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ABSTRACT  

 

Urban growth, from regional sprawl to global urbanization, is the most rapid, 

drastic, and irreversible form of human modification to the natural environment. 

Extensive land cover modifications during urban growth have altered the local energy 

balance, causing the city warmer than its surrounding rural environment, a phenomenon 

known as an urban heat island (UHI). How are the seasonal and diurnal surface 

temperatures related to the land surface characteristics, and what land cover types and/or 

patterns are desirable for ameliorating climate in a fast growing desert city? This 

dissertation scrutinizes these questions and seeks to address them using a combination of 

satellite remote sensing, geographical information science, and spatial statistical 

modeling techniques.  

This dissertation includes two main parts. The first part proposes to employ the 

continuous, pixel-based landscape gradient models in comparison to the discrete, patch-

based mosaic models and evaluates model efficiency in two empirical contexts: urban 

landscape pattern mapping and land cover dynamics monitoring. The second part 

formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that 

ensures accurate and stable statistical estimation despite the existence of multicollinearity 

and the inherent spatial effect.  

Results highlight the strong potential of local indicators of spatial dependence in 

landscape pattern mapping across various geographical scales. This is based on evidence 

from a sequence of exploratory comparative analyses and a time series study of land 

cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of 
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producing reliable estimates when analyzing statistical relationships involving geographic 

data and highly correlated predictor variables. An empirical application of the SFRR over 

Phoenix suggests that urban cooling can be achieved not only by altering the land cover 

abundance, but also by optimizing the spatial arrangements of urban land cover features. 

Considering the limited water supply, rapid urban expansion, and the continuously 

warming climate, judicious design and planning of urban land cover features is of 

increasing importance for conserving resources and enhancing quality of life. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Urbanization is a complicated natural and social process involving increased 

proportion of population, spatially extended urban land cover, and dramatically growing 

economic activities (Ma et al., 2012). Occupying only 3% of the Earth’s surface, urban 

areas are holding 54% of the current world population, which is projected to reach 66% 

by 2050 (UN, 2014). Rapid urban sprawl has caused fundamental changes to the Earth’s 

socio-ecological systems well beyond the city boundaries (Wu et al., 2011). With roughly 

3% of the Earth’s landmass, urban areas are responsible for 60% of total residential water 

consumption, more than 78% of carbon release, and about 76% of wood mainly used for 

industrial purposes (Brown, 2001; Grimm et al., 2008). Some worldwide environmental 

issues that are triggered or aggravated by urban sprawl include loss of biodiversity, 

climate change, and degraded water and air quality (Seto and Fragkias, 2005). Land 

modification in the urbanization process to sustain increasing urban population has also 

resulted in other types of change to the Earth’s environment (Grimm et al., 2008). 

Among the many negative environmental impacts of urbanization is the raised 

temperatures in the densely built urban core with respect to its rural environment—a 

phenomenon commonly referred to as the urban heat island (UHI) effect. Due to the loss 

of vegetation and soil in the urban areas, much of the solar energy reaching the surface is 

absorbed and retained in the urban materials instead of being evaporated, leading to 

elevated surface temperatures. Urban geometry and heat emitted from anthropogenic 

activities contribute additional warmth to the urban environment.  
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The UHI has various impacts on the urban ecosystems, energy use, and residents’ 

quality of life. Intensified UHI can lead to increased demands for water and energy 

consumption (Guhathakurta and Gober, 2007), elevated concentration of air pollutants 

(Lai and Cheng, 2009; Sarrat et al., 2006), and degraded water quality (Arnold Jr and 

Gibbons, 1996). More threateningly, the heat released from the urban infrastructure at 

night can increase the duration and magnitude of heat waves, causing a heightened risk of 

mortality and other heat-related health problems (Clarke, 1972; Whitman et al., 1997). 

Since its first discovery in 1818, the UHI has been a primary focus in climatology and 

urban ecology (Arnfield, 2003; Howard, 1833). There is an ever-increasing number of 

studies focusing on various aspects of the UHI, including its formation, development, as 

well as mitigation strategies to counter it (Jauregui, 1997; Oke, 1982; Oke, 2002; Onishi 

et al., 2010; Rizwan et al., 2008). 

Among the many factors that affect the form and magnitude of the UHI, human-

induced land cover change is an important and decisive one. Land cover modifications 

during the urbanization fundamentally alter the radiation and energy balance of the city 

and its surrounding area, ultimately leading to a heat island. Of particular relevance for 

the surface UHI is the composition of a landscape, i.e., the abundance and variety of land 

cover types. A vast amount of research has focused on the UHI variation in response to 

changes in the land composition, especially vegetation and built-up areas (Essa et al., 

2013; Kaufmann et al., 2003; Sandholt et al., 2002; Weng et al., 2004). For example, 

Middel et al. (2012) examine the urban surface energy balance using the Local-Scale 

Urban Meteorological Parameterization Scheme (LUMPS) and found that urban 

vegetation can lower surface temperatures through reducing storage heat flux density. 
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Another study corroborates the positive impacts of green vegetation on heat island 

mitigation using a multiple linear regression analysis (Yuan and Bauer, 2007).  

Expansion of urban green space comes with a cost. Water is an inevitable and 

critical limiting factor that impedes wide practice of this strategy. The cost-benefit trade-

offs of green space expansion are important considerations for urban designers and land 

managers. A recent study suggests that while urban vegetation produces a cooling effect 

at night, it results in a ~20% increase in the outdoor water use (Gober et al., 2012). 

Another study looks into the trade-offs between nighttime temperatures and irrigation and 

determined that there exists a threshold of the water-to-temperature ratio beyond which 

increasing the frequency and intensity of irrigation has limited impact on the nighttime 

temperatures (Gober et al., 2009).  

If increasing the area of vegetation is not possible for every city, can changing the 

spatial configuration of vegetation patches help cool down the city? In their study, 

Yokohari et al. (1997) show that the shape, size, and segmentation level of paddy fields 

can affect both the surface and air temperatures based on a case study at the urban fringe 

of Tokyo, Japan. More recently, a proliferation of research has considered the spatial 

configuration of urban land cover features (e.g., vegetation, impervious surfaces, soil) in 

relation to urban warming, and suggested that compact, large, and contiguous green 

spaces are desirable for lowering the surface temperatures (Cao et al., 2010; Zhang et al., 

2009). 

Of interest in this research is the associations between a city’s thermal 

environment (surface temperature in particular) and its various land cover patterns (land 

composition and spatial configuration) at varying geographical scales. Fundamental to 
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this issue is the development of analytical tools for effective and accurate quantification 

of landscape pattern. Most if not all of the existing studies resort to the patch mosaic 

paradigm, which assumes the landscape as a mosaic of discrete patches separated by 

edges. Simple to understand and easy to implement, the patch mosaic model gains wide 

recognition and adoption among researchers from a variety of disciplines, notably after 

the release of the free software package FRAGSTATS (McGarigal and Marks, 1995). In 

spite of the conceptual simplicity and software accessibility, the patch mosaic model is 

now facing serious challenges in the landscape ecology community, primarily with regard 

to the representation of the inherently continuous landscape with discrete patch-based 

indices (McGarigal et al., 2005; Pearson, 2002; Southworth et al., 2004). 

In an effort to understand the land cover impacts on the UHI, selection of 

statistical tools is of critical importance. The OLS is arguably the most widely employed 

statistical model and has been utilized to explore the UHI-land cover relations for 

decades. Two major issues arise, however, when conducting the OLS without considering 

its basic assumptions. First, the observations of interest (e.g., land surface temperature) 

are almost never independent and the associations among observations depend to a great 

extent on their geographical locations. Because of the spatial dependence, the OLS 

estimates are no longer consistent and/or unbiased. Second, the predictor variables in a 

multiple linear regression model are usually highly correlated (aka multicollinearity). 

Although moderate correlation does not cause much concern for model fitting and 

prediction, contribution of some predictor to the response variable is inevitably affected 

by the inclusion (and omission) of a correlated predictor, ultimately leading to inaccurate 

parameter estimates.  
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1.2  Research Objectives 

Given the challenges to model the associations between UHI and land cover 

patterns, this dissertation has four objectives. The first objective is to develop tools that 

enable continuous representation of landscape structure and compare the utility of this 

method with the discrete patch-based paradigm. The second objective is to evaluate the 

usefulness of the continuous indices in monitoring long-term land cover dynamics in a 

rapidly expanding city. Coupling continuous models with thermal satellite imagery, the 

third objective is to examine the seasonal and diurnal surface temperatures in relation to 

the abundance and spatial arrangement of green vegetation in a desert city. The 

variability of this association at different geographical scales will also be explored. Last 

but not least, the fourth objective is to identify the impacts of spatial dependence and 

multicollinearity on model estimation and prediction and to address them from a spatial 

econometric perspective.  

1.3  Outline of Dissertation 

This dissertation is composed of six chapters: an introductory chapter, four 

chapters each serves as a first-authored research article, and a concluding chapter. 

Chapter 2 compares the usefulness of continuous models with the traditional patch 

mosaic model in characterizing landscape structure over central Phoenix. Two local 

indicators of spatial autocorrelation—Getis-Ord G and local Moran’s I—are employed as 

measures of land composition and spatial configuration of land cover features, 

respectively. Descriptive statistics are computed for both the discrete and continuous 

models for each land use type in Phoenix. This chapter was published in Landscape and 

Urban Planning in February 2014. 
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Chapter 3 integrates image time series, continuous spatial indices, and non-

parametric regression into a spatiotemporal study of land cover dynamics over the 

Phoenix metropolitan area from 1991 to 2010. Time series maps of Getis-Ord G and local 

Moran’s I are created for two important land cover types in the region: vegetation and 

built-up areas. The modified Mann-Kendall test is performed to detect and describe the 

monotonic trends in the quantity and spatial arrangement of these two land cover types. 

This chapter was submitted to International Journal of Applied Earth Observation and 

Geoinformation in April, 2016. 

Using the method developed in Chapter 2, Chapter 4 examines the thermal pattern 

over central Phoenix in relation to the spatial arrangement of green vegetation in this 

region. Satellite images are utilized in conjunction with local spatial autocorrelation 

indices to quantify the spatial configuration of vegetation cover and evaluate its variable 

influences on seasonal and diurnal surface temperatures. This chapter was published in 

Progress in Physical Geography in March 2015.  

Chapter 5 develops a methodological framework for estimating the land cover 

impacts on the summer daytime surface temperatures over central Phoenix. Spatial 

autoregressive models and ridge regression are integrated to address the spatial 

dependence and multicollinearity in the regression model. A combination of Monte Carlo 

simulation and an empirical study over Phoenix are carried out and the performance of 

the proposed model is compared to OLS, spatial regression models, and ridge regression 

model. This chapter was accepted to Transactions in GIS in June 2016. 

Chapter 6 summarizes the main achievements of this dissertation and suggests 

future research directions.  
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CHAPTER 2 

A COMPARISON OF SPATIAL AUTOCORRELATION INDICES AND 

LANDSCAPE METRICS IN URBAN LANDSCAPE MAPPING 

2.1  Introduction 

One of the critical topics that landscape ecology addresses is the interaction 

between landscape patterns and the underlying ecological processes (Turner et al., 2003; 

Turner, 1990; Uuemaa et al., 2009; Wu, 2008; Wu & Hobbs, 2002). Quantitative 

characterization of spatial pattern is a crucial step in determining this interaction 

(Buyantuyev & Wu, 2010; Luck & Wu, 2002). Remote sensing coupled with landscape 

pattern analysis provides a framework within which landscape structure can be quantified 

and studied. However, limitations of traditional land cover classifications are universal 

and present a challenge for ecologists and urban planners in accurately and realistically 

representing landscape patterns (Baatz & Schape, 1999; Campbell, 2007; Congalton, 

1991; Foody, 1996; Ju et al., 2003; Turner et al., 2001).  

While most current spatial pattern analysis programs adopt a patch mosaic 

paradigm where discrete patches are generated through a classification process, concerns 

have been growing regarding the limitations of discrete representation. One such 

limitation is that errors associated with land cover classification are pervasive and may 

result in less accurate and sometimes even misleading scientific results (Shao & Wu, 

2008). Factors that have the potential to introduce errors into the analysis include the 

levels of detail of remote sensing data (e.g., spatial resolution, spectral resolution, 

radiometric resolution, etc.), rectification and registration procedures, locational errors, 

temporal variations, classification methods, and sampling schemes as well as lack of local 
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area knowledge and expertise of the analyst. Furthermore, the uncertainty associated with 

classification can compromise the reliability of landscape metrics derived from the 

thematic maps. Classification accuracy, therefore, is a crucial part in determining the 

overall quality of the final results. Recent studies found that the accuracy of landscape 

metrics is strongly linked to the classification accuracy of the associated maps (Li & Wu, 

2004; Shao et al., 2001). However, it is well acknowledged that it is difficult to achieve 

reasonably high classification accuracy in urban landscapes that are dominated by 

complex boundaries and substantial spectral details. This makes it both time consuming 

and expertise demanding to obtain true landscape heterogeneity that can then be linked to 

the underlying ecological processes. It also poses a significant challenge for landscape 

ecologists in assessing the urban ecological consequences of urban sprawl.  

Another limitation of traditional classification paradigm is that landscapes are 

assumed to be a collection of homogeneous units separated by clearly identified 

boundaries (Pearson, 2002). Such representation is more likely to be useful for 

landscapes where features can be distinctly identified, such as large-scale agriculture, 

than those where boundaries of the patches are difficult to determine, such as urban 

landscapes (McIntyre & Barrett, 1992). The process of assigning spectrally similar pixels 

to homogeneous geometric units also eliminates much of the within-class variability such 

that fine-scale features cannot be properly characterized (McGarigal & Cushman, 2005).  

In addition, the all-as-one-class strategy allows only the binary evaluation of land 

cover conversions, thereby failing to capture partial changes or subtle land cover 

alterations that are equally important (Foody & Boyd, 1999; Lambin, 1997; Nepstad et 

al., 1999). This is of major concern for quantitative research on urban landscape structure 
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dynamics, which provides an important basis for the study of urban ecosystems. The 

discrete representation of continuous variables is also a major flaw for environmental 

studies wherein degradations or rehabilitations are of particular interest (Foody, 2001). 

Finally, most pixel-by-pixel classifiers focus primarily on the spectral dimension 

of remotely sensed data. However, the spatial context of the data also includes useful 

information that has not been well exploited (Cihlar, 2000; De Jong & Burrough, 1995; 

Read & Lam, 2002). The spatial arrangement provides interpretations of features with 

greater detail and complexity which may be treated as an additional information source 

(Herold et al, 2003; Wulder & Boots, 1998). It is recommended that employing measures 

containing spatial and textural information via the analysis of brightness values be 

applied as a methodology of effectively characterizing spatial patterns (Musick & Grover, 

1991). Efforts have been made to test the usefulness of spatial context based measures in 

characterizing landscape patterns. Pearson (2002) examined the utility of a local measure 

of spatial autocorrelation (Geary’s C) in modeling structure in northern Australia savanna 

landscapes where features cannot be clearly identified and thus entity-based modeling is 

inappropriate. LeDrew et al. (2004) demonstrated the usefulness of another spatial 

autocorrelation indicator (Getis statistic) in detecting land cover modifications over time. 

Southworth et al. (2004) examined the potential of a continuous analysis using the local 

indicator of spatial association (LISA) in comparison to a discrete standard analysis on 

forest modeling and fragmentation. It was suggested that while continuous data products 

may encounter limitations regarding development and interpretation, they provide 

guidelines for future work on fragmentation analyses. McGarigal and Cushman (2005) 

discussed the limitations associated with the widely adopted patch mosaic model, and 
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introduced the landscape gradient model which is based on continuous heterogeneity 

rather than discrete representation, with efforts made in describing the utility of surface 

metrics on landscape ecological applications (McGarigal et al, 2009).   

Awareness has been growing among landscape ecologists that the gradient or 

continuous model can provide accurate representation of landscape heterogeneity. 

Nevertheless, the application of such models remains very rare and there has been no 

direct comparison of the utility of continuous models and discrete patch mosaic 

paradigm. It is acknowledged that spatial autocorrelation indices can be used to measure 

the spatial dependency of features in space that implies landscape heterogeneity. We 

believe that the applications of such indices can advance our understandings on urban 

landscape structure and the associated ecological processes from a gradient perspective. 

The purpose of this study was to examine the utility of local spatial autocorrelation in 

characterizing landscape fragmentation in comparison to the analysis of landscape 

metrics. One of the major contributions of this study to the landscape ecology community 

is that instead of generating detailed land cover classes from fine-resolution commercial 

satellite data that are expensive, time consuming, labor intensive and expertise 

demanding, we employ medium-resolution satellite data (e.g., Landsat TM) that are 

available worldwide at no cost to characterize landscape fragmentation over large urban 

area effectively and efficiently. We compared FRAGSTATS metrics computed from a 

high-resolution (QuickBird) land cover classification map to the use of continuous 

indices derived from medium-resolution satellite data (Landsat TM), which are readily 

attainable. Two local spatial autocorrelation measures, Getis statistic (Getis & Ord, 1992) 

and local Moran’s I (Anselin, 1995) were computed and their relationships with widely 
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adopted landscape metrics were evaluated statistically. The research questions we 

addressed are: 1) Can the spatial arrangement of urban land cover features be addressed 

within a continuous framework? 2) How does the use of continuous indices on medium-

resolution data compare to class- and landscape-level metrics derived from high-

resolution imagery in characterizing urban landscape fragmentation? 3) Do spatial 

autocorrelation indices provide accurate and reliable information in terms of urban 

landscape fragmentation for major land use types? 4) What are the strengths and 

challenges of utilizing spatial autocorrelation indices in landscape ecological 

applications?  

2.2  Methods 

2.2.1  Urban Landscape and Fragmentation 

Urban landscapes are a mixture of natural and anthropogenic components. In the 

last few decades, urban sprawl has occurred at an unprecedented rate in U.S. cities and 

across the globe. A major concern of this rapid urbanization is its profound impacts on 

urban ecosystems and biodiversity due to fragmentation. This has prompted a growing 

interest among researchers to investigate the structure of urban landscapes and the 

ecological consequences of extensive urban sprawl.  

The patch mosaic model gained recognition among landscape ecologists for 

quantifying landscape structure owing to its effectiveness evidenced in previous work 

(Buyantuyev & Wu, 2010; Griffith et al., 2000; Liu & Weng, 2008; Luck & Wu, 2002; 

Southworth et al., 2002). However, the presence of substantial spectral confusion and 

complex shapes of urban features has raised concerns regarding the utility of discrete 
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metrics in characterizing urban landscape patterns. The complexity residing in urban 

landscapes reduces the accuracy of land cover classification, which is inherently 

subjective, and causes problems in landscape pattern analysis that uses the discrete 

abstraction as inputs. The limitations of patch mosaic paradigm on urban landscape 

fragmentation led us to seek an alternative perspective with which the continuous 

characteristics of landscape heterogeneity can be effectively addressed. 

2.2.2  Study Area 

Phoenix is taken as a test site representative of most urbanizing regions of the 

U.S. Southwest. It is located in the northern Sonoran desert and is characterized by hot 

summers and low rainfall (Figure 2.1). The average temperature in the summertime is 

over 38 °C and the annual precipitation is about 195 mm. There is a great deal of 

diversity in land use and land cover (LULC) classes, including residential, commercial, 

cultivated grass, agriculture, desert, vegetation, unmanaged soil and water. Since the 

beginning of the last century, the population has exponentially increased resulting in rapid 

urban expansion that has encroached on desert and agricultural lands (Jenerette & Wu, 

2001; Knowles-Yanez et al., 1999; Redman & Kinzig, 2008). Characterizing landscape 

patterns in the Phoenix urban area serves as an important first step toward understanding 

the ecological and biological consequences of the rapidly growing city.  
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Figure 2.1 Study Area Located in Phoenix, Arizona. 

2.2.3  Image Processing 

The data used in this study consist of two satellite images—a QuickBird high-

resolution multispectral image and a Landsat Thematic Mapper (TM) medium-resolution 

image. The QuickBird image was acquired on May 24, 2007 over the Phoenix urban area 

under cloud-free conditions and classified into six classes: buildings, trees/shrubs, grass, 

unmanaged soil, other impervious surfaces (e.g., roads, parking lots, airports) and water. 

The Landsat TM image acquired on May 17, 2007 was used to examine the continuous 

urban landscape heterogeneity. The two images were obtained close in time such that the 

likelihood of significant land cover changes is substantially reduced. Both images were 

orthorectified and co-registered using nearest neighbor resampling scheme with a root 

mean square error of less than 0.5.  

The concept of spatially distinct regions with similar characteristics is well suited 

to landscape pattern analysis. Therefore, we used an object-oriented approach that 

aggregates pixels into discrete image objects where spectral variability is reduced (Herold 
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et al., 2003; Johnsson, 1994; Meddens et al., 2008). The creation of image objects takes 

advantage of both spectral and spatial information (Blaschke & Strobl, 2001). Different 

sets of parameters (shape, compactness, smoothness) and feature spaces (bands, indices, 

level of scales) were tested and hierarchical classification rules (nearest neighbor, 

membership functions, expert system) were implemented. After identifying land cover 

classes separately at different scales, we combined them using a GIS overlay function 

(Myint et al., 2011).  

