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ABSTRACT

A computational framework based on convex optimization is presented for stabil-

ity analysis of systems described by Partial Differential Equations (PDEs). Specifi-

cally, two forms of linear PDEs with spatially distributed polynomial coefficients are

considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic,

elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary con-

ditions can be reformulated in order to be used by the framework. As an example, the

reformulation is presented for systems governed by Schrödinger equation, parabolic

type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types.

The second form of PDEs of interest are scalar-valued with two spatial variables. An

extra spatial variable allows consideration of problems such as local stability of fluid

flows in channels and dynamics of population over two dimensional domains.

The approach does not involve discretization and is based on using Sum-of-Squares

(SOS) polynomials and positive semi-definite matrices to parameterize operators

which are positive on function spaces. Applying the parameterization to construct

Lyapunov functionals with negative derivatives allows to express stability conditions

as a set of Linear Matrix Inequalities (LMIs). The MATLAB package SOSTOOLS was

used to construct the LMIs. The resultant LMIs then can be solved using existent

Semi-Definite Programming (SDP) solvers such as SeDuMi or MOSEK. Moreover,

the proposed approach allows to calculate bounds on the rate of decay of the solution

norm.

The methodology is tested using several numerical examples and compared with

the results obtained from simulation using standard methods of numerical discretiza-

tion and analytic solutions.
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Chapter 1

RESEARCH GOALS AND MOTIVATION

Partial Differential Equations (PDEs) are often used to model systems in which

the quantity of interest varies continuously in both space and time. Examples of

such quantities include: deflection of beams (Euler-Bernoulli equation); velocity and

pressure of fluid flow (Navier-Stokes equations); and population density in predator-

prey models. See Evans (1998), Garabedian (1964) and John (1982) for a wide range

of examples.

Stability analysis and controller design for PDEs is an active area of research

Christofides (2012), Curtain and Zwart (1995). One approach to analyze PDEs is

to approximate the PDEs with Ordinary Differential Equations (ODEs) using, e.g.

Galerkin’s method or finite difference, and then apply finite-dimensional optimal con-

trol methods, Kamyar et al. (2013), Baker and Christofides (2000), El-Farra et al.

(2003). We present a methodology for stability analysis without model reduction tech-

niques. Specifically, we use Linear Matrix Inequalities (LMIs) and Sum-of-Squares

(SOS) optimization to construct Lyapunov functionals for PDEs.

It is well-known that existence of a Lyapunov function for a system of ODEs or

PDEs is a sufficient condition for stability. For example, Fridman and Orlov (2009)

use a Lyapunov approach and Linear Operator Inequalities (LOIs) to provide sufficient

conditions for exponential stability of a controlled heat and delayed wave equations.

In Solomon and Fridman (2015) Lyapunov stability conditions of semilinear diffusion

equations with delays are formulated in terms of LMIs.

Extensive examples of applying the backstepping method to the boundary control

of PDEs can be found in Krstic and Smyshlyaev (2008c), (2008b), (2008a), (2005).
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Briefly speaking, backstepping uses a Volterra operator to search for an invertible

mapping from the original PDE to a chosen ”target” PDE, proven to be stable using,

e.g. Lyapunov function. In order to find such mapping, one has to solve analyti-

cally or numerically a PDE for Volterra operator’s kernel. If the mapping is found,

it provides the boundary control law. Applications for two-dimensional cases were

discussed in Vazquez and Krstic (2006) and Xu et al. (2008). However, backstepping

requires us to guess on the target PDE and solve the PDE for kernel, which may be

a challenging task for PDEs with two spatial variables and spatially dependent coef-

ficients. Moreover, backstepping cannot be used for stability analysis in the absence

of a control input.

Notable results based on Lyapunov and semigroup theories were obtained in

Fridman et al. (2010) for analysis of wave and beam PDEs with delayed bound-

ary control. In semigroup theory the state of a PDE belongs to a certain space

of functions. The solution is an operator-valued function (“strongly continuous semi-

group” - SCS), indexed to the time domain, which maps the current state to a future

state. For an introduction to Semigroup Theory we refer readers to Lasiecka (1980),

Curtain and Zwart (1995).

In the semigroup framework, stability, controllability and observability conditions

can be expressed using operator inequalities in the same way that LMIs are used to

represent those properties for ODEs. As an example, for a system u̇ = Au which

defines a SCS on a Hilbert space X with A being the infinitesimal generator, the

exponential stability of the system is equivalent to the existence of a positive bounded

linear operator P : X → X such that

〈u,APu〉X + 〈Au,Pu〉X ≤ −〈u, u〉X (1.1)
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for all u in the domain of A. Condition (1.1) is termed a Linear Operator Inequality

(LOI). The terminology LOI is deliberately chosen to suggest a parallel to the use of

Linear Matrix Inequalities (LMIs) for computational analysis and control of ODEs.

Indeed, there have been efforts to use discretization to solve LOI type conditions for

stability analysis and optimal control of PDEs (see, e.g. Christofides (2012)), optimal

actuator placement for parabolic PDEs (see Demetriou and Borggaard (2003) and

Morris et al. (2015)). While discretization has proven quite effective in practice, one

should note that in general it is difficult to determine if feasibility of the discretized

LOI implies stability of the non-discretized PDE. In contrast, we focused on exploring

how to use computation to solve LOIs (1.1) directly by parameterizing the cone of

positive and negative operators.

The approach, taken by Peet (2014), uses some of the machinery developed for De-

lay Differential Equations (DDEs) to express Lyapunov inequalities as LMIs, which

can be tested using standard interior-point algorithms. In Fridman and Terushkin

(2016), stability analysis and initial state recovery of semi-linear wave equation are

also presented in terms of LMIs. In Papachristodoulou and Peet (2006), stability

analysis is performed for scalar nonlinear PDEs using SOS and a simple form of Lya-

punov function. This simple Lyapunov function was extended in Valmorbida et al.

(2014) and Valmorbida et al. (2015) to consider some forms of coupled PDEs and in

Ahmadi et al. (2016) to perform passivity analysis. In Gahlawat and Peet (2015), the

class of Lyapunov functions was expanded to squares of semi-separable integral oper-

ators and applied to output-feedback dynamic control of scalar PDEs. Input-output

properties of PDEs with SOS implementation is discussed in Ahmadi et al. (2014).

Examples of using SOS in controller and observer designs for parabolic linear one-

dimensional PDEs can be found in Gahlawat and Peet (2011), Gahlawat and Peet

(2014), Gahlawat et al. (2011) and Gahlawat et al. (2012). Finally, in Meyer and Peet
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(2015), we considered stability of PDEs with multiple spatial variables.

In Chapter 2, we introduce notations and some preliminaries. General Lyapunov

theorem is proved in Chapter 3. Proposed techniques for coupled PDEs and PDEs

with two spatial variables are presented in Chapters 4 and 5. Numerical results are

discussed in Chapter 6 and some conclusions are in Chapter 7.

1.1 Formulation of Mathematical Problems

The interest of this work is to propose a computational algorithm for stability

analysis of two following forms of PDEs.

1.1.1 Coupled Linear PDEs with One Spatial Variable

First class considers function u : [0,∞)× [a, b] → Rn satisfying

ut(t, x) = A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x) (1.2)

for all t > 0 and x ∈ (a, b), with some fixed a, b ∈ R. The coefficients A,B,C are

polynomial matrices. Boundary conditions are represented through the elements of

matrix D ∈ R4n×4n such that for all t > 0

D












u(t, a)

u(t, b)

ux(t, a)

ux(t, b)












= 0. (1.3)

The use of matrix D allows for different types of boundary conditions. As an example,

D1 and D2 from (1.4) represent homogeneous Dirichlet boundary conditions and
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mixed boundary conditions (homogeneous Neumann at x = a and Dirichlet at x = b).

D1 =












In 0 0 0

0 In 0 0

0 0 0 0

0 0 0 0












, D2 =












0 0 0 0

0 In 0 0

0 0 In 0

0 0 0 0












. (1.4)

Robin Boundary conditions

H1u(t, a)−H2ux(t, a) = 0

H3u(t, b)−H4ux(t, b) = 0

can be stated as (1.3) with

D =












H1 0 −H2 0

0 H3 0 H4

0 0 0 0

0 0 0 0












.

Solution to (1.2) is assumed to exist, be unique and depend continuously on the

initial condition u(0, ·). Also, for each t > 0 we suppose u(t, ·), ux(t, ·), uxx(t, ·) ∈

Ln
2 (a, b).

1.1.2 Parapolic Scalar-Valued PDEs with Two Spatial Variables

The second form of interest has two spatial variables. Specifically, for all t > 0

and x ∈ Ω := (0, 1)2, u : [0,∞)× Ω → R satisfies

ut(t, x) = a(x)ux1x1
(t, x) + b(x)ux1x2

(t, x) + c(x)ux2x2
(t, x) + d(x)ux1

(t, x)

+ e(x)ux2
(t, x) + f(x)u(t, x), (1.5)

where a, b, c, d, e, f are polynomials. Assume that solution to (1.5) exists, is unique

and depends continuously on initial conditions. Moreover, let u satisfy homogeneous

5



Dirichlet boundary conditions, i.e.

u(t, 1, x2) = 0, u(t, 0, x2) = 0, u(t, x1, 1) = 0, u(t, x1, 0) = 0

for all x1, x2 ∈ [0, 1] and t > 0.

It is shown how some PDEs can be formulated as (1.2) in the following sections.

1.2 Example 1: Schrödinger Equation

To illustrate the class of PDEs which can be written as (1.2), first consider the

Schrodinger equation. In the following equation V is the potential energy, i is the

imaginary unit, ~ is the reduced Planck constant and ψ is the wave function of the

quantum system.

i~ψt(t, x) = −
~
2

m
ψxx(t, x) + V (x)ψ(t, x)

can be written as two coupled PDEs if one decomposes the solution into real and

imaginary parts as ψ(t, x) = ψrl(t, x) + iψim(t, x) and then separates the real and

imaginary parts of the equation, i.e.





ψrl
t (t, x)

ψim
t (t, x)




 =

~

m






0 −1

1 0






︸ ︷︷ ︸

A






ψrl
xx(t, x)

ψim
xx (t, x)




+

V (x)

~






0 1

−1 0






︸ ︷︷ ︸

C(x)






ψrl(t, x)

ψim(t, x)




 .

