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ABSTRACT 

 

There was a growing trend in the automotive market on the adoption of Hybrid Electric 

Vehicles (HEVs) for consumers to purchase.  This was partially due to external pressures 

such as the effects of global warming, cost of petroleum, governmental regulations, and 

popularity of the vehicle type.  HEV technology relied on a variety of factors which 

included the powertrain (PT) of the system, external driving conditions, and the type of 

driving pattern being driven.  The core foundation for HEVs depended heavily on the 

battery pack and chemistry being adopted for the vehicle performance and operations.  

This paper focused on the effects of hot and arid temperatures on the performance of 

LiFePO4 (LFP) battery packs and presented a possible modeling method for overall 

performance.   

 

Lithium-ion battery (LIB) packs were subjected to room and high temperature settings 

while being cycled under a current profile created from a drive cycle.  The Federal Urban 

Driving Schedule (FUDS) was selected and modified to simulate normal city driving 

situation using an electric only drive mode.  Capacity and impedance fade of the LIB 

packs were monitored over the lifetime of the pack to determine the overall performance 

through the variables of energy and power fade.  Regression analysis was done on the 

energy and power fade of the LIB pack to determine the duration life of LIB packs for 

HEV applications.  This was done by comparing energy and power fade with the average 

lifetime mileage of a vehicle.   
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The collected capacity and impedance data was used to create an electrical equivalent 

model (EEM).  The model was produced through the process of a modified Randles 

circuit and the creation of the inverse constant phase element (ICPE).  Results indicated 

the model had a potential for high fidelity as long as a sufficient amount of data was 

gathered.  X-ray powder diffraction (XRD) and a scanning electron microscope (SEM) 

was performed on a fresh and cycled LFP battery.  SEM results suggested a dramatic 

growth on LFP crystals with a reduction in carbon coating after cycling.  XRD effects 

showed a slight uniformed strain and decrease in size of LFP olivine crystals after 

cycling. 
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1 INTRODUCTION 

“The electric vehicle is not for everybody. It can only meet the needs of ninety percent of 

the population” – Ed Begley Jr.  This quote was taken from the film called, “Who Killed 

the Electric Car?”, which came out in late January 2006.  Ed Begley Jr. expressed his 

sarcasm about the situation and how he believed that EVs should be invested into for the 

future of the automotive industry.  Initially when EVs were first introduced to the market, 

they had a quarter of the sales because they were in a competition for control with steam 

and gasoline powered vehicles [1].  The reason why EVs were popular back then was 

consumer were concerned with the vehicles being comfortable while maintaining a short 

driving range throughout the few urban areas.   

 

This made EVs superior compared to the competitors, but advancements in technology 

and improvements to infrastructure drove away EV acceptance.  The development of the 

Ford Model T made cars affordable for the average person, a large supply of gasoline 

found in Texas dropped prices dramatically, and the construction of the modern highway 

provided farther places to travel.  The modern day revival of EVs began around 1970s 

until the early 2000s where high cost of oil incentivized alternative vehicles until prices 

dropped again [1].  This was not the first attempt at popularizing EVs since their creation 

nearly 200 years ago, and it was not there last.  Fast-forward to the year 2016, EVs were 

still on the market, sales were steadily growing, and were expecting to continue to grow.   

 

There was an abundant amount of EVs offered in the vehicle market including micro, 

mild, plug-in, and pure electric.  The size of the battery pack depends on the power 
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demand of the design which will be discussed in ascending order from smallest to largest.   

A micro hybrid features start-stop technology which starts the vehicle using the power 

from the battery packs [2].  This feature allowed the electrical systems to run if the ICE 

has stopped and the namesake for the technology.  A tier higher than the micro hybrid 

was the mild hybrid which incorporates the same features, but had been designed for a 

series, or parallel drivetrain as well as regenerative braking [3].   

 

Regenerative breaking allowed the HEV to charge the battery pack whenever enough 

braking forces had been applied during vehicle operation.  The plug-in hybrid had 

equivalent characteristics as well as the option to charge from the grid and a charge 

depleting mode [4].  A charge depleting mode granted the EV to run on the battery pack 

only to sustain momentum.  Two major drivetrain architectures for most HEVs are the 

series and parallel design, but other designs do exist.  The series drivetrain had the EM 

running off the battery pack and the ICE converting chemical energy to electrical in 

series to supply power for the electric traction motor.   

 

While the parallel drivetrain allowed the creation of propulsion from either the EM or 

ICE.  The last type of EV are PEV, they were identical to the plug-in hybrids with the 

exception that they cannot be charged from the grid and they could only operate using the 

battery system.  EV markets were being driven by battery technology and the factors of 

consumer interest, technological advancements, and cost improvements.   
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A detailed discussion will take place on the fundamentals of a battery because acceptance 

of EV requires knowledge of its core technology.  Specific topics that will be examined 

are the principles of an EC cell, types of primary and secondary batteries, chemistries, 

safety of ABs, limitations and lifetime of batteries. 

 

1.1 Fundamentals of a Battery 

An EC cell had been the basis for modern EE storage since Alessandro Volta designed 

the voltaic pile.  EC cells had the ability to either produce or storage electrical power 

when the cells are activated.  This worked when chemical reactions in the cell generate 

EE or when EE were sent back into the cell to create a chemical reaction.  Depending on 

the HC, reduction or oxidation occurred and continued to happen until the cell obtained a 

state of equilibrium state [5].  Optimal EE were achieved when two HCs with opposite 

potentials were joined to form one system. 

 

Parts that make up the system were an electrolyte, a divider, and two electrodes.  Anodes 

were electrode materials that had a negative potential and oxidized while cathodes are 

positive electrode materials that reduced during EC reactions.  The potential difference 

between the anode and cathode formed the cell potential which could be called the NCV.  

This potential determined how much energy the cell would produce during chemical 

reactions.  Larger NCV were highly desired because they generated more energy 

compared to lower NCV.  The electrolyte could be the same or different material already 

used in both HC, but the electrodes ideally needed to be different materials to produce a 

potential difference.   
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There were limitations to the size of the NCV because there were limits to the potential of 

existing elements.  Alternatively, a higher NCV could be established when EC cells were 

connected in series and in parallel.  This new formation was called a battery; a battery 

consists of at least two EC cells.  The term battery has been commonly adopted for a 

single cell even though battery means multiple cells.  There were no major differences 

between a battery and an EC cell other than a battery has the ability to produce higher 

energy and power capability.   

 

Two main types of batteries were primary and secondary systems.  A primary battery was 

an irreversible system which only operated a single time generating EE until the battery’s 

equilibrium was attained [6].  Once depleted of its electric potential, the battery had no 

use and should be recycled or thrown away properly.  Some useful benefits of primary 

batteries were lower initial cost, expendable, easily replacement, lighter, smaller, long 

service life per charge, and good charge retention.  A secondary battery on the other hand 

had the ability to be used multiple times due to the chemistry of the battery allowing 

reversible EC reactions [6].   

 

These reactions occurred when EE directed into the battery caused a reverse in the EC 

reaction which almost brought the battery back to its original state.  The recharging of the 

battery to its original state reduced the effects over time because the chemical reactions 

slowly created impedance on the electrodes preventing a full recharge.  Secondary 

batteries were favorable when the battery could be used over a long period of time and 
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allowed the battery to have a lower life cycle cost.  They also provided high discharge 

rates for high demand power applications, and secondary batteries exceled as emergency 

power systems.  Primary and secondary batteries balanced each out by having the 

opposite strengths and weaknesses of each other.  Batteries did not define the application 

rather the application defined the type of battery needed and knowledge of the types of 

batteries supported proper decision making for the system. 

 

1.2 Chemistries 

The main factor that decided NCV was the chemistry involved in the cell such as the 

electrode and electrolyte material.  Cell chemistry played an important role in the safety, 

environmental impact, cost, cycle life, and capacity of the battery being produced.  The 

discussion below will be divided into types of primary and secondary cell chemistries.  

To begin with, a couple of primary cell chemistries were the ZC battery (Leclanché dry 

cell) and the alkaline battery.  The ZC cell used ammonium chloride as the electrolyte, 

zinc as the anode and manganese dioxide as the cathode [7].   

 

Advantages to the ZC cells were cheap materials, suitable for primary battery operations, 

cost effective cell design and easy construction.  Downfalls to ZC batteries were higher 

chances of battery leakage, low energy density compared to other primary batteries, short 

shelf life and poor performance in cold temperatures.  Similar to ZC batteries, alkaline 

batteries had the same anode and cathode, but differed with a potassium hydroxide 

electrolyte [8].   
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Benefits of alkaline batteries were long shelf life, decent energy density, thoroughly 

researched chemistry and wide availability.  Its unfavorable aspects were comparable to 

ZC batteries with poor high load behavior, and prone to leakage over time.   

 

These battery chemistries represented the strengths and weaknesses of primary batteries.  

Primary batteries were good for small load, high energy, low cost, and temperature 

applications.  A few secondary cell chemistries that will be discussed such as Pb acid, 

NiCd, NiMH, and Li-ion [6].  Pb acid batteries were built with lead plate for the anode, 

lead dioxide for the cathode, and sulfuric acid as the electrolyte.  Some advantages of Pb 

acid batteries were their reliability, resilience against abusive handling, low internal 

impedance, long shelf life, and being made of inexpensive material.   

 

Pb acid’s shortcomings were the toxicity of the substance, very low energy density, short 

cycling, mediocre performance at extreme temperatures, and poor fast charging [9].  

When analyzing NiCd chemistry with Pb acid, NiCd had a longer cycling period with 

appropriate maintenance, better temperature performance, extremely good fast charging, 

larger energy and power density.  The unfavorable effects of using NiCd chemistry were 

the cell memory effect, and the lethal element of cadmium.  NiMH chemistry could be 

seen as the brother chemistry of NiCd because they were closely related in performance 

and chemistry.  They differed as a result of the anode being a different metal which 

allows NiMH to have a higher capacity, they were environmentally friendly, and they did 

not suffer as much from the memory effect.   
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The limitations of NiMH were the low cycling if repeatedly discharged to the maximum 

capacity, a higher self-discharge compared to NiCd, and a complex charging procedure.  

The main tradeoff for Li-ion were the requirement of a costly management system to 

prevent dangerous situations and a high initial cost for the battery.  These conditions 

could be overlooked due to the fact Li-ion had an immense cycle lives that offset the cost, 

low capacity fade at different C-rates, a long calendar life, possible safer chemistries and 

the highest energy and power density [9].  Furthermore, LIBs could be designed allowing 

them to achieve high energy, power, or a mixture of both for a variety of applications 

whereas other chemistries cannot be designed feasible the same way.  Out of all of the 

secondary battery chemistries, Li-ion appeared to be the most suitable battery chemistry 

for EVs.   

 

1.3 Safety 

ABs faced a wide variety of dangerous instances and as of now, the fundamental safety 

tests were based on extreme cases rather than a standard.  Since there was not a unified 

standard for AB, most of the experiments discussed were similar to stationary and portable 

testing.  Although batteries were being tested this way, they could be considered applicable 

due to the severity of the application, the battery chemistry, and the high tolerances for the 

test.  Two recently new publications evaluated the safety of Li-ion in hazardous mining 

sites which could be related to AA [10,11].  The experiment had two parts, one part used 

the UL 1642 standard which focused on testing small replaceable lithium cells and the 

chances of fire or explosions.   
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While the second part was an altered version of the UL 1642 standards with the except of 

analyzing the battery during a crush and puncture test using a 90° plastic wedge.  Small Li-

ion cells should act the same way as large cells because they share the same chemistry, 

thus these experiments should be considered acceptable for AB testing.  The batteries were 

tested in a chamber to control the environment such as inserting moderate level of methane, 

and varying the temperature from room 21-40 °C [10,11].  This allowed the collection of 

temperature, pressure, and other environmental changes for accurate results on finding the 

safest chemistry.  These observations were carried out as a null hypothesis test and setting 

the level of probability that a pass or fail would happen was possible due to the setup 

configuration.   

