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ABSTRACT

Transmission voltages worldwide are increasing to accommodate higher power

transfer from power generators to load centers. Insulator dimensions cannot increase

linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it

is necessary to optimize the insulator design considering all operating conditions including

dry, wet and contaminated. In order to design insulators suitably, a better understanding of

the insulator flashover is required, as it is a serious issue regarding the safe operation of

power systems. However, it is not always feasible to conduct field and laboratory studies

due to limited time and money.

The desire to accurately predict the performance of insulator flashovers requires

mathematical models. Dynamic models are more appropriate than static models in terms

of the instantaneous variation of arc parameters. In this dissertation, a dynamic model

including conditions for arc dynamics, arc re-ignition and arc motion with AC supply is

first developed.

For an AC power source, it is important to consider the equivalent shunt capacitance

in addition to the short circuit current when evaluating pollution test results. By including

the power source in dynamic models, the effects of source parameters on the leakage

current waveform, the voltage drop and the flashover voltage were systematically

investigated. It has been observed that for the same insulator under the same pollution level,

there is a large difference among these flashover performances in high voltage laboratories

and real power systems. Source strength is believed to be responsible for this discrepancy.

Investigations of test source strength were conducted in this work in order to study its

impact on different types of insulators with a variety of geometries.
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Traditional deterministic models which have been developed so far can only predict

whether an insulator would flashover or withstand. In practice, insulator flashover is a

statistical process, given that both pollution severity and flashover voltage are probabilistic

variables. A probability approach to predict the insulator flashover likelihood is presented

based on the newly developed dynamic model.
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Chapter 1

INTRODUCTION

1.1 Introduction

Electric power is transmitted from generation sites to customers in economic and

reliable manners through transmission lines. Since these lines can span over several

hundreds of miles, overhead high voltage transmission lines are widely used around the

world to minimize losses during transmission. These lines are supported and separated by

insulators both mechanically and electrically [1].

The increasing demand of electrical energy worldwide has driven the development

of higher system voltages for electric power transmission. Such experimental lines of

various scales can be found in many countries. For example, Ultra-High-Voltage (UHV)

electricity transmission is being introduced in China and four UHV circuits are completed

or under construction. This brought up a more challenge problem since higher voltage

levels require insulators to withstand a large amount of electrical stresses. Along with that,

the performance of outdoor insulators is largely affected by surrounding environment as

well.

Environmental conditions such as pollution and moisture can have large influences

on the performance of insulators. Outdoor insulators are largely subject to pollution by dirt

and chemicals in industrial areas and by salt deposits near the coast [2]. When an insulator

is dry, there is no problem. However, when it is wet, insulator surface resistance drops

considerably. The reduction of surface resistance will result in the leakage current flows

on the insulator surface and generate discharge. Under certain conditions, surface discharge

can grow to complete flashover and cause successive power supply interruptions. The
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conditions that lead to flashover are hard to predict given the uncertainty and unknown

factors related to the physics of the arc.

With the rise in transmission line voltage levels, research work on polluted insulator

flashover has increased substantially. In order to have a better understanding of the

flashover process under contaminated conditions, many researchers have been studying the

insulator flashover mechanisms since the last century. Despite extensive worldwide field

and laboratory studies, the basic mechanism of these flashovers has not yet been fully

understood. This is mainly due to the large number of parameters associated with the

flashover phenomena.

For instance, there are a number of experimental records showing that source

parameters are contributing factors in the dispersion of test results from different

laboratories [3]. Although several international standards have been proposed on the source

capacity for pollution tests, there is no general agreement on source requirements.

Therefore, it is important to study the effect of source parameters in order to obtain a more

reasonable and accurate prediction of insulator performance. Besides source parameters,

DC or AC supply, types of pollutants, pollution degrees, surface wettings, insulator

materials, and insulator geometries along with many other factors are believed to have

influences on the insulator flashover performance.

The interaction between insulators and the polluting environments is so complex

that it is necessary to develop mathematical models to help better understand the

contamination flashover process.
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1.2 Research Objectives

The objective of this work is to develop dynamic models that can account for

insulator flashover process, from arc initiation to arc propagation and eventually the

complete flashover.

The flashover mechanism of polymer insulators is fundamentally different from

porcelain insulators due to the hydrophobicity property of polymeric material. By

proposing a new dynamic flashover model for polymer insulators, flashover performance

of porcelain and polymer insulators can be investigated and compared systematically.

By studying the interaction between test source and insulator at the critical arcing

stage where partial arcing leads to complete flashover, this model will be used to interpret

the large dispersion of insulator pollution tests results among different laboratories, as well

as the different flashover outcomes between laboratories and real power systems. Therefore,

this model can provide a general standard on power source requirements.

