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ABSTRACT  

   

One of the most common errors developers make is to provide incorrect string 

identifiers across the HTML5-JavaScript-CSS3 stack. The existing literature shows that a 

significant percentage of defects observed in real-world codebases belong to this 

category. Existing work focuses on semantic static analysis, while this thesis attempts to 

tackle the challenges that can be solved using syntactic static analysis. This thesis 

proposes a tool for quickly identifying defects at the time of injection due to 

dependencies between HTML5, JavaScript, and CSS3, specifically in syntactic errors in 

string identifiers. The proposed solution reduces the delta (time) between defect injection 

and defect discovery with the use of a dedicated just-in-time syntactic string identifier 

resolution tool. The solution focuses on modeling the nature of syntactic dependencies 

across the stack, and providing a tool that helps developers discover such dependencies. 

This thesis reports on an empirical study of the tool usage by developers in a realistic 

scenario, with the focus on defect injection and defect discovery times of defects of this 

nature (syntactic errors in string identifiers) with and without the use of the proposed 

tool. Further, the tool was validated against a set of real-world codebases to analyze the 

significance of these defects. 
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CHAPTER 1 

INTRODUCTION 

In my research I seek to create models and tools to improve productivity of the modern 

web developer. The modern web developer repeatedly deals with syntactic dependencies 

in the DOM and render trees of the browser, and lacks the tool support to identify and 

resolve the dependencies rapidly. This method and tool is important as it addresses a 

common, prevalent issue for developers in a manner tied directly to productivity, thereby 

saving time and improving quality. 

 

The following sections discuss the topics that will help the reader better understand the 

concepts behind the research problem and put them in a better position to get to the crux 

of the research. The discussion begins with modern day web applications and how the 

web has evolved, how this evolution has given rise to syntactic dependencies that are 

difficult to keep track of, how it impacts the developers and how are such defects 

significant. The final section will revisit the research questions and discuss them in detail. 

 

1.1 MODERN DAY WEB APPLICATIONS 

The web was built with the purpose of document sharing [1], with the server generating 

HTML pages with almost no JavaScript or CSS. This means that most of the content was 

static and the server was the main source of all the client side documents. The minimal 

JavaScript and CSS ensured very little interaction between the Document Object Model 

(DOM) and the scripts and stylesheets. As the web evolved, this trend began to change. 

The client side is no more a “thin-client”, instead, a lot of functionality is client driven. 
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Static HTML pages generated by a server gave way to dynamic web pages with a lot of 

user interaction, runtime DOM manipulation, and client-server interaction. Mesbah, et al. 

[2, pp. 210] have very aptly described modern day web application as “.. stateful 

asynchronous client/server communication, and client-side runtime manipulation of the 

DOM tree ..”. Therefore, with the help of these characteristics, it is very clear to see that 

modern day web applications are front-end heavy, meaning more of HTML5, JavaScript, 

and CSS3, written by developers. Statistics have shown this claim to be true. 

httparchive.org [3] has analyzed almost half a million websites gathered solely based on 

the Alexa Top 1,000,000 sites [4]. As can be seen from Figure 1, over the past six years, 

the size of HTML5 has increased by almost 200%, the size of JavaScript has increased by 

almost 300% and the size of CSS has increased by almost 300%. The clearly shows how 

rapidly the size of HTML5, CSS3 and JavaScript is growing on the client side. It is also 

important to note here that this data is just for the past 5.5 years. If this trend continues, 

then we should expect a similar growth over the next 5 years or so. To help the user 

better understand the comparison, Figure 2 shows a side by side comparison of the data 

from Nov 15th, 2010 vs the data from Feb 1st, 2016. 
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Figure 1. HTML,JavaScript and CSS from Nov 15th,2010 to Feb 1st,2016 respectively[3] 

 

Figure 2. Data comparison between Nov 15th, 2010 and Feb 1st, 2016 [3] 

To summarize, this shows that the size of HTML5, JavaScript and CSS3 has been 

increasing. This means that the front end web developer has to deal with huge codebases 

that span across three different kinds of languages. 

 

1.2 SYNTACTIC DEPENDENCIES 

As a web developer, this shift towards the front end stack means that the developer has to 

write code in HTML5, CSS3, and JavaScript. These are three different languages with 
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their own characteristics; HTML5 is a markup language that is used to create the 

structure of the web pages; CSS3 is style-sheet language that is used to provide 

presentation to the HTML5 document; JavaScript is a dynamically typed interpreted 

language that provides dynamic nature to the otherwise static HTML5 documents. 

JavaScript gives the developer an ability to manipulate the underlying page structure (the 

DOM) at runtime. 

 

While writing a front-end web application, a developer has to keep a track of the DOM in 

the HTML5, the associated JavaScript, and the associated CSS3 stylesheets as well. 

Because of this interplay, there are a lot of syntactic dependencies created. Figure 3 can 

help better illustrate the concept of syntactic dependencies. 

 

Figure 3. Syntactic Dependencies across the HTML5-JS-CSS3 stack[5, pp. 4] 

 

Given the nature of these languages and the dependencies between them, modern day 

web applications are prone to having defects. And as more and more behavior is moving 
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to the front-end, errors in this technology stack are no longer cosmetic faults but 

significant defects that impact the correctness of the application. The developer has to 

keep track of how the DOM accesses the JavaScript and vice-versa, how the DOM 

accesses the CSS3 stylesheet and vice-versa, how the JavaScript accesses the CSS3 

stylesheet and vice-versa. Figure 3 illustrates the concept at a very small scale. For 

example, the button in index.html has an onclick event that is handled by the 

getSomeData() method in the myScript.js file. Similarly, the myScript.js file 

attempts to manipulate the content of the DOM by accessing the serverResponse 

DOM element by its ID. The div that contains the button uses a style myCssClass as 

defined in the theme.css file. So even in about 20 lines of code, it is very easy to see 

the nature of these dependencies. And the developer can easily make an error resolving 

these dependencies. These errors can range from typographical errors to non-existent 

constructs like ID and functions, etc. It becomes very difficult for the developer to keep 

track of such dependencies as the size of the codebase increases.  

 

From the statistics shown above in figures 1-2, it is clear that the size of the codebase is 

indeed very large, and the example of Figure 3 demonstrates that dependencies between 

the component technologies are pervasive.  It is essential to note that in all of the modern 

web applications, these three languages work in parallel, making them prone to 

dependency related defects. Ocariza, et al. [6] found that most of such defects 

(specifically JavaScript) are injected by the programmers in the code itself. I will further 

explore the errors found in real-world codebases and how it maps to these dependencies 

in Chapter 2. 
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1.3 CURRENT PRACTICES OF HANDLING SYNTACTIC DEPENDENCIES 

In most scenarios, such defects are not caught even during testing (unit and integration). 

Currently, the most common method used by developers to test such dependencies is to 

run the code in the browser, see the results and look for any error message in the console 

or any undesirable behavior in their application. The most common tools for this purpose 

is either the Google Chrome Dev tools (Figure 4) or Firefox Firebug (Figure 5). There are 

different components of these tools that help the developer map the dependencies and 

find the defects if any. In most cases, any JavaScript related defect is directly caught by 

looking at the “console” view. But CSS related defects can only be found through a 

visual inspection of either the functionality of the module or through a code inspection. 

 

Figure 4. Console tab of Google Chrome Dev tools 

 



  7 

 

Figure 5. HTML DOM and CSS Style view of Firebug 

 

This round trip is not only an overhead adding to the development time and cost, but is 

also very error-prone. When a developer injects a defect, the only way for them to 

discover this injection is by opening the web application on a browser, inspect the code 

by using either Google Chrome dev tools or Firefox Firebug, and then find the defect. 

Even the fix validation would require the developer to go through the same round trip. 

Also, because these languages do not include a “compile” step, this round trip is a way 

for the developers to look for syntax errors. This impacts developer efficiency a lot as the 

developer is expected to spend a significant amount of time during their development to 

go through this round trip technique of development. 

 

1.4 DEFECTS DUE TO SYNTACTIC DEPENDENCIES 

“A defect is an instance in which a requirement is not satisfied.” [7, pp. 745]  The 

dependencies across the HTML5-JavaScript-CSS3 stack make it highly prone to defects 

committed by developers. One of the most common errors developers make is to provide 

incorrect string identifiers across the HTML5-JavaScript-CSS3 stack. The existing 
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literature [6][8][10] shows that a significant percentage of defects observed in real-world 

code bases belong to this category. I further investigate the existing observations in 

Chapter 2. It is important here to note that such defects do exist and are caused by the 

dependencies across the stack. 

 

The literature [9] shows that 80 percent of the defects are caused by 20 percent of the 

modules. In this case, when I talk about defects generated due to dependencies in the 

HTML5-JavaScript-CSS3 stack, the main causes of those defects can be traced back to 

the DOM. In fact, an empirical study of client-side JavaScript bugs has shown that 65% 

of the bugs are DOM related [6]. In another study, the authors have observed that DOM 

manipulation is one of the most common usages of JavaScript in modern web application 

and have recommended static analysis tool designers to consider the DOM as a 

component in their tools [10]. This is a clear indication that most of the defects are 

caused by interaction between the DOM and JavaScript. Although no similar studies have 

been found for DOM and CSS interactions, it is easy to extend these results and expect a 

similar behavior for DOM and CSS interactions. 

 

When a developer introduces a defect into the code, this activity is termed as defect 

injection. And when the defect is found by either the same developer or some other 

developer/user, this activity is termed as defect discovery. I contend that the existing web 

developer toolset and practices make this delta between defect injection and defect 

discovery a relatively large amount of time. This is because of the round trip between the 

IDE/text editor to the browser’s dev tools to inspect the console and/or the behavior of 
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the application to determine the existence of a defect. Even when changes are made, this 

round trip is a mandatory step to determine the status of the defect. This necessary evil 

adds to the delta between defect injection and defect discovery, thereby affecting 

developer productivity. Researchers recommend reducing this delta to as minimum as 

possible: “In order to eliminate defects from the product it is necessary to address their 

prevention, or detection and resolution as soon as possible after their injection during 

development and maintenance.” [7, pp. 746]. It is also recommended that such defects be 

found and fixed before delivery to avoid cost: “Finding and fixing a software problem 

after delivery is often 100 times more expensive than finding and fixing it during the 

requirements and design phase.” [9]. This thesis focuses on defect injection and defect 

discovery as an in-phase activity rather than across phases. This is due the nature of front 

end web development. This micro optimization will help save many seconds per 

developer and when aggregated over the entire development team it will amount to a lot 

of valuable time. 

 

1.5 RESEARCH QUESTIONS 

The discussion and findings above are a strong motivation towards answering research 

problems surrounding developer productivity and the significance of syntactic 

dependency defects in modern day web applications. These motivations are discussed in 

detail in the literature review chapter. I now present the research questions that this 

research targets: 

 RQ1: How significant are syntactic errors in string identifiers referencing DOM 

elements in the HTML5-JavaScript-CSS3 stack? 
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 RQ2: What is the delta (time or cost) between defect injection and defect 

discovery in new HTML5-JavaScript-CSS3 style applications? 

 RQ3: Does a dedicated just-in-time syntactic string identifier resolution tool 

significantly reduce delta time/cost from RQ2 for a significant portion of real 

problems (RQ1)? 

 

As a recap, I revisit these research questions in light of the concepts discussed in the 

previous sections in this chapter. Developers often commit the mistake of using incorrect 

string identifiers across the HTML5-JavaScript-CSS3 stack. For example, assume an “id” 

attribute declared for an HTML5 element is foobar. Developers commit the mistake of 

accessing it as fooBar or Foobar, etc. Also, as the code grows larger and larger, with 

new changes being added, it is difficult to keep track of such identifiers and these errors 

become significant. RQ1 attempts to identify the significance of such errors, defined as 

the severity of the defect on system behavior. 