In addition to the object-oriented analysis, the most widely used supervised 

decision rule—maximum likelihood classifier—was employed to thoroughly evaluate the 

effectiveness of the object-based approach. Stratified random sampling with a minimum 

of 50 points per class was conducted to assess the accuracy of the per-pixel and object-

oriented classifications respectively. For precision comparison purposes, the same sample 

points were applied to the output classification map generated by the two classification 

techniques. The object-based approach produced a substantially higher overall accuracy 

(90.40%) than the maximum likelihood classifier, which achieved an accuracy of 

67.70 % (Myint et al., 2011). We have provided the error matrix, producer’s accuracies, 

user’s accuracies, overall accuracy, and kappa coefficient of the urban land cover map 

generated by the object-oriented classifier (Table 2.1). 
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Table 2.1 Classification Accuracy of the Urban Land Cover Map Generated by Object-

oriented Approach 

 

 

2.2.4  Spatial Pattern Analysis 

The spatial pattern analysis was conducted based on the detailed land cover map. 

We used two approaches: 1) moving window analysis on class- and landscape-level 

metrics based on high-resolution imagery; and 2) continuous fragmentation analysis 

based on local spatial autocorrelation indices derived from medium-resolution Landsat 

TM data, using vegetation, built-up and soil index as inputs.  

2.2.4.1 Moving Window Analysis Using Landscape Metrics 

Landscape metrics have been extensively used in a variety of fields (Herzog et al., 

2001; Ji et al., 2006; Peng et al., 2010; Seto & Fragkias, 2005; Southworth et al., 2002). 

Despite the abundant information landscape metrics have provided, the proliferation of 

metrics presents confusion to scientists and practitioners as to which metrics are 

appropriate in effectively characterizing relevant landscape components (Cushman et al., 

2008; Griffith et al., 2000; Haines-Young & Chopping, 1996). For this study, we have 

Reference

Buildings Grass Trees/ Other Unmanaged Water Total Producer's User's

Classified Shrubs Impervious Soil  Accuracy Accuracy

Buildings 73 1 1 3 2 0 80 83.91% 91.25%

Grass 6 68 8 2 2 0 86 95.77% 79.07%

Trees/Shrubs 0 2 56 8 0 0 66 86.15% 84.85%

Other Impervious 1 0 0 87 0 0 88 83.65% 98.86%

Unmanaged Soil 6 0 0 3 70 1 80 94.59% 87.50%

Water 1 0 0 1 0 98 100 98.99% 98.00%

Total 87 71 65 104 74 99 500

Overall Accuracy = 90.40%

Overall Kappa Statistics = 0.89
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selected a suite of metrics available in FRAGSTATS software package (McGarigal & 

Marks, 1995) for both class- and landscape-level studies (Table 2.2). FRAGSTATS 

includes the composition metrics Percentage of Landscape (PLAND) and Largest Patch 

Index (LPI) that measure features using the composition of the landscape or abundance of 

certain classes within the landscape; and the configuration metrics Patch Density (PD), 

Aggregation Index (AI), Contagion (CONTAG) and Landscape Shape Index (LSI) that 

measure complexity, arrangement and proximity.  

The two major land cover classes that we examined were vegetation and built-up 

area classes. The vegetation class was generated by combining the original land cover 

classes of trees/shrubs and grass. The built-up class was defined by merging buildings 

and other impervious surfaces as identified in the original classification map. Moving 

window analysis was employed for calculating metrics where each pixel was assigned an 

attribute value based on the neighboring pixels within a predefined spatial extent. The 

window size of 330 m was empirically selected following existing spatial pattern studies 

in Phoenix (Buyantuyev et al., 2010). A similar window size was also suggested by Myint 

et al. (2010) for the study of vegetation cover in effectively lowering surface temperatures 

over the Phoenix metropolitan area. The output is a raster grid with the value of each 

pixel representing the resultant metric value for that location. 
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Table 2.2 Descriptions of Landscape Metrics Used in the Study 

Landscape metric Description 

  

Percentage of landscape (PLAND) The percentage the landscape comprised of the 

corresponding patch type (Class level) 

Largest patch index (LPI) The percentage of the landscape comprised by the 

largest patch of the corresponding patch type 

(Class level) 

Patch density (PD) The number of patches per 100 hectares (Class 

level) 

Aggregation index (AI) Degree of aggregation of cells of the focal class 

(Class level) 

Contagion (CONTAG) Measures the extent to which patch types are 

aggregated or clumped (Landscape level) 

Landscape shape index (LSI) A perimeter-to-area ratio that measures the overall 

geometric complexity of the landscape 

(Landscape level) 

 

2.2.4.2 Fragmentation Analysis Using Local Spatial Autocorrelation Indices 

Given the limitations of patch mosaic paradigm, we evaluated the performance of 

spatial autocorrelation indices under a continuous framework. Three images of 

normalized indices—normalized difference vegetation index (NDVI); principle 

component analysis band 1 (PCA 1) and near infrared band (NIR) based built-up index 

(PNBI); and normalized difference soil index (NDSI) were created upon which spatial 

autocorrelation indices were applied. All three indices were employed in the landscape-

level analysis whereas only the NDVI and PNBI were utilized in the class-level analysis 

representing the abundance of vegetation and built-up area respectively. The formulas for 
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calculating NDVI, PNBI and NDSI are  

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
 

(2.1) 

𝑃𝑁𝐵𝐼 =
𝑃𝐶𝐴 1 − 𝐵𝑎𝑛𝑑 4

𝑃𝐶𝐴1 + 𝐵𝑎𝑛𝑑 4
 

(2.2) 

𝑁𝐷𝑆𝐼 =
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 4
 

(2.3) 

The NDVI is effective at identifying green vegetation biomass due to a strong 

absorption in the red region (Band 3) and a strong reflection at near-infrared band (Band 4) 

(Jensen, 1996; Tucker, 1979). The NDSI proposed by Kearney et al. (2002) for identifying 

soil end members in the spectral mixture model was employed here to capture soil 

reflectance. In order to delineate urban built-up areas accurately, a new index combining 

PCA 1 and NIR and hereafter referred to as PNBI was developed and tested. Since PCA 1 

generally represents man-made features and NIR captures active vegetation, the PNBI can 

be expected to effectively depict urban areas by enhancing built-up areas while suppressing 

the spectral confusion stemming from vegetation cover. The performance of the PNBI was 

compared with the normalized difference built-up index (NDBI) developed by Zha et al. 

(2003), originally developed for built-up area extraction from medium-resolution satellite 

imagery. For high-resolution urban mapping, PNBI outperformed NDBI because it 

provided clearly identified boundaries with less spectral mixing. 

Two local measures of spatial dependency, the Getis statistic and the local 

Moran’s I were applied on the normalized index images (NDVI, PNBI, NDSI) as 

alternative indicators of landscape pattern. In contrast with global measures of spatial 

autocorrelation that outline the degree of spatial association in a single value, local 

indicators assess the extent to which observations of similar and dissimilar values are 
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clustered for each location (Anselin, 1995). This fits well into our landscape pattern 

analysis because the degree of fragmentation can be measured within a defined spatial 

extent.  

The Getis statistic measures local concentration by evaluating the sum of attribute 

values within a radius of distance from the original point as a proportion of the sum of 

attribute values of all the points within the entire region under investigation (Getis & Ord, 

1992). It is defined as  

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗𝑗

∑ 𝑥𝑗𝑗
 

(2.4) 

where 𝑥𝑗 denotes the variate value of a pixel at location j. 𝑤𝑖𝑗(𝑑) is a binary 

spatial weights matrix where ones (1) are assigned to pixels within distance of d around 

the center pixel and zeros (0) to others. The spatial weights matrix is row-standardized for 

computation purposes. The standardized Getis statistic is further developed for remote 

sensing applications to assess the significance of the Getis statistic under the null 

hypothesis of no spatial dependency assuming that the Getis statistic is normally 

distributed (Wulder & Boots, 1998). The standardized version of the Getis statistic is  

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗𝑗 − 𝑊𝑖
∗�̅�

𝑠[𝑊𝑖
∗(𝑛 − 𝑊𝑖

∗) (𝑛 − 1)⁄ ]1 2⁄
 

(2.5) 

where 𝑊𝑖
∗ = ∑ 𝑤𝑖𝑗(𝑑)𝑗 . In Eq. (2.5), �̅� and s are mean and standard deviation, 

respectively, of all pixels in the entire image. A high positive value of the standardized 

Getis statistic indicates a spatial clustering of values that deviate substantially from the 

mean in the positive direction, and a low negative value implies a spatial clustering of 

values far from the mean along the negative direction. To be consistent with the moving 

window analysis conducted above, the distance d was determined to be 150 m, which led 
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to a window size of 330 m with the radius being 150 m (1502+30 = 330).  

The local Moran’s I differs from the Getis statistic in that the covariances rather 

than the sums are computed. The local Moran’s I is defined as  

𝐼𝑖(𝑑) =
𝑛(𝑥𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�)2
𝑖

∑ 𝑤𝑖𝑗(𝑑)

𝑗

(𝑥𝑗 − �̅�) 
(2.6) 

where 𝑥𝑖 denotes the variate value at location i and �̅� represents the average value 

of all the pixels in the study region. The same spatial weight matrix was created and used 

here. An area is interpreted as clustered or homogeneous (high-value clustering or low-

value clustering) when the local Moran’s I is significantly higher than the mean. 

Dispersed or heterogeneous areas are indicated by a significantly low value of local 

Moran’s I. A specialized routine was developed to compute the Getis statistic and the 

local Moran’s I in the MATLAB software package and the output raster grids were 

obtained with each pixel representing the calculated value of the statistic. Our hypothesis 

is that the Getis statistic and local Moran’s I can be expected to glean useful information 

on landscape pattern and can be used as important indicators of urban landscape 

fragmentation. 

2.2.5 Statistical and Comparative Analyses 

A sample of 1000 randomly generated points was utilized to evaluate the 

relationship between landscape metrics and spatial autocorrelation indices. Four 

vegetation and built-up area class metrics were compared with Getis of NDVI and Getis 

of PNBI respectively and statistical models were developed to estimate landscape-level 

metrics using continuous indices generated from Landsat TM imagery.  

In addition, the performance of the discrete landscape metrics and continuous 
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spatial indices was evaluated based on their capability of quantifying spatial patterns for 

different LULC types. The land uses were extracted from the pre-existing land use map 

of the Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) region 

completed by Stefanov et al (2001). Major land uses that we are particularly interested in 

are: mesic (moderate water use) residential, xeric (low water use) residential, 

commercial, cultivated grass, vegetation, desert and water. Local Moran’s I of NDVI was 

utilized as a measure of spatial heterogeneity at the landscape level. The map of local 

Moran’s I was divided into five zones using the Jenks natural breaks method that seeks to 

minimize within-class variance while maximizing the inter-class variance to achieve the 

optimal arrangement of pixels (Jenks, 1977). Table 2.3 lists the lower and upper bounds 

of each zone along with the average values. For each zone, the percentage of each LULC 

class was calculated and compared with landscape-level metrics. 

Table 2.3 Statistics for Five Zones of Local Moran’s I of NDVI 

 Minimum Maximum Mean 

Zone 1 -3.09 0.47 -1.31 

Zone 2 0.47 1.98 1.23 

Zone 3 1.98 5.55 3.77 

Zone 4 5.55 13.21 9.38 

Zone 5 13.21 24.44 18.83 

 

2.3 Results 

2.3.1 Landscape Pattern Analysis at the Class Level 

A comparison was made between the spatial pattern of the Phoenix urban area 

measured by the vegetation and built-up class metrics with that measured by the local 
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spatial autocorrelation indices. Four class-level metrics (PLAND, LPI, PD and AI) were 

selected (Figure 2.2). PLAND and LPI revealed a similar pattern of vegetation patches 

where high values resided mainly in mesic residential areas and cultivated grass. Both 

LPI and PD suggested that xeric residential areas have the most fragmented landscape 

with moderate vegetation cover. The patterns indicated by AI resembled those suggested 

by PLAND that vegetation was aggregated predominately in cultivated grass, mesic 

residential and xeric residential areas. The Getis of NDVI (Figure 2.4a) exhibited a 

pattern that was very similar to FRAGSTATS metrics for vegetation with high density of 

vegetation found in mesic residential areas and cultivated grass. Low values of Getis of 

NDVI (cold spots) were mostly concentrated in commercial regions where vegetation 

was very sparse. Close inspection of the results implied a high correlation between 

FRAGSTATS metrics and spatial autocorrelation indices at the class level. This was 

further confirmed by the comparison of the FRAGSTATS metrics for the built-up class to 

Getis of PNBI as shown in Figures 2.3 and 2.4b. 
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Figure 2.2 Output Raster Grids of Moving Window Analysis for Vegetation Class 

Metrics Derived from QuickBird Imagery for Phoenix Urban Area on May 24, 2007: a. 

PLAND; b. LPI; c. PD; d. AI. 
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Figure 2.3 Output Raster Grids of Moving Window Analysis for Built-Up Class Metrics 

Derived from QuickBird Imagery for Phoenix Urban Area on May 24, 2007: a. PLAND; 

b. LPI; c. PD; d. AI. 
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Figure 2.4 Getis-transformed Maps from Landsat TM Imagery for Phoenix Urban Area: 

a. Getis of NDVI; b. Getis of PNBI. 

 

The relationship between class-level metrics (vegetation and built-up) and local 

spatial autocorrelation indices are shown in scatterplots (Figure 2.5). The PLAND and 

LPI were well related with the Getis statistic as evidenced by the fairly high coefficients 

of determination for both classes. Hump-shaped patterns were found in the relationship 

between the PD with respect to the Getis statistic for both classes. The PD measures the 

number of patches per 100 hectares. It was demonstrated as one of the best indicators of 

landscape fragmentation because it implied how a particular class is fragmented within 

the landscape. Figure 5c demonstrated a typical situation where increasing vegetation 

abundance led to a greater degree of fragmentation, but it dropped as vegetation gradually 

dominated the landscape. It is noteworthy that both low and high values of the Getis 

indicated spatially clustered patterns (either low-value clustering or high-value 

clustering), thus a homogeneous landscape; whereas Getis values around zero signified a 

maximum degree of landscape fragmentation and could be treated as the critical point for 

evaluating landscape heterogeneity. The AI for vegetation showed a moderate non-linear 
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relationship with Getis of NDVI and a saturation point was reached when Getis of NDVI 

was around 20. The trend of AI, however, was different for the built-up class, where the 

built-up patches continued to aggregate without reaching a saturation point.    

 

Figure 2.5 Scatterplots of Class Metrics vs. Getis statistics: a-d. Vegetation Class Metrics 

vs. Getis of NDVI; e-h. Built-Up Class Metrics vs. Getis of PNBI. 

 

2.3.2 Landscape Pattern Analysis by Land Use Type 

Local autocorrelation indices, such as local Moran’s I, can glean extra information 
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on landscape fragmentation beyond the traditional clustering indices (Southworth et al., 

2004). We hereby examined the utility of local Moran’s I in comparison to landscape 

metrics in characterizing landscape fragmentation for different LULC types. We divided 

the local Moran’s I of NDVI into five zones using the natural breaks classification 

method (Table 2.3) and for each zone, the percentage of every LULC type was presented 

in a pie chart (Figure 2.6). For comparison purposes, descriptive statistics for the two 

landscape metrics – CONTAG and LSI were generalized for every LULC type (Table 

2.4). Since there was only one sample point, the water class was excluded. In Figure 2.6, 

xeric residential was the most fragmented landscape throughout the six land use types as 

it took up the highest proportion in Zone 1, a zone representing the lowest level of the 

local Moran’s I. Zone 2 typified a random spatial pattern with the local Moran’s I around 

zero and was primarily dominated by commercial areas. As the local Moran’s I increased, 

clustered land use types such as mesic residential and vegetation gradually took up larger 

portions of the pie chart with mesic residential taking 55.26% of Zone 3 and vegetation 

taking 42.86% of Zone 4. Grass was indicated as the most homogeneous landscape with 

the highest proportion found in Zone 5, a zone signifying the highest level of the local 

Moran’s I. A high degree of fragmentation was found in xeric residential areas as 

suggested by low mean CONTAG and high mean LSI. Additional information that was 

gleaned by the landscape metrics not implied by the local Moran’s I was that desert 

showed higher degree of fragmentation than grass. This is in part due to the fact that the 

presence of trees and bushes that grow on the bare soil can be clearly captured by the land 

cover classification of fine-resolution imagery. 
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Figure 2.6 Pie Charts Showing the Percentages of LULC Types in the Five Zones of 

Local Moran’s I of NDVI. 

 

Table 2.4 Descriptive Statistics of Landscape Metrics by Land Use Type 

Land use type Mean Standard deviation 
Coefficient of 

variation 

 CONTAG LSI CONTAG LSI CONTAG LSI 

Mesic residential 47.23 10.76 9.23 2.08 0.20 0.19 

Xeric residential 39.72 12.14 5.44 1.70 0.14 0.14 

Commercial 42.37 10.40 6.83 1.97 0.16 0.19 

Grass 69.33 5.27 16.84 2.72 0.24 0.52 

Vegetation 55.09 8.07 16.89 3.30 0.31 0.41 

Desert 52.40 9.20 17.69 3.64 0.34 0.40 

 

2.4 Discussion 

2.4.1 Comparing Continuous Framework with Discrete Representation 

Discrete landscape models have found important merit in representing a wide range 

of landscapes (Griffith et al., 2000; Liu & Weng, 2008; Southworth et al., 2002). However, 

the applicability and reliability of such models are undermined by the limitations associated 
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with the subjective categorization of continuous landscape variables into discrete classes. 

Geostatistical techniques coupled with remote sensing were first applied to landscape 

ecological applications. This is conceptually in concert with the landscape gradient model 

(McGarigal & Cushman, 2005) which allows a wide variety of texture-based image 

processing techniques to be incorporated into landscape ecology studies. Local spatial 

autocorrelation indices were evaluated in comparison with discrete landscape metrics in 

quantifying the landscape patterns of Phoenix and surprisingly great analogy was found in 

the two sets of indices.  

The behavior of the Getis statistic is conceptually in line with that of composition 

metrics which measure characteristics related to the abundance of particular land cover 

classes within the landscape. The conceptual consistency was confirmed by our 

experimental results that the Getis statistic showed strong relationship with composition 

metrics (PLAND and LPI) for both vegetation and built-up classes. On the other hand, the 

spatial pattern described by the local Moran’s I showed remarkable similarity to that 

measured by configuration metrics for major LULC types. 

The complexity residing in classification has long been a hot topic and there are no 

efficient and accurate classification systems that are readily available and applicable to 

most, if not all types of landscapes. One of the main contributions of continuous indices to 

the landscape ecology community is that no classification is required to understand 

landscape patterns and the underlying ecological processes, as continuous indices use raw 

data. The utilization of continuous raw data also enables us to eliminate arbitrariness in the 

selection of thematic resolution as well as a substantial amount of uncertainty associated 

with discrete representation, especially for urban landscapes. 
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2.4.2 Scaling Effects 

It is widely known that landscape pattern is highly scale-dependent (O’Neill et al., 

1996; Turner et al.,1989; Wu et al., 2002), and that the patterns observed under different 

scales tend to vary. Following previous studies (Lam & Quatrochi, 1992; Wu, 2004), we 

refer scale to “grain” (the spatial resolution or pixel size of an image) and “extent” (the 

spatial extent under which patterns are observed). In this experiment, indices derived 

from images of different grain sizes were compared under the same spatial extent 

(window size). This is in line with our goal of using readily available coarse-resolution 

data to achieve high quality results comparable to those obtained by fine-resolution 

commercial imagery. There were concerns, however, associated with this experimental 

design as spatial patterns are subject to scale change. We addressed these concerns by 1) 

demonstrating and comparing the landscape patterns characterized by the Getis statistic 

derived from images of different grain sizes (QuickBird and Landsat TM), and 2) 

understanding the impacts of scale on the correlations between two composition metrics 

(PLAND and LPI) and Getis of NDVI in response to changing grain size and spatial 

extent. 

We calculated Getis of NDVI within a 330 m window size using QuickBird and 

Landsat TM, respectively and examined the impact of different grain sizes on the 

resulting maps. Despite the remarkable inconsistency in the magnitude of the attribute 

values, the two maps showed substantial analogy with hardly any discrepancy between 

them. Statistically, the correlation between the two maps exceeded 0.99 with a sample of 

1000 randomly selected points. This not only justified our initial assumption that the use 

of identical window size should be able to smooth out some of the differences in the level 
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of details in the two images, which makes them comparable, but also ignited our interest 

in understanding how varying scales (grain size and spatial extent) might affect the 

statistical results we had obtained so far.  

Our preceding experiment suggested that changing grain size may not have 

significant effects on Getis of NDVI, and thus the correlation between the Getis statistic 

and landscape metrics. We expanded our experiment by evaluating the correlation 

between the two sets of indices—Getis of NDVI versus vegetation class metrics for 

changing grain size (from 30 m to 300 m); this time keeping the grain size consistent for 

both indices (Figure 2.7). The experiment was conducted for six ascending window sizes, 

from 840 m to ~6000 m.  
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Figure 2.7 Scalograms Showing the Effects of Changing Grain Size on the Correlation 

between Getis of NDVI and Vegetation Class Metrics. Six Window Sizes were 

Investigated: a. 842.8 m; b. 1404 m; c. 1965.6 m; d. 2527.2 m; e. 4212 m; f. 5896.8 m. 

