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ABSTRACT

Predicting when an individual will adopt a new behavior is an important problem

in application domains such as marketing and public health. This thesis examines

the performance of a wide variety of social network based measurements proposed

in the literature - which have not been previously compared directly. This research

studies the probability of an individual becoming influenced based on measurements

derived from neighborhood (i.e. number of influencers, personal network exposure),

structural diversity, locality, temporal measures, cascade measures, and metadata. It

also examines the ability to predict influence based on choice of the classifier and

how the ratio of positive to negative samples in both training and testing affect

prediction results - further enabling practical use of these concepts for social influence

applications.
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Chapter 1

INTRODUCTION

Predicting when an individual will adopt a new behavior is an important problem

in application domains such as marketing [25], the spread of innovation [24], counter-

ing extremism [1], and public health [5]. As a result, a variety of social network based

measurements have been proposed in the literature and shown to predict how likely

an individual will adopt a new behavior given information about his immediate social

ties. However, when such measures are proposed, they are often evaluated under

different conditions - making it difficult to understand which of these measurements

should be used in a real-world application. Further complicating the issue is that the

choice of classification algorithm and the effect of class imbalance in both training

and testing are often not explored in most research.

In this thesis, we study measurements based on neighborhood (i.e. number of

influencers [5], personal network exposure [24]), structural diversity [23], locality [29],

temporal measures [11], cascade measures [12], and metadata [15]. We examine the

probability of an individual becoming influenced based on these measurements (prob-

ability of adoption). We also examine the the ability to predict influence based on

choice of classifier and the how the ratio of positive to negative samples in both train-

ing and testing affect prediction results. Specifically, this research make the following

contributions.

1. We review a variety of measurements used to predict social influence and we

group them in six categories (Chapter 3).

2. We evaluate how these measurements relate to the probability of a user being
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influenced using real-world microblog data (Chapter 4).

3. We evaluate how these measurements perform when used as features in a ma-

chine learning approach and compare performance across a variety of supervised

machine learning approaches (Chapter 5).

4. We evaluate how the ratio of positive to negative samples in both training and

testing affect predictive results (Chapter 5.4).

We note that contribution 4 is of particular importance, as (particularly with mi-

croblog data) users are exposed to large number of messages that they do not retweet

(negative samples). Hence, in both training and testing, researchers can increase the

negative samples utilized by large amounts - hence arbitrarily determining the level

of class imbalance. As with this study as a whole, the experiments on data imbal-

ance were to better understand these previous research results in tests that better

mimicked real-world scenarios.

1.1 Related Work.

Beyond the work that we shall describe concerning the various measures for social

influence we investigate in Chapter 4, there has been some general work in the area of

social influence that have taken approaches not necessarily amenable to comparison.

For instance, the seminal work of Kempe et al. [16] describe two popular models

for information cascades which spawned several techniques to learn the parameters

(which also correspond to edge weights in the graph). For example, Saito et al. [20]

assigned such probabilities based on an expectation-maximization appproach while

Goyal et al. [11] leveraged a variety of simple models based on ideas such as a

empirically-learned probabilities and similarity measurements. See [21] for a review of

some of this work. There has also been related work on predicting cascades [8, 12, 27]

2



which are more focused on determining if a trend in social media exceeds a certain size.

That said, some of the ideas from these approaches, such as structural diversity [23]

are examined here (though this thesis is focused on a different problem). Other work

such as Myers et al. [19] studied the external factors influencing information diffusion,

Liu et al. [18] and Tang et al. [22] focused their studies on topic influence. Jenders

et al. [15] studied a combination of different features including some of the metadata

features like mentions and hashtags, along with latent features like sentiments and

emotional divergence for predicting the virality of a tweet - many of which we examine

in this study as well. Hong et al. [14] have also considered a wide spectrum of features

including structural, content and temporal information. However, their study focused

more on content-based features and not the structural features considered here - many

of which were introduced after that work.

3



Chapter 2

TECHNICAL PRELIMINARIES

Here we introduce the necessary notation and describe our social network data.