1.3 Example 2: PDE for the Model of Acoustic Waves

Next consider a model for a 1-D acoustic wave. For all t > 0, r ∈ (0, R) and some

fixed c > 0,

ptt(t, r) = c2prr(t, r) +
2c2

r
pr(t, r). (1.6)

PDE (1.6) is equivalent to a system of two coupled first order PDEs as





qt(t, r)

pt(t, r)




=






0 c2

0 0






︸ ︷︷ ︸

A






qrr(t, r)

prr(t, r)




+






0 2c2

r

0 0






︸ ︷︷ ︸

B(r)






qr(t, r)

pr(t, r)




+






0 0

1 0






︸ ︷︷ ︸

C






q(t, r)

p(t, r)




 ,
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where q is an auxiliary function. Moreover, if the boundary conditions imply ampli-

fication of the waves, i.e.

p(t, 0) = f1p(t, R) and pr(t, 0) = f2pr(t, R)

for some f1, f2 > 0 and all t > 0, then the boundary conditions can be stated using

(1.3) with

D =
















0 1 0 −f1 0 0 0 0

0 0 0 0 0 1 0 −f2

0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0
















.

1.4 Example 3: Relativistic Heat Conduction Equation

Classic form of heat PDE,

ut(t, x) = α▽2 u(t, x), (1.7)

assumes that the speed of information propagation is higher than the speed of light

in vacuum, which is physically unacceptable. For more details see Ali and Zhang

(2005). If one considers Minkowski space instead of Euclidean one, then (1.7) can be

written as

ut(t, x) = −
α

c2
utt(t, x) + α▽2 u(t, x), (1.8)

where c denotes the speed of light in vacuum.

Similarly, using an auxiliary function w = ut, (1.8) can be reformulated as linear

coupled PDEs. For example with one spatial dimension, if w = ut, then

w(t, x) = −
α

c2
wt(t, x) + αuxx(t, x)

7



or equivalently

wt(t, x) = −
c2

α
w(t, x) + c2uxx(t, x)

resulting in representation of (1.8) in the following form.






ut(t, x)

wt(t, x)




 =






0 0

c2 0






︸ ︷︷ ︸

A






uxx(t, x)

wxx(t, x)




+






0 1

0 −
c2

α






︸ ︷︷ ︸

C






u(t, x)

w(t, x)




 .

The next chapter presents notations we are using and some preliminaries.
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Chapter 2

PRELIMINARIES

2.1 Notations

N is the set of natural numbers and N0 := N∪{0}. Rn and S
n are the n-dimensional

Euclidean space and space of n×n real symmetric matrices. For x ∈ Rn, let xT denote

transposed x and xi ∈ R is the i-th component of x. ‖ · ‖1 is a norm on Rn, defined

as ‖x‖1 :=
∑n

i=1 |xi|. For X ∈ Sn, X ≤ 0 means that X is negative semidefinite. The

symbol ∗ will denote the symmetric elements of a symmetric matrix.

For Ω ⊆ Rn and f : Ω → R let f(x) stand for f(x1, ..., xn) and
∫

Ω
f(x) dx represent

an integral of f over Ω with dx := dx1dx2...dxn.

Let Nn
0 := {α ∈ Rn : αi ∈ N0}. A vector α ∈ Nn

0 is called multi-index. For l ∈ N

define the set

Qn
l := {α ∈ N

n
0 : ‖α‖1 ≤ l}. (2.1)

For α ∈ Nn
0 , x ∈ Rn and g : Rn → Rm partial derivative

Dα[g(x)] :=
∂α

∂xα
[g(x)] =

n∏

i=1

∂αi

∂xαi

i

[g(x)]. (2.2)

Note that ∂0

∂x0
i

[g(x)] = g(x) for any i ∈ {1, ..., n}. Classical notations such as

ux1x2
(t, x) := ∂

∂x2
[ ∂
∂x1

[u(t, x)]] are also applied.

If for a function f : Ω → R and some α ∈ N
n
0 derivative Dα[f(x)] exists for all

x ∈ Ω, there exists g : Ω → R such that g(x) = Dα[f(x)] for all x ∈ Ω. For brevity

Dα[f ] := g.

Lp(Ω) stands for the space of Lebesgue-measurable functions g : Ω → R with

norm, for p ∈ N

9



‖g‖Lp
:=
(∫

Ω

|g(s)|pds
)1/p

and ‖g‖L∞
:= sups∈Ω |g(s)|. Note that if g : Ω → Rm then the notation Lm

p (Ω) is

used.

W k,p(Ω) denotes Sobolev space of functions u : Ω → R with Dα[u] ∈ Lp(Ω) for all

α ∈ Qn
k , where Q

n
k is defined as in (2.1) and norm

‖u‖k,p :=
∑

‖α‖1≤k

‖Dα[u]‖Lp
.

It is known that for continuous functions u : [0,∞) →W 2,2(Ω) and V :W 2,2(Ω) →

R the composition (V ◦ u) : [0,∞) → R is also continuous and the upper right-hand

derivative D+
t V (u(t)) is defined by

D+[V (u(t))] := lim sup
h→0+

V (u(t+ h))− V (u(t))

h
.

Note that if v : [0,∞) → R is differentiable at t ∈ (0,∞) then D+[v(t)] = d
dt
[v(t)].

2.2 Linear Matrix Inequalities

Firstly, let start with the general form of a Semi-Definite Program (SDP). For

some c ∈ Rn and Fi ∈ Sm

min
x∈Rn

cTx

such that F0 +

n∑

i=1

xiFi ≤ 0.

Class of SDPs is a subclass of convex optimization problems and, thus, can be solved

computationally in polynomial time using, for example, interior point method. For

more about convex optimization see Boyd and Vandenberghe (2004).

The feasibility problem of an SDP is known as Linear Matrix Inequality (LMI).

Finite number of LMIs can be cast as a single LMI. The problem of searching for an

X ∈ Sn such that

X > 0 and ATX +XA < 0 (2.3)
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where A ∈ R
n×n is given, can be cast as an LMI. For example, let n = 2 and denote

X =






x1 x2

x2 x3




 . (2.4)

If eij ∈ R2×2 are basis matrices with e(i, j) = 1 and zero other elements, then (2.4)

can be written as

X = x1e11 + x2e12 + x2e21 + x3e22. (2.5)

and, therefore, problem (2.3) can be cast as

F0 +

3∑

i=1

xiFi ≤ 0

with some ǫ > 0 and

F0 =






ǫI2 0

0 ǫI2




 , F1 =






−e11 0

0 AT e22 + e22A




 , F3 =






−e22 0

0 AT e22 + e22A




 ,

F2 =






−(e12 + e21) 0

0 AT (e12 + e21) + (e12 + e21)A




 .

Thus, one can solve (2.5) using any SDP solver and, if succeed, will find a solution

to (2.3).

2.3 Polynomials and Sum of Squares Polynomials

For a multi-index α ∈ Nn
0 and x ∈ Rn, let

xα :=

n∏

i=1

xαi

i = xα1

1 x
α2

2 ... x
αn

n .

Then xα is a monomial of degree ‖α‖1 ∈ N0. A polynomial is a finite linear combi-

nation of monomials p(x) :=
∑

α pαx
α, where the summation is applied over a given

finite set of multi-indexes α and pα ∈ R denotes the corresponding coefficient. The
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degree of a polynomial p is the largest degree among all monomials, and is denoted

by deg(p) ∈ N0.

A polynomial p is called Sum of Squares (SOS), if there is a finite number of

polynomials zi such that for all x ∈ Rn, p(x) =
∑

i qi(x)
2. If p is a SOS polynomial,

then p(x) ≥ 0 for all x ∈ Rn.

Polynomial matrices and SOS polynomial matrices are defined in a similar manner,

except pα are not scalars, but matrices. If M is a SOS polynomial matrix then for all

x ∈ Rn, M(x) ≥ 0.

The following theorem introduces the connection between SOS polynomials and

positive semi-definite matrices. For more see Parrilo (2000).

Theorem 1. A polynomial p : Rn → R of degree 2d is an SOS polynomial if and only

if there exists Q ∈ Sd+1 such that Q ≥ 0 and

p(x) = zTd (x)Qzd(x),

where zd(x) is a vector of monomials up to degree d, i.e.

zd(x) :=
















1

x

x2

...

xd
















.

Proof. (⇒) Suppose p is an SOS polynomial. Then there are polynomials qi such

that

p(x) =

k∑

i=1

qi(x)
2.

Note, that for each i ∈ {1, ..., k},

qi(x) = aTi zd(x),
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where ai is the vector of coefficients of the polynomial qi. Then

k∑

i=1

qi(x)
2 =












q1(x)

q2(x)

...

qk(x)












T 










q1(x)

q2(x)

...

qk(x)












=












aT1 zd(x)

aT2 zd(x)

...

aTk zd(x)












T 










aT1 zd(x)

aT2 zd(x)

...

aTk zd(x)












= zd(x)
T [a1 a2 . . . ak]












aT1

aT2
...

aTk












zd(x) = zd(x)
TAAT zd(x)

= zd(x)
TQzd(x).

Since Q = AAT , Q ≥ 0.

(⇐) Given polynomial p suppose there exists Q ≥ 0 such that

p(x) = zd(x)
TQzd(x). (2.6)

Since Q ≥ 0 there exists A such that Q = ATA. Then (2.6) can be reformulated as

p(x) = zd(x)
TATAzd(x) = (Azd(x))

TAzd(x). (2.7)

Let q(x) := Azd(x), then (2.7) can be continued as

p(x) = q(x)T q(x) =












q1(x)

q2(x)

...

qk(x)












T 










q1(x)

q2(x)

...

qk(x)












=

k∑

i=1

qi(x)
2.

13



2.4 Comparison Principle

Recall the Comparison Lemma which is used in the proof of Lyapunov theorem

for PDEs in the next chapter. Verbatim from Khalil (1996).

Lemma 1. Consider the scalar differential equation d
dt
[u(t)] = f(t, u(t)), u(t0) = u0,

where f(t, x) is continuous in t and locally Lipschitz in x, for all t ≥ 0 and all

x ∈ J ⊂ R. Let [t0, T ) (T could be infinity) be the maximal interval of existence of

the solution u, and suppose u(t) ∈ J for all t ∈ [t0, T ). Let v be a continuous function

whose upper right-hand derivative D+[v(t)] satisfies

D+[v(t)] ≤ f(t, v(t)), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).