 

It was noticed that both PLAND and LPI decreased mildly in their correlation 

with Getis of NDVI as grain size increased, regardless of the variation in window size. 

The correlation across the six window sizes stayed consistent for PLAND whereas it 

dropped dramatically for LPI as the window size increased, with the correlation falling 

below zero when the window size reached 6000 m. In general, the correlation between 

Getis of NDVI and vegetation class metrics was not very sensitive to changing grain size. 

That is, controlling for the window size, analogous spatial patterns can be identified by 

the two paradigms and it holds for varying levels of grain size.  

While changing grain size did not affect the relationship significantly, the 
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correlation demonstrated different patterns with respect to changing spatial extent (Figure 

2.8). We tested the correlation between the same variables as we did for changing grain 

size, with the window size varying from 200 m to 6000 m. Results showed that while a 

slowly mounting pattern was suggested for PLAND, the curve for LPI presented a 

dramatic decline in its correlation with Getis of NDVI, the value of which dropped to 

negative as the window size became sufficiently large. The decline may be in part due to 

little variation in the values of LPI, as a result of the small map size caused by the large 

window sizes. It seems that Getis of NDVI showed more robustness in representing the 

composition of a landscape than measuring the abundance of dominant patches, as was 

evidenced by the consistently high correlation with PLAND regardless of scales. More 

experiments are needed to address the effects of scale on the correlation between the 

Getis statistic and landscape metrics for other classes, as well as the responses of the 

relationship between the local Moran’s I and configuration metrics to varying scales. 

 

Figure 2.8 Scalograms Showing the Effects of Changing Spatial Extent on the Correlation 

between Getis of NDVI and Vegetation Class Metrics. Four Grain Sizes were 

Investigated: a. 31.2 m; b. 93.6m; c. 187.2 m; d. 280.8 m. 
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2.5 Conclusion 

Statistical analyses suggest that there is a clear relationship between the Getis 

statistic and class metrics for vegetation and built-up classes. PLAND and LPI are well 

related with the Getis while PD presents a hump-shaped curve with respect to the Getis. 

We found that the Getis value around zero is a critical point for identifying landscape 

fragmentation. The multiple regression models developed in this paper can be used 

effectively to describe spatial pattern without creating detailed LULC maps or classifying 

high-resolution imagery. As predictors, Getis of NDVI and Getis of PNBI are significant 

in predicting important landscape metrics. Furthermore, the local Moran’s I shows great 

analogy to the FRAGSTATS metrics in evaluating landscape fragmentation for different 

LULC types with xeric residential areas consistently demonstrating the highest degree of 

fragmentation across the region, followed by commercial and mesic residential areas. In 

terms of the scaling effects, it is found that the Getis statistic shows more robustness in 

measuring landscape composition than the abundance of dominant patches within the 

landscape identified using the patch mosaic paradigm. While PLAND demonstrates 

consistently high correlation with the Getis statistic regardless of the scales, LPI is more 

sensitive to changing extent than changing grain size. 

The continuous indices presented in this paper show great potential in effectively 

characterizing the spatial patterns of any land cover type or a combination of different 

land cover types. Future research should consider the use of local spatial autocorrelation 

indices for a diversity of landscapes including forest, agricultural, coastal zones, deserts 

and grasslands as the use of continuous indices better addresses the dynamics associated 
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with gradual land transformations such as deforestation and land degradation. The 

methodological framework outlined here can be extended if additional continuous indices 

are developed to enhance the ability to accurately represent specific landscape 

characteristics. It remains for landscape ecologists to demonstrate how the proposed 

indices are useful in linking landscape pattern with the underlying processes, which is a 

central question of landscape ecology that needs to be clearly addressed by all ecological 

applications. 
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CHAPTER 3 

TIME SERIES ANALYSIS OF URBAN DYNAMICS USING SEQUENTIAL 

LANDSAT IMAGERY AND SPATIAL STATISTICAL MODELING 

3.1  Introduction 

Human influences on the natural world have been a central topic in the literature 

of recent decades (An et al., 2005; Stem, 1993; Turner et al., 2003). Urban growth, from 

regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of 

human modification to the Earth’s surface. Urban areas are holding 54% of the world’s 

population, and this number is projected to reach 66% by 2050 (United Nations, 2014). 

Extensive replacement of the natural surface with impervious, manmade materials has 

profoundly affected ecological functioning and services well beyond city boundaries (Wu 

et al., 2011). While urban areas occupy only 3% of the Earth’s landmass, they are 

responsible for 60% of total residential water consumption, more than 78% of carbon 

release, and about 76% of wood mainly used for industrial purposes (Brown, 2001; 

Grimm et al., 2008). Land modification in the urbanization process to sustain increasing 

urban population has also resulted in other types of change to the Earth’s environment 

(Grimm et al., 2008).  

Accurate and updated knowledge of the spatiotemporal pattern of urbanization is 

important for understanding urban growth and its various environmental consequences in 

a rapidly changing world (Ma et al., 2012; Zhang and Seto, 2011). Recent advancement 

of remote sensing technologies has stimulated a proliferation of research devoted to 

improve our understanding of the human impacts on the natural environment (Kaufmann 

et al., 2007; Martin, 2008; Voogt and Oke, 2003). Satellite imagery, collected from 



37 

 

space-borne sensors, provides repeatable and consistent representation of the Earth’s 

surface at various temporal, spatial, and spectral scales (Begue et al., 2011). Long-term 

remote sensing records also facilitate examination and quantification of changes to 

landscape patterns through repetitive collection of data at multiple spatial scales and time 

intervals (Gillanders et al., 2008; Waylen et al., 2014). Key to the land change science is 

the ability of remote sensing to generate useful environmental parameters (e.g., 

vegetation and built-up indices) that reflect biophysical and socioeconomic properties of 

the earth’s surface. Such indices are useful for identifying and extracting land cover 

features and thus are increasingly employed to characterize spatial and temporal patterns 

of landscape change.  

Current research on land change science has relied heavily on thematic land use 

land cover (LULC) maps. Most common is the coupling of classified satellite imagery at 

multiple time points with a suite of spatial metrics characterizing various properties 

relevant to the land composition and spatial configuration of landscape at the patch (land 

cover/use object) level (Herold et al., 2003). The effectiveness of patch-based landscape 

model is evidenced by a large body of research designed to examine both cross-sectional 

and spatiotemporal patterns of various types of landscape not restricted to urban (Deng et 

al., 2009; Luck and Wu, 2002; Read and Lam, 2002; Seto and Fragkias, 2005). Some 

well-established tools (e.g. FRAGSTATS) and analytical methodologies (e.g. regression, 

ANOVA) facilitates the experimental design, analysis, and interpretation of this simple 

organizational framework, making it one of the most adopted tools for landscape pattern 

mapping over the last few decades. 
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Continuous landscape models emerge in response to the incapability of the patch 

mosaic model to detect within-class variations and the substantial subjectivity and 

arbitrariness introduced from the land cover classification analyses (McGarigal and 

Cushman, 2005). Additionally, continuous measures containing spatial information via 

analysis of brightness values provide unique sources of information relevant to the spatial 

arrangement and heterogeneity of landscape not available in the spectral domain (Musick 

and Grover, 1991). Existing research has compared the usefulness of various continuous 

measures with the patch mosaic model and shows great potential of continuous models in 

forest modeling (Southworth et al., 2004), savanna mapping (Pearson, 2002), and urban 

fragmentation analysis (Myint et al., 2015). Major advantages of continuous analysis can 

be briefly summarized as: (1) a closer association with the original satellite data as no 

land cover categorization is required; (2) greater flexibility to incorporate changes at the 

pixel level, which allows detection of subtle and gradual land cover modifications; (3) 

possibility to assess global and local spatial associations via evaluating spatial 

concentration and arrangement using continuous spatial indicators.    

Long-term satellite imagery offers sufficient temporal sampling frequency and 

duration that permit detection of changes with the presence of substantial variation (De 

Beurs and Henebry, 2005). Frequently used methods to detect trends include regression 

trend analysis (Kogan and Zhu, 2001; Ma et al., 2012), harmonic analysis (Immerzeel et 

al., 2005; Jakubauskas et al., 2001), PCA (Hayes and Sader, 2001; Lasaponara, 2006; 

Shabanov et al., 2002), and ARIMA models (Jiang et al., 2010; Linthicum et al., 1999). 

Some of these high-powered statistical methods require considerable data transformation 

and thus are more suitable for detecting changes in a relatively short time series. 
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Computational demands also increase dramatically for increased spatial extent under 

study. 

The Mann-Kendall test (Kendall, 1955; Mann, 1945) offers a simple and effective 

tool for describing monotonic trends in a long-term time series without recourse to 

computationally demanding techniques. Originally derived from a rank-based correlation 

test, the Mann-Kendall test has seen extensive applications in hydrological and 

climatology studies (Déry et al., 2009; Dunn, 1996; Gough et al., 2004; Han et al., 2010; 

Mohsin and Gough, 2010). Typical in a time series is the serial dependence among 

successive observations. As Cox and Stuart (1955) pointed out, positive serial 

dependence can lead to a higher chance of significant answer, even when the trend is 

absent. The modified Mann-Kendall test (Hamed and Rao, 1998) was proposed to reduce 

the effect of serial correlation on the significance of the trend test through modifying the 

variance of the Mann-Kendall statistic. After correcting for the serial autocorrelation, the 

modified Mann-Kendall test is robust to outliers, non-normality, serial dependence, and 

missing values, making it suitable for detecting trends in an image time series. 

This paper presents our efforts to integrate image time series, continuous spatial 

indices, and non-parametric regression into a spatiotemporal study of urban dynamics. 

The utility of this method is tested on a 20-year image time series over Phoenix. 

Application of this method permits spatially explicit, pixel-based assessment of landscape 

pattern changes across the urban landscape. Additionally, findings from this study 

improve our understanding of the human impacts on the natural environment, which is of 

paramount importance for sustainable urban development in the context of rapid global 

change.  
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3.2 Materials and Methods 

3.2.1 Study Area 

This study focuses on the Phoenix metropolitan area, located in the northern part 

of the Sonoran desert in Arizona (Figure 3.1). Situated at the confluence of Salt and Gila 

Rivers, this area is characterized by a subtropical desert climate with hot and dry 

summers and warm winters. The average annual temperature is ~22 °Celsius (C), with the 

average summer and winter temperature 40 °C and 3 °C, respectively. This region 

receives an average of 32 days of precipitation each year, and the average annual rainfall 

is ~203 millimeters (mm) (ADWR, 2013). Our study area covers the Central Arizona-

Phoenix Long-Term Ecological Research (CAP LTER) site, which is the subject of a 

multitude of urban ecology research focusing on the various relationships between 

urbanization and the socio-ecological systems using interdisciplinary approaches (Grimm 

and Redman, 2004). Since last century, Phoenix has witnessed a tremendous land 

transformation primarily from agriculture and natural lands to urban areas (Knowles-

Yánez et al., 1999; Luck and Wu, 2002). The entire Phoenix metropolitan area consists of 

23 cities and is home to more than four million residents. It is also among the fastest 

growing metropolitan areas in the nation with an estimated population growth rate of 

45.3% from 1990 to 2000 (USCB, 2001).   
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Figure 3.1 Map of the Phoenix Metropolitan Area. 

 

3.2.2 Data Acquisition and Processing 

Our data set is a yearly Landsat TM image time series spanning from 1991 to 

2010. The acquisition date of the imagery ranges from June to July and images of the best 

quality were selected. We used images acquired at approximately the same time of the 

year in the summertime to minimize the spectral variation brought by phenological 

effects and to make sure that vegetation is active and detectable. We identified clouded 

areas and shadows in the images using the Fmask tool developed in Zhu and Woodcock 

(2012) and replaced the values in these areas with a constant value similar to those of 

neighboring pixels. As areas with clouds and shadows are located in the mountainous 

regions well beyond the urban extent, we believe a constant is sufficient for this particular 

study without resorting to more complicated algorithms.  

Vegetation and impervious surfaces are important land cover types in an urban 

environment. Hence, the spatial and temporal patterns of vegetation and built-up areas are 

of particular relevance for analyzing urban dynamics, especially in desert regions. We 
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employ the Normalized Difference Vegetation Index (NDVI), which is a common 

indicator of green biomass and has been extensive used in phenological studies (Lee et 

al., 2002; Reed et al., 1994; Studer et al., 2007), biomass production (Paruelo et al., 1997; 

Tieszen et al., 1997; Todd et al., 1998), crop mapping (Lunetta et al., 2010; Thenkabail et 

al., 2005), and land cover identification (DeFries and Townshend, 1994; Hansen et al., 

2000). For anthropogenic areas, we utilize a recently developed built-up index based on a 

combination of the first band of the principal component analysis (PCA1) and the near 

infrared band (B4), hereafter referred to as PNBI (Fan and Myint, 2014). The PNBI takes 

the same format as the NDVI, with B4 and B3 in the NDVI replaced with PCA1 and B4, 

respectively. A comparison of the PNBI with the widely used Normalized Difference 

Built-up Index (NDBI) shows that PNBI is more sensitive to the spectral distinction 

between manmade features and open soil, making it particularly suitable for 

distinguishing built-up areas from natural desert lands and xeric residential areas in an 

arid region.  

3.2.3 Landscape Pattern Analysis 

Spatial structures of landscapes are closely associated with the land composition 

and spatial configuration of landscape elements. Land composition refers to the 

abundance and variety of land cover objects within a landscape, while configuration 

focuses on the spatial character, position, arrangement, and orientation of land cover 

patches (McGarigal, 1995). Unlike most of existing studies adopting the patch mosaic 

models, our study benefits from a continuous framework which offers a more detailed 

and accurate characterization of landscape heterogeneity. The utility of continuous 

representation of landscape structure was evidenced in a number of studies (Pearson, 
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2002; Qi and Wu, 1996; Southworth et al., 2004). We herein adopts the spatial 

autocorrelation approach detailed in (Fan and Myint, 2014) as an effective means to 

measure the concentration and spatial arrangement of land cover types in a rapidly 

growing desert region. 

3.2.3.1 Land Composition 

We use the Getis-Ord G as our measure of land composition. The Getis-Ord G 

measures the degree of local concentration of the attribute of interest. It is computed as 

the sum of attribute values within a predefined radius distance from the original point as a 

proportion of the sum of values for all the observations within the entire study region 

(Getis and Ord, 1992). The radius distance is set to 150 m which is the minimum radius 

encompassing all the major land cover types in the urban area. The same window size 

was employed in Buyantuyev et al. (2010) in a landscape pattern analysis over Phoenix. 

A high value of the G statistic indicates a spatial clustering of high values and vice versa. 

The significance of the G depends on the distribution of the statistic. Under the 

assumption of normal distribution, a hot spot (or a cold spot) is detected with strongly 

high positive (low negative) Z scores of the G statistic. While the significance test is 

illuminating for making statements about local pockets, it increases the difficulty in the 

interpretation of the final results. To maintain the temporal and spatial continuity of the 

data set, we use the G statistic solely as a spatial indicator of land composition without 

regard to its statistical significance. Respectively, we compute the G statistic for the 

NDVI and PNBI maps derived in Section 3.2.2 for a continuous assessment of the local 

concentration of vegetation and built-up features.  



44 

 

3.2.3.2 Spatial Configuration 

Spatial configuration includes a variety of properties concerning the spatial 

character, orientation, proximity, and interspersion of land cover features. In this study, 

we focus on one of these characters—spatial arrangement. We use another spatial 

autocorrelation index—the local Moran’s I as our measure of spatial arrangement 

(Anselin, 1995). Unlike the G statistic, the local Moran’s I assesses the correlation 

between the focal observation and its proximate observations. A high positive local 

Moran’s I indicates a pattern of spatial clustering (regardless of its property) whereas a 

low negative local Moran’s I suggests a dispersed spatial arrangement. The local Moran’s 

I’s capability to identify clustered and dispersed spatial patterns makes it a useful 

indicator for landscape structure mapping (Fan et al., 2015; Qi and Wu, 1996; Zheng et 

al., 2014). We have three candidate maps for which the local Moran’s I can be calculated: 

Tasseled Cap brightness, PNBI, and NDVI. We decided to use the NDVI maps over the 

other two mainly for two reasons. First, the Tasseled Cap brightness values for vegetation 

and some of the impervious surfaces are very close to the mean of the entire image. As 

the local Moran’s I is incapable of distinguishing spatial clusters of medium values from 

random pattern, it is very likely that the local Moran’s I is insignificant for vegetation and 

some of the built-up areas. Second, due to the high albedo of desert lands, unmanaged 

soil and other undisturbed lands usually receive higher scores of PNBI than most of the 

impervious surfaces. Therefore, the local Moran’s I for PNBI will likely pick up the 

expansive open soil in the mountainous areas rather than the manmade features in the 

urban area. NDVI is more appropriate in this case as it clearly shows the spatial pattern of 

the landscape by means of highlighting vegetated surfaces in the region. As with the G 
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statistic, we consider the local Moran’s I as an indicator of spatial arrangement of urban 

features with no regard for its statistical significance.  

3.2.4 Mann-Kendall Test 

The original Mann-Kendall (MK) test is a non-parametric statistical test 

frequently used for analysis of trend in hydrologic and climatologic data. It statistically 

assesses whether a monotonic increasing or decreasing trend of a variable is present over 

time. Unlike parametric regression analysis, the MK test does not require the trend to be 

linear, nor does it require normality in the observed data. Mathematically, the MK test 

statistic S is calculated by subtracting the number of positive differences in the data from 

the number of negative differences, or more formally 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗−𝑘+1

𝑛−1

𝑘−1

 (3.1) 

where 𝑥𝑗 and 𝑥𝑘 are observations obtained at times 1, 2, …, n, respectively. S is 

positive if data collected later in time tend to be greater than those obtained earlier, and 

vice versa. Under the assumption of independent observations, the MK statistic can be 

approximated by a normal distribution when the number of observations exceeds 10, with 

mean and variance given by 

𝐸(𝑆) = 0 (3.2) 

𝑣𝑎𝑟(𝑆) = 𝑛(𝑛 − 1)(2𝑛 + 5)/18 (3.3) 

In a time series, the likelihood of violating the assumption of independent 

observations is extremely high because data in a time series tend to be autocorrelated, i.e., 

the value on the observation obtained at the current time point is conditional on that 

obtained at a previous time point. The serial correlation can increase the chance of 
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identifying significant trends, even if the trends are absent. Hamed and Rao (1998) 

proposed a modified MK test in which the variance is modified to account for the serial 

correlation. The modified MK test computes the autocorrelation function between the 

ranks of the observed data after removing a non-parametric trend estimate from the data. 

Autocorrelations significant at a certain significance level (e.g., 5%) are then used in the 

evaluation of the modified MK statistic. The adjusted variance of the MK statistic is  

𝑣𝑎𝑟𝑚(𝑆) = 𝑣𝑎𝑟(𝑆) ∙
𝑛

𝑛𝑆
∗ (3.4) 

where 

𝑛

𝑛𝑆
∗ = 1 +

2

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑛 − 𝑖)(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)𝜌𝑆(𝑖)

𝑛−1

𝑖=1

 (3.5) 

Here 𝑛 is the total number of observations in the time series. 𝑛𝑆
∗ is the effective 

sample size after adjusting for the serial correlation. 𝜌𝑆(𝑖) is the autocorrelation function 

between the ranks of the data for lag i. Only autocorrelations that are significant are 

included in the calculation. The significance of the trend is determined by comparing the 

standardized test statistic with the critical value of the standard normal distribution at a 

predefined significance level.  

3.2.5 Land Cover Dynamics at the Metropolitan and Municipality Levels 

We analyzed the spatiotemporal dynamics of vegetation and built-up areas in 

reference to the total urban land in 2009, i.e., the spatial extent of our analysis is 

restricted to the urban area in 2009. The urban extent map was created from a land cover 

classification map in 2009 from the CAP LTER website (caplter.asu.edu). A maximum 

likelihood classifier was employed with a total of six classes created: agricultural soil, 
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residential/disturbed, asphalt, cultivated vegetation, desert/undisturbed, and water. A total 

of 300 sample points was used for the accuracy assessment and the overall classification 

accuracy achieved 89.7%. The final map of urban extent was created by combining 

residential/disturbed, asphalt, and cultivated vegetation into a single urban class. We 

performed the modified MK test for the abundance and spatial arrangement of vegetation 

and built-up areas in the region and summarized the total number of pixels (total area) 

and percent of lands showing (significantly) increasing and decreasing patterns in the 

value of the two spatial indicators.  

In addition to the analysis at the metropolitan level, zonal statistics were derived 

for major municipalities in the Phoenix metropolitan area. We used the city boundaries in 

2010 as our reference city boundary data, because the spatial extents they encompass are 

the largest over the entire study period. The city boundary data are available through the 

TIGER/Line product by the US Census Bureau. Similar to the analysis at the 

metropolitan level, we calculated for each city the total area and percent of lands with 

(significantly) increasing and decreasing trends in the land composition of vegetation and 

built-up areas. The MK test based on the local Moran’s I of NDVI also reveals the 

monotonic trend in the development of spatial heterogeneity for each city over the last 

twenty years.  