We represent a social network as a graph G = (V,E) where V is the set of vertices

and E is the set of directed edges that have sizes |V |, |E| respectively. The intuition

behind edge (v, v′) is that node v can influence v′. This intuition stems from how we

create the edges in our network: (v, v′) is an edge if during a specified time period

there is at least one microblog posted by v that is reposted by v′ . For node v ∈ V ,

the set of in-neighbors is denoted as ηinv , and the set of out-neighbors as ηoutv . We

use dinv and doutv to denote the in-degree and out-degree respectively. We also assume

a partition over nodes that specifies a community structure. We assume that such a

partition is static (based on the same time period from which the edges were derived)

and the function P (V ) : V → C maps the set of nodes (V ) to the set of communities

(C), where C consists of k communities: {C1, C2, ..., Ck}. We utilize the Louvain al-

gorithm [3] to identify our communities in this thesis due to its ability to scale.

Cascades. For a given microblog θ, we define t as the number of time units from the

initial post of θ before the microblog was reposted by one of v’s incoming neighbors

- intuitively the time at which v was exposed to θ. We denote the subset of nodes

who originally posted or reposted θ for time period t as V t
θ . Likewise, the set of

reposting relationships within the same time period will be denoted by Rt
θ. Taken

together, we have a cascade: Dt
θ = (V t

θ , R
t
θ). Any valid original microblog θ could be

treated as a unique identifier for a cascade. Given a microblog θ, vθ is the originator

at instance t0θ, which is defined as the origin time when the originator posted the

4



microblog θ. We denote the size of a cascade at any particular time t as |V t
θ |. For

v ∈ V t
θ , the set of all active neighbors with respect to θ is defined as Svθ = V t

θ ∩ ηinv .

We also define the distance dtθ(v, u) as the shortest path length between v and u in Dt
θ.

2.1 Sina Weibo Dataset.

The dataset we used was provided by the WISE 2012 Challenge 1 . It included a

sample of microblogs posted on Sina Weibo from 2009 to 2012. In this dataset, we

are provided with time and user information for each post and the last repost in a

chain which enabled us to derive a corpus of cascades. We create the social network

G from the retweeting relationships of microblogs published between May 1, 2011 and

July 31, 2011. We use the microblogs published in August 2011 to train and test our

approach. Table 2.1 lists the statistics of the dataset we used.

#Users #Edges #Reposted tweets #Reposted Users

5,910,608 52,472,547 2,238,659 394,441

Table 2.1: Graph Statistics

We found that the network derived from the dataset had 7,668,693 users with

55,381,104 edges between them. For this network, the number of active users in

August (the time period used to study social influence) is 5,910,608 while 5,664,625

of them have at least have one out-neighbor. During the month of August, there were

22,182,703 retweet chains. From this data, we removed the users who are not present

in V ; we also removed 2,660,421 empty repost chains caused by this elimination. The

dataset does not contain the repost time for the nodes in the middle of chains. We

estimated this time for each node in the chain based on the original post time and

1http://www.wise2012.cs.ucy.ac.cy/challenge.html
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the final repost time. Table 2.1 lists the statistics of this dataset during the period

of study.

Among all the retweeted users we further extract the top retweeters defined as

those who had at least 100 retweets during the period. This set of high frequency

tweeters will be used as a base for deriving the sample set for our experiments. For

each user in the above mentioned group, an occurrence of them retweeting a post

when they have an active in-neighbor is considered as a positive instance. If any of

their followees have tweeted and they haven’t retweeted, it is considered as a negative

instance.

6



Chapter 3

MEASUREMENTS TO PREDICT SOCIAL INFLUENCE

In this chapter, we categorize several approaches for predicting social influence.

1. Neighborhood-based measures

2. Structural diversity measures

3. Influence locality

4. Cascade-based measures

5. Temporal measures

6. Metadata

We examine each of these categories in turn.

3.1 Neighborhood-Based Measures.

These are the measures computed using each node and its immediate neighbors.

These measures represents the pair wise influence that the neighboring nodes exert

on a given node. Retweeting from followees is the primary mode of tweet visibility in

a microblogging site, as usually a tweet is visible to a user from its followee subgraph.

Specifcially, we study the following

• Number of active neighbors. (|Sθv |) This represents the count of active

neighbors for a node v. In Damon Centola’s notable empirical study [5], he noted

that additional “social signals” – or active neighbors – significantly increased

the likelihood of an individual adopting a new behavior.