Investigating the condition that leads to arc jumping is another goal of this research

as well. It has been observed that arcs do not always propagates along the insulator surface

in practice, modifying the flashover model by considering arc jumping will provide more

accurate and realistic results of insulator flashover performance.

The probability study of insulator flashover is another interest of current work since

the actual insulator flashover is a statistical problem rather than a deterministic one. The

effects of source strength, insulator materials and geometries, hydrophobicity classification

levels for polymer insulators, and multiple insulator strings connected in parallel will be

studied.
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With a better understanding of the physical mechanisms involved in this fast and

complex process, the ultimate purpose of this research is to use developed models as design

tools to aid the insulators selections and applications in power systems.
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Chapter 2

LITERATURE REVIEW

2.1 Types of Insulators

High voltage insulators are utilized to serve two important roles: to provide the

mechanical support of the system by withstanding mechanical stress associated with

conductor weight; and to maintain the electrical isolation between conductors and other

structures [4]. Different insulators are selected for different purposes, and there are various

aspects to classify high voltage insulators.

As far as insulator material is concerned, three main types of dielectrics that have

been used for high voltage insulators are glass, porcelain and polymer. Porcelain insulators

are also known as ceramic insulators, while polymer insulators are sometimes referred to

as non-ceramic insulators or composite insulators. Porcelain insulators and polymer

insulators are the main interests of this research and will be discussed further below.

2.1.1 Porcelain Insulators

Porcelain insulators have served for over a century and are the most widely used

type of outdoor insulators. Electrical porcelain is made of a mixture of clay, quartz or

alumina, and spar [4]. Porcelain insulators usually are coated with glaze to reduce localized

discharges at sharp edges by ensuring the smooth surface of the insulator. Some properties

of porcelain are summarized in the following [4]:

• Density = 2.5 /
• Volume resistivity = 10
• Relative permittivity = 6-7
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• Dielectric strength = 200 /
The above properties lead to some advantages and limitations of porcelain

insulators. On the one hand, porcelain insulators are resistant to degradation due to

environmental factors, as well as surface damage due to leakage current. On the other hand,

however, porcelain insulators are very heavy, vulnerable to breakage, and easily wettable

by water.

2.1.2 Polymer Insulators

Polymer insulator comprise a resin-embedded fiberglass core to provide

mechanical strength and a polymeric cover for protection from extreme weather conditions.

There are two housing materials commonly in use: Ethylene Propylene Diene Monomer

(EPDM) and silicone rubber. Some properties of silicone rubber material are given in the

following [4]:

• Density = 1.15 /
• Volume resistivity = 10
• Relative  permittivity = 4

• Dielectric strength = 160-200 /
Polymer insulators are much lighter than equivalent porcelain insulators. Moreover,

the materials are non-brittle. Therefore, polymer insulators are much easier to transport and

install. Another important property of polymer insulator is called hydrophobicity.

Hydrophobicity refers to the ability of the material to prevent forming continuous water

film. Water can only exist in a form of discrete drops on a hydrophobic surface. This

property is desirable for outdoor insulators in terms of high withstand voltages. However,
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the original hydrophobicity level of a polymer insulator can be reduced or completely lost

in service due to several factors. Firstly, the presence of contamination and moisture can

damage the polymeric material and reduce the hydrophobicity, which is also known as

aging. Secondly, the corona and surface discharge can lead to hydrophobicity level drops

as well. Moreover, it has been observed in service that for polymer insulators, the

hydrophobicity can be completely lost due to continuous dry band arcing activities [5].

2.2 Flashover Mechanism

Insulator flashover under contaminated conditions is characterized by different

stages, and the main phases are pollution layer build-up, dry band formation, partial arcing

and complete flashover.

2.2.1 Pollution Layer Build-up

Outdoor insulators are exposed to a variety of contamination sources, which is

mainly affected by gravity, wind and electrostatic forces [6]. Wind is the most dominant

factor due to the fact that it can drive airborne contaminant particles onto insulator surfaces.

After a long period of time, stabilized deposits on insulator surface will form solid layers

to cover some part of or even the entire insulator surface. It is always noticeable in service

that the top part of an insulator is usually less contaminated when compared to the bottom

part. This is mainly attributed to the natural cleaning effect of wind and water. As a result,

the pollution layer on an insulator surface is usually not uniformly distributed.

Pollution severity is expressed in terms of Equivalent Salt Deposit Density (ESDD)

in / , which is obtained by measuring the conductivity of a mixture of the
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contaminant removed from insulator surface and a known amount of distilled water [7].

Table 1 is the qualitative classification of contamination severity in terms of ESDD

provided by IEC 60815 [8].