Proof. For the proof see Khalil (1996).
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Chapter 3

LYAPUNOV TEST FOR PDES

In this chapter Lyapunov conditions for stability are presented for the following

class of PDEs. For some k ∈ N, all t ∈ (0,∞) and x ∈ Ω ⊆ Rn,

ut(t, x) = f(t, x,Dα(1) [u(t, x)] , ..., Dα(k) [u(t, x)]), (3.1)

where u : [0,∞)×Ω → Rm and for each i ∈ {1, ..., k}, Dα(i)[u(t, x)] is a partial deriva-

tive in x. Assume that solutions to (3.1) exist, are unique and depend continuously

on initial conditions.

Definition 1. If there exist scalars k, α > 0 such that solution to (3.1) satisfies

‖u(t, ·)‖Lm
2
≤ k‖u(0, ·)‖Lm

2
exp(−αt) for all t > 0.

then (3.1) is called exponentially stable in Lm
2 norm.

The following theorem provides sufficient conditions for (3.1) to be exponentially

stable.

Theorem 2. Let there exist continuous V : Lm
2 (Ω) → R, l, p ∈ N and b, a > 0 such

that

a‖w‖lLm
2
≤ V (w) ≤ b‖w‖pLm

2
, (3.2)

for all w ∈ Lm
2 (Ω). Furthermore, suppose that there exists c ≥ 0 such that for all

t ≥ 0 the upper right-hand derivative

D+ [V (u(t, ·))] ≤ −c‖u(t, ·)‖pL2
, (3.3)

where u satisfies (3.1). Then for all t ≥ 0

‖u(t, ·)‖L2
≤

l

√

b

a
‖u(0, ·)‖

p/l
L2

exp
{

−
c

lb
t
}

.
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Proof. Let conditions of Theorem 2 be satisfied. From (3.2) it follows that for each

t ≥ 0

a‖u(t, ·)‖lLm
2
≤ V (u(t, ·)) ≤ b‖u(t, ·)‖pLm

2
. (3.4)

Dividing both sides of the second inequality in (3.4) by b results in

1

b
V (u(t, ·)) ≤ ‖u(t, ·)‖pLm

2
. (3.5)

After multiplying both sides of (3.5) by −c, we have

−c‖u(t, ·)‖pLm
2
≤ −

c

b
V (u(t, ·)). (3.6)

From (3.3) and (3.6) it follows that

D+ [V (u(t, ·))] ≤ −
c

b
V (u(t, ·)). (3.7)

To use the comparison principle, consider the ODE

d

dt
[φ(t)] = −

c

b
φ(t), φ(0) = V (u(0, ·)), (3.8)

where t ∈ (0,∞) and function φ : [0,∞) → R is continuous. Solution for (3.8) is

φ(t) = V (u(0, ·)) exp
{

−
c

b
t
}

for all t ≥ 0. Applying Lemma 1 for (3.7) and (3.8) results in

V (u(t, ·)) ≤ V (u(0, ·)) exp
{

−
c

b
t
}

(3.9)

for all t ≥ 0. Substituting t = 0 in the second inequality of (3.4) implies

V (u(0, ·)) ≤ b‖u(0, ·)‖pLm
2
. (3.10)

Combining the first inequality of (3.4) with (3.10) and (3.9) gives

a‖u(t, ·)‖lLm
2
≤ V (u(t, ·)) ≤ V (u(0, ·)) exp

{

−
c

b
t
}

≤ b‖u(0, ·)‖pLm
2
exp

{

−
c

b
t
}

. (3.11)

Dividing (3.11) by a and taking the lth root results in

‖u(t, ·)‖Lm
2
≤

l

√

b

a
‖u(0, ·)‖

p/l
Lm
2
exp

{

−
c

lb
t
}

for all t ≥ 0.
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Chapter 4

COUPLED LINEAR PDES

Recall from Dullerud and Paganini (2013) how LMIs can be used in stability anal-

ysis for linear ODEs.

4.1 Quadratic Lyapunov Functions

Theorem 3. Given a system

d

dt
[x(t)] = Ax(t) (4.1)

where t > 0, x : (0,∞) → Rn and A ∈ Rn×n, if

∃ P > 0 such that ATP + PA < 0 (4.2)

then (4.1) is exponentially stable.

Proof. If (4.2) holds, then V (z) = zTPz is a Lyapunov function for (4.1) since ATP +

PA < 0 and for all t > 0,

d

dt
[V (x(t))] =

d

dt
[x(t)T ]Px(t) + x(t)TP

d

dt
[x(t)] = x(t)TATPx(t) + x(t)TPAx(t)

= x(t)T (ATP + PA)x(t) < 0.

The natural question is if one can parameterize a set of positive and negative

operators on functional spaces such as Lm
2 (Ω) with some Ω ⊆ Rn. The following

theorem uses positive matrices to parameterize a set of positive operators on Lm
2 (a, b)

of the form

(Pw)(x) :=M(x)w(x) +

∫ b

a

N(x, y)w(y) dy

for all x ∈ (a, b) with any a, b ∈ R.
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Theorem 4. Given any positive semi-definite matrix P ∈ S
m
2
(d+1)(d+4) one can par-

tition it as

P =






P11 P12

P21 P22




 , (4.3)

such that P11 ∈ Sm(d+1). Define

Z1(x) := Zd(x)⊗ Im and Z2(x, y) := Zd(x, y)⊗ Im (4.4)

where x, y ∈ (a, b), Zd is a vector of monomials up to degree d and ⊗ is the Kronecker

product. If for some ǫ > 0

M(x) : = Z1(x)
TP11Z1(x) + ǫIm, (4.5)

N(x, y) : = Z1(x)
TP12Z2(x, y) + Z2(y, x)

TP21Z1(y) +

∫ b

a

Z2(z, x)
TP22Z2(z, y) dz,

(4.6)

then functional V : Lm
2 (a, b) → R, defined as

V (w) : =

∫ b

a

w(x)TM(x)w(x) dx+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx, (4.7)

satisfies

V (w) ≥ ǫ‖w‖Lm
2

for all w ∈ Lm
2 (a, b). (4.8)

Proof. The idea of the proof is to show that V from (4.7), satisfies the following

equation.

V (w) =

∫ b

a

(Zw)(x)TP (Zw)(x) dx+ ǫ

∫ b

a

w(x)Tw(x) dx, (4.9)

where for all x ∈ (a, b),

(Zw)(x) :=






Z1(x)w(x)
∫ b

a
Z2(x, y)w(y)dy




 . (4.10)
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Since P ≥ 0, then it is straightforward to show (4.8).

Consider the first integral of the right hand side in (4.9), substitute for Z from

(4.10) and use the partition (4.3) as follows.

∫ b

a

(Zw)(x)TP (Zw)(x) dx =

∫ b

a

w(x)TZ1(x)
TP11Z1(x)w(x) dx (4.11)

+

∫ b

a

w(x)TZ1(x)
TP12

∫ b

a

Z2(x, y)w(y) dydx

+

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P21Z1(x)w(x)dx

+

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P22

∫ b

a

Z2(x, z)w(z) dzdx.

Changing the order of integration in the 3rd integral of the right hand side of (4.11)

and then switching between the integration variables x and y results in

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P21Z1(x)w(x)dx =

∫ b

a

w(x)T
∫ b

a

Z2(y, x)
TP21Z1(y)w(y) dydx.

(4.12)

Changing two times the order of integration in the 4th integral of the right hand side

of (4.11) and then switching first between the integration variables x and z, and then

between x and y results in

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P22

∫ b

a

Z2(x, z)w(z) dz dx (4.13)

=

∫ b

a

∫ b

a

∫ b

a

w(y)TZ2(x, y)
TP22Z2(x, z)w(z)dxdzdy

=

∫ b

a

∫ b

a

∫ b

a

w(y)TZ2(z, y)
TP22Z2(z, x)w(x)dzdxdy

=

∫ b

a

∫ b

a

∫ b

a

w(x)TZ2(z, x)
TP22Z2(z, y)w(y)dzdydx

=

∫ b

a

w(x)T
∫ b

a

∫ b

a

Z2(z, x)
TP22Z2(z, y)dzw(y)dydx.
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Using (4.11)-(4.13) one can write

∫ b

a

(Zw)(x)TP (Zw)(x) dx =

∫ b

a

w(x)TZ1(x)
TP11Z1(x)w(x) dx (4.14)

+

∫ b

a

w(x)T
∫ b

a

(

Z1(x)P12Z2(x, y) + Z2(y, x)P21Z1(y)

+

∫ b

a

Z2(z, x)
TP22Z2(z, y)dz

)

w(y) dy dx.

From (4.5), (4.6) and (4.14) it follows that

∫ b

a

(Zw)(x)TP (Zw)(x) dx =

∫ b

a

w(x)TM(x)w(x) dx− ǫ

∫ b

a

w(x)Tw(x) dx

+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx. (4.15)

Adding ǫ
∫ b

a
w(x)Tw(x) dx to the both sides of (4.15) and using (4.7) results in (4.9),

which concludes the proof.

4.2 Extending the Set of Lyapunov Candidates

Form (4.9) parameterizes positive functionals over Lm
2 (a, b) for any a, b ∈ R. But

a, b are usually known ahead, thus we can parameterize a set of functionals that are

positive over Lm
2 (a, b), but not necessary over Lm

2 (c, d) with c < a < b < d.

Adding an extra term in (4.9) as follows allows to parameterize a larger set of

Lyapunov candidates.

V (w) =

∫ b

a

(Zw)(x)TP (Zw)(x) dx+ ǫ

∫ b

a

w(x)Tw(x) dx

+

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx, (4.16)

where g : [a, b] → R is continuous and positive and Q ≥ 0. In this work we used

g(x) := (x− a)(b− x) (4.17)
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for all x ∈ [a, b]. Other choices for g are possible. For more information see Posi-

tivstellensatz results in Stengle (1974). Based on (4.16) Theorem 4 can be modified

as follows.

Theorem 5. Given any positive semi-definite matrices P,Q ∈ S
m
2
(d+1)(d+4) one can

partition them as

P =






P11 P12

P21 P22




 and Q =






Q11 Q12

Q21 Q22




 , (4.18)

such that P11, Q11 ∈ S
m(d+1). If for some ǫ > 0

M(x) : = Z1(x)
T (P11 + g(x)Q11)Z1(x) + ǫIm, (4.19)

N(x, y) : = Z1(x)
T (P12 + g(x)Q12)Z2(x, y) + Z2(y, x)

T (P21 + g(y)Q21)Z1(y) (4.20)

+

∫ b

a

Z2(z, x)
T (P22 + g(z)Q22)Z2(z, y) dz,

where as before

Z1(x) := Zd(x)⊗ Im and Z2(x, y) := Zd(x, y)⊗ Im

and some positive and continuous function g, then functional V : Lm
2 (a, b) → R,

defined as

V (w) : =

∫ b

a

w(x)TM(x)w(x) dx+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx, (4.21)

satisfies V (w) ≥ ǫ‖w‖Lm
2
for all w ∈ Lm

2 (a, b).