 

There are different development environments and toolchains used by developers for 

front-end applications which impact the delta between defect injection and defect 

discovery. The typical developer uses Chrome Developer tools or Firefox Firebug to test 

changes to code from a text-based IDE. The time it takes to round-trip test DOM-related 

development in these tools is considered the standard for defect injection and defect 

discovery. RQ2 attempts to define the typical delta distribution. 
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RQ3 attempts to reduce the delta observed in RQ2 by providing the developers with a 

dedicated just-in-time syntactic string identifier resolution tool which will help the 

developer to discover the defect quicker than traditional methods in practice today. 

 

1.6 THESIS OVERVIEW 

This thesis will attempt to contribute towards helping the developers manage 

dependencies with the help of a tool that maintains a symbol table of the dependencies 

identified above. In Chapter 2, I present the current state of research and literature around 

static analysis in web applications. The proposed solution is in the class of static analysis 

tools but focuses on a very specific problem. In Chapter 3, Dependency and Error 

Modeling, I discuss the dependencies presented above in much more detail. Further, an 

taxonomy of errors is presented that is mapped to these dependencies to help provide 

better error messages to the developers to help resolve the defects quickly. Chapter 4 

discusses about how the tool is implemented and the flow of the tool. Chapter 5, the 

validation chapter describes about how the validation was conducted in order to answer 

the three research questions presented above. In Chapter 6, I summarize the main 

contributions, limitations and present future work related to this research. 
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CHAPTER 2 

LITERATURE REVIEW 

Front end web application development is changing very rapidly in the industry today. 

Every year new frameworks, libraries, and technologies related to HTML5, CSS3 and 

JavaScript are launched, while existing ones evolve rapidly. It is difficult for the research 

community to keep pace with such rapidly changing environment. Some researchers have 

tried to provide a comparative evaluation of commonly used frameworks to help other 

researchers and practitioners to choose from a plethora of available frameworks. Gizas et 

al. [11] have done a comparative evaluation and discussed quality and performance 

which might help developers decide which JavaScript framework to pick. Graziotin et al. 

[12] have provided a framework which might help researchers and practitioners do a 

comparative analysis of JavaScript frameworks. This shows the variety and magnitude of 

various frameworks available today. 

 

There has been some research related to HTML5, JavaScript, and CSS3 in isolation. 

Some researchers have spanned across two of the three technologies. Almost little to no 

research exists across these three technologies, spanning across the entire stack. Most 

research is concentrated on either JavaScript code semantic analysis or CSS code 

semantic analysis. Also, most of the current research focuses on security, performance, 

and optimizations. There is almost no literature that talks about syntactic static analysis 

across HTML5, CSS3, and JavaScript in light of software engineering concepts like 

defect injection and discovery. Existing work [13] [14] [15] [16] [17] focuses on 

semantic static analysis, while this research project attempts to tackle the challenges that 
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can be solved using syntactic static analysis. The following sections discuss briefly the 

existing research around static analysis of front-end web applications. Then I discuss the 

nature of most common front end web application defects. In section 2.5, I discuss the 

prior work which has been extended by this research project. 

 

2.1 STATIC ANALYSIS OF WEB APPLICATIONS 

Most research around static analysis of web applications is focused on vulnerability 

detection and defect detection. The web applications discussed in these research projects 

are focused on PHP based web applications. Medeiros et al. [18] proposed a tool called 

Web Application Protection (WAP). This tool addresses flow-based security issues 

related to confidentiality and integrity. The tool uses a static analysis approach to find 

vulnerabilities by generating an abstract syntax tree and doing taint analysis. Scholte et 

al. [19] discuss a tool called IPAAS (Input Parameter Analysis System), which is an 

automated input validation tool. The main purpose of this tool is to prevent input 

validation related vulnerabilities. The approach is a combination of dynamic and static 

analysis, where the vulnerability validators are applied at run time. Artzi et al. [20] 

discuss a tool called Apollo that is used to find bugs in web applications. The bugs that 

the tool intends to capture are of two types, execution failures (crashes) and HTML 

failures (malformed HTML). The tool uses dynamic test generation and explicit-state 

model checking. Shar et al. [21] proposed a solution to develop a fine-grained 

vulnerability prediction approach for web applications. The discussion in this paper is 

built on top of their previous work which was a tool called PhpMiner [22]. The approach 

is based on input validation and input sanitization. Hybrid program analysis is used to 
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make the best of both static analysis and dynamic analysis. Both supervised and semi-

supervised learning methods are used to tackle the problem of limited training data. 

Jovanovic et al. [23] also explore static analysis for detection of vulnerabilities in PHP 

based web applications. They have used flow-sensitive, interprocedural and context-

sensitive dataflow analysis. To improve correctness and precision, they use alias and 

literal analysis. Their tool, called Pixy, is an open source prototype. Using the tool, they 

have discovered 15 previously unknown vulnerabilities and reconstructed 36 known 

vulnerabilities with a false positive rate of 50%. Huang et al. [24] used static analysis and 

runtime inspection to detect vulnerabilities and enhance the security of web applications. 

Their approach exploits information flow and uses lattice-based static analysis algorithm. 

During the analysis, if any code block is considered vulnerable, a runtime guard is 

inserted to enhance the security of the web application. Their proposed solution is 

implemented as a tool called WebSSARI (Web application Security by Static Analysis 

and Runtime Inspection). 

 

All the examples above use static analysis for vulnerability detection and defect detection 

in web applications. All papers presented above are focused on PHP. The focus of this 

thesis is in the domain of web applications, but it targets modern web applications. The 

examples above were discussed to present the current state of art in static analysis and 

web applications. 
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2.2 JAVASCRIPT ANALYSIS 

There are certain papers that draw attention to the need to improve tools for JavaScript 

developers. Andreasen et al. [25], in their position paper, discuss three major JavaScript 

tools used for various purposes. The tools discussed cover dataflow analysis, code 

refactoring and code coverage testing. The tools are TAJS [26], JSRefactor[27] and 

Artemis[28]. The paper discusses how each of these three areas are a challenge in 

themselves when it comes to JavaScript, owing to the nature of the language. Dataflow 

analysis for JavaScript is interesting because it helps find type related errors and dead-

code. Pointer-based static analysis cannot find dead code and hence, often leads to false 

data. Also, pointer-based static analysis is context-insensitive, whereas, dataflow analysis 

is partially context-sensitive. Though there are such shortcomings with pointer analysis, 

various other research endeavors[15] [17] have shown that pointer analysis alongside 

other techniques can help overcome the drawbacks of pointer analysis. 

 

Andreasen et al. [13] acknowledge the need for better tools for JavaScript programmers. 

On the other hand, the authors also discuss the challenges with static analysis of 

JavaScript due to the dynamic nature of the language and the heavy use of libraries. 

Although there has been previous work done to achieve determinacy using dynamic 

analysis, the technique proposed can help to integrate determinacy in static analysis, and 

can help in avoiding the drawbacks of dynamic determinacy analysis. The author 

discusses an analysis technique that combines selective context and path sensitivity, 

constant propagation and branch pruning. Two major tools used for JavaScript analysis 

have been compared, TAJS and WALA. Previous work has shown that WALA [29] [30] 
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is not capable of analyzing jQuery because it uses pointer analysis. On the other hand, 

TAJS [26] uses dataflow analysis, which is what the authors recommend. Based on the 

results it can be said that determinacy information can be inferred and exploited in static 

analysis of JavaScript code. Therefore, high precision data flow analysis is a promising 

approach for semantic static analysis of JavaScript code. 

 

Jensen et al. [16] discuss a technique that uses static analysis to reason about data and 

control flow in JavaScript apps. The work is built on top of TAJS [26]. The main goal of 

this work is the ability to show the absence of errors and find dead and unreachable code. 

They claim their work to be the very first in data and control flow analysis of JavaScript 

web apps. This paper discusses the need of modeling the HTML DOM and Browser API 

to handle object properties and function parameters. Even though such models are 

needed, they further discuss the challenge of non-standard implementations and 

variations in browser implementations. Their work has some significant results showing 

that dataflow analysis using models for the DOM and Browser API can be really helpful. 

 

Static analysis of JavaScript code using pointer analysis has certain drawbacks, namely, 

lots of false positives (due to flow and context insensitivity) and inability to work in the 

presence of dead code. Madsen et al. [17] discuss an approach that uses pointer analysis 

alongside use analysis to tackle such issues. Also, this approach helps to use static 

analysis for JavaScript in the presence of libraries and frameworks. The basic idea behind 

the combination of these techniques is to be able to discover properties of returned 

objects from libraries. The use analysis is done in two ways; partial inference (in the 
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presence of stubs) and full inference (in the absence of stubs). The purpose of stubs is to 

describe all objects, functions, and properties, which can help to establish flow 

information and include that in static analysis. They use Andersen-style points-to 

analysis, which is relatively straightforward technique, but is flow and context-

insensitive, and field-sensitive. Their entire work is focused on Windows 8 applications. 

Their technique is very elaborative and seems to be a good fit for semantic static analysis 

of JavaScript applications in the presence of libraries and frameworks. 

 

Bajaj et al. [14] discuss the implementation of a tool called Dompletion that provides 

automated code completion suggestions by analyzing DOM structures and JavaScript 

code. The authors mention that there is no existing work that discusses such a tool.  The 

approach is to extract various DOM states from the application and infer patterns from 

the observed DOM tree. Then, the tool captures and analyzes all JavaScript code that 

interacts with the DOM and it reasons about the consequences of such interactions on the 

DOM state. Finally, it provides code completion suggestions. The implementation of the 

tool is also done in JavaScript and the target IDE is Brackets. The tool implementation 

approach is as follows: 

1. DOM Analysis 

2. JS Code Analysis 

3. Suggestion generation 

To improve the time and space complexity of the tool, compression of the list of 

suggestions is done using the following: 

1. Eliminate duplicate DOM element locators 
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2. Combine DOM element locators with similar IDs 

3. Combine DOM element locators with similar classes 

The concept of DOM element locators is similar to the syntactic string identifiers that this 

thesis is addressing. This paper touches a small portion of such identifiers and uses them 

only for code completion purposes. 

 

Schäfer et al. [15] discuss another JavaScript code completion tool called Pythia. Their 

approach is similar to Madsen, et al. [17] in that they also combine static analysis and 

usage-based property inference. The major difference is that Madsen, et al. used stubs to 

generate property inferences, but they are using dynamic analysis of libraries/frameworks 

using the test suites provided by the libraries/frameworks to generate models to infer 

property information. They use static analysis to infer properties from user code. They 

use usage-based property inference to tackle incomplete programs that are under 

development. They use dynamic analysis to establish models which can then be used with 

usage-based property inference to tackle the analysis of JS code in 

libraries/frameworks/native APIs. They also use Andersen-style points-to static analysis. 

Their tool is written in JavaScript and uses WALA.  

 

All the papers above discuss the current state of art in semantic JavaScript analysis, with 

TAJS and WALA being the most well-known. These papers tackle the difficult problem 

of static analysis of JavaScript which is a dynamically typed language. This thesis, 

however, is focused on syntactic HTML5, JavaScript, and CSS analysis and targets a 
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whole different set of problems related to developer productivity when compared with the 

papers above. 

 

2.3 CSS ANALYSIS 

Even though CSS is used widely for various purposes, very little literature talks about 

static analysis of CSS. The limited existing literature on CSS focuses on CSS refactoring 

and duplicate CSS rules [31] [32] [33] [34] [35] [36] with the aim to reduce CSS rules to 

optimize rendering of the HTML pages. 