3.3 Results and Discussion 

3.3.1 Spatiotemporal Dynamics of Vegetation 

Table 3.1 shows the statistics for vegetation dynamics derived from the modified 

MK test on the G of NDVI. Within the study area, the total area of land with increases in 
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vegetation abundance is 1120.72 km2, of which 469.84 km2 shows significant vegetation 

increases. The number of pixels showing an increasing and significant increasing 

vegetation cover accounts for 38.98% and 16.34% of the urban land in 2009. 

Comparatively, more areas report declining trends of vegetation cover with 1719.1 km2 

(59.79%) and 879.16 km2 (30.58%) showing a declining and significant declining pattern 

of vegetation abundance, which is about 1.5 times the area with vegetation increases.  

Table 3.1 Area and Percent Area Changes in the G of NDVI from 1991 to 2010 

 Original  Significant* 

Area increase (km2) 1120.72 469.84 

Percent area increase (%) 38.98 16.34 

Area decline (km2) 1719.1 879.16 

Percent area decline (%) 59.79 30.58 
                                         * Significant at the 0.05 level. 

 

Landscape change maps provide a visual tool for discerning the location of 

significant changes across the landscape. Figure 3.2 shows the spatial distribution of 

statistically significant vegetation changes in the Phoenix metropolitan area. We found 

the majority of vegetation increase occurring in the northeast part of the region where 

new residential areas emerge as a result of land conversion from natural desert lands. The 

second largest portion of vegetation increases is located within some of the urbanized 

areas where more and more vegetation is brought to the residential areas. On the other 

hand, most vegetation declines are seen in the highly developed regions, notably in the 

central and southeast part of the area. Overall, there are more areas with vegetation 

declines than vegetation increases in this region.  
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Figure 3.2 Spatiotemporal Changes in the G of NDVI over the Phoenix Metropolitan 

Area (Red: Significant Increase; Blue: Significant Decrease). 

 

The relationship between urbanization and vegetation dynamics is a complex, 

variable, and nonlinear one. The probability and degree of vegetation changes is not only 

location-specific, but also vary at different stages of urbanization. While declines of 

vegetation cover is likely during urban expansion, it is not necessarily true for every city 

(Zhou et al., 2014). Liu et al. (2015) investigates the degree of vegetation degradation 

with respect to urbanized areas across 50 cities in the world and shows that while 

vegetation tends to decline in general, some large cities can experience vegetation 

restoration as opposed to degradation at some point of their urban development. In the 

desert environment, our observed vegetation dynamics manifest a distinct pattern which 

differs from most cities studied so far. Instead of losing vegetation to impervious and 

other manmade features, urbanization in desert cities accompanies vegetation plantation 

and irrigation, which presumably results in an overall increase in the abundance of 
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vegetation. The substantial vegetation declines, however, require further evaluation with 

regard to the specific land conversion processes behind these changes.  

3.3.2 Spatiotemporal Dynamics of Built-up Areas 

The total area showing an increasing trend in the G of PNBI is 1449.58 km2, and 

637.29 km2 of them are significant (Table 3.2). The number of pixels with (significant) 

increases accounts for 50.41% (22.16%) of the total number of pixels that are identified 

as urban in 2009. We observed a comparable area of land with decreases in the G of 

PNBI (1387.33 km2), and the area showing significant declines (24.98%) is only slightly 

greater than that with significant increases (22.16%). 

Table 3.2 Area and Percent Area Changes in the G of PNBI from 1991 to 2010 

 Original  Significant* 

Area increase (km2) 1449.58 637.29 

Percent area increase (%) 50.41 22.16 

Area decline (km2) 1387.33 718.26 

Percent area decline (%) 48.25 24.98 
                                          * Significant at the 0.05 level. 

 

An important issue that complicates the analysis of built-up dynamics is that open 

soil tends to have higher PNBI than most built-up areas due to their higher albedo scores. 

Therefore, a decline in the value of PNBI can indeed be a useful indication of land 

conversion from open soil to urban land use, regardless of land use type. Figure 3.3 

shows the spatial distribution of significant changes in the G of PNBI. We observed a 

pattern nearly inverse to that of vegetation changes where increases in the built-up index 

are seen in the urbanized areas in the central and southeast part and declines on the 
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outskirts of the region. Increases in PNBI are evident in places undergoing changes from 

non-commercial areas (e.g., cropland, residential) to commercial land use, which usually 

accompany a big vegetation loss. The areas with a decreasing trend in the built-up index 

show great correspondence to those with vegetation increases, collectively delineating the 

areas experiencing land development from natural desert lands.  

 

Figure 3.3 Spatiotemporal Changes in the G of PNBI over the Phoenix Metropolitan Area 

(Red: Significant Increase; Blue: Significant Decrease). 

 

3.3.3 Changes in the spatial pattern of the landscape 

The spatial arrangement of the urban landscape was assessed by using the MK test 

on the local Moran’s I time series. Based on Table 3.3, the total area of land with 

increases in the local Moran’s I is 1200.4 km2, and 458.52 km2 is statistically significant. 

A greater number of pixels, on the other hand, reports (significant) declines in the local 

Moran’s I, suggesting that a relatively large portion of the landscape has become spatially 

more dispersed as the cities evolve.  
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Table 3.3 Area and Percent Area Changes in the Local Moran’s I from 1991 to 2010 

 Original  Significant* 

Area increase (km2) 1200.4 458.52 

Percent area increase (%) 41.75 15.95 

Area decline (km2) 1634.91 703.54 

Percent area decline (%) 56.86 24.47 
                                          * Significant at the 0.05 level. 

 

Figure 3.4 shows the spatial distribution of significant changes in the local 

Moran’s I. The trend of decreasing local Moran’s I dominates the entire landscape, 

notably in the central and southeast part of the region which is occupied with large 

residential areas. Declines in the local Moran’s I indicate elevated level of spatial 

complexity, primarily due to the extensive land transitions from agriculture and desert 

lands to spatially more complex urban land uses. Areas with increased local Moran’s I are 

located in the northeast part of the region where desert lands were converted into 

cultivated vegetation, commercial, and mesic residential areas.  

 

Figure 3.4 Spatiotemporal Changes in the Local Moran’s I over the Phoenix Metropolitan 

Area (Red: Significant Increase; Blue: Significant Decrease). 
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Land fragmentation is a phenomenon of land form change that accompanies most 

forms of urbanization. Through interspersing natural landscapes with developed land 

features, land fragmentation significantly alters the urban ecosystems, leading to a 

number of detrimental consequences including loss of biodiversity, decreased 

productivity of agricultural and forest management, and elevated costs for provision of 

public services (York et al., 2011). Quantifying landscape structure, especially land 

fragmentation, is not only important for mapping the trajectories of urban growth and 

change, but also essential for understanding the profound impacts of land conversions on 

the bio-socio-ecological systems. As a local indicator of spatial dependence and 

association, the local Moran’s I provides an effective means for characterizing the spatial 

complexity of urban landscapes from a spatial statistical perspective (Myint et al., 2015; 

Zheng et al., 2014). The use of satellite images without creating LULC maps makes the 

spatial indicators particularly appealing in longitudinal analysis of landscape pattern 

changes. 

3.3.4 Landscape Pattern Changes at the City Level 

City-level analysis of land cover dynamics provides specific information about 

each city’s individual growing pattern. Figure 3.5 shows the area and percent of urban 

lands with significant vegetation increases and declines for major municipalities in the 

region. Note first that for almost every city, the areas with significant vegetation declines 

are always greater than those with significant vegetation increases, indicating an overall 

tendency of vegetation loss (Figure 3.5a). Of all the cities, Phoenix and Tolleson have the 

largest and smallest area of vegetation increases and the counterpart cities for vegetation 



54 

 

declines are Phoenix and Guadalupe, respectively. A different story is told when 

considering the area changes with respect to city size as there is a great variation in the 

city size in this metropolitan area, varying from 2 km2 (Guadalupe) to 1342 km2 

(Phoenix). When percent of urban land is considered, Paradise Valley and Fountain Hills 

stand out as cities with the largest and second largest area of vegetation increases (Figure 

3.5b). As a majority of their current urban areas is developed from natural desert rather 

than croplands, these two cities have seen significant growths in vegetation, a great 

amount of which is brought by local residents. Tolleson features a unique form of urban 

expansion in which 56.92% of its current urban lands reports vegetation declines and 

only 0.01% shows vegetation increases, a 56.91% difference. 

 

Figure 3.5 Vegetation Dynamics for Major Municipalities over the Phoenix Metropolitan 

Area: a. Area Changes; b. Percent Area Changes. 

 

When it comes to built-up areas, Phoenix continues to lead the game with the 

largest area of PNBI increases (276.54 km2), followed by Mesa (69.66 km2) and Glendale 

(42.81 km2) (Figure 3.6a). Unlike vegetation, the area showing significant declines in the 

built-up abundance is not consistently greater than that with significant increases. The 



55 

 

city with most area of PNBI declines is Phoenix, suggesting extensive land conversions 

from open soil to urban land use in this city. Similar patterns are observed for Paradise 

Valley, Fountain Hills, and Carefree, three cities showing the highest percentages of 

PNBI decreases (Figure 3.6b). The column chart highlights Tolleson as the city with the 

most PNBI increases (51%) and smallest PNBI decreases (0%), indicating that nearly all 

the current urban areas in Tolleson are developed from active or fallow croplands rather 

than natural desert.  

 

Figure 3.6 Built-up Area Dynamics for Major Municipalities over the Phoenix 

Metropolitan Area: a. Area Changes; b. Percent Area Changes. 

 

Besides changes in the composition of vegetation and built-up areas, there is a 

significant alteration in the spatial structure of some cities in this region, exemplified by 

Phoenix, Chandler, and Mesa to name a few (Figure 3.7). Changes in the landscape 

structure are closely associated with land transition processes. Particularly relevant 

transition types include land conversions from open soil/croplands to 

residential/commercial, from residential to commercial, and from water intensive 

residential (mesic) to water efficient residential (xeric) or vice versa. 
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Figure 3.7 Changes in the Local Moran’s I for Major Municipalities over the Phoenix 

Metropolitan Area: a. Area Changes; b. Percent Area Changes. 

 

3.3.5 Linking Land Cover Changes to Land Use Conversions 

We link the various types of land cover change identified using our approach with 

the specific types of land use conversions to gain a better understanding of the processes 

that underlie the changes in vegetation and built-up areas. We selected 100 sample points 

for each category of land cover change (e.g., vegetation increases) and identified the land 

conversion process occurred at each point from 1991 to 2010. We only show results for 

vegetation and decide to drop those for built-up areas due to the substantial overlapping 

patterns reflected in the dynamics of these two land cover types. Tables 3.4 and 3.5 show 

the land use conversion matrix for vegetation increases and declines from 1991 to 2010. 

In the areas showing vegetation increases, 57% of the sample points indicates land 

conversions from other land use types to residential areas and natural desert lands are 

responsible for 28% of these conversions. We also observed vegetation increases in the 

residential areas over the last 20 years, which likely occurs at the early phase of urban 

expansion when trees and shrubs were planted as part of the development plans.  
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Table 3.4 Land Use Conversion Matrix for Areas with Vegetation Increases 

 
 

In the areas reporting vegetation declines, 11 and 8 out of 100 sites have changed 

from agriculture to residential and commercial areas, respectively (Table 3.5). Similar 

findings are reported in Keys et al. (2007) in a study of urban dynamics in the city of 

Phoenix from 1970 to 2000 where they found that more than half of the croplands in 

1970 had become urban land uses, primarily residential in 2000. Changes from croplands 

to urban land uses also corroborate the findings in Fan et al. (2014) which identifies a 

substantial loss of agriculture to urban areas in the time period from 1995 to 2010.   

Table 3.5 Land Use Conversion Matrix for Areas with Vegetation Declines 
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We found a general decline of vegetation in the residential areas, evidenced by 46 

of 100 sample sites (Table 3.5). The remarkable vegetation declines—as pointed out in a 

previous section—can be an outcome of extensive xeriscaping practices in this region. 

Residents are encouraged to replace their “green” yards with less water-demanding and 

more drought-resistant landscaping. In an effort to conserve water, some cities (e.g., 

Tempe, Mesa, and Chandler) have initiated “Grass-to-Xeriscape” programs that offer 

rebates to their residents for converting their lawns into low-water-use landscaping. 

While xeriscaping seems to reduce the need for water use from irrigation, it can render 

the living environment much hotter, which in turn elevates the demands for water and 

energy (Ruddell and Dixon, 2014). 

Increases in the local Moran’s I mainly occur as a result of the transitions from 

other land use types to residential and commercial areas (Table 3.6). Vegetation increases 

in residential, for example, tend to elevate NDVI in the focal pixel and its neighboring 

pixels, causing higher covariance and thus the local Moran’s I. This likely explains the 

increasing local Moran’s I in the residential areas. The land conversion from residential 

to commercial is another major cause for elevated local Moran’s I. While this process is 

not as common as reciprocal switches between residential, it results in a substantial 

reduction in the spatial complexity across the region.  
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Table 3.6 Land Use Conversion Matrix for Areas with Increasing Local Moran’s I 

 
 

The process of urbanization accompanies significant increases in the structural 

complexity of the landscape (Table 3.7). Our analysis has identified reciprocal changes 

between residential areas as the most important cause for raised spatial heterogeneity, 

followed by conversions from active croplands, open soil, and fallow croplands to 

residential. The practice of xeriscaping, for example, increases the spatial complexity by 

turning vegetation dominant landscapes into ones with open soil interspersed with 

vegetation and other land cover features. Urban development from open soil and 

croplands is another important process that complicates the spatial structure of the urban 

landscape. Our findings are in concert with Wu et al. (2011) that landscape in the Phoenix 

metropolitan area is becoming increasingly more fragmented in structure, more complex 

in shape, and more diverse in land use types. Buyantuyev et al. (2010) reaches the similar 

conclusion by showing a 15% decrease in the value of contagion, a landscape ecological 

indicator measuring the degree of patch clumpiness. 
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Table 3.7 Land Use Conversion Matrix for Areas with Declining Local Moran’s I 

 
 

3.3.6 Long-term Landscape Mapping from a Spatial Statistical Perspective 

This study presents a quantitative framework for analyzing long-term 

urbanization-induced land cover changes in a desert metropolitan region. Benefiting from 

a combination of environmental variables, local spatial indicators, and non-parametric 

regression, this study systematically quantifies the spatiotemporal patterns of vegetation 

and built-up features from a continuous landscape modeling perspective. What differs 

this study from existing LULC change research is the use of successive satellite images 

spanning 20 years as opposed to selecting several scenes and detecting changes occurred 

between each pair of them. While the plethora of data enables land change analyses at a 

much finer temporal resolution, it poses unprecedentedly critical challenges for 

computational capabilities, storage capacity, and processing efficiency (Wu et al., 2014). 

Long-term landscape change analysis requires sophisticated algorithms to perform land 

cover classification for every satellite scene in the study period (Li et al., 2015). The 

process of generating long-term LULC maps is not only a time-consuming and labor 
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intensive project, but also introduces errors and uncertainty into the system, which 

ultimately affect the accuracy of subsequent change analysis (Fan and Myint, 2014). 

Landscape change assessment through continuous environmental variables and spatial 

indicators provides a brand new perspective for urban landscape mapping. It embraces 

instead of avoids the fact that urban landscape is an inherently heterogeneous entity and 

bases the analysis on the original satellite signatures without any data transformation 

and/or simplification (e.g., LULC classification). In addition to detecting changes in the 

land composition, our approach manages to identify alterations in the spatial 

configuration of the landscape using local indicators of spatial association. The modified 

MK test used in this study permits evaluation of monotonic (not necessarily linear) trends 

in the abundance and spatial arrangement of LULC features at the per-pixel level. As a 

non-parametric test, the modified MK test is particularly useful for detecting changes 

when (1) linear trends are not substantiated, (2) several observations are missing, and (3) 

power transformations are either not desirable or fail to produce normality.  

3.4 Conclusion 

The Phoenix metropolitan area has undergone dramatic landscape changes since 

the 1970s. The rapid urban sprawl has profoundly altered the local and regional socio-

ecological systems, leading to a number of negative environmental impacts such as loss 

of productive farmland, fragmented wildlife habitats, elevated city temperature, and 

reduced biodiversity (Seto et al., 2011). Our study presents a systematic analytical 

framework for evaluating the spatiotemporal patterns of vegetation and manmade 

features in this desert region. It is also one of the early attempts that integrates satellite 
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remote sensing, spatial autocorrelation indices, and statistical modeling into the analysis 

of urban dynamics.   

Our results show that over the last two decades, the total abundance of vegetation 

has increased in the northeast part of the region, where new residences were converted 

and built from natural desert lands. The central and southeast part, on the other hand, 

have seen extensive vegetation declines largely driven by the practice of xeriscaping to 

lower water use for irrigation. The spatial distribution of the built-up index is inverse to 

that of vegetation dynamics where increases are most evident in the central and southeast 

and declines at the outskirts. Due to the high albedo of desert sands, reductions in the 

built-up index is not an indication of loss of built-up areas but rather land conversions 

from desert and other open lands to urban land uses. We found that land conversions 

from agriculture and desert lands are important factors responsible for elevated spatial 

heterogeneity. Another process that complicates the landscape is xeriscaping where a 

mixture of land use types emerge in replace of the originally vegetation dominant 

landscape. Our analysis at the city level highlights Phoenix as the city experiencing the 

most dramatic urbanization, which is evidenced by significant land conversions from 

both desert and croplands into a diversity of residential, commercial, and cultivated 

vegetation. Our analysis also highlights cities with distinct urbanization patterns, with 

Paradise Valley and Fountain Hills exemplifying pure development from desert lands 

whereas nearly 100% of Tolleson’s current urban areas have been converted from active 

or fallow agriculture and nothing else.  

Several issues need to be scrutinized in pursuit of the next stage of this study. 

First, while the built-up index (PNBI) used in this study is capable of distinguishing built-
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up areas from bare soil, it fails to locate built-up features in the high positions of its 

numerical range. This complicates the interpretations of PNBI-based built-up dynamics 

as declines in PNBI do not explicitly suggest loss of built-up areas. Improvements on the 

index is certainly needed while an active search and evaluation of established built-up 

indices is also helpful. Such indices may include the index-based built-up index (IBI) 

(Xu, 2008), the enhanced built-up and bareness index (EBBI) (As-Syakur et al., 2012), 

and the biophysical composition index (BCI) (Deng and Wu, 2012). Second, the results 

of our analysis should be interpreted with regard to the specific spatial scale without 

overgeneralization. The well-known Modifiable Areal Unit Problem (MAUP) has been 

extensively discussed in the literature (Fotheringham, 1989; Openshaw and Openshaw, 

1984; Openshaw and Taylor, 1979) and it is important to evaluate the results of any 

statistical analysis in the context of specific grain size and areal unit (Jelinski and Wu, 

1996; Turner et al., 1989). The scale and zoning effect on the results of our analysis is 

another direction for future research.  
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CHAPTER 4 

QUANTIFYING SPATIAL ARRANGEMENTS OF URBAN VEGETATION AND ITS 

IMPACTS ON SEASONAL SURFACE TEMPERATURES  

4.1  Introduction 

Urbanization replaces natural surface materials with manmade materials. 

Replacing these natural landscape components significantly alters the radiative, thermal, 

moisture, and aerodynamic properties of the environment. As a result, urban areas are 

often much warmer than their surrounding rural areas – a phenomenon known as the 

urban heat island (UHI) effect (Lo and Quattrochi, 2003; Voogt and Oke, 2003). The UHI 

effect has significant implications for ecosystems, energy demands, and human well-

being. For example, excessive heat may increase water and air-conditioning demands, 

thereby threatening the sustainability of water and energy provision (Gober et al., 2011; 

Yuan and Bauer, 2007). Increased UHI intensity can raise the concentration of urban 

pollutants, such as ground-level ozone, which detrimentally affects human health (EPA, 

2012; NJDEP, 2006). Due to the greater long-wave radiant heat load and reduced wind 

speed, nighttime UHI is likely to increase the duration and magnitude of heat waves, 

thereby elevating the risk of heat-related mortality (Clarke, 1972). Low-income urban 

residents are generally more vulnerable to these extreme heat impacts due to their lack of 

social resources to tackle the heat stress (Connors et al., 2013; Harlan et al., 2006).  

UHI effects are commonly identified by measuring air temperature at the urban 

canopy layer (UCL) and the urban boundary layer (UBL) (Oke 1976, Voogt and Oke, 

2003). The advancement of thermal remote sensing technologies has made it possible to 

measure thermal surface patterns, commonly referred to as surface UHI (SUHI) (Roth et 
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al., 1989). SUHI differs from atmospheric UHI in terms of underlying causes, 

measurement techniques, and mitigation strategies. For instance, air temperature 

measurements are taken in situ using fixed thermometers or automobile traverses with 

instruments (e.g., thermometer, barometer, and hygrometer) mounted on a vehicle. In 

contrast, SUHI is measured by the upwelling thermal radiance received by a sensor 

mounted on a platform, typically a satellite or an aircraft. As SUHI is measured 

indirectly, it is strongly influenced by the conditions of the intervening atmosphere. 