Proof. The idea of the proof is to show that V from (4.21), satisfies the following

equation.

V (w) = ǫ

∫ b

a

w(x)Tw(x) dx+

∫ b

a

(Zw)(x)TP (Zw)(x) dx

+

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx, (4.22)
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where

(Zw)(x) :=






Z1(x)w(x)
∫ b

a
Z2(x, y)w(y)dy




 . (4.23)

Since P,Q ≥ 0 and g(x) ≥ 0 for all x ∈ [a, b], then the right hand side of (4.22) is

positive.

Consider 3rd integral of (4.22) using (4.23), since for the 2nd integral steps are

almost the same, except it does not have the multiplier function g.

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx =

∫ b

a

g(x)w(x)TZ1(x)
TQ11Z1(x)w(x) dx

+

∫ b

a

g(x)w(x)TZ1(x)
TQ12

∫ b

a

Z2(x, y)w(y) dydx

+

∫ b

a

g(x)

∫ b

a

w(y)TZ2(x, y)
T dy Q21Z1(x)w(x)dx

+

∫ b

a

g(x)

∫ b

a

w(y)TZ2(x, y)
T dy Q22

∫ b

a

Z2(x, z)w(z) dz dx.

(4.24)

Changing the order of integration in the 3rd integral of the right hand side of (4.24)

and then switching between the integration variables x and y results in

∫ b

a

g(x)

∫ b

a

w(y)TZ2(x, y)
T dy Q21Z1(x)w(x)dx

=

∫ b

a

w(x)T
∫ b

a

g(y)Z2(y, x)
TQ21Z1(y)w(y) dydx.

(4.25)

Changing two times the order of integration in the 4th integral of the right hand side

of (4.24) and then switching first between the integration variables x and z, and then

between x and y results in
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∫ b

a

g(x)

∫ b

a

w(y)TZ2(x, y)
T dy Q22

∫ b

a

Z2(x, z)w(z) dz dx

=

∫ b

a

∫ b

a

∫ b

a

g(x)w(y)TZ2(x, y)
TQ22Z2(x, z)w(z)dxdzdy

=

∫ b

a

∫ b

a

∫ b

a

g(z)w(y)TZ2(z, y)
TQ22Z2(z, x)w(x)dzdxdy

=

∫ b

a

∫ b

a

∫ b

a

g(z)w(x)TZ2(z, x)
TQ22Z2(z, y)w(y)dzdydx

=

∫ b

a

w(x)T
∫ b

a

∫ b

a

Z2(z, x)
T g(z)Q22Z2(z, y)dzw(y)dydx.

(4.26)

Using (4.24)-(4.26) one can write

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx =

∫ b

a

w(x)TZ1(x)
Tg(x)Q11Z1(x)w(x) dx

+

∫ b

a

w(x)T
∫ b

a

(

Z1(x)g(x)Q12Z2(x, y)

+ Z2(y, x)g(y)Q21Z1(y)

+

∫ b

a

Z2(z, x)
T g(z)Q22Z2(z, y)dz

)

w(y) dy dx.

(4.27)

Following the same idea as in (4.11)-(4.14) it is possible to achieve

∫ b

a

(Zw)(x)TP (Zw)(x) dx =

∫ b

a

w(x)TZ1(x)
TP11Z1(x)w(x) dx

+

∫ b

a

w(x)T
∫ b

a

(

Z1(x)P12Z2(x, y) + Z2(y, x)P21Z1(y)

+

∫ b

a

Z2(z, x)
TP22Z2(z, y)dz

)

w(y) dy dx. (4.28)
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Using (4.19), (4.20), (4.27) and (4.28) yields

∫ b

a

(Zw)(x)TP (Zw)(x) dx+

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx

=

∫ b

a

w(x)TM(x)w(x) dx− ǫ

∫ b

a

w(x)Tw(x) dx+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx.

(4.29)

Adding ǫ
∫ b

a
w(x)Tw(x) dx to the both sides of (4.29) and using (4.21)results in (4.22),

which concludes the proof.

For simplicity, define a set of polynomials (M,N) as follows.

Σm,d,ǫ
+ := {(M,N) : ∃ P,Q ≥ 0 such that (4.19), (4.20) hold}. (4.30)

Similarly, define a different set of polynomials that parameterize functionals of the

form (4.21) such that V (w) ≤ −ǫ‖w‖Lm
2
for all w ∈ Lm

2 (a, b). Denote

Σm,d,ǫ
− := {(M,N) : (−M,−N) ∈ Σm,d,ǫ

+ }. (4.31)

4.3 Quadratic From of the Time Derivative of Lyapunov Function

In this section a quadratic form of the time derivative of Lyapunov function is

presented. First recall the PDE of interest. For all t ∈ (0,∞) and x ∈ (a, b) ⊂ R,

u : [0,∞)× [a, b] → Rm satisfies

ut(t, x) = A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x), (4.32)

where A,B,C are some given polynomial matrices.
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Substituting u(t, ·) for w in (4.7) and differentiating with respect to t results in

d

dt
[V (u(t, ·))] =

d

dt

[∫ b

a

u(t, x)TM(x)u(t, x) dx+

∫ b

a

u(t, x)T
∫ b

a

N(x, y)u(t, y) dydx

]

=

∫ b

a

(
ut(t, x)

TM(x)u(t, x) + u(t, x)TM(x)ut(t, x)
)
dx

+

∫ b

a

(

ut(t, x)
T

∫ b

a

N(x, y)u(t, y) dy + u(t, x)T
∫ b

a

N(x, y)ut(t, y) dy

)

dx.

(4.33)

Now substituting for ut from (4.32) into (4.33) yields

d

dt
[V (u(t, ·))] =

∫ b

a

(
(

A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x)
)T

M(x)u(t, x)

+ u(t, x)TM(x)
(

A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x)
)
)

dx

+

∫ b

a

(
(

A(x)uxx(t, x) +B(x)ux(t, x)

+ C(x)u(t, x)
)T
∫ b

a

N(x, y)u(t, y) dy

+ u(t, x)T
∫ b

a

N(x, y)
(

A(y)uyy(t, y)

+B(y)uy(t, y) + C(y)u(t, y)
)

dy

)

dx. (4.34)
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If one defines

K(x) : =









C(x)TM(x) +M(x)C(x)(x) M(x)B(x) M(x)A(x)

B(x)TM(x) 0 0

A(x)TM(x) 0 0









,

L(x, y) : =









C(x)TN(x, y) +N(x, y)C(y) N(x, y)B(y) N(x, y)A(y)

B(x)TN(x, y) 0 0

A(x)TN(x, y) 0 0









,

q(t, x) : =









u(t, x)

ux(t, x)

uxx(t, x)









,

then (4.34) can be written as

d

dt
[V (u(t, ·))] =

∫ b

a

q(t, x)TK(x)q(t, x) dx+

∫ b

a

q(t, x)T
∫ b

a

L(x, y)q(t, y) dydx.

(4.35)

Equation (4.35) represents quadratic form of the time derivative of Lyapunov candi-

date. If (K,L) ∈ Σ3m,d,0
− then for every t > 0

d

dt
[V (u(t, ·))] ≤ 0

and, therefore, V is a Lyapunov function, thus PDE (4.32) is stable. If (K,L) ∈ Σ3m,d,ǫ
−

then (4.32) is exponentially stable.

Notice, that condition (K,L) ∈ Σ3m,d,0
− is conservative. The reason is that the

elements in q are not independent, i.e. the second and third elements are partial

derivatives of the first one. Therefore, for the PDE (4.32) to be stable, it is enough
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to check if (4.35) is negative on a subspace of L3m
2 (a, b), which is

Λ =















w1

w2

w3









∈ L3m
2 (a, b) : D












w1(a)

w1(b)

w2(a)

w2(b)












= 0,
w2 = w′

1,

w3 = w′′
1







(4.36)

Notice, that Λ depends on D that represents the boundary conditions as before in

(1.3).

4.4 Spacing Operators

Results of the following theorem are used to parameterize functions which are

negative on Λ, but not necessarily on the whole space L3m
2 (a, b).

Theorem 6. Let X be a closed subspace of some Hilbert space Y . Then 〈u,Ru〉Y ≤ 0

for all u ∈ X if and only if there exist M and T such that R = M + T and

〈w,Mw〉Y ≤ 0 for all w ∈ Y and 〈u, T u〉Y = 0 for all u ∈ X.

Proof. For (⇒), suppose that 〈u,Ru〉Y ≤ 0 for all u ∈ X . SinceX is a closed subspace

of a Hilbert space Y , there exists a projection operator such that P = P∗ = PP and

Pw ∈ X for all w ∈ Y . Let M = PRP and T = M−R. Then for all w ∈ Y ,

〈w,Mw〉Y = 〈w,PRPw〉Y = 〈Pw,RPw〉Y ≤ 0

since Pw ∈ X . Furthermore, for all u ∈ X

〈u, T u〉Y = 〈u,PRPu〉Y − 〈u,Ru〉Y = 〈Pu,RPu〉Y − 〈u,Ru〉Y

= 〈u,Ru〉Y − 〈u,Ru〉Y = 0.

For (⇐), assume that there exist M and T such that R = M+T and 〈w,Mw〉Y ≤ 0

for all w ∈ Y and 〈u, T u〉Y = 0 for all u ∈ X . Then for all u ∈ X ,

〈u,Ru〉Y = 〈u, (M+ T )u〉Y = 〈u,Mu〉Y + 〈u, T u〉Y = 〈u,Mu〉Y ≤ 0.
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As was shown previously, Σ3n,d,ǫ
− parameterizes a subset of M. Next step is to

parameterize a subset of operators T - the so-called “spacing operators” using poly-

nomial spacing functions. Therefore the sum of M and T yield an operator R which

is negative on Λ, but not necessarily on L3m
2 (a, b) space.

4.5 Parametrization of Spacing Operators by Polynomials

The following lemmas define the structure of polynomial matrices T and R such

that for all λ ∈ Λ

∫ b

a

λ(x)TT (x)λ(x)dx+

∫ b

a

λ(x)T
∫ b

a

R(x, y)λ(y)dydx = 0,

where as before

Λ =















w1

w2

w3









∈ L3m
2 (a, b) : D












w1(a)

w1(b)

w2(a)

w2(b)












= 0,
w2 = w′

1,

w3 = w′′
1







. (4.37)

Lemma 2. Let P1, P2, P3, P4 : [a, b] → Rm×m be polynomials and w,w′, w′′ ∈ Lm
2 (a, b).