7



• Personal Network Exposuure (PNE). (|Sθv |/dinv ) Is a measure adopted from

the social science community (i.e. see [24] ) and has obtained recent interest

(i.e. [13]). As per [24], PNE quantifies the extent to which a person is exposed

to direct and indirect influence. This value is defined as the ratio of number of

active neighbors to total number of neighbors. It is a measure of the fraction

of influence an active neighbor u has on v. If v has many in-neighbors aka

followees, then u’s influence is diluted and PNE represents that dilution.

• Average in-neighbor count of active neighbors. (|Σu∈Sθvd
in
u |/|Sθv |) This

is calculated by averaging the number of in-neighbors of each active neighbor

of a node. This defines the dilution of the influence path and is similar to the

measure, number of uninfected neighbors as described in [27]. Other releated

studies include Cha et al. [6], where they studied the effect of a social network

user’s indegree in depth, and observed that high indegree is not necessarily

correlated to influence in terms of spawning retweets.

3.2 Structural Diversity Measures.

This group of measurements take into account the structural diversity in the

local neighborhood of the node - which refers to the communities present in the

neighborhood.

Ugander et al. [23] introduced structural diversity where they studied the effect of

number of connected components of a friendship network. Fortunato et al [9] defined

communities as the set of graph vertices which are organized into groups that seem

to live fairly independently of the rest of the graph. Weng et al. [28] used the

community structure to predict the increase in cascade size. We use the modularity

maximisation method [7] for detecting communities in our dataset. The Louvian

Algorithm [3] which comes under this method is used to derive the communities in

8



this study due to its ability to scale. We use two community based measures.

• Active community count. (|P (Sθv)|) This is defined as the number of adjacent

communities of a given user v with at least one active neighbor of v. The

communities that include active neighbors are more significant in this context

than rest of the adjacent communities. Shakarian et al. have studied this

measure in their book [21] highlighting the importance of structural diversity.

• Active community ratio (|P (Sθv)|/|P (ηinv )|) It is calculated as the ratio of the

active community count to the total number of adjacent communities. This is

similar to the personal network exposure [24] and represents the dilution of the

effect of active community count with respect to other neighboring communities.

3.3 Influence Locality.

We examine the Influence Locality model known as LRC-Q, introduced by Zhang

et al. [29]. LRC-Q is defined by the influence locality function Q which is a combi-

nation of peer influence factor (g) and structural factor (f). Peer influence factor is

obtained as a linear combination of the geometric mean of random walk probabilities

of active neighbors and structural factor as a linear combination of the number of

circles formed by the active neighbors in the ego network of the user v. These are

defined in their paper by the following equations.

Q = w × g + (1− w)× f (3.1)

g = |Sθv |

√ ∏
vi∈Sθv

(tvθ − t
vi
θ )× pvi (3.2)

f = a log(|Sθv |+ 1) + be−µ|C(Sθv)| (3.3)

In the above equations, pvi is the random walk probability from the active user vi to

the given user v, C(Sv) is the collection of circles formed by the active neighbors, tvθ

9



is the time at which v posted or reposted the microblog θ, µ is the decay factor and,

a, b and w are balance parameters. For our experiments we set the value of µ as 1

and, a, b and w to be 0.5, as per the parameter settings of [29].

3.4 Cascade-Based Measures.

This group of measurements take into account the various parameters that are

part of a microblog cascade. There has been many studies in the area of predicting

the cascades including Bakshy et al. [2] , Cheng et al. [8] and more recently Guo

et al. [12]. Unlike our study, there hasn’t been many attempts to utilize the cascade

parameters in predicting retweet behavior. We study the following measures.

• Cascade size. (|V t
θ |) Cascade size is computed as the count of people who have

retweeted a particular microblog θ at time t. This number is usually visible to

the microblog user and can have an impact on their retweet behavior.

• Path length. (dtθ(v, vθ)) Path length is the length of a tweet trace path from

the original tweeter to a given user in the cascade. Watts et al. [26] were the

first to study the path length where they found that many social and technolog-

ical networks have small path lengths. Kwak et al. [17] studied the path length

in twitter, and Weng et al. [28] studied a distance measure called Average step

distance which was based on the path length. Our study focuses on the path

length with respect to a particular cascade Dt
θ.