 

Tests revealed that the A123 26650, LFP cell chemistry, were a safer cell design compared 

LG Chem ICR18650S2, LCO.  It also demonstrated that LFP had the ability to resistance 

substantial abuse without producing an explosion or fire while LCO could not.  Between 

both chemistries, LFP appeared to be superior for safety and could be a possible candidate 

for AB applications.   Another publication looked at the performance of various types of 

Li-ion cylindrical cells such as LFP, LMO, and NCA and their levels of safety [12].  The 

batteries being tested were all likely contenders for being adopted as an AB, but LFP had 

been the only chemistry that had been proven to be safe so far.   

 

It was interesting to note that the investigation was done with cylindrical designs rather 

than prismatic.  Cylindrical cells would be the ideal choice in AB system because the design 

provided higher structural integrity and maintained high performance levels.  LIBs 
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designed this way were affected by the forces of stress waves and inertia during high and 

low impact scenarios [13].  The angle and position of the impact greatly affected if the LIB 

fails as well as the size of the battery during a bending situation.  The first section of the 

research was to test the capacity loss at varying C-rate rates during and note if there was 

any heat produced during the cycling.   

 

Zaghib et al wanted to identify what C-rate created the worst energy degradation of the 

cell.  A crush and nail penetration was conducted to see if any thermal runaway or internal 

shorts were made.  ABs would face a higher chance of being crushed or penetrated by an 

external object which was why the results of this test mattered in determining the safest 

chemistry for AAs.  The conclusion of the publication was LFP provided outstanding safety 

and EC performance while other Li-ion chemistries lacked safety [12].  These experiments 

could be related to how well an EV would react during a car crash and the extreme level of 

safety LFP achieved.   

 

Larsson et al analyzed the safety of LFP during a fire by looking at the variables of SOC, 

and the amount of toxic gas released [14].  The cases were set up using LFP mechanically 

united with wire over a gas collection system and single burning item system.  

Thermocouples were placed at various points on the battery pack, battery packs were 

charged to different SOCs, and the calendar life of each pack varied.  Results revealed that 

batteries with higher SOC provided more combustible fuel the fire could consume to create 

a more volatile reaction.   



 

10 
 

It was also concluded that lower SOC gave off higher amounts of toxic gases and the level 

of gas produced from an average LIB pack for a PHEV would be higher than acceptable 

standards.  After viewing the publications above, it was clear that LFP provide similar EC 

performance as other Li-ion chemistry while leading with superior safety.  This was why 

LFP should be chosen as the best choice in designing a battery pack for an AA.  Safety was 

a paramount concern when designing for a vehicle, but the inherent lifetime and limitations 

of the battery need to be taken into consideration. 

 

1.4 Limitation and Lifetime of Automotive Li-ion 

Automotive makers were interested in the limitations of EVs and these limitations stem 

from the AB.  The battery pack had to be able to maintain energy and power performance 

during every day handling and still be functionary until the end of its lifetime.  Energy fade 

illustrated how long a battery would last during a single charge as in day to day handling 

and power fade determined how long the battery’s life would last.  A publication sought to 

discover the effects of cycle degradation on LIBs [15].  The experiment consisted of using 

a prismatic LFP battery at a 3C rate and after every 300 cycles, characterization was done.   

 

The LFP were inspected of capacity fade, power fade, pulse C-rate charge and discharge.  

Additionally, an UDDS was assessed at different temperatures during these 300 cycle 

intervals to check the performance of the LFP for EVs.  There was very low capacity and 

power fading in high temperature environment initial until batteries were cycle further than 

600 cycles.   
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LFP batteries obtained greater losses in capacity and power fade when being used at lower 

temperatures.  Another publication evaluated how LIBs and Pb acid based batteries would 

behave for EV and HEVs [16].   

 

Li-ion chemistries being implemented in the experiments were LFP, NCM, and Pb acid.  

Capasso et al ensured cases were comprehensive and analyzed how each chemistry would 

react to a real EV drive cycle.  To create the realism, an urban scooter, an eddy current 

break, and uniquely designed flywheel were incorporated road resistance and vehicle 

inertia.  The outcome of the experiment was that Li-ion performed superiorly to Pb acid 

chemistry in which it maintained exceptional voltage profile, capacity, and obtained a 

longer driving range.  Groot et al did a study on the complex ageing of high-power LFP 

batteries at varying C-rates [17].   

 

They came up with six different cases to study the battery with different variables.  The 

first three cases were done to test symmetrical C-rate cycling with a varying temperature 

range, so there could be an understanding of how LFP was effected by temperature.  Case 

four was carried out to test symmetrical cycling at numerous SOCs during high 

temperature.  This would give insight on how the SOC effects the life of the battery.  

Furthermore, case five was to the effects of the rest period before battery use and the last 

case was asymmetric cycling at varied temperatures.   

 

The outcome of the experiment was a strong correlation for LFP ageing at high 

temperatures, and high symmetric C-rates at full SOC.  The amount of rest for the battery 
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was proportional to ohmic resistance, and dependent on cycling conditions.  A rest period 

at any SOC or temperature was concluded to be bad for the battery.  Also, asymmetric C-

rates were seen as detrimental to the SOH to the battery.  The optimal settings for a LFP 

battery was a low SOC, a small rest period, and symmetric cycling to improve the life of 

the battery.   

 

The overall conclusion was that LFP chemistry was greatly reliant on temperature and 

SOC, but the chemistry could reach long calendar lives [18].  Li-ion chemistry could be as 

high as 8000 cycles at room temperature and attain low power degradation over a long time 

period while running EV drive cycles. Capacity fade would be the cause of EV driving 

range loss rather than power fade.  Even though LFP had some flaws, it was the preferred 

choice for EV designs and it would be used as the battery for the experiment. 

 

2 GOAL OF EXPERIMENT 

The goal of the experiment was to check the performance of a LIB pack for a HEV using 

electric only driving in the city, and to determine the effects of driving in hot and arid 

conditions.  Two test setups ran in tandem in the hopes of simulating these conditions for 

two different modes an EV would operate.  The two driving conditions being looked at 

were a depleting and sustaining mode of operation.  Many HEVs used a combination of 

both modes when running which a fully charged EV ran solely on the battery until a certain 

SOC was reached.  This portion of driving would be called the charge depleting mode 

while a charge sustaining mode would use the battery in conjunction with the ICE.   
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The immediate focus of this experiment would be to determine the effects of a charge 

depleting mode, compare the results of both drive modes, understand the effects of a city 

drive cycle employing a charge depletion operation, and create a model for the charge 

depletion driving pattern.  To measure the performance of the pack, the variables of 

capacity and power fade were chosen.  These variables were picked because the amount of 

energy and power a battery could produce over a period of time seemed to be the logical 

choice of how to define performance of a battery.  Data could easily be collected over a 

long period of time, and the data could help form a model to be used by others.  There were 

many choices of potential models such as EC, mathematical, and EEM, but an EEM was 

picked.   

 

The model had the ability to recreate capacity and impedance at specific cycles with the 

possibility of providing trend information.  Trend information could be derived from the 

elements that made up the EEM and what chemical reactions they represented such as 

ohmic resistance, charge transfer reactions and mixed diffusion [19].  After deciding on the 

model, a driving schedule and a battery pack configuration was required to test how an 

HEV under electric only mode would handle during an ordinary day of driving.  The US 

EPA UDDS was chosen to represent the drive cycle of a HEV because it simulated city 

driving patterns and the cycle could be converted into a current profile.  Additionally, the 

derived current profile was adjusted to a charge depleting drive mode of seven percent 

regenerative braking to simulate the HEV relying primarily on the battery for momentum. 
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The battery pack arrangement was selected to be a single cell connected to another cell in 

parallel to prevent any cell discrepancies.  This pack configuration would allow the cell 

model values to be divided in half, so the pack could be aggregated with a single cell or 

the pack itself.  A detailed discussion on the selection of cell modeling, battery pack 

modeling, and drive cycles will be done to highlight why the above choices were made. 

 

2.1 Cell Modeling 

The demand for accurate and precise modeling of battery pack characteristics had been a 

high commodity because EVs were trending in the automotive market.  It would be 

valuable to determine a method that was both efficient and accurate using only sparse 

resources.  Cell models were the basic structure when it comes to designing any battery 

pack, and two methods of designing the cell model are the EC and behavioral model [20].  

The EC model would be developed from the fundamentals of thermodynamics, kinetics, 

and transport phenomena of the cell’s electrodes and concentrated solution [21].  This 

model took into consideration the conservation of mass and charge of solid and liquid 

materials and defined partial differential equations to represent the principal physics to 

form a Bulter-Volmer kinetic expression [22].   

 

The expression was discretized into a set of algebraic equations to reduce the amount of 

time needed to run the model in a computer or battery management system.  Advantages 

to this model were the comprehensive details of the battery structure and material being 

used.  Its disadvantage were the huge amount of computational power and time needed to 

produce the model.   
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The behavioral model could be broken up into two subcategories which were the 

mathematical model or EEM [20].  A mathematical model was formed using collected data 

and curve fitting the data through an optimization algorithm or linear regression method.   

 

Some methods of optimization algorithms include the Kalman filter, Levenberg-

Marquardt, Powell’s method, and Newton’s method [23,24].  When using the mathematical 

model, it would be critical to remember that they were very fast in comparison to the EC 

model, but at the cost of accuracy.  The EEM approach was created by John Edward Brough 

Randles on the same theory of the Bulter-Volmer kinetic expression used in EC model [25-

27].  EEM was established using EIS to find the impedance of the cell by producing a small 

AC sine wave at varying frequencies.  Electrical components portrayed the impedance of 

the battery at the tested frequency range and the accuracy of the model was determined by 

how close the model could recreate the impedance curve.   

 

An added benefit to the EEM was the electrical components could express the faradaic and 

non-faradaic reactions within the battery and show possible chemical trends.  A faradaic 

process was represented as a proportional relationship between the chemical reactions in 

an EC system and the amount of current passing across an electrode.  While a non-faradaic 

process was the construction of an electric double layer using electrostatic principals to 

form a layer of a positive or negative charge between the electrode and electrolyte.   
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The three electrical elements adopted for the EEM also called the Randles circuit were two 

resistors and a capacitor.  The resistor in series with the parallel connection of the other 

two components signified the ohmic resistance running through the electrolyte, electrodes, 

and the contactors.   

 

The capacitor exhibits an electrical double layer capacitance being formed on an electrode 

or separator [25].  While the last resistor reflected the charge transfer resistance of the 

chemical reactions in the battery pack.  This underlying structure of the Randles cell could 

be modified by adding additional parts such as CPE, Warburg impedance, extra RC 

networks, or other circuit components.  Improved accuracy of the Randles circuit model 

could be achieved by adding additional RC networks for low and mid frequency impedance 

values or by defining more complex circuit designs.  A CPE was an EEM component used 

to simulate a double layer or coating capacitance within a battery and the device could be 

considered somewhere in between an ideal capacitor and resistor [28].   

 

This could be determined by finding the angle produced from an impedance curve on a 

Nyquist plot.  An ideal capacitor would create a phase of 90° for its impedance curve while 

a resistor would not have a phase which results in a phase anywhere between 0-90° for a 

CPE.  A specific case for a CPE could be considered as Warburg element which was used 

as a EEM element to show diffusion reactions within a battery [29].  The difference 

between a Warburg element and a CPE was a Warburg element had a constant phase of 

45° for its impedance curve while a CPE does not necessarily have a 45° phase.   
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The EEM lied somewhere between the EC and mathematical models due to accuracy, 

resources needed, time, and complexity.  One model was not completely better than the 

other, but it all depended on the scope of the project.   Out of the three models, the EEM 

was highly favored because a reliably accurate model of the cell’s AC and possible 

chemical response could be produced with limited supplies and time.  Accuracy of this 

model could be found by calculating the coefficient of determination between the model 

and raw data values.   