If

T (x) =









P ′
1(x) P1(x) + P ′

2(x) P2(x)

P1(x) + P ′
3(x) P2(x) + P3(x) + P ′

4(x) P4(x)

P3(x) P4(x) 0









(4.38)

then
∫ b

a

λ(x)TT (x)λ(x) dx = qTΠ1q, (4.39)
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where

λ(x) :=









w(x)

w′(x)

w′′(x)









, q :=












w(a)

w(b)

w′(a)

w′(b)












, Π1 :=












−P1(a) 0 −P2(a) 0

0 P1(b) 0 P2(a)

−P3(a) 0 −P4(a) 0

0 P3(b) 0 P4(b)












.

(4.40)

Proof. Using the fundamental theorem of calculus it is true that

∫ b

a

d

dx











w(x)T

w′(x)T






T 




P1(x) P2(x)

P3(x) P4(x)











w(x)

w′(x)









 dx

=






w(b)T

w′(b)T






T 




P1(b) P2(b)

P3(b) P4(b)











w(b)

w′(b)






−






w(a)T

w′(a)T






T 




P1(a) P2(a)

P3(a) P4(a)











w(a)

w′(a)






=












w(a)T

w(b)T

w′(a)T

w′(b)T












T 










−P1(a) 0 −P2(a) 0

0 P1(b) 0 P2(a)

−P3(a) 0 −P4(a) 0

0 P3(b) 0 P4(b)























w(a)

w(b)

w′(a)

w′(b)












= qTΠ1q. (4.41)
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From the other side, using chain rule it can be seen that

d

dx











w(x)T

w′(x)T






T 




P1(x) P2(x)

P3(x) P4(x)











w(x)

w′(x)











=









w(x)T

w′(x)T

w′′(x)T









T 







P ′
1(x) P1(x) + P ′

2(x) P2(x)

P1(x) + P ′
3(x) P2(x) + P3(x) + P ′

4(x) P4(x)

P3(x) P4(x) 0

















w(x)

w′(x)

w′′(x)









= λ(x)TT (x)λ(x). (4.42)

Combining (4.41) and (4.42) results in (4.39).

Notice that Dq = 0 and, therefore,

qTΠ1q = qT (I4m −D +D)TΠ1(I4m −D +D)q

= qT (I4m −D +D)TΠ1(I4m −D)q = qT (I4m −D)TΠ1(I4m −D)q.

Using Lemma (2) one can define the following set.

ΞD
1 := {T as defined in (4.38) : (I4m−D)TΠ1(I4m−D) = 0, Π1 as defined in (4.40)}

Thus, for any T ∈ ΞD
1 and any λ ∈ Λ it is true that

∫ b

a

λ(x)TT (x)λ(x)dx = 0.

Lemma 3. Let Q1, Q2, Q3, Q4 : [a, b]× [a, b] → Rm×m be polynomials and w,w′, w′′ ∈

Lm
2 (a, b). If

R1(x, y) :=









Q1,xy(x, y) Q3,xy(x, y) +Q1,x(x, y) Q3,x(x, y)

Q2,xy(x, y) +Q1,y(x, y) R22(x, y) Q4,x(x, y) +Q3(x, y)

Q2,y(x, y) Q4,y(x, y) +Q2(x, y) Q4(x, y)









R22(x, y) := Q4,xy(x, y) +Q2,x(x, y) +Q3,y(x, y), (4.43)
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then
∫ b

a

∫ b

a

λ(x)TR1(x, y)λ(y)dxdy = qTΘ1q,

where

λ(x) :=









w(x)

w′(x)

w′′(x)









, q :=












w(a)

w(b)

w′(a)

w′(b)












,

Θ1 :=












Q1(a, a) −Q1(a, b) Q3(a, a) −Q3(a, b)

−Q1(b, a) Q1(b, b) −Q3(b, a) Q3(b, b)

Q2(a, a) −Q2(a, b) Q4(a, a) −Q4(a, b)

−Q2(b, a) Q2(b, b) −Q4(b, a) Q4(b, b)












. (4.44)
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Proof. Applying the fundamental theorem of calculus twice to

∫ b

a

∫ b

a

∂2

∂x∂y











w(x)T

w′(x)T






T 




Q1(x, y) Q3(x, y)

Q2(x, y) Q4(x, y)











w(y)

w′(y)









 dxdy

=

∫ b

a

∂

∂y

(





w(b)T

w′(b)T






T 




Q1(b, y) Q3(b, y)

Q2(b, y) Q4(b, y)











w(y)

w′(y)






−






w(a)T

w′(a)T






T 




Q1(a, y) Q3(a, y)

Q2(a, y) Q4(a, y)











w(y)

w′(y)






)

dy

=






w(b)T

w′(b)T






T 




Q1(b, b) Q3(b, b)

Q2(b, b) Q4(b, b)











w(b)

w′(b)






−






w(a)T

w′(a)T






T 




Q1(a, b) Q3(a, b)

Q2(a, b) Q4(a, b)











w(b)

w′(b)






−






w(b)T

w′(b)T






T 




Q1(b, a) Q3(b, a)

Q2(b, a) Q4(b, a)











w(a)

w′(a)






+






w(a)T

w′(a)T






T 




Q1(a, a) Q3(a, a)

Q2(a, a) Q4(a, a)











w(a)

w′(a)






=












w(a)T

w(b)T

w′(a)T

w′(b)T












T 










Q1(a, a) −Q1(a, b) Q3(a, a) −Q3(a, b)

−Q1(b, a) Q1(b, b) −Q3(b, a) Q3(b, b)

Q2(a, a) −Q2(a, b) Q4(a, a) −Q4(a, b)

−Q2(b, a) Q2(b, b) −Q4(b, a) Q4(b, b)























w(a)

w(b)

w′(a)

w′(b)












= qTΘ1q. (4.45)
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From the other side, using the chain rule, one can get

∂2

∂x∂y











w(x)T

w′(x)T






T 




Q1(x, y) Q3(x, y)

Q2(x, y) Q4(x, y)











w(y)

w′(y)











=









w(x)T

w′(x)T

w′′(x)









T

R1(x, y)









w(x)

w′(x)

w′′(x)









= λ(x)TR1(x, y)λ(y), (4.46)

where R1 is defined in (4.43). Then combining (4.45) and (4.46) finishes the proof.

As before, notice that

qTΘ1q = qT (I4m −D +D)TΘ1(I4m −D +D)q

= qT (I4m −D +D)TΘ1(I4m −D)q = qT (I4m −D)TΘ1(I4m −D)q.

Similarly as for Ξ1, using Lemma (3) one can define a set

ΞD
2 := {R1 as defined in (4.43) : (I4n−D)TΘ1(I4n−D) = 0, Θ1 as defined in (4.44)}.

Thus, for any R1 ∈ ΞD
2 and any λ ∈ Λ,

∫ b

a

∫ b

a

λ(x)TR1(x, y)λ(y)dxdy = 0.

Lemma 4. Let Q5, Q6 : [a, b]×[a, b] → Rm×m be polynomials and w,w′, w′′ ∈ Lm
2 (a, b).

If

R2(x, y) =









0 0 0

0 0 0

Q5,y(x, y) Q6,y(x, y) +Q5(x, y) Q6(x, y)









(4.47)

then

∫ b

a

∫ b

a

λ(x)TR2(x, y)λ(y)dxdy =

∫ b

a

w′′(x)TΘ2(x)qdx,
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where

Θ2(x) =

[

−Q5(x, a) Q5(x, b) −Q6(x, a) Q6(x, b)

]

. (4.48)

Proof. Start with applying the fundamental theorem of calculus to

∫ b

a

∫ b

a

∂

∂y




w

′′(x)T
[

Q5(x, y) Q6(x, y)

]






w(y)

w′(y)









 dxdy

=

∫ b

a

(

w′′(x)T
[

Q5(x, b) Q6(x, b)

]






w(b)

w′(b)






− w′′(x)T
[

Q5(x, a) Q6(x, a)

]






w(a)

w′(a)






)

dx

=

∫ b

a

w′′(x)T
[

−Q5(x, a) Q5(x, b) −Q6(x, a) Q6(x, b)

]












w(a)

w(b)

w′(a)

w′(b)












dx.

(4.49)

Using the chain rule one can get

∂

∂y




w

′′(x)T
[

Q5(x, y) Q6(x, y)

]






w(y)

w′(y)









 =









w(x)T

w′(x)T

w′′(x)T









T 







0 0 0

0 0 0

Q5,y(x, y) Q6,y(x, y) +Q5(x, y) Q6(x, y)

















w(y)

w′(y)

w′′(y)









. (4.50)

Combining (4.49) and (4.50) concludes the proof.

As previously, a set can be defined using Lemma (4).

ΞD
3 :=







R2 as defined in (4.47) :
Θ2(x)

T (I4n −D) = 0 for all x ∈ (a, b),

Θ2 as defined in (4.48)
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Therefore, for any R1 ∈ ΞD
3 and any λ ∈ Λ,

∫ b

a

∫ b

a

λ(x)TR2(x, y)λ(y)dxdy = 0.

Lemma 5. Let Q7, Q8 : [a, b]×[a, b] → Rm×m be polynomials and w,w′, w′′ ∈ Lm
2 (a, b).

If

R3(x, y) =









0 0 Q7,x(x, y)

0 0 Q8,x(x, y) +Q7(x, y)

0 0 Q8(x, y)









(4.51)

then

∫ b

a

∫ b

a

λ(x)TR3(x, y)λ(y)dxdy =

∫ b

a

qTΘ3(y)w
′′(y)dy,

where

λ(x) :=









w(x)

w′(x)

w′′(x)









, q :=












w(a)

w(b)

w′(a)

w′(b)












, Θ3(y) =












−Q7(a, y)

Q7(b, y)

−Q8(a, y)

Q8(b, y)












. (4.52)

Proof. Apply the fundamental theorem of calculus to

∫ b

a

∫ b

a

∂

∂x











w(x)T

w′(x)T






T 




Q7(x, y)

Q8(x, y)




w

′′(y)




 dxdy

=

∫ b

a

(






w(b)T

w′(b)T






T 




Q7(b, y)

Q8(b, y)




w

′′(y)−






w(a)T

w′(a)T






T 




Q7(a, y)

Q8(a, y)




w

′′(y)
)

dy

=

∫ b

a












w(a)T

w(b)T

w′(a)T

w′(b)T












T 










−Q7(a, y)

Q7(b, y)

−Q8(a, y)

Q8(b, y)












w′′(y)dy. (4.53)
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Using the chain rule one can get

∂

∂x











w(x)T

w′(x)T






T 




Q7(x, y)

Q8(x, y)




w

′′(y)






=









w(x)T

w′(x)T

w′′(x)T









T 







0 0 Q7,x(x, y)

0 0 Q8,x(x, y) +Q7(x, y)

0 0 Q8(x, y)

















w(y)

w′(y)

w′′(y)









. (4.54)

Combining (4.53) and (4.54) concludes the proof.