3.5 Temporal Measure

Temporal measures were given prominence in many of the prior studies either by

itself, or as a factor in combination with other measures. Goyal et al. [11] utilized

10



the temporal factor and attempted to predict the time by which an influenced user

will perform an action. Hong et al. [14] studied a variety of temporal measures and

observed that they have a stronger effect on messages with low and medium volume

of retweets, compared to highly popular messages. We study the following temporal

measure.

• Retweet Time delay. (t) This is defined as the time delay between the orig-

inal tweet and the time when v is exposed to microblog θ. The time at which

a tweet was made is another piece of information which people are exposed to

while viewing a tweet. This can affect their decision to retweet it or not. This

is one of the temporal measures studied by Hong et al. [14].

3.6 Metadata.

These are simple measures derived from the metadata associated with the tweets.

We consider the presence or absence of links, mentions and hashtags as measures

for our study. Jenders et al. [15] did an extensive analysis of a wide range of tweet

and user features regarding their influence on the spread of tweets. They considered

the number of mentions and number of hashtags among the obvious tweet features.

They observed that tweets containing both hashtags and mentions are more likely

to be retweeted than those with out, however as the number of hashtags/mentions

in a tweet grows, the expected number of retweets decreases. In this study we only

considers their presence or absence as a measure and doesn’t go into any deeper

analysis.

• Presence of a link (hasLink). This is a binary value which represents

whether the original tweet had a link. Links are usually shown as part of the

11



tweet content. Links in tweets is measure similar to mentions and hashtags, but

hasn’t been studied as extensively as either in the context of social influence.

• Presence of a mention (hasMention). A binary value which represents

whether the original tweet had a mention. Intuitively, a user might be more

willing to retweet if there is a mention of them or someone they know. Similar

to [15], Cha et al. [6] analysed the effect of the number of mentions and found

that mentions can be an important measure of an individual influence in the

social network.

• Presence of a hashtag (hasHashtag). A binary value which represents

whether the original tweet had hashtags. Hashtags are also a means by which

tweets become visible to users and thus has a lot of significance in this regard.

A deeper analysis of it’s significance like in [15], is beyond the scope of this

work and we only focus on how the presence or absence of a hashtag affects the

retweeting behavior.
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Chapter 4

SOCIAL INFLUENCE MEASUREMENT STUDY

Here, we examine the distribution of the various measurements which were de-

fined in the last chapter. For each of those measures, the values are put into intervals

of equal sizes and the fraction of positive samples in the interval is plotted as the

probability. The horizontal axis shows the value intervals of the measure, while the

vertical one shows the number of occurrences for positive instances with respect to

the total in that particular interval. The error bar shows twice the standard deviation

of the sample. A detailed analysis of their distribution is given below.

Neighborhood-based measures. Active neighbor count intuitively has a positive

correlation with the influence as shown in Figure 4.1. Figure 4.2 shows the active

neighbor count for the lower values which also shows similar correlation. This is

consistent with the empirical study of [5]. As the number of retweeters among

in-neighbors increases, the probability of a person retweeting the particular tweet

increases. Figure 4.3 shows that PNE also exhibits positive correlation like active

neighbor count. This shows the significance of PNE measure as demonstrated by

other studies such as [24] and [13]. Average in-neighbor count of Active Neighbors

doesn’t show a clear correlation in it’s distribution as seen in Figure 4.4.

Structural diversity measures. Number of active communities (Figure 4.5) shows

a good positive correlation with the retweet behavior. This result is consistent with

the related studies such as [28] and [8]. Active community ratio (Figure 4.6) also

demonstrates a reasonable correlation with the positive instances as this measure
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Figure 4.1: Active Neighbor Count. Error Bars Represent Two Standard Deviations.

0 1 2 3 4 5 6 7 8 9
Active neighbor count (lower values)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Figure 4.2: Active Neighbor Count (Lower Values). Error Bars Represent Two Stan-

dard Deviations.

represents the dilution of community influence based on the total number of adjacent

communities.

