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ABSTRACT 

This thesis explores the impact of different experimental design strategies for the 

development of quantile regression based metamodels of computer simulations. In this 

research, the objective is to compare the resulting predictive accuracy of five experimental 

design strategies, each of which is used to develop metamodels of a computer simulation 

of a semiconductor manufacturing facility. The five examined experimental design 

strategies include two traditional experimental design strategies, sphere packing and I-

optimal, along with three hybrid design strategies, which were developed for this research 

and combine desirable properties from each of the more traditional approaches. The three 

hybrid design strategies are:  arbitrary, centroid clustering, and clustering hybrid. Each of 

these strategies is analyzed and compared based on common experimental design space, 

which includes the investigation of four densities of design point placements three different 

experimental regions to predict four different percentiles from the cycle time distribution 

of a semiconductor manufacturing facility. Results confirm that the predictive accuracy of 

quantile regression metamodels depends on both the location and density of the design 

points placed in the experimental region. They also show that the sphere packing design 

strategy has the best overall performance in terms of predictive accuracy. However, the 

centroid clustering hybrid design strategy, developed for this research, has the best 

predictive accuracy for cases in which only a small number of simulation resources are 

available from which to develop a quantile regression metamodel.   
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Chapter 1 - Introduction 

Semiconductor manufacturing is a highly competitive industry with high volume and 

rapidly changing demand patterns. To keep up with the market demands and to sustain a 

competitive edge, semiconductor manufacturing companies concentrate on producing high 

quality products at a comparatively lower price at a faster speed. Accordingly, 

semiconductor manufacturing companies compete not only on the traditional metrics of 

product quality and price, but also increasingly on the basis of lead time and service level, 

which are both affected by the cycle time of the product. Improving customer service 

levels, or the probability of delivering on time, has become a very critical issue in this 

environment that greatly impacts customer satisfaction (Wang and Wang, 2007; 

Meyersdorf and Yang, 1997), and on-time delivery is also often noted as critical in 

predicting service levels (Boyaci and Ray, 2006).  

Clearly, when focusing on the on-time delivery metric, cycle time plays a very 

important role (Pfund, Mason, and Fowler, 2006). In concert, accurate estimation of cycle 

time is crucial, and inaccurate cycle time estimate in semiconductor manufacturing 

planning can lead to substantial revenue loss (Ankenman et al. 2007).   In order to obtain 

these estimates of cycle time, semiconductor manufacturing companies typically develop 

models.  

Chung and Huang (2002) characterized four methods to model and predict cycle time: 

simulation, statistical analysis, analytical approaches, and hybrid approaches. Simulation 

models create digital prototypes to predict performance of the real world application. The 

statistical analysis method is applied to determine the relationship between cycle time and 
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other related parameters with regression analysis or some other statistical analysis 

approaches. Analytical approaches are based primarily on queueing theory or some other 

mathematical model to derive the lot cycle time and its deviation. Finally, the hybrid 

method combines aspects of different approaches to produce a cycle time estimate. For 

example, the application of analytical methods and simulations in combination could be 

used to develop a dynamic cycle time estimation.   

Atherton and Atherton (1995) argue that computer simulation is the best approach for 

modeling complicated processes. Researchers apply computer simulation to many areas, 

including circuit simulation, weather reporting, manufacturing environments, etc., 

(Johnson et al. 2008). Typically, a researcher performs a computer simulation experiment 

by making a number of systematic changes to a vector of inputs, x, and observing the 

corresponding changes to an output measure of interest, y. The aim is to use the model to 

develop a relationship between x and y.   

Discrete event simulation (DES) is a particular type of computer simulation that utilizes 

computational and mathematical techniques and tools to model and analyze the 

performance of systems (Babulak and Wang, 2010). More specifically, DES models 

represent the stochastic and temporal behavior of a system as it advances through a set of 

well-defined changes. It can be used to handle almost any level of system detail and can 

generate detailed performance reports giving almost any performance metric of interest.  

The most common applications of DES are in advanced and hybrid manufacturing 

systems, service sectors like health care and hospitals, banking and finances services, 

logistics and transportations. Also, DES is used in public sectors like modeling of police 
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emergency response, optimization of armed response vehicle deployment, re-engineering 

criminal investigation process. There are also opportunities to apply DES to applications 

in business intelligence and simulation-based education (Babulak and Wang, 2010).   It is 

also commonly used to model the operations in semiconductor wafer fabrication facilities 

and to perform comparisons between competing current and potential operating policies.   

 

Figure 1. A simple single server system model. 

Figure 1 (the figure appears before reference to it) depicts a simple manufacturing 

process model. It consists of a machine and a queue in a generic factory. The dynamics of 

the system are as follows.  First, a job arrives to the system with the arrival time of ta, and 

the job is loaded onto the machine, where it is processed for a time of tp. The job is then 

unloaded. Meanwhile, other jobs continue to arrive and wait in the queue until the machine 

becomes available. After the job is done processing, a job is taken from the queue and 

begins the process of loading.   This logic represents the events of arrival, loading, and 

unloading, which are typical in DES simulation models of manufacturing systems (Choi 

and Kang, 2013).  
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In a DES model of this type, total cycle time is calculated from the variables arrival 

time and processing time. The average time spent by a job in the system is calculated as 

the average across the time in system values from all individual jobs and is typically 

provided to the modeler in an output report.  In this research, DES is used to estimate and 

predict cycle times of a semiconductor manufacturing system.  

Semiconductor manufacturing is a very complicated process. Typical characteristics of 

semiconductor manufacturing systems include fluctuating demand, lots (i.e., groups of 

individual wafers processed together) with various product types and priorities, unbalanced 

resource capacity, reentrant flow to the bottleneck machines, hundreds of operation steps, 

batching, sequence-dependent set-up times, the use of secondary resources, etc. (Chen and 

Wang, 2009). Given these complexities, when DES models of semiconductor 

manufacturing systems are simulated and run, it can require substantial use of computer 

resources and time. The impact of this is even greater when what-if analyses are done to 

predict y, in our case cycle time, at differing levels of the input vector, x, that represent 

potential future states of the system.  In response, researchers seek approaches that allow 

the estimation of cycle time at values of x without having to apply excessive simulation 

effort. One approach for this is to develop a mathematical relationship between x and y 

based on simulation output at a well selected set of values from x.  

1. Metamodeling 

Metamodels are literally models of models (Kleijen, 1987). They can be a physical, logical, 

or mathematical representation of another model or simulation, making them two layers of 

abstraction away from the real phenomena that they represent (Kerman et al. 2009).  
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Typically, metamodels are simpler approximations of the relationship between x and y, 

constructed based on output from the original simulation models at well selected points 

within x. They are computationally more efficient than the original models themselves 

(Yin, Ng and Ng, 2010) and allow the prediction of model outcomes at points not 

simulated, making them a time and cost effective approach for executing what-if analyses. 

When used for the prediction of system performance, it is important to select an 

approximation function, g, in the metamodeling process. This function allows the 

prediction of the desired output measure for a given vector inputs, x. The relationship 

between the input vector and output is given in Equation (1), where y represents the desired 

performance measure, and the randomness of the simulation model is represented by ε.  

The process of metamodeling involves finding ways to effectively model g and ε.  

y = g(x) + ε           (1) 

A variety of metamodeling techniques exist.  The simplest approach is to fit a standard 

linear regression model based on simulation output at some points in x and then to use this 

model to predict y at x values not simulated.  Along with linear regression, both response 

surface methodology and artificial neural networks methods are widely used metamodeling 

approaches. In the context of simulation–based optimization, Response Surface 

metamodels (RSM) and Kriging Metamodels (Hernández et al., 2010) are also commonly 

used.  Finally, other statistical techniques such as multivariate adaptive regression splines 

and radial basis function approximations are beginning to draw the attention of researchers 

(Jin, Chen and Simpson, 2001).  
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In all these metamodeling approaches, the focus is most typically on predicting a mean 

performance measure such as mean cycle time (CT). However, quantiles provide a more 

comprehensive understanding of the CT distribution and are of greater use to decision 

makers (Koenker and Hallock, 2001). Specifically, having access to quantiles from the CT 

distribution allows decision makers to assume a known level of risk when quoting lead 

times to customers.  For example, if a customer is quoted the 0.80 quantile of the cycle 

time distribution as the lead-time, the decision makers can feel confident that the product 

will be delivered on time in 80% of the cases. Quantile regression (QR) metamodeling 

focuses on predicting such quantiles, and this research uses polynomial quantile regression 

metamodeling for determining the metamodel function, g to predict quantiles of the cycle 

time distribution.  

1.1 Quantile Regression 

Regression is a statistical method to investigate the relationship between dependent (y) and 

independent variables (x). Standard linear regression provides an estimate of the 

conditional mean. Quantile regression (QR) (Koenker and Bassett, 1978) is also a statistical 

method to investigate the relationship between the y and x, but the response it predicts is a 

quantile from the distribution of interest. In other words, standard ordinary regression (least 

squares, linear, etc.) models the relationships between x and conditional mean of y, where 

QR models relationship between x and conditional quantiles of y. It has been shown to 

provide a comparatively complete and robust analysis of stochastic relationships among 

random variables by Kerman et al. (2008). Kerman et al. also compared 7 different UQ 

(Uncertainty Quantification) methods using five metrics and found ‘quantile regression’ 

metamodels to be superior to other 6 methods.   
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Figure 2. Comparison of TME estimates with least square & QR (Katchova, 2013). 

Figure 2 (reference appears after the figure) provides an example comparison of OLS 

and quantile regression in the context of medical expenses when independent variable x, is 

the total number of chronic conditions. Here, the x-axis represents the quantiles, and the y-

axis represents the dependent variable, total medical expenses. The red, solid, horizontal 

line represents the mean least square regression and dotted lines on both sides of this red 

line give a 95% confidence interval around the mean. The black curve represents the QR 

estimates of all quantiles from 0 to 1. For example, the total medical expense estimate for 

OLS (i.e., mean of distribution) and 0.75 quantile (approximately) of the QR distribution 

are equal.   

In Figure 2, the quantile regression estimates sometimes lie outside the confidence 

intervals for the OLS regression, suggesting that the effects of these covariates may not be 

constant across the conditional distribution of the independent variable. The OLS 

regression confidence interval does a poor job of representing this range of disparities. 
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Figure 2 illustrates that, particularly for skewed distributions, a much richer picture can be 

obtained using quantile regression than OLS regression. 

The mathematical representation of the metamodel function, g, at a given input vectors 

x, and the qth-quantile of the CT output variable y for quantile regression is given in 

Equation (2).  In Equation (2), the CT output variable y[q] is assumed to the distribution FY, 

and the q-quantile is defined as y[q] = 𝐹𝑌
−1(𝑞) = inf{FY(y) ≥ q}. A strength of the proposed 

method originates from the fact that no distributional assumptions are made for FY, and 

hence ε. 

y[q] = g(x) + ε          (2) 

Once a quantile regression metamodel is fit, an equation such as that given in Equation 

(3) is generated. In Equation (3), βq is the vector of unknown parameters associated with 

the qth quantile, x is the vector of independent variables, and y is the dependent variable to 

be predicted. Equation (3) utilizes βq instead of β to make it clear that different choices of 

q estimate different values of β. This research utilizes a polynomial form of QR, and k is 

used to refer to the order of the polynomial function used in fitting the QR.  

yi = 𝑥𝑖
′ βq + ei,             (3) 

QR uses linear programming methods to obtain the coefficient estimates.  Specifically, 

it minimizes ∑i q│ei│+ ∑i (1-q) │ei│, a sum that gives the asymmetric penalties q│ei│for 

underprediction and (1-q) │ei│for overprediction, (Katchova, 2013).  The qth quantile 

regression estimator 𝛽�̂� minimizes over βq the objective function shown in Equation (4).  

In Equation (4), 0 < q < 1, and 𝑥𝑖
′ is a row vector of covariates of the ith data point.  The 
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resulting regression fit, 𝑥𝑖
′𝛽𝑞, is an estimate of the q-quantile of the response variable y 

given xi. 

Q(βq)=∑ 𝑞|𝑦𝑖 − 𝑥𝑖
′𝛽𝑞| +  ∑ (1 − 𝑞)|𝑦𝑖 − 𝑥𝑖

′𝛽𝑞|𝑁
𝑖:𝑦𝑖<𝑥𝑖

′𝛽
𝑁
𝑖:𝑦𝑖≥𝑥𝑖

′𝛽 ,          (4) 

In this research, QR metamodels are fit also utilizing the Lasso penalty, λ.   In Equation 

(5), λ is the lasso penalty, also called shrinkage parameter, and the summation includes the 

coefficients of the regression model excluding the intercept (Tibshirani, 1996). The lasso 

penalty, λ, is not unique to QR; it can be applied to any regression model and imposes a 

penalty for the terms entering the model.  For larger values of λ, many components of βq 

are estimated to be zero. As λ shrinks to zero, the estimates of βq move toward an 

unpenalized estimate. Of additional importance to this research is that the lasso penalty 

permits the inclusion of correlated predictor variables, which are not allowed in quantile 

regression without the lasso penalty. In the polynomial linear regression models used in 

this research, correlated predictor variables are used to predict quantiles of the CT 

distribution from semiconductor manufacturing systems. The lasso penalty, λ, with the QR 

accommodates the presence of these predictor variables.  

Г (βq; λ) = Q (βq) + λ ∑ |(𝛽𝑞)𝑗|𝑐
𝑗=1 ,          (5) 

This research includes some attention to the order of the polynomial function from the 

QR fit, k, and the lasso parameter, λ as key parameters in the QR metamodeling procedure. 

These parameters are important because, for the same set of data used to fit the QR model, 

model fits with different (k, ) combinations produce metamodels of differing quality (i.e., 

metamodels with differing predictive accuracies).   
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2. Experimental design strategy  

When building metamodels, verification to establish that the obtained predictions are 

sufficiently accurate is required.  In other words, the metamodels should accurately predict 

the performance of the simulation model.  Influencing the predictive accuracy of the 

metamodels is the placement of design points within the experimental region. The 

placement of design points over the design region is referred to as the experimental design 

strategy.  

At a very general level, the experimental design facilitates the investigation of the 

relationship between a response and the factors that influence the response in order to 

determine the underlying mechanism governing the process under study (Hunter and 

Naylor, 1970). It is also useful for finding the combination of factor levels at which the 

response variable is optimized.  The main objective of an experimental design strategy is 

to explore and describe the response surface over the experimental region / space using the 

observations of the response at various factor levels of the data.  Experimental designs are 

not only created to provide the economy in the required number of experimental trials (n), 

but also to maximize additional qualities such as producing minimum variance estimates 

of the response (Hunter and Naylor, 1970).  

In the context of metamodeling, it is important to utilize an appropriate experimental 

design strategy so that information on the response variable obtained from the simulation 

variable be effectively and efficiently used to predict the response variable at points not 

simulated. Much previous research has evaluated experimental design strategies and 

analysis methods for computer simulations in the context of metamodeling. For example, 
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Hunter and Naylor (1970) discussed various experimental designs in the context of 

computer simulation; Challeno (2013) considered the design of experiments for the 

validation of the fitted metamodel, and Yin et al., (2010) proposed a ‘Bayesian’ 

metamodeling approach for stochastic simulations.  

One of the more conventional design strategies is a factorial design in which all factors 

are varied by a set amount.  Such design strategies are very inefficient (i.e., requires 

intensive simulation effort) and for high dimensions can be virtually impossible to carry 

out (Challenor, 2013).  Another experimental design strategy is a space-filling design, 

which attempts to fill a high dimensional space in an efficient way.  Many types of space 

filling designs have been proposed in the last 30 years (Johnson et al. 2008), including 

sphere-packing designs, Latin hypercube designs, and uniform designs. Finally, if 

experimenters are considering a polynomial model to describe the underlying relationship 

between y and x, then an optimal design such as a D-optimal or I-optimal design can also 

be used. Design strategies using the D-optimal criterion focus on minimizing the variances 

of the model coefficients, while design strategies using the I-optimal criterion focus on 

minimizing a measure of average prediction variance (Montgomery, 2009).  

Johnson, Jones, Fowler, and Montgomery (2008) compared several experimental 

design strategies including, optimal, space filling and maximum entropy designs for 

computer simulation experiments. Specifically, Johnson et al., (2008) found that space-

filling designs exhibited high variability with respect to prediction variance performance 

across the design region, and sphere packing designs were generally the best space-filling 
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designs in terms of prediction variance. They also noted that I-optimal designs had the best 

prediction variance properties among all the other designs.  