The intensity and spatial pattern of the SUHI also displays a much stronger 

dependence on land surface characteristics, such as land use and land cover (LULC) type 

(Arnfield, 2003; Buyantuyev and Wu, 2010). For instance, vegetative cover, such as 

trees, shrubs, and grass, cools the surrounding environment by altering the surface energy 

balance through evapotranspiration (Gallo et al., 1993; Owen et al., 1993; Taha, 1997). In 

addition, shading provided by trees and shrubs reduces surface energy absorption, which 

contributes significantly to the cooling effect (Akbari, 2002; Chow et al., 2012). 

Vegetation benefits human health by altering wind speeds and dispersing air pollutants 

(Kinney, 2008; Nowak et al., 2006). Urban planners have long recognised these positive 

effects and have widely adopted the use of green areas in urban environments. In fact, 

this strategy is understood to be one of the most effective strategies for UHI mitigation 

(EPA, 2012).   

Numerous studies have considered the characteristics of urban vegetation in 

relation to its positive role in mitigating urban warming (Kaufmann et al., 2003; Sandholt 

et al., 2002; Van de Griend and Owe, 1993), including a large body of work on UHI 

mitigation through urban forestry in Phoenix (Buyantuyev and Wu, 2009; Myint et al., 
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2010; Jenerette et al., 2007). One study examined the urban surface energy balance in 

response to land cover variations using a Local-Scale Urban Meteorological 

Parameterization Scheme (LUMPS) (Middel et al., 2011). The investigation determined 

that urban vegetation can potentially reduce storage heat flux density and therefore plays 

an important role in UHI mitigation. A more recent study used high-resolution, remotely 

sensed data to investigate thermal pattern variations with respect to detailed urban land 

cover characteristics in Phoenix (Myint et al., 2013). The study concluded that an inverse 

relationship, which was most pronounced during summer daytime, existed between 

vegetation fraction and surface temperature. Chow et al. (2012) provide a comprehensive 

review of the UHI research in Phoenix. 

While the effectiveness of urban vegetation in ameliorating the UHI effect is well-

understood, the cost-benefit trade-offs of increasing urban vegetation are also important 

considerations for land managers. Among these trade-offs is the potential of increased 

water demands, which is a major challenge for expanding green areas in an urban 

environment, especially for arid and semi-arid cities with limited water supplies. Recent 

attempts to address the trade-off between urban cooling and water usage include a study 

by Gober et al. (2012), which demonstrated that increasing urban vegetation enhances 

urban nighttime cooling but also elevates outdoor water use by approximately 20%. 

Another study delved into the interrelationships among irrigated landscapes, nighttime 

temperatures, and outdoor water use and found that a threshold of the water-to-

temperature ratio can be determined beyond which increased water consumption had 

limited effects on UHI mitigation (Gober et al., 2010). 
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Given these challenges, optimising the spatial pattern of urban vegetation in 

desert cities becomes particularly important for ameliorating UHI while conserving 

resources. While the inverse relationship between vegetation fraction and land surface 

temperature (LST) is well-documented (Chen et al., 2006; Li et al., 2011; Weng et al., 

2004; Yuan and Bauer, 2007), the potential impacts of the spatial arrangement of 

vegetation on the urban thermal environment at various geographic scales is less 

thoroughly characterised. We hypothesise that with a fixed amount of vegetative cover, 

the spatial pattern (e.g., clustered, dispersed) of green vegetation has impacts on LST and 

these impacts are scale-dependent. 

Recent studies demonstrate that the fragmentation of urban greenspace does 

indeed influence air and surface temperatures (Connors et al., 2013; Li et al., 2012; 

Yokohari et al., 1997; Zhang et al., 2009). Furthermore, it was found that a combination 

of factors including shape, size, and segmentation level of vegetation patches influences 

the LST with lower LST usually associated with large, contiguous, and compact 

vegetation patches (Cao et al., 2010; Li et al., 2012; Zhang et al., 2009). Most if not all of 

these studies adopted a patch mosaic model, which represents a landscape as a number of 

homogeneous patches generated via a classification system (Forman, 1995; McGarigal 

and Cushman, 2005).  

The patch mosaic model is effective as it provides a simplified framework for 

describing a heterogeneous landscape. However, this model often fails to represent 

landscape heterogeneity accurately, as it suppresses within-class variation, thereby 

causing a substantial loss of information and potential error propagation (McGarigal and 

Cushman, 2005). For instance, the model is limited in its ability to identify subtle land 
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cover modifications, such as deforestation and land degradation (Foody and Boyd, 1999; 

Lambin, 1997). A comprehensive discussion on the limitations of discrete landscape 

representation is available in Fan and Myint (2014).  

Another issue with this simplified approach pertains to the utilisation of 

established tools (e.g., FRAGSTATS) under the patch mosaic paradigm. One of the most 

commonly used measures of landscape heterogeneity is patch density (PD), a built-in 

metric in the FRAGSTATS software package representing the total number of patches in 

a unit area. While PD reflects the fragmentation of a landscape, which is an important 

indicator in a number of ecological applications (Griffith et al., 2000; Liu and Weng, 

2008; Luck and Wu, 2002; Xie et al., 2006), it fails to capture the actual spatial 

arrangement (e.g., clustered or dispersed) of land cover patches. The term “spatial 

pattern” is not confined to the segmentation level but has profound implications for how 

things are arranged in space.  

There is a growing awareness of potential issues associated with the discrete 

modelling approach, and many researchers have started to explore the possibility of 

characterising continuous landscapes within a gradient framework. One study utilised a 

measure of spatial autocorrelation—Geary’s C—in modelling the landscape structure of 

savanna landscapes in Australia, where objects are difficult to identify using traditional 

discrete models (Pearson, 2002). McGarigal et al. (2009) introduced a suite of continuous 

metrics that describe various aspects of a landscape, such as surface diversity, surface 

roughness, and texture. More recently, Fan and Myint (2014) examined the utility of 

geostatistical techniques for measuring urban landscape fragmentation in comparison to 

the use of discrete models and found that continuous models had the potential to 
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characterise the spatial patterns of land cover features more effectively with medium-

resolution satellite data.  

In this paper, we employ a spatial autocorrelation approach to represent the spatial 

heterogeneity of urban features accurately. Spatial autocorrelation measures spatial 

dependency within a gradient framework and has been demonstrated to be effective in 

characterising the spatial pattern of major urban features with remotely sensed data (Fan 

and Myint, 2014). Using this methodology, we aim to (1) determine the spatial 

arrangement of green vegetation cover using continuous spatial autocorrelation indices 

coupled with high-resolution satellite data; (2) examine the role of urban vegetation, 

particularly in terms of its spatial arrangement, on seasonal and daytime/nighttime LST, 

adjusting for the effects of vegetation abundance; and (3) investigate the sensitivity of 

vegetation-LST relationships to varying geographic scales.  

4.2 Methods 

4.2.1 Study Area 

Our study is confined to the central part of Phoenix, Arizona, covering an area of 

~178 km2. The city is located in the northern Sonoran desert and is characterized by hot 

and dry summers and warm winters. The average maximum temperature for this region 

exceeds 38°C during summertime with an average annual precipitation of approximately 

195 mm. The Phoenix urban area consists of a variety of LULC classes, including 

commercial, industrial, residential, cultivated grassland, unmanaged soil, desert, and 

water. This region was historically dominated by agricultural lands and desert, most of 

which have been converted to residential and commercial lands since the early 20th 
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century as the population increased rapidly (Jenerette and Wu, 2001; Knowles-Yánez et 

al., 1999). 

The intense land cover modification has affected the energy balance and 

ecological functioning of the entire region, extending well beyond the Phoenix 

metropolitan area (Grimm et al., 2008). Given the limited space in the city, a better 

understanding of vegetation-LST relationships, particularly the relationship between the 

spatial arrangement of urban vegetation cover and LST, can provide significant insights 

for sustainable urban management and the mitigation of UHI.  

4.2.2 Image Processing 

We used a cloud-free QuickBird image acquired on 24 May 2007 to derive the 

vegetation land cover map. The satellite image has a spatial resolution of 2.4 m with four 

spectral channels: blue, green, red, and near-infrared. Three principal component analysis 

(PCA) bands were generated as auxiliary data (Stevens, 2009). Instead of using pixel-

based classification, we employed an object-oriented approach that groups pixels into 

discrete image objects by selected properties, primarily spectral similarity (Herold et al., 

2003; Johnsson, 1994; Meddens et al., 2008). This object-oriented classification was 

conducted using the eCognition software package (Definiens 2009).  

Grass, trees, and non-vegetation classes were identified using a nearest neighbour 

classifier with ten training samples selected for each class. The nearest neighbour 

classifier allows users to add and/or modify training samples after each round of 

classification, until a satisfactory classification map is obtained (Ivits and Koch, 2002). 

Based on the user’s expert knowledge coupled with a series of trial-and-error tests, five 

bands in the feature space were determined as inputs to the classifier due to their 
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sensitivity to green biomass. These bands include the visible green and red bands, the 

near-infrared band, the ratio PCA band 1, and the normalised difference vegetation index 

(NDVI) band (Myint et al., 2011). 

The ratio PCA band 1 is the ratio of PCA band 1 to the summation of all seven 

bands in the feature space. The NDVI band was calculated as the ratio of the difference 

between the near-infrared and red bands to the summation of the same two bands. The 

producer’s accuracy and user’s accuracy were 80% and 81.67% for trees, and 93.33% 

and 92.67% for grass (Myint et al., 2011). Two binary maps, for grass and trees, 

respectively, were produced by assigning a value of one to vegetation pixels and a value 

of zero to non-vegetation pixels. 

4.2.3 Land Surface Temperature 

LST data were derived from Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) imagery. Four images acquired on 06 July 2005, 22 

August 2005, 27 February 2007, and 05 March 5 2007 were used to examine Phoenix’s 

seasonal and daytime/nighttime LST characteristics (Figure 4.1). 
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Figure 4.1 LST Maps Derived from ASTER Imagery: a. 06 July 2005 (Daytime); b. 22 

August 2005 (Nighttime); c. 27 February 2007 (Daytime); d. 05 March 2007 (Nighttime). 

 

A temperature-emissivity separation (TES) algorithm with an absolute accuracy 

of 1 – 4 K and a relative accuracy of 0.3 K (JPL, 2001) was employed to derive land 

surface kinetic temperatures from the five thermal infrared channels of the ASTER 

imagery. Table 4.1 shows the descriptive statistics of the LST maps. ASTER LST data 

were spatially resampled to different window sizes.   
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Table 4.1 Descriptive Statistics of the ASTER LST Data (℃). 

 

 

4.2.4 Fraction and Spatial Pattern of Vegetation 

Vegetation fraction, defined as the ratio of the number of pixels classified as 

vegetation to the total number of pixels within a predefined window size, was used to 

quantify the abundance of green vegetation. Efforts have been devoted to explore the 

most effective spatial extent of the vegetation-temperature relationship using a variety of 

techniques including remote sensing (Myint et al., 2010) and climate modeling (Kormann 

and Meixner et al., 2001). Collectively, a window size of ~200 m was determined to be 

optimal for maximum cooling effects. We followed previous empirical studies and used 

204 m (2.4 m × 85 = 204 m) as the spatial extent in calculating the vegetation fraction, as 

well as the spatial autocorrelation index, which characterises the spatial pattern or 

arrangement of vegetation.  

We used the local Moran’s I (Anselin, 1995) as a continuous index to measure the 

spatial heterogeneity of vegetation. As one of the local indicators of spatial association 

(LISA), the local Moran’s I is effective at characterising the spatial arrangement of 

particular land cover types at a local scale (Fan and Myint, 2014). It enables assessment 

of the degree to which similar and dissimilar observation values cluster around locations 

of interest.  

Acquisition date Acquisition time Mean SD Maximum Minimum

06 July 2005 11:20 am (MST) 55.81 2.87 61.96 40.29

22 August 2005 10:34 pm (MST) 31.56 1.75 38.29 25.18

27 Februrary 2007 11:15 am (MST) 29.71 1.48 35.07 14.29

05 March 2007 10:35 pm (MST) 10.44 1.65 15.18 3.52



74 

 

To represent the spatial patterns of a particular land cover type and minimise the 

influence of other types of cover, a vegetation binary map was created to act as a filter on 

the local Moran’s I map. Specifically, the local Moran’s I of vegetation (local Moran’s Iv) 

was calculated as  
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where i and  represent the spatial dimensions of the output map, and  and  

represent the spatial dimensions of the input maps—I and V. The input consists of two 

maps with the same dimension. I is the output map of the local Moran’s I, and V is a 

vegetation binary map with ones denoting vegetation pixels and zeroes denoting the 

others. The product of I and V ensures that only the spatial pattern of vegetation is 

considered.  is the total number of vegetation pixels within a window size of d. The 

output from Eq. (4.1) is a degraded map of Iv using a local average filter with a window 

size of d. The value of each pixel represents the spatial arrangement of vegetation within 

an area of 2.4 d by 2.4 d. In general, consistent high/low values of the local Moran’s Iv 

indicate clustered/dispersed areas, respectively.   

Using a set of hypothetical scenarios for different spatial patterns with fixed 

quantities of “1”s, we tested the utility of the local Moran’s Iv (Figure 4.2). It is important 

to note that given the same fraction (51%), the local Moran’s Iv varies with different 

patterns of “1”s. Specifically, while clustered and scattered patterns receive positive and 

negative scores, respectively, the value of the local Moran’s Iv approximates zero when 

no systematic pattern is observed. 

j k l
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Figure 4.2 Hypothetical Scenarios Demonstrating Various Spatial Patterns of “1”s with 

Fixed Percentage: 25/49 = 51%. 

 

4.2.5 Statistical Analyses 

We investigated the bivariate relationships between LST and the spatial 

arrangement of vegetation indicated by the local Moran’s Iv using ordinary least square 

(OLS) regression. Regression models were fit for the four scenes (summer daytime, 

summer nighttime, winter daytime, and winter nighttime) to determine the influence of 

the spatial pattern of urban vegetation on seasonal and daytime/nighttime LST.  

Noting that higher amounts of vegetation cover present a more clustered pattern 

than lower amounts of vegetation cover, we investigated the effects of spatial 

arrangement by controlling vegetation fraction to minimise the effects of varying 

vegetation abundance on LST. We divided the entire dataset (2,704 pixels) into ten 

categories, using increments of 10% vegetation fraction. Due to the limited number of 

samples with denser vegetation, we combined classes with > 60% fraction for grass as 

one single category (>30% fraction for trees). We then developed a regression model for 

each category, which resulted in seven models for grass and four for trees.  

To clearly elucidate the relative importance of the spatial arrangement of 

greenspace with respect to LST in comparison to composition, multiple linear regression 
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models were developed with the predictor variables: local Moran’s Iv and vegetation 

fraction. Given the inherent association between composition and spatial configuration, 

multicollinearity between the two predictors could be an issue in building the regression 

model. Highly correlated predictors can compromise the estimation accuracy of the OLS 

model (Kutner et al., 2005). In addition, independent interpretation of the regression 

coefficients is no longer appropriate due to the confounded impacts on the coefficients. 

To remedy this effect, we employed a ridge regression model as an alternative to the OLS 

model.  

Ridge regression is designed to improve estimation accuracy by virtue of 

including a penalty of constant (Hoerl and Kennard, 1970). The standardized ridge 

estimator can be calculated from 

𝐛𝑅 = (𝐫𝑋𝑋 + 𝑐𝐈)−1𝐫𝑌𝑋 (4.2) 

where 𝐫𝑋𝑋 and 𝐫𝑌𝑋 are correlation matrices composed of simple correlations 

among predictor variables, and between the response variable and each predictor variable 

respectively. c is a bias constant reflecting the bias in the regression estimators and can be 

determined using the ridge trace – a plot of the ridge standardised coefficients against 

various values of c. The optimal bias constant is the smallest value of c when the 

coefficients cease to decrease or increase and start to become stable. When the 

standardised coefficients were obtained, they were transformed back to the original 

variables for interpretation. 

To examine how vegetation-LST relationships vary at different geographical 

scales, we employed and tested an array of window sizes from 104 m to 504 m in 

increments of 100 m. The factors under observation include the coefficients of 
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determination (R2) of bivariate regression models, the R2 of ridge regression models, and 

the coefficients of the local Moran’s Iv in the ridge regression models. Scalograms were 

created to show the trends of the factors with respect to varying scales for both grass and 

trees, and for all of the four scenes. This investigation provided important indications of 

the optimum window size at which maximum cooling effect is achieved. 

4.3 Results and Discussion 

4.3.1 Bivariate Relationships between Spatial Pattern of Vegetation and LST 

Figure 4.3 shows the bivariate relationships between the local Moran’s Iv and 

LST. The local Moran’s Iv showed consistently negative relationships with respect to 

seasonal LST for all four scenes regardless of vegetation type. The spatial pattern of grass 

shows more variation in daytime LST than nighttime LST, and has significantly stronger 

correlation with summer LST than winter LST (Figures 4.3a and b). Similar trends held 

for trees (Figures 4.3c and d), where summer and daytime LSTs showed a much stronger 

association with the spatial arrangement of trees compared to winter and nighttime LSTs.  
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Figure 4.3 Bivariate Relationships between the Local Moran’s Iv and Seasonal LST: a. 

Local Moran’s Iv of Grass vs. Summer LST; b. Local Moran’s Iv of Grass vs. Winter 

LST; c. Local Moran’s Iv of Trees vs. Summer LST; d. Local Moran’s Iv of Trees vs. 

Winter LST (Relationships for Daytime and Nighttime are Presented Separately on Each 

Diagram). 

 

Our results suggest that clustered patterns of grass or trees lower surface 

temperatures more effectively than dispersed patterns. In other words, less fragmented 

patterns of urban vegetation reduce seasonal LST more effectively, especially during 

summer daytime. Our findings are consistent with previous studies showing that higher 

LST is associated with higher PD, which corresponds to a more fragmented pattern (Li et 

al., 2012; Zhang et al., 2009; Zhou et al., 2011). The superiority of the local Moran’s Iv 

resides in its ability to provide continuous representation of the true heterogeneity of the 
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landscape that could not be conveyed by the discrete landscape metrics such as PD, 

which only considers the total number of patches within a unit area.  

The results also show that clustered patterns of trees lower surface temperatures 

more effectively than aggregated grass patches in summer and winter daytime. This 

finding may be observed because clustered tree canopies shade the surface by absorbing 

incipient solar radiation, which substantially lowers the surface temperature. In addition, 

clustered trees may increase latent heat fluxes through evaporation, thereby reducing the 

sensible heat emitted from the surface. Spatial patterns show stronger impacts on daytime 

LST than nighttime LST. The greatest rates of urban surface cooling generally occur right 

after sunset and do not last long (Oke, 1982), which likely explains the weak 

relationships for nighttime LST, as images taken after 10:30 pm would hardly detect the 

large intra-urban temperature magnitudes.  

4.3.2 Relationships between Spatial Pattern and LST by Vegetation Abundance 

The spatial arrangement of vegetation is highly dependent upon the level of 

vegetation abundance. It is possible that the effects of spatial patterns on LST may be 

confounded by vegetation fraction had we not controlled for it. Figure 4.4 shows the 

results of regression analyses between the local Moran’s Iv of grass and summer LST for 

every 10% increment of grass fraction. In general, the variance of LST explained by the 

local Moran’s Iv increased as the level of grass abundance incremented during daytime. 

The spatial pattern of grass was strongly correlated with summer LST when grass fraction 

was greater than 50%. Note that the slope was steeper for grass fractions of 40%-50% 

and 50%-60% during daytime. This suggests that manipulating the spatial configuration 

of grass at the abundance level of ~50% is most effective in regulating the local climate. 
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Nighttime LST was weakly correlated with the local Moran’s Iv for all fraction groups, 

except the one with more than 60% fraction. Overall, there was no strong relationship 

between the local Moran’s Iv and summer LST when grass fraction was less than 40%. 

For landscapes with grass fraction greater than 40%, daytime LST was more sensitive to 

the variation in the spatial arrangement of grass than nighttime LST. Winter LST was 

weakly related to the local Moran’s Iv for all fraction groups (results not shown here), 

suggesting that the spatial pattern of grass does not have significant effects on winter 

LST.  

Figure 4.5 shows the relationship between the local Moran’s Iv of trees and 

summer LST for every 10% increase in tree fraction. In contrast to grass, the variance in 

daytime LST explained by the local Moran’s Iv did not increase as tree fraction increased. 

The predictive power of the models was comparatively weak as evidenced by the 

magnitude of the R2. It is noteworthy that unlike grass, the regression coefficients for 

trees during daytime showed remarkable stability (between -9 to -11) for all fraction 

groups. This suggests that clustered pattern of trees lowers daytime LST effectively 

regardless of the amount of tree cover. Similar to grass, nighttime LST does not have a 

significant relationship with the spatial pattern of trees for all fraction levels.  
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Figure 4.4 Bivariate Relationships between the Local Moran’s Iv of Grass and Summer 

LST by Grass Fraction: a. Grass Fraction of 0-10%; b. Grass Fraction of 10%-20%; c. 