14



[0
.0

-0
.1

)

[0
.1

-0
.2

)

[0
.2

-0
.3

)

[0
.3

-0
.4

)

[0
.4

-0
.5

)

[0
.5

-0
.6

)

PNE

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Figure 4.3: PNE. Error Bars Represent Two Standard Deviations.
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Figure 4.4: Average In-Neighbor Count of Active Neighbors. Error Bars Represent

Two Standard Deviations.

Cascade-based measures. Intuitively, cascade size is an important influencer in

retweet behavior. If a tweet is reasonably popular it tends to attract further retweets.
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Figure 4.5: Number of Active Communities. Error Bars Represent Two Standard

Deviations.
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Figure 4.6: Active Community Ratio. Error Bars Represent Two Standard Devia-

tions.

The same is revealed from the distribution in Figure 4.7. This is consistent with the

research of [2] and [8] although they studied a different problem. The intuition for

16



path length is that, as the distance from the original tweeter increases a user is less

interested in retweeting the tweet. Our results show (Figure 4.8) that this intuition

holds between path length 1 and 2. But, for the remaining intervals, results doesn’t

correlate well. This can be explained by comparing to the results of [15] where they

found similiar pattern while analyzing mentions and hashtags. Further, the results

of [8] indicate that information cascade depth is related to popularity. Hence, the

microblogs that are far from the original poster may be inherently popular as the

information cascade has proceeded to a larger depth.
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Figure 4.7: Cascade Size. Error Bars Represent Two Standard Deviations.

Temporal. Figure 4.9 shows that retweet time delay have slight inverse correlation

with the influence. Intuitively, the influence of a tweet decays with time, and as peo-

ple are exposed to date/time information in the social network they are less likely to

retweet old tweets. This decay factor has been used in works like [11], [29] etc. and

above result shows the same.
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Figure 4.8: Path Length. Error Bars Represent Two Standard Deviations.
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Figure 4.9: Retweet Time Delay. Error Bars Represent Two Standard Deviationss.

Metadata. Table 4.1 shows the conditional probability of positive instances given

the meta measure value of 0 and 1, respectively. The values from the table shows

18



that presence or absence of a link doesn’t seem to have much correlation with the

influence. It also shows that, the presence of mentions seem have slight negative cor-

relation to influence though there is no actual intuition to base this on. But, this can

be explained by the observation in the paper [15] that as the number of mentions in

a tweet grows, the expected number of retweets decreases. The presence of hashtag

shows an interesting correlation in Table 4.1. This is consistent with the study of

[15] and illustrates the significance of hashtags in enhancing the visibility of the tweet

and motivating a user to retweet them.

~V P (yi = ”pos”|Vi = 0) P (yi = ”pos”|Vi = 1)

hasLink 0.51 0.48

hasMention 0.51 0.45

hasHashtag 0.50 0.66

Table 4.1: ~V is a Column of the Design Matrix Corresponding to a Certain Binary

Feature,”pos” Represents Positive Label and i is the Index of the Sample
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Chapter 5

INFLUENCE PREDICTION

5.1 Methods

We derive our graph G from the dataset as described under Chapter 2. We use

the microblogs published in August 2011 to extract the instances to train and test our

approach. Positive and negative instances are extracted as described in Chapter 2,

and the measures described in Chapter 3 were extracted as features for each of them.

This set is used to obtain a random sample with 1:1 negative to positive ratio, which

we will use for the classification experiments.

Classification experiments Here we examine our experiments for predicting whether

a user under given conditions will retweet or not. As this is a binary classification task

we report the performance measurements (precision, recall and unbiased F1) for only

the positive (retweeting) class. We also examine the classification performances of

various learning algorithms. For each of the experiments we use a training to test set

ratio of 70:30 and used a 10 fold cross validation. We use the following classification

algorithms for our experiment.

Random Forest (RF). Random Forest [4] is a popular ensemble method used for

classification and regression. Ensemble methods use multiple classifier algorithms to

obtain better accuracy than that could be obtained using any of the individual classi-

fiers. We use random forest algorithm with bootstrap aggregating, that fits a number

of decision trees on different sub-samples of the dataset. Each decision tree provides

its own predictions which are then merged obtain a better accuracy.
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AdaBoost Classifier (AB). The AdaBoost algorithm [10] proposed by Yoav Fre-

und and Robert Schapire is one of the most important ensemble methods. It is

prominent among the boosting techniques [10] which are used in conjuction with

other learning algorithms. In this method, the weak learners are combined into a

final sum representing the boosted output. We use the particular algorithm called

AdaBoost-SAMME [30] and use the decision trees as the base estimator.