 

Bosch et al. [31] discuss a tool that automatically refactors CSS files to reduce the size of 

the style sheets. This refactoring preserves the rendering semantics and does not affect 

the web page style rendering. Their techniques are based on static analysis of semantic 

relations between CSS selectors and media queries. Their results showed that the average 

size reduction of CSS files was 7.75% with a maximum of 17.83%. Mazinanian et al. 

[32] discusses an automated approach to remove duplicate CSS code by detecting three 

different types of CSS declaration duplication. Their tool further suggests presentation-

preserving refactoring opportunities that can help reduce the size of the CSS files. Their 

results showed that average size reduction was 8% and the maximum size reduction was 

35%. Bosch et al. [33] discuss a tool that detects unnecessary property declarations in 

CSS files based on semantical relations between CSS selectors. Their tool observed 

4.95% of unnecessary property declarations in CSS files. Hague et al. [34] propose a tree 

rewriting approach to remove redundant CSS rules. Their tool TreePed uses static 

analysis to find and remove redundant CSS rules by using a tree rewriting model. 
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Geneves et al. [35] were one of the first ones to statically analyze CSS files. Their 

approach also uses tree logics for statically detecting unused and redundant CSS rules. 

Mesbah et al. [36] discuss a tool called CILLA, which finds unmatched and ineffective 

selectors, overridden declaration properties, and undefined class values. Their results 

show 60% of unused CSS code in various web applications. 

 

All these papers discussed the aforementioned approach of CSS static analysis from a 

semantic perspective and their results show that CSS files are often bloated and contain 

many unused CSS rules. The existing literature on CSS focuses on CSS refactoring and 

duplicate CSS rules with the aim to reduce CSS rules to optimize rendering of the HTML 

pages. This thesis instead focuses on unused CSS rules because of syntactic defects in 

string literals. More often than not, unused CSS code does not directly produce defects 

and hence unused rules are ignored. There can also be several cases where an ID or 

selector is referenced in the HTML but is undefined in CSS and vice-versa. Hence, there 

is a need for a tool that can help figure such dependencies. There is no way for the 

developers to find any errors with the CSS rules because the browser does not report 

errors on the console. This results in several defects in CSS files going unnoticed which 

in turn can have unwanted effects like latency in page rendering (performance), dead 

code (maintenance), and multiple rules over the same elements which would lead to 

latency. The only way for a developer to know if CSS is broken is by testing it in the 

browser. This case is worse than that of JavaScript because JavaScript throws error 

messages in the console of the browser. Hence, if the developer is not careful enough, 

they might not notice a defect related to CSS. Moreover, CSS techniques like hide/show 
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are a common alternative used by developers instead of DOM manipulation. These are 

further reasons to investigate dependencies between CSS and HTML.  

 

2.4 MOST COMMON DEFECTS 

The existing literature validates our hypothesis that syntactic errors exist in modern web 

applications. In an empirical study conducted by Ocariza, et al. [10] on JavaScript errors, 

they noted the following:  

For example, the error message “C is null” was encountered in the Yahoo 

application. Subsequent analysis revealed that the error was caused by a 

typographical error in the value of the “id” attribute of a div element in the DOM. 

The incorrect id caused the getElementById method to return a null value, which, 

in this case, was assigned to the variable “C”. The variable “C” was later used to 

update the class name of the div element, causing a null exception to be thrown. 

([10], pp. 104) 

This is a classic example of syntactic error caused by string identifiers in modern web 

applications. Moreover, it is important to note that such a defect is caused by dependency 

between JavaScript and HTML5; avoiding the defect requires the developer to trace the 

set of IDs used in the DOM to their respective references in JavaScript. The authors 

categorized the above defect under the umbrella of NullExceptions. Among other 

categories were Undefined Symbol and Syntax Errors. Further, they report these 

findings: “null exception errors make up 9.3%; undefined symbol errors make up 28.4%; 

and syntax errors make up 4.1%” ([10], pp. 105). That amounts to 41.8% of the errors 

that they observed. Taking into account the Yahoo Application example quoted above, it 
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is safe to conclude that a certain significant percentage of defects contributing to 41.8% 

of the errors are caused by syntactic errors and typographical errors in string identifiers. 

In the same paper, the authors observed: “There is a significant correlation between the 

total number of distinct null exception errors and the number of functions called 

dynamically by the web application.” ([10], pp. 107). Further, they note that: “... null 

exception errors are often caused by failed accesses to the DOM of the web application 

…” ([10], pp. 107). Although they have not categorized it further, but it can be seen that 

these failed DOM accesses can be because of three major reasons: 

1. Invalid syntax/selector 

2. Typographical errors 

3. Deleted DOM elements 

This is evidence concluding the existence of defects due to syntactic errors, specifically 

in string identifiers. In another paper, Ocariza, et al. [6] found that “approximately 14% 

of the bugs were caused by a mistake in writing a string literal in the JavaScript code. 

These include forgetting prefixes and/or suffixes, typographical errors, and including 

wrong character encodings.” ([6], pp. 61) and “Interestingly, around 7% of bugs resulted 

from syntax errors in the JavaScript code that were made by the programmer.” ([6], pp. 

62). Hence, taking into account both of these observations, it can be seen that syntax 

related issues cause a total of 21% defects in JavaScript code. Another common category 

of defects found by the authors was ““Incorrect Method Parameter” faults account for 

around 74% of JavaScript faults” ([6], pp. 59). Some of these errors are caused by 

methods invoked by events on DOM elements and are also a source of dependency 

related defects. Using manual classification scheme for quantitative analysis, and a 
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qualitative reading of defect reports for qualitative analysis, the authors' claim is that 65% 

of all JS defects are DOM related, and 80% of such defects are of high impact or severity. 

In another paper, Ocariza et al. [37] further show that 79% of JavaScript errors are DOM-

related errors using fault localization approach for JavaScript-based web applications. 

 

Although very little literature exists that illustrates the same concepts related to CSS, it is 

not very difficult to find certain common patterns that can be applicable to CSS as well. 

Mazinanian, et al. [32] stated that: “While CSS has a relatively simple syntax, some of its 

complex features, such as inheritance, cascading, and specificity , inherently make both 

the development and maintenance of CSS code cumbersome tasks for developers” ([32], 

pp. 496). I contend that because of this nature, it makes CSS error-prone.   

 

A dedicated just-in-time syntactic string identifier resolution tool coupled with JavaScript 

and CSS lint checkers can help map these dependencies and prevent the kind of errors 

discussed above. It will also help to significantly reduce the delta (time or cost) between 

defect discovery and defect injection. Ocariza, et al. [8] found that amongst the most 

common fixes used to fix JavaScript faults, a certain percentage is where the developers 

directly modified string literals, thereby prompting the need for a tool that could help 

prevent such defects altogether, i.e., reducing the delta to 0. In another paper [6], the 

authors report that “We found that DOM-related faults have an average triage time of 

26.4 days, compared to 44.4 days for non-DOM-related faults. On the other hand, DOM-

related faults have an average fix time of 90.8 days, compared to 66.8 days for non-
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DOM-related faults.” ([6], pp. 62). The proposed tool can help reduce this delta 

significantly for DOM-related faults. 

 

Thus, as can be seen from above, it is important to establish dependencies across 

HTML5, JavaScript and CSS3. This research project also focuses on how such a 

dependency model can help significantly reduce the delta between defect injection and 

defect discovery in front-end web applications. 

 

2.5 PRIOR WORK 

Gupta et al. [5] [38] proposed a dependency model for establishing the dependencies 

across the HTML5, JavaScript and CSS3 stack. A modified version of this model has 

been used by this research project and is discussed in the Dependency and Error 

modeling chapter. The completeness and soundness of this approach was validated by 

conducting user studies and observing precision and recall in finding defects related to 

dependencies. These studies were repeated as a part of prior validation for this research 

work. The prior validation also helped make the prior work results stronger. As a 

consequence of the prior validation, I had some questions which were the main 

motivation for this research. These are discussed in section 2.5.16. 

 

2.5.1 PRIOR VALIDATION 

In this section I present the results of the prior validation experiments conducted. These 

experiments were an exact rerun of the experiment designed in [38]. These experiments 

helped to reaffirm the observations from [38] in terms of the soundness and completeness 
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of this approach by using precision and recall as measures. The findings from prior 

validation helped pave the way for this research and also helped to modify the 

dependency model that was used in this research.  

 

2.5.2 EXPERIMENT SETUP 

This experiment was an exact repeat of the experiment as defined in [38] with two 

different populations. The experiment is focused on measuring the productivity and 

efficiency of developers using “HJCDepend” in discovering and removing defects by 

calculating the following metrics [38]: 

 Precision: The fraction of retrieved defects that are relevant: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 |{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}  ∩  {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}|
 

This tells us the accuracy of the developer in finding defects. 

 Recall: The fraction of relevant defects found by a developer out of the total 

defects that are present in a body of code: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}  ∩  {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑒𝑓𝑒𝑐𝑡𝑠}|
 

This would tell us what percentage of the total defects present in the body of code 

was found by the developer. 

 Defect discovery rate: The average time taken by a developer to find a defect in a 

body of code. This will indicate how fast a developer finds defects. 

 Defect removal rate: The average time taken by a developer to remove/ fix a 

defect in a body of code. This will indicate how efficient a developer is in 

removing defects. 
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It is important here for the reader to note that this experiment does not answer any of the 

research questions. Instead, it helps us reaffirm the approach by soundness and 

completeness measures. Soundness is determined by precision and completeness is 

determined by recall. 

 

2.5.3 PROTOCOL 

Two separate user studies were conducted on two different groups of student developers. 

They were asked to debug an existing body of code for dependency related defects with 

the help of HJCDepend and another group of roughly equivalent skill set of developers 

that debugged the same code but without HJCDepend. Each developer was given a total 

of 75 minutes to do two tasks. For the first 45 minutes, they were not allowed to make 

any changes to the code and were asked to report as many defects as they could find in 

the source code. They were not aware of the total number of actual defects present in the 

code and were told that once they were convinced that they have found all the defects in 

the source code, in the remaining time of the study their second task was to remove the 

defects and report each defect they fixed. The second activity had to be at least of 30 

minutes. 

 

2.5.4 SOURCE CODE 

The source code used for this user study is the same as used in [38]. It was a two-page 

web application which consisted of 2 HTML5 files (total 100 lines), 4 JavaScript files 

(total 85 lines) and 3 CSS3 files (total 142 lines). It was seeded with dependency related 

defects. 



  27 

 

2.5.5 ENVIRONMENT 

The participants had to use Windows 7 desktops with similar configurations. The group 

not using the tool had the freedom to use any IDE and any tool for the activity. The group 

using the plugin had to use Eclipse IDE. 

 

2.5.6 PARTICIPANTS 

A pre-survey was conducted to recruit participants. The identity of the participants was 

kept anonymous. Based on the responses, the participants were sampled into two groups 

with equivalent skill set. The study was done with two different groups of participants, 

one with n=33 and the other with n=19. 

 

2.5.7 RESULTS 

There were two different user studies conducted with different groups of participants. 

The results are not aggregated and are present separately for each user study. The group 

using the plugin is referred to as group B and the group not using the plugin is referred to 

as group A.  The first user study had n=33 and the second one had n=19 participants. 

