93.97 84.28 77.38
NB 81.10 76.62 73.33 88.60 83.37 78.12
SVM 73.44 69.10 66.10 79.79 72.43 66.21
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Chapter 9

CONCLUSION AND FUTURE RESEARCH

In the thesis, our approach for selecting effective features from the network traffic

data sets for detecting attacks in the cyber systems has presented. The reduced number

of features of network traffic reduces the computational complexity of training of

artificial neural network. Our approach has generated better results for attack detection

in cyber systems compared to other existing approaches. We have implemented the

attack detection (Step 5) of our approach) as attack detection web service in the cyber

systems, which facilitates the use of our approach as Security-as- a-Service (SECaaS)

by various resource-constrained devices to detect attacks in cyber infrastructures. We

conducted two case studies of our attack detection approach using two comprehensive

network traffic data sets. Our attack detection technique is also compared to that of

six most recent techniques and our approach has substantial better performance than

these existing techniques.

Our attack detection approach has the following limitations. Our attack detection

approach is assumed to operate on completely observable cyber systems, it is not

applicable to cyber systems which are partially observable. In addition, since MANN

can use only supervised machine learning, our approach cannot detect attacks of

unknown categories and multistage attacks [94]. The accuracy and efficiency of our

approach heavily depend on the quality of the training data sets. In order to improve

the accuracy and applicability of our approach to attack detection of large-scale cyber

systems, we need to have high-quality training data sets.

In order to have an attack detection approach for partially observable cyber
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systems, we need to estimate the types of states in partially observable cyber systems.

Such an approach is presented involving the use of Elbow method, K-means clustering

algorithm and convolutional neural network (CNN). The technique is also compared

with other existing machine learning algorithms and shows that CNN provides better

accuracy in estimation of the types of states of the cyber systems in various partially

observable environments.

It is noted that our approach to estimating the types of states in partially observable

environments can be applied in various fields. Besides attack detection in partially

observable cyber systems, our approach can also be used for predicting security

breaches [3], and change detection [18] in cyber systems, analysis of network behaviors,

and network traffic management [27]. Future research need to be done to update the

trained machine learning algorithm for estimating the types of states when the cyber

operations change continuously.
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