However, when prediction accuracy (vs. variance) is considered, because of the 

placement of design points throughout the experimental region, space filling design 

strategies are expected to have better predictive accuracy than optimal designs. This points 

to the possibility of augmenting both space filling and optimal designs to generate hybrid 

experimental design. Highly related to the work presented here, Kennedy (2013) discusses 

different methodologies for combining these two popular design strategies (space-filling 

& optimal design strategies) to generate hybrid designs for use in the field of computer 

experiments. Kennedy also compared these composite designs to pure space-filling and 

optimal designs to analyze how positive properties of each design are retained while 

mitigating potential weaknesses. Kennedy’s dissertation paper compares the designs with 

prediction variance metrics. The results conclude that, hybrid designs have performed 

better than space filling designs but performed less than I-optimal design. In general, there 

is an improvement in performance with hybrid designs. In a similar context, Johnson, 

Montgomery, Jones and Parker (2010) demonstrate that augmenting a space-filling design 

with optimal points can be effective in improving the prediction variance across the design 

region. 

This research will investigate the effectiveness of sphere-packing, I-optimal and hybrid 

design strategies in the context of their impact on the predictive accuracy obtained with 

quantile regression metamodeling. Hybrid designs are augmentations of sphere packing 

and I-optimal experimental design strategies on their own and are designed to take 
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advantage of the strengths of each of the two design strategies.  Notably, while the quantile 

regression metamodeling technique is being used increasingly, this research is among the 

first which is interested in investigating the impact of various experimental design 

strategies on its performance as a metamodel for computer experiments.  The remainder of 

this thesis will provide details about the semiconductor manufacturing simulation model 

used to conduct experimentation, the experimental plan and the methodology of the 

experiments, and the results obtained. Finally, discussions, conclusions, and directions for 

future work are given in Chapter 4.    
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Chapter 2 – EXPERIMENTAL PLAN AND METHODOLOGY 

As discussed in the previous chapter, semiconductor manufacturing industries focus on 

accurate cycle time (CT) estimation, as it plays a very important role in the on-time delivery 

metric. In order to obtain these estimates of cycle time, semiconductor manufacturing 

companies typically develop discrete event simulation (DES) models. Discrete event 

simulation (DES) is utilized in this research to estimate and predict cycle times of a 

semiconductor manufacturing system. However, these models require substantial use of 

computer resources and time to execute. To overcome this, polynomial quantile regression 

metamodels are developed.   

The placement of design points within the experimental region, or the experimental 

design strategy, affects the predictive accuracy of the developed metamodels. This research 

will investigate the effectiveness of sphere-packing, I-optimal, and hybrid1 experimental 

design strategies in the context of the predictive accuracy obtained with quantile regression 

metamodeling. The overarching research questions addressed through this work are given 

next.   

1. How does the placement of design points within the experimental region influence 

the predictive accuracy of quantile regression metamodels built based on simulation 

output generated at the design points? 

2. How does the density of the design points within the experimental region (i.e., the 

number of design points included within the experimental region) influence the 

                                                           
1 Hybrid designs are the augmentation of space-filling design strategies with I-optimal design strategies. 
See sub section 2.2.3 - Hybrid design for more detailed explanation 
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predictive accuracy of quantile regression metamodels built based on simulation 

output generated at design points?  

3. Does a hybrid design, which is augmentation of standard I-optimal and sphere 

packing designs, work better than either sphere-packing or I-optimal design or both 

in terms of producing greater predictive accuracy for quantile regression 

metamodels? 

The remainder of this chapter describes the simulation model used to generate an 

experimental testbed for the analysis and results to support the research questions, the 

experimental design strategies themselves, the quantile regression metamodeling process 

used to develop the resulting metamodels, and a description of the approach used to 

evaluate the predictive accuracy.   

1. Simulation Model – Minifab Model 

The Minifab model is a simulation model designed to imitate the key characteristics of a 

semiconductor manufacturing processes in a simple format. The model used in this 

research includes most of the components from the originally developed Minifab model, 

designed by Intel in collaboration with ASU (Dr. Kempf, 1994). This Minifab model has 

also been used by other researchers (Chen and Kelton (2012)) for evaluating different 

aspects of semiconductor manufacturing. In this research, the Minifab model is used 

specifically as a vehicle to evaluate the impact of different experimental designs on the 

predictive accuracy of quantile regression metamodeling for predicting quantiles of the 

cycle time distribution produced by the Minifab model. The simulation program ARENA, 

by Rockwell Automation, was used to create the model for this work, and the “. mod” and 
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“. exp” files, which provide the code used to execute the model, is contained within the 

appendix.  

The Minifab model has two types of products flowing through the system, Type X and 

Type Y. The distribution surrounding the time between arrivals for both the part types 

follows an exponential distribution. For product Type X, various expected time-between-

arrival values are utilized in experimentation, ranging from 0.002 to 0.005 parts per minute, 

and the expected arrival rate for product Type Y is set to 0.003 parts per minute. 

There are three tool groups in the model. Tool Group 1 is similar to a diffusion oven in 

an actual semiconductor manufacturing setting, Tool Group 2 is similar to a 

photolithography stepper, and Tool Group 3 is similar to an ion implanter. Both the 

products flow through the system visiting each tool groups twice in the order shown in 

Figure 3. The numbers above the arrows represent the process step.   

 

Figure 3. Product flow through the Minifab model  

Tool Group 1 has two identical, parallel processing machines, named as Machine A 

and Machine B. Similarly, Tool Group 2 also has two identical parallel machines, named 

as Machine C and Machine D. Tool Group 3 has a single machine named as Machine E. 

At each tool group, there is a single operator who serves as a secondary resource and is 

utilized for loading, unloading and machine set-up operations. Also, after completing 
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processing at Tool Group 2, 2% of the products fail quality and require rework to strip off 

the photoresist. For this rework, there is a single rework station and a single operator to 

handle all the rework operations. The processing time at the rework machine is 50% of the 

processing time in Tool Group 2 machine.  Tool group 1 also requires parts to be batched 

before processing.  The batch size is three, and batching is done based on the following 

rules: 

 Parts arriving for Step 1 processing: Different part types (Type X, Type Y) can be 

mixed together to form a batch. 

 Parts arriving for Step 5 processing: Different part types cannot be mixed together. 

Separate batches are to be formed for two part types. 

 Parts waiting for Step 1 and Step 5 can never be batched together. 

 After processing, all the batches are separated into original parts. 

Table 1 shows the processing time, batch size, and duration of loading and unloading 

operations at the machines in each particular tool group. The processing times at each 

machine follow a normal distribution, with an assigned coefficient of variation. The 

operator has to load the part (or batch) into the machine and unload it as soon as the part 

(or batch) has been processed. Only after the processed part (or batch) is unloaded can a 

new part (or batch) be loaded into the machine.  

Machine E requires sequence-dependent setup when changing between product types 

or between steps. The length of setup time varies based on the process step and part type. 

Setup times are modeled with a normal distribution with a 0.5 coefficient of variation.  

When two sequential parts to be processed are the same part type, but they are on different 
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processing steps, the expected setup time is 10 minutes. When two sequential parts are 

different part types but are on the same processing step, then the expected setup time is 5 

minutes. When two sequential parts are both different part types and on different 

processing steps, then the expected setup time is 12 minutes. If the two sequential parts are 

there for the same step and are the same part type, no setup is required (i.e., the setup time 

is zero).  

Table 1. Characteristics of the Minifab Model (Distribution included is Normal (Mean, 

Standard deviation)) 

Process 

Step 

Tool 

Group 

Processing Time 

(min) 

Batch 

Size 

(parts) 

Load Time (min) 
Unload Time 

(min) 

1 1 (A,B) Normal (225, 11.25) 3 Normal (20, 2) Normal (40, 4) 

2 2 (C,D) Normal (30, 1.5) 1 Normal (15, 1.5) Normal (15, 1.5) 

3 3 (E) Normal (55, 2.75) 1 Normal (10, 1)  Normal (10, 1) 

4 2 (C,D) Normal (50, 2.5) 1 Normal (15, 1.5)  Normal (15, 1.5) 

5 1 (A,B) Normal (255, 12.75) 3 Normal (20, 2)  Normal (40, 4) 

6 3 (E) Normal (10, 0.5) 1 Normal (10, 1)  Normal (10, 1) 

 

All the machines in the Minifab model require preventative maintenance every 7 days, 

and each preventative maintenance session takes 1 hour. Also, all machines require a 

condition check every 30 days, and each check takes 6 hours. The machine in Tool Group 

3 also requires emergency maintenance. The time between failures of Tool Group 3 is 

modeled with an exponential distribution with an expected value of 50 days. The time to 

repair the machine after a failure is modeled with a gamma distribution with a scale 
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parameter of 864 minutes and a shape parameter of 0.25. The First-In-First-Out (FIFO) 

dispatching policy is employed at all workstations.  

Finally, the following assumptions regarding the model are also made during the 

construction of the model.  

1. The time taken to transport a job from one tool group to other tool group is 

considered negligible and is modeled as taking zero minutes. 

2. The operators work continuously.  

Finally, due to the stochastic nature of the Minifab model, two different runs with the 

same input parameter specifications will yield two different results.  As a result, output 

measures (e.g., cycle time) from the Minifab model are also stochastic, random variables.  

To account for the assumption that dependent measures are independent, identically 

distributed, which is commonplace among standard statistical analysis approaches, both 

bias due to initial empty and idle starting conditions and autocorrelation caused by the 

nature of queueing systems in the model need to be accounted for.  Accounting for 

initialization bias helps ensure that the output measures are identically distributed, and 

accounting for the auto-correlation ensures that the output measures are independent.   

To remove the impact of initialization bias, 200,000 time units of data are truncated at 

the beginning of every simulation run. This truncation point was determined based on plots 

of the cumulative moving average of cycle time vs. the simulation run time.  To address 

autocorrelation, a lag of 300 between data points collected for analysis is utilized (i.e., only 

every 300th cycle time observations is used in analysis). This lag value was determined 

based on a plot of auto-correlation vs. lag length. 



20 

2. Methodology 

2.1.  Simulation Experiments 

To address the proposed research question, three simulation experiments were conducted 

based in the Minifab model. In all the simulation experiments, the output variable Y is qth-

quantile of cycle time distribution, and the input variables, x, are controllable factors of the 

Minifab model. This research considered four input variables: 1) throughput, controlled by 

TBA (Time Between Arrivals), 2) COV (coefficient of variance) of the unloading 

operations at all the machines, 3) MTBF (Mean Time Between Failures) for emergency 

maintenance at Machine E, which is at the Tool Group 3 and 4) MTTR (Mean Time to 

Repair) for emergency maintenance at Machine E, which is at the Tool Group 3.  These 

factors were selected because they are known to influence the cycle time distribution and 

represent factors that could be controlled or influenced by a production manager.   

In each of the three simulation experiments, two input variables were manipulated to 

generate the simulation metamodel. In all three, x1 is the time between arrivals (TBA) of 

Part A entities, while x2 represents one of the other input variables. Table 2 describes which 

factors were considered for each simulation experiment, while Table 3 shows the range of 

values examined for each input variable.  These ranges were selected to align with a 

published proof of concept for the quantile metamodeling approach as applied to computer 

simulation (Bekki, Chen, and Batur, 2014) and represent the boundaries of the 

experimental region.   
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Table 2. Factors considered for each simulation experiment. 

 

Table 3. Range and average values of each factor. 

Factor Range Average Units 

TBA [0.002-0.005] 0.0035 Parts per min 

COV [0.1,0.9] 0.5  

MTBF [10,40] 25 days 

MTTR [108,324] 216 min 

 

2.2. Experimental Design Strategies 

The location and density of design points and prediction points in the experimental design 

region is an important consideration in the development of a metamodel. Five specific 

experimental design strategies were through this work:  sphere packing, I-optimal, and 

three hybrid designs, which combine features from the I-optimal and sphere packing design 

strategies. In addition, for each experimental design strategy, the number of included 

design points included in the experimental design, N, was varied to be N= 6, 10, 15, or 25.  

Details on each of the design strategies are given next.   

 TBA COV MTBF MTTR 

Simulation 

Experiment-1 
x1 x2 - - 

Simulation 

Experiment-2 
x1 - x2 - 

Simulation 

Experiment-3 
x1 - - x2 
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2.2.1. Sphere Packing Design  

Space-filling design strategies are often thought to be particularly appropriate for 

deterministic computer models because they spread the design points out nearly uniformly 

throughout the experimental region to maximize the distance between any two-design 

points (Myers, Montgomery and Anderson, 2010). The sphere packing design strategy is a 

space filling design strategy that maximizes the minimum distance between pairs of design 

points. This maximization helps in spreading the design points all over the design region.  

The software tool JMP was used to generate the experimental designs for the sphere 

packing design strategy. Using JMP, a table with the appropriate number design points is 

easily generated. For example, for simulation experiment-1, Tables 4 gives the sphere 

packing design strategy for 6 design points. Tables 1-11 in the appendix shows the sphere 

packing design points at all densities (N = 6, 10, 15, 25) for each of the three simulation 

experiments. Figure 4 displays the distribution of the 10 design points of the sphere packing 

design in the experimental region for simulation experiment -1. 

Table 4. Design points of sphere packing design for simulation experiment-1 when N=6. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00297 0.69176 

2 0.00395 0.9 

3 0.005 0.7137 

4 0.00403 0.1 

5 0.002 0.1 

6 0.002 0.9 
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Figure 4. Distribution of 10 design points of sphere packing design for simulation 

experiment -1. 

2.2.2. I-Optimal Design  

I-optimal design strategies minimize the prediction variance in a design space. This design 

strategy is more commonly applied when a form of the model is already known, and a 

benefit of I-optimal design strategies is that they have the best prediction variance 

properties of any design (Johnson et al., 2008).  The JMP software tool was used to 

generate the design points for I-optimal design strategy.  Tables 5 gives the I-optimal 

design strategy at 6 design points for simulation experiment-1. Tables 12-22 in the 

appendix shows the I-optimal design points at all densities (N = 6, 10, 15, 25) for each of 

the three simulation experiments. Figure 5 displays the distribution of 10 design points of 

the I-optimal design in the experimental region for simulation experiment -1. 
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Table 5. Design points of I-optimal design for simulation experiment-1. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.0035 0.5 

2 0.002 0.9 

3 0.0035 0.1 

4 0.005 0.9 

5 0.005 0.1 

6 0.002 0.212 

 

 

Figure 5. Distribution of 10 design points of I-optimal design for simulation experiment1. 

2.2.3. Hybrid Designs 

Augmentation of space-filling designs with I-optimal points is appropriate when initial 

modeling indicates that the computer simulation model can be adequately approximated 
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by a polynomial.  (Kennedy, 2013). The concept behind such hybrid designs is to combine 

the beneficial qualities of the space filling and optimal design strategies within a single 

design strategy. The design points in the hybrid design strategies used in this research 

represent a combination of sphere-packing and I-optimal design points.  

There are number of methods by which the design points from the original design 

strategies could be combined into a hybrid design. An example for a hybrid design is shown 

in Figure 6, which shows the placement of design points for a hybrid design with 15 design 

points.  Specifically, the design points are for simulation experiment - 1 with TBA on x-

axis and COV on y-axis.  The blue points are those that were selected from the original 

sphere packing design points, and orange points are those that were selected from the 

original I-optimal design points. I-optimal design strategy points are distributed at the four 

corners of the design space and on center points of line that is drawn connecting any two 

points of the four corner points. The design points of space filling design strategy, on the 

other hand, are distributed all over the design region, approximately uniformly. This 

research examines three approaches for generating a hybrid design, each of which will be 

discussed next in more detail: arbitrary hybrid method, clustering hybrid method, and 

centroid clustering method.  
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Figure 6. Scatter plot of hybrid design strategy with N = 15 design points. 

 

2.2.3.1. Arbitrary Hybrid Design Strategy  

To implement the arbitrary hybrid design strategy, all the points from the sphere packing 

and I-optimal design strategies were plotted on the common design space. Then, the 

repeated design points were first eliminated.  Next, the points that were very near to the 

optimal design strategy points were eliminated until the required number of design points 

remained. The ratio of the number of design points from sphere packing to the number of 

design points from the I-optimal design considered for the arbitrary hybrid design depends 

on the total number of design space. In majority of the cases, the ratio is more than one, as 

points in the I-optimal design are repeated.  Tables 6 gives the arbitrary hybrid design 

strategy at 6 design points for simulation experiment-1. Tables 23-33 in the appendix 
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shows the arbitrary hybrid design points at all densities (N = 6, 10, 15, 25) for each of the 

three simulation experiments.  Figure 7 displays an example distribution of 10 design 

points of arbitrary hybrid design in the experimental region for simulation experiment -1. 

