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ABSTRACT  

   

Researchers who conduct longitudinal studies are inherently interested in studying 

individual and population changes over time (e.g., mathematics achievement, subjective 

well-being). To answer such research questions, models of change (e.g., growth models) 

make the assumption of longitudinal measurement invariance. In many applied situations, 

key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert 

scale items). To evaluate longitudinal measurement invariance with ordered-categorical 

indicators, a set of hierarchical models can be sequentially tested and compared. If the 

statistical tests of measurement invariance fail to be supported for one of the models, it is 

useful to have a method with which to gauge the practical significance of the differences 

in measurement model parameters over time. Drawing on studies of latent growth models 

and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 

2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a 

potential sensitivity analysis to gauge the practical significance of violations of 

longitudinal measurement invariance for ordered-categorical indicators using second-

order latent growth models. The change in the estimate of the second-order growth 

parameters following the addition of an incorrect level of measurement invariance 

constraints at the first-order level was used as an effect size for measurement non-

invariance. This study investigated how sensitive the proposed sensitivity analysis was to 

different locations of non-invariance (i.e., non-invariance in the factor loadings, the 

thresholds, and the unique factor variances) given a sufficient sample size. This study 

also examined whether the sensitivity of the proposed sensitivity analysis depended on a 
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number of other factors including the magnitude of non-invariance, the number of non-

invariant indicators, the number of non-invariant occasions, and the number of response 

categories in the indicators. 
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CHAPTER 1 

INTRODUCTION 

Researchers who conduct longitudinal studies are inherently interested in studying 

individual and population changes over time (e.g., mathematics achievement, depression, 

externalizing behavior, subjective well-being). To answer such research questions, 

models of change (e.g., growth models) make the assumption of longitudinal 

measurement invariance, i.e., the instrument reflects the same construct measured on the 

same scale over all time points under study and over all individuals. It is common 

practice for researchers to administer the same questionnaire, survey, or scale to 

participants and assume that longitudinal measurement invariance holds. However, in 

many cases this assumption may not be appropriate because the same measurement 

instrument can reflect a different construct at different ages (e.g., rapid 

changes/transitions occurring in adolescence can lead to different interpretations of the 

survey questions). If longitudinal measurement invariance does not hold, then the 

observed changes may reflect change in the properties of the measurement instrument, 

rather than the latent construct that the researcher intends to study. Thus, in order to draw 

valid conclusions about growth and change in the latent constructs of interest over time, 

longitudinal measurement invariance must be evaluated. 

With continuous measured indicators, procedures for evaluating longitudinal 

measurement invariance have been developed under a confirmatory analysis (CFA) 

framework (e.g., Khoo, West, Wu, & Kwok, 2006; Meredith & Horn, 2001; Widaman, 

Ferrer, & Conger, 2010) and since then there has been several studies demonstrating the 

application of these procedures to empirical data sets (e.g., Millsap & Cham, 2012). 
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However, in many applied situations, the measured indicators are not strictly continuous. 

Instead, the measured indicators are often ordered-categorical (e.g., self-report or 

observer-report Likert scale items). These indicators are typically viewed as an ordinal 

outcome of a continuous underlying propensity (Bollen & Curran, 2006, p. 230). There 

have been a number of simulation studies examining features that can influence the 

degree to which CFA models assuming continuously scaled indicators can adequately 

model ordered-categorical indicators and result in negligible bias in parameter estimates. 

These studies find that it may sometimes be acceptable to treat ordered-categorical 

indicators as continuous, specifically when there are five or more response categories and 

when each of the response categories is well populated (e.g., Beauducel & Herzberg, 

2006; DiStefano, 2002; Dolan, 1994; Rhemtulla, Brosseau-Liard, & Savalei, 2012). 

However, when there are fewer categories or when the observed distributions of the 

ordered-categorical indicators are skewed, treating ordered-categorical indicators as 

continuous can lead to biased parameter estimates. Thus, when measured indicators are 

ordinal, the approach of choice is often to use models that treat them as ordinal (e.g., 

CFA models for ordered-categorical indicators; Muthén, 1984; Wirth & Edwards, 2007). 

The test of longitudinal measurement invariance with continuous indicators 

involves fitting and comparing a set of hierarchical models (configural vs. weak; weak 

vs. strong; strong vs. strict invariance; Khoo et al., 2006; Meredith & Horn, 2001). 

Paralleling this, with ordered-categorical indicators, a set of four hierarchical models can 

be sequentially tested and compared to evaluate longitudinal measurement invariance 

(Liu et al., in press). The configural invariance model tests the hypothesis that the general 

pattern of factor loadings is the same over time. The loading invariance model adds the 
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constraint that factor loadings are equal over time. The threshold invariance model 

further adds the constraint that the threshold level of going from one response category to 

the next is equal over time for all indicators. The unique factor invariance model adds the 

further constraint that all unique factor variances (and any non-zero within-wave unique 

factor covariance) are equal over time. Each level of longitudinal measurement 

invariance is associated with specific properties, which is discussed in more detail in a 

later section. 

Statistical tests are used to compare the hierarchical models used in the test of 

longitudinal measurement invariance with ordered-categorical indicators. If the 

configural invariance model fits the data, then the researcher can continue to evaluate 

other models in the hierarchy. If a model with a higher level of invariance constraints 

does not fit worse than a model with a lower level of invariance constraints, then the 

researcher can conclude that measurement invariance is established at this higher level. 

The tests continue until the highest level of measurement invariance achieved is 

established for the measurement instrument under investigation in the data set at hand. 

However, if one of the models is rejected by the statistical tests, the tests do not provide 

information on the practical importance of the measurement non-invariance that is 

detected. Since dropping indicators that do not demonstrate measurement invariance will 

affect the content coverage of a measurement instrument, it is useful to have a method 

with which to gauge the practical significance of the differences in measurement model 

parameters over time (i.e. whether the differences have practical implications, Kirk, 

1996). The primary concern of researchers conducting longitudinal studies is often 

whether the change in the observed responses to the indicators between measurement 
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occasions is due to true change in the mean/variance of the latent construct, or an artifact 

of the different values of the parameters in the measurement model across different 

measurement occasions. Drawing on studies of latent growth models and second-order 

latent growth models with continuous indicators (e.g.,Willson, 2014a; 2014b; Leite, 

2007; Wirth, 2008), sensitivity analyses can be developed for ordered-categorical 

indicators that examine influences of longitudinal measurement non-invariance on 

estimates of growth parameters and their standard errors, assuming that the form of the 

latent growth model has been correctly specified. 

The present study examined the suitability of using the changes in the second-

order latent growth model parameters and in the corresponding standard errors as a 

potential sensitivity analysis to gauge the practical significance of longitudinal 

measurement non-invariance with ordered-categorical indicators. I first presented a brief 

review of longitudinal ordered-categorical CFA models, followed by a review of different 

levels of longitudinal measurement invariance and their interpretations. Then I discussed 

the importance of a sensitivity analysis to gauge the practical significance of longitudinal 

measurement non-invariance, and introduced the proposed sensitivity analysis based on 

the second-order latent growth model with ordered-categorical indicators. Following this, 

I described the design of this simulation study, the population model used to generate the 

data, and the evaluation criteria for results. Given the complex models in the simulation, I 

first examined the rates of model non-convergence and improper solution. Then I 

reported the results from the conditions with loading non-invariance, followed by the 

results from the conditions with threshold non-invariance, followed by the results from 

the conditions with unique factor non-invariance. 
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CHAPTER 2 

LONGITUDINAL ORDERED-CATEGORICAL CFA MODEL 

Let 𝑋𝑖𝑗𝑡 represent the observed score from the ith person on the jth ordered-categorical 

indicator at measurement occasion t with score ranges {0, 1, ..., C}, where c = 0, 1, …, C 

are the response categories of the measured indicator. The CFA model for ordered-

categorical indicators makes the assumption that there are continuous latent responses 

𝑋𝑖𝑗𝑡
∗  (or underlying propensities, Bollen & Curran, 2006) that underlie each of the 

ordered-categorical observed responses 𝑋𝑖𝑗𝑡. The continuous latent responses are 

assumed to be multivariate normally distributed (Muthén, 1984), and they are sliced into 

the ordered-categorical observed responses by a set of threshold parameters ν for each 

indicator:  

 𝑋𝑖𝑗𝑡 = 𝑐, if ν𝑗𝑡𝑐 ≤ 𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡(𝑐+1), (1) 

where c = 0, 1, …, C, the response categories of the ordered-categorical indicators, and 

{ν𝑗𝑡0, ν𝑗𝑡1, …, ν𝑗𝑡(𝐶+1)} are the threshold parameters for indicator j at measurement 

occasion t (ν𝑗𝑡0 = −∞, and ν𝑗𝑡(𝐶+1) = ∞). For any given latent response, the observed 

response is completely determined by the corresponding threshold parameters.   

Assuming there is one latent common factor at each of the T measurement 

occasions1, the longitudinal CFA model for the continuous latent responses is given by 

 𝑋𝑖𝑗𝑡
∗ = τ𝑗𝑡 + λ𝑗𝑡η𝑖𝑡 + 𝑢𝑖𝑗𝑡, (2) 

                                            
1 Although the present work focuses on models with one latent common factor at each measurement 

occasion, it can be easily generalized to cases with more latent common factors per measurement occasion. 



  6 

where τ𝑗𝑡 is the intercept, λ𝑗𝑡 is the factor loading of the continuous latent response j on 

the latent factor at measurement occasion t, η𝑖𝑡 is the factor score for person i at 

measurement occasion t, and 𝑢𝑖𝑗𝑡 is the unique factor score for person i on the jth 

indicator at measurement occasion t. Typically, all intercepts τ𝑗𝑡  are constrained to zero 

to allow for the estimation of the latent threshold parameters.  

To account for the longitudinal nature of the design, the common factors are 

allowed to freely correlate across time, with  

 η𝑖𝑡~𝑁(𝛋, 𝚽),  

 𝛋 = [κ1, κ2, … , κ𝑇 ]′,  (3) 

 𝚽 = [

φ1 φ12

φ21 φ2

… φ1𝑇

… φ2𝑇

⋮ ⋮
φ𝑇1 φ𝑇2

⋱ ⋮
… φ𝑇

]. 

The diagonal elements of the common factor variance-covariance matrix 𝚽 represent the 

common factor variances at each occasion, and the off-diagonal elements of 𝚽 represent 

lagged common factor covariances across measurement occasions. With more 

measurement occasions and relatively few indicators per occasion, it may not be possible 

to freely estimate all lagged common factor covariances, otherwise the model may be 

underidentified. When this is the case, it may be reasonable to consider placing 

restrictions on the lagged common factor covariances, such as constraining covariances 

of the same lag to be equal (i.e. a Toeplitz structure, see Weiss, 2005), or constraining 

covariances of lag 2 and greater to zero. However, misspecifying the common factor 

variance-covariance matrix may lead to biased estimates of other model parameters, 

influencing the accuracy of tests of longitudinal measurement invariance. Thus, given 
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sufficient indicators per measurement occasion to ensure model identification, it is more 

appropriate to freely estimate all lagged common factor covariances. 

In addition to allowing the common factors to freely correlate across 

measurement occasions, each unique factor is allowed to freely correlate with itself, but 

not with other unique factors, at other measurement occasions, with 

 𝑢𝑖𝑗𝑡~𝑁(0, 𝚯),  (4) 

 𝚯 = [

𝚯11 𝚯12

𝚯21 𝚯22

… 𝚯1𝑇

… 𝚯2𝑇

⋮ ⋮
𝚯𝑇1 𝚯𝑇2

⋱ ⋮
… 𝚯𝑇𝑇

].  

𝚯 is a super matrix, with each diagonal element 𝚯𝑡𝑡 being a submatrix representing the 

unique factor variance-covariance matrix at measurement occasion t, and each off-

diagonal element 𝚯𝑡,𝑡+𝑘 being a diagonal submatrix containing the lagged covariances of 

each unique factor with itself over time. Again, with more measurement occasions and 

relatively few indicators per occasion, it may not be possible to freely estimate all lagged 

unique factor covariances. In such cases, it may be reasonable to consider placing 

restrictions on 𝚯𝑡,𝑡+𝑘, such as constraining unique factor covariances of the same lag to 

be equal for each indicator separately (i.e. a Toeplitz structure), or constraining unique 

factor covariances of lag 2 or more to zero. However, given sufficient indicators per 

measurement occasion for model identification, it is more appropriate to freely estimate 

all lagged unique factor covariances. The basic model used to test longitudinal 

measurement invariance for ordered-categorical indicators is depicted in Figure 1. 
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CHAPTER 3 

MODEL IDENTIFICATION FOR THE LONGITUDINAL ORDERED-

CATEGORICAL CFA MODELS 

In the CFA model for ordered-categorical indicators, neither the latent common factors 

nor the continuous latent responses have inherent scales (i.e., unit of measurement 

determining the mean and variance structures). Therefore, to identify the scales of the 

latent common factors and the continuous latent responses in the CFA model for ordered-

categorical indicators, constraints must be imposed on the model parameters. 

 To identify the variance structure of a latent common factor, one of two strategies 

have commonly been employed with continuous measured variables: (1) The marker 

variable approach constrains the factor loading of one of the indicators (the marker 

variable) to 1.0, thereby giving the latent common factor a scale that is in the same unit as 

the marker variable; (2) a factor variance approach constrains the common factor 

variance to a fixed value, typically 1.0 (Bollen, 1989, p. 239). In the setting of 

longitudinal studies, it is common practice to use the marker variable approach to identify 

the common factor variance structure at all measurement occasions.  

To identify the mean structure of a latent common factor with continuous 

measured variables, one of two strategies have commonly been employed with 

continuous measured variables: (1) Constrain the intercept of the marker variable to 0, or 

(2) constrain the common factor mean to 0. In longitudinal studies with latent common 

factors at multiple measurement occasions, various combinations of these two strategies 

may be used to identify the common factor mean structure. One common approach is to 

constrain the common factor mean to 0 at one measurement occasion (typically the first), 
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and to constrain the intercepts of the marker variables to be equal across time (e.g., 

Widaman et al., 2010).  

Extending this work to ordered-categorical indicators with three or more response 

categories, there are several ways to identify the ordered-categorical CFA models 

involving multiple measurement occasions or multiple groups (e.g., Grimm, Ram, & 

Estabrook, in press; Millsap, 2011; Millsap & Tein, 2004). This study uses the following 

constraints (adapted from Millsap & Tein, 2004) to identify the mean and variance 

structures of both the latent common factors and the continuous latent responses in a 

longitudinal ordered-categorical CFA model: 

1. The same observed indicator is chosen as the marker variable at all measurement 

occasions, with the factor loading constrained to 1.00. 

2. The latent intercepts 𝛕𝑡 are constrained to zero at all measurement occasions. 

3. The common factor mean κ𝑡 is constrained to zero at one measurement occasion 

(the reference measurement occasion, typically the first or last). At all other 

measurement occasions, the common factor mean is freely estimated.  

4. The within-wave unique factor covariance matrix 𝚯𝑡𝑡 is constrained to be an 

identity matrix (𝚯𝑡𝑡 = 𝑰) at the reference measurement occasion.2 At all other 

measurement occasions, 𝚯𝑡𝑡 is a diagonal matrix with the diagonal elements 

freely estimated. 

                                            
2 Alternatively, the total variances of all latent responses at the reference measurement occasion can be 

constrained to 1.0, instead of constraining the unique variances to 1.00 (adapted from Millsap & Tein, 

2004). 
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5. One threshold for each indicator (and a second threshold for the marker variable) 

is constrained to be invariant across measurement occasions. 

This model identification strategy makes it possible to freely estimate the unique factor 

variances at occasions other than the reference occasion while freely estimating the factor 

loadings and threshold parameters (other than the identification constraints), with 

indicators having three or more response categories. Thus, this identification strategy 

allows for the estimation of a configural invariance model (discussed below) that 

parallels the configural invariance model in the continuous case. With binary indicators, 

however, these constraints are not sufficient to identify the model. Since there is only one 

threshold per indicator, Constraint 5 above cannot be satisfied and additional constraints 

on other model parameters are needed to identify the means or variances of the 

continuous latent responses. For instance, additional constraints can be imposed on 

unique factor variances (or the total variances of continuous latent responses) at 

occasions other than the reference occasion (see also Koran & Hancock, 2010; Millsap & 

Tein, 2004). Alternatively, additional constraints could be imposed on factor loadings and 

the common factor means to identify the means of the continuous latent responses (see 

also Koran & Hancock, 2010; Grimm & Liu, in press). Thus with binary indicators, a 

configural invariance model that parallels the standard one for continuous indicators 

cannot be estimated. Moreover, since binary indicators have only one threshold per 

indicator, a test of threshold invariance cannot be achieved without other constraints to 

identify the means and variances of the latent responses (e.g., constraining all latent 

common factor means to zero and all unique factor variances to one at all occasions, 

Grimm et al, in press), which may be hard to meet in practice. Given these complications, 
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the current research will focus on ordered-categorical indicators with three or more 

response categories. 
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CHAPTER 4 

TESTING LONGITUDINAL MEASUREMENT INVARIANCE WITH ORDERED-

CATEGORICAL INDICATORS 

Paralleling the set of hierarchical models compared in the test of measurement invariance 

with continuous indicators, to evaluate longitudinal measurement invariance with 

ordered-categorical indicators, a set of four hierarchical models can be sequentially tested 

and compared. 

Model 1: The Configural Invariance Model  

Paralleling the configural invariance model for continuous indicators, the 

configural invariance model for ordered-categorical indicators tests the hypothesis that 

the same general pattern of factor loadings holds across time. This model should provide 

a good fit to the data in order to continue evaluation of other models in the hierarchy.  

Model 2: The Loading Invariance Model  

Given a good fit of the configural invariance model to the data, the loading 

invariance model is fitted next, which adds the constraint that factor loadings are identical 

across measurement occasions: λ11 = λ12 = ⋯ = λ1𝑇, λ21 = λ22 = ⋯ = λ2𝑇, λ31 =

λ32 = ⋯ = λ3𝑇, …, with the first subscript j representing the indicator and the second 

subscript t representing time. The loading invariance model for ordered-categorical 

indicators parallels the weak invariance model for continuous indicators. Establishing 

longitudinal loading invariance for ordered-categorical indicators implies that changes 

over time in the expected means of the continuous latent responses can be fully explained 

by changes in the latent common factors over time (Appendix A). However, this 

condition is not sufficient to attribute changes over time in the expected means of the 
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observed responses solely to changes in the latent common factors: The continuous latent 

responses are inferred based on not only the observed responses but also distributional 

assumptions (multivariate normality) and threshold parameters.  

Model 3: The Threshold Invariance Model  

If the loading invariance model fits the data no worse than the configural 

invariance model, the threshold invariance model is then fitted, which adds the constraint 

that the threshold level of going from one response category to the next is equal across 

measurement occasions for each indicator: ν111 = ν121 = ⋯ =  ν1𝑇1, ν112 = ν122 = ⋯ =

ν1𝑇2, ν113 = ν123 = ⋯ = ν1𝑇3, …, with the first subscript j representing the indicator, the 

second subscript t representing time, and the third subscript c representing threshold. The 

threshold invariance model for ordered-categorical indicators parallels the strong 

invariance model for continuous indicators. However, unlike the case with continuous 

indicators, establishing loading and threshold invariance across measurement occasion 

does not imply that changes over time in the means of the measured ordered-categorical 

indicators can be entirely attributed to changes in the latent common factor. For that to be 

the case, the unique factor variances must also be invariant over time (see Appendix A 

for proof). 

Model 4: The Unique Factor Invariance Model  

If the threshold invariance model fits the data no worse than the loading 

invariance model, the unique factor invariance model is then fitted, which adds the 

constraint that the elements in 𝚯𝑡𝑡 (all unique factor variances and any non-zero within-

wave unique factor covariances) are equal across measurement occasions. On the other 

hand, the non-zero diagonal elements in 𝚯𝑡,𝑡+𝑘, the lagged unique factor covariances 
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across time, are freely estimated with no longitudinal equality constraints. Because 

unique variances at the reference occasion were fixed to 1.0 for identification purposes in 

earlier models, in the unique factor invariance model, all unique variances are fixed to 

1.0.  

The unique factor invariance model for ordered-categorical indicators parallels 

the strict invariance model for continuous indicators. Establishing longitudinal unique 

factor invariance implies that changes in the expected means, variances, and within-wave 

covariances of the continuous latent responses can be fully explained by changes in the 

latent common factors over time. More importantly, changes over time in the expected 

means and the within-wave bivariate probabilities of the ordered-categorical indicators 

can be fully explained by changes in the latent common factors (Appendix A).  
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CHAPTER 5 

GAUGING THE PRACTICAL SIGNIFICANCE OF THE VIOLATIONS OF 

INVARIANCE 

The need to achieve a more stringent level of measurement invariance (unique factor 

invariance) in order to compare the observed means of ordered-categorical indicators 

over time places a stringent requirement that will often not be met in practice. However, 

removing non-invariant indicators may impair the content validity of the measurement 

instrument. Thus, it can be helpful to conduct a sensitivity analysis that allows 

researchers to assess the practical significance of the failure to achieve a more advanced 

level in the hierarchy of levels of measurement invariance. 

In longitudinal studies, the primary concern of researchers is often whether the 

change in the observed indicators between measurement occasions can be attributed to 

true change in the latent construct, or change in the psychometric properties of the 

measurement instrument. There have been some studies examining the influence of non-

invariant continuous indicators on the parameter estimates (e.g., mean intercept and 

slope, intercept and slope variances and covariance) or the functional form of growth in a 

latent growth model or a second-order latent growth model. For instance, Leite (2007) 

compared parameter estimates from (a) a latent growth model based on item composites 

(means), (b) a latent growth model based on item composites (means) with fixed error 

variances estimated using the reliability of the composite, and (c) a second-order latent 

growth model with only identification constraints at the first-order level. Leite (2007) 

simulated a model with continuous indicators that achieved longitudinal configural 

invariance, weak invariance or strict invariance, and found that models (a) and (b) 
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produced biased parameter estimates when the indicators do not achieve strict invariance, 

whereas model (c) always produced adequate results. On the other hand, model (c) was 

found to be more likely to produce inadmissible solutions (i.e., Heywood cases), but this 

problem was alleviated by having more measurement occasions or larger sample sizes. 

Wirth (2008) compared the parameter estimates and the likelihood of accepting an 

alternative functional form in a latent growth model using composites of continuous 

indicators with those using factor scores saved from measurement models in which the 

factor loading of only one indicator or the factor loadings of all indicators were 

constrained to be equal over time. Wirth (2008) found that latent growth models using 

composites of continuous indicators or factor scores saved from measurement models 

with inappropriate invariance constraints tended to produce biased parameter estimates 

when the indicators were non-invariant. Model fit statistics from latent growth models 

using composites of continuous indicators had acceptable Type I error rates, and had 

increased likelihood of accepting an alternative form of growth as the level of loading 

non-invariance increased. On the other hand, model fit statistics from latent growth 

models using saved factor scores always had high Type I error rates and were biased 

towards accepting an alternative form of growth. In addition, also using continuous 

indicators, Kim and Willson (2014a, b) examined the influence of measurement non-

invariance across groups on inferences of group differences in the mean intercept and 

mean linear slope parameters in latent growth modeling based on item composites or 

second-order latent growth models. These ideas can be generalized to ordered-categorical 

indicators: The biases of the growth parameter estimates in latent growth models due to 

longitudinal measurement non-invariance may be investigated as a potential sensitivity 
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analysis to gauge the practical significance of violations of longitudinal measurement 

invariance for ordered-categorical indicators.  