From Lemma (5) one can define the following set.

ΞD
4 :=







R3 as defined in (4.51) :
(I4n −D)TΘ3(y) = 0 for all y ∈ (a, b),

Θ3 as defined in (4.52)







.

Thus, for any R3 ∈ ΞD
4 and any λ ∈ Λ,

∫ b

a

∫ b

a

λ(x)TR3(x, y)λ(y)dxdy = 0.

Finally, combining Ξi results in a set of polynomials that parameterize a subset of

spacing operators, i.e.

Σm,d,D
0 := {(T,R) : T ∈ ΞD

1 and R ∈
4∑

i=2

ΞD
i }, (4.55)

which provides a pair of polynomials (T,R) such that for all λ ∈ Λ

∫ b

a

λ(x)TT (x)λ(x)dx+

∫ b

a

λ(x)T
∫ b

a

R(x, y)λ(y)dydx = 0.

4.6 Stability Test for Coupled PDEs

This section summarizes the results of the Chapter 4 in the following theorem.
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Theorem 7. Suppose that for all t ∈ (0,∞) and x ∈ (a, b) ⊂ R, u : [0,∞)× [a, b] →

Rm satisfies

ut(t, x) = A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x), (4.56)

where A,B,C are some given polynomial matrices with

γ = max{deg(A), deg(B), deg(C)}.

If there exist d ∈ N, ǫ1, ǫ2 > 0,

(M,N) ∈ Σm,d,ǫ1
+ , (T,R) ∈ Σm,2d+2+γ,D

0 , (H,G) ∈ Σ3m,d+γ,ǫ2
−

such that for all x, y ∈ (a, b)








C(x)TM(x) +M(x)C(x) M(x)B(x) M(x)A(x)

B(x)TM(x) 0 0

A(x)TM(x) 0 0









= T (x) +H(x),









C(x)TN(x, y) +N(x, y)C(y) N(x, y)B(y) N(x, y)A(y)

B(x)TN(x, y) 0 0

A(x)TN(x, y) 0 0









= R(x, y) +G(x, y),

then (4.56) is exponentially stable.

Proof. Suppose conditions of the Theorem 7 hold. Then V as defined in (4.7) satisfies

(4.8). Since M and N are polynomials, they are continuous. Thus there exists b ∈ R

such that

V (w) ≤ b‖w‖Ln
2
.

According to (4.34) and (4.35) the time derivative of V satisfies

d

dt
[V (u(t, ·))] ≤ −ǫ2‖w‖Ln

2

and, therefore, Theorem 2 can be applied concluding the proof.
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Chapter 5

PDES WITH TWO SPATIAL VARIABLES

In this chapter the PDEs of interest have 2 spatial variables. Specifically, for all

t > 0 and x ∈ Ω := (0, 1)2, u : [0,∞)× Ω → R satisfies

ut(t, x) = a(x)ux1x1
(t, x) + b(x)ux1x2

(t, x) + c(x)ux2x2
(t, x) + d(x)ux1

(t, x)

+ e(x)ux2
(t, x) + f(x)u(t, x), (5.1)

where a, b, c, d, e, f are polynomials. As before, assume that solution to (5.1) exists,

is unique and depends continuously on initial conditions. Moreover, let u satisfy zero

Dirichlet boundary conditions, i.e.

u(t, 1, x2) = 0, u(t, 0, x2) = 0, u(t, x1, 1) = 0, u(t, x1, 0) = 0 (5.2)

for all x1, x2 ∈ [0, 1] and t ≥ 0.

5.1 Parameterizating Lyapunov Candidates with SOS Polynomials

Any polynomial s : Ω → R defines a functional V : L2(Ω) → R as

V (w) :=

∫

Ω

s(x)w(x)2 dx. (5.3)

If for some ǫ > 0 there exists an SOS polynomial p such that

s(x) = p(x) + ǫ,

then, for all w ∈ L2(Ω), (5.3) satisfies

V (w) ≥ ǫ‖w‖L2
.
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5.2 Quadratic Form of the Lyapunov Time Derivative

Substituting u(t, ·) for w in (5.3) and differentiating the result with respect to t

gives

d

dt
[V (u(t, ·))] =

d

dt

[∫

Ω

s(x)u(t, x)2 dx

]

=

∫

Ω

2s(x)u(t, x)ut(t, x) dx. (5.4)

Substituting for ut(t, x) from (5.1) into (5.4) implies

d

dt
[V (u(t, ·))] =

∫

Ω

2s(x)u(t, x)
(

a(x)ux1x1
(t, x) + b(x)ux1x2

(t, x) + c(x)ux2x2
(t, x)

+ d(x)ux1
(t, x) + e(x)ux2

(t, x) + f(x)u(t, x)
)

dx

= I1(t) + I2(t) + I3(t) + I4(t) + I5(t), (5.5)

where

I1(t) :=

∫

Ω

2s(x)u(t, x)a(x)ux1x1
(t, x) dx,

I2(t) :=

∫

Ω

s(x)u(t, x)b(x)ux2x1
(t, x) dx,

I3(t) :=

∫

Ω

s(x)u(t, x)b(x)ux1x2
(t, x) dx,

I4(t) :=

∫

Ω

2s(x)u(t, x)c(x)ux2x2
(t, x) dx,

I5(t) :=

∫

Ω

2s(x)u(t, x)
(

d(x)ux1
(t, x) + e(x)ux2

(t, x) + f(x)u(t, x)
)

dx.

Note that, based on section 5.2.3 of Evans (1998), it holds that

ux1x2
(t, x) = ux2x1

(t, x) (5.6)

for all x ∈ Ω. Property (5.6) was used to define I2 and I3. Alternatively, I5 can be

formulated as

I5(t) =

∫

Ω

qT (t, x)Z5(x)q(t, x) dx, (5.7)
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where for all x ∈ Ω

q(t, x) :=









u(t, x)

ux1
(t, x)

ux2
(t, x)









, Z5(x) :=









2s(x)f(x) s(x)d(x) s(x)e(x)

s(x)d(x) 0 0

s(x)e(x) 0 0









. (5.8)

Using integration by parts and boundary conditions (5.2), I1 can be rewritten as

follows.

I1(t) =

∫

Ω

2s(x)u(t, x)a(x)
d

dx1
[ux1

(t, x)] dx

= 2

∫ 1

0

(

s(x)u(t, x)a(x)ux1
(t, x)|x1=1

x1=0

−

∫ 1

0

ux1
(t, x)

d

dx1
[s(x)u(t, x)a(x)] dx1

)

dx2

= −

∫

Ω

2ux1
(t, x)

(

u(t, x)
d

dx1
[s(x)a(x)] + s(x)a(x)ux1

(t, x)
)

dx

= −

∫

Ω

qT (t, x)Z1(x)q(t, x) dx, (5.9)

where for all x ∈ Ω

Z1(x) :=









0 d
dx1

[s(x)a(x)] 0

d
dx1

[s(x)a(x)] 2s(x)a(x) 0

0 0 0









.
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Following steps of (5.9) for I2, I3 and I4, we get

I2(t) =

∫

Ω

s(x)u(t, x)b(x)
d

dx1
[ux2

(t, x)] dx

=

∫ 1

0

(

s(x)u(t, x)b(x)ux2
(t, x)|x1=1

x1=0 −

∫ 1

0

ux2
(t, x)

d

dx1
[s(x)u(t, x)b(x)] dx1

)

dx2

= −

∫

Ω

qT (t, x)Z2(x)q(t, x) dx,

I3(t) =

∫

Ω

s(x)u(t, x)b(x)
d

dx2
[ux1

(t, x)] dx

=

∫ 1

0

(

s(x)u(t, x)b(x)ux1
(t, x)|x2=1

x2=0 −

∫ 1

0

ux1
(t, x)

d

dx2
[s(x)u(t, x)b(x)]dx2

)

dx1

= −

∫

Ω

qT (t, x)Z3(x)q(t, x) dx,

I4(t) =

∫

Ω

2s(x)u(t, x)c(x)
d

dx2
[ux2

(t, x)] dx = −

∫

Ω

qT (t, x)Z4(x)q(t, x) dx, (5.10)

where q is defined as in (5.8) and for all x ∈ Ω

Z2(x) :=









0 0 1
2

d
dx1

[s(x)b(x)]

0 0 1
2
s(x)b(x)

1
2

d
dx1

[s(x)b(x)] 1
2
s(x)b(x) 0









,

Z3(x) :=









0 1
2

d
dx2

[s(x)b(x)] 0

1
2

d
dx2

[s(x)b(x)] 0 1
2
s(x)b(x)

0 1
2
s(x)b(x) 0









,

Z4(x) :=









0 0 d
dx2

[s(x)c(x)]

0 0 0

d
dx2

[s(x)c(x)] 0 2s(x)c(x)









.

By combining (5.5), (5.7), (5.9) and (5.10) it follows that

d

dt
[V (u(t, ·))] =

∫

Ω

qT (t, x)Q(x)q(t, x) dx, (5.11)
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where for all x ∈ Ω

Q(x) :=









2s(x)f(x) Q12(x) Q13(x)

Q12(x) −2s(x)a(x) −s(x)b(x)

Q13(x) −s(x)b(x) −2s(x)c(x)









(5.12)

with

Q12(x) : = s(x)d(x)−
d

dx1
[s(x)a(x)]−

1

2

d

dx2
[s(x)b(x)],

Q13(x) : = s(x)e(x)−
1

2

d

dx1
[s(x)b(x)] −

d

dx2
[s(x)c(x)].

If Q(x) ≤ 0 for all x ∈ Ω, then the time derivative in (5.11) is clearly non-positive

for all t > 0. However, such a condition on Q is conservative. To decrease that

conservatism, matrix valued functions Υi are introduced such that

∫

Ω

qT (t, x)Υi(x)q(t, x) dx = 0

and, therefore, can be added to Q without altering the integral. Υi are spacing

functions. We parameterize Υi by polynomials pi.