Table 6. Design points of arbitrary hybrid design for simulation experiment-1. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.004 0.5 

2 0.003 0.9 

3 0.005 0.9 

4 0.005 0.1 

5 0.0035 0.1 

6 0.002 0.212 

 

 

Figure 7. Distribution of 10 design points of arbitrary hybrid design for simulation 

experiment - 1. 
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2.2.3.2. Clustering Hybrid Design Strategy  

To implement the clustering hybrid design strategy, all the points from the space filling 

and optimal design strategies were first considered. Based on this set of design points, 

clusters of design points are first created, in which the number of clusters was equal to the 

desired number of design points, N. The ‘simple K-Mean’ clustering module in the Weka 

tool was used to create the clusters. Weka is a collection of machine learning algorithms 

for data mining tasks. Here, K indicates the number of clusters. After creating the clusters, 

the design point closest to the centroid of the cluster was chosen as the representative 

design point for that cluster. An example of the design point placement for a clustering 

hybrid design with N = 6 is shown in the Figure 8.  Each of the colors in Figure 8 represent 

a separate cluster, and the enlarged design point is the point from that cluster (i.e., from 

among those points of the same color) that was selected for inclusion in the experimental 

design. Tables 7 gives the clustering hybrid design strategy at 6 design points for simulation 

experiment-1. Tables 34-44 in the appendix shows the clustering hybrid design points at 

all densities (N = 6, 10, 15, 25) for each of the three simulation experiments.  

Table 7. Design points of clustering hybrid design for simulation experiment-1. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00403 0.1 

2 0.005 0.9 

3 0.00395 0.9 

4 0.002 0.212 

5 0.002 0.1 

6 0.0035 0.5 
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Figure 8. Scatter plot of clustered hybrid design strategy with 6 representing design 

points. 

2.2.3.3. Centroid Clustering Hybrid Design Strategy 

The centroid clustering experimental design strategy is similar to the clustering method. 

To implement the design strategy, all the points from the space filling and optimal design 

strategies were again first considered.  The simple K-Mean clustering method was also 

again used to form the clusters. However, in contrast to the clustering approach, in the 

centroid clustering approach, the actual centroid point of the cluster is considered as the 

design point (vs. the original design point that is closest to the cluster). The number of 

clusters is equal to the number of design points, so the centroids of each of the clusters 

become the design points for the centroid clustering hybrid design. Tables 8 gives the 

centroid clustering hybrid design strategy at 6 design points for simulation experiment-1. 

Tables 44-54 in the appendix shows the centroid clustering hybrid design points at all 
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densities (N = 6, 10, 15, 25) for each of the three simulation experiments. As an example, 

Figure 9 displays the distribution of 10 design points of centroid clustering hybrid design 

in the experimental region for simulation experiment -1. 

Table 8. Design points of centroid clustering hybrid design for simulation experiment-1. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.0042 0.1 

2 0.0045 0.9 

3 0.002 0.156 

4 0.0035 0.5 

5 0.005 0.7137 

6 0.0023 0.8306 

 

 

Figure 9. Distribution of 10 design points of centroid clustering hybrid design for 

simulation experiment - 1. 
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2.2.4. Experimental Design Strategy Summary 

Figure 10 gives an illustration of how the placement of design points differs across the 

experimental design strategies.  On all charts in this figure, the two factors (time between 

arrivals and coefficient of variance of the unloading operations at all the machines are from 

simulation experiment 1.  The horizontal axis gives the time between arrivals (TBA), while 

the vertical axis gives the coefficient of variance at unloading operations of machines. In 

all plots shown in Figure 12, N = 10.   
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Figure 10. Placement of design points in the design region for different designs. 

2.3. Other Experimental Factors 

Along with conducting three simulation experiments using each of the five experimental 

design strategies, the k and λ parameters need to be specified when generating a quantile 

regression (QR) metamodel. As was pointed out previously, with the same experimental 

design strategy, different (k, λ) combinations result in quantile regression metamodel fit of 

different qualities.  Based on previous work (Bekki, et al., 2014), the following four (k, ) 

combinations were considered in this work: (2,100), (2,0.1), (3,100), (3, 0.1). To 

understand the impact of the design strategies on the predictive accuracy of quantile 

regression metamodels developed to varying quantiles of the cycle time distribution, 

metamodels were developed to predict the following specific quantiles of the cycle time 

distribution from the Minfab model:  0.5, 0.8, 0.9, and 0.95.   

The overall experimental design plan, then, includes three simulation experiments.  For 

each of these, five experimental design strategies were utilized to create experimental 
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designs with N = 6, 10, 15, and 25. Consequently, for each computer simulation, there were 

twenty different experimental designs (five different experimental design strategies x four 

different numbers of design points).  Additionally, quantile regression models were fit for 

each of the 20 experimental designs at four different (k, λ) combinations: (2, 100), (2, 0.1), 

(3, 100), and (3, 0.1). Finally, for each (k, λ) combination at each experimental design, 

quantile regression fits were obtained to predict the 0.5, 0.8., 0.9, and 0.95 quantile. 

Therefore, for each simulation experiment, 320 quantile regression fits were made (20 

experimental designs x four (k, ) combinations x four quantiles).  Figure 11 provides an 

illustration of this experimental plan. In Figure 11, the experimental hierarchy is provided 

for only a single pathway. However, the same procedure is followed at each experimental 

design strategy and each simulation experiment.  

 

Figure 11. Summary of experimental plan.  
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2.4. Generating the Quantile Regression Metamodel 

In order to be able to evaluate the efficacy of each of the experimental design strategies, 

quantile regression metamodels need to be fit, and their predictive accuracy evaluated.  

This subsection describes how these processes were conducted for this research.  

The first step in fitting a quantile regression (QR) is to decide on the location of the 

design points and to execute the simulation model at these points.  At each design point, 

across all the experimental design strategies, 5000 cycle time observations were obtained 

from the Minifab model. The value of 5000 was determined by observing the output 

quantile variance at different number of cycle time observations, ranging from 500 – 1M.  

After 5000 cycle time observations were obtained, the quantile variance became negligible, 

indicating that the collection of additional cycle time observations would not add additional 

value to the cycle time quantile predictions.    

After executing the simulation model, the input variables (e.g., throughput and COV) 

and output variable (i.e., cycle time) data was standardized so that each variable had a mean 

of zero and a standard deviation of one. Next, the quantile to be estimated (i.e., 0.5, 0.8, 

0.9 or 0.95) was determined. With the simulation data and QR modeling parameters, then, 

the “quantreg” package within the R programming tool was used calculate the coefficients 

of QR equation. As described previously, four (k,) combinations were investigated for 

this work: (2, 100), (2, 0.1), (3, 100) and (3, 0.1). The R program calculates the coefficients 

of the quantile regression model for each of the four, associated equations. The equations 

for these second order and third order quantile regression equations are given in Equations 

6 and 7, respectively.  In these equations, y is the cycle time output, i are coefficients 
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obtained from the experimental design, x1 and x2 are the two input variables, and ε is the 

constant.  The R-code used to execute the “quantreg” package can be found in the appendix.   

y = 0 x1+1 x2+2 x1 x2+3 x1
2+4 x2

2+ε,    (6) 

y = 0 x1+1 x2+2 x1 x2+3 x1
2+4 x2

2+5 x1
2 x2+ 6 x1 x2

2+7 x1
3+8 x2

3+ε,    (7) 

At the conclusion of this process, quantile regression metamodels (one for each (k, λ) 

combination) are obtained for a particular quantile. By inserting values of the input 

variables into one of these equations, an estimate for the desired cycle-time quantile, y, can 

be obtained.   

2.5. Assessing the Predictive Accuracy of a Quantile Regression Metamodel 

In order to address the research questions posed in this thesis, an approach for evaluating 

the predictive accuracy of a QR metamodel (generated from a particular experimental 

design strategy) is required. To facilitate this, a measure of the “true” cycle time quantiles 

needs to be obtained to which the estimates of those same quantiles generated by the 

quantile regression metamodel can be compared.  In such a situation, QR models that make 

predictions closer to the “true” cycle time quantiles are considered superior.   

Prediction points serve as these estimates of the ‘true’ cycle time quantiles values to 

which this research will compare the values predicted by the QR metamodels. The 

estimates obtained using prediction points are based on order statistics-based estimates 

from very long simulation runs, which is a standard approach for estimating accurate 

quantile estimates.  To obtain these estimates, the simulation output data is first sorted in 

ascending order.  Then, at a particular quantile, cycle time estimates are drawn from the 
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data. For example, 0.5 quantile is obtained by pulling out 50% value, i.e., median of the 

output sorted data.  

Notably, this approach is time and resource intensive, but provides a valid estimate to 

which the quantile regression-based estimates can be compared. A set of 50 prediction 

points was generated for each of the three simulation experiments. The points were 

distributed uniformly over the experimental region at points not included in any of the five 

experimental design strategies for a particular simulation experiment.  At each prediction 

point, the Minifab model was run for 100,000 replications to accurately find the quantile 

estimates. Figures 12 - 14 illustrates the location of the 50 prediction points, shown as blue 

dots, in the experimental design region of each of the simulation experiments. In each of 

the figures, the small black dots represent the design points across all the experimental 

design strategies. 

 
Figure 12. Scatter plot of prediction points over the design region for experiment - 1. 
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Figure 13. Scatter plot of prediction points over the design region for Experiment -2. 

 

Figure 14. Scatter plot of prediction points over the design region for Experiment -3. 
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To assess the predictive accuracy of a particular QR model fit, the quantile regression 

models were used to predict the q-quantile of the cycle time distribution at each of the 50 

prediction points corresponding to the appropriate simulation experiment.  In this research, 

MATLAB was used to facilitate this process.  Then, the quantile-regression generated 

estimates were compared to the ‘true’ cycle time quantile estimates obtained from the 

intensive simulation runs.  The mean absolute percentage error (MAPE) value across all 

50 of the prediction points was then calculated based on the difference between the 

predicted values and the ‘true’ values.  The equation used to calculate the MAPE values is 

shown in the Equation 8. MAPEs are presented in terms of a percentage, and smaller 

MAPE values indicate better agreement between the quantile regression model’s prediction 

and the values obtained at the prediction points.   

1

n
 ∑ [

|𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

|𝐴𝑐𝑡𝑢𝑎𝑙|
] ∗ 100     (8) 

Once MAPE values have been determined, comparisons on the predictive accuracy of 

various experimental design strategies could be made. The next chapter provides the results 

obtained using the methods presented in this chapter, while the final chapter discusses the 

implications of these findings.   
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Chapter 3 – Results and Analysis 

1. Results 

In this research, the objective was to compare the predictive accuracy of space filling, I-

optimal, and each of the three previously described types of hybrid experimental design 

strategies.  As described previously, for each experimental design strategy, the number of 

included design points, N, was also varied such that N = 6, 10, 15, and 25. Additionally, 

quantile regression models were fit for each of the 20 experimental designs at four different 

(k, λ) combinations: (2, 100), (2, 0.1), (3, 100), and (3, 0.1). Finally, for each (k, λ) 

combination at each experimental design, quantile regression fits were obtained to predict 

the 0.5, 0.8., 0.9, and 0.95 quantile. In all cases, calculations of mean absolute percentage 

error (MAPE) were used to evaluate predictive accuracy. Finally, as described previously, 

three simulation experiments were conducted using the Minifab model. In each experiment, 

two factors were varied as considered as predictor variables in the quantile regression 

model as shown in Table 2.  The goal was to develop quantile regression models to predict 

quantiles of the cycle time distribution.  

An initial objective in the experimentation was to determine whether there was a (k, ) 

combination that was generally superior to the others.  Such a determination would allow 

the comparison of results to focus on the differences between the experimental designs 

(design type and N) rather than the parameters involved in fitting the quantile regression 

model (i.e., k and ).  Figures 15-18 show box plots of the MAPE values obtained for each 

of the four (k,  combinations at each quantile. The box plots include MAPE values across 

all 60 quantile regression fits (20 experimental designs for each simulation experiment x 
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three simulation experiments) obtained for each (k,  combination at the given quantile.  

Each plot shows the outliers as red colored crosshairs, the median as a black hollow circle, 

mean value is the black dot and the inner quartile range as the box. All the MAPE values 

shown in the figures are given as percentages (i.e., MAPE value 5 represents a 5% mean 

absolute prediction error). 

 

 

Figure 15. Box plot comparing (k, ) combinations for all the QR fits at the 0.5 quantile.  
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Figure 16. Box plot comparing (k, ) combinations for all the QR fits at the 0.8 quantile.  

 

Figure 17. Box plot comparing (k, ) combinations for all the QR fits at the 0.9 quantile.  
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Figure 18. Box plot comparing (k, ) combinations for all the QR fits at the 0.95 quantile.  

Based on the results presented in Figures 15 - 18, which include all the examined 

quantiles, the case in which k = 3 and λ = 100 has least mean, median values and fewer 

outliers than other (k, ) combinations. The inner quartile ranges of MAPE values are also 

less in the third order (k=3) model fits compared to the second order (k=2) model fits. 

Given these findings, the remainder of the results section focus only on the case in which 

k = 3 and λ = 100. 

2. Analysis:  Comparison of Experimental Designs 

To analyze the comparative performance of the experimental designs, MAPE values 

between the validation estimates and estimates predicted by the quantile regression models 

were calculated for each simulation experiment. Results are given in Tables 9 – 11 for the 
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Sphere Packing design (SP), I-Optimal design (IOP), Arbitrary Hybrid design (AH), 

Clustering Hybrid design (CLH) and Centroid Clustering Hybrid designs (CCH) at N = 6, 

10, 15 and 25.  In all cases, k = 3 and  = 100.   Each cell in the final four columns represents 

the MAPE value obtained when predicting the given quantile based on the designated 

experimental design strategy made up of the designed number of design points (N).   

Table 9. MAPE values for simulation experiment 1 with k = 3, λ = 100. 

MAPE (%) 

Experimental 

Design 

Strategy 

Quantile  N=6 N=10 N=15 N=25 

SP 

0.5 Quantile  

1.83 1.24 1.03 1.19 

IOP 2.13 1.76 1.58 1.67 

AH 2.22 1.62 1.29 1.20 

CLH 1.95 1.67 1.52 1.25 

CCH 1.66 1.62 1.14 1.24 

SP 

0.8 Quantile 

4.56 3.13 2.53 2.80 

IOP 4.60 4.35 4.12 4.23 

AH 4.94 4.02 2.99 2.90 

CLH 4.50 4.10 3.67 3.14 

CCH 4.68 4.07 2.81 3.07 

SP 

0.9 Quantile 

6.57 4.08 3.34 3.61 

IOP 6.01 5.42 5.02 5.22 

AH 6.51 5.33 3.80 3.60 

CLH 5.63 5.46 4.61 3.94 

CCH 6.36 5.33 3.70 3.76 

SP 

0.95 Quantile 

6.57 4.47 3.92 4.05 

IOP 7.37 6.19 5.73 5.83 

AH 7.81 5.61 4.41 4.07 

CLH 7.71 6.11 5.13 4.39 

CCH 5.78 5.80 4.21 4.14 
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Table 10. MAPE values for simulation experiment 2 with k = 3, λ = 100. 

  MAPE (%) 

Experimental 

Design 

Strategy 

Quantile  N=6 N=10 N=15 N=25 

SP 

0.5 Quantile 

1.66 1.64 1.19 1.13 

IOP 2.00 1.84 1.74 1.83 

AH 1.96 1.84 1.66 1.18 

CLH 1.19 1.41 1.57 1.36 

CCH 1.37 1.21 1.43 1.25 

SP 

0.8 Quantile 

4.22 3.63 2.68 2.50 

IOP 4.74 4.55 4.39 4.54 

AH 4.71 4.71 3.90 2.57 

CLH 3.12 3.49 3.81 3.07 

CCH 3.01 2.90 3.35 3.06 

SP 

0.9 Quantile 

5.04 4.34 3.48 3.31 

IOP 5.67 5.31 5.11 5.32 

AH 5.71 5.83 4.78 3.21 

CLH 3.93 4.08 4.54 3.87 

CCH 3.72 3.68 4.43 3.97 

SP 

0.95 Quantile 

5.59 4.90 3.99 3.86 

IOP 6.05 5.69 5.41 5.66 

AH 5.99 6.40 5.37 3.73 

CLH 4.51 5.49 4.96 4.44 

CCH 4.15 4.17 4.97 4.70 
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Table 11. MAPE values for simulation experiment 3 with k = 3, λ = 100. 

  MAPE (%) 

Experimental 

Design 

Strategy 

Quantile  N=6 N=10 N=15 N=25 

SP 

0.5 Quantile 

1.54 1.16 0.93 1.11 

IOP 1.83 1.74 1.68 1.74 

AH 1.79 1.66 1.33 0.99 

CLH 1.79 1.36 1.52 0.99 

CCH 1.58 1.62 1.45 1.36 

SP 

0.8 Quantile 

4.02 3.09 2.21 2.67 

IOP 4.66 4.64 4.58 4.63 

AH 4.59 4.37 3.59 2.55 

CLH 4.59 3.67 4.13 2.55 

CCH 4.12 4.03 3.65 3.30 

SP 

0.9 Quantile 

5.13 3.95 2.88 3.40 

IOP 5.88 5.62 5.30 5.59 

AH 5.81 5.17 4.60 3.29 

CLH 5.81 4.99 5.03 3.29 

CCH 5.24 5.20 4.54 4.16 

SP 

0.95 Quantile 

5.74 4.33 3.44 3.89 

IOP 6.70 6.29 5.83 6.21 

AH 6.57 5.76 5.04 3.69 

CLH 6.57 5.70 5.46 3.69 

CCH 5.88 5.71 4.76 4.84 

 

The MAPE values in Tables 9 – 11 highlight the fact that the prediction error, in 

general, is quite low (<7%) in all cases.  This analysis, then, concentrates on the following 

goals: 

 Understanding the impact of N on the predictive accuracy of quantile regression 

metamodels. 