Given that achieving unique factor invariance is theoretically required in order to 

compare the observed means of ordered-categorical indicators over time, latent growth 

models of the composite scores of the observed responses to the ordered-categorical 

indicators are not appropriate for the sensitivity analysis. Latent growth models of the 

saved factor scores are not appropriate for the sensitivity analysis either, provided the 

problems with the model fit statistics from such models with continuous indicators 

(Wirth, 2008), and the fact that regression coefficients are generally biased for both 

continuous and discrete indicators when treating the estimated latent common factor 

scores as observed (Hoshino & Bentler, 20113). Instead, a second-order latent growth 

model can be fitted, with the first-order model being the measurement model for the 

ordered-categorical indicators, and the second-order model being a growth model. For 

instance, when the ordered-categorical indicators achieve longitudinal loading invariance 

but not threshold invariance, two second-order latent growth models can be fitted. The 

first model assumes (correctly) loading invariance at the first-order level; the second 

model assumes (incorrectly) threshold invariance at the first-order level. When the 

correct form of the latent growth model is specified at the second-order level, the 

discrepancies in the estimated growth parameters between these two models can be 

                                            
3 Hoshino and Bentler (2011) proposed an approach to reduce the bias resulting from using saved factor 

scores. However, this method sometimes produced biased estimates as compared to the generalized least 

squares methods using estimated polychoric or polyserial correlations (e.g., the weighted least squares 

methods implemented in Mplus). 
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viewed as effect size estimates of the practical significance of the violations of 

longitudinal measurement invariance at the threshold invariance level. 
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CHAPTER 6 

SPECIFICATION AND IDENTIFICATION OF THE SECOND-ORDER LATENT 

GROWTH MODEL 

With the longitudinal CFA model for ordered-categorical indicators at the first-order 

level, a latent growth model can be fitted at the second-order level treating the latent 

common factors at each measurement occasion as outcomes of interest. The second-order 

latent growth model can be written as 

 η𝑖 = Γξ𝑖 + ζ𝑖, (5) 

where η𝑖 is a 𝑇 × 1 vector containing the first-order latent common factor scores for 

person i at all T measurement occasions, Γ is a 𝑇 × 𝑅 design matrix containing the factor 

loadings of the first-order latent common factor scores on the second-order latent growth 

factors (𝑅 = 2 for a linear growth model with a latent intercept factor and a latent linear 

slope factor), ξ𝑖 is an 𝑅 × 1 vector containing the second-order latent growth factors, and 

ζ𝑖 is a 𝑇 × 1 vector containing the disturbance scores (residuals) of first-order latent 

common factors for person i at all T measurement occasions (Figure 2). The second-order 

latent growth factors are typically assumed to be multivariate-normally distributed 

(Grimm et al., in press). For a linear latent growth model at the second-order level, when 

the initial measurement occasion is chosen as the reference occasion (t = 0), the 𝑇 × 𝑅 

design matrix Γ is given by 

 Γ = [

1 0
1 1
… …
1 𝑇 − 1

]. (6) 



  20 

The mean of the second-order latent intercept factor is constrained to zero to 

identify the model, whereas the mean of the second-order latent linear slope, the 

variances of the second-order growth factors and their covariance, are all freely estimated 

(Grimm et al., in press). The disturbance scores on each of the first-order latent common 

factors are assumed to follow a normal distribution with a mean of zero (Grimm et al., in 

press). Assuming that the correct form of the latent growth model is specified, 

covariances among the first-order latent common factors are typically assumed to be 

completely explained by the second-order growth factors, and the lagged disturbance 

covariances at the first-order level are typically constrained to zero (e.g., Grimm et al., in 

press). Note that this is different from the common practice in using CFA models to test 

longitudinal measurement invariance, where the latent common factors are allowed to 

freely correlate across measurement occasions. The specification of the first-order 

measurement model is the same as that of a longitudinal CFA model used to test 

longitudinal measurement invariance. In particular, given sufficient indicators per 

measurement occasion for model identification, all lagged unique factor covariances are 

freely estimated (e.g., Widaman et al., 2010). 

 

The current study investigated the suitability of using the changes in the second-

order latent growth model parameters and in the corresponding standard errors as a 

potential sensitivity analysis to gauge the practical significance of longitudinal 

measurement non-invariance with ordered-categorical indicators. Of central interest was 

how sensitive this sensitivity analysis was to different locations of non-invariance (i.e., 

non-invariance in the factor loadings, the threshold parameters, and the unique factor 



  21 

variances). The current study also examined the influence of a number of other factors 

including the magnitude of non-invariance, the number of non-invariant indicators, the 

number of non-invariant occasions, and the number of response categories in the 

indicators. 
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CHAPTER 7 

METHOD 

A second-order latent growth model was used to generate the data, with a longitudinal 

ordered-categorical CFA model at the first-order level, and a latent linear growth model 

at the second-order level. The generated data consisted of four measurement occasions. 

For simplicity, the same set of five indicators were used to measure the same first-order 

common factor at each occasion with no missing data. This number of indicators per 

factor was in line with previous simulation studies and has been shown to produce 

accurate parameter estimates, particularly with a sufficient sample size (DiStefano & 

Morgan, 2014; Flora & Curran, 2004; Rhemtulla et al., 2012). A sample size of N = 2000 

was used in the simulation study. Previous simulation studies suggest that various 

estimation methods for ordered-categorical CFA models such as Marginal Maximum 

Likelihood (MML), Diagonally Weighted Least Squares (DWLS), and Unweighted Least 

Squares (ULS) should provide accurate and similar results at such a sample size, 

especially with indicators that are not highly skewed (DiStefano & Morgan, 2014; Flora 

& Curran, 2004; Forero & Maydeu-Olivares, 2009; Forero, Maydeu-Olivares, & 

Gallardo-Pujol, 2009; Yang-Wallentin, Jöreskog, & Luo, 2010). The current simulation 

study analyzed the generated data sets using the robust DWLS estimator in Mplus 

(ESTIMATOR = WLSMV). This estimator provides more flexible scaling choices than 

MML. The Theta parameterization was used given the interest to evaluate the 

longitudinal invariance of unique factor variances4.  

                                            
4 The Delta parameterization tends to generate more stable parameter estimates than the Theta 

parameterization in difficult conditions with small sample sizes, few (e.g., 3) indicators per latent common 
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In models with ordered-categorical indicators, when there is change over time in 

the mean level of the first-order common factor, it can happen that the response 

categories are well-populated at the first measurement wave, but show rather non-normal 

observed distributions and exhibit some categories with sparse data by the end of the 

longitudinal study, or vice versa. As a result, the bivariate or multivariate frequency table 

may have sparse or even empty cells, which can create problems for the estimation of 

polychoric correlations5 (Brown & Bendetti, 1977; Flora & Curran, 2004; Bollen & 

Curran, 2006). These problems can potentially influence the parameter estimates from the 

second-order latent growth model of ordered-categorical indicators. As is explained in the 

later section “Population Model for Data Generation”, population parameter values in this 

simulation study were chosen such that the lowest cell count in the bivariate frequency 

table at N = 2000 was expected to be around 5, to minimize the influence of sparse data 

while representing realistic research scenarios.  

This simulation study used a 3 (Location of Measurement Non-Invariance: 

loading non-invariance only, threshold non-invariance only, or unique factor non-

invariance only) × 2 (Magnitude of Non-Invariance for each non-invariant indicator: 

small versus large) × 2 (Number of Non-Invariant Indicators: one [X3t] versus three [X3t, 

X4t, and X5t]) × 2 (Number of Non-Invariant Occasions: one versus two) × 2 (Number of 

                                            

factor, and highly skewed observed distributions of the indicators, particularly for binary indicators (Forero 

& Maydeu-Olivares, 2009; Muthén & Asparouhov, 2002). However, the two parameterizations have 

similar performance in less difficult conditions with larger sample sizes, more indicators per factor, and less 

skewed observed distributions of the indicators (Forero & Maydeu-Olivares, 2009). Moreover, the Delta 

parameterization does not permit direct specification of the unique factor invariance model. 

 
5 A polychoric correlation is the estimated theoretical correlation between two bivariate normal, continuous 

latent responses 𝑋𝑖𝑗𝑡
∗  based on the corresponding observed ordered-categorical responses. 
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Response Categories per indicator: three versus five) + 2 (baseline conditions with full 

measurement invariance: three versus five response categories) design to generate the 

data.  

A total of 1000 replications were generated for each condition with non-invariant 

indicator(s) using Mplus 7.11. Two different second-order latent linear growth models 

were then fitted to each generated data set in Mplus 7.11. One model assumed the correct 

level of longitudinal measurement invariance at the first-order level, and the other model 

assumed an incorrect level of longitudinal measurement invariance one level higher in the 

hierarchy. For instance, when the data were simulated to have threshold non-invariance, I 

imposed constraints in line with longitudinal loading invariance (which was correct) in 

Analysis Model 1, and imposed constraints in line with longitudinal threshold invariance 

(which was incorrect) in Analysis Model 2. Comparing results from these two analysis 

models provided an estimate of the influence of assuming an incorrect level of 

longitudinal measurement invariance on inferences from second-order latent growth 

models.  

To provide some idea about how much of the changes in parameter estimates 

between the two models with different invariance constraints was due to sampling 

variability, two baseline conditions with fully invariant indicators were also be simulated, 

one with three response categories per indicator, the other with five response categories 

per indicator. These baseline conditions had the same data generation models as those of 

the corresponding conditions with non-invariant indicators, except that the indicators 

were fully invariant over time in the baseline conditions. A total of 1000 replications 

were generated for each of the baseline conditions using Mplus 7.11. Second-order latent 
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growth models were fitted to each generated data set of the baseline conditions in Mplus 

7.11. Four different levels of longitudinal measurement invariance constraints at the first-

order level (configural invariance, loading invariance, threshold invariance, and unique 

factor invariance) were imposed. Any change in the second-order growth parameters, 

between models assuming different levels of measurement invariance fitted to the same 

simulated fully invariant data set using the same marker variable, should reflect sampling 

variability.  

In all the analyses models, to achieve model identification, a marker variable 

strategy was used, constraining the factor loading of X1t, an indicator that was always 

simulated to have full invariance, to 1.0 at all measurement occasions. The unique factor 

variances at the first measurement occasion was constrained to 1.0. The first threshold of 

all indicators and the second threshold of the marker variable X1t were constrained to be 

equal across measurement occasions. The intercepts of all continuous latent responses 

and the intercepts of all first-order latent common factors were constrained to 0. The 

design matrix containing the factor loadings of the first-order latent common factor 

scores on the second-order latent growth factors were set to be the same as the one in the 

data generation model, and the mean of the second-order intercept factor was constrained 

to 0. The disturbance covariances of the first-order latent common factors were all 

constrained to 0, as in the data generation model. The details of each design factor in the 

current study are described below with a justification of the values selected for the study, 

followed by the details of the data generation model.  

Details of Design Factors  
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Location of measurement non-invariance. Measurement non-invariance was 

simulated to occur in three different locations: factor loadings only, threshold parameters 

only, or unique factor variances only. Specifically, measurement non-invariance occurred 

at the last one or two of the four measurement occasions. For the factor loading non-

invariance conditions, the factor loading(s) of the non-invariant indicator(s) at the non-

invariant measurement occasion(s) were obtained by subtracting a constant from the 

corresponding factor loadings at earlier measurement occasions, as in previous 

simulations (e.g., Gonzalez-Roma, Hernandez, & Gomez-Benito, 2006; Kim & Yoon, 

2011). For the threshold non-invariance conditions, the first two thresholds of the non-

invariant indicator(s) were generated to be invariant over time, with the last threshold at 

the non-invariant measurement occasion(s) obtained by adding (e.g., Kim & Yoon, 2011; 

Stark, Chernyshenko, & Drasgow, 2006) a constant from the corresponding last 

thresholds at earlier measurement occasions6. For the unique factor non-invariance 

conditions, the unique factor variance(s) of the non-invariant indicator(s) at the non-

invariant measurement occasion(s) were obtained by multiplying the corresponding 

unique factor variances at the earlier measurement occasions by a constant greater than 1.  

Magnitude of non-invariance for each non-invariant indicator. The magnitude 

of non-invariance was set to be the same for each non-invariant indicator. For the factor 

loading non-invariance conditions, the small and large decreases in factor loadings 

corresponded to decreases on the metric of completely standardized factor loadings of .25 

                                            
6 Given the negatively skewed distributions of the ordered-categorical indictors at the last measurement 

occasion (see the later section “Population Model for Data Generation” for details), subtracting a constant 

from the last threshold may result in sparse or even empty cells. 
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and .50, respectively, relative to the first measurement occasion. These were in the range 

of the standardized values used in previous simulation studies for small/ large factor 

loading non-invariance (e.g., Gonzalez-Roma et al., 2006; Kim & Yoon, 2011; Meade & 

Lautenschlager, 2004). For the threshold non-invariance conditions, the small and large 

changes in thresholds corresponded to changes of .25 standard deviation and .50 standard 

deviation, respectively, of the continuous latent responses at the first measurement 

occasion. These values were in the range of the standardized values used in previous 

simulation studies for small/ large threshold non-invariance (e.g., Kim & Yoon, 2011). 

For the unique factor non-invariance conditions, the unique factor variances at earlier 

measurement occasions were multiplied by 1.5625 (= 1.252) and 2.25 (=1.52) to obtained 

the unique factor variance at the non-invariant measurement occasion(s), for small and 

large non-invariance conditions, respectively. 

Number of non-invariant indicators. The number of non-invariant indicators, the 

number of occasions with measurement non-invariance, and the magnitude of non-

invariance for each non-invariant indicator should all contribute to the total degree of 

measurement non-invariance in the model. Since the magnitude of non-invariance was set 

to be equal for each non-invariant indicator, with a certain magnitude of non-invariance 

per non-invariant indicator and a certain number of occasions with measurement non-

invariance, the total degree of measurement non-invariance in the model should increase 

with the number of non-invariant indicators. The current simulation examined two levels 

of the number of non-invariant indicators: one versus three. When there was one non-

invariant indicator, X3t was simulated to be non-invariant. When there were three non-

invariant indicators, X3t, X4t, and X5t were simulated to be non-invariant.  
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Number of occasions with measurement non-invariance. Two conditions were 

simulated: one in which measurement non-invariance occurred at the last one of the four 

measurement occasions, and one in which measurement non-invariance occurred at the 

last two of the four measurement occasions.  

Number of response categories per indicator. Two conditions were simulated: 

one in which all indicators had three response categories, and one in which all indicators 

had five response categories. At least three response categories would be needed to 

construct a configural invariance model paralleling the standard one for continuous 

indicators (as discussed in the previous section Model Identification for the Longitudinal 

Ordered-Categorical CFA Models). With more than five response categories, researcher 

may be more inclined to treat the indicators as continuous, especially when the observed 

distributions are non-normal leading to low cell counts in the bivariate frequency table, 

which may create estimation problems for ordered-categorical indicators. For instance, 

DiStefano and Morgan (2014) found that when the observed distribution is non-normal 

(skewness = 3, kurtosis = 7), the WLSMV estimator in Mplus produced positively biased 

factor correlations, negatively biased standard errors of factor loadings, and negatively 

biased factor correlations for indicators with seven response categories even at N = 800, 

but accurate estimates for indicators with five response categories. 

Population Model for Data Generation 

For the first-order level measurement model, different levels of longitudinal 

measurement invariance were established over four measurement occasions. Non-

invariance was generated at the last one or two measurement occasions. The location and 

magnitude of non-invariance were described above. The lagged unique factor correlations 
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followed a lag-1 autoregressive [AR(1)] structure, such that all unique factor correlations 

of lag-1 were set to ρ𝑗𝑗(𝑡,𝑡+1) = ρ, all unique factor correlations of lag-2 were set to 

ρ𝑗𝑗(𝑡,𝑡+2) = ρ2 , and all unique factor correlations of lag-3 were set to ρ𝑗𝑗(𝑡,𝑡+3) = ρ3. For 

the second-order latent growth model component, linear growth across equally spaced 

measurement occasions was simulated. The disturbances (residuals) of the first-order 

latent common factors were simulated to have zero correlation across time. The 

population parameter values were generated in two steps. In Step 1, parameter values 

were chosen to be in line with those used in previous simulation studies and were 

considered reasonable in real research. In Step 2, parameter values chosen in Step 1 were 

transformed to match the identification constraints in the analysis model (e.g., unique 

factor variances at Time 1 are equal to 1.0), such that the estimated parameter values 

could be compared to the population values directly. 

Table 1 presents the population parameters selected in Step 1 for the baseline 

conditions with fully invariant indicators, before transformation. The factor loadings were 

chosen among values used in previous simulation studies of CFA or IRT models with 

ordered-categorical indicators (e.g., Kim & Yoon, 2011; Stark et al., 2006) and were 

expected to occur in real research settings (see DiStefano & Hess, 2005). The design 

matrix at the second-order level was chosen as follows to reflect a latent linear growth 

model with the first measurement occasion as the reference occasion: 

 Γ = [

1 0
1 1
1 2
1 3

]. (7) 
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The second-order intercept variance was chosen to be 0.5, and the second-order slope 

variance was chosen to be 0.1, one fifth of the intercept variance, following the 

suggestion by Muthén and Muthén (2002), as in previous simulation studies of latent 

growth models/ second-order latent growth models (Kim & Willson, 2014a; 2014b; 

Leite, 2007; Wirth, 2008). The intercept-slope covariance was chosen such that the 

intercept-slope correlation was .40 (Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 

2008). Values on the disturbance variances were chosen such that the first-order latent 

common factors had 𝑅2 values of 0.70 (Wirth, 2008). Values on the unique factor 

variances were chosen to be 0.30, such that the continuous latent responses underlying 

the ordered-categorical indicators had 𝑅2 values that range between 0.54 and 0.90, which 

were among the 𝑅2 values used in previous simulation studies (e.g., Kim & Willson, 

2014a; 2014b; Kim & Yoon, 2011; Wirth, 2008). Values on the thresholds for the five-

category conditions were taken from a previous simulation study on multiple-group 

measurement non-invariance of ordered-categorical indicators (Kim & Yoon, 2011). The 

mean intercept was set to 0 (Kim & Willson, 2014a; 2014b; Leite, 2007). The mean slope 

was set to 0.6, such that the two lowest cell frequencies in the univariate frequency table 

with five response categories per indicator were 4.4% and 5.4% in a very large sample (N 

= 1,000,000). Thus at a sample size of N = 2000, the lowest cell count in the univariate 

frequency table with five response categories per indicator was expected to be around 80 

(4.4%   2000 = 88), and the lowest cell count in the bivariate frequency table with five 

response categories per indicator was expected to be around 5. Data generated by such 

population values made sure that most data fell in the lower response categories at the 

first measurement occasion, but fell in the higher response categories at the last 
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measurement occasion. Put differently, at the first measurement occasion the higher 

response categories were relatively sparse, but at the last measurement occasion the lower 

response categories were relatively sparse. Figures 3-7 present the distributions of the 

observed response categories at the first and the last measurement occasions for each 

indicator in the baseline condition with five response categories. The middle three 

response categories in the five-category conditions were collapsed to create data for the 

corresponding three-category conditions, such that the relatively sparse cells were 

maintained (different random seeds were used to generate the data, but the thresholds in 

the three-category conditions were the first and last thresholds in the corresponding five-

category conditions).  

 Table 2 contains the population parameter values used for data generation in the 

baseline conditions with fully invariant indicators, after transformation in Step 2 to match 

identification constraints in the analysis models as described in the earlier section Model 

Identification for the Longitudinal Ordered-Categorical CFA Models. 

Evaluation Criteria for Results 

Given the complex models in the present study, the rates of model non-

convergence and improper solution were examined to evaluate potential problems of 

estimation. Only converged solutions were considered for further analyses. Results from 

conditions with loading non-invariance are reported first, followed by results from 

conditions with threshold non-invariance, followed by results from conditions with 

unique factor non-invariance. 
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For conditions with measurement non-invariance, three evaluation criteria were 

considered: 1) the relative change7 in the second-order latent growth parameters of 

interest and in the corresponding standard errors, between a correctly specified baseline 

model (e.g., assuming configural invariance) and an incorrectly specified more 

constrained model (e.g., assuming loading invariance); 2) the standardized change in the 

second-order mean linear slope, calculated as the ratio of the change in the estimated 

mean linear slope parameter over the square root of the estimated intercept variance from 

the correctly specified less constrained model8; and 3) the statistical power9 of the nested 

model test to detect the incorrect measurement invariance constraints in the more 

constrained model assuming an incorrect level of measurement invariance. 

In the baseline conditions with fully invariant indicators, I considered three 

corresponding evaluation criteria to provide benchmarks for comparison: 1) the relative 

change in each growth parameter of interest between a correctly specified baseline model 

assuming one level of measurement invariance (e.g., configural invariance) and a 

correctly specified more constrained model assuming a higher level of measurement 

invariance (e.g., loading invariance); 2) the standardized change in the second-order 

                                            
7 The relative change in a growth parameter was defined as the growth parameter estimate from a second-

order latent growth model assuming the incorrect level of longitudinal measurement invariance at the lower 

level, minus the growth parameter from a second-order latent growth model assuming a less stringent, 

correct level of longitudinal measurement invariance, divided by the latter. 

 
8 The standardized change in the mean linear slope may be more informative than the relative change in the 

mean linear slope when the mean linear slope is close to zero.  

 
9 The statistical power is represented by the proportion of the 1000 replications for which a significant 

nested model test statistic is found in a condition with manipulated measurement non-invariance. For each 

location of measurement non-invariance, the design includes 2 (Magnitude of Non-Invariance) × 2 

(Number of Non-Invariant Indicators) × 2 (Number of Non-Invariant Occasions) × 2 (Number of Response 

Categories) = 16 different conditions under which the nested model test can be performed. 
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mean linear slope between a correctly specified baseline model assuming one level of 

measurement invariance and a correctly specified more constrained model assuming a 

higher level of measurement invariance; and 3) the empirical Type 1 error rate10 of the 

nested model test comparing the baseline model and a correctly specified more 

constrained model assuming a higher level of measurement invariance. 

Three procedures were used to identify meaningful differences in the evaluation 

criteria as a function of the design factors in the conditions with measurement non-

invariance. First, to visually portray the magnitude of the differences between the 

conditions, trellis plots were created across study conditions for each of the evaluation 

criteria. For evaluation criteria 1) and 2), the mean level of each evaluation criterion and 

the corresponding 95% normal-theory confidence interval11 were graphed for each 

condition with manipulated measurement non-invariance. To provide a benchmark, the 

mean levels of these evaluation criteria and the 95% normal-theory confidence limits 

from the corresponding models in the corresponding baseline condition were also 

included in the trellis plots. According to Cumming and Finch (2005), when the 95% 

normal-theory confidence intervals do not overlap, the means of the two groups differ at 

                                            
10 The empirical Type 1 error rate is represented by the proportion of the 1000 replications for which a 

significant nested model test statistic is found in a baseline condition with fully invariant indicators. Since 

the nominated Type 1 error rate is .05, the standard error of the binomial distribution is

    1 .05 .95 1000 .00689/ /p p n   . Thus, empirical Type 1 error rates that fell out of the range 

of the 95% confidence interval [.0365, .0635] were considered problematic. 

 
11 Most of the distributions of the evaluation criteria were closely approximated by the normal distribution. 

For those evaluation criteria with a rather non-normal (usually skewed) distribution, the use of the 95% 

normal-theory confidence limits, as compared to Tukey’s box plot which provides a distribution-free 

representation, provided similar conclusions regarding whether the distribution of the evaluation criterion 

in a condition with measurement non-invariance was separated enough from the corresponding distribution 

in the baseline condition. 
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a level of significance that is at least α = .01. Second, as a screening device, I identified 

those evaluation criteria for which the mean difference exceeded .10 between the baseline 

condition and at least one of the conditions with manipulated measurement non-

invariance. These differences in the evaluation criteria were deemed to be of practical 

importance and worthy of further study. Finally, only for evaluation criteria that met 

the .10 difference standard, I conducted a between-subjects Analysis of Variance 

(ANOVA) for each location of non-invariance separately, to provide information about 

the importance of each of the factors in the design. For the relative changes in the growth 

parameters and the standardized change in the second-order mean linear slope, I 

conducted a 2 (Magnitude of Non-Invariance) × 2 (Number of Non-Invariant Indicators) 

× 2 (Number of Non-Invariant Occasions) × 2 (Number of Response Categories) 

between-subjects ANOVA. For the relative changes in the standard errors of the growth 

parameters, because the Number of Response Categories always had an impact in the 

baseline conditions with fully invariant indicators, I conducted a separate 2 (Magnitude 

of Non-Invariance) × 2 (Number of Non-Invariant Indicators) × 2 (Number of Non-

Invariant Occasions) between-subjects ANOVA for conditions with three response 

categories and conditions with five response categories, respectively. With 1000 

replications in each condition with manipulated measurement non-invariance, each 

location of non-invariance involved a large number of records to be submitted for 

analysis, resulting in very high power to detect very small effect sizes. Therefore η2 was 

used as the effect size indicator, with η2 >.02 used as the standard for effect sizes worthy 

of consideration. This magnitude is slightly above Cohen’s (1988) value for a small effect 

size (η2 =.01). 
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CHAPTER 8 

RESULTS 

Non-Convergence and Computational Problems 

 Overall, non-convergence only occurred for the second-order latent growth 

models assuming configural invariance. These models had the fewest constraints and the 

greatest number of parameters to estimate. Given the design of the study, the second-

order latent growth models assuming configural invariance were estimated only in the 

baseline conditions with fully invariant indicators and the conditions with loading non-

invariance.  