Table 1 IEC Contamination Severity Classification
ESDD ( / ) Contamination Severity

0  0.03 Very light
0.03  0.06 Light
0.06  0.1 Moderate

> 0.1 Heavy

2.2.2 Dry Band Formation

When the pollution layer of an insulator becomes wet due to rain or fog, its

resistance decreases significantly. The reduction of surface resistance initiates leakage

current flows on the insulator surface. The ohmic heating results from leakage current

flows will evaporate the moisture on the insulator surface. Areas that have the highest

leakage current density, usually around narrow parts of insulator, dry more quickly than

others. The uneven distribution of voltage stress will lead to the development of dry bands

at these areas.

2.2.3 Partial Arcing

Because of the high resistance of dry bands, the voltage applied to the insulator is

almost dropped entirely on dry bands. If a dry band cannot withstand the voltage, localized

arcing will be initiated. After the formation of a partial arc, the propagate condition of the

arc is determined by arc gradient [9]. Most times the arc will extinguish because its gradient

is greater than the pollution layer gradient. However, when the arc gradient is less than the
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pollution layer gradient, the arc will continue to propagate and develop. It is possible the

arc will elongate to a critical length so that the complete flashover is inevitable.

Pollution layer build-up and dry band formation are early phases and neither

constitutes a real risk of flashover [10]. It is the partial arcing phase that is actually

responsible for undesirable flashovers. So far, intensive studies have been devoted to this

aspect in the form of mathematical models.

2.3 DC Flashover Models

Obenaus was the first researcher to propose a mathematical model for insulator

contamination flashover [11]. The insulator flashover model consists of an arc discharge

connects in series with a resistance which represents the unbridged portion of an insulator.

The simplified model is shown in Figure 1.

Figure 1 Arc Model

The partial arc is represented by a voltage-current characteristic with following

expression: = (1)

where
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is arc voltage

is arc length, are static arc constants

The voltage equation for the complete circuit is therefore:= + ( ) (2)

where ( ) is unbridged pollution resistance

is leakage current

Neumarker developed those equations further and by assuming a uniform pollution

layer, the unbridged pollution resistance can be expressed as:( ) = ( ) (3)

where

is uniform pollution resistance per unit length

is insulator leakage distance

The critical voltage gradient and critical current are deduced by Neumarker as:= (4)

=  ( ) (5)

One interesting conclusion is that critical current is independent of the leakage

distance. This was later confirmed by Alston and Zoledziowski [12]. They also modified

Neumarker s model by adding the electrode voltage drop and stated that flashover is

impossible below the critical current .
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Through water column experiments, Hampton proposed the necessary condition for

flashover is that the voltage gradient in the water column should greater than that in the arc

column [9]. Thus the arc propagation criterion can be expressed as:< (6)

where

is arc voltage gradient

is pollution layer voltage gradient

It was shown that for a uniform pollution resistance per unit length, Hampton s

criterion yields critical voltage gradient and critical current results which are identical to

Neumarker s model.

2.4 AC Flashover Models

Although above models are derived under DC supply, they also have been applied

for AC situations. It is argued that sinusoidal AC voltage wave is almost flat near the peak,

and with the peak value is selected, the above equations also apply [13]. However, the

prediction results show large differences when applying DC model in AC flashovers.

Rizk used dimensional analysis method to study the similarities and differences

between DC and AC flashovers [14]. Later, he proposed a dielectric re-ignition model for

flashover under AC supply [15]. Because an AC arc will extinguish as the current passes

through zero, there is a fundamental difference between AC and DC flashover. Arc re-

ignition after the current zero is essentially a process of dielectric breakdown, which takes

place when the instantaneous value of the recovery voltage exceeds the dielectric strength

of the air gap.
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2.5 Dynamic Flashover Models

Models that have been discussed so far are static in terms of that once an arc is

initiated it cannot be stopped until flashover occurs. However, arc propagation is a rapid

time varying phenomenon and it can only happen when required conditions are met. The

variations of arc current, arc resistance, pollution resistance, and form factor with respect

to time are not accounted for in static models. These limitations of static models lead to the

development of dynamic models.

The first dynamic model that takes into consideration instantaneous arc parameter

changes was developed by Jolly, Cheng and Otten [16]. By using Mayr s equation to

calculate arc resistance, their model can predict the time to flashover for strips of

electrolytes. Cheng also derived a multi-arc model, but discovered that parallel arcs could

actually cancel one another and eventually only one single arc dominates.