 

In the first user study, the group using the tool had a high precision of 81.22% compared 

to 68% of the group not using the tool. The recall was also higher for the group using the 

tool. It was 62% as compared to 43.36% of the group not using the tool. The average time 

taken to report valid defects for the group using the tool was 60.62 seconds as compared 

to 97.65 seconds for the group not using the tool. 
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In the second user study, the group using the tool had a high precision of 77.4% 

compared to 72.5% of the group not using the tool. The recall was also higher for the 

group using the tool. It was 51.36% as compared to 36.25% of the group not using the 

tool. The average time taken to report valid defects for the group using the tool was 99.64 

seconds as compared to 160.59 seconds for the group not using the tool. 

 

2.5.8 OBSERVATIONS 

For both the user studies, recall is always higher for the group using the plugin, and 

always over 50%. That means the group using the plugin is able to find more valid 

defects. Similarly, for the both the user studies, precision is also always higher for the 

group using the plugin, and always higher than 70%, meaning the group using the plugin 

found 7 valid defects in every 10 defects that they reported. On an average, people who 

used the plugin found valid defects faster. For both user studies, the group using the tool 

found defects 1.61 times faster. 

 

It can be seen in Figure 6 and Figure 7 that the group using the plugin found more valid 

defects. The group using the plugin is represented by the red color and the group is 

represented by the blue color. 
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Figure 6. User Study 1 

 

Figure 7. User Study 2 

 

Figure 8 and Figure 9 show the average time taken to report defects. The red color 

represents the group using the plugin and the blue color represents the group not using 

the plugin. 
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Figure 8. User Study 1 

 

Figure 9. User Study 2 

 

For both user studies, the p value computed was 0.1 which is greater than desired value of 

0.05, but not greater than 0.1. The null hypothesis for this experiment is that the means 

observed for the two groups are the same, suggesting the time taken is not related to 

using the HJCDepend tool. The alternate hypothesis is that the means are different, or 
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that the time taken is related to using the HJCDepend tool. The observed value shows 

weak evidence that the null hypothesis does not hold, meaning not very strong evidence 

that the means observed for the two groups are different from each other. The d value 

computed was 0.5 which signifies medium effect size and medium practical significance. 

These two values show that the results do not present very strong evidence, but are still 

significant enough to not be discarded.  

 

For User Study 1, Group A takes 41.3 seconds on average to fix the defects, compared to 

38.7 for Group B. For User Study 2, Group A takes 59.3 seconds and Group B takes 38.7 

seconds. 

 

2.5.9 DISCUSSION 

There were two main limitations in these user studies. First, the p value and d value 

computed for both the user studies imply that a larger sample size is needed to provide 

stronger evidence. Second, the study was conducted with student developers who may 

not be at the same skill level as the professional developers. 

 

The prior validation experiment shows that this particular approach towards dependency 

management is effective in terms of soundness and completeness. As a result of 

conducting these studies, I had a few questions that lead to motivation for this research. 

The questions were:  

 How can the dependency model be improved?  
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 Are there any other measures more impactful than precision and recall to measure 

developer productivity? 

 How does this approach compare to newer literature? 

These questions were a motivation towards taking the next steps for this research. This 

lead to the focus on using delta between defect injection and defect discovery as a 

measure as compared to precision and recall. The inaccuracy in self-reported data was 

also a factor contributing towards the focus on delta between defect injection and defect 

discovery. The next chapter discusses the modified dependency model and the error 

taxonomy that has been used. The modified dependency model and an error taxonomy 

also required a new tool to be implemented. The validation approach was entirely focused 

on measuring defect injection and defect discovery times. The implementation of the tool 

is discussed in chapter 4 and the validation is discussed in chapter 5. 
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CHAPTER 3 

DEPENDENCY AND ERROR MODELING 

The HTML5-JavaScript-CSS3 stack for front end development is very tightly coupled. 

To successfully render a web application on a browser, these three languages have to be 

parsed and loaded correctly. The discussion of how this works is beyond the scope of this 

research, but it is important to understand here that the developer has to deal with the 

dependencies between these three languages. It is important for the developer to 

understand these dependencies and tackle any defects generated because of them. 

Gupta [38] talks about dependency analysis between HTML5-JavaScript-CSS3 and 

provides a dependency model. Based on this dependency model, we further extend the 

concept of dependencies to establish an error taxonomy to categorize the dependencies 

more succinctly in order to provide better error messages for the developers using this 

static analysis tool. In the next section we briefly touch upon the dependency model as 

explained by [38], and then we discuss the error taxonomy used to further translate the 

dependency model for explaining the dependency errors to the developer using the tool. 

 

3.1 DEPENDENCY MODEL 

Table 1 shows the dependency model that this research project is using based on the 

model as defined in [38].        
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To → From HTML5 JavaScript (JS) CSS3 

HTML5 No dependencies 

identified. 

1. Links from 

HTML5 to JS files. 

2. Event listeners in 

HTML5 file. 

Class attribute in 

HTML5 elements. 

JavaScript

 

  

Through 

Document object 

1. Function calls 

within a function. 

2. Global variables. 

JavaScript adding CSS3 

class to DOM assuming 

it exists in one of the 

CSS3 files included in 

the webpage.   

CSS3 Other CSS3 

selectors like id, 

tag name.  

No dependencies 

identified.  

No dependencies 

identified. 

Table 1. Dependency Model (from [38]) 

 

The next few paragraphs discuss these dependencies briefly as presented in [38] and then 

map these dependencies to the proposed error taxonomy in our research. 

 

3.1.1 HTML5 to HTML5 

As identified in [38], there might be certain dependencies within the HTML5 document 

between different tags depending on the structure of the HTML5 document. Such 

dependencies are not in the scope of this research and hence, are not investigated further. 

 

3.1.2 HTML5 to JavaScript 

There are two major categories of dependencies between HTML5 and JavaScript: 

1. Links from HTML5 to JS files. 

2. Event listeners in HTML5 file. 
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The dependency because of Links originates from the code where the HTML5 document 

includes a reference to a JavaScript file. A simple example to illustrate this dependency is 

shown below: 

<script src=”js/someJavaScriptFile.js></script> 

 

The dependency because of event listeners arises because of user interaction with an 

element in the HTML5 document that has a corresponding event listener bound whose 

definition is in one of the associated JavaScript files. An example of such a dependency is 

shown below: 

<input type=”button” onclick=”myFunction()”> 

// .. in the JavaScript file .. // 

function myFunction(){ 

alert (“A button on the webpage was clicked”) 

} 

 

3.1.3 HTML5 to CSS3 

The most common CSS selector used in defining CSS rules is the class selector. A class 

selector is identified as a dependency in the model. An example of such a dependency is 

shown below:  

<div class=”myStyleByClass”></div> 

/* in the CSS file */ 

.myStyleByClass { 

   position: relative; 

} 
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3.1.4 JavaScript to HTML5 

This dependency exists because of the ability to reference HTML5 element through the 

document object. Such references are used to get a handle onto the HTML5 element and 

perform actions like event binding, DOM manipulation, etc. If the reference does not 

exist, it will lead to JavaScript errors. An example of such a dependency is shown below: 

var htmlElement = document.getElementById(“myDivContainer”); 

 

3.1.5. JavaScript to JavaScript 

The dependency model discussed in [38] presents various dependencies that might exist 

within a JavaScript file. However, such dependencies are not in the scope of this 

research. There has already been some research done in the field of JavaScript static 

analysis as presented in the literature review chapter. 

 

3.1.6 JavaScript to CSS3 

This dependency is an extension of the dependency between JavaScript and HTML5. We 

have already seen that JavaScript can access HTML5 elements using the document 

object. Once a reference has been obtained to any element, using JavaScript code, we can 

assign a CSS class to the HTML5 element. An example of such a dependency is shown 

below:  

document.getElementById(“myElement”).className = “myCssClass”; 
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3.1.7 CSS3 to HTML5 

The two common CSS selectors used for defining CSS3 rules are class selectors and id 

selectors. The class selector has been identified as a dependency in HTML5 to CSS3 

dependency. The other dependency is generated due to id selector. This dependency 

arises by accessing an HTML5 element using an id selector in a CSS3 rule. An example 

of such a dependency is shown below: 

<div id=”myStyleById”></div> 

/* in the CSS file */ 

#myStyleById { 

    margin: 5px; 

} 

 

3.1.8 CSS3 to JavaScript and CSS3 

For the scope of this research, I have not identified any relevant dependencies between 

CSS3 and JavaScript. Although there are dependencies like accessing a CSS class from a 

JavaScript file, but that has already been covered in JavaScript to CSS3 dependency. 

 

3.2 ERROR TAXONOMY 

Johnson, et al. [39] found in a study that developers are reluctant to use static analysis 

tools to find bugs because of many reasons. One of the prominent reasons was the 

inability of static analysis tools to provide understandable results. Developers say that it 

is difficult to make sense out of the error messages given by static analysis tool. Johnson, 

et al. [39] have also quoted some responses from developers, including: “it’s one thing to 
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give an error message, it’s another thing to give a useful error message.”([39], pp. 677) 

and “I find that the information they provide is not very useful, so I tend to ignore them.” 

([39], pp. 677). This shows that the developers need to be provided with descriptive and 

proper error messages that will help them understand the error and also help them 

understand how to fix the error. Based on the dependency model, I designed an error 

taxonomy that helps developers understand the error and the dependency better. The error 

taxonomy design helps to achieve this by building on the dependency model and 

providing more useful information about the dependencies and the errors. 

 

Figure 10, shows a classification based on the dependency model and other errors that 

have been taken into consideration. This classification also helps us understand 

dependency types that do not generate any errors; namely unused dependencies. 

 

 

Figure 10. Error Classification 
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“Syntax” errors are represented by ParseError. “Unused Ref ” refers to all those 

dependency constructs that are declared but are not used, and do not generate any errors. 

“File Not Found” categorizes all the dependencies between the HTML5 document and 

external files. All other classifications are extensions to the dependencies discussed in the 

dependency model above. 

 

The next step is to use this classification and generate a taxonomy that will be used to 

describe the errors and warnings as generated by the tool. The taxonomy is presented in 

Figure 11. 

 

 

Figure 11. Error Taxonomy  

The colors for each node in Figure 11 are the same as in Figure 10 to show the source of 

the node and its relation to the dependency model. This taxonomy categorizes the errors 

due to dependencies into two categories: “Error” and “Warning”. Warning is caused by 
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those dependency constructs that do not result in errors. These constructs are defined in 

the code but are not used. These are represented by “Unused Ref” in Figure 10. The 

“Error” category includes everything else as shown in Figure 10, because all those 

constructs can cause errors at runtime. 

 

3.3 CONTRIBUTIONS 

Based on the dependency model discussed in section 3.1 and the error taxonomy in 3.2, I 

developed a static analysis tool that helps developers to handle the dependencies in the 

HTML5-JavaScript-CSS3 stack. This static analysis tool can be used with Eclipse during 

development to quickly capture the defects injected due to dependencies. As discussed in 

chapter one, below are the research questions again: 

 RQ1: How significant are syntactic errors in string identifiers referencing DOM 

elements in the HTML5-JavaScript-CSS3 stack? 

 RQ2: What is the delta (time or cost) between defect injection and defect 

discovery in new HTML5-JavaScript-CSS3 style applications? 

 RQ3: Does a dedicated just-in-time syntactic string identifier resolution tool 

significantly reduce delta time/cost from RQ2 for a significant portion of real 

problems (RQ1)? 