 Understanding the impact of experimental design strategy on the predictive 

accuracy of quantile regression metamodels. 



46 

 Examining the relative performance of the three hybrid experimental design 

strategies. 

 Examining the relative performance of the hybrid and traditional (sphere packing 

and I-optimal) experimental design strategies.  

2.1  Impact of N on Predictive Accuracy of Quantile Regression Metamodels 

The predictive accuracy of a particular experimental design strategy depends on the 

number of design points at which the simulation runs are executed to generate the data used 

to develop the quantile regression metamodel. Increasing the number of design points 

within the experimental region produces improved predictive accuracy within the same 

region, though the related simulation effort is also greater. Figures 19 illustrates this point.  

In this figure, the horizontal axis gives the number of design points used to fit the meta-

model, while the y-axis gives the resulting MAPE value for estimating the 0.5 quantile in 

simulation experiment 1. In Figure 19, different experimental design strategies are shown 

in different colors. Specifically, Sphere Packing (SP), I-Optimal (IOP), Arbitrary Hybrid 

(AH), Clustering Hybrid (CLH) and Centroid Clustering Hybrid (CCH) experimental 

design strategies are represented as orange, yellow, green, red and brown colors, 

respectively. Figure 19 illustrates that as more design points are included (i.e., N gets 

larger), the MAPE values tend to decrease, regardless of the experimental design strategy.  

It also illustrates that this trend is more pronounced for the CLH and AH experimental 

design strategies than for the IOP design strategy.  Similar results were found across all 

three simulation experiments and for estimates of the 0.8, 0.9, and 0.95 quantiles. These 

results are shown in Figures 20 – 30. 
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Figure 19. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 1, for the 0.5 quantile. 

 

Figure 20. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 1, for the 0.8 quantile.    
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Figure 21. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 1, for the 0.9 quantile. 

 

Figure 22. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 1, for the 0.95 quantile.    
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Figure 23. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 2, for the 0.5 quantile. 

 

Figure 24. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 2, for the 0.8 quantile. 
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Figure 25. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 2, for the 0.9 quantile. 

 

Figure 26. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 2, for the 0.95 quantile. 
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Figure 27. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 3, for the 0.5 quantile. 

 

Figure 28. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 3, for the 0.8 quantile. 
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Figure 29. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 3, for the 0.9 quantile. 

 

Figure 30. The impact of the number of design points on each of the experimental design 

strategies in simulation experiment 3, for the 0.95 quantile. 
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2.2  Impact of Experimental Design Strategy on Predictive Accuracy of Quantile 

Regression Metamodels 

While the number of design points included in an experimental design strategy is clearly 

important to the resulting predictive accuracy of the fit metamodel, the location of the 

design points is also critical. Figure 31 illustrates the relative difference in performance 

across the experimental design strategies. In Figure 31, each of the experimental design 

strategies is represented by a different color, and the MAPE values for each of the four 

quantiles is given for each. In all cases, the experimental design strategy was created with 

10 design points (i.e., N = 10). Comparisons at the 0.95 quantile show that the MAPE value 

obtained based a sphere packing design is 1.89%, while the MAPE value obtained based 

on a clustering hybrid design is more than twice as large, at 4.15%. This comparison 

highlights the impact of the location of design points on the resulting predictive accuracy.  

Comparative figures for all three simulation experiments and all values of N are given in 

Figures 32 – 42.    

 

Figure 31. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 1 when N = 10.   
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Figure 32. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 1 when N = 6.   

 

Figure 33. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 1 when N = 15. 
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Figure 34. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 1 when N = 25.   

 

Figure 35. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 2 when N = 6.   
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Figure 36. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 2 when N = 10.   

 

Figure 37. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 2 when N = 15.   
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Figure 38. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 2 when N = 25.   

 

Figure 39. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 3 when N = 6.   
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Figure 40. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 3 when N = 10.   

 

Figure 41. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 3 when N = 15.   
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Figure 42. Comparison of MAPE values across experimental design strategies and 

quantiles for simulation experiment 3 when N = 25.   

2.3  Relative Performance of the Three Hybrid Experimental Design Strategies  

The previous subsections illustrated that both the number and location of design points 

within an experimental region have a clear impact on the predictive accuracy of quantile 
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experimental design strategy, number of design point, and quantile combination.  This 

research examined a total of 3 simulation experiments, 5 experimental design strategies, 4 

different numbers of design points, and 4 quantiles.   

Pairwise comparisons of the three hybrid design strategies were made based on this 

approach, and Table 11 provides such a comparison of the arbitrary hybrid and clustering 

hybrid experimental design strategies. Column AH gives the number of cases in which the 

arbitrary hybrid design performed better than the clustering hybrid design, while column 

CLH indicates the number of cases in which the clustering hybrid design performed better 

than the arbitrary hybrid design. The values are provided both by simulation experiment 

and overall.  The percentage values in the final row of the table indicate the total percentage 

of cases in which one experimental design strategy has performed better than the other. 

Table 12 shows that in about 56% of the cases, the clustering hybrid experimental design 

strategy performed better than arbitrary hybrid design. 

Table 12. Comparison of arbitrary and clustering hybrid designs. 

 

Arbitrary VS Clustering Hybrid Design 

AH CLH Total cases 

Simulation 

Experiment 1 
8 8 16 

Simulation 

Experiment 2 
6 10 16 

Simulation 

Experiment 3 
7 9 16 

Total 21 27 48 

Percentage 43.7% 56.2%  
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Table 13 provides a similar comparison between the arbitrary hybrid and centroid 

clustering hybrid experimental design strategies.  In Table 13, the columns labeled CCH 

gives the number of cases in which the centroid clustering hybrid experimental design 

strategy performed better than the arbitrary hybrid experimental design strategy. Table 13 

shows that in about 60% of the cases, the centroid clustering hybrid experimental design 

strategy performed better than arbitrary hybrid experimental design strategy.  

Table 13. Comparison of Arbitrary and Centroid clustering hybrid designs. 

 

Centroid Clustering VS Arbitrary Hybrid Design 

CCH AH Total cases 

Simulation 

Experiment 1 
14 2 16 

Simulation 

Experiment 2 
9 7 16 

Simulation 

Experiment 3 
6 10 16 

Total 29 19 48 

Percentage 60.4% 39.6%  

 

Finally, Table 14 provides a comparison between the clustering hybrid and centroid 

clustering hybrid experimental design strategies.  In Table 14, the column labeled CCH 

indicates the number of cases where the centroid clustering hybrid experimental design 

strategy performed better than the clustering hybrid experimental design strategy.  When 

comparing these two hybrid experimental design strategies, the centroid clustering hybrid 

experimental design strategy performed better in about 75% of the cases.   
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Table 14. Comparison of Clustering and Centroid clustering hybrid designs. 

 

Centroid Clustering VS Clustering Hybrid Design 

CCH CLH Total cases 

Simulation 

Experiment 1 
16 0 16 

Simulation 

Experiment 2 
12 4 16 

Simulation 

Experiment 3 
8 8 16 

Total 36 12 48 

Percentage 75% 25%  

 

2.4 Relative Performance of the Hybrid and Traditional (Sphere Packing and I-

optimal) Experimental Design Strategies 

In addition to comparing the hybrid design strategies amongst themselves, it is important 

to compare their performance to the more traditional sphere packing and I-optimal 

experimental design strategies. These comparisons were made in the same manner that the 

hybrid designs were compared to each other, and the findings are given in Tables 15 – 21 

In all of these tables, SP represents the sphere packing, AH represents the arbitrary hybrid, 

IOP represents the I-optimal, CCH represents the centroid clustering hybrid, and CLH 

represents the clustering hybrid experimental design strategies.   
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Table 15. Comparison of Sphere packing and Centroid clustering hybrid designs. 

 

Sphere Packing VS Centroid Clustering Hybrid Design 

SP CCH Total cases 

Simulation 

Experiment 1 
8 8 16 

Simulation 

Experiment 2 
9 7 16 

Simulation 

Experiment 3 
8 8 16 

Total 25 23 48 

Percentage 52% 48%  

 

Table 16. Comparison of Sphere packing and clustering hybrid designs. 

 

Sphere Packing VS Clustering Hybrid Design 

SP CLH Total cases 

Simulation 

Experiment 1 
13 3 16 

Simulation 

Experiment 2 
9 6 16 

Simulation 

Experiment 3 
8 8 16 

Total 30 17 48 

Percentage 62.5% 35.4%  
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Table 17. Comparison of Sphere packing and arbitrary hybrid designs. 

 

Sphere Packing VS Arbitrary Hybrid Design 

SP AH Total cases 

Simulation 

Experiment 1 
12 4 16 

Simulation 

Experiment 2 
9 7 16 

Simulation 

Experiment 3 
8 8 16 

Total 29 19 48 

Percentage 60.4% 39.6%  

 

Table 18. Comparison of I-Optimal and arbitrary hybrid designs. 

 

I-Optimal VS Arbitrary Hybrid Design 

IOP AH Total cases 

Simulation 

Experiment 1 
7 9 16 

Simulation 

Experiment 2 
0 16 16 

Simulation 

Experiment 3 
1 15 16 

Total 8 40 48 

Percentage 16.6% 83.3%  
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Table 19. Comparison of I-Optimal and clustering hybrid designs. 

 

I-Optimal VS Clustering Hybrid Design 

IOP CLH Total cases 

Simulation 

Experiment 1 
8 8 16 

Simulation 

Experiment 2 
0 16 16 

Simulation 

Experiment 3 
5 11 16 

Total 13 35 48 

Percentage 37% 73%  

 

Table 20. Comparison of I-Optimal and Centroid clustering hybrid designs. 

 

I-Optimal VS Centroid Clustering Hybrid Design 

IOP CCH Total cases 

Simulation 

Experiment 1 
16 0 16 

Simulation 

Experiment 2 
16 0 16 

Simulation 

Experiment 3 
12 4 16 

Total 44 4 48 

Percentage 91.7% 8.3%  
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Table 21. Comparison of Sphere packing and I-Optimal designs. 

 

Sphere Packing VS I-Optimal Design 

SP IOP Total cases 

Simulation 

Experiment 1 
16 0 16 

Simulation 

Experiment 2 
12 4 16 

Simulation 

Experiment 3 
12 4 16 

Total 40 8 48 

Percentage 83.3% 16.6%  

 

These comparisons highlight the comparative performance of the various experimental 

design strategies.  The next chapter provides more details on the associated implications of 

these results.   
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Chapter 4 – Discussion and Conclusions 

1. Discussion: 

Comparisons based on overall performance between the three hybrid experimental design 

strategies are provided in Tables 12 – 14. Although the clustering hybrid design strategy 

performed better than the arbitrary hybrid design strategy, the percentage difference was 

found to be very small (i.e., only six cases of CLH were better than AH), leading to the 

conclusion that the two design strategies performed very similarly. Tables 13 and 14 show 

that the centroid clustering hybrid design strategy performed better in 60% and 75% cases 

than the arbitrary and clustering hybrid designs respectively. Based on conclusions drawn 

from Tables 12 – 14, it is clear that the overall performance of the centroid clustering hybrid 

experimental design strategy is better than the performance of either of the other two hybrid 

design strategies.   

Similarly, Tables 15 – 17 provide comparisons between the sphere packing and the 

three hybrid experimental design strategies. The results from Tables 16 and 17 show that 

the sphere packing design strategy performed notably better overall than the arbitrary and 

clustering hybrid design, by 10% and 12% respectively. However, when the comparison is 

made between the sphere packing and centroid clustering hybrid design strategies in Table 

15, the sphere packing design strategy was found to perform better than centroid clustering 

hybrid design strategy in only in two cases, implying that the two approaches performed 

similarly overall. Furthermore, Tables 20 and 21 illustrate that the sphere packing and 

centroid clustering hybrid design strategies both outperformed the I-optimal design 

strategy, by 83% and 92% respectively. This finding is likely due to the distribution of 

design points in the design space for I-optimal designs (i.e., primarily in the corners and 
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center points vs. throughout the experimental region). While it was described earlier that 

I-optimal designs have superior prediction variance, these results confirm that they have 

poor prediction accuracy when compared to sphere packing and hybrid designs.  

The overall results from the comparisons of all the experimental design strategies are 

summarized in Table 22. In this table, comparisons are made between the row and column 

labels corresponding to a particular cell in the table. The internal cells of the table indicate 

which of the two compared designs had superior performance, based on the percentage of 

cases in which the design strategy outperformed its competitor.  The final column of Table 

22 gives the total number of comparisons in which the experimental design strategy 

identified in that row was found to be superior to other design strategies. So, for example, 

the sphere packing design strategy was comparatively better than all four of the other 

experimental design strategies, while the I-Optimal design strategy was not better than any 

of the other design strategies. Overall, Table 22 shows that the sphere packing design 

strategy had the best performance, followed by the centroid clustering hybrid design. These 

results are also demonstrated in Figures 19 – 30, which illustrate that both of these design 

strategies have good predictive accuracy across the varying numbers of design points 

investigated.    

Table 22. Summarized results from the comparisons made among five experimental 

designs. 

 SP IOP AH CLH CCH Total 

SP - SP SP SP SP 4 

CCH SP CCH CCH CCH - 3 

CLH SP CLH CLH - CCH 2 

AH SP AH - CLH CCH 1 

IOP SP - AH CLH CCH 0 
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Along with investigating overall, relative performance of the various experimental 

design strategies, particular attention should also be paid to the design strategies that 

perform well in cases that require minimal simulation effort (i.e., the cases in which N = 

6). In the semiconductor manufacturing industry, each simulation replication can take a 

substantial volume of resources to execute, so design strategies that perform comparatively 

better with smaller simulation efforts are preferable.   

Figures 19-30 clearly illustrate that the variance of prediction accuracy between the 

five experimental design strategies is observed most strongly as N gets smaller. When N = 

25, for example, prediction variation between the design strategies is very small, implying 

that when the density of design points performance is quite high, nearly saturating the 

experimental region, it matters less which experimental design strategy is used for the 

placement of those points.  

When only simulation experiment 2 and 3 results are considered, the difference in 

MAPE values across sample size or method is small. Indicating, the conclusions we make 

appear to be dependent on simulation experiment as well. However, when overall 

performance of experimental design strategies between simulation experiments is made 

separately, sphere-packing and centroid clustering designs perform better among all design 

strategies. 

However, further, analysis of the performance of the two most overall competitive 

design strategies (i.e., sphere packing and centroid clustering hybrid) when N = 6 

demonstrates that the centroid clustering hybrid design outperforms the sphere packing 

design. Specifically, Table 23 illustrates the comparative performance of the two designs 
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in each of the simulation experiments when N = 6. In 75% of these cases, the centroid 

clustering hybrid design strategy performed better than the sphere packing design strategy, 

highlighting the important finding that with fewer design points, the centroid hybrid 

experimental design strategy has superior predictive accuracy than the sphere packing 

design strategy, even though the sphere packing design strategy, across all N values, was 

superior.  

Table 23. Comparing sphere packing and centroid clustering experimental design 

strategies when N = 6.  

 
Sphere Packing VS Centroid Clustering Hybrid Design 

SP CCH Total cases 

Experiment 1 3 1 4 

Experiment 2 0 4 4 

Experiment 3 0 4 4 

Total 3 9 12 

Percentage 25% 75%  

 

2. Conclusions:  

For semiconductor manufacturing companies, cycle time is a key performance indicator. 

In concert, the ability to accurately predict cycle times is critical, as it influences the service 

level and associated customer satisfaction. Discrete event simulation models are often used 

for this purpose, though they can require a large time investment to execute. To address 

the resource-intensive nature of executing simulation models, a current, active area of 

research examines the development of a mathematical relationship between input vectors, 

x, (i.e., controllable factors in the simulation model) and output Y (e.g., cycle time). Such 
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models are called metamodels, or models of the simulation models, and allow predictions 

of the cycle time to be made at points not simulated.   

The research presented in this thesis examined the impact of several experimental 

design strategies on the resulting predictive accuracy of metamodels developed to predict 

quantiles of the cycle time distribution. Such metamodels allow decision makers to control 

the level of risk associated with lead-time quotations more effectively than could be done 

with estimates of mean cycle time alone.  The five experimental design strategies 

investigated in this work were:  sphere packing, I-optimal, arbitrary hybrid, clustering 

hybrid and centroid clustering designs. Additionally, experimentation was conducted for 

each design strategy in the case where N = 6, 10, 15 and 25.  