Based on the idea of Mayr s equation, Rizk proposed a new arc equation [15]:= (7)

where

is arc resistance

is dynamic arc current

is time constant, are dynamic arc constants, similar to that in equation (1)

Although Rizk considered the dynamic changes of arc resistance, his model did not

consider the actual insulator geometry. Later on, an improvement was accomplished by

Sundararajan who successfully modeled arc propagation with time, the effect of non-
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uniform pollution distribution and the role of geometry [17]. However, her model does not

take into account arc re-ignition criteria. Therefore, it only valid for DC insulator flashover.
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Chapter 3

SIMULATION DETAILS

3.1 Model Concept

This research aims to study arc propagation under various conditions and provide a

better understanding of the pollution flashover process. The quantitative model in this work

is based on Obenaus theory, which considered a polluted insulator as an arc discharge

connects in series with the pollution resistance. The AC power source parameters will also

be accounted for in the proposed model. For a given supply voltage and pollution severity,

the arc re-ignition criterion and arc propagation criterion both are checked. Then the

instantaneous changes of arc length, arc resistance, arc propagation velocity and other

parameters are calculated. If the arc length is less than 2/3 of the total insulator leakage

distance, the above steps will be repeated. When arc length reaches this critical value, it is

believed that complete flashover happens. If either arc re-ignition criterion or propagation

criterion is not satisfied, the supply voltage will be increased and repeat above steps.

3.2 Model Development

3.2.1 Test Circuit

Figure 2 shows the basic circuit used in laboratory for insulator pollution tests. The

test insulator is energized from a test transformer which is fed from an AC power source.

Because both the power source and the high voltage transformer have internal parameters,

the test voltage refers to the no load voltage of the power source and not the actual dynamic

voltage to which the insulator is exposed during pollution test.
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AC

Test Insulator

High Voltage TransformerAC Source

Figure 2 Insulator Pollution Tests Circuit

The simplified equivalent circuit is shown in Figure 3. The source is represented by

its short circuit resistance R, inductance L, and equivalent shunt capacitance C. The

insulator model is derived from Obenaus s model, which consists of a partial arc connected

in series with unbridged pollution layer with the resistance .

Us

R

C

Arc

L

Rx

Figure 3 Simplified Equivalent Circuit

where

is AC source voltage

is short circuit resistance
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is short circuit inductance

is equivalent shunt capacitance

is unbridged pollution layer resistance

3.2.2 Dynamic Arc Equation

In order to account for dynamic arc properties, a generalization of Mayr s equation

is used in this work [15]: = (8)

where

is arc conductance per unit length

is conductance at the point of static arc characteristic

is time constant

A general form of the static arc characteristic equation is:= (9)

Substituting and expressing arc resistance per unit length in equation (9), the

dynamic arc equation will then become,= (1 ) (10)

where

is arc resistance per unit length

is arc current

is time constant, are dynamic arc constants
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The values of time constants, N and n used in this research are selected as 100 , 60 and

0.8, respectively.

3.2.3 Arc Propagation Speed

Although many mechanisms have been proposed to account for the arc motion over

contaminated insulator surfaces. Theories have been developed based on drying effect,

electrostatic forces, thermal forces, magnetic force and partial breakdown ahead of the arc

root. However, the subject is far from being fully understood [18]. From experimental

study of arc propagations over a contaminated surface, Al-Baghdadi successfully

demonstrated that for arc current exceeding the critical current , the arc velocity is a

function of dynamic current and pollution resistance per unit length [19]. This empirical

formula was later confirmed by Rizk with dimensional analysis of the phenomenon [14].

Arc propagation speed is proportional to the fourth power of the current and

affected by unbridged pollution resistance per unit length as well:= 1.5 10 . (11)

where

is arc propagation velocity

is unbridged pollution resistance per unit length

is arc current

is critical current
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3.2.4 Dielectric Recovery

Dielectric recovery is a fundamental process of arcing in AC energized insulator

flashover. It was first proposed by Rizk after realizing the current will cross zero every half

cycle [18]. The dielectric strength of an air gap following arc extinction can be expressed

as a function of the dielectric strength of the air gap at ambient temperature, time, and

current amplitude. After some manipulations, the following expression can be obtained:

= 1 + 51.91+ 157.51.26
0.636

(12)

where

is gap length

is dielectric gradient of a non-uniform field air gap at ambient temperature

amounting to 5-6 kV/cm

is time measured from current zero

is arc current amplitude in the previous half cycle

3.2.5 Arc Restriking

Following the dielectric recovery, arc restriking will happen when the instantaneous

value of the recovery voltage exceeds the dielectric strength of the air gap. When the gap

restrikes, the spark phase, which precedes arcing, can be described by Toepler s equation:= (13)

where = 0.5 10 / for air at atmospheric pressure.
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The transition from arc striking to arcing phase takes place as the spark voltage

gradient approaches the gradient of the corresponding arc.