 

2.2 Pack Modeling 

Once a suitable cell model was picked, the appropriate technique was chosen for the type 

of pack model that would be developed.  The pack model could be designed to make a 

comparison between real time data and a model to obtain the SOC and other variable 

estimations [20].  Or the pack model could be used to help battery designers create a pack 

for a specific application such as a EV battery.  These techniques were dependent the 

amount of detail put into the cell and the pack model being incorporated.  Three options to 

fill either of these roles were the aggregated cell, scaled cell, and well-known battery pack 

models.   

 

The aggregated cell model duplicated the cell multiple times with series connections to 

increase the pack voltage while parallel connections could be done to increase the capacity.  

Both procedures would be done until the desired battery pack voltage and capacity was 

obtained.  This approach required the least amount of effort while maintaining a 

considerable amount of accuracy for the cell design.  The major downside to this model 
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was it does not take into consideration cell variations, thermal unbalancing, and other 

variations that could occur in a cell.  A second option could be scaling the cell model to 

the size of the desired battery pack after figuring out any cell discrepancies that would 

occur in the chemistry for any situation [20].   

 

This produced a simplified and thorough pack model that could be simulated rapidly on a 

computer, but this pack modeling required a large amount of time and resources that were 

sometimes not available.  The third choice of modeling relied on using a well-established 

battery pack with the ability to cover any circumstance the pack would run into during 

operation.  For this method to work, the cells in the pack had to be well balanced during 

any case as well as controlling the proper temperature.  The benefits to this modeling 

process were the cells inconsistencies and thermal impacts were already incorporated into 

the model which allows for fast simulations.  An aggregated cell model seemed to be the 

logical choice out of the three pack models because it demands the least amount of effort 

in regards to resource and still preserved accuracy with a properly selected cell model. 

 

2.3 Powertrains for EVs 

When it came to designing PTs for EVs there were many different options to choose, but 

the types of architectures for EVs were PEVs, series, parallel, and power split PTs [30].  

PEV PTs had two classifications which were an EM, and a EM with a gearbox.  The EM 

only design had the advantages of high speed range with no gears, large torque capability 

at low speeds, and the simplicity of the design.   
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An EM with a gearbox PT balanced the shortcomings of the previous design of single speed 

efficiency drops, but this required a more complex design.  HEVs had a copious amount of 

PTs and depending on the architecture it effects the classification of the HEV.   

 

The micro hybrid would to be first designation of a HEV PT vehicle which used a parallel 

scheme of an ICE in parallel with a EM connected to the transmission [31].  Features of a 

micro hybrid were mentioned before, but the downside to this PT was the lack of PEV 

driving option.  The mild hybrid PT compared to the micro hybrid had the additional benefit 

of regenerative braking due to the EM being mounted between the engine flywheel and 

transmission of a parallel design.  A third type of parallel PT architecture incorporated a 

EM before or after the transmission being linked to an ICE.  This PT would be used in a 

mild, full HEV, and PHEV due to the nature of being able to function like the previous PTs 

mentioned as well as having the ability of a PEV drive mode. 

 

A second option for HEV were series PT which had less layouts due to the nature of the 

PT and the parts involved with locomotion.  The basic form of a series PT was an ICE 

running a EM that supplied power to a traction motor or a battery pack supplying power 

[31].  This design allowed the ICE to operate at optimal efficiency, a reduction of 

mechanical conversions within the architecture, and large amount of torque generation at 

low speeds.  Its downsides and the reason this PT were not used that often were multiple 

energy reductions during efficiency conversions.  There needed to be a high quality traction 

motor in this design otherwise there would be a loss of locomotion during extreme loads. 
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The last type of PT available to HEVs were the power-split variation which mixed series 

and parallel PT.  Three optional forms were an input-split, an output-split and an input-

output split design [30].  An input-split required the ICE and two EMs to be linked to a 

power-split device, and the output-split had the same format except one of the EMs are 

joined directly to the ICE.  The input-output split also called a compound-split required 

multiple power split devices interconnected and a greater complexity in design.  Each 

power-split PT design were very complex in nature and provided varying efficiencies at 

different operating conditions.   

 

The main characteristics of the power-split design would be defined as how the torque was 

produced and what driving mode gave the best performance.  The torque provided to the 

engine could be divided into the ICE or EM delivering the necessary power and the 

efficiency was defined as the speed and torque required.  As the complexity of design 

increased for HEV PT, so did the cost and efficiency of the vehicle generally.  There were 

advantages and drawbacks for every PT architecture, but the performance of the vehicle 

would be dependent on the operating conditions.   

 

2.4 Drive Cycles 

Originally, drive cycles were created to test the emissions of mobile sources in the country 

which could be divided into two categories, on-road or non-road vehicles [32].  Those 

categories could be broken down into subcategories for all the different types of vehicles 

such as light-duty vehicles, heavy-duty vehicles, locomotives, aircrafts, and many other 

modes of transportation.  Drive cycles were usually investigated for any type of vehicle 
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from the category by placing them on a dynamometer and following the proper schedule 

[33].  Measurements of carbon could be collected from an experiment like this to figure 

out the fuel economy while EVs required a different method of testing.  To test the battery 

pack performance in EVs, drive cycles in the light-duty subcategory were adopted and 

converted into current profiles [34].   

 

A light-duty vehicle was a passenger car or light truck that the average person would own 

and therefore would be the leading choice of drive cycle types for EVs.  The light-duty 

subcategory had five drive cycles and most of these driving schedules were modified to 

current profiles to simulate driving conditions of an EV.  These five drive cycles were the 

US06, HWFET, SC03, FTP-72, and the FTP-75 [32].  The US06 SFTP symbolized 

aggressive driving patterns with higher speeds and large accelerations during the schedule.  

The HWFET or HFEDS provided a driving pattern that emulates mild driving on the 

highway under 60 mph. 

 

An air conditioned drive cycle called the SC03 SFTP was utilized to emulate how a vehicle 

using the air conditioner while driving adds a higher load on the engine and emissions of 

the vehicle.  The FTP-72 also called LA-4, FUDS, and UDDS was conceived to match the 

driving pattern of city driving [35].  FTP-75 was almost identical to the FTP-72 with the 

addition of an extra 505 seconds of the UDDS to mimic the car driving with a hot engine.   
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Out of the light-duty vehicle driving schedules, the FUDS was chosen to represent the 

driving conditions in a hot and arid environment.  The FUDS drive cycle profile was 

normalized from physical power to electrical power, so the velocity of the cycle could be 

converted into a current profile that would be used by an EV [34].   

 

Figure 1: FUDS Charge Depleting Velocity Profile 

 

Four factors that affected the conversion are the acceleration, incline of the vehicle, rolling 

resistance, and aerodynamic drag factors [36].  EV driving conditions were considered to 

be flat, had smooth wheels, and were driving in very hot temperatures, thus removing every 

factor except acceleration on the conversion to current.  The nomenclature used for the 

current profile was positive current values signified that the battery acquired power while 

negative current indicated current was given.  Velocity was altered to acceleration by 

finding the different between the future point and preceding point then divided by time.  

This value was multiplied by the maximum current of the battery testing equipment divided 

the maximum acceleration to receive a current value.   
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Figure 2: FUDS Charge Depleting Current Profile 

 

If current was greater than zero, current values were multiplied by seven percent to reflect 

the amount of energy restored by regenerative breaking.  The results of this transformation 

were called the FUDS charge depleting current profile and it was the profile used to 

simulate the charge depleting drive cycle for the HEV.  It was worth mentioning that the 

charge sustaining drive cycle used in the experiment was a modified version of the FTP-

75.  The charge sustaining drive cycle was based off the inertia, torque, and velocity 

equations of a 2005 Chevy Equinox driving a FTP cycle [37].  It had a parallel through the 

road PT that ran the ICE at high speeds from the front drive and the EM at low speeds from 

the rear drive. 
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Figure 3: Modified FTP Charge Sustaining Current Profile 

 

3 EXPERIMENTAL SETUP 

The experimental setup had two battery packs running simultaneously with two different 

drive cycles in different temperature conditions.  The primary equipment was the Arbin 

BT-2000, model BT-M-40, a battery testing station.  Arbin was the premier choice when 

it came to battery testing and it could be seen as a standard for testing batteries in the 

scientific community which was why it was chosen [38,39].  The specific model had two 

channels that could run independently of each other and send a variety of voltage, current 

and drive cycle profiles.  The voltage and current range limit for each channel was 0 - 

40V and -20 - 20A.     

 

A voltage range limit of 2-3.6V and a current range limit of -20-20A was established to 

ensure the safety of the lab, the battery packs, and the battery testing equipment.  A 

testing oven was used to control the temperature for the battery packs to simulate a hot 
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and arid setting.  The oven was a Thermo Electron Corporation: Precision oven which 

could create the desired environment for the batteries.  The oven produced a dry heat 

through convection and periodically, LIB packs were analyzed with EIS using the Parstat 

2273 to find the impedance of the cells during its current cycle.  The Parstat 2273 was a 

galvanostat and potentiostat that could perform EIS by using a single sine wave method 

[40].   

 

This method worked by setting a constant amplitude and varying the frequency of the 

wave being injected into a battery.  As a result, it produced a Nyquist plot showing the 

battery’s impedance throughout the frequency range.  Any inductive and capacitive 

material would give an increase or reduction in impedance depending on the frequency 

and material the signal went through.  The voltage, current and frequency range of the 

instrument was -10 - 10V, -2A - 2A, and 10m - 1MHz.  Battery packs were connected 

with a counter electrode and reference electrode lead at the anode while the working 

electrode and sense electrode lead were connected at the cathode.   

 

This allowed the Parstat to properly take impedance readings of the battery using the 

software PowerSuite which had several subsections.  The single sine wave method was 

operated from the PowerSINE section of the PowerSuite software.  LFP cells 26650 were 

purchased from a reliable manufacturer to form the battery packs in the experiment.   
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Each 26650 cell had a nominal voltage of 3.6V, a rated capacity of 2.5 Ah, and a high 

rated cycle performance with a large C-rate possibility.  The composition of the battery 

pack contained one cell in parallel with another cell to maintain the nominal voltage and 

to double the capacity of the pack.   

 

It was desirable to increase the size of the LIB packs to have a high C-rate, but an 

increase in pack size was limited to prevent damaging the Arbin and Parstat equipment.  

LIB packs were thoroughly covered with electrical tape to prevent any short-circuits or 

unintended contact.  Both LIB packs were initial placed on a portal dolly with a wooden 

platform to provide electrical isolation.  This was done to give a base reading on each 

LIB pack to see the performance under normal room temperature and nominal air 

moisture conditions.  Eventually, both LIB packs were placed in the Thermo oven with 

thick pieces of plastic to preserve electrical isolation as part of the experimental 

procedure. 

 

3.1 Experimental Procedure 

The desire of the experimental procedures was to test batteries at two different 

temperatures and drive cycles.  Temperatures that were being used were room 

temperature of 25 C° and high temperature of 50 C°± 2C°.  Experimental procedures 

were done through the Arbin battery cycler and the MITS Pro software that ran the 

equipment.   
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MITS Pro was an easy to use interface and logic driven software that allowed multiple 

channel to run independently of each other.  It gave the ability to control, monitor, and 

record raw data from an external source that was being tested as well as the option to 

modify the program while running in real time.   

 

Figure 4: Flow Chart of Battery Testing 

 

Two programs were created with similar structure for the program, but differences 

occurred for the current profile being implemented.  The charge sustaining current profile 

ran for 1360 seconds and the charge depleting current profile ran for 1370 seconds.  