Also in the baseline conditions with fully invariant indicators and the conditions 

with loading non-invariance, in a small proportion (< 1%) of the replications with no 

convergence problems, the DIFFTEST comparing the fit of the model assuming loading 

invariance versus the model assuming configural invariance could not be computed. 

When this happened, Mplus generated the following error message: “THE CHI-

SQUARE COMPUTATION COULD NOT BE COMPLETED BECAUSE OF A 

SINGULAR MATRIX.”  

 Table 3 summarizes the rate of non-convergence and the rate of computational 

problems in the first 1000 replications for each condition in the baseline conditions with 

fully invariant indicators. Table 4 summarizes the rate of non-convergence and the rate of 

computational problems in the first 1000 replications for each condition in the conditions 

with loading non-invariance. Approximately 4 to 5% of the replications failed to produce 

a converged solution for the second-order latent growth model assuming configural 

invariance in the baseline conditions with fully invariant indicators. Approximately 4 to 
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8% of the replications failed to produce a converged solution for the second-order latent 

growth model assuming configural invariance in the conditions with loading non-

invariance. I used 3000 iterations for each analysis model in the simulation, but providing 

start values based on population parameter values and increasing the number of iterations 

to 10,000 did not substantially reduce the model non-convergence rate in the replications 

that failed to produce a converged solution for the model assuming configural invariance. 

The rate of model non-convergence was slightly higher in the conditions with large 

loading non-invariance (lower part of Table 4) than in the conditions with small loading 

non-invariance (upper part of Table 4) or in the baseline conditions with fully invariant 

indicators (Table 3). This was probably due to the fact that indicators with non-invariant 

factor loading(s) were simulated to have lower factor loadings at the last one or two 

occasions, and indicators at the last measurement occasion had some relatively sparse 

response categories by design (see Figures 3-7). In the conditions with large loading non-

invariance, the population values of the non-invariant factor loadings at the last one or 

two occasions (range from .22 to .35) were even lower than in the conditions with small 

loading non-invariance (range from .46 to .62). In the baseline conditions with fully 

invariant indicators and the conditions with loading non-invariance, the rate of 

computational problems was always less than 1%. The replications with either 

convergence problems or computational problems were replaced by additional 

replications that had converged solutions with no computational problem, so that each 

condition in this study had 1000 replications with converged solutions with no 

computational problem for further analyses. 
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Conditions with Loading Non-Invariance 

 Relative changes in the second-order growth parameters. Given that the mean 

intercept was constrained to 0 for model identification, I report the relative changes in 

four second-order latent growth parameters below: mean linear slope, intercept variance, 

linear slope variance, and intercept-slope covariance. 

Mean linear slope.  I calculated the relative change (RC) in the estimated second-

order mean linear slope ( mean slopeRC ) in the conditions with loading non-invariance, 

comparing the model correctly assuming configural invariance to the model incorrectly 

assuming loading invariance. Figure 8 shows the mean slopeRC  value with the 95% normal-

theory confidence limits for each condition with loading non-invariance. As a 

benchmark, the solid lines in the figure represent the corresponding mean slopeRC  values in 

the baseline conditions with fully invariant indicators ( mean slope, three response categories .000RC  ; 

mean slope, five response categories .003RC  ), and the dotted lines represent the corresponding 95% 

normal-theory confidence limits for mean slopeRC  in the baseline conditions. Several 

conditions with three non-invariant indicators had a 95% normal-theory confidence 

interval of mean slopeRC  that did not overlap with that in the corresponding baseline 

condition (lower panels of Figure 8), suggesting that these mean slopeRC  values differed 

from the corresponding baseline value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

mean slopeRC . The difference in mean slopeRC  exceeded .10 between the baseline condition 

and all four conditions with large loading non-invariance for three indicators and two 
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conditions with small loading non-invariance for three indicators (lower panels of Figure 

8). Thus, a between-subjects ANOVA was conducted on 
mean slopeRC  to provide 

information about the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Indicators had a 

substantial main effect (
2η .460 ): On average mean slopeRC  was close to zero when there 

was one non-invariant indicator ( mean slope, one non-invariant indicator .005RC   ), but became more 

negative when there were three non-invariant indicators 

( mean slope, three non-invariant indicators .172RC   ). The Magnitude of Non-Invariance showed a 

main effect (
2η .104 ): On average mean slopeRC  was closer to zero with small non-

invariance ( mean slope, small non-invariance .049RC   ) than with large non-invariance 

( mean slope, large non-invariance .128RC   ). The Number of Response Categories in the indicators 

showed a main effect (
2η .075 ): On average mean slopeRC  was closer to zero when the 

indicators had three response categories ( mean slope, three response categories .055RC   ) than when 

the indicators had five response categories ( mean slope, five response categories .122RC   ). The 

Number of Non-Invariant Occasions also showed a main effect (
2η .040 ): On average 

mean slopeRC  was closer to zero with one non-invariant occasion 

( mean slope, one non-invariant occasion .064RC   ) than with two non-invariant occasions 

( mean slope, two non-invariant occasions .113RC   ).  

These main effects were modified by three two-way interactions: A Number of 

Non-Invariant Indicators by Magnitude of Non-Invariance interaction (
2η .092 ), a 
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Number of Non-Invariant Indicators by Number of Response Categories interaction 

(
2η .067 ), and a Number of Non-Invariant Indicators by Number of Non-Invariant 

Occasions interaction (
2η .032 ). As shown in Figure 8, when there was one non-

invariant indicator, the influence of the Magnitude of Non-Invariance, the Number of 

Non-Invariant Occasions, and the Number of Response Categories was negligible. In 

contrast, when there were three non-invariant indicators, the influence of the Magnitude 

of Non-Invariance, the Number of Non-Invariant Occasions, and the Number of 

Response Categories became much larger. The mean slopeRC  value was farthest away from 

zero and from the value in the corresponding baseline condition when there was large 

loading non-invariance for three indicators at two measurement occasions, especially 

when the indicators had five instead of three response categories. 

Intercept variance. I calculated the relative change (RC) in the estimated second-

order intercept variance ( intercept varianceRC ) in the conditions with loading non-invariance, 

comparing the model correctly assuming configural invariance to the model incorrectly 

assuming loading invariance. Figure 9 shows the intercept varianceRC  value with the 95% 

normal-theory confidence limits for each condition with loading non-invariance. As a 

benchmark, the solid lines in the figure represent the corresponding intercept varianceRC  values 

in the baseline conditions with fully invariant indicators 

( intercept variance, three response categories 001.RC  ; intercept variance, five response categories 001.RC  ), and the 

dotted lines represent the corresponding 95% normal-theory confidence limits for 

intercept varianceRC  in the baseline conditions. Several conditions with three non-invariant 
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indicators had a 95% normal-theory confidence interval of intercept varianceRC  that did not 

overlap with that in the corresponding baseline condition (lower panels of Figure 9), 

suggesting that these intercept varianceRC  values differed from the corresponding baseline 

value at a level of significance that is at least α = .01. 

The .10 difference standard for a meaningful difference was not met for 

intercept varianceRC . The greatest difference in intercept varianceRC  between the baseline condition 

and a condition with manipulated loading non-invariance was .088. Thus, a between-

subjects ANOVA was not conducted on intercept varianceRC . 

Linear slope variance. I calculated the relative change (RC) in the estimated 

second-order linear slope variance ( slope varianceRC ) in the conditions with loading non-

invariance, comparing the model correctly assuming configural invariance to the model 

incorrectly assuming loading invariance. Figure 10 shows the slope varianceRC  value with the 

95% normal-theory confidence limits for each condition with loading non-invariance. As 

a benchmark, the solid lines in the figure represent the corresponding slope varianceRC  values 

in the baseline conditions with fully invariant indicators 

( slope variance, three response categories .013RC  ; slope variance, five response categories .032RC  ), and the dotted 

lines represent the corresponding 95% normal-theory confidence limits for slope varianceRC  

in the baseline conditions. Several conditions with three non-invariant indicators had a 

95% normal-theory confidence interval of slopevarianceRC  that did not overlap with that in 

the corresponding baseline condition (lower panels of Figure 10), suggesting that these 
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slope varianceRC  values differed from the corresponding baseline value at a level of 

significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

slopevarianceRC . The difference in slopevarianceRC  exceeded .10 between the baseline condition 

and all conditions with three non-invariant indicators (lower panels of Figure 10). Thus, a 

between-subjects ANOVA was conducted on 
slopevarianceRC  to provide information about 

the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Indicators had a 

substantial main effect (
2η .593 ): On average slope varianceRC  was close to zero when there 

was one non-invariant indicator ( slope variance, one non-invariant indicator .010RC  ), but became more 

negative when there were three non-invariant indicators 

( slope variance, three non-invariant indicators .429RC   ). The Magnitude of Non-Invariance showed a 

main effect (
2η .067 ): On average slope varianceRC  was closer to zero with small non-

invariance ( slope variance, small non-invariance .136RC   ) than with large non-invariance 

( slope variance, large non-invariance .284RC   ). The Number of Non-Invariant Occasions also 

showed a main effect (
2η .035 ): On average slope varianceRC  was closer to zero with one 

non-invariant occasion ( slope variance, one non-invariant occasion .157RC   ) than with two non-

invariant occasions ( slope variance, two non-invariant occasions .263RC   ).  

These main effects were modified by a Number of Non-Invariant Indicators by 

Magnitude of Non-Invariance interaction (
2η .064 ) and a Number of Non-Invariant 
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Indicators by Number of Non-Invariant Occasions interaction (
2η .033 ). As shown in 

Figure 10, when there was one non-invariant indicator, the influence of the Magnitude of 

Non-Invariance and the influence of the Number of Non-Invariant Occasions were both 

negligible. In contrast, when there were three non-invariant indicators, the influence of 

the Magnitude of Non-Invariance and that of the Number of Non-Invariant Occasions 

became much larger. The slope varianceRC  value was farthest away from zero and from the 

value in the corresponding baseline condition when there was large loading non-

invariance for three indicators at two measurement occasions. 

Intercept-slope covariance. I calculated the relative change (RC) in the estimated 

second-order intercept-slope variance ( intercept-slope covarianceRC ) in the conditions with loading 

non-invariance, comparing the model correctly assuming configural invariance to the 

model incorrectly assuming loading invariance. Figure 11 shows the intercept-slope covarianceRC  

value with the 95% normal-theory confidence limits for each condition with loading non-

invariance. As a benchmark, the solid lines in the figure represent the corresponding 

intercept-slope covarianceRC  values in the baseline conditions with fully invariant indicators 

( slope variance, three response categories .013RC  ; slope variance, five response categories .032RC  ), and the dotted 

lines represent the corresponding 95% normal-theory confidence limits for 

intercept-slope covarianceRC  in the baseline conditions. Several conditions with three non-

invariant indicators had a 95% normal-theory confidence interval of intercept-slope covarianceRC  

that did not overlap with that in the corresponding baseline condition (lower panels of 
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Figure 11), suggesting that these intercept-slope covarianceRC  values differed from the 

corresponding baseline value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept-slope covarianceRC . The difference in intercept-slope covarianceRC  exceeded .10 between the 

baseline condition and all conditions with three non-invariant indicators (lower panels of 

Figure 11). Thus, a between-subjects ANOVA was conducted on 
intercept-slope covarianceRC  to 

provide information about the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Indicators had a 

substantial main effect (
2η .569 ): On average intercept-slope covarianceRC  was close to zero 

when there was one non-invariant indicator ( intercept-slope covariance, one non-invariant indicator .019RC  ), 

but became negative when there were three non-invariant indicators 

( intercept-slope covariance, three non-invariant indicators .606RC   ). The Magnitude of Non-Invariance 

showed a main effect (
2η .106 ): On average intercept-slope covarianceRC  was closer to zero with 

small non-invariance ( intercept-slope covariance, small non-invariance .159RC   ) than with large non-

invariance ( intercept-slope covariance, large non-invariance .429RC   ). The Number of Non-Invariant 

Occasions also showed a main effect (
2η .031 ): On average intercept-slope covarianceRC  was 

closer to zero with one non-invariant occasion 

( intercept-slope covariance, one non-invariant occasion .221RC   ) than with two non-invariant occasions 

( intercept-slope covariance, two non-invariant occasions .366RC   ).  

These main effects were modified by a Number of Non-Invariant Indicators by 

Magnitude of Non-Invariance interaction (
2η .105 ) and a Number of Non-Invariant 
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Indicators by Number of Non-Invariant Occasions interaction (
2η .029 ). As shown in 

Figure 11, when there was one non-invariant indicator, the influence of the Magnitude of 

Non-Invariance and the influence of the Number of Non-Invariant Occasions were both 

negligible. In contrast, when there were three non-invariant indicators, the influence of 

the Magnitude of Non-Invariance and that of the Number of Non-Invariant Occasions 

became much larger. The intercept-slope covarianceRC  value was farthest away from zero and 

from the value in the corresponding baseline condition when there was large loading non-

invariance for three indicators at two measurement occasions. 

Relative changes in the standard errors of the second-order growth 

parameters. Because the mean intercept was constrained to 0 for model identification 

and the corresponding standard error was 0, I report the relative changes in the standard 

errors of four second-order latent growth parameters below: mean linear slope, intercept 

variance, linear slope variance, and intercept-slope covariance. I report the relative 

changes in the standard errors of these growth parameters for completeness. For those 

second-order growth parameters for which the mean difference in the relative changes 

exceeded .10 (indicating material bias) between the baseline condition and at least one of 

the conditions with loading non-invariance, standard errors are clearly of only secondary 

interest, and thus the corresponding ANOVA results were not reported. 

Standard error of the mean linear slope. I calculated the relative change (RC) in 

the estimated standard error of the second-order mean linear slope (
mean slopeSERC ) in the 

conditions with loading non-invariance, comparing the model correctly assuming 

configural invariance to the model incorrectly assuming loading invariance. Figure 12 
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shows the 
mean slopeSERC  value with the 95% normal-theory confidence limits for each 

condition with loading non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
mean slopeSERC  values in the baseline conditions with fully 

invariant indicators (
mean slope , three response categories .046SERC  ; 

mean slope , five response categories .181SERC   ), and the dotted lines represent the corresponding 95% 

normal-theory confidence limits for 
mean slopeSERC  in the baseline conditions. Several 

conditions with three non-invariant indicators had a 95% normal-theory confidence 

interval of 
mean slopeSERC  that did not overlap with that in the corresponding baseline 

condition (lower panels of Figure 12), suggesting that these 
mean slopeSERC  values differed 

from the corresponding baseline value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

mean slopeSERC . The difference in 
mean slopeSERC  exceeded .10 between the baseline condition 

and several conditions with three non-invariant indicators (lower panels of Figure 12). 

When there were three response categories in the indicators as shown in the left panels of 

Figure 12, with one non-invariant indicator, the influence of the Magnitude of Non-

Invariance and the influence of the Number of Non-Invariant Occasions were both 

negligible. In contrast, with three non-invariant indicators, the influence of the Magnitude 

of Non-Invariance and that of the Number of Non-Invariant Occasions became much 

larger. The 
mean slopeSERC  value was farthest away from the value in the corresponding 

baseline condition when there was large loading non-invariance for three indicators at 

two measurement occasions. When there were five response categories in the indicators 
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as shown in the right panels of Figure 12, with one non-invariant indicator, the influence 

of the Magnitude of Non-Invariance and the influence of the Number of Non-Invariant 

Occasions were both negligible. In contrast, with three non-invariant indicators, the 

influence of the Magnitude of Non-Invariance and that of the Number of Non-Invariant 

Occasions became much larger. Again the 
mean slopeSERC  value was farthest away from the 

value in the corresponding baseline condition when there was large loading non-

invariance for three indicators at two measurement occasions. This pattern of results 

paralleled the results for the relative changes in the mean linear slope. 

Standard error of the intercept variance. I calculated the relative change (RC) in 

the estimated standard error of the second-order intercept variance (
intercept varianceSERC ) in the 

conditions with loading non-invariance, comparing the model correctly assuming 

configural invariance to the model incorrectly assuming loading invariance. Figure 13 

shows the 
intercept varianceSERC  value with the 95% normal-theory confidence limits for each 

condition with loading non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
intercept varianceSERC  values in the baseline conditions with fully 

invariant indicators (
intercept variance , three response categories .015SERC  ; 

intercept variance , five response categories .012SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
intercept varianceSERC  in the baseline conditions. Two 

conditions with three non-invariant indicators and three response categories had a 95% 

normal-theory confidence interval of 
intercept varianceSERC  that did not overlap with that in the 

corresponding baseline condition (lower-left panel of Figure 13), suggesting that these 
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intercept varianceSERC  values differed from the corresponding baseline value at a level of 

significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept varianceSERC . The difference in 
intercept varianceSERC  exceeded .10 between the baseline 

condition and one condition with loading non-invariance (large non-invariance for three 

indicators at two occasions with three response categories; lower-left panel of Figure 13). 

Note that the .10 difference standard for a meaningful difference was not met for the 

relative changes in the corresponding growth parameter, the intercept variance, and a 

between-subjects ANOVA was not conducted on the relative changes in the intercept 

variance. Thus, the ANOVA results on the relative changes in the corresponding 

standard error (
intercept varianceSERC ) are reported here. Because the Number of Response 

Categories had an impact on 
intercept varianceSERC  in the baseline conditions with fully invariant 

indicators, a separate between-subjects ANOVA was conducted on 
intercept varianceSERC  for the 

loading non-invariance conditions with three response categories and those with five 

response categories, respectively. 

For conditions with loading non-invariance and indicators with three response 

categories (left panels in Figure 13), the ANOVA results showed that the Number of 

Non-Invariant Indicators had a substantial main effect (
2η .458 ): On average 

intercept varianceSERC  was negative and closer to the corresponding value in the baseline condition 

(-.015) when there was one non-invariant indicator 

(
intercept variance , one non-invariant indicator .013SERC   ), but became positive and farther away from the 
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corresponding value in the baseline condition when there were three non-invariant 

indicators (
intercept variance , three non-invariant indicators .046SERC  ). The Magnitude of Non-Invariance 

showed a main effect (
2η .163 ): On average 

intercept varianceSERC  was negative and closer to 

the corresponding value in the baseline condition with small non-invariance 

(
intercept variance , small non-invariance .001SERC   ), but became positive and farther away from the 

corresponding value in the baseline condition with large non-invariance 

(
intercept variance , large non-invariance .034SERC  ). The Number of Non-Invariant Occasions also 

showed a main effect (
2η .058 ): On average 

intercept varianceSERC  was closer to the 

corresponding value in the baseline condition with one non-invariant occasion 

(
intercept variance , one non-invariant occasion .006SERC  ) than with two non-invariant occasions 

(
intercept variance , two non-invariant occasions .027SERC  ).  

These main effects were modified by three two-way interactions and a three-way 

interaction: A Number of Non-Invariant Indicators by Magnitude of Non-Invariance 

interaction (
2η .139 ), a Number of Non-Invariant Indicators by Number of Non-

Invariant Occasions interaction (
2η .044 ), a Magnitude of Non-Invariance by Number 

of Non-Invariant Occasions interaction (
2η .032 ), and a Number of Non-Invariant 

Indicators by Magnitude of Non-Invariance by Number of Non-Invariant Occasions 

interaction (
2η .025 ). As shown in the left panels of Figure 13, with one non-invariant 

indicator, the influence of the Magnitude of Non-Invariance and the influence of the 

Number of Non-Invariant Occasions were both negligible. In contrast, when there were 

three non-invariant indicators, the influence of the Number of Non-Invariant Occasions 
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was almost negligible with small non-invariance, but became much larger with large non-

invariance. The 
intercept varianceSERC  value was farthest away from the value in the 

corresponding baseline condition when there was large loading non-invariance for three 

indicators at two measurement occasions. This pattern of results paralleled the pattern of 

results for the relative changes in the intercept variance in the conditions with three 

response categories in the indicators. 

For conditions with loading non-invariance and indicators with five response 

categories (right panels in Figure 13), the ANOVA results showed that the Number of 

Non-Invariant Indicators had a substantial main effect (
2η .391 ): On average 

intercept varianceSERC  was less negative and closer to the corresponding value in the baseline 

condition (-.012) when there was one non-invariant indicator 

(
interccept variance , one non-invariant indicator .013SERC   ), but became more negative and farther away 

from the corresponding value in the baseline condition when there were three non-

invariant indicators (
interccept variance , three non-invariant indicators .050SERC   ). The Magnitude of Non-

Invariance showed a main effect (
2η .063 ): On average 

intercept varianceSERC  was less negative 

and closer to the corresponding value in the baseline condition with small non-invariance 

(
intercept variance , small non-invariance .024SERC   ) than with large non-invariance 

(
interceptvariance , large non-invariance .039SERC   ). The Number of Non-Invariant Occasions also 

showed a main effect (
2η .059 ): On average 

intercept varianceSERC  was less negative and closer 

to the corresponding value in the baseline condition with one non-invariant occasion 

(
intercept variance , one non-invariant occasion .024SERC   ) than with two non-invariant occasions 
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(
intercept variance , two non-invariant occasions .039SERC   ). These main effects were modified by a Number 

of Non-Invariant Indicators by Magnitude of Non-Invariance interaction (
2η .062 ) and 

a Number of Non-Invariant Indicators by Number of Non-Invariant Occasions interaction 

(
2η .058 ). As shown in the right panels of Figure 13, with one non-invariant indicator, 

the influence of the Magnitude of Non-Invariance and the influence of the Number of 

Non-Invariant Occasions were both negligible. In contrast, with three non-invariant 

indicators, the influence of the Magnitude of Non-Invariance and that of the Number of 

Non-Invariant Occasions became larger. The 
intercept varianceSERC  value was farthest away from 

the value in the corresponding baseline condition when there was large loading non-

invariance for three indicators at two measurement occasions. Note however that even 

when the 
intercept varianceSERC  value was farthest away from the value in the corresponding 

baseline condition, its difference from the baseline value was .072, which was less 

than .10, and its 95% normal-theory confidence interval overlapped with that in the 

corresponding baseline condition. This pattern of results paralleled the pattern of results 

for the relative changes in the intercept variance in the conditions with five response 

categories in the indicators. 

Standard error of the linear slope variance. I calculated the relative change (RC) 

in the estimated standard error of the second-order linear slope variance (
slope varianceSERC ) in 

the conditions with loading non-invariance, comparing the model correctly assuming 

configural invariance to the model incorrectly assuming loading invariance. Figure 14 

shows the 
slope varianceSERC  value with the 95% normal-theory confidence limits for each 
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condition with loading non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
slope varianceSERC  values in the baseline conditions with fully 

invariant indicators (
slope variance , three response categories .044SERC   ; 

slope variance , five response categories .276SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
slope varianceSERC  in the baseline conditions. Several 

conditions with three non-invariant indicators had a 95% normal-theory confidence 

interval of 
slope varianceSERC  that did not overlap with that in the corresponding baseline 

condition (lower panels of Figure 14), suggesting that these 
slope varianceSERC  values differed 

from the corresponding baseline value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

slope varianceSERC . The difference in 
slope varianceSERC  exceeded .10 between the baseline condition 

and several conditions with three non-invariant indicators (lower panels of Figure 14). 

When there were three response categories in the indicators as shown in the left panels of 

Figure 14, with one non-invariant indicator, the influence of the Magnitude of Non-

Invariance and the influence of the Number of Non-Invariant Occasions were both 

negligible. In contrast, with three non-invariant indicators, the influence of the Magnitude 

of Non-Invariance and that of the Number of Non-Invariant Occasions became much 

larger. The 
slope varianceSERC  value was farthest away from the value in the corresponding 

baseline condition when there was large loading non-invariance for three indicators at 

two measurement occasions. When there were five response categories in the indicators 

as shown in the right panels of Figure 14, with one non-invariant indicator, the influence 
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of the Magnitude of Non-Invariance and the influence of the Number of Non-Invariant 

Occasions were both negligible. In contrast, with three non-invariant indicators, the 

influence of the Magnitude of Non-Invariance and that of the Number of Non-Invariant 

Occasions became much larger. The 
slope varianceSERC  value was farthest away from the value 

in the corresponding baseline condition when there was large loading non-invariance for 

three indicators at two measurement occasions. This pattern of results paralleled the 

results for the relative changes in the linear slope variance. 