3.2.6 Pollution Layer Resistance

Contamination severity of the insulator surface can be quantified in terms of either

layer conductivity or equivalent salt deposit density (ESDD). In this work, it is assumed

that layer conductance  ( ) of an insulator is known. The pollution resistance can be

calculated by: = (14)

The layer conductivity  ( / ) can be calculated by multiplying the layer conductance

by form factor : = (15)

The form factor of an insulator is determined from the insulator dimensions and can be

obtained by integrating each time step depending on the arc distance . Mathematically,

the form factor is usually expressed as:= (16)

The ESDD is often used as an indication of pollution degree in practice. The

determination of ESDD is standardized in both IEC and IEEE documents [7, 20]. After

knowing the layer conductivity , the ESDD can be obtained by:= (5.7 ) . (17)

where

is the volume of dissolved water
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is the area of cleaned surface

3.3 Mathematical Formulation of Insulator Model

The voltage and current of an arc are subjected to the Kirchhoff s voltage and

current laws in the circuit. The mathematical model should be treated as a dynamic system

which includes differential equations that govern the dynamic properties of circuit

components.

3.3.1 State Variable Approach

This dynamic system can be described by four differential equations and can be

solved by state variable approach, which has the following general forms,( ) = ( ) + ( ) (19)

( ) = ( ) + ( ) (20)

The first equation describes the next state of the system with respect to current state

and input. The second equation describes the output with respect to current state and input.

The state variables are a set of variables that used to describe the system response. Once

the inputs are known, the system response can be determined at any time step.

3.3.2 Dynamic System Differential Equations

The inductor current , capacitor voltage , arc length and arc resistance are

selected as state variables in this study. Based on the simplified equivalent circuit shown
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in Figure 3, system differential equations can be expressed as following and after simple

manipulations: = (21)

= ( )
(22)

= ( )
(23)

= (24)

where

is supply voltage

is equivalent source resistance

is equivalent source inductance

is equivalent source capacitance

is pollution resistance per unit length

is leakage distance

is arc distance

is arc velocity

is time constant, are dynamic arc constants

The first two equations for inductor current and capacitor voltage are obtained by

Kirchhoff s Law. The third equation is dynamic arc resistance derived from equation (11).
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The fourth equation is arc length function with respect to arc velocity, which can be further

substituted according to equation (12).

3.3.3 Runge-Kutta Method

The equations used to describe the system are coupled differential equations. Their

solutions can be found by numerical methods for ordinary differential equations. Runge-

Kutta method is the best approach to solve this system because it can achieve high order

accuracy without requiring the calculation of higher derivatives.

The most widely used Runge-Kutta method is the fourth order, or the classic

Runge-Kutta method. It has the form [21]:= + ( + 2 + 2 + ) (25)

where = ( , )
= + 12 , + 12= ( + 12 , + 12 )= ( + , + )

The local truncation error is on the order of ( ), while the total accumulated

error is on the order of ( ) . By discretizing time into small time intervals, and

performing the Runge-Kutta method, the differential equations can be solved.
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3.4 Program Description

3.4.1 Program Structure

This simulation program is written in Matlab (version 2015b). Program inputs are

insulator profiles and AC source parameters. It can be used as a two-way approach to

calculate either the critical voltage or critical pollution severity as long as the other factor

is specified. If a pollution severity is specified, the program can determine the minimum

flashover voltage. If a supply voltage is given, the maximum pollution severity which it

will not result in flashover can be predicted. The program is applicable for predicting

insulator flashover in terms of different properties, including insulating materials, insulator

geometries, voltage levels, and contamination degrees.

Since this program takes into account the effects of test source parameters, it can

also help researchers to have a more accurate prediction of insulator flashover performance

both in service and in laboratories. In following chapters it will also show that this program

can be extended to study the arc jumping phenomenon and predict the probability of

insulator flashover.

3.4.2 Program Flowchart

The flowchart of this program is shown in Figure 4.
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START

INPUT
Insulator geometry, source parameters,

applied voltage, conductivity

COMPUTE
Form factor(f), pollution resistance(Rp),

INITIALIZE
Arc distance(Xarc), arc resistance(Rarc),

ODEs

COMPUTE
Transient recovery voltage (Us),

dielectric strength (Ud)

Us > Ud

COMPUTE
State variables (IL,Uc,Rarc,Xarc)

Ep > Earc

UPDATE
Arc distance(Xarc), arc velocity(v),
arc voltage(Varc), arc current(Iarc)

Xarc > 0.67L
OUTPUT

Flashover voltage(FOV),
flashover plot

END

YES

YES

YESNO

Increase
voltage

Increase
voltage

NO

NO

Figure 4 Program Flowchart
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3.5 Validation of the Model

The model is validated by comparing the results with published literatures. By using

the dynamic model introduced in this study, flashover voltage characteristics of this

insulator was computed and compared. Figure 5 shows the configurations of insulator used

by previous researcher [22].