Three major sections of the program were the initial charging of the battery, cycling the 

battery until hitting the SOC limit, and a constant charge and discharge stage.  A single 

cycle in the experiment was considered to be anytime the pack was charged, discharged, 

or running the HEV current profile.  Initially, both LIB packs ran for ten cycles at a 

constant C-rate of one for a charge and discharge phase to check the batteries preliminary 

capacity.   
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Afterwards, battery packs were cycled for roughly 50-60 cycles in room temperature to 

get a base reading and the rest of experiment had the batteries cycling at 50 C°.  The 

battery packs were initial charged at a one C-rate until the pack voltage reach 3.6V while 

collecting data every ten seconds.  Then the packs rested for five minutes to ensure the 

LIBs were fully charged before testing under a drive cycle and to let the nominal voltage 

return to 3.3V.  Next, LIB packs were continually cycled under a current simulation 

mode in MITS Pro that ran the current profile of the drive cycle.  Data was recorded 

every one second until the battery pack reached 2V.   

 

It would usually take five to six drive cycles of charge depleting mode to discharge the 

pack to 2V and roughly 19 drive cycles to deplete the charge sustaining profile.  Once 2V 

was reach, packs would be placed into a constant charge, a rest of five minutes and then 

constant discharge at a 1 C-rate while collecting data every 10 seconds.  Then the LIB 

packs would go back to the first stage of the program of being charged at a 1 C-rate and 

the pack would go through the same steps again for a certain set of cycles.  The charge 

sustaining profile battery pack would run through the entire program roughly five times 

to discharge the LIB pack to the SOC limit and the charge depleting would run its 

program approximately seven times.  LIB packs ran this program to cycle the charge 

sustaining pack for 283 cycles and 1007 cycles for the charge depleting pack.   

 

Periodically during drive cycle testing, batteries would be fully charged to 3.6V and 

tested with the Parstat 2273.  The settings for the EIS single sine wave test was a 50mV 

amplitude and a frequency range of 1k-10mHz.   
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This was done to check the impedance fade of the LIB pack over the cycling period while 

the Arbin recorded data for the capacity fade.  Capacity fade data was taken during the 

constant charge and discharge phase of the program.  LIBs had a capacity rating of 5Ah, 

so capacity was found by taking the time the battery ran for charge and discharge and 

dividing the individual times by one hour and multiplying it by five.  This gave the 

battery pack’s charge and discharge capacity percentage left.  This method ensured the 

collection of accurate results for the charge and discharge capacity fade of the battery 

pack.  

 

4 DISCUSSION 

The sections below will break down the experiment into several sections to discuss 

methods of the EEM and how results were obtained.  The categories were the creation of 

an electrical modeling element, the establishment of the EEM, steps to collect data, 

modeling procedures, how a mathematical transfer function was made, and the accuracy 

through the experiment.  This was done to illustrate the flow of the experimental design 

and to give a better understanding of the results obtained from the experiment.  A major 

portion of time will focus on the EEM due to the importance and impact the model could 

have on future works.  One of the major influence on the EEM was the collection of 

capacity and impedance data. 

 

4.1 Data Collection of Capacity and Impedance 

Two sets of primary raw data were collected during the experiment, impedance of the 

battery during a fully charged state and capacity of the battery during cycling.  Initially, 
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capacity measurement readings for the battery were gathered every battery cycle to 

maintain high fidelity.  Later, it was found out that the current profiles were being shifted 

slightly from the input of the Arbin system which would lead to error in the results of the 

experiment.  This was due to the limitations of the Arbin battery cycler sampling time.  

To correct this situation, batteries packs were cycled from fully charged to discharged 

using HEV current profiles five times followed by the constant charge and discharge 

phase of the program.   

 

Capacity was compiled during the constant charge and discharge phase of the LIBs 

because there were no transient effects occurring in that stage.  MITS Pro recorded the 

amount of time in the constant charge or discharge phase which was divided by one hour 

and multiplied by the initial manufactured value of 5 Ah capacity to retrieve the true 

capacity of the pack.  Packs were occasionally stopped and fully charged to take 

impedance measurements which took place every fifty to one hundred cycles.   

Impedance measurements were taken as much as possible, but the Parstat 2273 required 

maintenance several times throughout the experiment.  Also, packs were ideally kept 

cycling on the Arbin to prevent cell relaxation and the effect it had on capacity and 

impedance fade.    

 

EIS was done to packs once the system was stopped and the packs were fully charged.  It 

was desirable to maintain 50 C° and a fully charged battery to see how electrochemical 

reactions in hot and arid conditions would be effected.  A single sine wave process was 

used for EIS with the settings of a 50 mV rms amplitude and a frequency range of 1k-
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10mHz.  The frequency wave was selected based on capturing ohmic, charge transfer and 

diffusion reactions for the LIB packs.  An amplitude of 50 mV rms was chosen because it 

was roughly 1.5% of the nominal voltage of the battery and to reduce noise interference.  

PowerSuite recorded the results of the EIS from the PowerSINE application and the data 

was converted into a text file for later calculations. 

 

4.2 Inverse Constant Phase Element 

The conception of the ICPE will be discussed, so there would be a better understanding 

when the modified EEM was explained.  CPE were defined as a variable that could be 

somewhere between a resistor and a capacitor, but there was little to nothing mentioned 

about the equivalent version for an inductive variable [41].  A ICPE would be a user-

defined element created to portray an element that was somewhere between a resistor and 

an inductor.  Before going further in the explanation of an ICPE, a capacitor and CPE 

must be discussed in detail to understand the conception of an ICPE.  The fundamental 

equation for a capacitor was current equals capacitance times the change in voltage.   

 

To find the impedance of a capacitor the Laplace transform of the equation could be 

taken assuming all initial conditions are zero.  The voltage signified the output and 

current served as the input which transformed into the inverse of the capacitance 

multiplied by a radian value.  CPE had a comparable equation to the Laplace transform of 

a capacitor, but the CPE differed with the addition of the radian value being raised to a 

value of alpha [42].   
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The value could be anywhere from 0-1 which shifts the phase of the component to 0-90°.  

When the value of alpha was zero, it produced a resistive impedance while an alpha of 

one created a capacitive impedance.   

 

A value anywhere in between 0-1 made an element in the forms of a resistive capacitor.  

Dhirde et al mentioned the use of modifying the CPE equation using a range of -1 to 0 for 

its raised power on the imaginary section of the equation to determine the phase [43].  

This would give an opposite phase value that an inductor would have compared to a 

capacitive phase using a CPE with a raised power range of 0-1.  ICPE takes a relatable 

approach as Dhirde et al by trying to achieve reverse phase adjustment, but the method 

used was to express it as an inductive equation.  The fundamental equation for an 

inductor was voltage equals inductance times the change in current.   

 

Complementary to the capacitor example, the Laplace transfer was taken for the 

inductors fundamental equation with the same inputs and outputs variables of current and 

voltage to find impedance.  After finding that the impedance of an inductor was 

inductance times radians, the equation could be modified to invent the ICPE equation by 

raising radians by alpha.  The range of alpha was now identical to the CPE range and the 

phase is -90-0°.  It was important to note that either CPE or ICPE alpha range values 

could be extended beyond 90°, but a phase greater than ±90° represented an additional 

CPE or ICPE connected to the original component.  The creation of this component was 

to fill the opposite role of a CPE, so the modified EEM could better match the Nyquist 

plots. 
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4.3 Modified Randles Circuit Model 

The initial EEM considered as a possible candidate that could predict the capacity, 

impedance, and voltage profile of the LIB pack was a Randles circuit.  It was seen as a 

frontrunner because it had the ability to match some of the raw cycle data characteristics 

from the Nyquist plots.  A Randles cell had the added benefit of having a visual 

representation for chemical reactions occurring in the battery [44].  These visualizations 

could show the chemical reaction trends of diffusion in the electrodes, charge transfer 

reactions, coating capacitance, double layer capacitance, erosion of the current collector, 

and the effects of test equipment on the battery.  The main issue with the Randles circuit 

was its ability to recreate a complex impedance curve due to the simplicity of the model.   

 

Additional RC networks could be added to Randles circuit to improve accuracy, but the 

results of the model would not be the same as the raw data unless there were 

modifications done.  Three variations in the Nyquist plots compared to the Randles 

circuit results was a loop formation between low and medium frequency as well as the 

phase being lower or greater than ±90° at the lower and upper frequency tails.  To correct 

these irregularities, a CPE, an inductor, and a ICPE were added to the circuit model.   

The electrical circuit had an ICPE in series with a resistor which was in series with a 

parallel network.  The components in series could be called the collector corrosion 

inductance and the ohmic resistance [45].   
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Figure 5: Modified EEM Circuit 

 

An ohmic resistor expressed the trend in resistance for the electrolyte, electrodes, and the 

contacts of the battery.  An increase in corrosion occurred on the electrodes, electrolyte, 

and contact material as the batteries are cycle which developed higher resistance.  A 

ICPE symbolized the degradation of the current collector and the impedance added from 

the testing equipment [45].  The parallel network had a series connection of a resistor, an 

inductor, and a CPE in parallel to a capacitor.  The resistor could be seen as a charge 

transfer resistance, the inductor as charge transfer inductance, the CPE as double layer 

capacitance on the electrode divider, and the capacitor as coating capacitance on the 

electrodes [46].   

 

While the charge transfer resistance illustrated the electromagnetic and chemical reaction 

energy necessary to pull electrons from one material into another material [47].  This 

component showed the conductivity of the electrolyte and the speed of the equilibrium 

chemical reaction that happened between the electrodes and electrolyte.   The charge 
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transfer inductance were possibly created from the formation of growth on material in the 

battery which would increase the length and area of the material [48].  This length and 

area expansion could generate higher inductive material when energized with current and 

could produce vibrations.  Another source of inductance could be from the absorption of 

the electrolyte into porous anode or cathode material producing a larger dielectric and 

magnetic permeability [49].   

 

A third conceivable option for charge transfer inductance was the nonhomogeneous 

concentration of material within the battery.  Lastly, the CPE could conceivably be 

depicted as layer of electrons or LFP crystals forming on the plastic membrane divider to 

construct a double layer capacitance.  Since the double layer was most likely not 

uniformed, it would not have a 90° phase like a capacitor and it would require an 

adjustment of its phasing using a CPE.  The capacitor depicted the quality of carbon 

coating on the electrodes during cycling and how capacitance was effected during the 

pack cycling.  Reaction representations of the CPE, ICPE, and inductor had several 

plausible electrochemical causes that were hypothesized, but additional research must be 

done to verify these results which could be done in future works.   

 

4.4 Impedance Transfer Function and Capacity Linearization Procedure 

The modified EEM and impedance transfer function were seen as a black box design 

during the experiment due to the lack of equipment to authenticate chemical reactions 

within the battery.  This was not to say the model did not accurately embody the 

impedance values of the battery rather the lack of accuracy for the trends of individual 
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electrical components.  The details of finding theoretical electrical circuit values were 

written below as well as solving for the modified EEM into a transfer function.  An 

approach of transforming electrical devices before solving for the total impedance was 

taken, but circuit analysis using nodal or mesh analysis could be used to find the same 

results.  The impedance transfer function was solved by finding the total impedance of 

the modified EEM and the use of the Laplace transform.   

 

Individual components were transformed from the time domain to the s-domain using 

current as the input and voltage as the output of the Laplace transform.  This conversion 

of output over input gave the impedance of each component which could be later used to 

combine with other parts.  The total resistance of the entire circuit was the impedance of 

the ICPE in series with the ohmic impedance which was in series with the parallel 

impedance network.  This parallel network impedance was defined as the impedance of 

the charge transfer resistance, charge transfer inductance, and double layer capacitance in 

parallel with the impedance of the coating capacitance.  After mathematical rearranging 

in a transfer function form, the impedance transfer function turned out to be a fractional 

order function that changed with cycling.   