By implementing a dedicated plugin for a development environment to help the 

developers quickly catch defects as they are injected, I am able to answer RQ2 and RQ3 

with the help of an empirical study discussed in chapter 5. Further, the error taxonomy 

helps in accurately determining how significant are dependency related errors in some 

open source codebases. This will help to answer RQ1. The results have also been 



  41 

discussed in chapter 5. Before presenting these studies the next chapter describes the tool 

built upon this conceptual foundation. 
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CHAPTER 4 

IMPLEMENTATION 

The main focus of the implementation was to develop a static analysis tool that can 

generate a symbol table to manage the dependencies as discussed in Chapter 3. It is 

important for the reader here to note that developing an algorithm to parse HTML5, 

CSS3 and JavaScript was not the main focus of this thesis. To parse the codebase, 

popular libraries and engines were used. This chapter discusses how the implementation 

of the static analysis tool was achieved and the main features of the static analysis tool. 

 

Most static analysis tools come in two flavors; a standalone command-line tool and a 

plugin that is installed on a preferable Integrated Development Environment (IDE). Both 

flavors serve different purposes. The standalone command-line tool can be integrated into 

the build toolchain or the continuous integration tool. The integrated plugin, on the other 

hand, can serve the purpose of an interactive utility within the IDE that helps developers 

tackle defects while they code. A similar approach was taken for this tool as well.  

 

Before diving into the details of the implementation of this tool, it is important for the 

reader to understand how a browser handles a web page. When a browser receives a 

request for a web page, it fetches the HTML5 file first. Once the file is retrieved, it starts 

parsing the HTML5 document. The HTML5 tags are turned into Document Object Model 

(DOM) nodes in the “content tree”. Then the style data is parsed from the various style 

sources including CSS3 stylesheets and the inline style tags. The content tree along with 

the style information are merged to generated the “render tree”. The render tree then 
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undergoes a “layout” process and is finally painted on the browser. This painted layer is 

what the user sees on their browser. This flow is shown in Figure 12 below. 

 

Figure 12. Flow of a web page rendering on a browser [40] 

The associated JavaScript with each web page is fetched and parsed when the <script> 

tag is encountered. Based on the internal parsing optimization techniques, the HTML5 

document parsing may or may not halt when the associated script files are being fetched 

and parsed. The general flow explains how a browser loads a web page. A similar flow 

design was used to develop the static analysis tool for this research. 

 

The primary purpose of this static analysis tool is to identify dependencies among 

HTML5, CSS3 and JavaScript as discussed in previous chapters. To achieve this, I use 

different parsers to parse these languages and keep a track of dependencies. Figure 13 

shows a visual overview of the tool flow. The HTML5 files in a web application are the 

door to the entire codebase. This tool also starts the analysis by building a list of HTML5 

files in a given directory and moves from there. This way non-dependent files in the 
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project are ignored. The entire code for a given application is analyzed and a list of 

dependencies is generated, compared and the results are computed. Furthermore, 

metadata associated with each dependency is tracked in order to help the developer find 

and fix the defect as fast as possible. The metadata includes source file, line number, 

column number and dependency type. The secondary features of the tool include: 

providing verbosity in terms of output shown, exporting results in JavaScript Object 

Notation (JSON) and plain text format, an HTML viewer for displaying the JSON results, 

rule-based analysis, recommendation for fixes and integrated plugin development. In the 

following sections, I discuss the three different parsers used, computation of 

dependencies and secondary features development. 

 

Figure 13. Visual overview of the tool flow  

 

4.1 PARSING HTML5 

For parsing HTML5, I used the Jsoup [41] parser which is a popular Java library for 

parsing HTML. It supports all the latest HTML5 tags and implements the WHATWG 
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HTML5 specification [42]. It is able to parse HTML5 from either a URL, file, or string. It 

parses the HTML5 into a Document Object Model(DOM). DOM is a language-

independent convention for representing the objects (nodes) in an HTML5 document. It 

also provides a very simple API for DOM access and traversal. The jQuery-like methods 

and regex based selectors in the API make it very flexible. It generates a parse-tree 

behind the scenes but the DOM is exposed via the API as a “Document” object. Although 

it provides so many nice features, one major drawback is that it does not keep track of 

line numbers. As a result, a custom module based on Java’s Matcher [43] engine was 

made to keep track of the line numbers and column numbers. 

 

It is important for the reader to understand the need for using a dedicated parser for 

HTML5. Some readers might feel the need to simply use regex for parsing HTML5. But 

one very common mistake committed while parsing HTML5 is to make use of regular 

expressions (regex). Though it might seem a correct choice at first, it is not possible to 

use regex for parsing HTML5. The primary reason for this is that the underlying data 

structure used by regular expressions is a finite automaton, which does not have any 

memory and only has a finite number of internal states. Using such a data structure to 

parse something like HTML5, which is arbitrarily deeply nested, would mean having 

infinite internal states which is not possible with a finite automaton. Below are some 

examples [44] of valid HTML5 which show why regex cannot be used for HTML5 

parsing: 

 <p> 

some text here 
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<p> 

some inner text 

<p> 

this is deeply nested 

</p> 

</p> 

</p> 

 <tag attr=”value” /> 

 <a href=”foo”>foo</a> 

<!-- FIXME: <a href=” --> 

<a href=”bar”>bar</a> 

 

Based on the source directory that is provided for analysis, all the HTML5 files are first 

extracted based on the file extensions. Once all HTML5 files have been identified, each 

file is parsed using the Jsoup Parser. For each file, the “body Element” is extracted 

from the “Document” object. Convenient methods such as, getAllElementIds, 

getAllElementClasses, getStyleSheetLinks, getMediaLinks, 

getScriptLinks and getEventHandlers were implemented that recursively traverse 

the Element object and extract the required data. From these methods, the following data 

is extracted per HTML5 file: 

 All “id” attributes used 

 All “class” attributes used 

 Links to all associated CSS3 style sheets 

 Links to all associated media assets (images, videos, audio, etc.) 
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 Links to all associated JavaScript files 

 All methods referenced through event handlers 

 

Also, the parser allows checking for syntax errors which are stored as a Parse Error. Once 

the above data is available for each file, each referenced file (CSS3 file, JavaScript file or 

asset file) is checked for existence and path validity. If any file is not found, then a 

FileNotFound dependency error is generated. After that, each associated CSS3 file and 

JavaScript file is parsed and analyzed for other dependencies. 

 

4.2 PARSING CSS3 

Parsing CSS3 using regex is a possibility, but to avoid parsing defects and extract the 

accurate list of selectors, a CSS parser was used. CSS3 parsing was achieved using 

CSSParser [45] which is a Java library to parse CSS3 files. It supports CSS1, CSS2, and 

CSS3. It takes the CSS3 file text as input and generates a Document Object Model Level 

2 Style [46] tree. It also provides the ability to choose different internal parsers as per the 

developers need. For the purpose of this project, I am using a SAC Parser [47] for CSS3 

since the focus is on modern web applications which primarily use CSS3. Another 

advantage with this parser is that it allows attaching an error handler to keep track of 

parse errors generated per rule. 

 

All CSS3 files associated with each HTML5 file are processed using this parser. Once the 

HTML5 parsing phase is complete and all valid associated CSS3 files are identified, each 

file is passed on to the CSS3 parser. For each CSS3 file, the following data is extracted: 
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 List of referenced IDs 

 List of defined classes  

Once this data is obtained, the static analyzer uses this information to analyze 

dependencies based on class and id references. 

 

4.3 PARSING JAVASCRIPT 

For parsing JavaScript, there are few JavaScript engines available which could have been 

used, namely Mozilla’s Rhino engine, Chrome’s V8 engine, etc. But I chose to use the 

Nashorn engine [48]. Nashorn engine is a JavaScript engine by Oracle and comes pre-

bundled with Java 8 and above. It has comparable speed to Chrome’s V8 engine as 

shown in Figure 14 [49]. 

 

Figure 14. Speed comparisons of popular JavaScript engines [49] 

It has a very nice API which provides a method to extract an Abstract Syntax Tree(AST) 

from the given JavaScript source code. The AST is provided as a JavaScript Object 

Notation(JSON) data structure which can be easily parsed to extract the information that 

is required. For example, for a given JavaScript source like: 
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function a() {  

var b = 5;  

}  

function c() { } 

 

the engine returns an AST representation as follows: 

 

{ 

 "type ": "Program ", 

 "body": [{ 

  "type ": "FunctionDeclaration ", 

  "id": { 

   "type ": "Identifier ", 

   "name": "a" 

  }, 

  "params": [], 

  "defaults": [], 

  "rest": null, 

  "body": { 

   "type ": "BlockStatement ", 

   "body": [{ 

    "type ": "VariableDeclaration ", 

    "declarations": [{ 

     "type ": "VariableDeclarator ", 

     "id": { 

      "type ": "Identifier ", 

      "name": "b" 

     }, 

     "init": { 

      "type ": "Literal ", 

      "value": 5 

     } 

    }] 

   }] 

  }, 

  "generator": false, 

  "expression": false 

 }, { 

  "type ": "FunctionDeclaration ", 

  "id": { 

   "type ": "Identifier ", 

   "name": "c" 

  }, 

  // .. and so on 
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All JavaScript files associated with each HTML5 file are processed using this parser. 

Once the HTML5 parsing phase is complete and all valid associated JS files are 

identified, each file is passed on to the JS parser. For each JS file, the following data is 

extracted: 

 List of referenced IDs 

 List of referenced classes 

 Method signatures of all methods defined 

All of the above information is stored for each file along with the location of the 

respective file. 

 

4.4 INTEGRATING PARSER RESULTS 

Once the data from all associated files is gathered, it is compared with dependencies as 

and when they arise. For example, while identifying the list of IDs in a JavaScript file, 

those IDs are simultaneously compared to existing IDs in the associated HTML5 file. If 

an error is found, it is immediately stored in the Results object and retrieved later for 

display. Similar is the case with the CSS file processing. When a dependency is found 

that does not contribute to a runtime error, it is stored in the Results object as a warning. 

Based on the verbosity level, the user can choose to view the warning details. An 

example of such a warning would be “unused CSS class”. 
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4.5 OUTPUT VERBOSITY 

The tool supports various command line flags that help the user to modify the output as 

he/she desires. The list of supported flags are:  

 --help: shows possible flags that can be used  

 --source: pass the path of the root directory of the code to be analyzed with this 

flag, e.g., --source=/User/home/testingdata/ .Note: the source directory 

must contain at least one HTML5 file.  

 --outputFormat: supported formats are JSON or text, default value is text  

 --verbosity: low, medium or high, default value is medium  

 --recommendations: get suggestions to fix the defects, possible options are yes 

or no, default value is no  

 --rules: comma separated list of rules to check. Possible options are 

ParseError, ReferenceError, FileNotFound, Warnings or all. The 

default value is all.  

 --outputFileName: File name to save the output to. The default value is 

output. 

 

Based on the flags selected, the output verbosity can be controlled. For example, under 

development environment the user can choose flags like --verbosity=high --

recommendations=on, but for data extraction purposes using flags like --

verbosity=low should be sufficient enough. Some of the other flags are discussed 

below. 
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4.6 EXPORT RESULTS 

The tool supports two formats to export results in: plain text and JavaScript Object 

Notation(JSON) format. The plain text is formatted into a column like structure to display 

the results in a neat way. The JSON format can be helpful in exporting the results and 

analyzing them in any other way. This is also useful if someone wants to expose the tool 

as a service-based component rather than directly using the tool. A snippet of plain text 

format results is shown below (the image has been cropped and displayed in two parts 

because of the length):

 

Figure 15. Plain text format snippet Part 1 

 

Figure 16. Plain text format snippet Part 2 
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A snippet of the JSON format results is shown below: 

 

Figure 17. JSON format snippet 
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4.7 HTML VIEWER 

Viewing the raw JSON results may not be very helpful for the user. Hence, the tool also 

supports an HTML Viewer that parses the generated JSON results and displays them as a 

pretty HTML page. It is recommended to use this viewer in a Firefox browser. Two 

snapshots of the HTML Viewer are shown below: 

 

 

Figure 18. HTML Viewer 
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Figure 19. HTML Viewer 

 

4.8 RULE-BASED ANALYSIS 

The rule-based analysis flag basically helps the user to filter out the results and view 

them one category at a time. The categories were discussed as a part of error taxonomy in 

the previous chapter. Even though the output results are filtered as per the flag values, the 

internal computation is the same. This is because I do not want the analysis to disregard 

any dependency and miscalculate the errors. The supported values for this flag are: 

 ParseError: this will filter out the results to show only parse errors encountered 

while parsing either HTML5, CSS3 or JavaScript. 