Overall, results obtained through this research demonstrated that the predictive 

accuracy of quantile regression metamodels depends on both the location and density of 

the design points placed in the experimental region.  Of the five experimental design 

strategies, the sphere-packing and centroid clustering hybrid strategies most accurately 

predicted the cycle time quantiles across all experiments overall.  Additionally, when the 

density of the placement of design points was high (i.e., N =15, 25), results showed that 

the placement of those design points within the experimental region mattered less, implying 

that the experimental design strategy itself was less important. However, an important 

additional finding was that in experiments that included fewer numbers of design points 

(i.e., N = 6), the centroid clustering hybrid design was found to have the best performance. 

Findings also indicated that instead of considering only traditional space filling and optimal 

design strategies, practitioners should consider using a hybrid design strategy, particularly 
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in cases, such as within the semiconductor manufacturing industry, where the resources 

required to execute simulation models can be substantial, in which a smaller number of 

simulation model executions is preferable.   

The work presented here contributes to the field of experimental design by relating 

experimental design strategies for computer simulation metamodeling to the predictive 

performance of quantile regression metamodels. A major contribution is the development 

of the centroid hybrid clustering design strategy, which outperformed all others in sparse 

designs. This finding is particularly important for industries such as the semiconductor 

manufacturing industry, in which the associated savings in time and effort associated with 

simulation model execution is significant.    

3. Future Work 

Future work in this area will include several important topics.  First, the use of other space 

filling and optimal designs strategies for the development of quantile regression 

metamodels will be investigated.  Next steps will also include comparing the experimental 

design strategies using performance metrics other than MAPEs (i.e., mean-squared error 

values).  Such analyses will give an even clearer picture of how experimental design 

strategies influence resulting predictive accuracy.   

Future work will also address some limitations of the work presented here.  First, the 

method utilized for determining which design strategies were superior simply counted the 

number of cases in which one design performed than another across all experiments.  

However, such an approach does not effectively allow for consideration of differences in 

these meta-results that are evident only when examining the results of an individual 
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simulation experiment.  Future work will include the use of different methods of comparing 

the performance of design strategies such that the conclusions are more generalizable 

across experiments based on different sets of predictor variables. In addition, the study here 

utilized as an experimental testbed a model of a semiconductor manufacturing facility.  

Future work will include an examination how generalizable those findings are to other 

manufacturing settings.    

Finally, the work here demonstrated the impact of experimental design strategies on 

the predictive performance of quantile regression based metamodels for the case in which 

two predictor variables were included in metamodel.  Theoretically, however, there is no 

limitation to the number of predictor variables that can be included in such metamodels.   

For example, a quantile regression metamodel could be developed to predict cycle time 

quantiles based on the predictor variables TBA, COV, and MTTF simultaneously (vs. only 

a subset of these two variables). The impact of experimental design strategies on the 

predictive performance of quantile regression metamodels developed based on more than 

two predictor variables represents another important aspect of future work.    
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APPENDIX A 

SPHERE PACKING DESIGN POINTS FOR ALL SIMULATION EXPERIMENTS 
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A. Sphere packing design points for all simulation experiments. 

 

Table 1. Design points of sphere packing design for simulation experiment-1 when N=10. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00297 0.69176 

2 0.00395 0.9 

3 0.005 0.7137 

4 0.00403 0.1 

5 0.002 0.1 

6 0.002 0.9 

7 0.005 0.30847 

8 0.002 0.48352 

9 0.00401 0.50828 

10 0.00302 0.29394 

Table 2. Design points of sphere packing design for simulation experiment-1 when N=15. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00306 0.66376 

2 0.00404 0.6481 

3 0.00428 0.9 

4 0.00484 0.49997 

5 0.00426 0.30637 

6 0.002 0.67689 

7 0.00374 0.1 

8 0.0025 0.46666 

9 0.00335 0.9 

10 0.005 0.1 

11 0.002 0.25747 

12 0.00334 0.35463 

13 0.00282 0.14291 

14 0.00241 0.9 

15 0.005 0.74415 
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B. Sphere packing design points for all simulation experiments. 

Table 3. Design points of sphere packing design for simulation experiment-1 when N=25. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 0.1 

2 0.002 0.292401 

3 0.002 0.714683 

4 0.002066 0.523901 

5 0.002182 0.9 

6 0.002603 0.396662 

7 0.002621 0.196197 

8 0.00275 0.703383 

9 0.002901 0.9 

10 0.003121 0.529266 

11 0.003224 0.300456 

12 0.003243 0.1 

13 0.003518 0.802161 

14 0.003752 0.620995 

15 0.003775 0.423364 

16 0.003845 0.204225 

17 0.004136 0.9 

18 0.00437 0.718861 

19 0.004379 0.527294 

20 0.004397 0.326939 

21 0.004448 0.1 

22 0.005 0.222726 

23 0.005 0.625091 

24 0.005 0.431126 

25 0.005 0.878039 

Table 4. Design points of sphere packing design for simulation experiment-2 when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 24.99998 

2 0.004 25.00003 

3 0.003 10 

4 0.003 40 

5 0.005 40 

6 0.005 10 
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A. Sphere packing design points for all simulation experiments. 

Table 5. Design points of sphere packing design for simulation experiment-2 when N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0050 22.508 

2 0.0020 10.000 

3 0.0029 19.664 

4 0.0039 39.998 

5 0.0049 10.000 

6 0.0020 28.938 

7 0.0050 35.055 

8 0.0038 27.405 

9 0.0037 10.000 

10 0.0026 40.0000 

 

Table 6. Design points of sphere packing design for simulation experiment-2 when N=15. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00417 24.80161 

2 0.00344 31.33343 

3 0.005 19.43216 

4 0.00296 12.37855 

5 0.002 10 

6 0.002 38.41348 

7 0.00396 39.71065 

8 0.005 30.17318 

9 0.00297 40 

10 0.00494 40 

11 0.00472 10 

12 0.00208 20.21398 

13 0.00309 22.13211 

14 0.00389 15.36945 

15 0.00246 29.71288 
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A. Sphere packing design points for all simulation experiments. 

Table 7. Design points of sphere packing design for simulation experiment-2 when N=25. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 10 

2 0.002 17.21504 

3 0.002 33.0506 

4 0.002066 25.8963 

5 0.002182 40 

6 0.002603 21.12484 

7 0.002621 13.60739 

8 0.00275 32.62684 

9 0.002901 40 

10 0.003121 26.09747 

11 0.003224 17.5171 

12 0.003243 10 

13 0.003518 36.33105 

14 0.003752 29.53733 

15 0.003775 22.12617 

16 0.003845 13.90843 

17 0.004136 40 

18 0.00437 33.2073 

19 0.004379 26.02353 

20 0.004397 18.5102 

21 0.004448 10 

22 0.005 14.60221 

23 0.005 29.69093 

24 0.005 22.41722 

25 0.005 39.17646 

Table 8. Design points of sphere packing design for simulation experiment-3 when N=6. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 215.9999 

2 0.004 216.0002 

3 0.003 108 

4 0.003 324 

5 0.005 324 

6 0.005 108 
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A. Sphere packing design points for all simulation experiments. 

Table 9. Design points of sphere packing design for simulation experiment-3 when N=10. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.005 108 

2 0.002 249.7403 

3 0.00378 126.9187 

4 0.002 108 

5 0.00271 324 

6 0.005 276.872 

7 0.00465 192.436 

8 0.00275 177.4822 

9 0.00362 239.5642 

10 0.00397 324 

Table 10. Design points of sphere packing design for simulation experiment-3 when N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002567 175.76 

2 0.002558 240.6486 

3 0.004301 179.8666 

4 0.003324 208.7261 

5 0.004172 324 

6 0.005 140.822 

7 0.00335 277.3105 

8 0.003543 147.0445 

9 0.002 126.8763 

10 0.002748 324 

11 0.004242 108 

12 0.002 290.0418 

13 0.005 277.7912 

14 0.004081 241.548 

15 0.002845 108 
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A. Sphere packing design points for all simulation experiments. 

Table 11. Design points of sphere packing design for simulation experiment-3 when N=25. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 108 

2 0.002 159.9483 

3 0.002 273.9643 

4 0.002066 222.4534 

5 0.002182 324 

6 0.002603 188.0989 

7 0.002621 133.9732 

8 0.00275 270.9133 

9 0.002901 324 

10 0.003121 223.9017 

11 0.003224 162.1231 

12 0.003243 108 

13 0.003518 297.5836 

14 0.003752 248.6688 

15 0.003775 195.3084 

16 0.003845 136.1407 

17 0.004136 324 

18 0.00437 275.0925 

19 0.004379 223.3694 

20 0.004397 169.2734 

21 0.004448 108 

22 0.005 141.1359 

23 0.005 249.7747 

24 0.005 197.404 

25 0.005 318.0705 
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APPENDIX B 

I - OPTIMAL DESIGN POINTS FOR ALL SIMULATION EXPERIMENTS 
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B. I-Optimal design points for all simulation experiments 

Table 12. Design points of I-optimal design for simulation experiment-1 when N=10. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 0.9 

2 0.005 0.9 

3 0.002 0.5 

4 0.002 0.1 

5 0.005 0.1 

6 0.0035 0.1 

7 0.0035 0.5 

8 0.005 0.5 

9 0.0035 0.9 

10 0.0035 0.5 

Table 13. Design points of I-optimal design for simulation experiment-1 when N=15. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 0.5 

2 0.002 0.5 

3 0.0035 0.9 

4 0.0035 0.1 

5 0.002 0.1 

6 0.005 0.5 

7 0.005 0.9 

8 0.005 0.1 

9 0.0035 0.5 

10 0.005 0.5 

11 0.0035 0.1 

12 0.002 0.9 

13 0.0035 0.5 

14 0.0035 0.9 

15 0.0035 0.5 
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B. I-Optimal design points for all simulation experiments  

Table 14. Design points of I-optimal design for simulation experiment-1 when N=25. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 0.5 

2 0.003395 0.468 

3 0.002 0.9 

4 0.005 0.1 

5 0.005 0.5 

6 0.0035 0.5 

7 0.0035 0.5 

8 0.0035 0.5 

9 0.002 0.9 

10 0.0035 0.5 

11 0.0035 0.9 

12 0.0035 0.1 

13 0.002 0.1 

14 0.005 0.5 

15 0.0035 0.9 

16 0.0035 0.9 

17 0.002 0.5 

18 0.005 0.1 

19 0.005 0.5 

20 0.005 0.9 

21 0.0035 0.5 

22 0.002 0.1 

23 0.0035 0.1 

24 0.0035 0.5 

25 0.005 0.9 

Table 15. Design points of I-optimal design for simulation experiment-2 when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 40 

2 0.005 10 

3 0.005 40 

4 0.0035 25 

5 0.00263 10 

6 0.002 21.25 
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B. I-Optimal design points for all simulation experiments  

Table 16. Design points of I-optimal design for simulation experiment-2 when N=10. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 40 

2 0.002 25 

3 0.0035 40 

4 0.0035 25 

5 0.005 25 

6 0.005 10 

7 0.002 10 

8 0.0035 10 

9 0.005 40 

10 0.0035 25 

Table 17. Design points of I-optimal design for simulation experiment-2 when N=15. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.002 40 

2 0.0035 25 

3 0.002 10 

4 0.005 10 

5 0.0035 25 

6 0.005 40 

7 0.002 25 

8 0.005 25 

9 0.0035 10 

10 0.0035 10 

11 0.005 25 

12 0.0035 40 

13 0.0035 40 

14 0.0035 25 

15 0.002 25 



88 

B. I-Optimal design points for all simulation experiments  

Table 18. Design points of I-optimal design for simulation experiment-2 when N=25. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 25 

2 0.0035 25 

3 0.002 10 

4 0.0035 25 

5 0.005 25 

6 0.0035 10 

7 0.002 25 

8 0.002 25 

9 0.002 25 

10 0.002 40 

11 0.0035 25 

12 0.0035 25 

13 0.002 40 

14 0.005 40 

15 0.0035 40 

16 0.005 40 

17 0.005 10 

18 0.003635 26.65 

19 0.002 10 

20 0.005 10 

21 0.0035 25 

22 0.0035 40 

23 0.0035 25 

24 0.0035 10 

25 0.0035 10 

Table 19. Design points of I-optimal design for simulation experiment-3 when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 108 

2 0.005 324 

3 0.0035 216 

4 0.003365 324 

5 0.002 108 

6 0.002 275.4 
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B. I-Optimal design points for all simulation experiments  

Table 20. Design points of I-optimal design for simulation experiment-3 when N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0035 216 

2 0.005 324 

3 0.005 108 

4 0.0035 108 

5 0.002 108 

6 0.002 216 

7 0.002 324 

8 0.0035 216 

9 0.005 216 

10 0.0035 324 

Table 21. Design points of I-optimal design for simulation experiment-3 when N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 108 

2 0.005 108 

3 0.0035 216 

4 0.005 324 

5 0.002 216 

6 0.005 216 

7 0.0035 216 

8 0.0035 216 

9 0.0035 324 

10 0.002 216 

11 0.0035 108 

12 0.0035 108 

13 0.002 324 

14 0.005 216 

15 0.0035 324 
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B. I-Optimal design points for all simulation experiments  

Table 22. Design points of I-optimal design for simulation experiment-3 when N=25. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 324 

2 0.0035 216 

3 0.002 216 

4 0.005 216 

5 0.005 324 

6 0.0035 216 

7 0.005 108 

8 0.0035 108 

9 0.005 108 

10 0.0035 324 

11 0.0035 324 

12 0.0035 216 

13 0.0035 216 

14 0.0035 216 

15 0.002 108 

16 0.00365 207.36 

17 0.0035 108 

18 0.002 108 

19 0.002 324 

20 0.005 216 

21 0.002 216 

22 0.005 324 

23 0.0035 324 

24 0.002 216 

25 0.0035 216 
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APPENDIX C 

ARBITRARY HYBRID DESIGN POINTS FOR ALL SIMULATION EXPERIMENTS 
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C. Arbitrary hybrid design points for all simulation experiments. 

Table 23. Design points of arbitrary hybrid design for simulation experiment-1 when 

N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.00297 0.69176 

2 0.00395 0.9 

3 0.005 0.7137 

4 0.00403 0.1 

5 0.005 0.30847 

6 0.00302 0.29394 

7 0.002 0.9 

8 0.005 0.9 

9 0.002 0.1 

10 0.0035 0.5 

Table 24. Design points of arbitrary hybrid design for simulation experiment-1 when 

N=15. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.00306 0.66376 

2 0.00404 0.6481 

3 0.00428 0.9 

4 0.00426 0.30637 

5 0.002 0.67689 

6 0.00374 0.1 

7 0.0025 0.46666 

8 0.00282 0.14291 

9 0.0035 0.9 

10 0.002 0.1 

11 0.005 0.5 

12 0.005 0.9 

13 0.005 0.1 

14 0.0035 0.5 

15 0.002 0.9 
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C. Arbitrary hybrid design points for all simulation experiments  

Table 25. Design points of arbitrary hybrid design for simulation experiment-1 when N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 0.5 

2 0.002 0.9 

3 0.005 0.1 

4 0.005 0.5 

5 0.0035 0.5 

6 0.0035 0.9 

7 0.0035 0.1 

8 0.005 0.9 

9 0.002 0.1 

10 0.002 0.292401 

11 0.002 0.714683 

12 0.002603 0.396662 

13 0.002621 0.196197 

14 0.00275 0.703383 

15 0.002901 0.9 

16 0.003224 0.300456 

17 0.003752 0.620995 

18 0.003845 0.204225 

19 0.004136 0.9 

20 0.00437 0.718861 

21 0.004379 0.527294 

22 0.004397 0.326939 

23 0.004448 0.1 

24 0.005 0.222726 

25 0.005 0.625091 

Table 26. Design points of arbitrary hybrid design for simulation experiment-2 when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 40 

2 0.0035 25 

3 0.00263 10 

4 0.002 24.99998 

5 0.005 40 

6 0.005 10 
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C. Arbitrary hybrid design points for all simulation experiments  

Table 27. Design points of arbitrary hybrid design for simulation experiment-2 when 

N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 40 

2 0.002 25 

3 0.005 10 

4 0.0035 10 

5 0.005 40 

6 0.005 22.50811 

7 0.002 10 

8 0.00285 19.66358 

9 0.00385 39.9979 

10 0.00384 27.40471 

Table 28. Design points of arbitrary hybrid design for simulation experiment-2 when 

N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 40 

2 0.005 10 

3 0.0035 25 

4 0.005 40 

5 0.0035 10 

6 0.0035 40 

7 0.002 25 

8 0.00417 24.80161 

9 0.00344 31.33343 

10 0.005 19.43216 

11 0.00296 12.37855 

12 0.002 10 

13 0.00396 39.71065 

14 0.005 30.17318 

15 0.00246 29.71288 
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C. Arbitrary hybrid design points for all simulation experiments  

Table 29. Design points of arbitrary hybrid design for simulation experiment-2 when N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 10 