 

An overall impedance transfer function was designed to incorporate the trend of each 

electrical part over pack cycling.  This entailed solving the fundamental electrical circuit 

equations of the modified EEM for each cycle impedance data that was measured.  

Values for each electrical device went through regression analysis to find the best trend 

of value over pack cycling.  The final result was combining the regression analysis 
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equation for each electrical component into the transfer function of the modified EEM to 

simulate impedance over pack cycling.  To begin, recorded impedance cycle data was set 

between the frequency of 1k-240mHz to establish uniformity and the data was divided 

into three sections.   

 

Section one was the high frequency tail that had positive real and imaginary data which 

represented inductive elements.  The second region was the mid frequency segment that 

had the half circle in the negative real and imaginary part of the Nyquist plot.  While the 

last chunk was the low frequency tail that had the negative real and imaginary values that 

defined capacitive components.  The ICPE value was found in the first section where an 

inductive tail was shaped.  Since the ICPE exhibited inductive qualities, the magnitude 

and phase of the impedance tail was taken at high frequencies to serve as the ICPE 

values.   

 

A similar approach was done for the CPE at the low frequency range to solve for the 

double layer capacitance value.  To get the values of each electrical element in the 

modified EEM, the ohmic and charge transfer resistance value of the EEM were required.  

Since resistance was not dependent on frequency, ohmic resistance was the x-axis value 

when the impedance curve initially crossed the x-axis at the beginning of the half circle.  

The charge transfer resistance would be the x-axis value where the other end of the circle 

crossed the x-axis minus the ohmic resistance.  To identify the value of coating 

capacitance, the frequency at the maximum point of the half circle in the second section 

was required.   
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This peak in the half circle expressed an RC time constant between coating capacitance 

and charge transfer resistance.  Thus, the coating capacitance could be found by 

multiplying charge transfer resistance times the peak frequency and inversing the value to 

find capacitance.  The charge transfer inductance was found by looking for the frequency 

where the impedance curve forms a loop.  This loop was formed between the low and 

mid frequency range of the Nyquist plot and it symbolized the resonant frequency of the 

material reacting to the single sine wave.  Charge transfer inductance value was found by 

solving the LC time constant between charge transfer inductance, the frequency at that 

point, and the double layer capacitance.   

 

Electrical values were optimized to improve the accuracy of the model after every device 

was theoretically found.  Capacity linearization was done using the method of linear 

regression to give a first order equation of how LIB packs capacity faded over time.  The 

linear regression equation could be transformed into a voltage source that changes over 

pack cycling, so it could be used in conjunction with the impedance transfer equation.  

Another benefit to the linear capacity equation was the percentage of battery capacity 

over cycling could be multiplied to the voltage profile to shift the profile over pack 

cycling. 

 

4.4.1 Accuracy of Impedance and Capacity Modeling  

To safeguard the accuracy of the impedance and capacity models, regression analysis was 

done in Matlab on the three sections of the impedance curve.  This allowed the precise 
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collection of real and imaginary data as well as frequency when solving for electrical 

components.  Outlier analysis was done on electrical values to remove any minor or 

major outliers to improve accuracy.  The coefficient of determination was integrated as a 

filtering system during the optimization of electrical values and to demonstrate the 

quality of the final impedance and capacity transfer functions.  This method helped 

maintain a high coefficient of determination throughout the calculation portion of the 

experiment. 

 

4.5 Butterworth-van Dyke Circuit 

Macia et al discussed that dynamic systems could be converted from a physical system 

into a mathematical model [50].  This conversion was done by categorizing sections of 

the physical system with proportional electrical elements.  The electrical elements were 

connected in a way that would confer how the entire system was interconnected through 

series and parallel circuit combinations.  This was another way to represent the physical 

system as well as giving the option to simulate the system using modeling techniques.  

The electric system could be converted into a transfer function with the use of differential 

equations and the Laplace transform.   

 

The name of this approach would be the equivalent circuit method.  This control 

engineering method allowed many different systems such as thermal, hydraulic, 

translational, and rotational systems to be simulated computationally.  The modified 

EEM model created for the experiment took on the form of a BVD equivalent circuit 

which the circuit had been commonly used to design resonators from quartz, thin film, 
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and other piezoelectric material [51-53].  A BVD embodied the acoustic properties of a 

crystal in a resonator and correlates the acoustic impedances and loads.  The RLC series 

connection within the BVD showed the effect of the mass and stiffness of the resonator 

while the parallel capacitance demonstrates the resonator at rest. 

 

Some common applications that used a BVD circuit for resonator design were watches 

that use the crystal to keep track of time, a clock signal for digital electronics, and a 

frequency stabilizer for radios.  The piezoelectric effect allowed certain materials to 

generate electricity when applying pressure or a mechanical force when applying voltage.  

These effects worked because the structure of the material was not symmetric and could 

create an electric dipole moment that formed an electric potential or mechanical force.  

Quartz crystals used this effect to resonant by applying a voltage potential to stimulate 

the crystal to oscillate at its natural frequency.  It was important to note that many other 

types of material could resonate with the appropriate input because most material have a 

natural resonant frequency. 

 

The original intent of the EEM was to find electrical impedance of LIBs, but additional 

information of finding the acoustic effects could be obtained.  This meant the model 

could connect the electrochemical reactions with the mechanical effects and in turn 

produce noninvasive methods of determining the performance of LIBs.  LFP material 

were typically considered an olivine crystal structure since synthesis required high 

temperatures and it was a mixture of lithium, iron, and phosphorous salts [54].   
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An olivine structures demanded high temperatures due to the nature of the Bowen’s 

reaction series which illustrated the transformation sequence of mineral crystallization.  

Bowen’s reaction series stated what temperature and pressure were needed to transform 

one stage of mineral into another.   

 

This was broken up into two sections, the continuous and discontinuous reactions.  Only 

the discontinuous reactions will be discussed because Olivine structures were a part of 

that section.  The discontinuous reactions only developed the next crystalized mineral 

when there was enough silica with the pre-existing crystal and the correct temperature 

was held constant.  A reaction would not occur if these requirements were met which 

resulted in the material maintaining the same structure.  This was important to the 

synthesis of LFP batteries due to the fact that other crystalline structures could be 

produced in during synthesis and could change the performance of the battery.   

 

The quality and concentration of LFP being developed may have variations of other types 

of crystalized material which may aid to the possible resonance LFP batteries.  

Gorzkowska et al experimented on the transition of LFP substance and found the 

presence of four different crystal forms of LFP [55].  One of the four crystals substances 

was a LiFePO4 quartz like structure that could be seen as piezoelectric material.  

Dompablo et al found four substances during their experiment with LiFePO4 which one 

crystal was in berlinite form, a LiFePO4 quartz like formation [56].   
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These forms of LiFePO4 were possibly generated from the delithiation of LiFePO4 during 

the olivine stage at ambient pressures.  An interesting aspect of this material was the 

structure transforms into an electrochemically inactive substance that could be monitored 

by the concentration of the crystallization.  This monitoring could be done by checking 

the resonant effects of the material when using the modified EEM for EIS. 

 

5 RESULTS  

The results of the experiment showed that LFP packs using a charge depletion mode at 

high temperatures could last half as long as packs at room temperature.  Secondly, LFP 

cells could maintain twice as much capacity and cycle for three times longer under a 

charge depletion mode compared to a charge sustaining mode.  Also, the capacity fade of 

the charge depletion mode was marginal compared to the impedance fade of the battery.  

A 50% reduction in power of LFP batteries would happen 2.5 times sooner than 50% 

reduction in energy for the charge depletion mode at high temperatures.  This meant that 

EVs would be able to preserve their driving range in high temperatures better than their 

towing and acceleration potential. 

 

5.1 Cycling Effect on Impedance 

LFP packs had no signs of cell imbalance, and the design of having two EC cells in 

parallel with each other gave the ability to divided the pack impedance values in half.  

The results in this section would be based off pack results rather than individual cells, but 

trends, values and impedance effects to cells still apply in the same manner.  The initial 

impedance of the LIB pack running the charge depleting drive cycle was 4.171 m and 
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the final value of 9.188m was recorded at cycle 881.  Cycling batteries at a high 

temperature and using predominately high C-rate current profile more than doubled the 

impedance of the pack.  The LFP pack lost fifty percent of its power capability within 

roughly 900 cycles since the current and voltage profile were held constant.   

 

Figure 6: Charge Depleting Mode Impedance over Battery Cycling 

 

This would be very concerning to the power performance life of the battery especially 

during long cycle periods.  There would be a significant drop in power every 900 cycles 

under these circumstances.  These results suggest that it would not be ideal to run LFP 

packs at high temperatures and large C-rates for a long period of time.  Depending on the 

power application, LFP packs could deteriorate rapidly with these settings and the pack 

would not be able to meet the requirement of high powered systems.  Regression analysis 

was done on the raw data to get the equation which expressed the LFP pack gained about 

5.775m of ohmic resistance every cycle.   
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Figure 7: Ohmic Resistance of Charge Depleting Mode over Time 

 

Cycling LFP pack batteries at lower temperatures or during less strenuous C-rates would 

improve the impedance fade of the pack.  The accuracy of linear regression was checked 

by calculating the coefficient of determination of the data which was 93.6% comparable 

to the raw data.  This would be an acceptably high value of accuracy and this value could 

greatly be improved with the collection of more impedance data.  The results mentioned 

above were based off the raw data and linear regression model of the raw data. 

 

5.2 Cycling Effect on Capacity 

Initial capacity of the LFP pack being tested under the charge depleting mode was 

4.998Ah and the capacity after sixty cycles at room temperature was 4.973Ah.  Room 

temperature results showed that the batteries only lost a half percent of its capacity over 

sixty cycles.  The LFP pack would lose only 0.412mAh for every cycle it ran the charge 
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depleting drive cycle at room temperature.  This would mean the LFP pack would be at 

seventy percent of the pack capacity roughly after 3700 cycles if the linear trend of room 

temperature capacity continued.  It would be safe to say that LFP cells have great cycle 

performance at room temperature. 

 

Figure 8: Capacity Fade of Charge Depleting Mode at Room Temperature and 50C° 

 

The initial capacity at 50 C° using the charge depleting drive cycle was 5.179 Ah and the 

capacity after 1000 cycles was 4.165 Ah.  LFP pack losted 1.073 mAh of capacity for 

every cycle which was more than double the loss of capacity at room temperature.  

Resultantly, the LFP pack would lose nearly half of its capacity after approximately 2300 

cycles at high temperatures.  This meant that a LFP pack in room temperature could cycle 

nearly 2.5 times longer than packs in high temperature situations.  There was a 20% drop 

in the initial capacity of the LFP packs after 1000 cycles while under these simulating 

conditions. 



 

46 
 

Room 

Temperature 

Capacity 

Fade per 

Cycle 

(mAh) 

Coefficient of 

Determination 

(R2) 

High 

Temperature 

Capacity 

Fade per 

Cycle 

(mAh) 

Coefficient of 

Determination 

(R2) 

Charge 

Capacity 

0.412 0.99 Charge 

Capacity 

1.073 0.98 

Discharge 

Capacity 

0.412 0.99 Discharge 

Capacity 

1.073 0.98 

Table 1: Capacity Fade of Charge Depletion Mode from Regression Analysis 

 

These results conveyed that it would not be ideal to run a LFP pack at high temperatures 

and still be able to maintaining cycling capability of LFP cells.  The original capacity of 

LFP running the charge sustaining mode at room temperature was 4.962 Ah while the 

capacity after 49 cycles was 4.905 Ah.  Charge sustaining mode at room temperature had 

twice the amount of capacity fade compared to the charge depletion mode on LFP packs.  