Standard error of the intercept-slope covariance. I calculated the relative change 

(RC) in the estimated standard error of the second-order intercept-slope covariance 

(
intercept-slope covarianceSERC ) in the conditions with loading non-invariance, comparing the model 

correctly assuming configural invariance to the model incorrectly assuming loading 

invariance. Figure 15 shows the 
intercept-slope covarianceSERC  value with the 95% normal-theory 

confidence limits for each condition with loading non-invariance. As a benchmark, the 

solid lines in the figure represent the corresponding 
intercept-slope covarianceSERC  values in the 

baseline conditions with fully invariant indicators 

(
intercept-slope covariance , three response categories .033SERC  ; 

intercept-slope covariance , five response categories .208SERC  ), and 

the dotted lines represent the corresponding 95% normal-theory confidence limits for 

intercept-slope covarianceSERC  in the baseline conditions. Several conditions with three non-invariant 

indicators had a 95% normal-theory confidence interval of 
intercept-slope covarianceSERC  that did not 

overlap with that in the corresponding baseline condition (lower panels of Figure 15), 
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suggesting that these 
intercept-slope covarianceSERC  values differed from the corresponding baseline 

value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept-slope covarianceSERC . The difference in 
intercept-slope covarianceSERC  exceeded .10 between the baseline 

condition and all four conditions with large non-invariance on three indicators and three 

conditions with small non-invariance on three indicators (lower panels of Figure 15). 

When there were three response categories in the indicators as shown in the left panels of 

Figure 15, with one non-invariant indicator, the influence of the Magnitude of Non-

Invariance was negligible. In contrast, with three non-invariant indicators, the influence 

of the Magnitude of Non-Invariance became much larger. The 
intercept-slope covarianceSERC  value was 

farthest away from the value in the corresponding baseline condition when there was 

large loading non-invariance for three indicators at two measurement occasions. When 

there were five response categories as shown in the right panels of Figure 15, with one 

non-invariant indicator, the influence of the Magnitude of Non-Invariance was negligible. 

In contrast, with three non-invariant indicators, the influence of the Magnitude of Non-

Invariance became larger. The 
intercept-slope covarianceSERC  value was farthest away from the value in 

the corresponding baseline condition when there was large loading non-invariance for 

three indicators at two measurement occasions. This pattern of results paralleled the 

results for the relative changes in the intercept-slope covariance.  

Standardized change in the second-order mean linear slope. I calculated the 

standardized change (STDC) in the estimated second-order mean linear slope 

( mean slopeSTDC ) in the conditions with loading non-invariance, comparing the model 
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correctly assuming configural invariance to the model incorrectly assuming loading 

invariance. Figure 16 shows the mean slopeSTDC  value with 95% normal-theory confidence 

limits for each condition with loading non-invariance. As a benchmark, the solid lines in 

the figure represent the corresponding mean slopeSTDC  values in the baseline conditions 

with fully invariant indicators ( mean slope, three response categories .000STDC  ; 

mean slope, five response categories .001STDC  ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for mean slopeSTDC  in the baseline conditions. 

Several conditions with three non-invariant indicators had a 95% normal-theory 

confidence interval of mean slopeSTDC  that did not overlap with that in the corresponding 

baseline condition (lower panels of Figure 16), suggesting that these mean slopeSTDC  values 

differed from the corresponding baseline value at a level of significance that is at least α 

= .01.  

The .10 difference standard for a meaningful difference was also met for 

mean slopeSTDC . The difference in mean slopeSTDC  exceeded .10 between the baseline 

condition and three of the conditions with large loading non-invariance for three 

indicators, as well as one condition with small loading non-invariance for three indicators 

with five response categories (lower panels of Figure 16). Thus, a between-subjects 

ANOVA was conducted on mean slopeSTDC  to provide information about the importance of 

each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Indicators had a 

substantial main effect (
2η .450 ): On average mean slopeSTDC  was close to zero when 
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there was one non-invariant indicator ( mean slope, one non-invariant indicator .005STDC   ), but 

became more negative when there were three non-invariant indicators 

( mean slope, three non-invariant indicators .147STDC   ). The Magnitude of Non-Invariance showed a 

main effect (
2η .101 ): On average mean slopeSTDC  was closer to zero with small non-

invariance ( mean slope, small non-invariance .042STDC   ) than with large non-invariance 

( mean slope, large non-invariance .110STDC   ). The Number of Response Categories in the 

indicators showed a main effect (
2η .077 ): On average mean slopeSTDC  was closer to zero 

when the indicators had three response categories ( mean slope, three response categories .047STDC   ) 

than when the indicators had five response categories 

( mean slope, five response categories .105STDC   ). The Number of Non-Invariant Occasions also 

showed a main effect (
2η .039 ): On average mean slopeSTDC  was closer to zero with one 

non-invariant occasion ( mean slope, one non-invariant occasion .055STDC   ) than with two non-

invariant occasions ( mean slope, two non-invariant occasions .097STDC   ).  

These main effects were modified by three two-way interactions: A Number of 

Non-Invariant Indicators by Magnitude of Non-Invariance interaction (
2η .091 ), a 

Number of Non-Invariant Indicators by Number of Response Categories interaction 

(
2η .065 ), and a Number of Non-Invariant Indicators by Number of Non-Invariant 

Occasions interaction (
2η .031 ). As shown in Figure 16, when there was one non-

invariant indicator, the influence of the Magnitude of Non-Invariance, the Number of 

Non-Invariant Occasions, and the Number of Response Categories was negligible. In 



  56 

contrast, when there were three non-invariant indicators, the influence of the Magnitude 

of Non-Invariance, the Number of Non-Invariant Occasions, and the Number of 

Response Categories became much larger. The mean slopeSTDC  value was farthest away 

from zero and from the value in the corresponding baseline condition when there was 

large loading non-invariance for three indicators at two measurement occasions, 

especially when the indicators had five instead of three response categories. This pattern 

of results paralleled the results for the relative changes in the mean linear slope.  

Statistical power of the nested model test to detect the incorrect loading 

invariance constraints. In the baseline conditions, I computed the empirical Type 1 error 

rates, i.e. the proportion of the 1000 replications for which a significant test statistic was 

found, for the nested model test12 comparing the model fit of (a) the second-order latent 

growth model correctly assuming configural invariance, and (b) the second-order latent 

growth model correctly assuming loading invariance. The empirical Type 1 error rate 

was .055 when the indicators had three response categories, and .038 when the indicators 

had five response categories. Since these values were both within the acceptable range of 

[.0365, .0635], I concluded that this nested model test was not biased in terms of the Type 

1 error rate. I then calculated the statistical power of this nested model test in the 

conditions with manipulated loading non-invariance, examining the difference in model 

fit between (a) the second-order latent growth model correctly assuming configural 

invariance, and (b) the second-order latent growth model incorrectly assuming loading 

invariance. Figure 17 shows the statistical power of the nested model test for each 

                                            
12 This nested model test was performed using the DIFFTEST command in Mplus. 
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condition with loading non-invariance. As can be seen on the figure, when there was one 

indicator with non-invariant factor loadings, the nested model test had relatively low 

statistical power (< .15) to detect the incorrect loading invariance constraints. Low 

statistical power characterized each of the different combinations of the factors of 

Magnitude of Non-Invariance, the Number of Non-Invariant Occasions, and the Number 

of Response Categories in the indicators. In contrast, when there were three indicators 

with non-invariant factor loadings, the nested model test had very high statistical power 

(between .978 and 1.00) to detect the incorrect loading invariance constraints across 

different combinations of the Magnitude of Non-Invariance, the Number of Non-

Invariant Occasions, and the Number of Response Categories in the indicators.  

Summary. In the conditions with loading non-invariance, the Number of Non-

Invariant Indicators showed a substantial influence on all components (growth parameters 

and standard errors) of evaluation criteria 1) and 2) except for the relative change in the 

intercept variance, for which no meaningful difference was found between the baseline 

condition and the conditions with loading non-invariance. For all other components of the 

evaluation criteria 1) and 2), when there was one indicator with non-invariant factor 

loadings across time, the influence of the other design factors (the Magnitude of Non-

Invariance, the Number of Non-Invariant Occasions, and the Number of Response 

Categories) was always negligible. In contrast, when there were three indicators with 

non-invariant factor loadings across time, the influence of the other design factors 

became much larger. With three non-invariant indicators, the greater the Magnitude of 

Non-Invariance, the farther away the average evaluation criterion value was from the 

value in the corresponding baseline condition. The greater the Number of Non-Invariant 
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Occasions, the farther away the average evaluation criterion value was from the value in 

the corresponding baseline condition.  

It is also noteworthy that the Number of Response Categories in the indicators 

had an influence on evaluation criteria 1) and 2). The difference in the average evaluation 

criterion value from the corresponding baseline value tended to be greater when the 

indicators had five response categories rather than three response categories, especially 

for the relative changes in the growth parameters and the standardized change in the 

mean linear slope. The average evaluation criterion value was farthest away from the 

value in the corresponding baseline condition when there was large loading non-

invariance for three indicators at two measurement occasions with five response 

categories.  

In addition, when the indicators had five response categories, the distributions of 

the evaluation criteria were always much wider than when the indicators had three 

response categories, and this was true for both the conditions with non-invariant loadings 

and the baseline conditions with fully invariant indicators. This result may be related to 

the increased number of parameters that needed to be estimated in the second-order latent 

growth models assuming longitudinal configural and loading invariance when there were 

five rather than three response categories in the indicators. 

Also, when the indicators had five response categories, the standard errors of the 

growth parameters always decreased substantially as a result of adding loading invariance 

constraints; when the added loading invariance constraints were incorrect (i.e., in the 

loading non-invariance conditions), the decrease was greater than when the loading 

invariance constraints were correct (i.e., in the baseline conditions with fully invariant 
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indicators). One implication is that the conclusion of statistical significance of a growth 

parameter of interest may change as more invariance constraints are added, whether or 

not the added invariance constraints are appropriate. In contrast, when the indicators had 

three response categories, the standard errors of the growth parameters did not change 

substantially as a result of adding correct loading invariance constraints in the baseline 

conditions. These standard errors sometimes changed substantially as a result of adding 

incorrect loading invariance constraints in the loading non-invariance conditions: The 

change tended to be positive for the standard error of the intercept variance, but negative 

for the standard errors of the other growth parameters.   

The nested model likelihood ratio test comparing the fit of the second-order latent 

growth model assuming configural invariance with that of the model assuming loading 

invariance had acceptable Type 1 error rates. This nested model test had very high 

statistical power (above .95) to detect loading non-invariance for three indicators, but had 

very low statistical power (below .15) to detect loading non-invariance for one indicator. 

Conditions with Threshold Non-Invariance 

 Relative changes in the second-order growth parameters. Again, since the 

mean intercept was constrained to 0 for model identification, I report the relative changes 

in four second-order latent growth parameters below: mean linear slope, intercept 

variance, linear slope variance, and intercept-slope covariance.  

Mean linear slope.  I calculated the relative change (RC) in the estimated second-

order mean linear slope ( mean slopeRC ) in the conditions with threshold non-invariance, 

comparing the model correctly assuming loading invariance to the model incorrectly 

assuming threshold invariance. Figure 18 shows the mean slopeRC  value with 95% normal-
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theory confidence limits for each condition with threshold non-invariance. As a 

benchmark, the solid lines in the figure represent the corresponding mean slopeRC  values in 

the baseline conditions with fully invariant indicators ( mean slope, three response categories .000RC  ; 

mean slope, five response categories .000RC  ), and the dotted lines represent the corresponding 95% 

normal-theory confidence limits for mean slopeRC  in the baseline conditions. Three 

conditions with three non-invariant indicators and one condition with one non-invariant 

indicator, all with three response categories in the indicators, had a 95% normal-theory 

confidence interval of mean slopeRC  that did not overlap with that in the corresponding 

baseline condition (left panels of Figure 18), suggesting that these mean slopeRC  values 

differed from the corresponding baseline value at a level of significance that is at least α 

= .01. 

The .10 difference standard for a meaningful difference was also met for 

mean slopeRC . The difference in mean slopeRC  exceeded .10 between the baseline condition 

and one condition with large threshold non-invariance for three indicators with three 

response categories at two occasions (lower-left panel of Figure 18). Thus, a between-

subjects ANOVA was conducted on mean slopeRC  to provide information about the 

importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Occasions had a 

main effect (
2η .169 ): On average mean slopeRC  was closer to zero (which was also the 

value in the corresponding baseline condition) with one non-invariant occasion 

( mean slope, one non-invariant occasion .027RC   ) than with two non-invariant occasions 
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( mean slope, two non-invariant occasions .071RC   ). The Number of Non-Invariant Indicators showed a 

main effect (
2η .163 ): On average mean slopeRC  was closer to zero (which was also the 

value in the corresponding baseline condition) when there was one non-invariant 

indicator ( mean slope, one non-invariant indicator .028RC   ) than when there were three non-invariant 

indicators ( mean slope, three non-invariant indicators .071RC   ). The Magnitude of Non-Invariance 

showed a main effect (
2η .115 ): On average mean slopeRC  was closer to zero (which was 

also the value in the corresponding baseline condition) with small non-invariance 

( mean slope, small non-invariance .031RC   ) than with large non-invariance 

( mean slope, large non-invariance .068RC   ). The Number of Response Categories in the indicators 

also showed a main effect (
2η .115 ): On average mean slopeRC  was closer to zero when the 

indicators had five response categories ( mean slope, five response categories .031RC   ) than when the 

indicators had three response categories ( mean slope, three response categories .068RC   ).  

These main effects were modified by four two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .034 ), 

a Magnitude of Non-Invariance by Number of Non-Invariant Occasions interaction 

(
2η .023 ), a Number of Non-Invariant Indicators by Magnitude of Non-Invariance 

interaction (
2η .022 ), and a Number of Non-Invariant Indicators by Number of 

Response Categories interaction (
2η .021 ). As shown in Figure 18, in general, there was 

a multiplicative effect of the design factors. When there was one non-invariant indicator, 

the differences in mean slopeRC  from the corresponding baseline values were all less 
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than .10 (the standard for a meaningful difference), although a small multiplicative effect 

of the other factors could be observed. When there were three non-invariant indicators, 

the multiplicative effect of the other design factor became much larger: mean slopeRC  

increased when the Magnitude of Non-Invariance was large rather than small and there 

were two non-invariant occasions rather than one. In contrast to the earlier results in the 

loading non-invariance conditions, the use of five rather than three response categories 

decreased the amount of mean slopeRC . Interestingly, in all cases in which there was either 

(a) one non-invariant indicator, (b) one non-invariant occasion, or (c) five response 

categories, the difference in mean slopeRC  from the corresponding baseline condition did not 

exceed the .10 standard. The mean slopeRC  value was farthest away from zero and from the 

value in the corresponding baseline condition when there was large threshold non-

invariance for three indicators at two measurement occasions with three response 

categories.  

Intercept variance. I calculated the relative change (RC) in the estimated second-

order intercept variance ( intercept varianceRC ) in the conditions with threshold non-invariance, 

comparing the model correctly assuming loading invariance to the model incorrectly 

assuming threshold invariance. Figure 19 shows the intercept varianceRC  value with the 95% 

normal-theory confidence limits for each condition with threshold non-invariance. As a 

benchmark, the solid lines in the figure represent the corresponding intercept varianceRC  values 

in the baseline conditions with fully invariant indicators 

( intercept variance, three response categories .000RC  ; intercept variance, five response categories .001RC   ), and the 
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dotted lines represent the corresponding 95% normal-theory confidence limits for 

intercept varianceRC  in the baseline conditions. Four conditions with three non-invariant 

indicators and one condition with one non-invariant indicator had a 95% normal-theory 

confidence interval of intercept varianceRC  that did not overlap with that in the corresponding 

baseline condition, suggesting that these intercept varianceRC  values differed from the 

corresponding baseline value at a level of significance that is at least α = .01.   

The .10 difference standard for a meaningful difference was not met for 

mean slopeRC . Note that only one condition with non-invariant thresholds showed a 

difference in intercept varianceRC  from the corresponding baseline condition that is 

approaching .10 ( intercept variance .099RC  , large non-invariance on three non-invariant 

indicators at two occasions with five response categories). All other conditions had a 

difference in intercept varianceRC  from the corresponding baseline condition that was less 

than .10. Thus, a between-subjects ANOVA was not conducted on intercept varianceRC . 

Linear slope variance. I calculated the relative change (RC) in the estimated 

second-order linear slope variance ( slope varianceRC ) in the conditions with threshold non-

invariance, comparing the model correctly assuming loading invariance to the model 

incorrectly assuming threshold invariance. Figure 20 shows the slope varianceRC  value with 

the 95% normal-theory confidence limits for each condition with threshold non-

invariance. As a benchmark, the solid lines in the figure represent the corresponding 

slope varianceRC  values in the baseline conditions with fully invariant indicators 

( slope variance, three response categories .000RC  ; slope variance, five response categories .001RC  ), and the dotted 
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lines represent the corresponding 95% normal-theory confidence limits for slope varianceRC  

in the baseline conditions. One condition with threshold non-invariance had a 95% 

normal-theory confidence interval of slope varianceRC  that did not overlap with that in the 

corresponding baseline condition (large non-invariance on three non-invariant indicators 

at two occasions with three response categories), suggesting that this slope varianceRC  value 

differed from the corresponding baseline value at a level of significance that is at least α 

= .01.   

The .10 difference standard for a meaningful difference was also met for 

slopevarianceRC . The difference in slopevarianceRC  exceeded .10 between the baseline condition 

and several conditions with two non-invariant occasions. Thus, a between-subjects 

ANOVA was conducted on 
slopevarianceRC  to provide information about the importance of 

each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Occasions had a 

main effect (
2η .259 ): On average slope varianceRC  was closer to zero and to the value in 

the corresponding baseline condition with one non-invariant occasion 

( slope variance, one non-invariant occasion .018RC   ) than with two non-invariant occasions 

( slope variance, two non-invariant occasions .121RC   ). The Magnitude of Non-Invariance showed a 

main effect (
2η .078 ): On average slope varianceRC  was closer to zero and to the value in 

the corresponding baseline condition with small non-invariance 

( slope variance, small non-invariance .041RC   ) than with large non-invariance 

( slope variance, large non-invariance .097RC   ). The Number of Non-Invariant Indicators showed a 
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main effect (
2η .045 ): On average slope varianceRC  was closer to zero and to the value in 

the corresponding baseline condition when there was one non-invariant indicator 

( slope variance, one non-invariant indicator .048RC   ) than when there were three non-invariant 

indicators ( slope variance, three non-invariant indicators .091RC   ). The Number of Response Categories 

in the indicators also showed a main effect (
2η .039 ): On average slope varianceRC  was 

closer to zero and to the value in the corresponding baseline condition when the 

indicators had five response categories ( slope variance, five response categories .049RC   ) than when 

the indicators had three response categories ( slope variance, three response categories .089RC   ).  

These main effects were modified by two two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .036 ) 

and a Magnitude of Non-Invariance by Number of Non-Invariant Occasions interaction 

(
2η .035 ). As shown in Figure 20, when there was one non-invariant occasion, the 

influence of the Magnitude of Non-Invariance and the influence of the Number of Non-

Invariant Indicators were both negligible. In contrast, when there were two non-invariant 

occasions, the influence of the Magnitude of Non-Invariance and that of the Number of 

Non-Invariant Indicators became much larger. The slope varianceRC  value was farthest away 

from zero and from the value in the corresponding baseline condition when there was 

large threshold non-invariance for three indicators at two occasions with three response 

categories.  

Intercept-slope covariance. I calculated the relative change (RC) in the estimated 

second-order intercept-slope variance ( intercept-slope covarianceRC ) in the conditions with 
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threshold non-invariance, comparing the model correctly assuming loading invariance to 

the model incorrectly assuming threshold invariance. Figure 21 shows the 

intercept-slope covarianceRC  value with the 95% normal-theory confidence limits for each 

condition with threshold non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding intercept-slope covarianceRC  values in the baseline conditions with 

fully invariant indicators ( intercept-slope covariance, three response categories .002RC  ; 

intercept-slope covariance, five response categories .002RC  ), and the dotted lines represent the 

corresponding 95% normal-theory confidence limits for intercept-slope covarianceRC  in the 

baseline conditions. Two conditions with threshold non-invariance at two occasions had a 

95% normal-theory confidence interval of intercept-slope covarianceRC  that did not overlap with 

that in the corresponding baseline condition, suggesting that these intercept-slope covarianceRC  

values differed from the corresponding baseline value at a level of significance that is at 

least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept-slope covarianceRC . The difference in intercept-slope covarianceRC  exceeded .10 between the 

baseline condition and several conditions with two non-invariant occasions. Thus, a 

between-subjects ANOVA was conducted on intercept-slope covarianceRC  to provide information 

about the importance of each of the factors in the design. 

 The ANOVA results showed that the Number of Non-Invariant Occasions had a 

substantial main effect (
2η .353 ): On average intercept-slope covarianceRC  was closer to zero and 

to the value in the corresponding baseline condition with one non-invariant occasion 
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( intercept-slope covariance, one non-invariant occasion .014RC   ) than with two non-invariant occasions 

( intercept-slope covariance, two non-invariant occasions .157RC   ). The Magnitude of Non-Invariance 

showed a main effect (
2η .096 ): On average intercept-slope covarianceRC  was closer to zero and 

to the value in the corresponding baseline condition with small non-invariance 

( intercept-slope covariance, small non-invariance .048RC   ) than with large non-invariance 

( intercept-slope covariance, large non-invariance .123RC   ). The Number of Non-Invariant Indicators 

showed a main effect (
2η .044 ): On average intercept-slope covarianceRC  was closer to zero and 

to the value in the corresponding baseline condition when there was one non-invariant 

indicator ( intercept-slope covariance, one non-invariant indicator .060RC   ) than when there were three non-

invariant indicators ( intercept-slope covariance, three non-invariant indicators .111RC   ). The Number of 

Response Categories in the indicators also showed a main effect (
2η .042 ): On average 

intercept-slope covarianceRC  was closer to zero and to the value in the corresponding baseline 

condition when the indicators had five response categories 

( intercept-slope covariance, five response categories .061RC   ) than when the indicators had three response 

categories ( intercept-slope covariance, three response categories .110RC   ).  

These main effects were modified by two two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .069 ) 

and a Magnitude of Non-Invariance by Number of Non-Invariant Occasions interaction 

(
2η .052 ). When there was one non-invariant occasion, the influence of the Magnitude 

of Non-Invariance and the influence of the Number of Non-Invariant Indicators were 
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both negligible. In contrast, when there were two non-invariant occasions, the influence 

of the Magnitude of Non-Invariance and that of the Number of Non-Invariant Indicators 

became much larger. The intercept-slope covarianceRC value was farthest away from zero and from 

the value in the corresponding baseline condition when there was large threshold non-

invariance for three indicators at two measurement occasions with three response 

categories.  

Relative changes in the standard errors of the second-order growth 

parameters. Again, because the mean intercept was constrained to 0 for model 

identification and the corresponding standard error was 0, I report the relative changes in 

the standard errors of four second-order latent growth parameters below: mean linear 

slope, intercept variance, linear slope variance, and intercept-slope covariance.  I report 

the relative changes in the standard errors of these growth parameters for completeness. 

For those second-order growth parameters for which the mean difference in the relative 

changes exceeded .10 (indicating material bias) between the baseline condition and at 

least one of the conditions with threshold non-invariance, standard errors are clearly of 

only secondary interest, and thus the corresponding ANOVA results were not reported. 

Standard error of the mean linear slope. I calculated the relative change (RC) in 

the estimated standard error of the second-order mean linear slope (
mean slopeSERC ) in the 

conditions with threshold non-invariance, comparing the model correctly assuming 

loading invariance to the model incorrectly assuming threshold invariance. Figure 22 

shows the 
mean slopeSERC  value with the 95% normal-theory confidence limits for each 

condition with threshold non-invariance. As a benchmark, the solid lines in the figure 
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represent the corresponding 
mean slopeSERC  values in the baseline conditions with fully 

invariant indicators (
mean slope , three response categories .027SERC  ; 

mean slope , five response categories .290SERC   ), and the dotted lines represent the corresponding 95% 

normal-theory confidence limits for 
mean slopeSERC  in the baseline conditions. One condition 

with large threshold non-invariance for three indicators at two occasions with three 

response categories had a 95% normal-theory confidence interval of 
mean slopeSERC  that did 

not overlap with that in the corresponding baseline condition (lower-left panel of Figure 

22), suggesting that this 
mean slopeSERC value differed from the corresponding baseline value 

at a level of significance that is at least α = .01. 