2 0.002 17.21504 

3 0.002 33.0506 

4 0.002603 21.12484 

5 0.002621 13.60739 

6 0.00275 32.62684 

7 0.002901 40 

8 0.003121 26.09747 

9 0.003224 17.5171 

10 0.003752 29.53733 

11 0.003845 13.90843 

12 0.004136 40 

13 0.00437 33.2073 

14 0.004379 26.02353 

15 0.004397 18.5102 

16 0.004448 10 

17 0.005 29.69093 

18 0.005 25 

19 0.0035 25 

20 0.0035 10 

21 0.002 25 

22 0.002 40 

23 0.005 40 

24 0.0035 40 

25 0.005 10 

Table 30. Design points of arbitrary hybrid design for simulation experiment-3 when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0035 216 

2 0.002 108 

3 0.002 275.4 

4 0.003 324 

5 0.005 324 

6 0.005 108 
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C. Arbitrary hybrid design points for all simulation experiments  

Table 31. Design points of arbitrary hybrid design for simulation experiment-3 when 

N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 324 

2 0.0035 108 

3 0.002 324 

4 0.005 216 

5 0.0035 324 

6 0.005 108 

7 0.002 249.7403 

8 0.002 108 

9 0.00275 177.4822 

10 0.00362 239.5642 

Table 32. Design points of arbitrary hybrid design for simulation experiment-3 when 

N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 108 

2 0.005 108 

3 0.0035 216 

4 0.005 324 

5 0.005 216 

6 0.002 216 

7 0.0035 108 

8 0.002 324 

9 0.002567 175.76 

10 0.004301 179.8666 

11 0.004172 324 

12 0.00335 277.3105 

13 0.002748 324 

14 0.004242 108 

15 0.005 277.7912 
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C. Arbitrary hybrid design points for all simulation experiments  

Table 33. Design points of arbitrary hybrid design for simulation experiment-3 when N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 324 

2 0.002 216 

3 0.0035 108 

4 0.0035 324 

5 0.00365 207.36 

6 0.005 216 

7 0.005 324 

8 0.005 108 

9 0.002 108 

10 0.002 159.9483 

11 0.002 273.9643 

12 0.002603 188.0989 

13 0.002621 133.9732 

14 0.00275 270.9133 

15 0.002901 324 

16 0.003121 223.9017 

17 0.003224 162.1231 

18 0.003752 248.6688 

19 0.003845 136.1407 

20 0.004136 324 

21 0.00437 275.0925 

22 0.004379 223.3694 

23 0.004397 169.2734 

24 0.004448 108 

25 0.005 141.1359 
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APPENDIX D 

CLUSTERING HYBRID DESIGN POINTS FOR ALL SIMULATION EXPERIMENTS 
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D. Clustering hybrid design points for all simulation experiments  

Table 34. Design points of clustering hybrid design for simulation experiment-1 when 

N=10 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0035 0.1 

2 0.002 0.9 

3 0.0035 0.5 

4 0.00401 0.50828 

5 0.005 0.9 

6 0.002 0.48352 

7 0.005 0.7137 

8 0.005 0.30847 

9 0.0035 0.9 

10 0.002 0.1 

Table 35. Design points of clustering hybrid design for simulation experiment-1 when 

N=15 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 0.1 

2 0.005 0.1 

3 0.00426 0.30637 

4 0.00282 0.14291 

5 0.00306 0.66376 

6 0.005 0.5 

7 0.005 0.5 

8 0.00484 0.49997 

9 0.00428 0.9 

10 0.00241 0.9 

11 0.002 0.67689 

12 0.002 0.9 

13 0.005 0.9 

14 0.005 0.74415 

15 0.0035 0.1 
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D. Clustering hybrid design points for all simulation experiments  

Table 36. Design points of clustering hybrid design for simulation experiment-1 when 

N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 0.5 

2 0.005 0.5 

3 0.005 0.5 

4 0.0035 0.1 

5 0.0035 0.1 

6 0.003243 0.1 

7 0.003845 0.204225 

8 0.004448 0.1 

9 0.005 0.222726 

10 0.00275 0.703383 

11 0.003121 0.529266 

12 0.005 0.1 

13 0.005 0.1 

14 0.003395 0.468 

15 0.0035 0.5 

16 0.0035 0.5 

17 0.0035 0.5 

18 0.0035 0.5 

19 0.0035 0.5 

20 0.0035 0.5 

21 0.004397 0.326939 

22 0.005 0.625091 

23 0.003518 0.802161 

24 0.003775 0.423364 

25 0.002603 0.396662 

Table 36. Design points of clustering hybrid design for simulation experiment-2 when N=6 

Design Point Time Between Arrivals Coefficient of variance 

1 0.003 40 

2 0.0035 25 

3 0.004 25.00003 

4 0.005 40 

5 0.005 40 

6 0.002 40 
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D. Clustering hybrid design points for all simulation experiments  

Table 37. Design points of clustering hybrid design for simulation experiment-2 when 

N=10 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0035 40 

2 0.0039 39.998 

3 0.002 40 

4 0.002 28.938 

5 0.0035 25 

6 0.0035 25 

7 0.0038 27.405 

8 0.005 10 

9 0.0035 10 

10 0.0049 10 

Table 38. Design points of clustering hybrid design for simulation experiment-2 when 

N=15 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 10 

2 0.00472 10 

3 0.005 25 

4 0.005 25 

5 0.005 19.43216 

6 0.0035 10 

7 0.0035 10 

8 0.00296 12.37855 

9 0.00309 22.13211 

10 0.0035 25 

11 0.0035 25 

12 0.0035 25 

13 0.002 25 

14 0.002 25 

15 0.00208 20.21398 
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D. Clustering hybrid design points for all simulation experiments  

Table 39. Design points of clustering hybrid design for simulation experiment-2 when 

N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 40 

2 0.005 40 

3 0.005 39.176465 

4 0.002621 13.607386 

5 0.004448 10 

6 0.005 10 

7 0.005 10 

8 0.005 14.602209 

9 0.00275 32.626844 

10 0.0035 25 

11 0.0035 25 

12 0.0035 25 

13 0.0035 25 

14 0.0035 25 

15 0.0035 25 

16 0.003121 26.097465 

17 0.003635 26.65 

18 0.002 25 

19 0.002 25 

20 0.002 25 

21 0.002 33.050598 

22 0.004397 18.510201 

23 0.005 29.690929 

24 0.003518 36.331051 

25 0.003775 22.126166 

Table 40. Design points of clustering hybrid design for simulation experiment-3 when N=6 

Design Point Time Between Arrivals Coefficient of variance 

1 0.003 324 

2 0.0035 216 

3 0.004 216.0002 

4 0.005 324 

5 0.005 324 

6 0.005 108 
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D. Clustering hybrid design points for all simulation experiments  

Table 41. Design points of clustering hybrid design for simulation experiment-3 when 

N=10 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 108 

2 0.002 108 

3 0.0035 216 

4 0.0035 216 

5 0.00275 177.4822 

6 0.005 276.872 

7 0.0035 324 

8 0.00271 324 

9 0.00362 239.5642 

10 0.005 324 

Table 42. Design points of clustering hybrid design for simulation experiment-3 when 

N=15 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 324 

2 0.0035 216 

3 0.0035 216 

4 0.0035 216 

5 0.003324 208.7261 

6 0.002 216 

7 0.002 216 

8 0.005 277.7912 

9 0.005 216 

10 0.005 216 

11 0.004301 179.8666 

12 0.004081 241.548 

13 0.003543 147.0445 

14 0.005 108 

15 0.005 140.822 
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D. Clustering hybrid design points for all simulation experiments  

Table 43. Design points of clustering hybrid design for simulation experiment-3 when 

N=25 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0035 216 

2 0.0035 216 

3 0.0035 216 

4 0.003121 223.9017 

5 0.002621 133.9732 

6 0.003243 108 

7 0.004448 108 

8 0.005 141.1359 

9 0.00275 270.9133 

10 0.002 108 

11 0.002 108 

12 0.002 108 

13 0.005 108 

14 0.005 108 

15 0.0035 324 

16 0.0035 324 

17 0.0035 324 

18 0.002901 324 

19 0.004136 324 

20 0.004397 169.2734 

21 0.005 216 

22 0.005 216 

23 0.005 249.7747 

24 0.003518 297.5836 

25 0.0035 108 
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APPENDIX E 

CENTROID CLUSTERING HYBRID DESIGN POINTS FOR ALL SIMULATION 

EXPERIMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 

E. Centroid Clustering Design points for all simulation experiments.  

Table 44. Design points of centroid clustering hybrid design for simulation experiment-1 

when N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0038 0.1 

2 0.002 0.9 

3 0.0033 0.5639 

4 0.004 0.5083 

5 0.005 0.9 

6 0.0023 0.4258 

7 0.005 0.7137 

8 0.005 0.3028 

9 0.0037 0.9 

10 0.002 0.1 

Table 45. Design points of centroid clustering hybrid design for simulation experiment-1 

when N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 0.1 

2 0.0043 0.3064 

3 0.0028 0.1429 

4 0.0031 0.6638 

5 0.0049 0.5 

6 0.0043 0.9 

7 0.0021 0.8256 

8 0.005 0.8221 

9 0.0036 0.1 

10 0.004 0.6481 

11 0.0035 0.9 

12 0.0035 0.4637 

13 0.002 0.1787 

14 0.0034 0.9 

15 0.0022 0.4889 
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D. Clustering hybrid design points for all simulation experiments  

Table 46. Design points of centroid clustering hybrid design for simulation experiment-1 

when N=25. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 0.5 

2 0.0035 0.1261 

3 0.0044 0.1 

4 0.005 0.2227 

5 0.0027 0.7034 

6 0.0031 0.5293 

7 0.005 0.1 

8 0.0035 0.4954 

9 0.0044 0.3269 

10 0.005 0.6251 

11 0.0035 0.8022 

12 0.0038 0.4234 

13 0.0026 0.3967 

14 0.0035 0.9 

15 0.0021 0.9 

16 0.0022 0.124 

17 0.002 0.2924 

18 0.0032 0.3005 

19 0.0044 0.5273 

20 0.002 0.508 

21 0.005 0.8927 

22 0.005 0.4311 

23 0.0038 0.621 

24 0.002 0.7147 

25 0.0044 0.7189 

Table 47. Design points of centroid clustering hybrid design for simulation experiment-2 

when N=6. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.003 40 

2 0.0038 25 

3 0.005 40 

4 0.002 40 

5 0.0039 10 

6 0.002 23.125 
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D. Clustering hybrid design points for all simulation experiments  

Table 48. Design points of centroid clustering hybrid design for simulation experiment-2 

when N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0037 39.999 

2 0.002 40 

3 0.002 28.938 

4 0.0036 25.8017 

5 0.0043 10 

6 0.002 25 

7 0.0026 40 

8 0.0029 19.664 

9 0.005 30.6407 

10 0.002 10 

Table 49. Design points of centroid clustering hybrid design for simulation experiment-2 

when N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.0049 10 

2 0.005 23.1441 

3 0.0033 10.7929 

4 0.0031 22.1321 

5 0.0035 25 

6 0.002 23.4047 

7 0.0039 15.3695 

8 0.005 30.1732 

9 0.0025 29.7129 

10 0.0042 24.8016 

11 0.005 40 

12 0.0035 39.9277 

13 0.002 39.2067 

14 0.0034 31.3334 

15 0.002 10 
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D. Clustering hybrid design points for all simulation experiments  

Table 50. Design points of centroid clustering hybrid design for simulation experiment-2 

when N=25. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 39.7255 

2 0.0026 13.6074 

3 0.0044 10 

4 0.005 11.5341 

5 0.0027 32.6268 

6 0.0034 25.1568 

7 0.0036 26.65 

8 0.002 25 

9 0.002 33.0506 

10 0.0044 18.5102 

11 0.005 29.6909 

12 0.0035 36.3311 

13 0.0038 22.1262 

14 0.0026 21.1248 

15 0.005 25 

16 0.0021 40 

17 0.0035 10.7817 

18 0.002 11.8038 

19 0.0032 17.5171 

20 0.0044 26.0235 

21 0.0021 25.8963 

22 0.0035 40 

23 0.005 22.4172 

24 0.0038 29.5373 

25 0.0044 33.2073 

Table 51. Design points of centroid clustering hybrid design for simulation experiment-3 

when N=6. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.0032 324 

2 0.0038 216.0001 

3 0.005 324 

4 0.005 108 

5 0.0025 108 

6 0.002 245.6999 
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D. Clustering hybrid design points for all simulation experiments  

Table 52. Design points of centroid clustering hybrid design for simulation experiment-3 

when N=10. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.002 108 

2 0.0033 203.1607 

3 0.005 276.872 

4 0.0031 324 

5 0.0036 239.5642 

6 0.005 324 

7 0.004 324 

8 0.0036 117.4593 

9 0.0049 156.109 

10 0.002 263.2468 

Table 53. Design points of centroid clustering hybrid design for simulation experiment-3 

when N=15. 

Design Point Time Between Arrivals 
Coefficient of 

variance 

1 0.005 324 

2 0.0035 214.1815 

3 0.002 216 

4 0.005 277.7912 

5 0.0048 203.9555 

6 0.0041 241.548 

7 0.0035 147.0445 

8 0.005 124.4 

9 0.0028 108 

10 0.0036 312.3276 

11 0.0026 175.76 

12 0.0022 312.6806 

13 0.0037 108 

14 0.002 117.4382 

15 0.0026 240.6486 
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D. Clustering hybrid design points for all simulation experiments  

Table 54. Design points of centroid clustering hybrid design for simulation experiment-3 

when N=25. 

Design Point Time Between Arrivals Coefficient of variance 

1 0.0034 217.1288 

2 0.0029 120.9866 

3 0.0044 108 

4 0.005 141.1359 

5 0.0027 270.9133 

6 0.002 108 

7 0.005 108 

8 0.0035 324 

9 0.0044 169.2734 

10 0.005 216 

11 0.005 249.7747 

12 0.0035 297.5836 

13 0.0036 117.3802 

14 0.0037 201.3342 

15 0.0026 188.0989 

16 0.005 322.0235 

17 0.002 311.4911 

18 0.002 216 

19 0.002 159.9483 

20 0.0032 162.1231 

21 0.0044 223.3694 

22 0.0021 222.4534 

23 0.005 197.404 

24 0.0038 248.6688 

25 0.0044 275.0925 
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APPENDIX F 

“.MOD” AND “.EXP” FILES OF MINIFAB SIMULATION MODEL 
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F. “.mod” and “.exp” files of Minifab simulation model.  

.mod file:  

 

;     Model statements for module:  BasicProcess.Create 1 

(Part X) 

; 

 

66$           CREATE,        

1,MinutesToBaseTime(0.01),Entity Type 

X:MinutesToBaseTime(EXPO(1/TBA)):NEXT(67$); 

 

67$           ASSIGN:        Part X.NumberOut=Part 

X.NumberOut + 1:NEXT(14$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 1 

(Assign X) 

; 

14$           ASSIGN:        Arrival Time=TNOW: 

                             Entity.Sequence=Sequence: 

                             Entity.Type=1:NEXT(10$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 

4 (Route1) 

; 

10$           ROUTE:         0.000000000000000,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 2 

(Part Y) 

; 

 

70$           CREATE,        

1,MinutesToBaseTime(0.01),Entity Type 

Y:MinutesToBaseTime(EXPO(333.33)):NEXT(71$); 
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71$           ASSIGN:        Part Y.NumberOut=Part 

Y.NumberOut + 1:NEXT(18$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 2 

(Assign Y) 

; 

18$           ASSIGN:        Entity.Sequence=Sequence: 

                             Entity.Type=2:NEXT(10$); 

 

 

; 

; 

;     Model statements for module:  

AdvancedTransfer.Station 1 (Station2) 

; 

 

4$            STATION,       Station 2; 

76$           DELAY:         0.0,,VA:NEXT(17$); 

 

 

; 

 
;     Model statements for module:  BasicProcess.Decide 3 

(Job Step?) 