It also needed to be taken into consideration that the charge sustaining mode ran for 20% 

less cycles than the charge depletion mode.  This revealed LFP EC cells degraded faster 

with a balanced distribution of charge and discharge per cycle than a predominately 

heavy discharge cycle at room temperature.   

 

Figure 9: Capacity Fade of Charge Sustaining Mode at Room Temperature and 50C° 
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Results also displayed the charge sustaining mode diminished capacity almost 2.5 times 

quicker with 3.5 times less cycles than the charge depletion mode at 50 C°.  The trend of 

charge sustaining mode having a larger acceleration of capacity fade in contrast to the 

charge depletion mode held for high temperature.  These trends were alarming to the 

health of LFP cell capacity cycling effectiveness and it appears cycling would be heavily 

dependent on the C-rates as well as temperature.  It appeared that LFP cells perform 

better when they are mainly discharged in contrast to a blend of charging and discharging 

at any temperature for capacity and power fade.  Temperature worsened the effect of 

capacity fade for either case and nearly doubles the decay rate of the LIB packs. 

Room 

Temperature 

Capacity 

Fade per 

Cycle 

(mAh) 

Coefficient of 

Determination 

(R2) 

High 

Temperature 

Capacity 

Fade per 

Cycle 

(mAh) 

Coefficient of 

Determination 

(R2) 

Charge 

Capacity 

1.119 0.95 Charge 

Capacity 

2.53 0.99 

Discharge 

Capacity 

0.967 0.96 Discharge 

Capacity 

2.51 0.99 

Table 2: Capacity Fade of Charge Sustaining Mode from Regression Analysis 

 

The accuracy of the linear regression used to obtain capacity fade over cycling was 

decided with the coefficient of determination.  Charge and discharge capacity fade almost 

mirrored each other in value for every case, so capacity of LFP cells rather than a specific 

charge or discharge capacity was mentioned.  Accuracy of room and high temperature 

capacity almost completely matched the raw data values with a closeness of 98% for both 

charge sustaining and depletion modes.  Similar to the LFP impedance analysis, results 

were based off of the raw data and linear regression analysis.  
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5.3 Modified EEM Results for LFP pack 

A modified EEM as discussed above was adopted for finding the model of each cycle 

impedance data that was collected, an attempt at discovering possible chemical reaction 

trends, and a model that could predict future impedance curves over cycling.  The 

coefficient of determination was chosen over adjusted coefficient of determination as the 

means to prove accuracy because frequency was the only predictor for imaginary values 

and cycle value for real values.  Theoretical electrical values were calculated initially and 

optimized for improved accuracy to better match raw data.  Each cycle’s real and 

imaginary impedance data was tested with its own coefficient of determination.  This 

process occurred due to the fact that imaginary values were dependent on frequency and 

real values were dependent on cycle period.   

R2 = 1 - 
Residual Sum of Squares

Total Sum of Squares
 = 1 - 

∑ (Raw Data-EEM Data)
2

∑ (Raw Data-Mean of Raw Data)
2
 

 

        Cycle  

R2 

                      

1 

                  

213 

                 

309 

                     

345 

                

419 

                   

465 

                          

863 

                       

881 

Real |Z| 0.96 0.93 0.88 0.96 0.99 0.95 0.85 0.96 

Imag |Z| 0.96 0.99 0.98 0.99 0.99 0.99 0.98 0.99 

Table 3: Coefficient of Determination for Real and Imaginary |Z| Values from EEM 

 

As seen in the tables above and below, both the real and imaginary values had high 

accuracy with both having at least an average accuracy higher than 93% and a minimum 

accuracy of 85%.  These results proved that the modified EEM would be more than 

capable to model and predict the future trends of impedance curves over cycling time.  

Afterwards, optimized electrical values were tested for major and minor outliers to 
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improve accuracy of the trend model.  The remaining electrical values were subjected to 

regression analysis to find an equation for each component to be placed into the final 

trend equation of the battery.  These equations could be used to identify EC trends during 

the lifetime of the LFP pack. 

R2 Average 

Accuracy  

Minimum 

Accuracy  

Real |Z| 0.93 0.85 

Imag |Z| 0.99 0.96 

Table 4: Average Accuracy and Minimum Accuracy for Optimized EEM Values 

 

Results revealed that the final transfer function produced from the Laplace transform of 

the total impedance of the modified EEM and the regression analysis equations of the 

electrical components were inadequate.  Although previous results demonstrated that the 

modified EEM model and the transfer function created from the circuit created high 

accuracy results.  Loss in precision occurred because regression equations for the 

electrical components were unsatisfactory.  A maximum coefficient of determination of 

any chemical reaction equation was 75% which would clearly be inappropriate to pass as 

a good modeling result.  The average accuracy of real impedance was -3300% and 32% 

for imaginary impedance. 
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Cycle R2 for Real |Z| 

before Outlier 

Analysis 

R2 for Img |Z| 

before Outlier 

Analysis 

R2 for Real |Z| 

after Outlier 

Analysis 

R2 for Img |Z| 

after Outlier 

Analysis 

1 0.41 -2.42 0.41 Outlier 

213 0.07 0.97 0.07 0.97 

309 -0.19 0.927 -0.19 0.93 

345 -0.26 0.89 -0.26 0.89 

419 0.17 0.97 0.17 0.97 

465 0.44 0.79 0.44 0.79 

863 -267.03 -0.57 Outlier -0.57 

881 0.73 0.98 0.73 0.98 

Average -33.21 0.32 0.19 0.71 

Percent Error due to Outliers 100.54% 123.21% 

Table 5: R2 of Final EEM Transfer Function Before and After Outlier Analysis 

 

Obviously the coefficient of determination data appeared to have major outliers in the 

results or the final transfer function was grossly inadequate.  Major and minor outlier 

analysis was done on the coefficient of determination data and resulted improved 

accuracy.  The accuracy of real impedance improved to 20% and imaginary impedance 

improved to 71%.  It was the conclusion that the final transfer function equation 

produced would be insufficient to be used to model LFP pack impedance curves over 

cycling.  Additionally, the electrical component equations created would not be a good 

choice in finding trends of the chemical reactions for LFP cells. 

 

This loss in certainty for chemical reaction regression equations and the final transfer 

function happened because not enough periodic cycle impedance data was assembled.  If 

more data was accumulated during the experiment, there would most likely have been a 

dramatic improvement in the accuracy of the chemical and transfer function equations.   
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It would have been favorable to collect more data, but the Parstat 2273 malfunctioned 

three times during the experiment which created gaps in the data gathering.  The 

concluding remarks to the modified EEM would be that it could be adopted for future 

experiments, but careful data collection would be required. 

 

5.4 Effects of LFP Performance on Charge Depletion Mode HEVs 

One study predicted that the average lifetime of a vehicle had been trending from 12.5 

years to 16.9 year from the years of 1980-1990 [57].  If this trend held true than the 

average life of a vehicle would be around 20 years in the year 2010.  To simplify this 

matter, it was stated that the lifetime of a vehicle was ten years and the vehicle drove 

12,000 miles a year to have a lifetime of 120,000 miles.  Otherwise the lifetime of the 

vehicle would be in the range of 240,000 miles which seemed to be unrealistic.  The 

lifetime of a vehicle was brought up to illustrate the fact that HEVs using electric only 

drive modes would not last even a year under hot and arid conditions. 

 

LFP pack under charge depletion mode drove under an electric only drive for 

approximately 5300 miles.  This understanding was based off that every five cycles 

carried out were the charge depletion mode current profile followed by constant charge 

and discharge cycles.  The LIB pack could be concluded to have run 715 cycles under 

only the current profile and the current profile represented a distance of 7.45 miles.  

Generally, the life of an AB pack would be around 70-100% capacity range and the 

capacity to obtain 70% for LFP under high temperature and charge depletion mode would 
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be 1460 cycles.  This would mean that an HEV using an electric only drive mode would 

be able to drive for 10,600 miles under high temperatures. 

 

This lifetime for a HEV would be seen as an unacceptable situation for the average 

consumer and they would be less likely to buy an HEV if this knowledge was prevalent.  

The torque and power performance of the HEV would also be reduced to half after less 

than a year’s use of electric only drive mode.  These results would only hold true if HEVs 

only drove during high temperatures and drove under electric only mode.  Most places in 

the world would have extreme temperatures for 3-4 months out of the year.   

 

If the vehicle was only driven during those times, the battery pack duration would 

improve by a factor of two and three respective of a reduction in power and energy fade.  

HEVs generally ran under a charge depletion mode for relatively 30% of the time 

[58,59].  If that was taken into consideration with previous assumptions, then the life of 

the battery would increase by 6-10 times.  Overall, HEVs would last 2-3 times longer if 

driving with an electric only mode and 6-10 times longer with varied driving modes. 

 

5.5 Crystallization trends for LFP 

SEM images were produced from LFP cells at a preliminary state, and after the LFP 

packs ran the current profiles of charge sustaining and depleting modes of EVs.  The 

results of the fresh LFP cell’s image at 50mm and 10mm showed a mixture of small and 

large irregular particle sizes that were unequally distributed throughout the sample.  

There was a glossy white coating on a majority of the crystalline structures which could 
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indicate the carbon coating on the LFP.  As seen from the figure, this coating of carbon 

was uneven and could be a result of the synthesis process of LFP cells.  When the image 

was zoomed to 10mm, the unorganized placement of crystalline particles was maintained 

for the sample. 

       

Figure 10: Images of Fresh LFP, 50mm (left) and 10mm (right) 

 

A dramatic increase of crystalline growth could be seen on LFP cells after running 1007 

cycles under the charge depletion mode.  The same uniformity of particle distribution 

seen from the fresh LFP cells was preserved for the cycled LFPs.  It was interesting to 

note that there was a decrease in the glossy white coating of carbon.  This could be a sign 

of the degradation of the carbon coating on LFP particles.  Also, a majority of the sample 

had only small LFP particles compared to the combination of small and large particles 

seen in the fresh sample. 
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Figure 11: Images of Charge Depletion After Cycling, 50mm (left) and 10mm (right) 

 

Samples of new LFP and the charge depleted LFP after being cycled were tested using 

XRD.  The settings for XRD was to test the samples under room temperature conditions, 

have a scanning range of 20-80°, a power setting of 40kV, and a produce a wavelength of 

1.54 Å from anodic copper material.  Samples were indexed under the olivine structure of 

LiFePO4 to correlate if there were similar compositions.  XRD analysis showed signs of a 

slight phase change on the crystal structure of the charge depleted material while no 

phase change was seen for the fresh sample.  The phase change on the charge depleted 

sample appeared to be a uniform strain on the material with a few irregular conjoined 

peaks which could represent non-uniformed micro-strains.   
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Figure 12: XRD Results of Fresh and Charge Depleted LFP Samples 

 

These possible micro-strains could indicate there were small amounts of impurities in the 

LFP battery material.  Average d-spacing, FWHM, and crystal size of new LFP in 

contrast with charge depleted LFP revealed a slight decrease in crystal size while an 

increase in d-spacing, and FWHM.  The increase in d-spacing confirmed a local lattice 

distortion, and micro-strains from the peak broadening of the FWHM.  A slight decrease 

in crystal size could represent a slow degradation of the chemical reaction quality. 
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Fresh Charge Depleted 

2*Ɵ Intensity dhkl 

(Å) 

FWHM 

(mRads) 

Size 

(nm) 

2*Ɵ Intensity dhkl 

(Å) 

FWHM 

(mRads) 

Size 

(nm) 

20.9 1569 2.16 3.49 42.55 20.7

5 

3545 2.17 5.24 28.32 

25.7

5 

2567 1.77 4.36 35.28 25.6 3667 1.78 6.98 22.02 

29.9 2876 1.54 5.24 30.55 29.7

5 

2916 1.55 4.36 36.60 

35.8 4356 1.32 5.24 32.65 35.6

5 

4292 1.32 3.49 48.89 

36.6

5 

1420 1.29 6.11 33.01 36.7

0 

2476 1.29 5.24 33.03 

52.7 2000 0.97 6.11 37.46 52.6

0 

1797 0.97 6.11 37.37 

Average 1.51 4.95 35.25 Average 1.52 5.24 34.37 

Table 6: XRD Analysis Results for Fresh and Charge Depleted LFP Samples 

 

6 CONCLUSION 

Results of the experiment revealed that LFP packs running a charge depletion mode 

current profile had a small capacity fade.  At higher temperatures, the capacity fade 

nearly doubled and the power fade of LFP cells would see a dramatic drop in power 

every 900 cycles.  These results meant LFP packs running a charge depletion mode at 

high temperature would be inoperable for HEV applications after 900 cycles for power 

applications and 1450 cycles for energy applications.  This would mean HEVs driving 

under electric only mode during hot conditions could drive 10,500 miles before having to 

replace the battery.  It would take half the time for HEVs to lose power operations such 

as towing under the same settings. 