The .10 difference standard for a meaningful difference was also met for 

mean slopeSERC . The difference in 
mean slopeSERC  exceeded .10 between the baseline condition 

and one condition with large threshold non-invariance for three indicators at two 

occasions with three response categories (lower-left panel of Figure 22). When there 

were three response categories in the indicators as shown in the left panels of Figure 22, 

in general there was a multiplicative effect of the design factors. When there was one 

non-invariant indicator, the differences in 
mean slopeSERC  from the corresponding baseline 

values were all less than .10 (the standard for a meaningful difference), although a small 

multiplicative effect of the other factors could be observed. When there were three non-

invariant indicators, the multiplicative effect of the other design factors became much 

larger: 
mean slopeSERC  increased when the Magnitude of Non-Invariance was large rather than 

small and there were two non-invariant occasions rather than one. The 
mean slopeSERC value 
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was farthest away from the value in the corresponding baseline condition (.027) when 

there was large threshold non-invariance for three indicators at two measurement 

occasions. This pattern of results paralleled the results for the relative changes in the 

mean linear slope in the conditions with three response categories in the indicators.  

When there were five response categories in the indicators as shown in the right 

panels of Figure 22, the influence of the Number of Non-Invariant Occasions, the 

Magnitude of Non-Invariance and the Number of Non-Invariant Indicators all appeared 

to be negligible. This pattern of results was different from the results for the relative 

changes in the mean linear slope in the conditions with five response categories in the 

indicators. Although the difference in mean slopeRC  from the corresponding baseline 

condition did not exceed the .10 standard in all cases in which there were five response 

categories, a small multiplicative effect of the other factors on mean slopeRC  could be 

observed, such that mean slopeRC  increased when the Magnitude of Non-Invariance was 

large rather than small and there were two non-invariant occasions rather than one.  

Standard error of the intercept variance. I calculated the relative change (RC) in 

the estimated standard error of the second-order intercept variance (
intercept varianceSERC ) in the 

conditions with threshold non-invariance, comparing the model correctly assuming 

loading invariance to the model incorrectly assuming threshold invariance. Figure 23 

shows the 
intercept varianceSERC  value with the 95% normal-theory confidence limits for each 

condition with threshold non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
intercept varianceSERC  values in the baseline conditions with fully 
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invariant indicators (
intercept variance , three response categories .019SERC  ; 

intercept variance , five response categories .077SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
intercept varianceSERC  in the baseline conditions. Four 

conditions with three non-invariant indicators had a 95% normal-theory confidence 

interval of 
intercept varianceSERC  that did not overlap with that in the corresponding baseline 

condition (lower panels of Figure 23), suggesting that these 
intercept varianceSERC  values differed 

from the corresponding baseline value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept varianceSERC . The difference in 
intercept varianceSERC  exceeded .10 between the baseline 

condition and two conditions with large threshold non-invariance for three indicators at 

two occasions (lower panels of Figure 23). Note that the .10 difference standard for a 

meaningful difference was not met for the relative changes in the corresponding growth 

parameter, the intercept variance, and a between-subjects ANOVA was not conducted on 

the relative changes in the intercept variance. Thus, the ANOVA results on the relative 

changes in the corresponding standard error (
intercept varianceSERC ) are reported here. Given that 

the Number of Response Categories had an impact on 
intercept varianceSERC  in the baseline 

conditions with fully invariant indicators, a separate between-subjects ANOVA was 

conducted on 
intercept varianceSERC  for the threshold non-invariance conditions with three 

response categories and those with five response categories, respectively.  

For conditions with threshold non-invariance and indicators with three response 

categories (left panels in Figure 23), the ANOVA results showed that the Number of 
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Non-Invariant Indicators had a substantial main effect (
2η .317 ): On average 

intercept varianceSERC  was smaller and closer to the corresponding value in the baseline condition 

(.019) when there was one non-invariant indicator (
intercept variance , one non-invariant indicator .014SERC  ) 

than when there were three non-invariant indicators 

(
intercept variance , three non-invariant indicators .056SERC  ). The Number of Non-Invariant Occasions 

showed a main effect (
2η .239 ): On average 

intercept varianceSERC  was smaller and closer to the 

corresponding value in the baseline condition with one non-invariant occasion 

(
intercept variance , one non-invariant occasion .017SERC  ) than with two non-invariant occasions 

(
intercept variance , two non-invariant occasions .053SERC  ). The Magnitude of Non-Invariance also showed a 

main effect (
2η .210 ): On average 

intercept varianceSERC  was smaller and closer to the 

corresponding value in the baseline condition with small non-invariance 

(
intercept variance , small non-invariance .018SERC  ), but became larger and farther away from the 

corresponding value in the baseline condition with large non-invariance 

(
intercept variance , large non-invariance .052SERC  ). 

These main effects were modified by three two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .032 ), 

a Number of Non-Invariant Indicators by Magnitude of Non-Invariance interaction 

(
2η .029 ), and a Magnitude of Non-Invariance by Number of Non-Invariant Occasions 

interaction (
2η .020 ). As shown in the left panels of Figure 23, the influence of the 

Magnitude of Non-Invariance and the influence of the Number of Non-Invariant 
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Occasions were both smaller when there was one non-invariant indicator than when there 

were three non-invariant indicators. The 
intercept varianceSERC  value was farthest away from the 

value in the corresponding baseline condition when there was large threshold non-

invariance for three indicators at two measurement occasions. Based on the figures, this 

pattern of results paralleled the results for the relative changes in the intercept variance in 

the conditions with three response categories in the indicators. 

For conditions with threshold non-invariance and indicators with five response 

categories (right panels in Figure 23), the ANOVA results showed that the Number of 

Non-Invariant Indicators had a substantial main effect (
2η .219 ): On average 

intercept varianceSERC  was more negative and closer to the corresponding value in the baseline 

condition (-.077) when there was one non-invariant indicator 

(
intercept variance , one non-invariant indicator .048SERC   ) than when there were three non-invariant 

indicators (
intercept variance , three non-invariant indicators .005SERC   ). The Number of Non-Invariant 

Occasions showed a main effect (
2η .169 ): On average 

intercept varianceSERC  was more 

negative and closer to the corresponding value in the baseline condition with one non-

invariant occasion (
intercept variance , one non-invariant occasion .046SERC   ) than with two non-invariant 

occasions (
intercept variance , two non-invariant occasions .008SERC   ). The Magnitude of Non-Invariance 

also showed a main effect (
2η .145 ): On average 

intercept varianceSERC  was more negative and 

closer to the corresponding value in the baseline condition with small non-invariance 
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(
intercept variance , small non-invariance .044SERC   ) than with large non-invariance 

(
intercept variance , large non-invariance .009SERC   ). 

These main effects were modified by three two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .035 ), 

a Number of Non-Invariant Indicators by Magnitude of Non-Invariance interaction 

(
2η .026 ), and a Magnitude of Non-Invariance by Number of Non-Invariant Occasions 

interaction (
2η .021 ). As shown in the right panels of Figure 23, the influence of the 

Magnitude of Non-Invariance and the influence of the Number of Non-Invariant 

Occasions were both smaller when there was one non-invariant indicator than when there 

were three non-invariant indicators. The 
intercept varianceSERC  value was farthest away from the 

value in the corresponding baseline condition when there was large threshold non-

invariance for three indicators at two measurement occasions. Based on the figures, this 

pattern of results paralleled the results for the relative changes in the intercept variance in 

the conditions with five response categories in the indicators. 

Standard error of the linear slope variance. I calculated the relative change (RC) 

in the estimated standard error of the second-order linear slope variance (
slope varianceSERC ) in 

the conditions with threshold non-invariance, comparing the model correctly assuming 

loading invariance to the model incorrectly assuming threshold invariance. Figure 24 

shows the 
slope varianceSERC  value with the 95% normal-theory confidence limits for each 

condition with threshold non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
slope varianceSERC  values in the baseline conditions with fully 
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invariant indicators (
slope variance , three response categories .001SERC   ; 

slope variance , five response categories .217SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
slope varianceSERC  in the baseline conditions. One 

condition with large threshold non-invariance for three indicators at two occasions with 

three response categories had a 95% normal-theory confidence interval of 
slope varianceSERC  

that did not overlap with that in the corresponding baseline condition (lower-left panel of 

Figure 24), suggesting that this 
slope varianceSERC value differed from the corresponding 

baseline value at a level of significance that is at least α = .01. 

The .10 difference standard for a meaningful difference was also met for 

slope varianceSERC . The difference in 
slope varianceSERC  exceeded .10 between the baseline condition 

and one condition with large threshold non-invariance for three indicators at two 

occasions with three response categories (lower-left panel of Figure 24). When there 

were three response categories in the indicators as shown in the left panels of Figure 24, 

with one non-invariant occasion, the influence of the Magnitude of Non-Invariance and 

the influence of the Number of Non-Invariant Indicators were both negligible. In contrast, 

with two non-invariant occasions, the influence of the Magnitude of Non-Invariance and 

that of the Number of Non-Invariant Indicators became much larger. The 
slope varianceSERC  

value was farthest away from zero and from the value in the corresponding baseline 

condition when there was large threshold non-invariance for three indicators at two 

occasions. This pattern of results paralleled the results for the relative changes in the 

linear slope variance in the conditions with three response categories in the indicators. 
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When there were five response categories in the indicators as shown in the right 

panels of Figure 24, although none of the differences in 
slope varianceSERC  from the 

corresponding baseline condition met the .10 standard for a meaningful difference, a 

similar pattern of results was observed. The influence of the other design factors was 

again negligible with one non-invariant occasion. In contrast, with two non-invariant 

occasions, the influence of the Magnitude of Non-Invariance became larger, such that the 

slope varianceSERC  value was farther away from the value in the corresponding baseline 

condition when there was large threshold non-invariance rather than small. This pattern 

of results paralleled the results for the relative changes in the linear slope variance in the 

conditions with five response categories in the indicators. 

Standard error of the intercept-slope covariance. I calculated the relative change 

(RC) in the estimated standard error of the second-order intercept-slope covariance 

(
intercept-slope covarianceSERC ) in the conditions with threshold non-invariance, comparing the model 

correctly assuming loading invariance to the model incorrectly assuming threshold 

invariance. Figure 25 shows the 
intercept-slope covarianceSERC  value with the 95% normal-theory 

confidence limits for each condition with threshold non-invariance. As a benchmark, the 

solid lines in the figure represent the corresponding 
intercept-slope covarianceSERC  values in the 

baseline conditions with fully invariant indicators 

(
intercept-slope covariance , three response categories .009SERC  ; 

intercept-slope covariance , five response categories .102SERC  ), and 

the dotted lines represent the corresponding 95% normal-theory confidence limits for 

intercept-slope covarianceSERC  in the baseline conditions. One condition with large threshold non-
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invariance for three indicators at two occasions with three response categories had a 95% 

normal-theory confidence interval of 
intercept-slope covarianceSERC  that did not overlap with that in the 

corresponding baseline condition (lower-left panel of Figure 25), suggesting that this 

intercept-slope covarianceSERC  value differed from the corresponding baseline value at a level of 

significance that is at least α = .01. 

The .10 difference standard for a meaningful difference was also met for 

intercept-slope covarianceSERC . The difference in 
intercept-slope covarianceSERC  exceeded .10 between the baseline 

condition and one condition with large threshold non-invariance for three indicators with 

three response categories at two occasions (lower-left panel of Figure 25). When there 

were three response categories in the indicators as shown in the left panels of Figure 25, 

with one non-invariant occasion, the influence of the Magnitude of Non-Invariance and 

the influence of the Number of Non-Invariant Indicators were both negligible. In contrast, 

with two non-invariant occasions, the influence of the Magnitude of Non-Invariance and 

that of the Number of Non-Invariant Indicators became much larger. The 

intercept-slope covarianceSERC  value was farthest away from the value in the corresponding baseline 

condition when there was large threshold non-invariance for three indicators at two 

measurement occasions. This pattern of results paralleled the results for the relative 

changes in the intercept-slope covariance in the conditions with three response categories 

in the indicators. 

When there were five response categories as shown in the right panels of Figure 

25, although none of the differences in 
intercept-slope covarianceSERC  from the corresponding baseline 

condition met the .10 standard for a meaningful difference, a similar pattern of results 



  78 

was observed. With one non-invariant occasion, the influence of the Magnitude of Non-

Invariance and the influence of the Number of Non-Invariant Indicators were both 

negligible. In contrast, with two non-invariant occasions, the influence of the Magnitude 

of Non-Invariance and that of the Number of Non-Invariant Indicators became much 

larger. The 
intercept-slope covarianceSERC  value was farthest away from the value in the corresponding 

baseline condition when there was large threshold non-invariance for three indicators at 

two measurement occasions. This pattern of results paralleled the results for the relative 

changes in the intercept-slope covariance in the conditions with five response categories 

in the indicators. 

Standardized change in the second-order mean linear slope. I calculated the 

standardized change (STDC) in the estimated second-order mean linear slope 

( mean slopeSTDC ) in the conditions with threshold non-invariance, comparing the model 

correctly assuming loading invariance to the model incorrectly assuming threshold 

invariance. Figure 26 shows the mean slopeSTDC  value with 95% normal-theory confidence 

limits for each condition with threshold non-invariance. As a benchmark, the solid lines 

in the figure represent the corresponding mean slopeSTDC  values in the baseline conditions 

with fully invariant indicators ( mean slope, three response categories .000STDC  ; 

mean slope, five response categories .001STDC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for mean slopeSTDC  in the baseline conditions. 

Several conditions with threshold non-invariance had a 95% normal-theory confidence 

interval of mean slopeSTDC  that did not overlap with that in the corresponding baseline 



  79 

condition, suggesting that these mean slopeSTDC  values differed from the corresponding 

baseline value at a level of significance that is at least α = .01. 

The .10 difference standard for a meaningful difference was also met for 

mean slopeSTDC . The difference in mean slopeSTDC  exceeded .10 between the baseline 

condition and one condition with large threshold non-invariance for three indicators at 

two occasions with three response categories (lower-left panel of Figure 26). Thus, a 

between-subjects ANOVA was conducted on mean slopeSTDC  to provide information about 

the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Occasions had a 

main effect (
2η .166 ): On average mean slopeSTDC  was closer to zero and to the value in 

the corresponding baseline condition with one non-invariant occasion 

( mean slope, one non-invariant occasion .024STDC   ) than with two non-invariant occasions 

( mean slope, two non-invariant occasions .061STDC   ). The Number of Non-Invariant Indicators 

showed a main effect (
2η .159 ): On average mean slopeSTDC  was closer to zero and to the 

value in the corresponding baseline condition when there was one non-invariant indicator 

( mean slope, one non-invariant indicator .024STDC   ) than when there were three non-invariant 

indicators ( mean slope, three non-invariant indicators .061STDC   ). The Magnitude of Non-Invariance 

showed a main effect (
2η .113 ): On average mean slopeSTDC  was closer to zero and to the 

value in the corresponding baseline condition with small non-invariance 

( mean slope, small non-invariance .027STDC   ) than with large non-invariance 
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( mean slope, large non-invariance .058STDC   ). The Number of Response Categories in the 

indicators also showed a main effect (
2η .108 ): On average mean slopeSTDC  was closer to 

zero and to the value in the corresponding baseline condition when the indicators had five 

response categories ( mean slope, five response categories .027STDC   ) than when the indicators had 

three response categories ( mean slope, three response categories .058STDC   ).  

These main effects were modified by four two-way interactions: A Number of 

Non-Invariant Indicators by Number of Non-Invariant Occasions interaction (
2η .033 ), 

a Magnitude of Non-Invariance by Number of Non-Invariant Occasions interaction 

(
2η .023 ), a Number of Non-Invariant Indicators by Magnitude of Non-Invariance 

interaction (
2η .022 ), and a Number of Non-Invariant Indicators by Number of 

Response Categories interaction (
2η .021 ). As shown in Figure 26, in general, there was 

a multiplicative effect of the design factors. When there was one non-invariant indicator, 

the differences in mean slopeSTDC  from the corresponding baseline values were all less 

than .10 (the standard for a meaningful difference), although a small multiplicative effect 

of the other factors could be observed. When there were three non-invariant indicators, 

the multiplicative effect of the other design factor became much larger: mean slopeSTDC  

increased when the Magnitude of Non-Invariance was large rather than small and there 

were two non-invariant occasions rather than one. In contrast to the earlier results in the 

loading non-invariance conditions, the use of five rather than three response categories 

decreased the amount of mean slopeSTDC . The mean slopeSTDC  value was farthest away from 

zero and from the value in the corresponding baseline condition when there was large 
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threshold non-invariance for three indicators at two measurement occasions with three 

response categories. This pattern of results paralleled the results for the relative changes 

in the mean linear slope. 

Statistical power of the nested model test to detect the incorrect threshold 

invariance constraints. In the baseline conditions, I computed the empirical Type 1 error 

rate, i.e. the proportion of the 1000 replications for which a significant test statistic was 

found, for the nested model test (i.e., DIFFTEST in Mplus) comparing the model fit of 

(a) the second-order latent growth model correctly assuming loading invariance, and (b) 

the second-order latent growth model correctly assuming threshold invariance. The 

empirical Type 1 error rate was .050 when the indicators had three response categories, 

and .055 when the indicators had five response categories. Since these values were both 

within the acceptable range of [.0365, .0635], I concluded that this nested model test was 

not biased in terms of the Type 1 error rate. I then calculated the statistical power of this 

nested model test in the conditions with manipulated threshold non-invariance, 

examining the difference in model fit between (a) the second-order latent growth model 

correctly assuming loading invariance, and (b) the second-order latent growth model 

incorrectly assuming threshold invariance.  

Figure 27 shows the statistical power of the nested model test for each condition 

with threshold non-invariance. As can be seen on the top-right panel of Figure 27, the 

statistical power to detect threshold non-invariance was always above .75. When there 

was one indicator with small non-invariance in the thresholds and five response 

categories, the statistical power of the nested model test to detect the incorrect threshold 

invariance constraints increased as the Number of Non-Invariant Occasions increased. In 
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all other conditions with threshold non-invariance, the nested model test had very high 

statistical power (between .989 and 1.00) to detect the incorrect threshold invariance 

constraints across different combinations of the Number of Non-Invariant Indicators, the 

Magnitude of Non-Invariance, the Number of Non-Invariant Occasions, and the Number 

of Response Categories in the indicators. 

Summary. In the conditions with manipulated threshold non-invariance, the 

Number of Non-Invariant Occasions showed a substantial influence that was greater than 

that of other design factors on several of the evaluation criteria: The relative changes in 

the linear slope variance and in the corresponding standard error, and the relative changes 

in the intercept-slope covariance and the corresponding standard error. With one non-

invariant occasion, the influence of the other design factors on these evaluation criteria 

was negligible. With two non-invariant occasions, the influence of the Magnitude of 

Non-Invariance and the influence of the Number of Non-Invariant Indicators became 

much larger: The average evaluation criterion value was farther away from the value in 

the corresponding baseline condition when there were three non-invariant indicators 

rather than three, and when the Magnitude of Non-Invariance was large rather than small. 

On other evaluation criteria including the relative changes in the mean linear 

slope and in the corresponding standard error, and the relative change in the standard 

error of the intercept variance, the Number of Non-Invariant Occasions showed a main 

effect but it was not substantially greater in magnitude than the influence of other design 

factors. In general, there was a multiplicative effect of the design factors. When there was 

one non-invariant indicator, the differences in the mean evaluation criteria from the 

corresponding baseline values were all less than .10 (the standard for a meaningful 
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difference), although a small multiplicative effect of the other factors could be observed. 

When there were three non-invariant indicators, the multiplicative effect of the other 

design factor became much larger. The differences in the mean evaluation criteria from 

the corresponding baseline values increased when the Magnitude of Non-Invariance was 

large rather than small and when there were two non-invariant occasions rather than one. 

Interestingly, in all cases in which there was either (a) one non-invariant indicator or (b) 

one non-invariant occasion, the differences in the mean evaluation criteria from the 

corresponding baseline values did not exceed the .10 standard. The mean evaluation 

criteria values were farthest away from the values in the corresponding baseline condition 

when there was large threshold non-invariance for three indicators at two measurement 

occasions. 

It is also noteworthy that in the conditions with threshold non-invariance, the use 

of five rather than three response categories decreased the differences in the evaluation 

criteria from the corresponding baseline condition. This was contrary to the earlier results 

in the loading non-invariance conditions, in which the use of five rather than three 

response categories increased the differences in the evaluation criteria from the 

corresponding baseline condition. Note that there were two thresholds in an indicator 

with three response categories, and four thresholds in an indicator with five response 

categories. Threshold non-invariance was introduced on the last one threshold of the non-

invariant indicator(s). Thus, a plausible explanation of the greater effect of threshold non-

invariance when there were three response categories is that the proportion of 

problematic thresholds in a non-invariant indicator was 50% when there were three 

response categories, but only 25% when there were five response categories. 
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In addition, when the indicators had five response categories, the 95% normal-

theory confidence intervals of the components of evaluation criteria 1) and 2) were 

always much wider than when the indicators had three response categories, and this was 

true for both the conditions with non-invariant thresholds and the baseline conditions 

with fully invariant indicators. This result parallels the findings in the conditions with 

loading non-invariance, and may be related to the larger number of parameters to 

estimate in the configural and loading invariance models when there were five response 

categories in the indicators rather than three. 

Also, when the indicators had five response categories, the standard errors of the 

growth parameters always decreased substantially as a result of adding correct threshold 

invariance constraints in the baseline conditions with fully invariant indicators. When the 

added threshold invariance constraints were incorrect (i.e., in the threshold non-

invariance conditions), almost all of the standard errors of the growth parameters tended 

to decrease, and these relative change values did not differ substantially from the 

corresponding values in the baseline conditions. There was one exception: On average 

the standard error of the intercept variance increased as a result of adding incorrect 

threshold invariance constraints in the condition with large threshold non-invariance on 

three indicators at two occasions with fiver response categories. One implication is that 

the conclusion of statistical significance of a growth parameter of interest may change as 

more invariance constraints were added, whether or not the added invariance constraints 

were appropriate. In contrast, when the indicators had three response categories, the 

standard errors of the growth parameters did not change substantially as a result of adding 

correct threshold invariance constraints in the baseline conditions. These standard errors 
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sometimes changed substantially as a result of adding incorrect threshold invariance 

constraints in the threshold non-invariance conditions: The change tended to be positive 

for the standard error of the intercept variance, but negative for the standard errors of the 

other growth parameters for the present population model.  

The nested model test comparing the fit of the second-order latent growth model 

assuming loading invariance with that of the model assuming threshold invariance had 

acceptable Type 1 error rates. Contrary to the earlier results where the nested model test 

had very low statistical power (less than .15) to detect loading non-invariance for one 

indicator, the statistical power to detect threshold non-invariance was always above .75. 

When there was one indicator with small thresholds non-invariance and five response 

categories, the statistical power of this nested model test to detect the incorrect threshold 

invariance constraints increased as the Number of Non-Invariant Occasions increased. In 

all other conditions with threshold non-invariance, the nested model test had very high 

statistical power (above .95) to detect the incorrect threshold invariance constraints. 

Conditions with Unique Factor Non-Invariance 

 Relative changes in the second-order growth parameters. Again, since the 

mean intercept was constrained to 0 for model identification, I report the relative changes 

in four second-order latent growth parameters below: mean linear slope, intercept 

variance, linear slope variance, and intercept-slope covariance.  

Mean linear slope.  I calculated the relative change (RC) in the estimated second-

order mean linear slope ( mean slopeRC ) in the conditions with unique factor non-invariance, 

comparing the model correctly assuming threshold invariance to the model incorrectly 

assuming unique factor invariance. Figure 28 shows the mean slopeRC  value with 95% 
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normal-theory confidence limits for each condition with unique factor non-invariance. As 

a benchmark, the solid lines in the figure represent the corresponding mean slopeRC  values 

in the baseline conditions with fully invariant indicators 

( mean slope, three response categories .003RC  ; mean slope, five response categories .001RC  ), and the dotted lines 

represent the corresponding 95% normal-theory confidence limits for mean slopeRC  in the 

baseline conditions. None of the unique factor non-invariance conditions had a 95% 

normal-theory confidence interval of mean slopeRC  that did not overlap with that in the 

corresponding baseline condition. 