Figure 5 Reference Model

Table 2 shows the dimensions of the sample insulator.

Table 2 Model Profiles
Insulator type Long rod

Leakage distance (cm) 77
Shank diameter cm) 4.5
Shed diameter (cm) 12
Shed spacing (cm) 1.4

Figure 6 shows the comparison of critical pollution levels in terms of ESDD

between proposed model and published literature [22]. It can be seen from simulation

results that present model gives the results that agree well with the reference. The largest
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difference between two models is 7%. Similar results have also been obtained for other

published literatures but are not shown here.

Figure 6 Comparison between Different Models

3.6 Simulation Results

3.6.1 Insulator Geometry

The insulator geometry used in this research is shown in Figure 7.
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Figure 7 Insulator Geometry

The insulator profiles are shown in Table 3.

Table 3 Insulator Profiles
Insulator type Long rod

Leakage distance (cm) 72
Shank diameter (cm) 4
Shed diameter (cm) 12
Shed spacing (cm) 3

3.6.2 Output Waveforms

The waveforms of insulator voltage, arc voltage, leakage current, arc distance, and

arc velocity with respect to time are shown as results. It is recognized that the test voltage

is sufficient to cause arc restrikes up to the critical length beyond which the arc elongates

the insulator rapidly to reach complete flashover. In this case, the insulator flashover

voltage at the pollution severity of 200 / is 33 kV. The simulation results of outputs

waveforms are shown in Figure 8.



28

Figure 8 Simulation Results

3.6.3 Comparison of DC and AC Flashovers

For the same long rod insulator shown in Figure 7, a study of DC and AC energized

flashover was performed as well. The DC flashover voltage was obtained from the DC

dynamic model developed by Sundararajan [17]. The comparison of flashover voltages

with AC and DC application with respect to different pollution severity is shown in Figure

9, and the DC/AC rms flashover voltage ratio is shown in Figure 10.
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Figure 9 Comparison between DC and AC Flashover Voltage

Figure 10 DC/AC Flashover Voltage Ratio
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From comparison results, it can be seen that DC flashover voltage is lower than AC

flashover voltage under the same contamination condition. There is a tendency that a higher

pollution degree will have a lower ratio of DC/AC flashover voltage. The simulation results

agree well with other researchers conclusions [23-25]. Moreover, DC flashover voltage is

less than AC flashover voltage due to the following reasons:

1. There is no alternation of voltage with time in the case of DC flashover, arc tends

to continue a longer time and propagate to a greater extent.

2. Heavier contamination density is observed in the case of DC because of the dust

collection effect, which will result in a lower flashover voltage. Thus the DC/AC flashover

voltage ratio obtained above could be even lower in practice given that the DC voltage has

a greater attraction of pollutants on the insulator.
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Chapter 4

STUDY OF SOURCE PARAMETERS

4.1 Problem Statement

The flashover performance of polluted insulators is usually evaluated by artificial

pollution tests in laboratories to simulate the situations in service. However, there is a large

dispersion of pollution test results among different high voltage laboratories [3]. The

effects of source parameters on the insulator flashover voltage is believed to be the

contributing factor.

Although there are several international standards on the source parameters for

pollution tests available, there is no general agreement on the source requirements [7, 20].

Many researchers have been studied in this area, however, the interaction between the test

source and the insulator is far from fully understood [15, 26-30].

4.2 Effects of Inductance on Flashover

Most studies of source parameters influence on flashover tests only focus on X/R

ratio, no work on source inductance has been reported yet. Since there is a counter effect

between inductance and capacitance, source inductance is expected to be an important

factor as well.

The value of equivalent inductance varies among different high voltage laboratories.

The reported typical range of this value is from 10 H to 80 H [31-32]. For a source of R =

3000 , C = 1 nF, the effect of source inductance on flashover voltage is shown in Figure

11.
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Figure 11 Equivalent Inductance Effect on Flashover Voltage

It can be seen from Figure 11 that larger inductance will lead to a higher flashover

voltage. Moreover, it can be also noticed that there is an obvious difference between

leakage current waveforms for different source inductance. It can be seen from Figure 12

that following current zero, the transient recovery voltage will result in an early arc restrike

as it exceeds the dielectric strength of air gap. Following restrike and a rapid discharge of

capacitor, large inductance will lead to a slow current build up which delays the instant of

the current maximum value. As a result, partial arc is more likely to extinguish because

insufficient current could be fed through the inductance to sustain the arc. For a small

inductance case as shown in Figure 13, however, shows a different waveform with sharp

arc current rise and no sign of current delay.
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Figure 12 Arc Current Waveform under High Inductance

Figure 13 Arc Current Waveform under Low Inductance
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4.3 Effects of Capacitance on Flashover

Special attention was paid to the effect of the equivalent source capacitance because

there has been reported that it has a large influence on the flashover voltage. It is important

to first study and compare the typical source capacitance values used in laboratories.