Grass Fraction of 20%-30%; d. Grass Fraction of 30%-40%; e. Grass Fraction of 40%-

50%; f. Grass Fraction of 50%-60%; g. Grass Fraction of 60%-100% (Relationships for 

Daytime and Nighttime are Presented Separately on Each Diagram). 
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Figure 4.5 Bivariate Relationships between the Local Moran’s Iv of Trees and Summer 

LST by Tree Fraction: a. Tree Fraction of 0-10%; b. Tree Fraction of 10%-20%; c. Tree 

Fraction of 20%-30%; d. Tree Fraction of 30%-100% (Relationships for Daytime and 

Nighttime are Presented Separately on Each Diagram). 

 

These results highlight that aggregated patterns of urban vegetation lower local 

LST most effectively during summer daytime. Significant relationships were found 

between the spatial patterns of vegetation and LST, controlling for the percentage of 

vegetation cover. In general, our findings are in agreement with previous studies showing 

that less disturbed vegetation surfaces, rather than fragmented patterns, can effectively 

reduce the magnitude of LST (Li et al., 2012; Yokohari et al., 1997; Zhang et al., 2009). 

However, Zhou et al. (2011) quantified the spatial pattern of woody vegetation using 

mean nearest neighbour distance (MNND), and reported that a clustered pattern of woody 

vegetation tends to elevate LST. The contradictory results may be attributed to the 

confounding effects caused by the high correlation between MNND and the percentage of 
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vegetation (Zhou et al., 2011) and/or ignorance of the effects of vegetation abundance on 

the relationships between spatial pattern and LST. Thus, we suggest considering both 

factors to conduct a thorough evaluation of the pattern-LST relationship. 

4.3.3 Results of Ridge Regression 

To determine the combined and individual effects of spatial composition and 

configuration on seasonal LST, we developed multiple regression models. The results of 

the ridge regression for grass suggested that the local Moran’s Iv and grass fraction jointly 

explained as high as 52% of the variance in summer LST during daytime, followed by 

45.2%, 21.3% and 3.2% for summer nighttime, winter daytime, and winter nighttime, 

respectively (Table 4.2). These findings suggest that the combined effects of spatial 

pattern and composition account for more variance in LST than any predictor alone. The 

regression models also indicate that in spite of seasonal variation, LST had significant 

negative relationships with the local Moran’s Iv and grass fraction. A key message 

conveyed here is that the absolute amount of grass plays a more important role in 

lowering seasonal LST than the spatial arrangement. This is indicated by the higher 

values of regression coefficients associated with grass fraction. Given a fixed amount of 

grass, higher values of the local Moran’s Iv lowered the LST more effectively, 

highlighting the positive effects of aggregated patterns of grass in mitigating the UHI 

effect. 

  



84 

 

Table 4.2 Ridge Regression Results for Grass (n = 2,670). 

 

 

We also found negative correlations for both spatial pattern and composition with 

respect to LST for trees (Table 4.3). However, the total variance in LST explained by the 

local Moran’s Iv and vegetation fraction together was less than that for grass. The highest 

R2 was found in summer daytime, followed by winter daytime, summer nighttime, and 

winter nighttime (Table 4.3). The R2 for winter nighttime was almost zero because 

nighttime LST during winter is consistently low regardless of the variation in either 

vegetation fraction or spatial patterns. The regression coefficients for fractional 

abundance are generally two times larger than those for the local Moran’s Iv in all four 

Coefficients Std Error t -statistic p -value

Summer daytime 

(R
2

 = 0.52)

Intercept 55.344 0.045 1229.688 < 0.001

Local Moran’s I
v -2.891 0.055 -52.839 < 0.001

Grass fraction -4.526 0.105 -43.196 < 0.001

Summer nighttime

(R
2

 = 0.452)

Intercept 31.264 0.028 1121.433 < 0.001

Local Moran’s I
v -1.572 0.034 -46.374 < 0.001

Grass fraction -2.423 0.065 -37.324 < 0.001

Winter daytime

(R
2

 = 0.213)

Intercept 29.535 0.027 1078.049 < 0.001

Local Moran’s I
v -0.906 0.033 -27.806 < 0.001

Grass fraction -1.356 0.062 -21.718 < 0.001

Winter nighttime

(R
2

 = 0.032)

Intercept 10.397 0.033 316.732 < 0.001

Local Moran’s I
v -0.321 0.036 -8.787 < 0.001

Grass fraction -0.675 0.07 -9.653 < 0.001
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models. Clustered patterns of trees led to a decrease in LST when holding tree fraction 

constant.  

Table 4.3 Ridge Regression Results for Trees (n = 2,648). 

 

 

Our ridge regression models suggest significant negative relationships between 

the spatial arrangement of vegetation and LST. These results generally agree with 

previous findings using different approaches with a diverse selection of study areas (Li et 

al., 2012; Yokohari et al., 1997; Zhang et al., 2009). In addition, we demonstrate that the 

impacts of the spatial pattern of vegetation peak during summer daytime, whereas the 

effects are negligible during winter nighttime regardless of vegetation type. Our findings 

Coefficients Std Error t -statistic p -value

Summer daytime 

(R
2

 = 0.476)

Intercept 53.892 0.066 811.524 < 0.001

Local Moran’s I
v -4.112 0.087 -47.124 < 0.001

Tree fraction -8.877 0.24 -37.039 < 0.001

Summer nighttime

(R
2

 = 0.256)

Intercept 30.677 0.045 675.953 < 0.001

Local Moran’s I
v -1.765 0.06 -29.601 < 0.001

Tree fraction -3.635 0.164 -22.19 < 0.001

Winter daytime

(R
2

 = 0.294)

Intercept 28.983 0.034 843.943 < 0.001

Local Moran’s I
v -1.533 0.045 -33.784 < 0.001

Tree fraction -3.32 0.125 -26.642 < 0.001

Winter nighttime

(R
2

 = 0.000)

Intercept 10.44 0.042 246.58 < 0.001

Local Moran’s I
v -0.026 0.055 -0.474 0.636

Tree fraction -0.164 0.151 -1.082 0.279
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have important implications for sustainable urban planning, especially for desert cities 

with limited water supplies. While it is difficult to increase the total area of greenspace in 

desert cities, optimising spatial patterns of vegetation will act as an alternative strategy to 

moderate local climate. This is especially applicable and valuable during the summer 

when excessive heat threatens cities and stresses water and energy services.   

4.3.4 Scaling Effects 

Figure 4.6 shows the statistical results for grass at varying geographical scales. 

We observed similar trends of R2 for bivariate models and the multiple regression models 

as the window size changes. For example, the R2 increases accordingly for summer 

daytime, summer nighttime, and winter daytime as the spatial extent increases. R2 stayed 

fairly weak during winter nighttime across all the window sizes. The pattern of 

coefficients associated with the local Moran’s Iv resembled that of R2, showing an 

increment in their absolute magnitude (a decrease in value) for increasing scale. It is 

noticeable that for all three scalograms, the slope for summer daytime was steep between 

the window sizes of 100 m to 200 m and flattened afterward, suggesting that a window 

size of ~200 m is preferred in examining vegetation-LST relationships. 

Because R2 increases as the window size increases, we handled window sizing 

with caution as an overly large window could potentially lead to a substantial loss of 

information. This is because degrading both the local Moran’s Iv and LST maps will 

likely result in biased inferences and inaccurate interpretation (Kutner et al., 2005). 
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Figure 4.6 Scalograms Showing the Effects of Changing Window Size on the 

Relationship between the Local Moran’s Iv of Grass and Seasonal LST: a. R2 of the 

Bivariate Model vs. Window Size; b. R2 of the Ridge Regression Model vs. Window 

Size; c. Coefficient of the Local Moran’s Iv of Grass in the Ridge Regression Model vs. 

Window Size. 

 

While the magnitudes of the R2 for the model between the local Moran’s Iv of 

grass and LST are much higher for summer nighttime than for winter daytime, they are 

similar for trees (Figure 4.7). Interestingly, the relationship recorded for winter daytime 

stayed consistently stronger than summer nighttime across all window sizes for trees 

(Figures 4.7a and b). This implies that the spatial pattern of trees plays a more important 

role in shaping the local climate during winter daytime than summer nighttime. Similarly 

to grass, the relationships for winter nighttime were very weak with low R2 (~0) for both 
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the bivariate and ridge regression models. The coefficients of the local Moran’s I 

signified a very interesting pattern with a trough at the window size of 200 m. This again 

confirms that a reasonable window size for studying vegetation-LST relationships is ~200 

m. The scaling effects examined here are consistent with previous findings that an area of 

~200 m is optimal when examining the cooling effects of urban vegetation on micro-scale 

climate.  

 

Figure 4.7 Scalograms Showing the Effects of Changing Window Size on the 

Relationship between the Local Moran’s Iv of Trees and Seasonal LST: a. R2 of the 

Bivariate Model vs. Window Size; b. R2 of the Ridge Regression Model vs. Window 

Size; c. Coefficient of the Local Moran’s Iv in the Ridge Regression Model vs. Window 

Size. 
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4.3.5 Implications for Management and Urban Planning 

Vegetation plays a critical role in moderating urban climate. Greenspace is more 

crucial for desert regions with high temperatures and sparse rainfall. While increasing 

vegetation abundance can be an effective strategy for UHI mitigation, it is problematic in 

arid regions as increased vegetation cover also causes increased municipal water 

consumption, which contradicts long-term sustainability goals. To conserve water 

resources, some desert cities such as Las Vegas have recently initiated “cash-for-grass” 

programs, rewarding homeowners for replacing their “green” yards with less water-

demanding landscapes (Sovocool et al., 2001). However, this landscape conversion 

strategy might result in elevated air temperatures that are likely to cause increased 

demands on water and energy use (Ruddell and Dixon, 2013). Given that expanding 

green areas or xeriscaping alone are proving to be insufficient UHI mitigation strategies, 

optimising the spatial configuration of urban vegetation is an alternative for sustainable 

urban design. 

Our results show negative relationships between local Moran’s Iv and seasonal 

LST for both grass and trees, implying that less fragmented or spatially compact 

vegetation mosaics are effective for reducing urban temperatures. Furthermore, the 

impact of spatial vegetation patterns on LST are most pronounced during summer 

daytime, suggesting that the judicious design of vegetation patterns can produce 

significant summer cooling effects. This is particularly desirable in desert cities as 

summer cooling greatly reduces the huge demands on water and energy use. This 

research shows that planning large and compact patches of vegetated surfaces in urban 

systems can be one of the most effective and easy-to-implement strategies of UHI 
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mitigation in comparison to other options. For example, it is impractical and cost 

prohibitive to install cool roofs or convert existing roofs to high-albedo surfaces across an 

entire urban area. In addition, the effectiveness of high-albedo roofs may be reduced over 

time given that dust storms frequently occur in desert regions (Chow et al., 2012).  

UHI solutions vary due to numerous factors largely determined by the 

geographical location of the city. For example, cities in temperate or tropical regions can 

increase urban greenery without stressing their water supply, as this is not the most 

critical issue in these regions. Some considerations shape the final decision more than 

others. Therefore, trade-offs between temperature, water, and energy use are always 

worth investigating. It is highly recommended that cost-benefit analyses be conducted 

before implementing any mitigation programs. A few other considerations such as 

maintenance, pest control, and safety are also warranted.   

4.3.6 Quantifying Spatial Pattern from a Continuous Perspective 

Spatial pattern analysis is an important and useful technique for identifying the 

arrangement of geographical features in space. Using patch mosaic models, recent efforts 

have been devoted to the assessment of landscape patterns in relation to local climate 

(Liu and Weng, 2008; Zhou et al., 2011; Li et al., 2012), spread of disease (Liu and 

Weng, 2009), water quality (Griffith et al., 2002; Lee et al., 2009), and residential value 

estimation (Geophegan et al., 1997). Although discrete models appear to be effective in 

characterising different landscape patterns, the limitations associated with the 

classification of continuous environmental variables into discrete categories greatly 

undermine the reliability and applicability of such models (Fan and Myint, 2014; 

McGarigal and Cushman, 2005).  
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As continuous models more accurately represent landscape heterogeneity, they 

are more suitable for quantifying landscape structure with the potential of addressing 

pattern-process interactions. Recent studies have demonstrated the effectiveness of 

continuous models in a number of landscape ecological applications. It is beneficial to 

apply these models to a broader range of fields with the aim of addressing the linkage 

between spatial patterns of land cover features and the underlying processes that are 

potentially influenced by the variation in landscape pattern. Future studies should expand 

on our study by utilising continuous models for understanding the potential impacts of 

landscape pattern on a wider range of biophysical and socio-economic factors. For 

example, a similar approach could be used to investigate the relationships between the 

spatial arrangement of vegetation and head height temperature or humidity, which could 

elucidate UHI mitigation and sustainable urban design. 

4.4 Conclusion 

Previous research has shown that urbanisation is one of the main drivers of 

climate change (Quattrochi and Ridd, 1994; Zhou et al., 2011) and that green vegetation 

plays a key role in moderating urban environments and mitigating the UHI effect. This 

research expands on previous studies investigating the cooling effect of vegetation 

abundance on LST by considering the impacts of the spatial pattern of green vegetation, 

especially grass and trees, on urban surface temperatures at varying geographical scales 

in Phoenix, Arizona. Negative relationships between the local Moran’s Iv and LST 

suggest that clustered or less fragmented patterns of vegetation lower seasonal LST more 

effectively than dispersed patterns. Throughout the four scenes, LST shows more 

sensitivity to spatial patterns of green vegetation during summer daytime whereas winter 
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nighttime LST is weakly correlated to the local Moran’s Iv. Our results indicate that the 

spatial arrangement of vegetation significantly affects the area’s seasonal LST, regardless 

of vegetation type. The results from multiple regression analysis also show that both 

vegetation abundance and spatial arrangement play important roles in lowering seasonal 

LST. Our experiments on the scaling effect suggest that a reasonable window size for 

examining the vegetation-LST relationship is ~200 m. 

From these results, we conclude that optimising the spatial arrangement of green 

vegetation improves the urban environment and effectively mitigates UHI and that 

despite seasonal variation, aggregated, rather than dispersed, patterns of grass and trees 

are preferred for cooling the environment. Furthermore, planning clustered patches of 

vegetation conforms to city sustainability efforts as it ameliorates temperatures without 

requiring substantial consumption of urban resources. It is important to remember, 

however, that vegetation-LST relationships are likely to vary from location to location 

due to differing climate conditions, land cover characteristics, landforms, and 

topography. Therefore, it would be interesting to conduct similar studies in multiple cities 

with diverse physical conditions. The spatial autocorrelation technique proposed is an 

early attempt to understand the pattern-process relationship using continuous models. It 

would be beneficial to expand the applications of this technique by linking the spatial 

patterns of other land cover types (e.g., buildings, pavements, and soil) to numerous 

biophysical parameters (e.g., air temperature, air quality, water use, evapotranspiration, 

and humidity) and socio-economic factors (e.g., human comfort, income, housing value, 

and disease).  
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CHAPTER 5 

SPATIALLY FILTERED RIDGE REGRESSION (SFRR): A REGRESSION 

FRAMEWORK TO UNDERSTANDING IMPACTS OF LAND COVER PATTERN 

ON URBAN MICROCLIMATE 

5.1  Introduction 

Urbanization is one of the most drastic forms of human modifications to the 

environment. The replacement of natural landscapes with impervious man-made 

infrastructure has dramatically altered the surface energy balance of urban environment, 

causing elevated temperatures in the urban area relative to its rural surroundings; this is 

referred to as an urban heat island (UHI) (Lo and Quattrochi, 2003; Oke, 1987). The UHI 

has important and extensive implications for urban ecosystems, energy demands, and 

residents’ quality of life. Increased temperature in urban areas can give rise to increased 

demands for water and energy use (Arnfield, 2003; Guhathakurta and Gober, 2007;), 

elevated concentration of air pollutants (Lai and Cheng, 2009; Sarrat et al., 2006), and a 

heightened risk of heat-related mortality (Clarke, 1972; Conti et al., 2005; Ellis et al., 

1975; Tan et al., 2010; Whitman et al., 1997). Since its first discovery in 1818, the UHI 

has been a primary focus in climatology and urban ecology (Arnfield, 2003; Howard, 

1833). There is an ever-increasing number of studies focusing on various aspects of the 

UHI, including its formation, development, as well as mitigation strategies to counter it 

(Oke, 1982; Onishi et al., 2010; Rizwan et al., 2008). 
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The UHI can be broadly categorized into two types: atmospheric UHI and surface 

UHI. The two types of UHI differ in the way they form and develop, and different sets of 

techniques are required to measure them. Atmospheric UHI is measured at local scales by 

virtue of in situ instruments, while surface UHI is usually identified at regional and global 

scales using indirect measurement such as remote sensing. The advancement of remote 

sensing techniques has provided an opportunity for measuring surface UHI at an 

unprecedentedly large spatial scale. Meanwhile, it allows research into the magnitude and 

pattern of surface UHI as ecological responses to a variety of biophysical and 

socioeconomic indicators at a per-pixel basis.  

UHI, particularly surface UHI, is closely related to the land surface 

characteristics, or more specifically, the land composition and spatial configuration of 

land use/land cover (LULC) features (Arnfield, 2003; Buyantuyev and Wu, 2010; Rotem-

Mindali et al., 2015; Voogt and Oke, 2003). Green vegetation and impervious surfaces 

are important land cover types that affect the local climate. Green vegetation ameliorates 

surface temperatures through evapotranspiration and shading (Gallo et al., 1993; Taha, 

1997; Tayyebi and Jenerette, 2016; Weng et al., 2004). Impervious surfaces, such as 

pavements covered by asphalt, brick, and concrete, absorb short-wave radiation during 

the day and slowly release the heat at night, making it slow to cool down the city 

(Mallick et al., 2013; Xiao et al., 2007; Yuan and Bauer, 2007). Not only land cover 

abundance affects the surface temperatures, the spatial arrangements of land cover 

features matter as well. Several studies have looked into the associations between the 

spatial patterns of different LULC types and surface temperatures (Li et al., 2012; 

Maimaitiyiming et al., 2014) with suggestion that urban temperature varies as a function 
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of the shape, size, and spatial configuration of land cover patches, with stronger 

relationships found for vegetation and anthropogenic features (Fan et al., 2015; Li et al., 

2012; Yokohari et al., 1997; Zheng et al., 2014; Zhou et al., 2011).  

While a vast amount of research has considered urban LULC patterns as 

important contributors to the UHI, findings from these studies do not always converge. In 

fact, a comprehensive review of the UHI literature reveals considerable inconsistency in 

the strength and direction of the relationship between LULC patterns and land surface 

temperatures (LST) (Zhou et al., 2011; Zhang et al., 2009; Li et al., 2012). We attribute 

the discrepancy in part to the idiosyncratic characteristics (e.g., climate condition, 

economic status, policy) of each city or study region. More importantly, a large portion of 

the inconsistency is due to the varying methods employed in different case studies. The 

most commonly used method in UHI studies is the ordinary least square (OLS) 

regression. While the simplicity of the OLS makes it a tempting method, its basic 

assumptions are often not taken into consideration, leading to unreliable parameter 

estimates and poor predictions.  

We spend the next section discussing the two fundamental issues arising from but 

not constrained to the studies of the UHI and provide clear reasons why the most popular 

OLS is flawed when it is used for spatial data coupled with highly correlated independent 

variables. In section three, we introduce an integrated methodological framework whose 

validity and effectiveness are tested using a series of simulation experiments. Section four 

reports the results of the simulation. For two forms of spatial dependence, our method is 

compared to three candidate models based on three common criteria for estimators. 

Section five describes a case study where the new method is applied to an empirical data 
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set as a simple demonstration of our method to address the LULC-LST relationship in a 

desert city. Section six summarizes the work and discusses the limitations and future 

directions.  

5.2 Background 

The OLS is arguably one of the most widely employed statistical tools by 

researchers from a broad range of disciplines. It is a standard method for estimating 

parameters in a linear model. The OLS estimator has desirable properties (e.g., unbiased, 

efficient) when all the standard regularity conditions are met. When one or more 

conditions are violated, some of the properties do not hold, making OLS a less preferred 

and sometimes an inferior estimator.  

Spatial dependence is a unique characteristic of geographic data. It can be 

considered as the functional relationship between the attributes of a phenomenon that 

occurs at one location and those that occur elsewhere (Anselin, 1988). For instance, 

remote sensing satellites record natural radiation emitted or reflected from continuous 

surfaces, which is later sampled into regularly spaced and equally sized lattices. The 

values on these lattices depend to a great extent on their geographical locations. As stated 

in the first law of geography, “everything is related to everything else, but near things are 

more related than distant things.” (Tobler, 1979).  

Spatial effects arise as a result of spatial data manipulation (e.g., spatial 

aggregation, arbitrary delineation of unit boundaries) frequently performed in applied 

work. Because of the spill-over effect, errors in one spatial unit are related to those in 

adjacent units. This makes the assumption of no error correlation invalid. A second cause 

of spatial dependence pertains to the fundamental properties inherent in a variety of 
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spatial interaction processes. As a result, what happens at one location is determined by 

what happens at other locations in the system (Anselin, 1988). This form of spatial 

dependence is often addressed by including a function of the dependent variable observed 

at other locations as an additional regressor. Because the autoregression term is 

determined by disturbances at other locations, it cannot be considered as fixed in repeated 

samples. The assumption of fixed independent variables in repeated samples is therefore 

violated.  

Spatial dependence in geographic data poses both an opportunity and a challenge. 