 ReferenceError: this will filter out the results to show reference errors. 

Reference errors can be of various types: nonexistent class, nonexistent id, and 

nonexistent function. 
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 FileNotFound: this will filter out the results to show file not found errors. Note: 

this also checks for remote files. 

 Warnings: this will filter out the results to show only warnings. Warnings are 

those dependencies that do not cause runtime errors. 

 

4.9 RECOMMENDATION FOR FIXES 

Because the research project focuses on syntactic dependencies in string identifiers, I also 

wanted the tool to be able to suggest fixes in case of reference errors generated due to 

nonexistent class and nonexistent ID. These errors arise because of a referenced class or 

ID does not exist in either the CSS3 or HTML5 file. Under the hypothesis that these 

errors are caused because of typographical errors in string identifiers, I use string 

matching algorithms to find the most similar string and suggest a fix to the user. The 

underlying algorithm used for string matching is called, Fuzzy distance similarity score 

[50]. This string matching algorithm is similar to the algorithms of editors such as 

Sublime Text, TextMate, Atom and others. The algorithm starts by comparing each 

character for the two given strings. For every character that matches, one point is given. 

And for every other match thereafter two bonus points are given. Thus, a higher score 

would indicate higher similarity. The string with the highest similarity is suggested as a 

fix for that particular defect. To illustrate a very simple example of this algorithm, let us 

consider two strings “foobar” and “fooBar”. The user might accidentally type the first 

string as a class or ID. When this algorithm runs, it would give the highest score to 

“fooBar” as compared with other strings. Thus, we can see how this simple suggestion 
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might help the user fix the defect quickly. 

 

4.10 INTEGRATED PLUGIN DEVELOPMENT FOR ECLIPSE 

This plugin was integrated with Eclipse to provide the ease of use inside an Integrated 

Development Environment. Eclipse provides a Plug-in Development Environment (PDE) 

that helps developers to create plugins for Eclipse. These plugins are developed as a Rich 

Client Application (RCP). For the purpose of this research work, the plugin was made 

with a simple view based layout where the output of the analysis is shown in a tableview 

with separate rows and columns for each part of the result. The developer can also 

quickly jump to the location of the defect by double clicking on a particular row. 

 

Using the implementation details discussed above, the tool that was developed was used 

for two different experiments to answer the research questions. The next chapter 

discusses the validation experiments and their results. 
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CHAPTER 5 

VALIDATION 

 

The research questions as discussed in previous chapters: 

 RQ1: How significant are syntactic errors in string identifiers referencing DOM 

elements in the HTML5-JavaScript-CSS3 stack? 

 RQ2: What is the delta (time or cost) between defect injection and defect 

discovery in new HTML5-JavaScript-CSS3 style applications? 

 RQ3: Does a dedicated just-in-time syntactic string identifier resolution tool 

significantly reduce delta time/cost from RQ2 for a significant portion of real 

problems (RQ1)? 

 

To address the research questions, I conducted two different experiments. The two 

different experiments target different research questions. The first experiment was to test 

the tool against real world codebases to answer RQ1. The second experiment involved 

conducting a user study to help answer RQ2 and RQ3 by focusing on measuring the delta 

between defect injection and defect discovery. Each of these experiments and their results 

are discussed below. 

 

5.1 EXPERIMENT 1: TESTING AGAINST REAL WORLD CODEBASES 

To test against real world codebases, the main task was to find repositories that did not 

use any JavaScript frameworks like jQuery, AngularJS, etc. GitHub was used as the 

source to find such repositories. GitHub also has “Issues” functionality which helped in 
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analyzing if dependency defects were triaged by the codebase owners. Once the code was 

locally cloned from the GitHub repository, I ran the tool against each one of them to find 

the number of dependency defects. Further, I analyzed the open issues to find out whether 

these defects were triaged or not. This experiment was conducted on 27th March 2016 

and the results are presented in Table 2. The main inclusion criterion was to find 

codebases that did not use any JavaScript frameworks. Two of the three repositories used 

for this experiment were found in other literature as well. The Internet Explorer(IE) Test 

Suite was used by Jensen et. al [16] and the Google Octane Suite was used by Andreasen 

et al. [13] for their validations respectively. A list of all codebases that were considered 

for this experiment has been presented in Table 4 in Appendix B. 
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Repo Name Tested File/Example Errors Warnings 

Issues in Issue 

tracker % of defects 

TodoMVC VanillaJS 2 22 3 40 

IE Test Suite 

@supports sample 1 0 24 4 

audiomixer 4 22 24 14.28 

blobbuilder 7 45 24 22.58 

chalkboard 1 7 24 4 

chess 17 40 24 41.46 

coloringbook 2 396 24 7.69 

compatinspector 0 0 24 0 

css3filters 11 11 24 31.42 

css3mediaqueries 1 12 24 4 

editingpasteimage 4 8 24 14.28 

eme 2 14 24 7.69 

familysearch 0 0 24 0 

fishbowl 2 20 24 7.69 

html5forms 1 65 24 4 

mandelbrot 1 15 24 4 

math 0 8 24 0 

mazesolver 5 16 24 17.24 

microphone 4 34 24 14.28 

musiclounge 0 3 24 0 

particleacceleration 2 3 24 7.69 

photocapture 0 16 24 0 

picture 1 0 24 4 

readingview 4 67 24 14.28 

setimmediatesorting 0 14 24 0 

spellchecking 0 2 24 0 

sudoku 2 101 24 7.69 

svgradientbackgroundmaker 5 36 24 17.24 

toucheffects 2 15 24 7.69 

typedarrays 3 18 24 11.11 

userselect 2 17 24 7.69 

videoformatsupport 1 19 24 4 

webaudiotuner 6 17 24 20 

webdriver 1 10 24 4 

Google Octane Suite Entire Suite(single html) 2 408 17 10.52 

Table 2. Experiment on real world codebases 
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The defects discovered by my tool were not the same as the ones listed in the issue 

tracker of the repositories. On an average, 10.13% of the total defects were dependency 

related defects. Another interesting observation was that from the total 96 defects found, 

65 of them were of the type HTML5toCSS3 dependency defects and 26 of them were 

CSS3toHTML5 dependency defects. This shows that HTML5toCSS3 and 

CSS3toHTML5 dependencies may not be easier to discover. The remaining defects 

included: 2 external file dependency defects and 3 CSS3 Parse errors. Further, many 

warnings were found showing that a lot of dead code exists in these codebases.  

The main limitation of this experiment is that these set of codebases may not be an 

appropriate sample of the actual modern front end web development codebases, because 

they do not use any frameworks and libraries like jQuery, AngularJS, etc. This research 

currently supports only plain JavaScript. But the findings can be extended to codebases 

with frameworks as the nature of the dependencies stays the same regardless of the use of 

frameworks and libraries.  

 

5.1.1 DISCUSSION 

RQ1 as discussed in previous chapters: 

 RQ1: How significant are syntactic errors in string identifiers referencing DOM 

elements in the HTML5-JavaScript-CSS3 stack? 

The experiment discussed in section 5.1 was an attempt to answer RQ1. A detailed 

discussion about the prevalence of syntactic errors is not presented in this research. But 

running the tool against a very small subset of real world codebases shows that such 

defects are significant. The most interesting observation from the results of this 
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experiment is that none of these defects were triaged and reported in the issue trackers of 

these repositories. This shows that these defects might not be easy to triage when 

contributions to the codebase are made by multiple developers. HTML5toCSS3 and 

CSS3toHTML5 dependency defects were a major chunk of the total defects which shows 

that these dependencies specifically may not be easy to triage. A detailed analysis of such 

defects with a larger subset of real world codebases might present more interesting 

results. Across multiple developers and across various iterations of the code, many such 

defects might get injected and never be caught or triaged. Further, a number of warnings 

show that a significant amount of dead code exists in these codebases. Dead code 

analysis is not the focus of this research, but the existence of such warnings shows there 

are a lot of unmet dependencies that exist in the code and do not contribute to the 

functionality. This again shows that such dependencies are difficult to manage when the 

codebases are large, change with iterations of the product and are contributed to by 

various developers. 

 

5.2 EXPERIMENT 2: USER STUDY 

This experiment was conducted to answer RQ2 and RQ3. The experiment is focused on 

calculating the delta between defect injection and defect discovery times for dependency 

related defects. 

 

5.2.1 PROTOCOL 

The participants were asked to add new features to a given codebase. They were expected 

to spend at least 15 minutes and at most 20 minutes to understand the codebase that was 
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provided to them. The codebase provided to them was a single page bootstrap 

(http://getbootstrap.com/) template taken from GitHub: 

https://github.com/BlackrockDigital/startbootstrap-landing-page . The purpose of using 

this template was to provide a codebase that represents modern day front end codebases. 

The codebase was of very low complexity, with 234 lines of HTML5 and 170 lines of 

CSS3, excluding bootstrap CSS3 code. There was no JavaScript in the code, but as a part 

of the experiment, the participants had to create a new JavaScript file and write some 

JavaScript code. The JavaScript version 1.8 had to be used. While doing this coding 

exercise, the participants were expected to understand the application, understand the 

feature requirements, code the requirements, test them, report any defects (if any) and fix 

them. It was a self-paced exercise, but the participants were expected to spend at least 60 

minutes on it. They were not allowed to use any external frameworks, and libraries, like 

jQuery, AngularJS, SASS or LESS. The participants were required to screen record their 

sessions using software on their machines. These recordings were later analyzed to gather 

data about defect injection and defect discovery. They had to record one video per 

feature. A total of 12 features had to be implemented. The features that the participants 

were supposed to implement are listed in Appendix A. These features were carefully 

designed to ensure that the participants inject dependency related defects so that the 

defect injection and defect discovery times could be captured. 4 features were designed 

not to inject any defect, for example:  

 (Feature 4, Appendix C) Add a “See More” button in the portfolio! In line 172, 

add the button! Use <a id="seemore" class="btn btn-default btn-

lg"><span>See More</span></a>  

http://getbootstrap.com/
https://github.com/BlackrockDigital/startbootstrap-landing-page
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4 features were designed to definitely inject defects, for example:  

 (Feature 6, Appendix C) Add some more text in “Portfolio” section! The see more 

button does not really do something above. Add some text that is shown once that 

button is clicked. Add a new p tag below the button in the portfolio section. Give 

it an id called “portfoliodescription”. In the method defined in step 5b, add 

code that will add some text to the p tag created in step 6a. So, in the method, add 

the following code: 

var elem = document.getElementById("portfolioDescription"); 

elem.innerHTML = "This is some more description in the 

portfolio!";  

4 features were designed to be open ended so that the participant might end up injecting 

defects, for example: 

 (Feature 11, Appendix C) Add an Easter Egg! To the image added in step 10, add 

an onclick method. Ensure to define the method in the JavaScript file that you 

had created in step 2c. In this method definition, just add a console.log method 

call and pass the text: “You found the Easter Egg!”. 