5.3 Spacing Functions for PDEs with Two Spatial Dimensions

The following holds for any polynomial p1, because of the homogeneous Dirichlet

boundary conditions (5.2).

∫

Ω

d

dx1
[u(t, x)p1(x)u(t, x)] dx =

∫ 1

0

(

u(t, x)p1(x)u(t, x)
∣
∣
∣

x1=1

x1=0

)

dx2 = 0. (5.13)

Using the chain rule, we have

d

dx1
[u(t, x)p1(x)u(t, x)] = u(t, x)

d

dx1
[p1(x)]u(t, x) + 2p1(x)u(t, x)ux1

(t, x)

= qT (t, x)Υ1(x)q(t, x), (5.14)
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where for all x ∈ Ω

Υ1(x) :=









d
dx1

[p1(x)] p1(x) 0

p1(x) 0 0

0 0 0









. (5.15)

Combining (5.13) and (5.14) results in

∫

Ω

q(t, x)TΥ1(x)q(t, x) dx = 0. (5.16)

Likewise in (5.13), because of the boundary conditions (5.2), the following holds for

any polynomial p2.

∫

Ω

d

dx2
[u(t, x)p2(x)u(t, x)] dx = 0.

Following steps of (5.14) for d
dx2

[u(t, x)p2(x)u(t, x)], gives

Υ2(x) :=









d
dx2

[p2(x)] 0 p2(x)

0 0 0

p2(x) 0 0









(5.17)

such that
∫

Ω

q(t, x)TΥ2(x)q(t, x) dx = 0. (5.18)

Similarly to (5.13), the following is true for any polynomial p3.

∫

Ω

d

dx2
[u(t, x)p3(x)ux1

(t, x)] dx = 0. (5.19)

Note that the left-hand side of (5.19) can be written as follows.

∫

Ω

d

dx2
[u(t, x)p3(x)ux1

(t, x)] dx

=

∫

Ω

(

ux2
(t, x)p3(x)ux1

(t, x) + u(t, x)
d

dx2
[p3(x)]ux1

(t, x)
)

dx

+

∫

Ω

u(t, x)p3(x)ux2x1
(t, x) dx, (5.20)

43



where we need property (5.6). Applying integration by parts to the second integral

of the right-hand side of the last equation in (5.20) results in

∫

Ω

u(t, x)p3(x)
d

dx1
[ux2

(t, x)] dx

=

∫ 1

0

(

u(t, x)p3(x)ux2
(t, x)

∣
∣
∣

x1=1

x1=0
−

∫ 1

0

ux2
(t, x)

d

dx1
[u(t, x)p3(x)] dx1

)

dx2

= −

∫

Ω

ux2
(t, x)

(

ux1
(t, x)p3(x) + u(t, x)

d

dx1
[p3(x)]

)

dx. (5.21)

From (5.20) and (5.21) the following holds.

∫

Ω

d

dx2
[u(t, x)p3(x)ux1

(t, x)] dx

=

∫

Ω

(

u(t, x)
d

dx2
[p3(x)]ux1

(t, x)− u(t, x)
d

dx1
[p3(x)]ux2

(t, x)
)

dx

=

∫

Ω

q(t, x)TΥ3(x)q(t, x) dx, (5.22)

where for all x ∈ Ω

Υ3(x) :=









0 1
2

d
dx2

[p3(x)] −1
2

d
dx1

[p3(x)]

1
2

d
dx2

[p3(x)] 0 0

−1
2

d
dx1

[p3(x)] 0 0









. (5.23)

Combining (5.19) and (5.22) gives

∫

Ω

q(t, x)TΥ3(x)q(t, x) dx = 0. (5.24)

Following steps (5.19) – (5.22) for

d

dx1
[u(t, x)p4(x)ux2

(t, x)]

with any polynomial p4, leads to the following.

∫

Ω

q(t, x)TΥ4(x)q(t, x) dx = 0, (5.25)
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where for all x ∈ Ω

Υ4(x) :=









0 −1
2

d
dx2

[p4(x)]
1
2

d
dx1

[p4(x)]

−1
2

d
dx2

[p4(x)] 0 0

1
2

d
dx1

[p4(x)] 0 0









. (5.26)

5.4 Stability Test for PDEs with Two Spatial Dimensions

From (5.11), (5.16), (5.18), (5.24) and (5.25) the following holds.

d

dt
[V (u(t, ·))] =

∫

Ω

qT (t, x)

(

Q(x) +
4∑

i=1

Υi(x)

)

q(t, x)dx. (5.27)

By substituting for Q and Υi from (5.12), (5.15), (5.17), (5.23) and (5.26) in (5.27)

one can define

M = Φ(a, b, c, d, e, f, s, p1, p2, p3, p4), (5.28)

if for all x ∈ Ω

M(x) =









M1(x) M2(x) M3(x)

M2(x) −2s(x)a(x) −s(x)b(x)

M3(x) −s(x)b(x) −2s(x)c(x)









, (5.29)

where

M1(x) := 2s(x)f(x) +
d

dx1
[p1(x)] +

d

dx2
[p2(x)],

M2(x) := s(x)d(x)−
d

dx1
[s(x)a(x)]−

1

2

d

dx2
[s(x)b(x)] + p1(x) +

1

2

d

dx2
[p3(x)− p4(x)],

M3(x) := s(x)e(x)−
1

2

d

dx1
[s(x)b(x)]−

d

dx2
[s(x)c(x)] + p2(x) +

1

2

d

dx1
[p4(x)− p3(x)],

(5.30)

such that

d

dt
[V (u(t, ·))] =

∫

Ω

qT (t, x)M(x)q(t, x)dx. (5.31)

Theorem 8. Suppose that for (5.1) there exist polynomials s, p1, p2, p3, p4 and θ > 0,

such that s(x) ≥ θ and M(x) ≤ 0 for all x ∈ Ω, where M is defined as in (5.28) –

(5.30). Then (5.1) is stable.
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Proof. If conditions of Theorem 8 are satisfied, let

a = inf
x∈Ω

{s(x)}, b = sup
x∈Ω

{s(x)}. (5.32)

Since s(x) ≥ θ > 0 for all x ∈ Ω, then b, a > 0 and the following holds for all

v ∈ L2(Ω).

a‖v‖2L2
= inf

x∈Ω
{s(x)}

∫

Ω

v2(x) dx ≤

∫

Ω

s(x)v2(x) dx ≤ sup
x∈Ω

{s(x)}

∫

Ω

v2(x) dx = b‖v‖2L2
.

(5.33)

Using (5.3) it follows that

a‖v‖2L2
≤ V (v) ≤ b‖v‖2L2

.

Since M(x) ≤ 0, from (5.31) it follows that d
dt
[V (u(t, ·))] ≤ 0 for all t > 0. Theorem

2 ensures stability of (5.1).

Theorem 9. Suppose that for (5.1) there exist θ, γ > 0 and polynomials s, p1, p2, p3, p4

such that s(x) ≥ θ and M(x) + γS(x) ≤ 0 for all x ∈ Ω, where M is defined as in

(5.28) – (5.30) and

S(x) :=









s(x) 0 0

0 0 0

0 0 0









. (5.34)

Then for all t > 0 solution to (5.1) satisfies

‖u(t, ·)‖L2
≤

√

b

a
‖u(0, ·)‖L2

exp{−
γ

2
t}, (5.35)

where a, b are defined as in (5.32).

Proof. Under the assumptions of Theorem 9, (5.33) holds. With (5.34) and (5.8) we

can write

V (u(t, ·)) =

∫

Ω

q(t, x)TS(x)q(t, x) dx. (5.36)
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Since M(x) + γS(x) ≤ 0 for all x ∈ Ω, it holds that
∫

Ω

qT (t, x)(M(x) + γS(x))q(t, x) dx ≤ 0. (5.37)

Since γ is a scalar, (5.37) can be easily satisfied as follows.
∫

Ω

qT (t, x)M(x)q(t, x)dx ≤ −γ

∫

Ω

q(t, x)TS(x)q(t, x)dx,

which with (5.31) and (5.36) provides d
dt
[V (u(t, ·))] ≤ −γV (u(t, ·)). Using proof of

Theorem 2 with c/b = γ, results in (5.35).

Theorem 10. Suppose that for (5.1) there exist polynomials s, p1, p2, p3, p4, θ > 0,

SOS polynomials n1, n2, Q1, Q2, Q3 such that for all x1, x2 ∈ (0, 1)

s(x) = θ + x1(1− x1)n1(x) + x2(1− x2)n2(x),

M(x) =−Q1(x)− x1(1− x1)Q2(x)− x2(1− x2)Q3(x), (5.38)

where M is defined as in (5.28) – (5.30). Then (5.1) is stable.

Proof. If (5.38) holds, then clearly s(x) ≥ θ and M(x) ≤ 0 for all x ∈ Ω. Using

Theorem 8 provides stability of (5.1).

Theorem 11. Suppose that for (5.1) there exist θ, γ > 0, polynomials s, p1, p2, p3, p4,

SOS polynomials n1, n2, Q1, Q2, Q3 such that for all x1, x2 ∈ (0, 1)

s(x) = θ + x1(1− x1)n1(x) + x2(1− x2)n2(x),

M(x) + γS(x) =−Q4(x)− x1(1− x1)Q5(x)− x2(1− x2)Q6(x), (5.39)

whereM is defined as in (5.28) – (5.30) and S as in (5.34), then for all t > 0 solution

to (5.1) satisfies

‖u(t, ·)‖L2
≤

√

b

a
‖u(0, ·)‖L2

exp{−
γ

2
t}, (5.40)

where a, b are defined as in (5.32).

Proof. If (5.39) is true, then for all x ∈ Ω, s(x) ≥ θ and M(x) + γS(x) ≤ 0, which,

combined with Theorem 9, gives (5.40).
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Chapter 6

NUMERICAL VALIDATION

We performed stability analysis of some decoupled and coupled PDEs with a

parameter λ > 0, whose value affects stability. Using the proposed algorithm and

bisection search over λ we searched for upper bounds on λ for which the PDEs are

stable. We also studied the dependence of the algorithm accuracy on the degree d.

The results are compared with λnum – upper bounds on λ calculated using MATLAB

solver PDEPE and bisection search over λ. We also tested stability of a randomly

generated coupled PDE with polynomial spatially distributed coefficients.

We also studied stability of biological PDE introduced by Kierstead, Slobodkin

and Skellam. We searched for lower bounds on a diffusion coefficient h for which the

biological PDE is stable. We calculated an upper bound on the rate of decay γ of the

solution L2 norm. The results are compared with numerical solution based on finite

difference discretization method.