For AC and DC insulation tests, the requirements of source capacitances are

different. The DC application requires an additional smoothing capacitance in order to

convert AC output to DC supply. The reported capacitance values for AC application are

shown in Table 4. The detailed information regarding source parameters of laboratories 1

to 4 can be found in reference [15], [26], [30] and [31], respectively. Laboratory 5 is the

high voltage insulation laboratory in Arizona State University.

Table 4 Shunt Capacitance Values in Different Laboratories
Laboratories Capacitor Value (nF)

1 0.3~3
2 1.1
3 1~20
4 3.2
5 0.5

The long-rod type insulator was studied to investigate the influence of capacitance

on the flashover voltage. The simulation result is shown in Figure 14. From Figure 14, it

can be seen that extra shunt capacitance in power source can lower the flashover voltage.

This is due to the fact that after a restrike, insufficient capacitance will discharge so quickly

that the current from the inductive source is unable to reach a high enough value to maintain

the conduction in the spark channel. As a result, the arc will die out and increase the

flashover voltage.
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Figure 14 Shunt Capacitance Effect on Flashover Voltage

4.4 Effects of Short Circuit Current
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The short circuit current is defined by the following equation:= % = /% (26)
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From following tables, it can be seen that even for powerful sources in the

laboratory, the maximum short circuit current is no greater than 50 A. On the other hand,

the short circuit current in real power system is infinite ideally speaking or at least a few

thousand amperes. Thus, it is reasonable to assume that the equivalent impedance in the

field is much smaller than that measured in laboratory.

Table 5 shows the information of AC power sources which used in insulator

pollution tests obtained from [31].

Table 5 AC Power Sources Characteristics
Laboratory Source Weak Source Powerful Source

Rated Power 25 kVA 200 kVA
Rated Voltage 150 kV 200 kV

Short Circuit Impedance 3.07% 4.0%
R/X Ratio 0.36 0.1

From above parameters, the short circuit current and source equivalent resistance

and inductance can be calculated, which is shown in Table 6. 

Table 6 Calculated Source Parameters
Laboratory Source Weak Source Powerful Source

Short Circuit Current 5.43 A 25 A
Equivalent Impedance 27630 8000
Equivalent Resistance 9358.82 796.03
Equivalent Inductance 68.96 H 21.11 H

Table 7 shows the information of AC power source which used in insulator

pollution tests obtained from [33].

Table 7 AC Power Sources Characteristics
Laboratory Source Weak Source Powerful Source

Rated Power 300 kVA 200 kVA
Rated Voltage 300 kV 200 kV

Short Circuit Impedance 7.0% 2.03%
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From above parameters, the short circuit current and source equivalent impedance

can be calculated, which is shown in Table 8. 

Table 8 Calculated Source Parameters
Laboratory Source Weak Source Powerful Source

Short Circuit Current 14.29 A 50 A
Equivalent Impedance 21000 4060

Based on the developed long rod type insulator model, simulations were performed

to study the flashover performance when it is energized by powerful and weak sources.

The parameters for both sources are shown in Table 9. 

Table 9 Source Parameters
Source Type Weak Source Powerful Source

Short Circuit Current 2 A 200 A
Shunt Capacitance 1 1

X/R Ratio 8 1

The research is focus on different waveforms of insulator voltage and current. For

the powerful source, it can be seen that restrike takes place at very late stage with almost

no sign of capacitor discharge. In the weak source case, however, it is clearly shows the

existence of capacitive discharge with the restrike happening at an early stage.
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Figure 15 Insulator Voltage under Powerful Source

Figure 16 Arc Current under Powerful Source
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Figure 17 Insulator Voltage under Weak Source
After zoom in,

Figure 18 Insulator Voltage under Weak Source after Zoomed in
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Figure 19 Arc Current under Weak Source
After zoom in,

Figure 20 Arc Current under Weak Source after Zoomed in
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The comparison between powerful source and weak source also has been done

with respect to different source shunt capacitances. The source parameters used in this

simulation are:

Table 10 Powerful and Weak Source Parameters
Test Source Powerful Source Weak Source

Short Circuit Current 1000 A 6 A
Equivalent Resistance 42.59 9358.82
Equivalent Inductance 0.24 H 68.96 H

Figure 21 Source Strength Effect on Flashover Voltage
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The percentage difference of powerful source and weak source flashover voltage is

shown in Figure 22.