The .10 difference standard for a meaningful difference was not met for 

mean slopeRC . The greatest difference in mean slopeRC  between the baseline condition and a 

condition with manipulated unique factor non-invariance was .074. Thus, a between-

subjects ANOVA was not conducted on mean slopeRC . 

Intercept variance. I calculated the relative change (RC) in the estimated second-

order intercept variance ( intercept varianceRC ) in the conditions with unique factor non-

invariance, comparing the model correctly assuming threshold invariance to the model 

incorrectly assuming unique factor invariance. Figure 29 shows the intercept varianceRC  value 

with the 95% normal-theory confidence limits for each condition with unique factor non-

invariance. As a benchmark, the solid lines in the figure represent the corresponding 

intercept varianceRC  values in the baseline conditions with fully invariant indicators 

( intercept variance, three response categories .004RC  ; intercept variance, five response categories .001RC   ), and the 

dotted lines represent the corresponding 95% normal-theory confidence limits for 
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intercept varianceRC  in the baseline conditions. None of the conditions with unique factor non-

invariance had a 95% normal-theory confidence interval of intercept varianceRC  that did not 

overlap with that in the corresponding baseline condition.   

The .10 difference standard for a meaningful difference was met for 

intercept varianceRC . The difference in intercept varianceRC  exceeded .10 between the baseline 

condition and several conditions with three non-invariant indicators (lower panels of 

Figure 29). Thus, a between-subjects ANOVA was conducted on 
intercept varianceRC  to 

provide information about the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Indicators showed 

a main effect (
2η .186 ): On average intercept varianceRC  was smaller and closer to the value 

in the corresponding baseline condition when there was one non-invariant indicator 

( intercept variance, one non-invariant indicator .046RC  ) than when there were three non-invariant 

indicators ( intercept variance, three non-invariant indicators .135RC  ). The Magnitude of Non-Invariance 

showed a main effect (
2η .086 ): On average intercept varianceRC  was smaller and closer to 

the value in the corresponding baseline condition with small non-invariance 

( intercept variance, small non-invariance .060RC  ) than with large non-invariance 

( intercept variance, large non-invariance .121RC  ). The Number of Non-Invariant Occasions also 

showed a main effect (
2η .061 ): On average intercept varianceRC  was smaller and closer to 

the value in the corresponding baseline condition with one non-invariant occasion 
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( intercept variance, one non-invariant occasion .065RC  ) than with two non-invariant occasions 

( intercept variance, two non-invariant occasions .116RC  ).  

These main effects were modified by a two-way interaction between the Number 

of Non-Invariant Indicators and the Number of Non-Invariant Occasions interaction 

(
2η .022 ). As shown in Figure 29, when there was one non-invariant indicator, the 

influence of the Number of Non-Invariant Occasions was rather small. In contrast, when 

there were three non-invariant indicators, the influence of the Number of Non-Invariant 

Occasions became much larger. The intercept varianceRC  value was farthest away from zero 

and from the value in the corresponding baseline condition when there was large unique 

factor non-invariance for three indicators at two measurement occasions. 

Linear slope variance. I calculated the relative change (RC) in the estimated 

second-order linear slope variance ( slope varianceRC ) in the conditions with unique factor 

non-invariance, comparing the model correctly assuming threshold invariance to the 

model incorrectly assuming unique factor invariance. Figure 30 shows the slope varianceRC  

value with the 95% normal-theory confidence limits for each condition with unique factor 

non-invariance. As a benchmark, the solid lines in the figure represent the corresponding 

slope varianceRC  values in the baseline conditions with fully invariant indicators 

( slope variance, three response categories .011RC  ; slope variance, five response categories .004RC  ), and the dotted 

lines represent the corresponding 95% normal-theory confidence limits for slope varianceRC  

in the baseline conditions. None of the conditions with unique factor non-invariance had 
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a 95% normal-theory confidence interval of slope varianceRC  that did not overlap with that in 

the corresponding baseline condition.   

The .10 difference standard for a meaningful difference was met for slopevarianceRC . 

The difference in slopevarianceRC  exceeded .10 between the baseline condition and several 

conditions with three non-invariant indicators (lower panels of Figure 30). Thus, a 

between-subjects ANOVA was conducted on 
slopevarianceRC  to provide information about 

the importance of each of the factors in the design. 

The ANOVA results showed that the Number of Non-Invariant Occasions had a 

main effect (
2η .164 ): On average slope varianceRC  was closer to zero and to the value in 

the corresponding baseline condition with one non-invariant occasion 

( slope variance, one non-invariant occasion .028RC   ) than with two non-invariant occasions 

( slope variance, two non-invariant occasions .119RC   ). The Number of Non-Invariant Indicators 

showed a main effect (
2η .136 ): On average slope varianceRC  was closer to zero and to the 

value in the corresponding baseline condition when there was one non-invariant indicator 

( slope variance, one non-invariant indicator .032RC   ) than when there were three non-invariant 

indicators ( slope variance, three non-invariant indicators .115RC   ). The Magnitude of Non-Invariance 

showed a main effect (
2η .027 ): On average slope varianceRC  was closer to zero and to the 

value in the corresponding baseline condition with small non-invariance 

( slope variance, small non-invariance .055RC   ) than with large non-invariance 

( slope variance, large non-invariance .092RC   ).  
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These main effects were modified by a two-way interaction between the Number 

of Non-Invariant Indicators and the Number of Non-Invariant Occasions (
2η .038 ). As 

shown in Figure 30, when there was one non-invariant occasion, the influence of the 

Number of Non-Invariant Indicators was very small. In contrast, when there were two 

non-invariant occasions, the influence the Number of Non-Invariant Indicators became 

much larger. The slope varianceRC  value was farthest away from zero and from the value in 

the corresponding baseline condition when there was large threshold non-invariance for 

three indicators at two occasions with three response categories.  

Intercept-slope covariance. I calculated the relative change (RC) in the estimated 

second-order intercept-slope variance ( intercept-slope covarianceRC ) in the conditions with unique 

factor non-invariance, comparing the model correctly assuming threshold invariance to 

the model incorrectly assuming unique factor invariance. Figure 31 shows the 

intercept-slope covarianceRC  value with the 95% normal-theory confidence limits for each 

condition with unique factor non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding intercept-slope covarianceRC  values in the baseline conditions with 

fully invariant indicators ( intercept-slope covariance, three response categories .011RC  ; 

intercept-slope covariance, five response categories .006RC  ), and the dotted lines represent the 

corresponding 95% normal-theory confidence limits for intercept-slope covarianceRC  in the 

baseline conditions. Two conditions with unique factor non-invariance for three 

indicators had a 95% normal-theory confidence interval of intercept-slope covarianceRC  that did 

not overlap with that in the corresponding baseline condition (lower panels of Figure 31), 
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suggesting that these intercept-slope covarianceRC  values differed from the corresponding baseline 

value at a level of significance that is at least α = .01.  

The .10 difference standard for a meaningful difference was also met for 

intercept-slope covarianceRC . The difference in intercept-slope covarianceRC  exceeded .10 between the 

baseline condition and all conditions with three non-invariant indicators and several 

conditions with one non-invariant indicator. Thus, a between-subjects ANOVA was 

conducted on intercept-slope covarianceRC  to provide information about the importance of each of 

the factors in the design. 

 The ANOVA results showed that the Number of Non-Invariant Indicators had a 

substantial main effect (
2η .418 ): On average intercept-slope covarianceRC  was closer to zero and 

to the value in the corresponding baseline condition when there was one non-invariant 

indicator ( intercept-slope covariance, one non-invariant indicator .088RC   ) than when there were three non-

invariant indicators ( intercept-slope covariance, three non-invariant indicators .302RC   ). The Magnitude of 

Non-Invariance showed a main effect (
2η .138 ): On average intercept-slope covarianceRC  was 

closer to zero and to the value in the corresponding baseline condition with small non-

invariance ( intercept-slope covariance, small non-invariance .133RC   ) than with large non-invariance 

( intercept-slope covariance, large non-invariance .256RC   ). The Number of Non-Invariant Occasions 

showed a main effect (
2η .067 ): On average intercept-slope covarianceRC  was closer to zero and 

to the value in the corresponding baseline condition with one non-invariant occasion 
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( intercept-slope covariance, one non-invariant occasion .152RC   ) than with two non-invariant occasions 

( intercept-slope covariance, two non-invariant occasions .238RC   ).  

These main effects were modified by two two-way interactions: A Magnitude of 

Non-Invariance by Number of Non-Invariant Indicators interaction (
2η .041 ) and a 

Number of Non-Invariant Indicators by Number of Non-Invariant Occasions interaction 

(
2η .023 ). When there was one non-invariant indicator, the influence of the Magnitude 

of Non-Invariance and the influence of the Number of Non-Invariant Occasions were 

both negligible. In contrast, when there were three non-invariant indicators, the influence 

of the Magnitude of Non-Invariance and that of the Number of Non-Invariant Occasions 

became much larger. The intercept-slope covarianceRC value was farthest away from zero and from 

the value in the corresponding baseline condition when there was large unique factor 

non-invariance for three indicators at two measurement occasions.  

Relative changes in the standard errors of the second-order growth 

parameters. Again, because the mean intercept was constrained to 0 for model 

identification and the corresponding standard error was 0, I report the relative changes in 

the standard errors of four second-order latent growth parameters below: mean linear 

slope, intercept variance, linear slope variance, and intercept-slope covariance. I report 

the relative changes in the standard errors of these growth parameters for completeness. 

For those second-order growth parameters for which the mean difference in the relative 

changes exceeded .10 (indicating material bias) between the baseline condition and at 

least one of the conditions with unique factor non-invariance, standard errors are clearly 

of only secondary interest, and thus the corresponding ANOVA results were not reported. 
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Standard error of the mean linear slope. I calculated the relative change (RC) in 

the estimated standard error of the second-order mean linear slope (
mean slopeSERC ) in the 

conditions with unique factor non-invariance, comparing the model correctly assuming 

threshold invariance to the model incorrectly assuming unique factor invariance. Figure 

32 shows the 
mean slopeSERC  value with the 95% normal-theory confidence limits for each 

condition with unique factor non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
mean slopeSERC  values in the baseline conditions with fully 

invariant indicators (
mean slope , three response categories .384SERC   ; 

mean slope , five response categories .368SERC   ), and the dotted lines represent the corresponding 95% 

normal-theory confidence limits for 
mean slopeSERC  in the baseline conditions. None of the 

conditions with unique factor non-invariance had a 95% normal-theory confidence 

interval of 
mean slopeSERC  that did not overlap with that in the corresponding baseline 

condition. 

The .10 difference standard for a meaningful difference was not met for 

mean slopeSERC . The greatest difference in 
mean slopeSERC  between the baseline condition and a 

condition with unique factor non-invariance was .018. Thus, a between-subjects ANOVA 

was not conducted on 
mean slopeSERC . 

Standard error of the intercept variance. I calculated the relative change (RC) in 

the estimated standard error of the second-order intercept variance (
intercept varianceSERC ) in the 

conditions with unique factor non-invariance, comparing the model correctly assuming 

threshold invariance to the model incorrectly assuming unique factor invariance. Figure 
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33 shows the 
intercept varianceSERC  value with the 95% normal-theory confidence limits for each 

condition with unique factor non-invariance. As a benchmark, the solid lines in the figure 

represent the corresponding 
intercept varianceSERC  values in the baseline conditions with fully 

invariant indicators (
intercept variance , three response categories .287SERC  ; 

intercept variance , five response categories .253SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
intercept varianceSERC  in the baseline conditions. None 

of the conditions with unique factor non-invariance had a 95% normal-theory confidence 

interval of 
intercept varianceSERC  that did not overlap with that in the corresponding baseline 

condition.  

The .10 difference standard for a meaningful difference was met for 
intercept varianceSERC . 

The difference in 
intercept varianceSERC  exceeded .10 between the baseline condition and two 

conditions with large unique factor non-invariance for three indicators at two occasions 

(lower panels of Figure 33). When there were three response categories in the indicators 

as shown in the left panels of Figure 33, the difference in 
intercept varianceSERC  between a 

condition with unique factor non-invariance and the corresponding baseline condition 

was greater when there were three non-invariant indicators rather than one, when the 

Magnitude of Non-Invariance was large rather than small, and when there were two non-

invariant occasions rather than one. The 
intercept varianceSERC  value was farthest away from the 

value in the corresponding baseline condition when there was large unique factor non-

invariance for three indicators at two measurement occasions. When there were five 

response categories in the indicators as shown in the right panels of Figure 33, the 
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difference in 
intercept varianceSERC  between a condition with unique factor non-invariance and the 

corresponding baseline condition was greater when there were three non-invariant 

indicators rather than one, when the Magnitude of Non-Invariance was large rather than 

small, and when there were two non-invariant occasions rather than one. The influence of 

the Number of Non-Invariant Occasions was greater when there were three non-invariant 

indicators rather than one. Again the 
intercept varianceSERC  value was farthest away from the 

value in the corresponding baseline condition when there was large unique factor non-

invariance for three indicators at two measurement occasions. This pattern of results 

paralleled the results for the relative changes in the intercept variance. 

Standard error of the linear slope variance. I calculated the relative change (RC) 

in the estimated standard error of the second-order linear slope variance (
slope varianceSERC ) in 

the conditions with unique factor non-invariance, comparing the model correctly 

assuming threshold invariance to the model incorrectly assuming unique factor 

invariance. Figure 34 shows the 
slope varianceSERC  value with the 95% normal-theory 

confidence limits for each condition with unique factor non-invariance. As a benchmark, 

the solid lines in the figure represent the corresponding 
slope varianceSERC  values in the baseline 

conditions with fully invariant indicators (
slope variance , three response categories .190SERC   ; 

slope variance , five response categories .176SERC   ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for 
slope varianceSERC  in the baseline conditions. None of 

the conditions with unique factor non-invariance had a 95% normal-theory confidence 
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interval of 
slope varianceSERC  that did not overlap with that in the corresponding baseline 

condition. 

The .10 difference standard for a meaningful difference was met for 
slope varianceSERC . 

The difference in 
slope varianceSERC  exceeded .10 between the baseline condition and one 

condition with large unique factor non-invariance for three indicators at two occasions 

with three response categories (lower-left panel of Figure 34). When there were three 

response categories in the indicators as shown in the left panels of Figure 34, the 

difference in 
slope varianceSERC  between a condition with unique factor non-invariance and the 

corresponding baseline condition was greater when there were three non-invariant 

indicators rather than one and when there were two non-invariant occasions rather than 

one. The 
slope varianceSERC  value was farthest away from the value in the corresponding 

baseline condition when there was unique factor non-invariance for three indicators at 

two occasions. When there were five response categories in the indicators as shown in the 

right panels of Figure 34, although none of the differences in 
slope varianceSERC  from the 

corresponding baseline condition met the .10 standard for a meaningful difference, a 

similar pattern of results was observed. The difference in 
slope varianceSERC  between a 

condition with unique factor non-invariance and the corresponding baseline condition 

was greater when there were three non-invariant indicators rather than one and when 

there were two non-invariant occasions rather than one. The 
slope varianceSERC  value was 

farthest away from the value in the corresponding baseline condition when there was 

unique factor non-invariance for three indicators at two occasions. This pattern of results 
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differed from the results for the relative changes in the linear slope variance, in that the 

Magnitude of Non-Invariance had an influence on the relative changes in the linear slope 

variance, but not on the relative changes in the standard error of the linear slope variance.  

Standard error of the intercept-slope covariance. I calculated the relative change 

(RC) in the estimated standard error of the second-order intercept-slope covariance 

(
intercept-slope covarianceSERC ) in the conditions with unique factor non-invariance, comparing the 

model correctly assuming threshold invariance to the model incorrectly assuming unique 

factor invariance. Figure 35 shows the 
intercept-slope covarianceSERC  value with the 95% normal-

theory confidence limits for each condition with threshold non-invariance. As a 

benchmark, the solid lines in the figure represent the corresponding 
intercept-slope covarianceSERC  

values in the baseline conditions with fully invariant indicators 

(
intercept-slope covariance , three response categories .093SERC  ; 

intercept-slope covariance , five response categories .094SERC  ), and 

the dotted lines represent the corresponding 95% normal-theory confidence limits for 

intercept-slope covarianceSERC  in the baseline conditions. None of the conditions with unique factor 

non-invariance had a 95% normal-theory confidence interval of 
intercept-slope covarianceSERC  that did 

not overlap with that in the corresponding baseline condition. 

The .10 difference standard for a meaningful difference was not met for 

intercept-slope covarianceSERC . The greatest difference in 
intercept-slope covarianceSERC  between the baseline 

condition and a condition with unique factor non-invariance was .036. Thus, a between-

subjects ANOVA was not conducted on 
intercept-slope covarianceSERC .  
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Standardized change in the second-order mean linear slope. I calculated the 

standardized change (STDC) in the estimated second-order mean linear slope 

( mean slopeSTDC ) in the conditions with unique factor non-invariance, comparing the model 

correctly assuming threshold invariance to the model incorrectly assuming unique factor 

invariance. Figure 36 shows the mean slopeSTDC  value with 95% normal-theory confidence 

limits for each condition with loading non-invariance. As a benchmark, the solid lines in 

the figure represent the corresponding mean slopeSTDC  values in the baseline conditions 

with fully invariant indicators ( mean slope, three response categories .002STDC  ; 

mean slope, five response categories .000STDC  ), and the dotted lines represent the corresponding 

95% normal-theory confidence limits for mean slopeSTDC  in the baseline conditions. None 

of the conditions with unique factor non-invariance had a 95% normal-theory confidence 

interval of mean slopeSTDC  that did not overlap with that in the corresponding baseline 

condition.  

The .10 difference standard for a meaningful difference was not met for 

mean slopeSTDC . The greatest difference in mean slopeSTDC  between the baseline condition 

and a condition with unique factor non-invariance was .062. Thus, a between-subjects 

ANOVA was not conducted on mean slopeSTDC . 

Statistical power of the nested model test to detect the incorrect unique factor 

invariance constraints. In the baseline conditions, I computed the empirical Type 1 error 

rates, i.e. the proportions of the 1000 replications for which a significant test statistic was 

found, for the nested model test comparing the model fit of (a) the second-order latent 
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growth model correctly assuming threshold invariance, and (b) the second-order latent 

growth model correctly assuming unique factor invariance. The empirical Type 1 error 

rate was .057 when the indicators had three response categories, and .061 when the 

indicators had five response categories. Since these values were both within the 

acceptable range of [.0365, .0635], I concluded that this nested model test was not biased 

in terms of the Type 1 error rate. I then calculated the statistical power of this nested 

model test in the conditions with unique factor non-invariance, examining the difference 

in model fit between (a) the second-order latent growth model correctly assuming 

threshold invariance, and (b) the second-order latent growth model incorrectly assuming 

unique factor invariance. Figure 37 shows the statistical power of the nested model test 

for each condition with unique factor non-invariance. As can be seen on the figure, the 

statistical power to detect unique factor non-invariance was always above .45. When 

there was one indicator with small non-invariance in the unique factor variance (upper 

panels of Figure 37), the statistical power of the nested model test to detect the incorrect 

unique factor invariance constraints increased when there were two non-invariant 

occasions rather than one. The statistical power was also slightly higher when there were 

five response categories in the indicators rather than three. In all other conditions with 

unique factor non-invariance, the nested model test had very high statistical power 

(between .992 and 1.00) to detect the incorrect unique factor invariance constraints across 

different combinations of the Number of Non-Invariant Indicators, the Magnitude of 

Non-Invariance, the Number of Non-Invariant Occasions, and the Number of Response 

Categories in the indicators. 
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Summary. In the conditions with unique factor non-invariance, imposing 

incorrect longitudinal unique factor invariance constraints did not have much impact on 

the relative changes in the mean linear slope or the standardized changes in the mean 

linear slope. On the other hand, imposing incorrect longitudinal unique factor invariance 

constraints tended to lead to positive relative changes in the intercept variance, negative 

relative changes in the linear slope variance, and negative relative changes in the 

intercept-slope covariance. In general, there was a multiplicative effect of the design 

factors. The influence of the Number of Non-Invariant Occasions was smaller when there 

was one non-invariant indicator than when there were three non-invariant indicators. For 

the relative change in the intercept-slope covariance only, the influence of the Magnitude 

of Non-Invariance was also smaller when there was one non-invariant indicator rather 

than three. The differences from the corresponding baseline values in the mean relative 

change in the growth parameters increased when the Magnitude of Non-Invariance was 

large rather than small and when there were two non-invariant occasions rather than one. 

Contrary to the earlier results in the loading non-invariance conditions and the 

threshold non-invariance conditions, the influence of the Number of Response Categories 

in the indicators was trivial in the conditions with unique factor non-invariance: The 

differences between the average evaluation criterion values and the corresponding 

baseline value were similar whether the indicators had five response categories or three. 

Regarding the standard errors of the growth parameters, they always decreased 

substantially as a result of adding unique factor invariance constraints, regardless of the 

number of response categories, or whether the added unique factor invariance constraints 

were correct or incorrect. A plausible explanation of the lack of influence of the Number 
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of Response Categories in the conditions with unique factor non-invariance is that the 

two fitted second-order latent growth models assumed either threshold invariance or 

unique factor invariance at the first-order level. Therefore, the parameters directly 

influenced by the number of response categories, i.e., the threshold parameters, were 

always constrained to be equal over time in the conditions with unique factor non-

invariance.  

The nested model test comparing the fit of the second-order latent growth model 

assuming threshold invariance with that of the model assuming unique factor invariance 

had acceptable Type 1 error rates. The statistical power to detect unique factor non-

invariance was always above .45. When there was one indicator with a small magnitude 

of non-invariance in the unique factor variance, the statistical power of the nested model 

test to detect the incorrect unique factor invariance constraints increased when there were 

two non-invariant occasions rather than one. The statistical power was also slightly 

higher when there were five response categories in the indicators rather than three. In all 

other conditions with unique factor non-invariance, the nested model test had very high 

statistical power (above .95) to detect the incorrect unique factor invariance constraints. 
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CHAPTER 9 

DISCUSSION 

This dissertation investigated the effect of longitudinal measurement non-invariance on 

parameter estimates and standard errors in second-order latent growth models. The focus 

was on models with ordered-categorical indicators. In the second-order latent growth 

models used in this dissertation study, the first-order component is the measurement 

model comprised of ordered-categorical indicators. The second-order component is a 

linear growth model of the latent common factors of the continuous normally distributed 

latent responses assumed to underlie the observed ordered-categorical indicators. The 

goal of this dissertation was to examine the suitability of using the second-order latent 

growth model to gauge the practical importance of longitudinal measurement non-

invariance. Put differently, the research question was whether growth parameters in the 

second-order latent growth model would be seriously biased if the researcher acts as if 

the indicators achieve longitudinal measurement invariance, when in fact longitudinal 

measurement invariance is not achieved. If the estimated values of the growth parameters 

in the second-order latent growth model change following the addition of incorrect 

longitudinal measurement invariance constraints, then such changes can be viewed as a 

sensitivity analysis measure of longitudinal measurement non-invariance.  

Numerous forms of sensitivity analysis measures have been proposed to evaluate 

the practical importance of the measurement non-invariance of binary or ordered 

categorical data across groups, and may be generalized to provide information on the 

practical importance of the measurement non-invariance over time. To provide some 

examples, under the item response theory framework, for instance, Stark, Chernyshenko, 
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and Drasgow (2004) proposed sensitivity analyses relating measurement non-invariance 

of the whole scale to mean raw score differences across groups or to selection ratios and 

cut scores for selection decisions. Steinberg and Thissen (2006) proposed calculating the 

standardized difference in the metric of item parameters. Meade (2010) proposed several 

sensitivity analysis measures derived from the expected score of an indicator or from the 

expected scale (or test) score. Under the structural equation modeling framework, Nye 

and Drasgow (2011) proposed an indicator-level sensitivity measure of the standardized 

difference between groups, and derived equations for the influence of measurement non-

invariance on the mean and variance of the whole scale. Kuha and Moustaki (2015) 

examined the distortions in the estimated means and variances of the latent common 

factors across multiple groups for binary data, as a result of loading or threshold non-

invariance. Oberski (2014) proposed a sensitivity analysis for multigroup structural 

equation models of ordinal data, calculating the expected changes in the structural 

parameters if inappropriate measurement invariance constraints were to be freed. Such 

studies of sensitivity analyses of measurement non-invariance, as well as studies of 

statistical tests to detect measurement non-invariance, have typically focused on the 

influence of non-invariant factor loadings and non-invariant threshold parameters, but 

have assumed that unique factor variances were always invariant (e.g., Gonzalez-Roma et 

al., 2006; Kim & Yoon, 2011; Kuha & Moustaki, 2015; Stark et al., 2006). In popular 

structural equation modeling programs, by default the unique factor variances (or the 

total variances) of the ordinal indicators were typically constrained to be equal to a unit 

value (and thus invariant across groups or across time). However, Liu et al. (in press) 

showed that unique factor invariance is a necessary condition to attribute mean changes 
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over time in the observed ordered-categorical indicators entirely to changes in the latent 

construct. Moreover, in longitudinal studies the unique factor variances are likely to vary 

across time. From evidence with continuous data, constraining unique factor variances to 

be equal across time when in fact they vary can result in bias in the estimated latent 

variable covariance parameters like the variances of the latent intercept and latent slope 

and their covariance in a latent linear growth model (Kwok, West, & Green, 2007).  