; 

17$           BRANCH,        1: 

                             If,Entity.JobStep==2,77$,Yes: 

                             Else,78$,Yes; 

77$           ASSIGN:        Job Step?.NumberOut True=Job 

Step?.NumberOut True + 1:NEXT(27$); 

 

78$           ASSIGN:        Job Step?.NumberOut False=Job 

Step?.NumberOut False + 1:NEXT(32$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 10 

(Load 1 CD) 

; 

27$           ASSIGN:        Load 1 CD.NumberIn=Load 1 

CD.NumberIn + 1: 

                             Load 1 CD.WIP=Load 1 CD.WIP+1; 
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82$           QUEUE,         Load 1 CD.Queue; 

81$           SEIZE,         2,NVA: 

                             operator 2,1: 

                             Machine C D,1:NEXT(80$); 

 

80$           DELAY:         Normal(15,1.5),,NVA; 

127$          ASSIGN:        Load 1 CD.NumberOut=Load 1 

CD.NumberOut + 1: 

                             Load 1 CD.WIP=Load 1 CD.WIP-

1:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.Release 

2 (Release 1) 

; 

28$           RELEASE:       operator 2,1:NEXT(1$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 2 

(Tool Group 2a) 

; 

1$            ASSIGN:        Tool Group 2a.NumberIn=Tool 

Group 2a.NumberIn + 1: 

                             Tool Group 2a.WIP=Tool Group 

2a.WIP+1; 

131$          DELAY:         Processing Time,,VA; 

178$          ASSIGN:        Tool Group 2a.NumberOut=Tool 

Group 2a.NumberOut + 1: 

                             Tool Group 2a.WIP=Tool Group 

2a.WIP-1:NEXT(29$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.Seize 2 

(Seize 1) 

; 

29$           QUEUE,         Seize 1.Queue; 

              SEIZE,         2,Other: 

                             operator 2,1:NEXT(182$); 
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182$          DELAY:         0.0,,VA:NEXT(31$); 

 

 

; 

;     Model statements for module:  BasicProcess.Process 11 

(Unload 1 CD) 

; 

31$           ASSIGN:        Unload 1 CD.NumberIn=Unload 1 

CD.NumberIn + 1: 

                             Unload 1 CD.WIP=Unload 1 

CD.WIP+1; 

184$          DELAY:         Normal(15,1.5*COV),,NVA; 

183$          RELEASE:       operator 2,1: 

                             Machine C D,1; 

231$          ASSIGN:        Unload 1 CD.NumberOut=Unload 1 

CD.NumberOut + 1: 

                             Unload 1 CD.WIP=Unload 1 

CD.WIP-1:NEXT(12$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 1 

(Rework?) 

; 

12$           BRANCH,        1: 

                             With,(2)/100,234$,Yes: 

                             Else,235$,Yes; 

234$          ASSIGN:        Rework?.NumberOut 

True=Rework?.NumberOut True + 1:NEXT(13$); 

 

235$          ASSIGN:        Rework?.NumberOut 

False=Rework?.NumberOut False + 1:NEXT(7$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 4 

(Rework Process) 

; 

13$           ASSIGN:        Rework Process.NumberIn=Rework 

Process.NumberIn + 1: 

                             Rework Process.WIP=Rework 

Process.WIP+1; 

239$          QUEUE,         Rework Process.Queue; 
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238$          SEIZE,         2,VA: 

                             Rework operator,1: 

                             Rework,1:NEXT(237$); 

 

237$          DELAY:         (0.5)*(Processing Time),,VA; 

236$          RELEASE:       Rework operator,1: 

                             Rework,1; 

284$          ASSIGN:        Rework 

Process.NumberOut=Rework Process.NumberOut + 1: 

                             Rework Process.WIP=Rework 

Process.WIP-1:NEXT(17$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 

2 (Route3) 

; 

7$            ROUTE:         0.000000000000000,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 13 

(Load 2 CD) 

; 

32$           ASSIGN:        Load 2 CD.NumberIn=Load 2 

CD.NumberIn + 1: 

                           Load 2 CD.WIP=Load 2 CD.WIP+1; 

290$          QUEUE,         Load 2 CD.Queue; 

289$          SEIZE,         2,NVA: 

                             operator 2,1: 

                             Machine C D,1:NEXT(288$); 

 

288$          DELAY:         Normal(15,1.5),,NVA; 

335$          ASSIGN:        Load 2 CD.NumberOut=Load 2 

CD.NumberOut + 1: 

                             Load 2 CD.WIP=Load 2 CD.WIP-

1:NEXT(33$); 

 

 

; 

; 
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;     Model statements for module:  AdvancedProcess.Release 

3 (Release 2) 

; 

33$           RELEASE:       operator 2,1:NEXT(16$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 6 

(Tool Group 2b) 

; 

16$           ASSIGN:        Tool Group 2b.NumberIn=Tool 

Group 2b.NumberIn + 1: 

                             Tool Group 2b.WIP=Tool Group 

2b.WIP+1; 

339$          DELAY:         Processing Time,,VA; 

386$          ASSIGN:        Tool Group 2b.NumberOut=Tool 

Group 2b.NumberOut + 1: 

                             Tool Group 2b.WIP=Tool Group 

2b.WIP-1:NEXT(34$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.Seize 3 

(Seize 2) 

; 

34$           QUEUE,         Seize 2.Queue; 

              SEIZE,         2,Other: 

                             operator 2,1:NEXT(390$); 

 

390$          DELAY:         0.0,,VA:NEXT(36$); 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 14 

(Unload 2 CD) 

; 

36$           ASSIGN:        Unload 2 CD.NumberIn=Unload 2 

CD.NumberIn + 1: 

                             Unload 2 CD.WIP=Unload 2 

CD.WIP+1; 

392$          DELAY:         Normal(15,1.5*COV),,NVA; 

391$          RELEASE:       operator 2,1: 

                             Machine C D,1; 
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439$          ASSIGN:        Unload 2 CD.NumberOut=Unload 2 

CD.NumberOut + 1: 

                             Unload 2 CD.WIP=Unload 2 

CD.WIP-1:NEXT(12$); 

 

; 

; 

;     Model statements for module:  

AdvancedTransfer.Station 2 (Station3) 

; 

 

5$            STATION,       Station 3; 

444$          DELAY:         0.0,,VA:NEXT(44$); 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 6 

(Setup) 

; 

44$           BRANCH,        1: 

                             If,Parts Setup == Entity.Type 

&& Step == Entity.JobStep,43$,Yes: 

                             If,Parts 

Setup==Entity.Type,45$,Yes: 

                             

If,Step==Entity.JobStep,46$,Yes: 

                             Else,47$,Yes; 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 7 

(Diff Step Diff Type) 

; 

47$           ASSIGN:        Step=Entity.JobStep: 

                             Parts Setup=Entity.Type: 

                             SetUpTime=NORM (12, 

6):NEXT(37$); 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 16 

(Load E) 

; 

37$           ASSIGN:        Load E.NumberIn=Load 

E.NumberIn + 1: 

                             Load E.WIP=Load E.WIP+1; 
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450$          QUEUE,         Load E.Queue; 

449$          SEIZE,         2,VA: 

                             operator 3,1: 

                             Machine E,1:NEXT(448$); 

 

448$          DELAY:         SetUpTime+ NORM(10,1),,VA; 

495$          ASSIGN:        Load E.NumberOut=Load 

E.NumberOut + 1: 

                             Load E.WIP=Load E.WIP-

1:NEXT(38$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.Release 

4 (Release) 

; 

38$           RELEASE:       operator 3,1:NEXT(2$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 3 

(Tool Group 3) 

; 

2$            ASSIGN:        Tool Group 3.NumberIn=Tool 

Group 3.NumberIn + 1: 

                             Tool Group 3.WIP=Tool Group 

3.WIP+1; 

499$          DELAY:         Processing Time,,VA; 

546$          ASSIGN:        Tool Group 3.NumberOut=Tool 

Group 3.NumberOut + 1: 

                             Tool Group 3.WIP=Tool Group 

3.WIP-1:NEXT(39$); 

 

; 

;     Model statements for module:  AdvancedProcess.Seize 4 

(Seize) 

; 

39$           QUEUE,         Seize.Queue; 

              SEIZE,         2,Other: 

                             operator 3,1:NEXT(550$); 

 

550$          DELAY:         0.0,,VA:NEXT(41$); 
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F. “.mod” and “.exp” files of Minifab simulation model 
; 

; 

;     Model statements for module:  BasicProcess.Process 17 

(Unload E) 

; 

41$           ASSIGN:        Unload E.NumberIn=Unload 

E.NumberIn + 1: 

                             Unload E.WIP=Unload E.WIP+1; 

552$          DELAY:         Normal(10,10*COV),,NVA; 

551$          RELEASE:       operator 3,1: 

                             Machine E,1; 

599$          ASSIGN:        Unload E.NumberOut=Unload 

E.NumberOut + 1: 

                             Unload E.WIP=Unload E.WIP-

1:NEXT(8$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 

3 (Route4) 

; 

8$            ROUTE:         0.000000000000000,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 4 

(Same Step Same Type) 

; 

43$           ASSIGN:        Step=Entity.JobStep: 

                             Parts Setup=Entity.Type: 

                             SetUpTime=0:NEXT(37$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 5 

(Same Type Diff Steps) 

; 

45$           ASSIGN:        Step=Entity.JobStep: 

                             Parts Setup=Entity.Type: 

                             SetUpTime=NORM(10, 

5):NEXT(37$); 
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F. “.mod” and “.exp” files of Minifab simulation model 
; 

; 

;     Model statements for module:  BasicProcess.Assign 6 

(Same Step Diff Type) 

; 

46$           ASSIGN:        Step=Entity.JobStep: 

                             Parts Setup=Entity.Type: 

                             SetUpTime=NORM (5, 

2.5):NEXT(37$); 

 

; 

; 

;     Model statements for module:  

AdvancedTransfer.Station 3 (Station4) 

; 

 

9$            STATION,       Station 4; 

604$          DELAY:         0.0,,VA:NEXT(53$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 7 

(Decide 7) 

; 

53$           BRANCH,        1: 

                             If,Entity.Type==Entity Type 

X,605$,Yes: 

                             Else,606$,Yes; 

605$          ASSIGN:        Decide 7.NumberOut True=Decide 

7.NumberOut True + 1:NEXT(55$); 

 

606$          ASSIGN:        Decide 7.NumberOut 

False=Decide 7.NumberOut False + 1:NEXT(54$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 8 

(Reached Truncation Pt?) 

; 

55$           BRANCH,        1: 

                             If,Truncation<TNOW,607$,Yes: 

                             Else,608$,Yes; 
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607$          ASSIGN:        Reached Truncation 

Pt?.NumberOut True=Reached Truncation Pt?.NumberOut True + 

1:NEXT(52$); 

 

608$          ASSIGN:        Reached Truncation 

Pt?.NumberOut False=Reached Truncation Pt?.NumberOut False 

+ 1:NEXT(56$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 9 

(output) 

; 

52$           ASSIGN:        CycleTime=TNOW - Arrival 

Time:NEXT(61$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 17 

(batch CT Size) 

; 

61$           ASSIGN:        Batch_Size=Batch_Size+1: 

                             

Batch_Cycletime=Batch_Cycletime + CycleTime:NEXT(63$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 12 

(Batch is complete?) 

; 

 

63$           BRANCH,        1: 

                             If,Batch_Size==3,609$,Yes: 

                             Else,610$,Yes; 

609$          ASSIGN:        Batch is complete?.NumberOut 

True=Batch is complete?.NumberOut True + 1:NEXT(64$); 

 

610$          ASSIGN:        Batch is complete?.NumberOut 

False=Batch is complete?.NumberOut False + 1:NEXT(65$); 
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F. “.mod” and “.exp” files of Minifab simulation model 
; 

;     Model statements for module:  BasicProcess.Assign 24 

(Average batch CT) 

; 

64$           ASSIGN:        

Batch_Cycletime=Batch_Cycletime/3:NEXT(62$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 20 

(Assign Batch CT) 

; 

62$           ASSIGN:        

BatchedCT=Batch_Cycletime:NEXT(58$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 15 

(Reset lag Batch_CT Batch_Size) 

; 

58$           ASSIGN:        lag_Tally=lag_Tally+1: 

                             Batch_Cycletime=0: 

                             Batch_Size=0:NEXT(57$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 9 

(Reached Lag_Value) 

; 

57$           BRANCH,        1: 

                             

If,lag_Tally>Lag_Value,611$,Yes: 

                             Else,612$,Yes; 

611$          ASSIGN:        Reached Lag_Value.NumberOut 

True=Reached Lag_Value.NumberOut True + 1:NEXT(60$); 

 

612$          ASSIGN:        Reached Lag_Value.NumberOut 

False=Reached Lag_Value.NumberOut False + 1:NEXT(59$); 

 

 

; 

; 
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;     Model statements for module:  BasicProcess.Assign 16 

(Reset_Lag_Tally) 

; 

60$           ASSIGN:        lag_Tally=0:NEXT(42$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Record 1 

(Count Entities) 

 

; 

42$           COUNT:         Exits,1:NEXT(51$); 

 

 

; 

; 

;     Model statements for module:  

AdvancedProcess.ReadWrite 2 (Write Output) 

; 

51$           WRITE,         Minifab Output: 

                             TBA, 

                             MTBF, 

                             MTTR, 

                             COV, 

                             BatchedCT:NEXT(3$); 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 1 

(Dispose 1) 

; 

3$            ASSIGN:        Dispose 1.NumberOut=Dispose 

1.NumberOut + 1; 

613$          DISPOSE:       Yes; 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 5 

(Dispose 5) 

; 

59$           ASSIGN:        Dispose 5.NumberOut=Dispose 

5.NumberOut + 1; 

614$          DISPOSE:       Yes; 
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; 

; 

;     Model statements for module:  BasicProcess.Dispose 8 

(Dispose) 

; 

65$           ASSIGN:        

Dispose.NumberOut=Dispose.NumberOut + 1; 

615$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 4 

(Dispose 4) 

; 

56$           ASSIGN:        Dispose 4.NumberOut=Dispose 

4.NumberOut + 1; 

616$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 3 

(Dispose 3) 

; 

54$           ASSIGN:        Dispose 3.NumberOut=Dispose 

3.NumberOut + 1; 

617$          DISPOSE:       Yes; 

 

 

; 

; 

 

;     Model statements for module:  

AdvancedTransfer.Station 4 (Station1) 

; 

 

11$           STATION,       Station 1; 

620$          DELAY:         0.0,,VA:NEXT(20$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 4 

(JobStep?) 
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20$           BRANCH,        1: 

                             If,Entity.JobStep==1,621$,Yes: 

                             Else,622$,Yes; 

621$          ASSIGN:        JobStep?.NumberOut 

True=JobStep?.NumberOut True + 1:NEXT(15$); 

 

622$          ASSIGN:        JobStep?.NumberOut 

False=JobStep?.NumberOut False + 1:NEXT(21$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Batch 1 

(Batch A B) 

; 

15$           QUEUE,         Batch A B.Queue; 

623$          GROUP,         ,Temporary:3,Last,Entity Type 

X:NEXT(624$); 

 

624$          ASSIGN:        Batch A B.NumberOut=Batch A 

B.NumberOut + 1:NEXT(22$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 7 

(Load AB) 

; 

22$           ASSIGN:        Load AB.NumberIn=Load 

AB.NumberIn + 1: 

                             Load AB.WIP=Load AB.WIP+1; 

628$          QUEUE,         Load AB.Queue; 

627$          SEIZE,         2,NVA: 

                             operator 1,1: 

                             Machine A B,1:NEXT(626$); 

 

626$          DELAY:         Normal(20,2),,NVA; 

673$          ASSIGN:        Load AB.NumberOut=Load 

AB.NumberOut + 1: 

                             Load AB.WIP=Load AB.WIP-

1:NEXT(23$); 

 

 

; 
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;     Model statements for module:  AdvancedProcess.Release 

1 (Release Op) 

; 

23$           RELEASE:       operator 1,1:NEXT(0$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 1 

(Tool Group 1 Process) 

; 

0$            ASSIGN:        Tool Group 1 

Process.NumberIn=Tool Group 1 Process.NumberIn + 1: 

                             Tool Group 1 Process.WIP=Tool 

Group 1 Process.WIP+1; 

677$          DELAY:         Processing Time,,VA; 

724$          ASSIGN:        Tool Group 1 

Process.NumberOut=Tool Group 1 Process.NumberOut + 1: 

                             Tool Group 1 Process.WIP=Tool 

Group 1 Process.WIP-1:NEXT(24$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.Seize 1 

(Seize Op) 

; 

24$           QUEUE,         Seize Op.Queue; 

              SEIZE,         2,Other: 

                             operator 1,1:NEXT(728$); 

 

728$          DELAY:         0.0,,VA:NEXT(26$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 8 

(Unload AB) 

; 

26$           ASSIGN:        Unload AB.NumberIn=Unload 

AB.NumberIn + 1: 

                             Unload AB.WIP=Unload AB.WIP+1; 

730$          DELAY:         Normal(40,40*COV),,NVA; 

729$          RELEASE:       operator 1,1: 
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                             Machine A B,1; 

777$          ASSIGN:        Unload AB.NumberOut=Unload 

AB.NumberOut + 1: 

                             Unload AB.WIP=Unload AB.WIP-

1:NEXT(19$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Separate 1 

(Separate A B) 

; 

19$           SPLIT::NEXT(780$); 

 

780$          ASSIGN:        Separate A B.NumberOut 

Orig=Separate A B.NumberOut Orig + 1:NEXT(6$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 

1 (Route2) 

; 

6$            ROUTE:         0.000000000000000,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Batch 5 

(Batch 2 A B) 

 

; 

21$           QUEUE,         Batch 2 A B.Queue; 

783$          GROUP,         

Entity.Type,Temporary:3,Last,Entity Type X:NEXT(784$); 

 

784$          ASSIGN:        Batch 2 A B.NumberOut=Batch 2 

A B.NumberOut + 1:NEXT(22$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 3 