 

A new high fidelity EEM was established by modifying a Randles circuit with a BVD 

circuit and a newly invented electrical and modeling component called the ICPE.  The 
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results of the modified EEM illustrated that the model and the transfer function could 

accomplish high accuracy.  This high accuracy could only be obtained if data was careful 

gathered during the experiment.  Otherwise, the overall accuracy of the model to predict 

chemical reactions and impedance cycle trends would be diminished.  SEM images of 

LFP cells before cycling indicated a mixture of small and large crystalline parts that were 

unevenly coated with carbon.   

 

After LFP cells were cycled under a charge depletion mode, a large amount of growth 

and a reduction in carbon coating occurred on the particles.  The size of the particles 

reduced from the charge depletion cycling, but the unorganized uniformity found in the 

fresh LFP sample were maintained in the cycled LFP sample.  XRD results expressed 

that there was a minor uniformed strain throughout LFP sample after cycling under a 

charge depleting profile.  There were also slight impurities in the material seen as non-

uniformed micro-strains and a marginal decrease in crystal size. 

 

7 FUTURE WORK 

Possible work to create an understanding on the effects on performance of EVs would be 

to invent and optimize a drive cycle.  The new drive cycle could incorporate pre-existing 

drive cycles which would simulate human driving patterns.  This new drive cycle as well 

old drive cycles could simulate driving conditions in multiple types of weather 

circumstances.  It would have a spectrum of cold to hot temperatures as well as dry to 

moist settings.   



 

58 
 

To optimize these experiments further, a changing environment could be simulated 

instead of a constant temperature analysis.  These experiments should check chemical 

reactions with XRD, EIS, cyclic voltammetry, energy-dispersive x-ray spectroscopy, and 

other methods.  Lastly, the analysis of ABs being used in a secondary application should 

be investigated for optimal battery use and economic benefits. 

 

7.1 AZ-01 Drive Cycle 

Many different types of drive cycles were originally created to test the emissions and fuel 

economy of vehicles in the United States [33].  The list of drive cycles could be broken 

up into categories and subcategories which most EVs were tested under light-duty 

vehicles [32].  Drive cycles under these categories were converted from a velocity profile 

that a dynamometer captured into a current profile the vehicle would demand from the 

battery of an EV [34].  Generally, the drive cycles that were used are the US06 

Supplemental FTP, the UDDS [35], SC03 Supplemental FTP, and the HWFET.  These 

driving schedules simulate aggressive, city, air conditioning loading, and highway 

driving of vehicles. 

 

Most research in the field of EVs was being done to test an individual drive cycle to a 

battery pack system rather than designing a modified drive cycle from the pre-existing 

cycles [46,60,61].  Possible research could be done by combining the SC03, UDDS, 

US06, and HWFET to better describe driving conditions in Arizona.  The new drive 

called the AZ-01 would begin with half of the SC03 cycle to mimic Arizona drivers 

cooling down their vehicle from high temperature to low temperature.   
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Next, the transient phase of the UDDS would be added to imitate normal city driving 

followed by the first quarter and last quarter of the HWFET to represent the average 

person driving to or from work on the freeway.  The last section of the AZ-01 would 

incorporate sections of the US06 to match a person aggressive driving to make the last 

distance to work or to get home. 

 

7.2 Arizona Yearly Temperature Effects 

This new drive schedule would more accurately display driving conditions in Arizona 

and the AZ-01 could test batteries under hot and arid conditions to replicate Arizona 

summers.  To get a better understanding of how a battery pack would fade would be to 

run the AZ-01 drive schedule at a constant temperature as well as different temperatures 

[62].  The mixture of temperatures could resemble the temperature change in Arizona by 

having an incremental scaling of temperature.  This scale would go from cool 

temperatures to warm temperatures for three-fourths of the battery pack’s life 

symbolizing the relatively cool weather for most of the year.  Then the pack would be 

running under hot and arid conditions for the last quarter of its life to suggest summer 

heats.    

 

7.3 Chemical and Physical Properties of Proposed Experiments 

The possible experiments above could be analyzed throughout their duration for their 

chemical electrical properties.  Analysis techniques that would be done are energy-

dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, XRD, EIS, and cyclic 
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voltammetry [63].  These methods would allow the collection of the amount, size of 

crystalline structure, and type of element inside the bulk of the material as well as the 

surface.  Also, they would show the impedance, reduction and oxidation process 

happening in an EC.  These techniques such as energy-dispersive x-ray spectroscopy 

would be important in showing the efficiency of the chemical reaction happening by 

observing the amount of elements in the bulk of EC.   

 

X-ray photoelectron spectroscopy could show surface contaminants of foreign elements 

observed from the manufacturing process or the degradation of the material during 

battery cycling which could lead to an increase in impedance.  XRD could create a 

comparison with the size of crystalline elements layers on the surface and in the bulk of 

the material with the values of impedance over time to find relationships [64].  These 

relationships could correlate certain chemical reactions having a greater effect on the 

impedance and capacity of the EC using EIS in conjunction with the other methods.  

Resultantly, it would show how to prevent energy and power loss during the lifetime of 

the battery by understanding which chemical reactions produce the effect.  Some other 

variables that could be monitored are conductivity, reversibility, and stability using cyclic 

voltammetry on the EC [65]. 

 

7.4 Second Life of Automotive Batteries 

Second life batteries were batteries that served as fresh batteries to store energy in a specific 

system, but could no longer maintain the required expectations of the system.  In this case, 

second life batteries would be collected from EVs.   
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The market for second life batteries would most likely grow proportionally with the EV 

market due to the fact that retired ABs could be gathered to supply second life needs.  It 

would be economically vital that second life batteries are harnessed for utility support, off-

grid energy, discount savings for consumers, and other tertiary systems. 

 

These applications as well as many other opportunities show there could be a big potential 

for second life batteries, but utility companies need to seize this situation to be frontrunners.  

One huge economic benefit would be storing the wasted excess electricity during low 

demand times and supplying it during peak hours.  The electric infrastructure has been well 

established and there would only be a marginal cost to install a second life storage system 

at residential areas.  Utility companies could negotiate prices to rent the storage capability 

of EVs batteries based on the modified EEM which shows the trend of energy and power 

fade over the vehicle lifetime.   
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APPENDIX A  
 

FUNDAMENTAL ELECTRICAL ELEMENT EQUATIONS 
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All Laplace transforms calculated assumed initial conditions of zero to reduce complexity 

of transformations. 

 

Laplace transform of a resistor: 

 

Fundamental equation of a resistor 

V = I*R 
 

Laplace transform of fundamental equation 

L{v(t)} = L{I(t)}*L{R(t)}  → 

V(s) = I(s)*R(s) → 
V(s)

I(s)
 = R(s) → Z(s) = R 

 

Laplace transform of a capacitor: 

 

Fundamental equation of a capacitor 

i = C*
dv

dt
 → v = 

1

C
∫ i*dt 

 

Laplace transform of fundamental equation 

L{v(t)} = L{
1

C
∫ i*dt } → 

L{V(s)} = 
I(s)

s*C
 → 

V(s)

I(s)
 = 

1

s*C
 → Z(s) = 

1

s*C
 

 

Laplace transform of an inductor: 

 

Fundamental equation of an inductor 

𝑣 =  𝐿 ∗
𝑑𝑖

𝑑𝑡
 

 

Laplace transform of fundamental equation 

L{v(t)} = L{L*
di

dt
} → 

V(s) = s*L*I(s) → 
V(s)

I(s)
 = s*L → Z(s) = s*L 

 

Fundamental equation of CPE: 

Z(s) = 
1

Q
1
*sn1

      C ≈ Q
1
      0 < n1 < 1 
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Fundamental equation of ICPE: 

 

Z(s) =  
1

Q
2
*sn2

 → Z(s) = 
sn2

Q
2

 = L*sn2          L ≈ 
1

Q
2

       0 < n2 < 2 

 

List of impedance symbols and electrical equations for chemical reactions: 

 

Ohmic Resistance 

 

ZOhmic = Rohmic 
 

Charge Transfer Resistance 

 

ZCTresist = RCT 
 

Coating Capacitance 

 

ZCoating = 
1

s*Coat

 

 

Double Layer Capacitance 

 

ZDoubleLayer= 
1

Q
1
*sn1

 

 

Charge Transfer Inductance 

 

ZCTinduct = L*s 
 

Current Collector Degradation and Test Equipment Inductance 

 

ZICPE = 
sn

Q
2

 = L*sn2 

 

 

 

 

 

 

 

 

 

  



 

72 
 

APPENDIX B  

 

IMPEDANCE TRANSFER FUNCTION CALCULATIONS 
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Total Impedance of Modified EEM: 

 

ZTotal = ZOhmic+ZICPE+[(Z
CTresist

+ZCTinduct+ZDoubleLayer)||ZCoating] 

 

= ZOhmic+ZICPE+
(Z

CTresist
+ZCTinduct+ZDoubleLayer)*ZCoating

ZCTresist+ZCTinduct+ZDoubleLayer+ZCoating

 

 

= Rohmic+
sn2

Q
2

+

(RCT+L*s+
1

sn1*Q
1

) *
1

s*CCoat

RCT+L*s+
1

sn1*Q
1

+
1

s*CCoat

 

 

= Rohmic+
sn2

Q
2

+

RCT+L*s+
1

sn1*Q
1

s2*L*CCoat + s*R
CT

*CCoat+
s*CCoat

sn1*Q
1

+1

 

 

= 
Rohmic

1
+

sn2

Q
2

+
sn1+1*L*Q

1
+sn1*RCT*Q

1
+1

sn1+2*L*Q
1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

 

 

= [
Rohmic

1
* (

sn1+2*L*Q
1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

sn1+2*L*Q
1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

) *
Q

2

Q
2

] + 

[
sn2

Q
2

* (
sn1+2*L*Q

1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

sn1+2*L*Q
1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

) *
1

1
] + 

[
sn1+1*L*Q

1
+sn1*RCT*Q

1
+1

sn1+2*L*Q
1
*Ccoat+sn1+1*RCT*Q

1
*Ccoat+s*Ccoat+sn1*Q

1

*
Q

2

Q
2

*
1

1
] 

 

Numerator of final impedance transfer function 

 

sn1+n2+2(L*Ccoat*Q
1
)+sn1+n2+1(RCT*C

coat
*Q

1
)+s

n1+2
(Rohmic*L*Q

1
*Q

2
*Ccoat)+ 

sn1+1[(RCT*R
ohmic

*Q
1
*Q

2
*Ccoat)+(L*Q

1
*Q

2
)]+sn2+1(Ccoat)+sn1+n2(Q

1
)+ 

s*(Rohmic*Q
2
*Ccoat)+sn1[(Rohmic*Q

1
*Q

2
)+(RCT*Q

1
*Q

2
)] 

 

Denominator of final impedance transfer function 

 

sn1+2*L*Q
1
*Q

2
*Ccoat+sn1+1*RCT*Q

1
*Q

2
*Ccoat+s*Ccoat*Q

2
+sn1*Q

1
*Q

2
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APPENDIX C  

 

THEORETICAL ELECTRICAL ELEMENT CALCULATIONS  
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Ohmic resistances were taken from the RC network graph at the point where the 

impedance curve crossed the x-axis.  The combined ohmic and charge transfer resistances 

were taken at the second time the impedance curve crossed the x-axis.  An example of the 

method on how to calculate the theoretical values for the modified EEM can be seen 

below. 