This dissertation separately simulated longitudinal measurement non-invariance 

in three different locations in the confirmatory factor model: factor loadings, thresholds, 

and unique factor variances. In addition, I examined factors that can potentially affect the 

magnitude of the influence of measurement non-invariance, including the number of non-

invariant indicators (e.g., Kuha & Moustaki, 2015; Meade & Lautenschlager, 2004) and 

the magnitude of non-invariance per indicator (e.g., Gonzalez-Roma et al., 2006; Kuha & 

Moustaki, 2015; Stark et al., 2006). Unique to the investigation of measurement 

invariance in longitudinal designs, I examined the influence of the number of non-

invariant occasions. I also examined the influence of the number of response categories 

per indicator, which has been shown to influence common factor models of ordinal data 

(e.g., Rhemtulla et al., 2012) and which has been examined in some previous simulation 

studies of measurement invariance in binary or ordered categorical data across groups 

(e.g., Kim & Yoon, 2011; Stark et al., 2006). The examination of the influence of unique 

factor non-invariance and the number of non-invariant occasions, and the interaction of 

these factors with the other design factors, should provide new insights into the practical 

importance of violations of longitudinal measurement invariance.  
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For each simulated data set with measurement non-invariance, two second-order 

latent growth models were fitted. The first model assumed the correct level of 

longitudinal measurement invariance (the baseline model). The second model assumed an 

incorrect level of longitudinal measurement invariance that was one level higher in the 

hierarchy. The convergence rates were generally very high. The worst convergence rates 

(91.7%-93.5%) were found for the second-order latent growth models assuming 

configural invariance (which had the greatest number of parameters to be estimated) in 

the conditions with large loading non-invariance, where there was a combination of low 

factor loadings and relatively sparse response categories at the last measurement 

occasion.  

In this dissertation simulation, I examined the relative changes in the growth 

parameters and in their corresponding standard errors between these two models. I also 

examined the standardized change in the mean linear slope, calculated as the magnitude 

of change in the mean linear slope relative to the square root of the intercept variance in 

the correctly specified baseline model. The intercept variance in the correctly specified 

baseline model represents an estimate of the population variance at the reference 

occasion. The standardized change in the mean linear slope may be more informative 

than the relative change in the mean linear slope when the mean linear slope is close to 

zero. 

Sensitivity of the Different Growth Parameters 

This dissertation found that each growth parameter in the second-order latent 

growth model was differentially sensitive to the location of non-invariance. The relative 

change in the mean linear slope and the standardized change in the mean linear slope 
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were sensitive to longitudinal non-invariance in the factor loadings and in the thresholds, 

but not sensitive to the simulated longitudinal non-invariance in the unique factor 

variances. The relative change in the intercept variance, on the other hand, was sensitive 

to longitudinal non-invariance in the unique factor variances, but not sensitive to 

longitudinal non-invariance in the factor loadings or in the thresholds. The relative 

changes in the slope variance and in the intercept-slope covariance were sensitive to 

longitudinal non-invariance in the factor loadings, in the thresholds, and in the unique 

factor non-invariance. When a specific growth parameter was sensitive to a certain 

location of non-invariance, the magnitude of the relative change or standardized change 

in the growth parameter depended on a multiplicative function of the Number of Non-

Invariant Indicators, the Number of Non-Invariant Occasions, the Magnitude of Non-

Invariance, and the Number of Response Categories in the indicators.  

Most Prominent Design Factor in Different Locations of Non-Invariance 

Given a particular location of non-invariance, the pattern of the influence of the 

other design factors was consistent for those growth parameters sensitive to this location 

of non-invariance. Across different locations of non-invariance, however, the design 

factor with the most prominent influence was different.  

Loading Non-Invariance. When longitudinal measurement non-invariance only 

occurred in the factor loadings, the Number of Non-Invariant Indicators had the most 

prominent influence. With one non-invariant indicator, the relative change or 

standardized change in those growth parameters sensitive to loading non-invariance (i.e., 

mean linear slope, slope variance, intercept-slope covariance) was always negligible. 

With three non-invariant indicators, the magnitude of the relative change or standardized 
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change became much larger, and the influence of the Number of Non-Invariant 

Occasions, the Magnitude of Non-Invariance, and the Number of Response Categories 

became more evident. The magnitude of the relative change or standardized change was 

greater when there were two non-invariant occasions rather than one, when the 

magnitude of non-invariance was large rather than small, and when the indicators had 

five response categories rather than three. 

Threshold Non-Invariance. When longitudinal measurement non-invariance 

only occurred in the thresholds, the Number of Non-Invariant Occasions had the most 

prominent influence. With one non-invariant occasion, the relative change or 

standardized change in a growth parameter sensitive to threshold non-invariance (i.e., 

mean linear slope, slope variance, intercept-slope covariance) was always negligible. 

With two non-invariant occasions, the magnitude of the relative change or standardized 

change became much larger, and the influence of the other design factors became more 

evident. The magnitude of the relative change or standardized change was greater when 

there were three non-invariant indicators rather than one, when the magnitude of non-

invariance was large rather than small, and when the indicators had three response 

categories rather than five. 

Unique Factor Non-Invariance. When the longitudinal measurement non-

invariance only occurred in the unique factor variances, the Number of Non-Invariant 

Indicators had a substantial influence. With three non-invariant indicators rather than one, 

the relative change in those growth parameters sensitive to unique factor non-invariance 

(i.e., intercept variance, slope variance, intercept-slope covariance) was always greater, 

and the multiplicative effect of the other design factors became more evident. The 
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magnitude of the relative change was greater when there were two non-invariant 

occasions rather than one and when the magnitude of non-invariance was large rather 

than small. The Number of Response Categories did not have any influence when the 

longitudinal measurement non-invariance only occurred in the unique factor variances. 

Influence of the Number of Response Categories on the Growth Parameter 

Estimates 

The results for the design factor Number of Response Categories in the indicators 

were particularly noteworthy because the influence of this design factor was strikingly 

different across different locations of non-invariance. When longitudinal measurement 

non-invariance occurred only in the factor loadings, the magnitude of the relative change 

or standardized change in the growth parameters on average tended to be greater when 

the indicators had five response categories rather than three. When longitudinal 

measurement non-invariance occurred only in the thresholds, the magnitude of the 

relative change or standardized change in the growth parameters on average tended to be 

smaller when the indicators had five response categories rather than three. When 

longitudinal measurement non-invariance occurred only in the unique factor variances, 

the magnitude of the relative change or standardized change in the growth parameters on 

average was similar whether the indicators had five response categories or three. Given 

that threshold non-invariance was introduced on the last threshold of the non-invariant 

indicator(s) in the simulation, a plausible explanation of the greater effect of threshold 

non-invariance when there were three response categories is that the proportion of 

problematic thresholds in a non-invariant indicator was 50% when there were three 

response categories with two thresholds, but only 25% when there were five response 
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categories with four thresholds. In the conditions with unique factor non-invariance, two 

second-order latent growth models were fitted, one correctly assuming threshold 

invariance and the other incorrectly assuming unique factor invariance. Thus a plausible 

explanation of the lack of influence of the Number of Response Categories in the 

conditions with unique factor non-invariance is that the parameters directly influenced by 

the number of response categories, i.e., the threshold parameters, were always 

constrained to be equal over time.  

The Importance of Unique Factor Invariance 

The mathematical derivations in Appendix A proved that unique factor invariance 

is a necessary condition to attribute mean changes over time in the observed ordered-

categorical indicators to changes in the latent construct. However, the magnitudes of 

longitudinal unique factor non-invariance examined in this dissertation study did not lead 

to a substantial change in the estimated mean linear slope in the second-order latent 

growth model. The average relative change in the estimated mean linear slope after 

adding the incorrect unique factor invariance constraints reached its maximum 

discrepancy from the corresponding value in the baseline condition (-7.1%) when there 

was large non-invariance for three indicators at the last two measurement occasions. In 

this dissertation study, large non-invariance in the unique factor variances was defined as 

having the unique variances become 2.25 times as large at the non-invariant occasion(s) 

as compared to the first occasion. It is possible that a larger magnitude of non-invariance 

in the unique factor variances will have a greater influence on the estimated mean linear 

slope. To provide a better understanding of the influence of unique factor non-invariance, 

I conducted some additional simulations with a very large sample size (N = 1,000,000) 
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using the same population parameter values for data generation as in Table 2. These 

simulations provide a large-sample comparison of the models. When all indicators were 

fully invariant over time, the ratios of the unique factor variance to the total variance for 

indicators X3, X4, and X5 ranged from .17 to .26 at the third occasion, and from .12 to .18 

at the fourth occasion. When the unique factor variances for indicators X3, X4, and X5 

became 2.25 times as large (i.e., the large non-invariance condition in the original 

dissertation simulations) at the third and fourth measurement occasions as compared to 

the first occasion13, the relative change in the estimated mean linear slope was -6.3%, 

similar to the results in the original dissertation simulations. With a rather extreme 

magnitude of non-invariance such that the unique factor variances became 9.0 times as 

large for three of the indicators at the third and fourth measurement occasions as 

compared to the first occasion14, the relative change in the mean linear slope was -11.5%. 

These results suggest that for researchers who are only interested in the mean linear 

slope, the magnitude of unique factor non-invariance needs to be very large to have a 

material influence on the estimated mean linear slope.  

On the other hand, the influence of longitudinal unique factor non-invariance on 

the other growth parameters was much larger. In the original dissertation simulations, on 

average the relative changes in the intercept variance and in the slope variance deviated 

from zero by more than 20% when the unique factor variances became 2.25 times as 

large for three of the indicators at the third and fourth measurement occasions as 

                                            
13 The corresponding ratios of the unique factor variance to the total variance for these non-invariant 

indicators ranged from .32 to .44 at the third occasion, and from .23 to .33 at the fourth occasion. 

 
14 The corresponding ratios of the unique factor variance to the total variance for these non-invariant 

indicators ranged from .65 to .75 at the third occasion, and from .55 to .67 at the fourth occasion. 
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compared to the first occasion. On average the relative change in the intercept-slope 

covariance under these conditions deviated from zero by around 50%. Similar 

magnitudes of the relative changes were obtained in the additional simulation with a very 

large (N = 1,000,000) sample when the unique factor variances were 2.25 times as large 

for three of the indicators at the third and fourth measurement occasions as compared to 

the first occasion. In the additional simulation in which the unique factor variance was 

9.0 times as large at the third and fourth occasions compared to the first occasion for 

three of the indicators, the relative change in the intercept variance was 147.5%, the 

relative change in the slope variance was -21.8%, and the relative change in the intercept-

slope covariance was -214.5%. These results suggest that researchers interested in 

explaining the intercept variance, the slope variance, or the intercept-slope covariance 

would clearly need to take into account longitudinal unique factor non-invariance. 

Influence of the Number of Non-Invariant Occasions 

This dissertation study examined the influence of the number of non-invariant 

occasions. This design factor is unique to studies of longitudinal measurement invariance. 

In general, having two non-invariant occasions rather than one led to greater changes in 

the growth parameter estimates, especially with a larger number of non-invariant 

indicators and a larger magnitude of non-invariance per indicator. The influence of the 

number of non-invariant occasions was most prominent when longitudinal measurement 

non-invariance occurred in the threshold parameters.     

Standard Errors of the Growth Parameters 

Researchers studying growth over time are often interested in the statistical 

significance of the growth parameters of interest. Because the statistical test of a growth 
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parameter of interest depends on both the parameter estimate and the corresponding 

standard error, I also examined the influence of inappropriate longitudinal measurement 

invariance constraints on the standard errors of the growth parameters.  

When Each Indictor Had Three Response Categories. In the baseline 

conditions with fully invariant indicators, the standard errors of the growth parameters 

changed minimally as a result of adding correct loading invariance or threshold 

invariance constraints, but decreased substantially as a result of adding correct unique 

factor invariance constraints. In the conditions with measurement non-invariance, the 

relative changes in the standard errors following the addition of incorrect invariance 

constraints tended to be negatively biased15 relative to the corresponding baseline 

condition for the standard errors of the mean linear slope, the slope variance, and the 

intercept-slope covariance. On the other hand, the relative change in the standard error of 

the intercept variance following the addition of incorrect invariance constraints tended to 

positively biased16 relative to the corresponding baseline condition.  

                                            
15 Here “negatively biased” refers to the fact that when adding, say, correct loading invariance constraints 

in the baseline condition led to no change in the standard error of a growth parameter, adding incorrect 

loading invariance constraints in the loading non-invariance constraints tended to lead to a decrease in the 

corresponding standard error. Similarly, when adding correct unique factor invariance constraints in the 

baseline condition led to a decrease in the standard error, adding incorrect unique factor invariance 

constraints in the unique factor non-invariance conditions tended to lead to a greater decrease in the 

corresponding standard error. 

 
16 Here “positively biased” refers to the fact that when adding, say, correct loading invariance constraints in 

the baseline condition led to no change in the standard error of the intercept variance, adding incorrect 

loading invariance constraints in the loading non-invariance constraints tended to lead to an increase in the 

corresponding standard error. Similarly, when adding correct unique factor invariance constraints in the 

baseline condition led to a decrease in the standard error of the intercept variance, adding incorrect unique 

factor invariance constraints in the unique factor non-invariance conditions tended to lead to a greater 

decrease in the corresponding standard error. 
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When Each Indictors Had Five Response Categories. In the baseline 

conditions with fully invariant indicators, the standard errors of the growth parameters 

always decreased substantially as a result of adding correct invariance constraints. In the 

conditions with loading non-invariance, the relative changes in the standard errors 

following the addition of incorrect loading invariance constraints tended to be negatively 

biased relative to the corresponding baseline condition. In the conditions with threshold 

or unique factor non-invariance, the relative changes in the standard errors following the 

addition of incorrect invariance constraints tended to be negatively biased relative to the 

corresponding baseline condition for the standard errors of the mean linear slope, the 

slope variance, and the intercept-slope covariance, but positively biased for the standard 

error of the intercept variance.  

One implication is that the conclusion of statistical significance or non-

significance of a growth parameter of interest may change as more invariance constraints 

are added, whether or not the added invariance constraints are appropriate. This finding 

implies that statistical significance or non-significance of a growth parameter of interest 

should not be used as a criterion for assessing the practical importance of longitudinal 

measurement non-invariance. Instead, researchers should focus on effect size measures 

representing the magnitude of change in the growth parameters as a result of imposing 

incorrect longitudinal measurement invariance constraints. 

The Nested Model Test 

In this dissertation study, all the nested model likelihood ratio tests that compared 

the fit of the two second-order latent growth models with different longitudinal 
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measurement invariance constraints had an acceptable empirical Type 1 error rate17 in the 

baseline conditions with fully invariant indicators. In conditions where there were three 

non-invariant indicators, the likelihood ratio test had very high statistical power18 (> .95), 

regardless of the location of measurement non-invariance. However, in conditions where 

there was one non-invariant indicator, the statistical power of the likelihood ratio test 

depended on the location of non-invariance, which is in line with findings in the studies 

of measurement non-invariance across groups (e.g., Gonzalez-Roma et al., 2006; Kim & 

Yoon, 2011). These results suggest that the likelihood ration test of the nested models is 

differentially sensitive to different locations of non-invariance, which further highlights 

the importance of examining the magnitude of change in the growth parameters as a 

result of incorrect longitudinal measurement invariance constraints. 

  

                                            
17 The empirical Type 1 error rate is represented by the proportion of the 1000 replications for which a 

significant nested model test statistic is found in a baseline condition with fully invariant indicators. 

 
18 The statistical power is represented by the proportion of the 1000 replications for which a significant 

nested model test statistic is found in a condition with manipulated measurement non-invariance. 
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CHAPTER 10 

LIMITATIONS AND IMPLICATIONS FOR FUTURE RESEARCH 

The proposed sensitivity analysis relies heavily on the accuracy of the parameter 

estimates from the second-order latent growth model with ordered-categorical indicator. 

Therefore, when this sensitivity analysis is applied to real data sets where the population 

model is unknown, factors that affect the accuracy of parameter estimates from the 

second-order latent growth model will also potentially confound interpretations of this 

sensitivity analysis.  

Of importance, the proposed sensitivity analysis makes the assumption that the 

appropriate specification of the growth model was used in the second-order latent growth 

models. When applying this sensitivity analysis to real data sets, if an incorrect growth 

model is specified, then the estimated growth parameters may be biased even with correct 

longitudinal measurement invariance constraints. This caveat applies both to research 

using ordered-categorical indicators and to research using continuous indicators. For 

instance, with continuous indicators, Murphy, Beretvas, and Pituch (2011) investigated 

how growth parameters in a second-order latent growth model could be influenced by an 

unmodeled autoregressive or autoregressive and moving average process among the first-

ordered latent common factors. They found that the mean intercept and mean slope 

parameters were unbiased, but the intercept variance, the slope variance, and the 

intercept-slope covariance tended to be biased, especially with high (.8) or moderate (.5) 

unmodeled autocorrelation. In addition, Wirth (2008) found that model fit statistics from 

latent growth models using composites of continuous indicators or factor scores saved 

from measurement models with inappropriate invariance constraints tended to have 
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increased chances of accepting an alternative form to the true form of growth. An indirect 

implication for the sensitivity analysis proposed in this dissertation study is that if the 

functional form of growth is misspecified in the second-order latent growth models, then 

changes in the estimated growth parameters following the addition of incorrect 

measurement invariance constraints may provide a confounded depiction of the practical 

importance of the violation of measurement invariance. 

A second caveat in applying this sensitivity analysis to real data sets is that 

second-order latent growth models are more likely to produce inadmissible solutions than 

first-order latent growth models that do not include a measurement model. This caveat 

applies both to research using ordered-categorical indicators and to research using 

continuous indicators (Grimm et al, in press, Chapter 15; Leite, 2007). Using a larger 

sample size may alleviate this problem (Leite, 2007).  

A third caveat in applying this sensitivity analysis to real data sets with ordered-

categorical indicators is that if the bivariate or multivariate frequency table of the 

ordered-categorical indicators has sparse or empty cells, estimation of polychoric 

correlations may be problematic (Brown & Bendetti, 1977; Flora & Curran, 2004; Bollen 

& Curran, 2006). This problem can potentially influence the parameter estimates from the 

second-order latent growth model. This problem is especially relevant in longitudinal 

studies, because with population level mean change over time, sparse data are likely to 

occur for the lowest or highest response categories at the earliest or latest measurement 

occasions.  

This dissertation simulation study used a large sample size (N = 2000) and 

specified the correct functional form of growth in the second-order latent growth models. 
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I chose parameter values in the population data generation model such that the simulated 

data were not too sparse. The lowest expected cell count in the univariate frequency table 

with five response categories per indicator was around 80, and the lowest expected cell 

count in the bivariate frequency table was around 5 in this dissertation study. Further 

research is needed to investigate the influence of improper specification of the growth 

model, the influence of sample size, and the influence of sparse data on this sensitivity 

analysis.  

A fourth caveat is that I simulated measurement non-invariance to occur in only 

one location at a time. Longitudinal measurement non-invariance was simulated to occur 

either only in the factor loadings, only in the thresholds, or only in the unique factor 

variances. This strategy provided a clear picture of the influence of longitudinal 

measurement non-invariance in different locations. However, in practice, it is possible to 

have measurement non-invariance occurring simultaneously in more than one location. 
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CHAPTER 11 

CONCLUDING REMARKS 

This study examined how sensitive the second-order latent growth parameters are to 

different locations of longitudinal measurement non-invariance with ordered-categorical 

indicators, and explored the influence of a number of factors including the Number of 

Non-Invariant Indicators, the Number of Non-Invariant Occasions, the Magnitude of 

Non-Invariance, and the Number of Response Categories. The results of this dissertation 

study suggested that for researchers only interested in describing the average linear 

growth trajectory, longitudinal loading non-invariance and longitudinal threshold non-

invariance can each have a substantial influence on the estimate of the mean growth 

trajectory. In contrast, longitudinal unique factor non-invariance needs to reach a rather 

extreme magnitude to have a material influence on the estimate of the mean growth 

trajectory. For researchers interested in explaining the intercept variance, longitudinal 

unique factor non-invariance can have a substantial influence, whereas longitudinal 

loading non-invariance and longitudinal threshold non-invariance have only a minimal 

influence on the estimate of the intercept variance. For researchers interested in 

explaining the slope variance or the intercept-slope covariance, longitudinal measurement 

non-invariance in the factor loadings, in the thresholds, and in the unique factor variances 

can all influence the corresponding estimated growth parameters. Effects of non-

invariance depend on the location of non-invariance, on the number of response 

categories (for loading non-invariance and threshold non-invariance), and on the various 

factors determining the total degree of non-invariance in the model. These factors include 
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the number of non-invariant indicators, the number of non-invariant occasions, and the 

magnitude of non-invariance for each non-invariant indicator. 
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Figure 3. Observed distribution of indicator X1 in the baseline condition with five 

response categories. Note: The upper panel contains the distribution at the first 

measurement occasion, and the lower panel contains the distribution at the last 

measurement occasion. 
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  Figure 4. Observed distribution of indicator X2 in the baseline condition with five 

response categories. Note: The upper panel contains the distribution at the first 

measurement occasion, and the lower panel contains the distribution at the last 

measurement occasion. 
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  Figure 5. Observed distribution of indicator X3 in the baseline condition with five 

response categories. Note: The upper panel contains the distribution at the first 

measurement occasion, and the lower panel contains the distribution at the last 

measurement occasion. 
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  Figure 6. Observed distribution of indicator X4 in the baseline condition with five 

response categories. Note: The upper panel contains the distribution at the first 

measurement occasion, and the lower panel contains the distribution at the last 

measurement occasion. 
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Figure 7. Observed distribution of indicator X5 in the baseline condition with five 

response categories. Note: The upper panel contains the distribution at the first 

measurement occasion, and the lower panel contains the distribution at the last 

measurement occasion. 
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  Figure 8. Mean relative change in the second-order mean linear slope with normal-

theory 95% confidence limits, from the model correctly assuming configural 

invariance to the model incorrectly assuming loading invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal-theory 95% confidence interval of the relative change value in the 

corresponding baseline condition. 
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Figure 9. Mean relative change in the second-order intercept variance with normal-

theory 95% confidence limits, from the model correctly assuming configural 

invariance to the model incorrectly assuming loading invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding baseline 

condition. The dashed horizontal lines represent the upper and lower limits of the 

normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 10. Mean relative change in the second-order linear slope variance with 

normal-theory 95% confidence limits, from the model correctly assuming configural 

invariance to the model incorrectly assuming loading invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding baseline 

condition. The dashed horizontal lines represent the upper and lower limits of the 

normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 11. Mean relative change in the second-order intercept-slope covariance with 

normal-theory 95% confidence limits, from the model correctly assuming configural 

invariance to the model incorrectly assuming loading invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 12. Mean relative change in the standard error of the second-order mean linear 

slope with normal-theory 95% confidence limits, from the model correctly assuming 

configural invariance to the model incorrectly assuming loading invariance. Note: The 

solid horizontal line represents the mean relative change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 13. Mean relative change in the standard error of the second-order intercept 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming configural invariance to the model incorrectly assuming loading invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 14. Mean relative change in the standard error of the second-order linear slope 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming configural invariance to the model incorrectly assuming loading invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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  Figure 15. Mean relative change in the standard error of the second-order intercept-

slope covariance with normal-theory 95% confidence limits, from the model correctly 

assuming configural invariance to the model incorrectly assuming loading invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 16. Mean standardized change in the second-order mean linear slope with 

normal-theory 95% confidence limits, from the model correctly assuming configural 

invariance to the model incorrectly assuming loading invariance. Note: The solid 

horizontal line represents the mean standardized change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits 

of the normal theory 95% confidence interval of the mean standardized change value 

in the corresponding baseline condition. 
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Figure 17. Statistical power of DIFFTEST to detect loading non-invariance, between 

the model correctly assuming configural invariance and the model incorrectly 

assuming loading invariance.  
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Figure 18. Mean relative change in the second-order mean linear slope with normal-

theory 95% confidence limits, from the model correctly assuming loading invariance 

to the model incorrectly assuming threshold invariance. Note: The solid horizontal line 

represents the mean relative change value in the corresponding baseline condition. The 

dashed horizontal lines represent the upper and lower limits of the normal-theory 95% 

confidence interval of the relative change value in the corresponding baseline 

condition. 
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Figure 19. Mean relative change in the second-order intercept variance with normal-

theory 95% confidence limits, from the model correctly assuming loading invariance 

to the model incorrectly assuming threshold invariance. Note: The solid horizontal line 

represents the mean relative change value in the corresponding baseline condition. 