Logistic Regression (LR). Logistic regression is a generalized linear model which

uses a logistic function to infer the relationship between a dependent variable and

one or more independent variables. We utilizes the binomial logistic regression which

predicts the probability that an observation falls into one of the two categories. Lo-

gistic regression has low varience and is less prone to overfitting.

Naive Bayes Classifier (NB). Naive Bayes is a probabilistic classifier which is

based on applying Bayes’ theorem with independence assumption between every fea-

ture pairs. Naive Bayes classifiers are highly scalable and less prone to the curse of

dimensionality, making it one of the top machine learning algorithms. We imple-

ment the Gaussian Naive Bayes algorithm for classification where the likelihood of

the features is assumed to be Gaussian.

5.2 Measurement Group Comparison

Here we compare the classification performance of the various measurement groups

described in Chapter 3. Figures 5.1, 5.2, 5.3 and 5.4 shows the behavior of different

feature groups using multiple classifier algorithms. Generally Random Forest provides

the best performance among all the classifier algorithms. Neighborhood-based (Nbr)
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measures performs quite well in Random Forest, AdaBoost and Logistic regression.

This is consistent with what we discussed in Chapter 4. Structural diversity measures

shows less performance compared to other groups. This can be attributed to the fact

that it is not often used independently in classification, and usually this group per-

forms well in conjunction with other measures such as Neighborhood-based. LRC-Q

gives performance measure comparable to the results in [29]. Cascade-based mea-

sures are observed to perform reasonably well in Random Forest, Logistic Regression

and AdaBoost. This once again illustrates the significance of cascade size and bring

into focus the path length measure. Temporal measure performs well in all classifiers

except Naive Bayes. Although time based measures are frequently used as a decay

factor in conjunction with other measures ([11], [29]), our results show that it could

yield high predictive power by itself. Metadata measures shows good and consistent

performance across all classifiers. As research by [15] shows, hashtag and mentions

have high predictive power with respect to retweet behaviour and our results confirms

the significance of this measure along with the hasLinks measure.

We also examine a “Multi-Measurement model” which is a combination of Neigh-

borhood, Structural, Cascade, Temporal and Metadata measures. The Multi-Measurement

model shows better performance than individual groups generally among Random

Forest, Logistic Regression and AdaBoost classifiers. The other measures such as

neighborhood-based, temporal and LRC-Q performs reasonably well compared to

rest of the individual future groups. The performance of Multi-Measurement model

shows a real value in combining the various features and individual feature groups to

improve our ability to predict retweet behavior in real world datasets.
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Figure 5.1: Random Forest
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Figure 5.2: Logistic Regression

5.3 Multi-Measurement Model Compared to Influence Locality

We compare our results with the LRC-Q model described in [29]. We experi-

mented with multiple classification algorithms for this task and the best results were

obtained using Random Forest classifier. The results obtained using Random Forest

(RF), Logistic Regression (LR), Naive Bayes (NB) and AdaBoost (AB) are shown in

the Table 5.1 . As LRC-Q uses only a single feature, we only use Logistic Regression

for it’s evaluation. It can be observed that Multi-Measurement model outperforms
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Figure 5.3: Naive Bayes
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Figure 5.4: AdaBoost

the LRC-Q model in all classifiers except for Naive Bayes. This can be attributed to

the fact that while LRC-Q takes into account pairwise and structural influence along

with time decay, Multi-Measurement model incorporates more parameters in addition

to the above. LRC-Q has combined the pairwise and structural factor into a single

feature and uses time measure as a decay factor. The Multi-Measurement model on

the other hand treat them individually, along with including different kinds of pair-

wise influence (such as active neighbor count, personal network exposure and average

in-neighbors of active neighbors), considering both direct as well as ratio based mea-
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sures for structural diversity, and using temporal measure as an independent feature.