As an example with spatially distributed coefficients we randomly generated a

PDE with polynomial coefficients and calculated an upper bound on the rate of

decay γ of the L2 norm of the solution. The result was compared with the numerical

48



experiment based on finite different discretization.

6.1 Coupled PDEs

6.1.1 Decoupled Case

Start with the following parameterized decoupled PDE.

ut(t, x) =






1 0

0 1




 uxx(t, x) +






λ 0

0 λ




u(t, x) (6.1)

with boundary conditions

u(t, 0) =






0

0




 and u(t, 1) =






0

0




 .

The numerical solution given by MATLAB PDEPE solver implies that for λ = 9.8

(6.1) is stable and for λ = 9.9, (6.1) is unstable. Using a bisection search over λ, one

may determine a lower bound on λcr for which problem in Theorem 7, with

A =






1 0

0 1




 , B = 0, C =






λ 0

0 λ




 , D =












I2 0 0 0

0 I2 0 0

0 0 0 0

0 0 0 0












(6.2)

may be shown to be feasible. Some dependence of the λcr on the degree of parameter-

ization d is presented in Table 6.1 and compared to the λcr calculated using MATLAB

PDEPE solver.

6.1.2 Coupled PDEs

The following example includes some coupling.

ut(t, x) =






1 0

0 1




 uxx(t, x) +






λ 1

1 λ




u(t, x) (6.3)
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Table 6.1: Maximum λ for which (6.1) is stable based on the proposed algorithm
for different degree d with ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 5 5.8 7.4 8.1 8.1 8.1 9.8

Table 6.2: Maximum λ for which (6.3) is stable based on the proposed algorithm
for different degree d with ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 4 5.8 6.9 7.2 7.4 7.4 8.8

and boundary conditions are

u(t, 0) =






0

0




 and u(t, 1) =






0

0




 .

The numerical solution given by MATLAB PDEPE solver yields that for λ = 8.8

(6.3) is stable and for λ = 8.9, (6.3) is unstable.

Using a bisection search over λ, one may determine a lower bound on λcr for which

problem in Theorem 7, with

A =






1 0

0 1




 , B = 0, C =






λ 1

1 λ




 , D =












I2 0 0 0

0 I2 0 0

0 0 0 0

0 0 0 0












(6.4)

may be shown to be feasible. Some dependence of the λcr on the degree of parameter-

ization d is presented in Table 6.2 and compared to the λcr calculated using MATLAB

PDEPE solver.
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Table 6.3: Maximum λ for which (6.5) is stable based on the proposed algorithm
for different degree d with ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 8.6 12.7 13.9 14.4 14.6 14.7 15.9

6.1.3 Coupled PDEs with Mixed Boundary Conditions

The next example includes coupled PDEs with mixed boundary conditions.

ut(t, x) =






1 0

0 1




 uxx(t, x) +






λ λ

λ λ




u(t, x) (6.5)

where boundary conditions are

ux(t, 0) =






0

0




 and u(t, 1) =






0

0




 .

The numerical solution from MATLAB PDEPE solver states that for λ = 15.9 (6.5)

is stable and for λ = 16, (6.5) is unstable.

Using a bisection search over λ, one may determine a lower bound on λcr for which

problem in Theorem 7, with

A =






1 0

0 1




 , B = 0, C =






λ λ

λ λ




 , D =












0 0 0 0

0 I2 0 0

0 0 I2 0

0 0 0 0












(6.6)

may be shown to be feasible. Some dependence of the λcr on the degree of parameter-

ization d is presented in Table 6.3 and compared to the λcr calculated using MATLAB

PDEPE solver.
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6.1.4 Coupled PDEs with Spatially Dependent Coefficients

For our final example, we consider a coupled PDE with spatially varying coeffi-

cients.

ut(t, x) =






5x2 + 4 0

2x2 + 7x 7x2 + 6




 uxx(t, x) +






1 −4x

−3.5x2 0




 ux(t, x)

−






x2 3

2x 3x2




u(t, x) (6.7)

for all t > 0, x ∈ (0, 1). Also for all t > 0,

u(t, 0) =






0

0




 and u(t, 1) =






0

0




 .

Based on the numerical solution given by MATLAB PDEPE one can say that (6.7)

is stable. With d = 4 problem from Theorem 7 with

A =






5x2 + 4 0

2x2 + 7x 7x2 + 6




 , B =






1 −4x

−3.5x2 0




 ,

C =






x2 3

2x 3x2




 , D =












I2 0 0 0

0 I2 0 0

0 0 0 0

0 0 0 0












(6.8)

is feasible.

6.2 Examples of PDEs with Two Spatial Variables

6.2.1 Model of Population Dynamics

In this section stability analysis is presented for the biological “KISS” PDE named

after Kierstead, Slobodkin and Skelam, which describes population growth on a finite
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area. For more details see Holmes et al. (1994). The system is modeled by the

following PDE.

ut(t, x) = h
(

ux1x1
(t, x) + ux2x2

(t, x)
)

+ ru(t, x), (6.9)

where h, r > 0, x ∈ Ω ⊂ R2 and scalar function u satisfies homogeneous Dirichlet

boundary conditions.

It is claimed in Holmes et al. (1994) that if Ω is a square with edge of length l,

then

lcr :=

√

2π2(
h

r
) (6.10)

defines a critical length. That means, if l > lcr, then (6.9) is unstable. Alternatively,

for given l and r (6.10) defines hcr as

hcr := l2r/2π2. (6.11)

Therefore, if h < hcr, then (6.9) is unstable.

For testing the proposed algorithm, fix l = 1 and arbitrarily choose r, for example

r = 4. Thus, according to (6.11), hcr ≈ 0.203.

Using a bisection search over h, one can determine a lower bound of hcr for which

SOS problem in Theorem 10, with

a(x) = h, b(x) = 0, c(x) = h, d(x) = 0, e(x) = 0, f(x) = 4 for all x ∈ Ω

(6.12)

may be shown to be feasible. Results for different degrees of s (deg(s)) are presented

in Table (6.4).

Now we choose l = 1, h = 2 and r = 4. Using a bisection search over γ, we

determine the maximum γ for which the SOS problem in Theorem 11, with (6.12),

may be shown to be feasible. Results for different deg(s) are presented in Table (6.5).
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Figure 6.1: Semi-log plots of the L2 norm of the numerical solution to (6.9) with
u(0, x) = 103x1x2(1 − x1)(1 − x2) and upper bounds, given by the proposed method
with different deg(s).

Table 6.4: Minimum hcr vs deg(s) for (6.9)

deg(s) 4 6 8 10 12 analytic

hcr 0.332 0.259 0.238 0.229 0.227 0.203

Using finite difference scheme, we numerically solve (6.9) with u(0, x) = 103x1x2(1−

x1)(1−x2). Plots of log10 (‖u(t, ·)‖L2
) versus t, using a numerical solution, and bounds

on log10 (‖u(t, ·)‖L2
), given by the proposed method for different deg(s), are presented

in Fig. (6.1). These plots allow us to determine γ by examining the rate of decrease in

the L2 norm. Plots are aligned at t = 0 in order to better compare our SOS estimates

of γ to the estimate of γ derived from numerical simulation as a function of increasing

deg(s).
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Table 6.5: Maximum γ vs deg(s) for (6.9) with h = 2

deg(s) 4 6 8 10 12

γ 40.25 53 59 61 62

6.2.2 Random PDE with Spatially Dependent Coefficients

Consider

ut(t, x) = (5x21 − 15x1x2 + 13x22)(ux1x1
(t, x) + ux2x2

(t, x)) + (10x1 − 15x2)ux1
(t, x)

+ (−15x1 + 26x2)ux2
(t, x)− (17x41 − 30x2 − 25x21 − 8x32 − 50x42)u(t, x),

u(0, x) = 103x1x2(1− x1)(1− x2) (6.13)

where x ∈ Ω := (0, 1)2 and the scalar function u satisfies zero Dirichlet boundary

conditions.

Using a bisection search over γ, we determine maximum γ for which SOS problem

in Theorem 11, with

a(x) = 5x21 − 15x1x2 + 13x22, e(x) = −15x1 + 26x2, c(x) = 5x21 − 15x1x2 + 13x22,

d(x) = 10x1 − 15x2, f(x) = −(17x41 − 30x2 − 25x21 − 8x32 − 50x42), b(x) = 0

may be shown to be feasible.

Using finite difference scheme, we numerically solve (6.13). The estimated rate

of decay, based on numerical solution, is 13.07. The computed rate of decay, based

on our SOS method, is 12.5 for deg(s) = 8. Plots are given in Fig. 6.2 and, as for

Fig. 6.1, are aligned at t = 0.
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Figure 6.2: Semi-log plots of the L2 norm of the numerical solution to (6.13) and
upper bound, given by the proposed method with deg(s) = 8.
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Chapter 7

CONCLUSION

7.1 Summary of Contribution

In this thesis, we have presented a computational framework based on convex

optimization for stability analysis of two forms of linear PDEs. First form includes

coupled linear PDEs with spatially distributed polynomial coefficients. Second form

considers parabolic PDEs for scalar-valued functions with two spatial variables.

We used LMIs and SOS polynomials to parameterize positive functionals over

spaces of Lebesgue integrable functions. We have enforced negativity of the derivative

using a combination of SOS and a parametrization of projection operators defined by

the fundamental theorem of calculus. The result is an LMI test for stability which

can be implemented using SOSTOOLS coupled with an SDP solver such as Mosek

or SeDuMi. We applied the proposed framework to several examples of systems of

coupled linear PDEs with both constant and spatially varying coefficients and with

both Dirichlet and Neumann boundary conditions. Also we calculated an upper

bound on the rate of decay of the L2 norm of a solution to PDE which describes

dynamics of population. We compared the numerical results with solutions based on

discretization methods.

7.2 Ongoing Research

Future work includes extension of the framework to study stability of models such

as the acoustic wave equations as well as examine the problem of optimal control and

estimation for systems of coupled PDEs. Another step is the combination of presented
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techniques in order to study stability of coupled PDEs with multiple spatial variables.

Also decrease the conservatism by using semi-separable kernels to parameterize in-

tegral operators as for the scalar case with 1 spatial variable in Gahlawat and Peet

(2015). Consider spacing operators with semi-separable kernels. Study stability of

linearized Navier-Stokes equations.

Another ultimate goal is to extend the approach to nonlinear systems. In that case

we can analyze dynamics of predator-pray models, biological PDEs with nonlinear

terms describing decrease of population density due to death factor.
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