The dashed horizontal lines represent the upper and lower limits of the normal theory 

95% confidence interval of the mean relative change value in the corresponding 

baseline condition. 
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Figure 20. Mean relative change in the second-order linear slope variance with 

normal-theory 95% confidence limits, from the model correctly assuming loading 

invariance to the model incorrectly assuming threshold invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding baseline 

condition. The dashed horizontal lines represent the upper and lower limits of the 

normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 21. Mean relative change in the second-order intercept-slope covariance with 

normal-theory 95% confidence limits, from the model correctly assuming loading 

invariance to the model incorrectly assuming threshold invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding baseline 

condition. The dashed horizontal lines represent the upper and lower limits of the 

normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 22. Mean relative change in the standard error of the second-order mean linear 

slope with normal-theory 95% confidence limits, from the model correctly assuming 

loading invariance to the model incorrectly assuming threshold invariance. Note: The 

solid horizontal line represents the mean relative change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 23. Mean relative change in the standard error of the second-order intercept 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming loading invariance to the model incorrectly assuming threshold invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 24. Mean relative change in the standard error of the second-order linear slope 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming loading invariance to the model incorrectly assuming threshold invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 25. Mean relative change in the standard error of the second-order intercept-

slope covariance with normal-theory 95% confidence limits, from the model correctly 

assuming loading invariance to the model incorrectly assuming threshold invariance. 

Note: The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 26. Mean standardized change in the second-order mean linear slope with 

normal-theory 95% confidence limits, from the model correctly assuming loading 

invariance to the model incorrectly assuming threshold invariance. Note: The solid 

horizontal line represents the mean standardized change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean standardized change value in 

the corresponding baseline condition. 
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Figure 27. Statistical power of DIFFTEST to detect threshold non-invariance, between 

the model correctly assuming loading invariance and the model incorrectly assuming 

threshold invariance.  
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Figure 28. Mean relative change in the second-order mean linear slope with normal-

theory 95% confidence limits, from the model correctly assuming threshold invariance 

to the model incorrectly assuming unique factor invariance. Note: The solid horizontal 

line represents the mean relative change value in the corresponding baseline condition. 

The dashed horizontal lines represent the upper and lower limits of the normal-theory 

95% confidence interval of the relative change value in the corresponding baseline 

condition. 
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Figure 29. Mean relative change in the second-order intercept variance with normal-

theory 95% confidence limits, from the model correctly assuming threshold invariance 

to the model incorrectly assuming unique factor invariance. Note: The solid horizontal 

line represents the mean relative change value in the corresponding baseline condition. 

The dashed horizontal lines represent the upper and lower limits of the normal theory 

95% confidence interval of the mean relative change value in the corresponding baseline 

condition. 
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Figure 30. Mean relative change in the second-order linear slope variance with 

normal-theory 95% confidence limits, from the model correctly assuming threshold 

invariance to the model incorrectly assuming unique factor invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 31. Mean relative change in the second-order intercept-slope covariance with 

normal-theory 95% confidence limits, from the model correctly assuming threshold 

invariance to the model incorrectly assuming unique factor invariance. Note: The solid 

horizontal line represents the mean relative change value in the corresponding baseline 

condition. The dashed horizontal lines represent the upper and lower limits of the 

normal theory 95% confidence interval of the mean relative change value in the 

corresponding baseline condition. 
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Figure 32. Mean relative change in the standard error of the second-order mean linear 

slope with normal-theory 95% confidence limits, from the model correctly assuming 

threshold invariance to the model incorrectly assuming unique factor invariance. Note: 

The solid horizontal line represents the mean relative change value in the 

corresponding baseline condition. The dashed horizontal lines represent the upper and 

lower limits of the normal theory 95% confidence interval of the mean relative change 

value in the corresponding baseline condition. 
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Figure 33. Mean relative change in the standard error of the second-order intercept 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming threshold invariance to the model incorrectly assuming unique factor 

invariance. Note: The solid horizontal line represents the mean relative change value 

in the corresponding baseline condition. The dashed horizontal lines represent the 

upper and lower limits of the normal theory 95% confidence interval of the mean 

relative change value in the corresponding baseline condition. 
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Figure 34. Mean relative change in the standard error of the second-order linear slope 

variance with normal-theory 95% confidence limits, from the model correctly 

assuming threshold invariance to the model incorrectly assuming unique factor 

invariance. Note: The solid horizontal line represents the mean relative change value 

in the corresponding baseline condition. The dashed horizontal lines represent the 

upper and lower limits of the normal theory 95% confidence interval of the mean 

relative change value in the corresponding baseline condition. 
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Figure 35. Mean relative change in the standard error of the second-order intercept-

slope covariance with normal-theory 95% confidence limits, from the model correctly 

assuming threshold invariance to the model incorrectly assuming unique factor 

invariance. Note: The solid horizontal line represents the mean relative change value 

in the corresponding baseline condition. The dashed horizontal lines represent the 

upper and lower limits of the normal theory 95% confidence interval of the mean 

relative change value in the corresponding baseline condition. 
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Figure 36. Mean standardized change in the second-order mean linear slope with 

normal-theory 95% confidence limits, from the model correctly assuming threshold 

invariance to the model incorrectly assuming unique factor invariance. Note: The solid 

horizontal line represents the mean standardized change value in the corresponding 

baseline condition. The dashed horizontal lines represent the upper and lower limits of 

the normal theory 95% confidence interval of the mean standardized change value in 

the corresponding baseline condition. 
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Figure 37. Statistical power of DIFFTEST to detect unique factor non-invariance, 

between the model correctly assuming threshold invariance and the model incorrectly 

assuming unique factor invariance.  
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APPENDIX A  

MATHEMATICAL DEVELOPMENT SUPPORTING THE CONCLUSIONS OF 

EACH LEVEL OF LONGITUDINAL MEASUREMENT INVARIANCE FOR 

ORDERED-CATEGORICAL INDICATORS  
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This appendix is based on the derivations in Liu et al. (in press). It contains the 

proof of the implications of achieving each level of longitudinal measurement invariance 

for ordered-categorical indicators. Achieving longitudinal loading invariance implies that 

changes in the expected means of the continuous latent responses are fully accounted for 

by changes in the latent common factors over time. Achieving longitudinal unique factor 

invariance implies that (a) changes in the not only the expected means, but also the 

expected variances and within-wave covariances of the continuous latent responses are 

entirely attributable to changes in the latent common factors over time, and more 

importantly, (b) changes in the expected means and within-wave bivariate probabilities 

of the ordered-categorical indicators can be fully explained by changes in the latent 

common factors over time. The derivations below are based on the standard SEM 

assumption that the common factor scores are uncorrelated with unique factor scores. To 

account for the longitudinal nature of the design, the common factors are allowed to 

freely correlate across time, and additionally, each unique factor is allowed to freely 

correlate with itself, but not with other unique factors, at other measurement occasions. 

Although the present derivations focus on ordered-categorical CFA models with one 

latent common factor at each measurement occasion, they can be easily generalized to 

cases with more latent common factors per measurement occasion. 

In the ordered-categorical CFA models, the continuous latent responses 𝑋𝑖𝑗𝑡
∗  

underlying the observed ordered-categorical responses 𝑋𝑖𝑗𝑡 are assumed to be 

multivariate normally distributed (Muthén, 1984), and they are sliced into the ordered-

categorical observed responses by a set of threshold parameters ν for each indicator j at 

each measurement occasion t:  
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 𝑋𝑖𝑗𝑡 = 𝑐, if ν𝑗𝑡𝑐 ≤ 𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡(𝑐+1). (A1) 

Assuming that c = 0, 1, …, C, the response categories of the ordered-categorical 

indicators, and that {ν𝑗𝑡0, ν𝑗𝑡1, …, ν𝑗𝑡(𝐶+1)} are the threshold parameters for the ordered-

categorical indicator j at measurement occasion t with ν𝑗𝑡0 = −∞ and ν𝑗𝑡(𝐶+1) = ∞, the 

probability of indicator j taking on a value c can be calculated as 

 Pr(𝑋𝑖𝑗𝑡 = 𝑐) = Pr(ν𝑗𝑡𝑐 ≤ 𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡(𝑐+1)) = Pr(𝑋𝑖𝑗𝑡

∗ < ν𝑗𝑡(𝑐+1)) − Pr(𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡𝑐). (A2) 

Given that 𝑋𝑖𝑗𝑡
∗  is assumed to follow a normal distribution, one needs to know the mean 

and variance of that normal distribution to calculate Pr(𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡(𝑐+1)) and 

Pr(𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡𝑐). 

The longitudinal one-factor CFA model for the continuous latent response X* 

underlying the measured ordered categorical indicator is  

 𝑋𝑖𝑗𝑡
∗ = τ𝑗𝑡 + λ𝑗𝑡η𝑖𝑡 + 𝑢𝑖𝑗𝑡, (A3) 

where τ𝑗𝑡 is the intercept (typically constrained to zero to allow for the estimation of the 

threshold parameters), λ𝑗𝑡 is the factor loading, η𝑖𝑡 is the common factor score for person 

i at measurement occasion t, and 𝑢𝑖𝑗𝑡 is the unique factor score for person i on indicator j 

at measurement occasion t. Following Equation (A3), the expected means of the 

continuous latent responses 𝑋𝑡
∗ can be written as 

 𝐸(𝐗𝑡
∗) = 𝛍𝑋𝑡

∗ = 𝚲𝑡κ𝑡, (A4) 

where 𝛍𝑋𝑡
∗ is a 𝐽 × 1 vector of the expected means of the continuous latent responses, 𝚲𝑡 

is the factor loading vector, and κ𝑡 is the latent common factor mean at measurement 

occasion t. The expected covariance matrix of the continuous latent responses 𝑋𝑡
∗ can be 

written as 
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 𝚺𝑋𝑡
∗𝑋𝑡

∗ = 𝚲𝑡φ𝑡𝚲𝑡
′ + 𝚯𝑡𝑡, (A5) 

where φ𝑡 is the latent common factor variance at measurement occasion t, and 𝚯𝑡𝑡 is the 

unique factor variance-covariance matrix at measurement occasion t.  

Achieving longitudinal loading invariance means that the factor loading vector 𝚲𝑡 

is invariant over time, and as a result, changes over time in 𝐸(𝐗𝑡
∗), the expected means of 

the continuous latent responses, can be fully explained by changes in κ𝑡, the latent 

common factor mean. However, because the threshold parameters that slice the 

continuous latent responses into the ordered-categorical measured indicators are freely 

estimated over time (other than the model identification constraints), the expected means 

of the ordered-categorical measured indicators cannot be entirely attributed to changes in 

κ𝑡. 

Now focus on only one indicator j. Based on Equations (A4) and (A5), the 

expected mean of the continuous latent response 𝑋𝑖𝑗𝑡
∗  can be written as 

 𝐸(𝑋𝑖𝑗𝑡
∗ ) = λ𝑗𝑡 ∙ κ𝑡, (A6) 

and the expected variance of 𝑋𝑖𝑗𝑡
∗  can be written as 

 𝑉𝑎𝑟(𝑋𝑖𝑗𝑡
∗ ) = λ𝑗𝑡 ∙ φ𝑡 ∙ λ𝑗𝑡 + σ𝑗𝑗(𝑡)

2 = λ𝑗𝑡
2 ∙ φ𝑡 + σ𝑗𝑗(𝑡)

2 , (A7) 

where σ𝑗𝑗(𝑡)
2  is the unique factor variance for indicator j at measurement occasion t. Since 

the continuous latent responses are assumed to follow a normal distribution, given the 

expected mean and variance of 𝑋𝑖𝑗𝑡
∗  in Equations (A6) and (A7), Equation (A2) can be 

written as  

 Pr(𝑋𝑖𝑗𝑡 = 𝑐) = Pr(𝑋𝑖𝑗𝑡
∗ < ν𝑗𝑡(𝑐+1)) − Pr(𝑋𝑖𝑗𝑡

∗ < ν𝑗𝑡𝑐) 
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 = Φ (
ν𝑗𝑡(𝑐+1)−𝐸(𝑋𝑖𝑗𝑡

∗ )

√𝑉𝑎𝑟(𝑋𝑖𝑗𝑡
∗ )

) − Φ (
ν𝑗𝑡𝑐−𝐸(𝑋𝑖𝑗𝑡

∗ )

√𝑉𝑎𝑟(𝑋𝑖𝑗𝑡
∗ )

) 

 = Φ (
ν𝑗𝑡(𝑐+1)−λ𝑗𝑡∙κ𝑡

√λ𝑗𝑡
2 ∙φ𝑡+σ𝑗𝑗(𝑡)

2
) − Φ (

ν𝑗𝑡𝑐−λ𝑗𝑡∙κ𝑡

√λ𝑗𝑡
2 ∙φ𝑡+σ𝑗𝑗(𝑡)

2
), (A8) 

where Φ(∙) is the cumulative distribution function of the standard normal distribution. 

For an ordered-categorical indicator 𝑋𝑖𝑗𝑡 with response categories c = 0, 1, …, C, the 

expected mean is 

 𝐸(𝑋𝑖𝑗𝑡) = ∑ 𝑐𝐶
𝑐=0 ∙ Pr(𝑋𝑖𝑗𝑡 = 𝑐). (A9) 

Given Equation (A8), it can be proved that Equation (A9) can be simplified to  

 𝐸(𝑋𝑖𝑗𝑡) = 𝐶 − ∑ Φ (
ν𝑗𝑡𝑐−λ𝑗𝑡∙κ𝑡

√λ𝑗𝑡
2 ∙φ𝑡+σ𝑗𝑗(𝑡)

2
)𝐶

𝑐=1 . (A10) 

 When longitudinal threshold invariance is achieved, λ𝑗𝑡 and ν𝑗𝑡𝑐 are invariant 

across measurement occasions. Under such circumstances, based on Equation (A10), 

changes over time in 𝐸(𝑋𝑖𝑗𝑡) will be determined by three things: (1) the latent common 

factor mean κ𝑡, (2) the latent common factor variance φ𝑡, and (3) σ𝑗𝑗(𝑡)
2 , the unique factor 

variance for indicator j. Hence, to attribute mean changes in the ordered-categorical 

indicators entirely to changes over time in the latent common factor, having invariant 

factor loadings and invariant thresholds is not sufficient -- the unique factor variance 

must also be invariant over time. 

 When longitudinal unique factor invariance is achieved, λ𝑗𝑡, ν𝑗𝑡𝑐, and the elements 

in 𝚯𝑡𝑡 are invariant across measurement occasions. Thus for the continuous latent 

responses, when unique factor invariance holds, based on Equations (A4) and (A5), 
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changes over time in 𝐸(𝐗𝑡
∗) can be fully explained by changes in κ𝑡, and changes over 

time in 𝚺𝑋𝑡
∗𝑋𝑡

∗ can be fully explained by changes in φ𝑡. For the measured ordered-

categorical indicators 𝑋𝑖𝑗𝑡, when unique factor invariance holds, based on Equation 

(A10), changes over time in 𝐸(𝑋𝑖𝑗𝑡) can be fully accounted for by changes in κ𝑡 and φ𝑡. 

Moreover, changes in the within-wave bivariate probability of two ordered-categorical 

indicators taking on certain values can be fully explained by changes in the latent 

common factors over time. The proof is as follows:  

 Consider two ordered-categorical indicators, say 𝑋1 and 𝑋2, at measurement 

occasion t. The probability of 𝑋1𝑡 and 𝑋2𝑡 taking on values 𝑎 and 𝑏, respectively, can be 

expressed as 

Pr(𝑋1𝑡 = 𝑎, 𝑋2𝑡 = 𝑏 ) = Pr(ν1𝑡𝑎 ≤ 𝑋1𝑡
∗ < ν1𝑡(𝑎+1), ν2𝑡𝑏 ≤ 𝑋2𝑡

∗ < ν2𝑡(𝑏+1)) 

 = ∫ ∫ 𝑓𝑋1𝑡
∗ , 𝑋2𝑡

∗ (𝑥1𝑡
∗ , 𝑥2𝑡

∗ )
ν2𝑡(𝑏+1)

ν2𝑡𝑏

ν1𝑡(𝑎+1)

ν1𝑡𝑎
𝑑𝑥1𝑡

∗ 𝑑𝑥2𝑡
∗ , (A11) 

where 𝑓𝑋1𝑡
∗ , 𝑋2𝑡

∗ (𝑥1𝑡
∗ ,  𝑥2𝑡

∗ ) is the joint probability density function for the bivariate normal 

latent responses 𝑋1𝑡
∗  and 𝑋2𝑡

∗ , and is completely determined by the expected means of 𝑋1𝑡
∗  

and 𝑋2𝑡
∗  [𝐸(𝑋1𝑡

∗ ) = λ1𝑡 ∙ κ𝑡, 𝐸(𝑋2𝑡
∗ ) = λ2𝑡 ∙ κ𝑡], the expected variances of 𝑋1𝑡

∗  and 𝑋2𝑡
∗  

[𝑉𝑎𝑟(𝑋1𝑡
∗ ) = λ1𝑡

2 ∙ φ𝑡 + σ11(𝑡)
2 , 𝑉𝑎𝑟(𝑋2𝑡

∗ ) = λ2𝑡
2 ∙ φ𝑡 + σ22(𝑡)

2 ], and the correlation 

between 𝑋1𝑡
∗  and 𝑋2𝑡

∗ , ρ12(𝑡). Based on the tracing rules, the expected covariance between 

𝑋1𝑡
∗  and 𝑋2𝑡

∗  can be calculated as  

           𝐶𝑂𝑉(𝑋1𝑡
∗ , 𝑋2𝑡

∗ ) = ρ12(𝑡) ∙ √𝑉𝑎𝑟(𝑋1𝑡
∗ ) ∙ 𝑉𝑎𝑟(𝑋2𝑡

∗ ) = λ1𝑡 ∙ φ𝑡 ∙ λ2𝑡 + σ12(𝑡), (A12) 

where σ12(𝑡) represents the within-wave unique factor covariance between 𝑢1𝑡 and 𝑢2𝑡, 

and is equal zero when the unique factors are uncorrelated within-wave. Thus, 

Pr(𝑋1𝑡 = 𝑎, 𝑋2𝑡 = 𝑏) is determined by four sets of model parameters: (1) factor loadings 
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λ1𝑡 and λ2𝑡; (2) threshold parameters ν1𝑡𝑎, ν1𝑡(𝑎+1), ν2𝑡𝑏, and ν2𝑡(𝑏+1); (3) unique factor 

variances σ11(𝑡)
2  and σ22(𝑡)

2  and the within-wave unique factor covariance σ12(𝑡); and (4) 

the latent common factor mean κ𝑡 and latent common factor variance φ𝑡. To attribute 

changes over time in Pr(𝑋1𝑡 = 𝑎, 𝑋2𝑡 = 𝑏 ) entirely to changes in the latent common 

factor, the first three sets of model parameters must be invariant across measurement 

occasions, that is, longitudinal unique factor invariance must hold. 

 In the configural, loading, threshold and unique factor invariance models, each 

unique factor is allowed to freely correlate with itself, but not with other unique factors, 

at other measurement occasions. From the derivations above, one can see that the freely 

estimated lagged unique factor covariances have no influence on the within-wave 

characteristics of the ordered-categorical indicators or the continuous latent responses. 

These lagged unique factor covariances only influence the lagged covariances of the 

same latent responses and the lagged covariances of the same measured indicators across 

measurement occasions. The proof is as follows:   

Consider the ordered-categorical indicator 𝑋𝑗𝑡 at measurement occasions 1 and 2. 

The expected lagged covariance between the corresponding latent responses can be 

written as 

        𝐶𝑂𝑉(𝑋𝑗1
∗ , 𝑋𝑗2

∗ ) = λ𝑗1 ∙ φ12 ∙ λ𝑗2 + σ𝑗𝑗(12) = ρ𝑗𝑗(12) ∙ √𝑉𝑎𝑟(𝑋𝑗1
∗ ) ∙ 𝑉𝑎𝑟(𝑋𝑗2

∗ ), (A13) 

where φ12 is the common factor covariance between measurement occasions 1 and 2, 

σ𝑗𝑗(12) is the lagged unique factor covariance for the unique factor 𝑢𝑗𝑡 between 

measurement occasions 1 and 2, and ρ𝑗𝑗(12) is the correlation between 𝑋𝑗1
∗  and 𝑋𝑗2

∗ . Thus, 

ρ𝑗𝑗(12) can be expressed as 
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 ρ𝑗𝑗(12) =
λ𝑗1∙φ12∙λ𝑗2+σ𝑗𝑗(12)

√𝑉𝑎𝑟(𝑋𝑗1
∗ )∙𝑉𝑎𝑟(𝑋𝑗2

∗ )

.  (A14) 

For the measured ordered-categorical indicator 𝑋𝑗𝑡, the probability of taking on value 𝑎 at 

measurement occasion 1 and value 𝑏 at measrument occasion 2 can be written as  

Pr(𝑋𝑗1 = 𝑎, 𝑋𝑗2 = 𝑏 ) = Pr(ν𝑗1𝑎 ≤ 𝑋𝑗1
∗ < ν𝑗1(𝑎+1), ν𝑗2𝑏 ≤ 𝑋𝑗2

∗ < ν𝑗2(𝑏+1)) 

 = ∫ ∫ 𝑓𝑋𝑗1
∗ , 𝑋𝑗2

∗ (𝑥𝑗1
∗ ,  𝑥𝑗2

∗ )
ν𝑗2(𝑏+1)

ν𝑗2𝑏

ν𝑗1(𝑎+1)

ν𝑗1𝑎
𝑑𝑥𝑗1

∗ 𝑑𝑥𝑗2
∗ , (A15) 

where 𝑓𝑋𝑗1
∗ , 𝑋𝑗2

∗ (𝑥𝑗1
∗ ,  𝑥𝑗2

∗ ) is the joint probability density function for the latent 

response 𝑋𝑗𝑡
∗  at measurement occasions 1 and 2, which is completely determined by the 

expected means of 𝑋𝑗1
∗  and 𝑋𝑗2

∗  [𝐸(𝑋𝑗1
∗ ) = λ𝑗1 ∙ κ1, 𝐸(𝑋𝑗2

∗ ) = λ𝑗2 ∙ κ2], the expected 

variances of 𝑋𝑗1
∗  and 𝑋𝑗2

∗  [𝑉𝑎𝑟(𝑋𝑗1
∗ ) = λ𝑗1

2 ∙ φ1 + σ𝑗𝑗(1)
2 , 𝑉𝑎𝑟(𝑋𝑗2

∗ ) = λ𝑗2
2 ∙ φ2 + σ𝑗𝑗(2)

2 ], 

and the correlation between 𝑋𝑗1
∗  and 𝑋𝑗2

∗ , ρ𝑗𝑗(12). Based on Equations (A14) and (A15), 

besides the factor loadings, thresholds, and unique factor variances, Pr(𝑋𝑗1 = 𝑎, 𝑋𝑗2 =

𝑏 ) is also influenced by σ𝑗𝑗(12), the lagged unique factor covariance for the unique factor 

𝑢𝑗𝑡 between measurement occasions 1 and 2.    

 