In addition to that, this model also includes cascade and metadata based features

giving it a broader view of the parameters that can influence an individual’s retweet-

ing behavior. This demonstrates that in any attempt of retweet prediction, a broader

approach is required, which incorporates multiple measures that are are closely re-

lated (within the measurement groups) and those that are mutually exclusive (across

groups) to obtain the best prediction in classification.

Model Precision Recall F1

LRC-Q (LR) 0.679 0.573 0.622

Multi-Measure (RF) 0.95 0.947 0.948

Multi-Measure (AB) 0.794 0.765 0.784

Multi-Measure (LR) 0.602 0.704 0.649

Multi-Measure (NB) 0.764 0.285 0.415

Table 5.1: Performance of Retweet Behavior Prediction

5.4 Varying Negative to Positive Ratio

An important question when deploying the aforementioned methods in a real-

world application is how to best train the model to cope with data imbalance observed

in-practice. As individuals are exposed to an arbitrarily large number of microblogs

that they do not rebroadcast, this is a difficult - and unfortunately relatively unstudied

problem. Here, we conducted experiments to analyse how classification performance

varies with different negative to positive ratio in both training and test set. The

surface and linear plots in Figure 5.10 shows the precision, recall and F1 values

obtained using Random Forest classifier, when negative to positive ratio is varied
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from 1:1 to 9:1. The ratio was varied in both training set and test set to observe the

effects on overall performance. Precision is observed to decrease as we increase the

size of negative samples in test set while keeping the ratio in training set constant.

Recall is observed to remain the same with changing ratio in test set. Change in

negative to positive ratio in training set on the hand, shows slight increase in precision

where as recall decreases. Results for LRC-Q follows a similar pattern except for the

convergence of recall for increased imbalance in training set. From these results, it

can be generally observed that 1:1 is the ideal ratio of negative to positive samples

in training set for an unknown imbalance in test data.
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Figure 5.5: Precision for Classification on Imbalanced Data for Multi-Measurement

Model Using Random Forest. a) Surface Plot b) Line Plot
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Figure 5.6: Recall for Classification on Imbalanced Data for Multi-Measurement

Model Using Random Forest. a) Surface Plot b) Line Plot
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Figure 5.7: F1 for Classification on Imbalanced Data for Multi-Measurement Model

Using Random Forest. a) Surface Plot b) Line Plot

27



N to P training set
123456789

N to P test set
123456789

P
re

ci
si

o
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

1 2 3 4 5 6 7 8 9
Negative to positive ratio in test set

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

P
re

ci
si

o
n

N to P  for training
1

2

3

4

5

6

7

8

9

(b)

Figure 5.8: Precision for Classification on Imbalanced Data for LRC-Q Using Logistic

Regression. a) Surface Plot b) Line Plot

N to P training set

1 2 3 4 5 6 7 8 9 N to
 P te

st 
se

t

1
2

3
4

5
6

7
8

9

R
e
ca

ll

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

1 2 3 4 5 6 7 8 9
Negative to positive ratio in test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
ca

ll

N to P  for training
1

2

3

4

5

6

7

8

9

(b)

Figure 5.9: Recall for Classification on Imbalanced Data for LRC-Q Using Logistic

Regression. a) Surface Plot b) Line Plot
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Figure 5.10: F1 for Classification on Imbalanced Data for LRC-Q Using Logistic

Regression. a) Surface Plot b) Line Plot
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Chapter 6

CONCLUSION

This thesis examines the performance of a wide variety of social network based

measurements and study the probability of an individual becoming influenced based

on them. In this study, those measures were grouped under various measurement

groups to understand their group wise predictive power. We construct our Multi-

measurement model using these groups and use various classification algorithms to

evaluate it. Our experiments show that Multi-Measurement model outperformed

the individual group measures as well as the described baseline approach. These

results show that the studied parameters can significantly improve the predictability

of real world diffusion process. As there is a major imbalance between positive and

negative instances in real world datasets, we also experimented with different negative

to positive ratios to identify the one that best suits real world applications. Our

experiments show that the 1:1 negative to positive ratio is the most suitable one

in this regard. Our results demonstrates that while learning from historical data

using classification techniques, a broader approach is required which incorporates

and combines diverse measurements that forms the various aspects of an individuals

retweet behavior. Such a broader approach can yield better predictive power than

any of the individual measures thus bringing it closer to real world application.
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