The reason for making these three categories was to ensure that we could gather data for 

the experiment. If all features were open ended, there could have been a chance of none 

of the participants injecting any defects. 
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5.2.2 ENVIRONMENT 

The participants were asked to use Mac OS X as the operating system. They used the pre-

installed QuickTime Player software to record their sessions. No audio recording was 

required for the session. It was important for the participants to record their sessions 

because the defect injection, defect discovery and defect fixing times needed to be 

observational and not self-reported. The limitations of prior work[38] and the findings 

from prior validation (section 2.6) extending that work was the reason to not use self-

reported because it was not accurate. Also, these observational values were not done in 

person during the actual experiment to remove any bias in the participants’ behavior. 

Both the groups were required to use Eclipse (Mars) for the experiment. 

 

5.2.3 PARTICIPANTS 

A pre-survey was conducted to recruit participants. The identity of the participants was 

kept anonymous. The pre-survey was used for exclusion of participants who could not 

answer two very basic questions about DOM access and CSS selectors. A total of 28 

participants responded to the survey. 1 participant was excluded based on his pre-survey 

response. 6 participants withdrew after responding to the survey. 2 participants were 

excluded after the activity for not following the protocol. The participants were divided 

into two groups of equal skill set based on their responses to the survey questions. The 

group not using the tool is referred to as group A. The group using the tool is referred to 

as group B.  
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5.2.4 RESULTS 

A total of 107 defects were injected by the participants out of which 28 were syntax 

defects, 7 were false positives, 4 were HTML5toJS dependency defects, 21 were 

HTML5toCSS3 dependency defects, 22 were external file dependency defects and 25 

were JStoHTML5 dependency defects. The results discussed further do not include the 

syntax defects and the false positives. These defects were excluded from the discussion 

because they do not contribute towards dependency defects. 

 

5.2.5 HTML5toJS DEFECTS 

4 HTML5toJS defects were injected: 1 by a participant in group A and 3 by participants 

in group B. On average, the participants in group B were able to find these defects much 

quicker after injecting them. Figure 20 shows a visual representation of the delta values 

observed. Note, the values shown are log values of the actual delta observed. Log values 

are shown due to the range of the actual delta values. The raw data has been provided in 

Appendix C, Table 5. 
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Figure 20. HTML5toJS Dependency Errors 

The sample size for this particular category was too low, hence no statistical analysis was 

performed on this data set. The number of defects in this category is low because only 

one feature (feature 5, Appendix A) was associated with this category. Moreover, it asked 

the participants to create an onclick method and give it a specific name as instructed. 

This name had to be given in the HTML5 file and in the JavaScript file. Most participants 

copied the named from the HTML5 file to the JavaScript file, instead of typing the whole 

string identifier, thereby not injecting any defect. However, we do see that there is 

difference between the delta values for the two groups. The delta observed for the 

participant is group A was 197 seconds and the delta observed for participants in group B 

were 16, 9 and 8 seconds. 
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5.2.6 HTML5toCSS3 DEFECTS 

Two different types of HTML5toCSS3 Defects were injected by the participants: the first 

type was injected by participants in both groups, but the second type was injected only by 

group B participants. The first type was injected by 10 participants in group A and 9 

participants in group B. The second type was injected by 2 participants in group B. The 

first type was associated with feature 8 (Appendix B) and the second type was associated 

with feature 10 (Appendix B). The nature of these defects is the same, and hence, they 

are analyzed together, instead of analyzing the two types separately. The average delta 

observed was again much less for group B as compared to group A. The delta observed 

for group B was as low as 1 second. In 5 of the 10 cases in group A, participants did not 

even recognize that they had injected the defect. Because of this, those 5 data points were 

normalized for analysis. These participants did not actually discover the defect. Hence, 

the discovery time was replaced by the total time spent on the particular feature. Figure 

21 shows a visual representation of the delta values observed. Note, the values in purple 

are the normalized values. The values shown are log values of the actual delta observed. 

Log values are shown due to the range of the actual delta values. The raw data has been 

provided in Appendix C, Table 6. 
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Figure 21. HTML5toCSS3 Dependency Errors 

The statistical analysis of this data set results in a p value of 0.03. The null hypothesis for 

this experiment is that the means observed for the two groups are the same, suggesting 

the time taken is not related to using the tool. The alternate hypothesis is that the means 

are different, or that the time taken is related to using the tool. The observed p value 

shows strong evidence that the means observed for the two groups is different. Visual 

inspection of Figure 21 shows the difference readily. Note, only one group B data point is 

greater than any group A data points. Also, the second data point in group B is zero, 

which is log(1). This participant took only 1 second to discover the defect after 

injecting it. 
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5.2.7 JStoHTML5 DEFECTS 

Three different types of JStoHTML5 Defects were injected by the participants: the first 

two types were injected by participants in both groups, but the third type was injected 

only by group A participants. The first type was injected by 3 participants in group A and 

5 participants in group B. The second type was injected by 6 participants in group A and 

7 participants in group B. The third type was injected by 4 participants in group A. The 

first type is associated with feature 7 (Appendix B), the second type is associated with 

feature 6 (Appendix B) and the third type is associated with feature 12 (Appendix B). The 

nature of these defects is the same, hence, they are analyzed together, instead of 

analyzing the three types separately. The average delta observed was again much less for 

group B as compared to group A. Figure 22 shows a visual representation of the delta 

values observed. No normalization was required in this case. Note, the values shown are 

log values of the actual delta observed. Log values are shown due to the range of the 

actual delta values. The raw data has been provided in Appendix C, Table 7. 

 

Figure 22. JStoHTML5 Dependency Errors 
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The statistical analysis of this data set results in a p value of 0.002. The null hypothesis 

for this experiment is that the means observed for the two groups are the same, 

suggesting the time taken is not related to using the tool. The alternate hypothesis is that 

the means are different, or that the time taken is related to using the tool. The p value 

shows strong evidence that the means observed for the two groups is different. Visual 

inspection of Figure 22 shows the difference readily. Note, only one group B data point is 

greater than any group A data points. Also, this data point is not the same as observed in 

section 5.2.6. 

 

5.2.8 EXTERNAL FILE DEPENDENCY DEFECTS 

Four different types of external file dependency defects were injected by the participants: 

the first two types were injected by participants in both groups, but the third type was 

injected only by group A participants and the fourth type was injected by only group B 

participants. The first type was injected by 10 participants in group A and 8 participants 

in group B. The second type was injected by 1 participant in group A and 1 participant in 

group B. The third type was injected by 1 participant in group A and the fourth type was 

injected by 1 participant in group B. The nature of these defects is the same, hence, they 

are analyzed together. The average delta observed was again much less for group B as 

compared to group A. Figure 23 shows a visual representation of the delta values 

observed. No normalization was required in this case. Note, the values shown are log 

values of the actual delta observed. Log values are shown due to the range of the actual 

delta values. The raw data has been provided in Appendix C, Table 8. 
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Figure 23. External File Dependency Errors 

The statistical analysis of this data set results in a p value of 0.44. The null hypothesis for 

this experiment is that the means observed for the two groups are the same, suggesting 

the time taken is not related to using the tool. The alternate hypothesis is that the means 

are different, or that the time taken is related to using the tool. The observed p value 

shows very weak evidence that the means observed for the two groups is different. 

 

5.2.9 OBSERVATIONS 

There were certain patterns and behaviors of the participants that could be observed 

throughout this experiment. Some of this directly impacted the experiment, while the 

others did not. For example, the low number of defects observed in section 5.2.5 can be 

attributed to the fact that most participants preferred to copy string identifiers across the 

stack if they defined it. An example of this would be that if a participant defined an 

onclick method name is the HTML5 document, the participant just copies that name 



  73 

into the JavaScript file. If it was a predefined string identifier, they would choose to type 

it in. An example of this would be a predefined CSS class provided with the codebase.  

Another interesting observation was that in the case of HTML5toCSS3 dependency 

defects, most participants in group A could not even identify that they had injected a 

defect. The JStoHTML5 defects were caused mainly because of DOM access. The 

participants were trying to access DOM identifier, which was either incorrect or did not 

exist. These defects are difficult to triage and take some time. Participants in group B 

were able to discover these defects in as low as 2 seconds. There was no pattern observed 

for fix recommendations provided to the participants using the tool. This can be partly 

attributed to the fact that the participants were student developers. Overall, it is very clear 

that this tool is very helpful for JStoHTML5 and HTML5toCSS3 dependencies. These 

represent a significant subset of the dependency errors that this research has been 

focusing on. 

 

5.2.10 AGGREGATE STATISTICAL ANALYSIS 

The average delta (discovery-injection) for each different category of defects is shown in 

Table 3. As can be seen from this table, group B saved approximately 52.75 seconds on 

average. 
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Defect Type Average 

delta(discovery

-injection) for 

group A in 

seconds 

Average 

delta(discovery

-injection) for 

group B in 

seconds 

Section 

Number 

Associated 

Feature 

Number(s), 

Appendix 

C 

Observ-

ed p 

value 

HTML5toJS 

Defects 

197 11 5.2.5 5 NA 

HTML5toCSS3 

Defects 

116.4 5.81 5.2.6 8,10 0.03 

JStoHTML5 

Defects 

75.84 5.58 5.2.7 6,7,12 0.002 

External File 

Dependency 

Defects 

44.5 19.6 5.2.8 2,9,10,12 0.44 

Table 3. Average delta observed per defect type 

 

Overall, the average delta observed for group B was 23.8 seconds compared to 76.5 for 

group A. Further, the p value computed was 0.08 which is greater than desired value of 

0.05, but not greater than 0.1. The d value computed was 0.93, which signifies high effect 

size and medium high significance. These two values show that the results do present 

strong evidence that both the means observed are different. This means that the group 

using the plugin definitely saved a lot of time. 

 

5.2.11 LIMITATIONS 

First, the codebase selected was not very complex and the features to be added were also 

not very complex. Second, the study was conducted with student developers who may not 

be at the same skill level as the professional developers.  
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5.2.12 DISCUSSION 

The research questions as discussed in previous chapters: 

 RQ2: What is the delta (time or cost) between defect injection and defect 

discovery in new HTML5-JavaScript-CSS3 style applications? 

 RQ3: Does a dedicated just-in-time syntactic string identifier resolution tool 

significantly reduce delta time/cost from RQ2 for a significant portion of real 

problems (RQ1)? 

The experiment discussed in section 5.2 was an attempt to answer RQ2 and RQ3. The 

user study did not touch upon all of the dependencies as presented in the dependency 

model, but it focused on a subset. The results from this experiment show a clear 

difference in the two groups for the delta in defect discovery and defect injection. Even 

without the statistical analysis, it can be clearly seen from the visual representation of the 

data that the means are significantly different for the two groups. One very interesting 

observation from section 5.2.6 (HTML5toCSS3 dependency defects) is that certain 

participants never realized that they had injected a defect. This is very significant because 

CSS3 defects are no longer just cosmetic defects. CSS3 defects also cause functional 

defects. The next most significant results were observed for JStoHTML5 defects. This 

again is a significant subset of the dependencies because these represent the most 

common types of errors in front end web development: DOM access. The results for 

these two subsets show that such a dependency management tool is definitely helpful for 

developers. The aggregated statistical analysis shows a very high d value. This shows that 

the difference is significant. The graphical representation shows a clear difference in the 
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values for the two groups for all of the subsets. Overall, the results show that a 

dependency management tool is helpful for developers as it drastically decreases the delta 

(52.75 seconds as shown in section 5.2.10) between defect injection and defect discovery.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

Modern front end developers work with large scale front end web applications. The size 

of the codebase makes it a challenge for the developers to keep a track of the syntactic 

dependencies across the HTML5-JavaScript-CSS3 stack. A developer has to resort to 

using the developer tools within a browser and mentally keep a track of the dependencies 

that he/she is working with. A manual inspection of the developer tool and the running 

web application is prone to human error and as a result of which, a significant amount of 

defects due to syntactic dependencies go unnoticed. Further, the round trip between the 

code editor and the browser adds to the development time and cost. These factors when 

aggregated across an entire development team may result in significant ramifications 

towards development time and cost, and the final product. The time and effort saved per 

developer with the help of such a tool is significant. When aggregated over an entire 

development team, it can help save a lot of time and effort. Such an in-phase micro 

optimization of effort in modern day software engineering would help in drastically 

improving developer efficiency and developer productivity. 