(Create 3) 
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785$          CREATE,        1,HoursToBaseTime(0.0),Entity 

1:HoursToBaseTime(EXPO(1)),1:NEXT(786$); 

 

786$          ASSIGN:        Create 3.NumberOut=Create 

3.NumberOut + 1:NEXT(49$); 

 

 

; 

; 

;     Model statements for module:  

AdvancedProcess.ReadWrite 1 (Read Input data 1) 

; 

49$           READ,          Minifab Input 1: 

                             TBA, 

                             MTBF, 

                             MTTR, 

                             COV:NEXT(50$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 8 

(Assign 8) 

; 

50$           ASSIGN:        MeanTBFailure=EXPO(MTBF): 

                             MeanTTRepair=GAMM(MTTR, 0.25 

): 

                             Truncation=200000: 

                             Batch_Cycletime=0: 

                             lag_value=300: 

                             Batch_Size=0: 

                             lag_Tally=lag_value:NEXT(48$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 2 

(Dispose 2) 

; 

48$           ASSIGN:        Dispose 2.NumberOut=Dispose 

2.NumberOut + 1; 

789$          DISPOSE:       Yes; 
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.exp file : 

PROJECT,      

"MINIFAB","nimmarishikesh@live.com",,,No,Yes,Yes,Yes,No,No,

No,No,No,No; 

 

ATTRIBUTES:   Arrival Time,DATATYPE(Real): 

              SetUpTime,DATATYPE(Real): 

              Processing Time,DATATYPE(Real): 

              BatchedCT,DATATYPE(Real): 

              CycleTime,DATATYPE(Real); 

 

FILES:        Minifab Output,"E:\ARENA\Model\Model Input 

fies\Minifab Output.txt",Sequential,Free 

Format,Dispose,,Rewind: 

              Minifab Input 1,"E:\ARENA\Model\Model Input 

fies\Minifab Input 1.txt",Sequential,Free 

Format,Dispose,,Rewind; 

 

VARIABLES:    Dispose 

2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 

5.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 2 

CD.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Unload 2 

CD.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Batch is complete?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2b.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 1 

CD.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Job Step?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              MeanTTRepair,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real): 

              Load 1 

CD.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Reached Truncation Pt?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 
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              Reached Truncation Pt?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 2 

CD.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 

E.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2a.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              MTBF,CLEAR(System),CATEGORY("User Specified-

User Specified"),DATATYPE(Real): 

              Decide 7.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Decide 7.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 

AB.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 1 

CD.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              

Dispose.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 

AB.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 1 

CD.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2b.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 2 

CD.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 

E.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 

4.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 

AB.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Tool Group 1 

Process.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

 

              Load E.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 
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Batch A B.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Batch 2 A 

B.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload E.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              MTTR,CLEAR(System),CATEGORY("User Specified-

User Specified"),DATATYPE(Real): 

              Dispose 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Parts Setup,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real),0: 

              Part 

Y.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load AB.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Tool Group 

3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Batch is complete?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2a.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Step,CLEAR(System),CATEGORY("User Specified-

User Specified"),DATATYPE(Real),0: 

              Reached Lag_Value.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework 

Process.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              JobStep?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 

E.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unload 1 

CD.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              COV,CLEAR(System),CATEGORY("User Specified-

User Specified"),DATATYPE(Real): 

              Load 1 

CD.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 2 

CD.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 
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Load 2 CD.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

Truncation,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Reached Lag_Value.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 1 

Process.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              lag_value,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real): 

              Part 

X.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2a.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Job Step?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework 

Process.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 

E.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 

2b.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Separate A B.NumberOut 

Orig,CLEAR(Statistics),CATEGORY("Exclude"): 

              TBA,CLEAR(System),CATEGORY("User Specified-

User Specified"),DATATYPE(Real): 

              Rework?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Batch_Cycletime,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real): 

              Load 

AB.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

 

              Create 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework 

Process.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 
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Tool Group 3.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Tool Group 1 

Process.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Load 

AB.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              JobStep?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              lag_Tally,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real): 

              Batch_Size,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real): 

              MeanTBFailure,CLEAR(System),CATEGORY("User 

Specified-User Specified"),DATATYPE(Real); 

 

QUEUES:       Seize Op.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Batch A B.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Seize 1.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Load 2 CD.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Seize 2.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Load AB.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Load E.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Load 1 CD.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Batch 2 A B.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Rework Process.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Seize.Queue,FIFO,,AUTOSTATS(Yes,,); 

 

PICTURES:     Picture.Airplane: 

              Picture.Green Ball: 

              Picture.Blue Page: 

              Picture.Telephone: 

              Picture.Blue Ball: 

              Picture.Yellow Page: 

              Picture.EMail: 

              Picture.Yellow Ball: 

              Picture.Bike: 

              Picture.Report: 

              Picture.Van: 

              Picture.Widgets: 

              Picture.Envelope: 

              Picture.Fax: 

              Picture.Truck: 

              Picture.Person: 

              Picture.Letter: 
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              Picture.Box: 

              Picture.Woman: 

              Picture.Package: 

              Picture.Man: 

              Picture.Diskette: 

              Picture.Boat: 

              Picture.Red Page: 

              Picture.Ball: 

              Picture.Green Page: 

              Picture.Red Ball; 

 

FAILURES:     Prev 

Maint,Time(10080.000000000000000,60.000000000000000,): 

              Int 

Check,Time(43200.000000000000000,360.000000000000000,): 

 

              Eme 

Maint,Time(DaysToBaseTime(MeanTBFailure),MeanTTRepair,); 

 

RESOURCES:    Machine C 

D,Capacity(2),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILU

RE(Prev Maint,Wait),FAILURE(Int Check,Wait), 

              AUTOSTATS(Yes,,): 

              

Rework,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),

FAILURE(Int Check,Wait),FAILURE(Prev Maint,Wait), 

              AUTOSTATS(Yes,,): 

              Rework 

operator,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources

),,AUTOSTATS(Yes,,): 

              operator 

1,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTO

STATS(Yes,,): 

              operator 

2,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTO

STATS(Yes,,): 

              operator 

3,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTO

STATS(Yes,,): 

              Machine A 

B,Capacity(2),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILU

RE(Int Check,Wait),FAILURE(Prev Maint,Wait), 

              AUTOSTATS(Yes,,): 
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              Machine 

E,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILU

RE(Eme Maint,Preempt),FAILURE(Int Check,Wait), 

              FAILURE(Prev Maint,Wait),AUTOSTATS(Yes,,); 

 

STATIONS:     Station 1,,,Station 1,AUTOSTATS(Yes,,): 

              Station 2,,,Station 2,AUTOSTATS(Yes,,): 

              Station 3,,,Station 3,AUTOSTATS(Yes,,): 

              Station 4,,,Station 4,AUTOSTATS(Yes,,); 

 

SEQUENCES:    Sequence,Station 1,STEPNAME=Step 

1,,,Processing Time=NORM(225,11.25)&Station 2,STEPNAME=Step 

2,,,Processing Time= 

              NORM(30,1.5)&Station 3,STEPNAME=Step 

3,,,Processing Time=NORM(55,2.75)&Station 2,STEPNAME=Step 

4,,, 

              Processing Time=NORM(50,2.5)&Station 

1,STEPNAME=Step 5,,,Processing Time=NORM(255,12.75)&Station 

3,STEPNAME= 

              Step 6,,,Processing Time=NORM(10,0.5)&Station 

4,STEPNAME=Step 7; 

 

COUNTERS:     Exits,,,,DATABASE(,"Count","User 

Specified","Exits"); 

 

REPLICATE,    

1,,,Yes,Yes,,NC(Exits)>4999,,24,Minutes,No,No,,,Yes,No; 

 

ENTITIES:     Entity Type 

X,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,): 

              Entity Type 

Y,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,): 

              Entity 

1,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,); 

 

ACTIVITYAREAS: Station 1,0,,AUTOSTATS(Yes,,): 

              Station 2,0,,AUTOSTATS(Yes,,): 

              Station 3,0,,AUTOSTATS(Yes,,): 

              Station 4,0,,AUTOSTATS(Yes,,); 
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“R” PROGRAMMING CODE 
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#store current directory 

# 

initial.dir<-getwd() 

# 

#loading relevant libraries 

#note that to access the packages in the library, they need 

to already be installed 

#if they are not installed, prior to running the script, use 

the following commands: 

#install.packages("quantreg") 

#install.packages("MatrixModels") 

library(quantreg) 

library(MatrixModels) 

#setting working directory (set to location in which data 

file is stored); update this for different computers 

setwd("D:\\ARENA\\R") 

#setting up an output file (this is where results get written 

to); update this to change the output file name.    

#if you do not update it, subsequent executions of the same 

script will write over previous output files.   

file.create("quantreg_out_exp1.csv") 

sink("quantreg_out_exp1.csv", append=TRUE) 
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#reading input data 

# 

#here factor A is TBA and factor B is the one relevant to the 

experiment on hand (changes for different expeirments) 

#factors can be adjusted -- "a" and "b" are just text 

placholders to keep things generic 

#note that the input data file name should be updated and 

should be in the same folder with the script file.   

 

#change file name here for each fold 

 

data=read.table("Exp1_Rep1_50obs.txt", header=FALSE) 

ct=data[,5] 

a_nonstandard=data[,1] 

b_nonstandard=data[,3] 

b_nonstandard=b_nonstandard*4 

 

# 

#standardizing variables 

# 

mean_a = mean(a_nonstandard) 

mean_b = mean(b_nonstandard) 
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sd_a = sd(a_nonstandard) 

sd_b = sd(b_nonstandard) 

a = (a_nonstandard-mean_a)/sd_a 

b = (b_nonstandard-mean_b)/sd_b 

#creating new variables for quantreg models based on 

standardized variables 

a2=a*a 

a3=a*a*a 

a4=a*a*a*a 

a5=a*a*a*a*a 

b2=b*b 

b3=b*b*b 

b4=b*b*b*b 

b5=b*b*b*b*b 

ab=a*b 

a2b=a*a*b 

a3b=a*a*a*b 

a4b=a*a*a*a*b 

a5b=a*a*a*a*a*b 

ab2=a*b*b 

ab3=a*b*b*b 

ab4=a*b*b*b*b 



142 

G. “R” Programming Code  

ab5=a*b*b*b*b*b 

a2b2=a*a*b*b 

a2b3=a*a*b*b*b 

a2b4=a*a*b*b*b*b 

a3b2=a*a*a*b*b 

a4b2=a*a*a*a*b*b 

a3b3=a*a*a*b*b*b 

a6=a*a*a*a*a*a 

b6=b*b*b*b*b*b 

cat("Mean of TBA: ", mean_a) 

cat("\nMean of COV: ", mean_b) 

cat("\nStdev of TBA: ", sd_a) 

cat("\nStdev of COV: ", sd_b) 

 

# 

#quantile regression + file write-out 

#'cat' command writes out to the output file; '\n' puts a new 

line 

#print also writes out to the output file, but supports 

different output formats 

qr_lambda=100 

#adjust range of 'i' to get fits with additional lambda values 
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#for each iteration through the loop, i is reduced by 1/10 

for(i in 1:4) 

{  

 # 

 #second order model 

# 

 cat("\nOrder=2,","\nlambda=", qr_lambda,"\n") 

 qr_fit_second_order=rq(ct~a+b+ab+a2+b2, 

tau=c(0.5,0.8,0.9,0.95), method = "lasso", lambda = 

qr_lambda) 

 print(coef(qr_fit_second_order)) 

 #write.table(coef(qr_fit_second_order),"quantreg_out-

1000",sep=",",row.names=FALSE) 

 # 

 #third order model 

 # 

 cat("Order=3,","\nlambda=", qr_lambda,"\n") 

 qr_fit_third_order=rq(ct~a+b+a2+b2+ab+ab2+a2b+a3+b3, 

tau=c(0.5,0.8,0.9,0.95), method = "lasso", lambda = 

qr_lambda) 

 print(coef(qr_fit_third_order)) 
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 #write.table(coef(qr_fit_third_order),"quantreg_out-

1000",sep=",",row.names=FALSE) 

 # 

 #fourth order model 

 # 

 cat("Order=4,","\nlambda=", qr_lambda,"\n") 

 qr_fit_fourth_order=rq(ct~a+b+a2+b2+a3+b3+ab+ab2+a2b+a

3b+ab3+a2b2+a4+b4, tau=c(0.5, 0.8, 0.9, 0.95), method = 

"lasso", lambda = qr_lambda) 

 print(coef(qr_fit_fourth_order)) 

 #write.table(coef(qr_fit_fourth_order),"quantreg_out-

1000",sep=",",row.names=FALSE) 

 qr_lambda=qr_lambda/10 

} 

#close output file 

sink() 

#change back to original directory 

setwd(initial.dir) 
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“MATLAB” PROGRAMMING CODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

H. MATLAB Programming Code 

clear all; clc; 

exp1 = [PP1; PP2; ...]; 

  

exp2 = [PP1; PP2; ...]; 

  

 filename = 'quantreg_out.xlsx'; 

Sheet = 1; 

xlRange = 'B1:E124'; 

VarName = xlsread(filename); 

  

syms c  a   b   a2  b2  a3  b3  a4  b4  ab  ab2 a2b a3b 

ab3... 

    a2b2 real 

  

tt2 = [c    a   b   ab  a2  b2  c   a   b   a2  b2  ab  ab2 

a2b a3  b3... 

    c   a   b   a2  b2  a3  b3  ab  ab2 a2b a3b ab3 a2b2    

a4  b4... 

    c   a   b   ab  a2  b2  c   a   b   a2  b2  ab  ab2 a2b 

a3  b3... 

    c   a   b   a2  b2  a3  b3  ab  ab2 a2b a3b ab3 a2b2    

a4  b4... 

    c   a   b   ab  a2  b2  c   a   b   a2  b2  ab  ab2 a2b 

a3  b3... 

    c   a   b   a2  b2  a3  b3  ab  ab2 a2b a3b ab3 a2b2    

a4  b4... 

    c   a   b   ab  a2  b2  c   a   b   a2  b2  ab  ab2 a2b 

a3  b3... 

    c   a   b   a2  b2  a3  b3  ab  ab2 a2b a3b ab3 a2b2    

a4  b4];  

for i = 1:length(exp1) 

    x(i) = exp1(i);       y(i) = exp2(i);     

    x2(i) = exp1(i)^2;    y2(i) = exp2(i)^2; 

    x3(i) = exp1(i)^3;    y3(i) = exp2(i)^3; 

    x4(i) = exp1(i)^4;    y4(i) = exp2(i)^4; 

        

    xy(i) = (exp1(i)) * (exp2(i)); 

    x2y(i) = (exp1(i)^2) * (exp2(i));    xy2(i) = (exp1(i)) 

* (exp2(i)^2); 

    x3y(i) = (exp1(i)^3) * (exp2(i));    xy3(i) = (exp1(i)) 

* (exp2(i)^3); 

        

    x2y2(i) = (exp1(i)^2) * (exp2(i)^2);   

end  
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for j = 1:length(exp1) 

    for k = 1:length(tt2) 

            if(tt2(k) == a) 

               temp23(k,j,:) = x(j)*VarName(k,:); 

            elseif(tt2(k) == b) 

                temp23(k,j,:) = y(j)*VarName(k,:); 

            elseif(tt2(k) == c) 

                temp23(k,j,:) = VarName(k,:); 

            elseif(tt2(k) == a2) 

                temp23(k,j,:) = x2(j)*VarName(k,:); 

            elseif(tt2(k) == b2) 

                temp23(k,j,:) = y2(j)*VarName(k,:); 

            elseif(tt2(k) == a3) 

                temp23(k,j,:) = x3(j)*VarName(k,:); 

            elseif(tt2(k) == b3) 

                temp23(k,j,:) = y3(j)*VarName(k,:); 

            elseif(tt2(k) == a4) 

                temp23(k,j,:) = x4(j)*VarName(k,:); 

            elseif(tt2(k) == b4) 

                temp23(k,j,:) = y4(j)*VarName(k,:); 

            elseif(tt2(k) == ab) 

                temp23(k,j,:) = xy(j)*VarName(k,:); 

            elseif(tt2(k) == ab2) 

                temp23(k,j,:) = xy2(j)*VarName(k,:);           

            elseif(tt2(k) == a2b) 

                temp23(k,j,:) = x2y(j)*VarName(k,:); 

            elseif(tt2(k) == ab3) 

                temp23(k,j,:) = xy3(j)*VarName(k,:);           

            elseif(tt2(k) == a3b) 

                temp23(k,j,:) = x3y(j)*VarName(k,:); 

            elseif(tt2(k) == a2b2) 

                temp23(k,j,:) = x2y2(j)*VarName(k,:);           

            end 

    end 

     

end 

  

Quantile5  = [temp23(:,:,1)]; 

Quantile8  = [temp23(:,:,2)]; 

Quantile9  = [temp23(:,:,3)]; 

Quantile95 = [temp23(:,:,4)]; 

 