 

Cycle 213: 

 

 
Figure 13: RC Network Section of Cycle 213 Impedance with Reference Points 

 

Ohmic Resistance and Charge Transfer Resistance 

 

ROhmic=5.17m 
 

RCT = ROhmic+CT-ROhmic = 5.71m - 5.17m = 0.54m 
 

Coating Capacitance 

 

ω = 
1

RCT*Ccoat

 → Ccoat = (RCT*ω)
-1

 

 

Ccoat = (ωRCpeak*Rct)
-1 = (2*π*fRCpeak*Rct)

-1
 

 

= (2*π*41.75Hz*0.54m)
-1 = 7.07F 
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Double Layer Capacitance 

 

 
Figure 14: Capacitive Tail of Cycle 213 Impedance with Reference Points 

 

|Z| = √(Rarbitrary)
2
+(

1

ω*Q
1

)

2

→Q
1
= (√(|Z|)2-(Rarbitrary)

2
*ω)

-1

 

 

|Z| = √(XfinalLength-XInitialLength)
2
+(YfinalLength)

2
 

 

|Z| = √(0.00609337-0.00557085)
2
+(0.00248406)

2
=0.002538421 

 

Q
1
 = (√(0.002538421)2-(0.00609337-0.00557085)2*(2*π*240mHz))

-1

 

 

𝑄1 = 267.52𝐹 
 

n1 = sin(|θ|) = sin [tan-1 (
YfinalLength

XfinalLength-XInitialLength

)] = 0.98 

 

Charge Transfer Inductance 

 

ω = 
1

√L*Q
1

→ L =
1

 √Q
1
*ω2

 

 

L = (267.52F*2*π*12.69Hz)
-1 = 0.59μH 
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Current Collector Degradation and Test Equipment Inductance 

 

 
Figure 15: Inductive Tail of Cycle 213 Impedance with Reference Points 

 

|Z| = √(Rarbitrary)
2
+ (

ω

Q
2

)

2

→Q
2
 = ω* (√(|Z|)2-(Rarbitrary)

2
)

-1

 

 

|Z| = √(XfinalLength-XInitialLength)
2
+(YfinalLength)

2
 

 

|Z| = √(0.00517-0.00486031)
2
+(0.00140696)

2 = 0.00144064 

 

Q
2
 = (2*π*1kHz)* (√(0.00144064)2-(0.00517-0.00486031)2)

-1

 

 

Q
2
 = 4.47MH-1 

 

L2 = 0.22μH 
 

n2 = sin(|θ|) = sin [tan-1 (
YfinalLength

XfinalLength-XInitialLength

)] = 0.98 
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APPENDIX D 

 

OPTIMIZED AND THEORETICAL ELEMENT VALUES 
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Cycle 1 213 309 345 419 465 863 881 

Ccoat 

(F) 

2.22 7.07 6.98 3.49 5.25 8.11 12.56 5.26 

ROhm 

(m) 

4.17 5.17 5.92 6.57 6.88 6.99 7.59 9.19 

RCT 

(m) 

1.16 0.54 0.37 0.49 0.73 0.47 0.20 0.49 

Q1 (F) 1066.42 267.51 287.86 138.18 278.99 303.87 2063.25 355.04 

Q2 

(MH-1) 

4.45 4.47 6.14 6.43 4.25 7.33 4.65 7.92 

L (mH) 0.33 0.59 0.55 0.23 0.56 0.52 0.08 0.04 

n2 0.94 0.98 0.98 0.99 0.96 0.95 0.99 0.97 

n1 0.79 0.98 0.97 0.98 0.97 0.99 0.92 0.97 

Table 7: Theoretical Electrical Component Values Created from Calculations 
 
 
 

Cycle 1 213 309 345 419 465 863 881 

Ccoat 

(F) 

6 7 12 7 7.5 15 33 7 

ROhmic 

(m) 

4.22 5.19 5.93 6.59 6.91 7.05 7.56 9.19 

RCT 

(m) 

0.85 0.35 0.16 0.29 0.52 0.24 0.05 0.30 

Q1 (F) 900 272 280 136 282 300 2050 360 

Q2 

(MH-1) 

31.90 15.40 20 18 22.10 51 10.70 30 

L (mH) 3 1 0.5 1.8 2 1 0.6 0.7 

n2 1.24 1.15 1.14 1.12 1.19 1.23 1.09 1.16 

n1 0.47 0.85 0.84 0.85 0.82 0.88 0.71 0.82 

Table 8: Optimized Electrical Component Values 
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APPENDIX E  

 

MAJOR AND MINOR OUTLIER ANALYSIS 
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 Ccoat 

(F) 

ROhmic 

(m) 

RCT 

(m) 

Q1 (F) Q2 (MH-1) L (mH) n1 n2 

Median 7.25 6.75 0.29 900 21.10 1 0.83 1.15 

1st 

Quartile 

7 5.74 0.22 272 17.40 0.68 0.79 1.14 

3rd 

Quartile 

12.75 7.18 0.39 280 30.50 1.25 0.85 1.21 

IQR 5.75 1.44 0.18 217 13.10 0.58 0.06 0.07 

Lower 

Minor 

Error 

-1.63 3.59 -0.05 -47.5 -2.33 -0.19 0.69 1.03 

Upper 

Minor 

Error 

21.38 9.33 0.66 820.50 50.20 2.11 0.94 1.31 

Lower 

Major 

Error 

-10.25 1.44 -0.31 -373 -22 -1.05 0.60 0.93 

Upper 

Major 

Error 

30 11.48 0.92 1146 69.90 2.98 1.04 1.41 

Outlier 

indicator 

No No Yes Yes Yes Yes Yes No 

Percent 

Error 

from 

Outliers 

n/a n/a 

 

22.45

% 

24.89

% 

18.64% 11.77% 7.99% n/a 

Table 9: Minor and Major Outlier Analysis of Electrical Elements 
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APPENDIX F  

 

CYCLE IMPEDANCE VERSE MODIFIED EEM DATA 
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Figure 16: Initial Impedance Data Compared to the Results of the EEM 

 

 
Figure 17: Cycle 213 Impedance Data Compared to the Results of the EEM 
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Figure 18: Cycle 309 Impedance Data Compared to the Results of the EEM 

 

 
Figure 19: Cycle 345 Impedance Data Compared to the Results of the EEM 
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Figure 20: Cycle 419 Impedance Data Compared to the Results of the EEM 

 

 
Figure 21: Cycle 465 Impedance Data Compared to the Results of the EEM 
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Figure 22: Cycle 863 Impedance Data Compared to the Results of the EEM 

 

 
Figure 23: Cycle 881 Impedance Data Compared to the Results of the EEM 
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APPENDIX G  

 

SAMPLE MATLAB CODE FOR DATA COMPARISON 
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% Variables for TF 

C0 = 7; 

R1 = 0.005194; 

R2 = 0.00035; 

Q1 = 1.54e7; 

Q2 = 272; 

L2 = 1e-6; 

n1 = 1.1465; 

n2 = 0.852; 

 

Q = 2*pi*frequency(8:29); % defining omega from the raw data frequency 

 

% Variables for R^2 values 

x_data = ReHT_213_T1(8:29); % Extract x-axis impedance 

y_data = ImHT_213_T1(8:29); % Extracting y-axis impedance 

mean_x = mean(x_data); 

mean_y = mean(y_data); 

n = length(Q); % # of samples 

p = 1; % # of predictors 

% initializing values 

SSE_X = 0; 

SSE_Y = 0; 

TSS_X = 0; 

TSS_Y = 0; 

 

% Variables used to break up transfer function calculations 

A = zeros(length(Q),1); 

B = zeros(length(Q),1); 

C = zeros(length(Q),1); 

D = zeros(length(Q),1); 

E = zeros(length(Q),1); 

F = zeros(length(Q),1); 

G = zeros(length(Q),1); 

H = zeros(length(Q),1); 

I = zeros(length(Q),1); 

J = zeros(length(Q),1); 

K = zeros(length(Q),1); 

L = zeros(length(Q),1); 

M = zeros(length(Q),1); 

N = zeros(length(Q),1); 

 

% Variables used to seperate the real impedance from the imaginary 

x = zeros(length(Q),1); 

y = zeros(length(Q),1); 

 

% Creating the impedance data from transfer function and omega above 
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for i = 1:length(Q) 

             

            A(i) = ((j*Q(i))^(n2+1))*((R1*Q1*C0*R2*Q2)+(Q1*L2*Q2)); % s^(n2+1) 

            B(i) = ((j*Q(i))^(n2+2))*(R1*Q1*C0*L2*Q2); % s^(n2+2) 

            C(i) = ((j*Q(i)))*(R1*Q1*C0); % s 

            D(i) = ((j*Q(i))^(n2))*((R1*Q1*Q2)+(Q1*R2*Q2)); % s^(n2) 

            E(i) = ((j*Q(i))^(n2+n1+1))*(C0*R2*Q2); % s^(n1+n2+1;) 

            F(i) = ((j*Q(i))^(n2+n1+2))*(C0*L2*Q2); % s^(n1+n2+2) 

            G(i) = ((j*Q(i))^(n1+1))*(C0); % s^(n1+1) 

            H(i) = ((j*Q(i))^(n1+n2))*(Q2); % s^(n1+n2) 

             

            I(i) = ((j*Q(i))^(n2+1))*(Q1*C0*R2*Q2); % s^(n2+1) 

            J(i) = ((j*Q(i))^(n2+2))*(Q1*C0*L2*Q2); % s^(n2+2) 

            K(i) = ((j*Q(i)))*(C0*Q1); % s 

            L(i) = ((j*Q(i))^(n2))*(Q2*Q1); % s^n2 

             

            M(i) = A(i)+B(i)+C(i)+D(i)+E(i)+F(i)+G(i)+H(i)+Q1; % numerator 

            N(i) = M(i)/(I(i)+J(i)+K(i)+L(i)); % Tranfser Function 

          

end; 

% seperating real/imag data 

x = real(N); 

y = -imag(N); 

 

figure(1) 

plot(x,y,'-o',x_data,y_data,'-o','LineWidth',2) 

set(gca,'FontSize',16,'LineWidth',2) 

legend('Curve Fit of 213','Cycle 213 Data'); 

xlabel('Re (Z)') 

ylabel('-Imag (Z)') 

title('Comparison of Cycle 213 Impedance data Vs. EEM of Cycle 213') 

grid on 

 

% Solving for variables needed in R^2 calculation with iteration 

for w = 1:length(Q) 

     

    SSE_X =((x_data(w)-x(w))^2)+SSE_X; 

    SSE_Y = ((y_data(w)-y(w))^2)+SSE_Y; 

    TSS_X = ((x_data(w)-mean_x)^2)+TSS_X; 

    TSS_Y = ((y_data(w)-mean_y)^2)+TSS_Y; 

         

end 

 

% R^2 values 

R_Squared_X = 1-(SSE_X/TSS_X); 

R_Squared_Y = 1-(SSE_Y/TSS_Y); 