 

The dependencies discussed in this research exist in every front end web application. The 

results show a direct correlation with the modern front end web development industry. 

The results presented in section 5.1 show that none of the defects found by this tool were 

listed in the issue trackers of the codebases that were tested as a part of that experiment. 

Further, 10.13% of the defects were caused because dependency defects. This is a 

significant amount considering that the codebases were real world codebases. Further, the 



  78 

results presented in section 5.2 show that a just-in-time syntactic dependency 

management tool is helpful for the front end web developers. Section 5.2.6 showed that 

HTML5toCSS3 dependency defects are difficult to triage. 5 of the 10 participants not 

using the tool could not discover the HTML5toCSS3 dependency defect. In the same 

section, the results show that the participants using the tool could discover the defect in as 

low as 1 or 2 seconds, whereas the lowest value (without normalizing) for the other group 

was 15 seconds. The low values for the group using the tool is almost real time. Section 

5.2.7 discusses JStoHTML5 defects which essentially are caused due to incorrect DOM 

access. As discussed in section 2.4, DOM access are amongst the most common defects 

encountered in front end web applications. The results in section 5.2.7 show a very low p 

value of 0.002 which shows the impact of using the tool. DOM access defects are 

difficult to triage and can take a lot of time. Only one data point in the group using the 

tool was higher than all the values in the group not using the tool. This shows that 

triaging DOM access defects takes a lot of time. The aggregate statistical analysis results 

presented in section 5.2.10 show that the group using the tool saved 52.75 seconds on an 

average while dealing with syntactic dependency defects. This value is very high and 

when aggregated over an entire development team it will become very significant. 

Overall, the results show that a just-in-time syntactic dependency management tool helps 

the developer save time and effort while dealing with defects due to syntactic 

dependencies. 
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There are several directions in which this research work can be extended. To begin with 

the codebases considered for this research did not include any JavaScript/CSS3 

frameworks or libraries, but regardless, the concept of the dependencies presented is 

agnostic of frameworks and libraries, and can be extended to include frameworks and 

libraries. Further, the experiments can be validated with a set of real world developers 

instead of student developers. Also, this research touches upon software engineering 

concepts like defect injection and defect discovery in relation to front end web 

development. Such software engineering concepts are usually studied with systems 

engineering in the context of full software development lifecycle models. This work can 

further be extended to more software engineering concepts like defect cycle in relation to 

front end web development. The results from section 5.1 also showed a lot of warnings 

that were generated because of syntactic dependencies, which implies that there is a lot of 

dead code in those applications. This work can be further extended to analyze the 

presence of dead code and how it impacts the loading time of those web applications. The 

tool can be further improved from a design perspective to be real-time as opposed to the 

current implementation of a just-in-time tool.
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APPENDIX A  

LIST OF FEATURES TO BE IMPLEMENTED IN USER STUDY 
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1. Change the text! (find these in the HTML and edit directly) 

a. On the top left of the screen, change the text from “Start Bootstrap” to 

“Awesome Startup!” 

b. Change the text on the center of the screen that says “Landing Page” to 

“Welcome!” and the text that says “A Template by Start Bootstrap” to “To 

the awesome Startup!” 

c. At the bottom, change the text that says “Connect to Start Bootstrap” to 

“Connect with Us”. 

d. Finally, change the copyright text at the bottom from “Copyright © Your 

Company 2014” to “Copyright © Awesome Startup 2016” 

2. Change the links! The links for Twitter, GitHub and LinkedIn are pointing to 

places we do not want! Instead, let’s just redirect all those links to my.asu.edu.  

a. First, find and remove the links in href for each of these buttons. 

b. Add onclick methods to each of these buttons.  

c. Next, create a new JavaScript file and include it inside the head tag. (hint: 

<script src="jsfilename.js"></script>) 

d. In this new JavaScript file, define the onclick methods called in step b. 

Add code to open a new window that redirects to https://www.asu.edu. 

(hint: use window.open("https://www.asu.edu");) 

3. Add a portfolio section! In the top right of the html page, add a new list item 

called portfolio. 

https://www.asu.edu/
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a. After line 55 in index.html, add the following (copy and paste, and ensure 

to keep the new lines and indents, you do not want to be a bad 

programmer!) 

<li> 

<a href="#portfolio">Portfolio</a> 

</li> 

b. Now, you need to create a new section called portfolio. On line 166, add 

the following (again, keep the new lines and indents) 

<a name="portfolio"></a> 

<div class="content-section-b"> 

<div class="container"> 

<div class="row"> 

<p>This is our portfolio!</p> 

</div> 

</div> 

</div> 

4. Add a “See More” button in the portfolio! 

a. In line 172, add the button! Use <a id="seemore" class="btn btn-

default btn-lg"><span>See More</span></a> 

5. On clicking “See More”, add some text in the portfolio section! 

a. Add an onclick method in the button above. Name the method 

“seemoreBtnClick”. 

b. In your JavaScript file, add method called “seeMoreBtnClick”. 
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6. Add some more text in “Portfolio” section! The see more button does not really 

do something above. Add some text that is shown once that button is clicked. 

a. Add a new p tag below the button in the portfolio section. Give it an id 

called “portfoliodescription”. 

b. In the method defined in step 5b, add code that will add some text to the p 

tag created in step 6a. So, in the method, add the following code : 

var elem = 

document.getElementById("portfolioDescription"); 

elem.innerHTML = "This is some more description in the 

portfolio!"; 

7. Change the text of button whenever it is clicked! The “See More” button should 

say “Show Less” when clicked. 

a. In the method defined in step 5b, get a reference to the “See More” button 

by using the getElementById method in the document object. Further, 

get a reference to the span tag and update the innerText of the span tag 

to say “Show Less”. 

8. The font does not look good! In the portfolio section, the font of the text looks 

odd and does not fit in with the whole website. Let’s use one of the pre-built fonts 

and add it to this section. 

a. Add the class “lea” to the p tags in the portfolio section. Just change the 

HTML directly! 

9. The background does not look good! You do not like the background! The 

background does not look good! Let’s just go ahead and change it.  
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a. Open css/combined.css file.  

b. Change line 768 from “background: url(../img/intro-bg.jpg) 

no-repeat center center;” to “background: 

url(../img/landscape-nature-sunset-trees.jpg) no-

repeat center center;” 

10. Add images to your portfolio! Add an image to the portfolio section, just below 

the p tag created in step 6a.  

Use the following code: 

<div class="col-lg-5 col-lg-offset-2 col-sm-6"> 

<img class="img-responsive" src="img/banner-bg.png" 

alt=""> 

</div> 

11. Add an Easter Egg! To the image added in step 10, add an onclick method. 

Ensure to define the method in the JavaScript file that you had created in step 2c. 

In this method definition, just add a console.log method call and pass the text: 

“You found the Easter Egg!”. 

12. Add another Easter Egg! If someone is able to find the Easter egg that you created 

in step 11, change the color of the “See More” button. It can be any color that you 

wish! Just create a new CSS file, include it in your HTML file, create a new class 

in that CSS file that sets the background color of the button. In the onclick 

method defined in step 11, get a reference to the “See More” button by using the 

document object, and simply add the new class that you just created to the button. 
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APPENDIX B  

CODEBASES CONSIDERED FOR RQ1 VALIDATION 
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S.no. Name URL Used 

1 Chrome experiments https://www.chromeexperiments.com/  

No 

2 

Internet explorer test 

drive https://dev.modern.ie/testdrive/  

Yes 

3 10k apart challenge http://10k.aneventapart.com/  

No 

4 Google octane suite https://developers.google.com/octane/?hl=en  

Yes 

5 Sun spider suite 

https://www.webkit.org/perf/sunspider/suns

pider.html 

No 

6 Jetstream http://browserbench.org/jetstream/  

No 

7 Pdfjs https://github.com/mozilla/pdf.js 

No 

8 Ajax im http://ajaxim.com/ 

No 

9 Todo mvc http://todomvc.com/ 

Yes 

Table 4. Codebases considered for RQ1 validation 

 

  

https://www.chromeexperiments.com/
https://dev.modern.ie/testdrive/
http://10k.aneventapart.com/
https://developers.google.com/octane/?hl=en
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://browserbench.org/JetStream/
https://github.com/mozilla/pdf.js
http://ajaxim.com/
http://todomvc.com/
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APPENDIX C  

EXPERIMENT TWO: RAW DATA 
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Group Feature # Delta (Discovery - Injection) Log of Delta column  

A 

5 

197 2.294466226 

B 16 1.204119983 

B 8 0.903089987 

B 9 0.9542425094 

Table 5. HTML5toJS Dependency Error Raw Data 

 

Group Feature # Delta (Discovery - Injection) Log of Delta column 

A 

8 

20 1.301029996 

A 24 1.380211242 

A 55 1.740362689 

A 14 1.146128036 

A 275 2.439332694 

A 12 1.079181246 

A 96 1.982271233 

A 15 1.176091259 

A 36 1.556302501 

A 396 2.597695186 

B 5 0.6989700043 

B 1 0 

B 3 0.4771212547 

B 3 0.4771212547 

B 2 0.3010299957 

B 4 0.6020599913 

B 11 1.041392685 

B 20 1.301029996 

B 7 0.84509804 

B 
10 

3 0.4771212547 

B 5 0.6989700043 

Table 6. HTML5toCSS3 Dependency Error Raw Data 
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Group Feature # Delta (Discovery - Injection) Log of Delta column 

A 

7 

32 1.505149978 

A 19 1.278753601 

A 218 2.338456494 

A 

6 

48 1.681241237 

A 10 1 

A 21 1.322219295 

A 195 2.290034611 

A 29 1.462397998 

A 72 1.857332496 

A 

12 

9 0.9542425094 

A 124 2.093421685 

A 92 1.963787827 

A 117 2.068185862 

B 

7 

7 0.84509804 

B 3 0.4771212547 

B 4 0.6020599913 

B 8 0.903089987 

B 5 0.6989700043 

B 

6 

3 0.4771212547 

B 2 0.3010299957 

B 4 0.6020599913 

B 5 0.6989700043 

B 6 0.7781512504 

B 4 0.6020599913 

B 16 1.204119983 

Table 7. JStoHTML5 Dependency Error Raw Data 

 

  



  95 

Group Feature # Delta (Discovery - Injection) Log of Delta column 

A 

10 

12 1.079181246 

A 8 0.903089987 

A 27 1.431363764 

A 16 1.204119983 

A 57 1.755874856 

A 281 2.44870632 

A 23 1.361727836 

A 6 0.7781512504 

A 23 1.361727836 

A 9 0.9542425094 

A 9 9 0.9542425094 

A 2 63 1.799340549 

B 

10 

3 0.4771212547 

B 4 0.6020599913 

B 4 0.6020599913 

B 7 0.84509804 

B 2 0.3010299957 

B 10 1 

B 8 0.903089987 

B 5 0.6989700043 

B 12 148 2.170261715 

B 2 5 0.6989700043 

Table 8. External File Dependency Error Raw Data 

 