Spatial autocorrelation in the data constitutes an important source of auxiliary 

information that has been evidenced to be useful in image classification (Wulder and 

Boots, 1998), noise deduction (Switzer and Ingebritsen, 1986), feature selection (Warner 

and Shank, 1997), and sensor calibration (Bannari et al., 2005). Conversely, the presence 

of spatial effects causes the standard conditions of OLS invalid, making the OLS 

estimator a less efficient estimator (Jokar Arsanjani et al., 2013).  

Several solutions have been suggested by ecologists to address the spatial effects 

in the data. Legendre (1993) proposed two methodological frameworks—the “raw data 

approach” and the “matrix approach”—to incorporate spatial structure into ecological 

modeling. The “raw data approach” utilizes partial regression analysis to model the 

species-environment relationship for individual species and constrained ordination 

analyses for multivariate cases such as community analysis. The “matrix approach”, on 

the other hand, models the spatial structure by a distance matrix (e.g., a connection 

matrix), and calculates the correlation between environment and species using a partial 

Mantel test (Manly, 1986). The two approaches are effective for broad-scale 
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autocorrelation (i.e., spatial trend), but have limited ability to account for fine-scale 

autocorrelation, which is more often encountered in ecological studies (Lichstein et al., 

2002). 

The class of spatial autoregressive models can be utilized to analyze the 

relationship when fine-scale autocorrelation is present (Cressie, 1993; Haining, 1990; 

Anselin, 1988). It incorporates spatial dependence via a spatial weights matrix that 

specifies the strength of spatial interaction between each spatial unit and its neighbors 

(Anselin, 1988; Anselin and Rey, 1991; Cressie, 1993). Spatial autoregressive models can 

take two general forms depending on different processes that cause spatial dependence. 

From a substantive perspective, if the process under consideration includes direct 

interactions between observational units in space, the relevant specification is the so-

called spatial lag model. This affords the modeling of these spillovers between 

observations at neighboring locations through the inclusion of a function of the dependent 

variable observed at other locations as an additional explanatory variable. A second form 

of spatial dependence specification is the spatial error model, which is appropriate when 

forms of measurement errors or omitted/unobservable variables create spatial 

autocorrelation between proximal observations. Here the spatial dependence is handled 

through the error term of the model rather than as an additional regressor. Despite their 

applications to statistics, regional science, and other social sciences, spatial 

autoregressive models have yet to be embraced by the environmental science community, 

with a few exceptions (Ji and Peters, 2004; Li et al., 2012; Lichstein et al., 2002; Miller et 

al., 2007; Overmars et al., 2003).  
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A second problem of using OLS in UHI studies relates to the issue of 

multicollinearity, which refers to a phenomenon where independent variables in a 

regression model are highly correlated. When multicollinearity is present, both the OLS 

estimator and R2 remain unbiased. However, the variances of OLS estimators associated 

with collinear variables are inflated. Because of the inflated variances, significant 

variables may appear insignificant (Ohlemüller et al., 2008). Also due to the high 

correlations among predictors, independent interpretation of coefficients is no longer 

valid. Very few studies have made attempts to address multicollinearity in their analyses 

despite the relevance of the issue (exceptions include Chestnut et al., 1998, Hart and 

Sailor, 2009, and Myint et al., 2010), in part due to (1) unawareness of how 

multicollinearity affects parameter estimation, (2) uncertainty about how to remediate the 

problem, and (3) inaccessible software tools (Dormann et al., 2013).  

The problem of multicollinearity is intractable due to the inability of statistical 

means to discriminate highly correlated predictor variables. Several approaches have 

been developed to achieve robust parameter estimation and accurate model prediction. 

Dormann et al. (2013) reviewed a variety of approaches to multicollinearity problems, 

ranging from predictor clustering (e.g., principle component analysis (PCA), 

Hoeffding/Ward-clustering), through latent variable methods (e.g., principle component 

regression (PCR), partial least squares (PLS)) to shrinkage techniques (e.g., ridge 

regression, LASSO), and compared their performances using a series of simulations. 

Among all the methods, shrinkage regression was found to perform particularly well for 

models with different complexity levels of functional relationship and different degrees 

of multicollinearity. Lazaridis et al. (2010) compared standard regression methods to 
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shrinkage regression techniques in predicting tree mortality using Moderate-Resolution 

Imaging Spectroradiometer (MODIS) imagery. The study showed strong potential of 

shrinkage regression methods in dealing with multicollinearity in remote sensing data 

sets, such as collinearity among hyperspectral satellite bands and high correlations among 

biophysical variables. 

Our article presents a novel methodological framework called spatially filtered 

ridge regression (SFRR) that investigates and addresses the preceding problems. Through 

systematic integration of spatial autoregressive models and ridge regression, SFRR is 

capable of producing more reliable parameter estimates than the commonly adopted 

statistical models. We test the utility of SFRR using a series of simulation experiments, 

followed by an empirical study over central Phoenix. By comparing and contrasting the 

performances of four candidate models, three important questions are addressed: (1) what 

are the consequences of ignoring spatial dependence and/or multicollinearity when 

modeling the UHI-land cover relationship? (2) How does SFRR overcome these 

problems and how does it perform compared to other candidate models in terms of 

parameter estimation and model adequacy? (3) Using the proposed method, what are the 

respective impacts of land composition and spatial configuration of LULC features on the 

surface temperatures in central Phoenix? 
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5.3 Methodology 

5.3.1 Spatial Autoregressive Models 

As mentioned previously, the spatial lag model extends the classic regression 

model to include an additional variable that expresses the spillover between neighboring 

locations. More formally: 

𝐲 = 𝜌𝐖𝐲 + 𝐗𝛽 + 𝛍 (5.1) 

where y is an n × 1 vector of observations on the dependent variable, 𝜌 is the 

spatial lag coefficient, and Wy  is the spatial lag with W an n × n  spatial weights matrix 

expressing the neighbor relations between each pair of observations. X is an n × k design 

matrix with observations on the traditional explanatory variables with associated 

parameter vector 𝛽. 𝛍 is a well-behaved error term: 𝛍 ~ N(0, 𝜎2𝐈) with I being the 

identity matrix. The inclusion of the spatial lag on the right hand side of this specification 

introduces a form of endogeneity—correlation between predictor variables and the error 

term—that needs to be taken into account by an appropriate estimator, such as maximum 

likelihood or generalized method of moments.  

The spatial error model structures the spatial autocorrelation as part of the error 

term: 

𝐲 = 𝐗𝛽 + 𝛍 (5.2) 

where now 

𝛍 = 𝜆𝐖𝛍 + 𝜖 (5.3) 

or 

𝛍 = (𝐈 − 𝜆𝐖)−1𝜖 (5.4) 
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In contrast to the well-behaved error term in the lag model above, the error term 

here has a variance-covariance matrix:  

𝐸[𝛍𝛍′] = 𝜎2(𝐈 − 𝜆𝐖)−1(𝐈 − 𝜆𝐖′)−1 (5.5) 

Due to the non-spherical nature of this covariance matrix, OLS coefficient 

standard error estimates will be biased; although, the coefficient estimates themselves 

remain unbiased. 

5.3.2 Ridge Regression 

Ridge regression shrinks the regression coefficients by applying a constraint to the 

OLS estimates (Hoerl and Kennard, 1970). It involves the addition of a penalty of 

constant to the size of coefficient estimate while minimizing the sum of squared 

residuals. Ridge regression increases precision of parameter estimation, but because of 

the constant, ridge estimator is no longer unbiased.  

Our point of departure is the correlation transformation, which is a simple 

standardization procedure that facilitates comparison of regression coefficients by 

expressing them in the same units. Mathematically, the correlation transformation is 

given by 

𝑌∗ =
1

√𝑛 − 1
(

𝑌 − �̅�

𝑠𝑌
) (5.6) 

𝑋𝑘
∗ =

1

√𝑛 − 1
(

𝑋𝑘 − 𝑋𝑘
̅̅̅̅

𝑠𝑘
) (5.7) 

where 𝑠𝑌 and 𝑠𝑘 are the respective standard deviations for 𝑌 and each of the 

predictor variable. 𝑘 ranges from 1 to 𝑝 − 1 where 𝑝 is the total number of parameters. It 

can be shown that the 𝐗′𝐗 matrix for the transformed variables is identical to the 

correlation matrix of pairwise correlations between each predictor variable, or 𝐗′𝐗 = 𝐫𝑋𝑋, 
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and the 𝐗′𝐘 matrix for the transformed variables is simply a vector of correlation between 

the dependent variable and each predictor variable, or 𝐗′𝐘 = 𝐫𝑌𝑋. Therefore, the least 

squares normal equations are now given by 

𝐫𝑋𝑋𝐛 = 𝐫𝑌𝑋 (5.8) 

where 𝐛 is the vector of the point estimates of the standardized regression 

coefficients.  

The ridge standardized estimators are obtained by adding a bias constant c to the 

normal equations: 

(𝐫𝑋𝑋 + 𝑐𝐈)𝐛𝑹 = 𝐫𝑌𝑋 (5.9) 

Solution of Eq. (5.9) yield the point estimates of the standardized ridge regression 

coefficients: 

𝐛𝑅 = (𝐫𝑋𝑋 + 𝑐𝐈)−1𝐫𝑌𝑋 (5.10) 

The value on the bias constant c needs to be sought before parameter estimation. 

Several strategies have been suggested for determining the optimal value of the bias 

constant, such as minimizing the mean squared error of estimation (Kasarda and Shih, 

1977) and minimizing the prediction error on a new data set via bootstrapping or cross-

validation (Golub et al., 1979). Another commonly adopted approach makes use of a 

ridge trace (Hoerl and Kennard, 1970), which is a plot of the ridge coefficients versus the 

bias constant. Generally, the size of regression coefficients tends to approach zero as the 

bias constant increases. The optimal bias is the smallest value of bias when ridge 

coefficients start to stabilize. This is the approach we used in the simulations and the 

empirical study. Once the bias constant is determined, the ridge standardized coefficients 
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can be obtained using Eq. (5.10). The standardized coefficients need to be transformed 

back to the original variables for interpretation purposes.  

5.3.3 SFRR 

The SFRR is a simple combination of two techniques: spatial regression and ridge 

regression. It effectively addresses spatial dependence and multicollinearity within a 

single framework. We developed this method for both spatial lag and spatial error 

dependence, the use of which is determined by the specification search outlined in Florax 

et al. (2003). Simply put, the specification search used in this study makes use of a set of 

decision rules in search of the alternative model. As straightforward as they are, the 

decision rules have been shown to be effective based on considerable evidence from 

many simulation experiments (Anselin and Rey, 1991; Florax et al., 2003).  

5.3.3.1 SFRR for Spatial Lag Dependence 

Recall Eq. (5.1) for the general form of a spatial lag model. Alternatively, it can 

be considered as removing spatial autocorrelation effect via a spatial filter (𝑰 − 𝜌𝐖): 

(𝐈 − 𝜌𝐖)𝐲 = 𝐗𝛽 + 𝛍 (5.11) 

The endogeneity in the model specification requires the adoption of other 

estimation methods, such as maximum likelihood and spatial two stage least squares. 

Once an appropriate estimate of 𝜌 is obtained, it is substituted into (𝐈 − 𝜌𝐖)𝐲, which is 

now a vector of observations on the spatially filtered dependent variable. The transformed 

variable is treated as the new dependent variable in the ridge regression that follows. The 

standardized SFRR estimator for spatial lag dependence can be expressed as 

𝐛𝑆𝐹𝑅𝑅𝐿 = (𝐫𝑋𝑋 + 𝑐𝐈)−1𝐫𝑌′𝑋 (5.12) 
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where rY’X is a vector of Pearson’s correlation between the spatially filtered 

dependent variable and each predictor variable. The bias constant is determined following 

the description in Section 5.3.2.  

5.3.3.2 SFRR for Spatial Error Dependence 

After substituting the reduced form (Eq. (5.4)) into the general form (Eq. (5.2)), 

the spatial error specification with a spatial autoregressive process (SAR) process can be 

expressed as  

𝐲 = 𝐗𝛽 + (𝐈 − 𝜆𝐖)−1𝜖 (5.13) 

or further 

(𝐈 − 𝜆𝐖)𝐲 = (𝐈 − 𝜆𝐖)𝐗𝛽 + 𝜖 (5.14) 

As with the spatial lag model, (𝐈 − 𝜆𝐖) serves as a spatial filter that removes the 

structure (spatial autocorrelation) from the error term. This functions the same way as a 

Cochrane-Orcutt estimation to remove serial correlation in a time series model (Anselin 

and Rey, 2014). Commonly used methods to estimate coefficients for a spatial error 

specification include maximum likelihood and generalized method of moments. The 

estimated 𝜆 is substituted back into (I - λW)y and (I - λW)X, which are treated as the 

dependent and independent variables in the subsequent ridge regression model. The 

standardized SFRR estimator for spatial error dependence is 

𝐛𝑆𝐹𝑅𝑅𝐸 = (𝐫𝑋′𝑋′ + 𝑐𝐈)−1𝐫𝑌′𝑋′ (5.15) 

where X’ and Y’ represent the spatially filtered independent and dependent 

variables, respectively. The workflow of the SFRR framework for spatial lag and spatial 

error dependence is depicted in Figure 5.1.  
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Figure 5.1 Overview of the SFRR Framework. 

 

5.3.4 Simulation Experiments 

5.3.4.1 Independent Variables 

We used ten LULC variables as our independent variables. These variables were 

derived from a cloud-free QuickBird image acquired on May 24, 2007 over central 

Phoenix.  The spatial resolution of the image is 2.4 meters (m). We employed an object 

based image analysis, which yielded six LULC categories: trees/shrubs, grass, buildings, 

other impervious surfaces, unmanaged soil, and water (Figure 5.2). We decided to 
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exclude water from our analysis because it is weakly related to the surface temperatures 

within the study area (Myint et al., 2013). The error matrix for the object-based classifier 

was provided in Table 5.1. 

 
Figure 5.2 a. QuickBird Imagery over Central Phoenix, AZ; b. Classified Output of the 

QuickBird Imagery. 

 

Table 5.1 Error Matrix of the Urban Land Cover Classification Produced by the Object-

based Classifier 

 

 

For each LULC category, we created two landscape variables—land cover 

fraction and local Moran’s I—that measure the composition and configuration of each 

class within the landscape, respectively. Land cover fraction was used as an indicator of 

land composition. By definition, land cover fraction measures the proportion of a LULC 

Classified Reference Producer's User's 

Buildings Grass Trees/shrubs Other impervious Unmanaged soil Total accuracy (%) accuracy (%)

Buildings 73 1 1 3 2 80 84.88 91.25

Grass 6 68 8 2 2 86 94.44 79.07

Trees/shrubs 0 3 56 8 0 67 86.15 83.58

Other impervious 1 0 0 87 0 88 84.47 98.86

Unmanaged soil 6 0 0 3 70 79 94.59 88.61

Total 86 72 65 103 74 400

Overall accuracy = 88.5%
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type in a predefined spatial extent. Existing literature suggests that 200 m was an optimal 

extent for maximized effects of LULC features on the urban climate (Fan et al., 2015; 

Kormann and Meixner, 2001; Myint et al., 2010). We followed this criterion and 

computed land cover fractions within a window size of 204 m (2.4 m × 85 = 204 m).  

The local indicator of spatial association (LISA) evaluates the existence of spatial 

clusters and degree of clustering for a given variable at a local scale (Anselin, 1995). A 

number of studies have demonstrated the potential of LISA to measure spatial 

arrangements of land cover features within desert landscapes (Fan and Myint, 2014; Fan 

et al., 2015; Myint et al., 2015; Zheng et al., 2014). In this study, we utilized a refined 

version of LISA as our spatial configuration variable.  

We calculated the local Moran’s I based on the binary map created for each 

LULC category. The same set of binary maps also functioned as a local average filter and 

was applied to the map of the local Moran’s I to remove the impacts from other types of 

cover. The final output was a raster grid with each pixel representing the spatial 

arrangement of a particular LULC type within an area of 204 m by 204 m (See Fan et al., 

2015 for discussions, formulas, and detailed computation procedures). In general, high 

and low values of local Moran’s I indicate clustered and dispersed patterns of land cover, 

respectively, with values near zero indicating random patterns (note: clusters of medium 

values do not happen in the binary case).  

The ten LULC variables—five composition variables and five configuration 

variables—constitute our predictor set in the simulation. As area proportions of different 

land cover types sum up to a fixed quantity, we would expect certain degree of 

multicollinearity among the ten predictors. Furthermore, the inherent association between 
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land composition and configuration aggravates the multicollinearity because the higher 

the abundance of a LULC type, the more likely that this type of land cover tends to 

cluster.  

The degree of multicollinearity was evaluated using condition number, which 

measures the degree to which predictor variables have a linear relationship. The condition 

number is defined by 

𝑘(𝐗′𝐗) = √
𝜆𝑚𝑎𝑥(𝐗′𝐗)

𝜆𝑚𝑖𝑛(𝐗′𝐗)
 (5.16) 

where λmax(X’X) and λmin(X’X) are the largest and smallest eigenvalues of X’X, 

respectively (X is the design matrix). Note that the condition number was calculated after 

standardizing the design matrix such that the norm of each column is 1 (Anselin and Rey, 

2014). Generally, a condition number of higher than 30 or 50 indicates the presence of 

mulcollinearity. Our predictor variables produced a condition number of 328.05, which is 

well-beyond the threshold above, indicating severe multicollinearity.  

5.3.4.2 Dependent Variable 

We considered two forms of spatial dependence (spatial lag and spatial error 

effect) as we created the dependent variable. In the spatial lag specification, the 

dependent variable y can be generated from the reduced form: 

𝐲 = (𝐈 − 𝜌𝐖)−1𝐗𝛽 + (𝐈 − 𝜌𝐖)−1𝐮 (5.17) 

where β was set to be a vector of ones (i.e., equal impact from each predictor 

variable), and 𝐮 is random disturbance with Gaussian distribution (StDev = 1.0).  
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For spatial error dependence, we limited our method to the case where the 

disturbance follows a SAR error process. The response variable y with spatial error 

dependence can be generated as: 

𝐲 = 𝐗𝛽 + (𝐈 − 𝜆𝐖)−1𝜖 (5.18) 

where β and 𝜖 were created in the same manner as the β and 𝐮 in the spatial lag 

case. 

5.3.4.3 Simulation Parameters 

We tested varying degrees of spatial dependence by using an array of values of 𝜌 

(in the spatial lag case) and 𝜆 (in the spatial error case) as we created the synthetic data. 

The value of the spatial autoregressive coefficient ranged from 0.1 to 0.9 with an 

increment of 0.2. For each level of spatial dependence, we evaluated the performances of 

four estimation methods: OLS, spatial regression with corresponding model specification, 

ridge regression, and SFRR. Each fitting method was replicated 1000 times to provide a 

total of 48 sampling distributions (2 forms of spatial dependence × 6 autoregressive 

coefficients × 4 estimation methods = 48) for every regression coefficient in the model.  

Bias and variance are common criteria for choosing an estimator. Among the most 

desirable estimators is the unbiased estimator with the minimum variance, aka the best 

unbiased estimator. Despite its popularity with many researchers, this criterion tends to 

omit estimators with slight amount of biases and extremely low variances. Mean square 

error (MSE) is another criterion that accounts for the trade-off between bias and 

efficiency. As a special case of the weighted square error criterion, MSE is equivalent to 

minimizing the expectation of the squared error loss (Kennedy, 1998). Statistically, MSE 

is the sum of the variance of the estimator and the squared bias, which reduces to the 
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variance for unbiased estimators. Although the MSE criterion is less adopted than the 

best unbiased criterion, it shows great potential when the best unbiased criterion fails to 

produce stable estimates. In this regard, the multicollinearity among predictors makes 

MSE a more reliable criterion than the simple measures of bias and variance.  

The simulation experiments and the case study were implemented using Python 

2.7.3. We used the spreg module in Python Spatial Analysis Library (PySAL) (Rey and 

Anselin, 2010) for the OLS and spatial models and NumPy for the ridge regression and 

SFRR. 

5.4 Simulation Results 

We summarized the statistical properties of parameter estimation for varying 

degrees of spatial lag/error dependence. Tables 5.2-5.4 show the averaged bias, variance, 

and MSE calculated across all the regression coefficients estimated from the OLS, spatial 

regression model, ridge regression, and SFRR. We excluded the intercept in calculating 

the averages because properties of the intercept are not the major focus of this study. 

Moreover, because the sampling distributions of the intercept often deviate dramatically 

from those of the slopes, inclusion of the intercept can be distracting and impedes us from 

discovering the true patterns of the coefficient distributions. 

The average bias for parameters estimated from the OLS was quite small for 

models with low spatial dependence (ρ from 0 – 0.3) (Table 5.2). As the spatial effect 

increased, the size of bias (regardless of the direction) increased quickly and reached 

0.554 when ρ is 0.9. This supports the statement in Anselin (1988) that ignoring the 

spatial lag dependence can cause biased estimation, which grows as the spatial effect 

develops. Comparatively, the estimation bias from the spatial lag model was fairly stable 
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and was not affected by the increasing autoregressive coefficient. The mean bias was 

phenomenal for the ridge regression and SFRR. This was expected because we 

intentionally introduced the bias to improve the precision of parameter estimates. As with 

the spatial lag model, the size of the bias was stable throughout all levels of ρ for both the 

ridge regression and SFRR. 

Table 5.2 Mean Bias of the Ten Regression Coefficients Estimated Using OLS, Spatial 

Lag/Error Model, Ridge Regression, and SFRR 

ρ／λ  Spatial lag dependence  Spatial error dependence 

  OLS SLMa RRb SFRR  OLS SEMc RR SFRR 

0  -0.098 -0.132 -0.955 -0.962  0.099 0.046 -0.954 -0.958 

0.1  0.029 0.155 -0.955 -0.956  -0.082 -0.098 -0.957 -0.958 

0.3  0.098 0.169 -0.959 -0.952  0.056 -0.122 -0.96 -0.955 

0.5  -0.191 0.132 -0.959 -0.954  0.044 -0.125 -0.959 -0.954 

0.7  -0.426 0.193 -0.952 -0.962  0.031 -0.024 -0.955 -0.953 

0.9  -0.554 0.115 -0.935 -0.96  -0.104 -0.064 -0.956 -0.951 
a SLM: spatial lag model. 
b RR: ridge regression. 
c SEM: spatial error model. 

 

When the errors follow a SAR process, the assumption of uncorrelated 

disturbance is no longer valid. Both the OLS and spatial error model have a small bias 

even in the presence of strong spatial error dependence. In other words, neither structured 

disturbances nor the collinearity among the predictors affect the unbiasedness of the OLS 

estimator. Again, the ridge regression and SFRR estimators were biased, and the size of 

the bias was not sensitive to changing spatial effects. 

Table 5.3 shows the averaged variance of the slopes for the four candidate 

models. When spatial lag dependence was present, the mean variance for the OLS grew 

quickly as ρ increased, ranging from 50.13 when there was no spatial effect to 228.49 
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when ρ reached 0.9. Clearly, failing to consider spatial effect not only affects the 

biasedness, but also influences the estimation efficiency. The spatial lag model prevented 

the variance from increasing, yet the size of the variance remained fairly large (~50). By 

contrast, a remarkably lower estimation variance was observed for the ridge regression 

and SFRR. The mean variance remained consistently low—about 11% of the true slope 

value—for the SFRR whereas it grew slowly for the ridge regression as the spatial effect 

developed.  

Table 5.3 Mean Variance of the Ten Regression Coefficients Estimated Using OLS, 

Spatial Lag/Error Model, Ridge Regression, and SFRR 

ρ／λ  Spatial lag dependence  Spatial error dependence 

  OLS SLMa RRb SFRR  OLS SEMc RR SFRR 

0  50.13 49.332 0.115 0.113  50.392 48.058 0.112 0.116 

0.1  54.766 52.211 0.114 0.116  50.339 48.132 0.115 0.115 

0.3  56.473 50.665 0.134 0.113  53.605 52.697 0.124 0.108 

0.5  67.119 50.392 0.151 0.107  65.587 52.01 0.152 0.102 

0.7  89.849 48.497 0.214 0.108  86.45 50.44 0.224 0.102 

0.9  228.49 47.138 0.548 0.107  243.592 47.561 0.565 0.099 
a SLM: spatial lag model. 
b RR: ridge regression. 
c SEM: spatial error model. 

 

While spatial error dependence does not raise serious concern for biasness, it 

becomes more of an issue when it comes to the estimation efficiency. We observed a 

growing pattern in the mean variance for the OLS as the spatial error effect intensified, 

especially when λ was greater than 0.5. The variance for the spatial error model 

fluctuated between 47 and 53 and was not affected by the changing spatial effect. Similar 

to spatial lag dependence, the ridge regression model and SFRR achieved a much lower 
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estimation variance than the other two models, with the SFRR being the only estimator 

with consistently low variance regardless of strength of the spatial error effect.    

MSE is a criterion that accounts for the trade-off between low bias and high 

efficiency. When bias and variance are considered together, the SFRR stood out with 

substantially lower MSE than the OLS and spatial lag/error model (Table 5.4). 

Furthermore, the size of MSE for the SFRR was not affected by the degree of spatial 

dependence as the ridge regression was and this property held for both forms of spatial 

dependence. Because the sampling distributions of the coefficients are closely 

concentrated around the expected values, the chance of obtaining estimates close to the 

true value is much higher for the SFRR than for the OLS and spatial regression models. 

The MSE criterion highlights SFRR as the most accurate and reliable estimator among 

the four estimators. Therefore, the use of SFRR should be widely encouraged in place of 

the conventional techniques when both spatial dependence and multicollinearity are 

present in the model. 

Table 5.4 Mean MSE of the Ten Regression Coefficients Estimated Using OLS, Spatial 

Lag/Error Model, Ridge Regression, and SFRR 

ρ／λ  Spatial lag dependence  Spatial error dependence 

  OLS SLMa RRb SFRR  OLS SEMc RR SFRR 

0  50.175 49.384 1.049 1.062  50.433 48.063 1.047 1.059 

0.1  54.779 52.31 1.05 1.053  50.366 48.162 1.055 1.06 

0.3  56.5 50.74 1.078 1.039  53.622 52.727 1.071 1.046 

0.5  67.223 50.455 1.1 1.037  65.612 52.051 1.091 1.033 

0.7  90.441 48.635 1.154 1.053  86.454 50.45 1.162 1.033 

0.9  230.412 47.228 1.486 1.047  243.639 47.57 1.503 1.03 
a SLM: spatial lag model. 
b RR: ridge regression. 
c SEM: spatial error model. 
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5.5 Case Study 

The simulation experiments show the SFRR’s capability to produce accurate 

parameter estimates in the presence of spatial effects and multicollinearity. In this 

section, we apply this method to an empirical data set in an effort to address the 

fundamental question raised at the beginning of the paper: what are the respective 

impacts of composition and spatial configuration of various land cover features on 

surface temperature and UHI mitigation? 

The case study is confined to central Phoenix, which is situated at the northern 

part of the Sonoran desert. As a typical desert city in the southwest United States, 

Phoenix has faced a series of heat-related issues that are inescapably associated with the 

phenomenal heat island effect in this area (Golden et al., 2008; Kalkstein and Sheridan, 

2007; Guhathakurta and Gober, 2007). The city has excessive sunshine all year around 

with the average maximum temperature of 30.4°Celsius (C) (US Climate Data, 2016). 

The average annual precipitation is ~203 millimeters (mm), making irrigation a major 

source for maintaining greenspace in the city (ADWR, 2013).  

In this section, we report our effort of an empirical study as a demonstration of the 

SFRR in solving a real-world problem. Understanding how different composition and 

spatial arrangements of land cover features affect surface temperatures would be 

beneficial for the mitigation of the heat island effect and its associated heat-related 

problems without depleting the water and energy consumption.  

Following the procedure in Section 5.3.4, one composition and one configuration 

variable were created for each of the five LULC categories: trees/shrubs, grass, buildings, 

other impervious surfaces, and unmanaged soil. Instead of creating the synthetic data, we 
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used the surface temperature data over central Phoenix as observations on the dependent 

variable. The LST product was derived from an Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) image acquired on July 6, 2005 (Figure 5.3). Note 

that this is a summer daytime image taken at 11:20 am local time. We then fit this data set 

using the SFRR following the procedure detailed in Section 5.3.3 and obtained the 

parameter estimates. We also fit the OLS to the same data set for comparison purposes.  

 

Figure 5.3 Summer Daytime LST (°C) Map of Central Phoenix. 

 

Table 5.5 shows the diagnostics for spatial dependence after the OLS regression. 

The specification search identified spatial lag as the alternative model and thus a spatial 

lag model was fit to the data. We then substituted the ρ (0.135) into(𝐈 − 𝜌𝐖)𝑦, which was 

treated as the dependent variable in the ridge regression.  
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Table 5.5 Diagnostics for Spatial Dependence 

Test Value p-value 

Moran’s I (error) 1.486 0.1373 

Lagrange Multiplier (lag) 10.299 0.0013 

Robust LM (lag) 9.66 0.0019 

Lagrange Multiplier (error) 2.049 0.1523 

Robust LM (error) 1.41 0.235 

 

Table 5.6 shows the coefficients of the LULC variables estimated from the OLS 

and SFRR. For the OLS regression, all five composition variables were positively 

associated with the surface temperature. While we would normally expect positive 

(warming) effects from buildings, parking lots, and sometimes soil on the surface 

temperatures, the warming effects from trees, shrubs, and grass in a late summer morning 

is highly suspicious and is most likely due to estimation error. Because of the enormous 

multicollinearity (condition number: 110.47), the OLS estimates were quite unstable, and 

therefore the likelihood of obtaining estimates close to the true value is substantially 

reduced. In fact, the coefficient estimate of any predictor variable depends to a great 

extent on whether or not other correlated predictor variables are included in the model 

(Kutner et al., 2005). Thus, the coefficient of any LULC variable does not reflect its 

individual association with the surface temperature, but rather a marginal effect given 

other variables in the model. The OLS estimates are unreliable also because the spatial 

lag effect was ignored in the data fitting process. This causes the OLS estimates to be 

biased and inconsistent.  
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Table 5.6 Coefficient Estimates for the Ten Land Composition and Configuration 

Variables Obtained from the OLS and SFRR 

Predictor variables OLS SFRR 

Constant 41.448 47.013 

Composition variables   

                Trees/shrubs 7.892 -3.063 

                Grass 1.612 -1.588 

                Buildings 9.812 3.831 

                Other impervious surfaces 2.884 0.379 

                Unmanaged soil 5.125 3.036 

Configuration variables   

                Trees/shrubs -7.124 -2.084 

                Grass -4.142 -1.293 

                Buildings -3.014 1.246 

                Other impervious surfaces -2.059 -0.012 

                Unmanaged soil -0.187 1.285 

Pseudo R2 0.633 0.609 

 

On the contrary, the SFRR gives more reliable estimates by accounting for both 

the spatial dependence and multicollinearity. From the simulation experiments in Section 

5.4, SFRR allows us to produce substantially more precise estimates at the cost of small 

amount of biases (also minimal MSE). In light of the SFRR estimates, both composition 

and configuration of land cover features affect the UHI intensity. Specifically, there was a 

negative association between vegetation fraction and LST, with trees/shrubs having a 

larger impact on the LST than that of grass. Conversely, we observed a positive 

relationship between LST and composition of buildings and open soil.  Other impervious 

surfaces, such as parking lots, roads, and rooftops, have smaller impacts on the LST. 

These results are in line with existing literature concerning the cooling and warming 
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effects from vegetated surfaces and anthropogenic features, respectively (Mallick et al., 

2013; Taha, 1997; Weng et al., 2004; Yuan and Bauer, 2007).  

Spatial configuration of LULC classes also affects LST. There was a negative 

relationship between the local Moran’s I of vegetation and LST, indicating that in a desert 

urban environment, clustered pattern of vegetation are more desirable for ameliorating 

temperatures than fragmented and dispersed patterns. A consistent statement was 

suggested in Li et al. (2012) using a correlation analysis, Zhang et al. (2009) a simple 

regression analysis, Maimaitiyiming et al. (2014) a normalized mutual information 

measure, and Fan et al. (2015) a modified local spatial statistic. Zhou et al. (2011), 

however, found a positive association between spatial pattern of woody vegetation and 

surface temperatures, where a simple patch based index was used to represent the 

configuration of vegetation patches. The discrepancy in the results could be due to the 

wide variance of the sampling distribution of the parameters, given that no effort was 

made to address the spatial effect and the multicollinearity. The spatial configuration of 

buildings and open soil were positively related to LST. Clustered patterns of buildings 

and soil can produce aggregate warming effects that further elevate LST. Other 

impervious surfaces, on the other hand, were weakly related to the LST. Because paved 

surfaces absorb short-wave radiation in the daytime and release long-wave radiation at 

night, their impacts on the surface temperature are expected to be significant at nighttime.  

We reported the pseudo R2 for both methods as an approximate measure of fit 

(Table 5.6). It is defined as the squared zero-order correlation between the observed and 

fitted values. We observed a moderately high pseudo R2 for both the OLS and SFRR, 

indicating that neither spatial effect nor multicollinearity affects the goodness of fit. Note 
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that different from the R2, the pseudo R2 cannot be interpreted as the proportion of 

variance explained by the predictor variables (Anselin and Rey, 2014).  

5.6 Discussion and Conclusion 

The dominance of the OLS model in the environmental science community is 

facing serious challenges. In spite of the conceptual simplicity and accessibility via most 

statistical software packages, improper use of the OLS without evaluating its regularity 

conditions can lead to erroneous inclusion of predictor variables, imprecise parameter 

estimates, and poor predictions. Spatial dependence is a fundamental facet of geographic 

phenomena that has yet received full awareness from many geographers. Because the 

existence of either form of spatial dependence (substantive spatial process or a nuisance) 

violates the basic assumptions of a classical linear regression model, OLS estimates are 

no longer consistent and/or unbiased.  

Multicollinearity poses another issue. Most geophysical and ecological studies 

involve estimation of multiple parameters in a single regression model. When predictors 

are highly correlated, the parameter estimates tend to vary widely from sample to sample. 

The large sample variability can lead to inflated estimation variance, causing significant 

predictors insignificant. Moreover, the contribution of each predictor to the response is 

affected by the inclusion (non-inclusion) of the other predictors in the model.   

SFRR was proposed in this paper as an alternative to cope with the two issues by 

virtue of systematic integration of spatial filtering and ridge regression. While spatial 

filter removes the spatial autocorrelation effect, ridge regression takes care of the large 

estimation variance. Simulation experiments highlight the SFRR estimator as an accurate 

and reliable estimator in comparison with the OLS, spatial lag/error, and ridge regression 
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estimators. With the minimal MSE, the likelihood for a SFRR estimator to be near the 

true value is substantially greater than the other three models, and this property holds 

regardless of form and strength of spatial dependence.  

We learned from the case study that multicollinearity does not hinder our ability 

to achieve a good fit, nor does it affect statistical inferences on the mean response and 

predictions if they are made within the geographical or temporal range of the sampled 

observations (Dormann et al., 2013). To demonstrate this, we computed the averaged 

Akaike’s Information Criterion (AIC) for the four models (using simulated data) as a 

measure of fit (Figure 5.4). The AIC is a log-likelihood measure of model adequacy that 

allows comparison between spatial models and standard regression models (Anselin and 

Rey, 2014). The smallest AIC indicates the best model.  

 
Figure 5.4 Averaged AIC for OLS, Spatial Error Model, Ridge Regression, and SFRR 

(SEM: Spatial Error Model; RR: Ridge Regression) 

 

As λ grows, the AIC increased for all four models. When λ is fixed, the AIC was 

smallest for the OLS, followed by the spatial error model, ridge regression, and SFRR. 

Consistent with the case study above, the multicollinearity among predictors is not so 

much of a concern when the purpose is to obtain good fits or make predictions.  
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We show from the simulation and the case study that the SFRR estimator is 

superior to the OLS, spatial regression, and ridge regression estimators in the presence of 

spatial dependence and multicollinearity. A major drawback of the SFRR, however, is 

that statistical inference on the SFRR estimators is difficult to undertake because 

distributions of ridge estimators (and thus SFRR estimators) are usually unknown 

(Kennedy, 1998). Previous statistical literature suggest that ridge regression provides the 

same t and central F distributions as the least square regression (Coutsourides and 

Troskie, 1979; Obenchain, 1977). Therefore, the same t and F tests should be utilized to 

assess the significance of ridge estimators. Another study evaluates two non-exact t tests 

based on two ridge estimators and shows that both tests perform better than the least 

square t test for models with both large and small standard errors (Halawa and El 

Bassiouni, 2000). The non-exact tests were later applied to linear ridge regression and 

extended to logistic ridge regression in Cule et al. (2011). Future research should 

investigate these significant tests in the context of SFRR in terms of validity, robustness, 

and computational cost.  

Another limitation is that the SFRR alone provides no explicit guidance as to 

whether a predictor should be included or dropped from the model. This can be done with 

the aid of certain variable selection technique once valid significance test is developed. A 

popular approach called stability selection serves this purpose via applying a dimension 

reduction technique to subsamples of the data and identifying predictors that are 

consistently significant (Meinshausen and Bühlmann, 2010). The integration of the SFRR 

and variable selection is another direction for future research.   
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CHAPTER 6 

CONCLUSIONS  

6.1  Summary of Dissertation 

Accurate and effective quantification of landscape structure serves as a first and 

fundamental step toward addressing the linkages between spatial pattern and the 

underlying ecological processes (Luck and Wu, 2002). Despite the dominance of the 

patch mosaic model in the community of landscape ecology, a growing amount of work 

has been dedicated to evaluating the potential of continuous models (aka landscape 

gradient models) in landscape pattern mapping (McGarigal and Cushman, 2005; 

Southworth et al., 2004; Zheng et al., 2014).  

Chapter 2 examined the utility of a family of the landscape gradient models—

spatial autocorrelation indices—in measuring landscape fragmentation in a desert city. 

An exploratory data analysis was performed to quantitatively evaluate the relations 

between the most widely used landscape metrics and the proposed continuous indices. 

Results suggest a certain amount of consistency between the two classes of models and 

highlight the Getis-Ord G and local Moran’s I as useful alternatives to the classical patch 

mosaic model with the benefit that no land cover classification is required. The statistical 

relationships between the Getis-Ord G and land composition metrics are found to be more 

sensitive to changing areal extent than changing grain size.  

The usefulness of continuous spatial indices is corroborated in Chapter 3 through 

a spatiotemporal study of land cover dynamics over the Phoenix metropolitan area. This 

research utilizes a combination of sequential satellite imagery, spatial autocorrelation 

indices, and non-parametric regression in an effort to evaluate changes in the quantity and 
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spatial distribution of vegetation and built-up areas in a 20-year time period. Results 

identify a significant loss of vegetation in the central and southeast part of the region 

whereas vegetation increases mainly occur in the northeast, featuring a pattern of urban 

encroachment into natural desert lands. Increases of built-up areas are phenomenal across 

the entire region as a result of land conversions from agriculture, desert, and riparian into 

urban land use types. There is an overall enhancement of spatial heterogeneity in the 

majority of this area. Besides urbanization itself, extensive practice of xeriscaping is 

another major cause of increased spatial complexity.   

Another core objective of this dissertation is to develop spatial analytical tools 

that enable accurate estimates of land cover impacts on urban climate. Using the 

continuous spatial indices proposed in Chapter 2, Chapter 4 sets out by examining the 

seasonal and diurnal variability of surface UHI in relation to the quantity and spatial 

distribution of urban vegetation at various geographical scales. Results highlight the great 

potential of optimizing spatial configuration of grass and trees in ameliorating city 

temperatures with evidence supporting the positive impacts of planning spatially 

clustered vegetation patches rather than scattered and dispersed ones. This research also 

shows that the association between vegetation and surface temperature in an urban 

environment is strongest within a ~200 m × 200 m areal extent. A similar spatial extent 

has been suggested by Myint et al. (2010) using a correlation analysis and Kormann and 

Meixner (2001) using climate modeling.  

Evaluation of the relative impacts from composition and configuration factors on 

urban climate requires inclusion of both types of variables in a regression model. 

Although unbiased, naive parameter estimates are subject to inflated estimation variance 
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due to the strong correlations between composition and configuration variables. Spatial 

dependence inherently associated with geographic data complicates the problem, leading 

to inefficient and/or biased estimates. Chapter 5 resolves around these two issues and 

develops a unified regression framework called spatially filtered ridge regression (SFRR) 

that integrates estimation procedures of spatial autoregressive models and ridge 

regression. Based on evidence from a sequence of Monte Carlo simulation and an 

empirical study over Phoenix, the SFRR estimator substantially reduces the estimation 

variance at the cost of a small bias, significantly improving the estimation accuracy in the 

presence of spatial effects and multicollinearity.  

6.2 Future Work 

6.2.1 Landscape Mapping 

This research utilizes continuous spatial indices that characterize the landscape 

structure from a gradient perspective. While the indices themselves are illuminating, they 

can be further enhanced and extended through incorporating data from various resources. 

For instance, a joint use of spatial autocorrelation indices and Lidar data can provide 

additional information about the surface characteristics of a landscape, such as its height 

distribution and surface roughness. In addition, the ecological implications of landscape 

pattern quantified using gradient metrics still remain to be explored. 

6.2.2 Spatiotemporal Landscape Modeling 

Time is a critical component of landscape pattern analysis and there have been 

numerous efforts dedicated to monitoring long-term changes of landscape structure using 

various analytical techniques. Of particular concern is the central question of 
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spatiotemporal analysis - How to properly and effectively couple spatial and temporal 

domains and how to simultaneous address spatial dependence and serial correlation 

within a single analytical framework? The next phase of my research will examine this 

problem and explore possible solutions using knowledge from various disciplines such as 

spatial econometrics, statistics, ecology, and economics.  

6.2.3 Land Cover Impacts on Other Factors 

In addition to surface temperatures, landscape pattern is associated with a wide 

range of biophysical and socioeconomic factors. Potential questions of interest are: Does 

a clustered or dispersed pattern of vegetation use more water and/or air conditioning? 

What type of landscaping is most commonly found in a wealthy/poor neighborhood? Is a 

particular land cover type/pattern strongly linked to a particular type of disease? These 

and many other questions regarding land cover impacts on our socio-ecological system 

warrant future research.   
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