Figure 22 Percentage Flashover Voltage Difference
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4.5 Conclusions

Several conclusions can be reached in this chapter:

1. A test source with high internal impedance directly interferes with the arc re-

ignition process.

2. Capacitive discharge is essential for maintaining the arc until enough current can

be fed through the source inductance to sustain the arc. In other words, shunt

capacitance can lower the flashover voltage energized by a weak source, but has

little effect on powerful source.

3. Simulation shows that power source strength has an influence on contamination

flashover voltage. For a weak source, there will be a larger leakage current flows

along the insulator surface than stiff source. This leakage current causes a large

drop in the applied test voltage. Therefore, there is a possibility that a withstand

voltage obtained from laboratory tests will be higher than that obtained in the

field.

4. From another aspect, this means flashover can occur at a lower contaminant level

if the source is powerful enough. Therefore, the testing power source should be as

stiff as possible, and extra capacity of output capacitor is an effective method to

achieve it.
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Chapter 5

STUDY OF ARC JUMPING

5.1 Problem Statement

For most polluted insulator flashover models and the model developed in Chapter

3, they only consider the arc movement of propagating along the insulator surface.

However, it has been observed that sometimes the local arcing will jump over sheds instead

of following the insulator geometry surface [34-35]. The exact reasons and conditions to

have arc jumping have not been fully known.

Arc jumping usually happens at insulator with complex closely spaced sheds, and

it is more likely to be observed at high voltage stresses [34]. Because lightly polluted

insulators require a high stress to initiate partial arcing, it is conceivable for some

researchers that arc jumping between sheds may occur for lightly contaminated insulators

[35].

Arc jumping is a phenomenon resulting from air breakdown, which happens after

high electric field accelerates the free electrons around the insulator. The collision between

atoms of air and the fast moving electrons cause more electrons to be freed. This will lead

to electron avalanche which followed by the air around the insulator gets ionized. It is

believed that arc most likely to happen at the water film-porcelain-air interface due to the

non-uniform electric field distribution, and there is a threshold value of electric field exists

for air breakdown [36]. Published literatures suggest that electric field value of 4.5 kV/cm

is the threshold value to initiate positive streamer, and 11.5 kV/cm for negative streamer

[37].
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5.2 Simulation of Electric Field

In order to study the conditions to have arc jumping, electric field analysis was

performed. The 3D electric field analysis software COULOMB, which is based on

boundary elements method, was used to calculate the electric field distribution along the

insulator [38]. The simulation process is discussed in following sections.

5.2.1 Simulation Setup

Considering the fact that insulators are rotational symmetric, only an angular

section is needed to be investigated. The insulator geometry is first constructed in

COULOMB, which is shown in Figure 23. The insulator profiles are shown in Table 11. 

Figure 23 Insulator Model Developed in COULOMB
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Table 11 Insulator Profiles Used in COULOMB
Arcing distance(cm) 39

Leakage distance(cm) 72
Shank diameter(cm) 4
Shed diameter(cm) 12
Shed spacing(cm) 3

After insulator geometry is specified, COULOMB allows the user to select or create

material type of dielectric sections. The different parts of the insulator are assigned with

different materials. The rated line-to-ground voltage is applied to the electrodes of the

insulator and the angular periodic surfaces are defined. As stated earlier, COULOMB is

based on boundary element methods to perform the electric field analysis. The number of

boundary elements are assigned in next step to ensure accurate results. Triangular boundary

elements are created on the insulator surface as shown in Figure 23. It is noted that more

the number of boundary elements are simulated, the higher the solution accuracy is.

However, when the boundary elements number is increased, the processing time to solve

the electric field distribution will increase significantly. Therefore, it is desired to achieve

a relatively accurate electric field solution without costing a lot of time. In this work, the

maximum error is set as 5%.

5.2.2 Dry Insulator Case

The electric field distribution of an insulator under dry condition was first studied.

The electric field was calculated along the line joining the tips of sheds of the insulator

since the electric field is usually highest at the tips of the sheds. The variation in electric

field is shown in Figure 24. It can be seen from Figure 24 that the highest electric field
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value occurs at the first shed, and it decreases rapidly as the distance away from high

voltage electrode.

Figure 24 Electric Field Distribution under Dry Case
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Figure 25 Electric Field Distribution under c = 2 10 /

Figure 26 Electric Field Distribution under c = 2 10 /
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Figure 27 Electric Field Distribution under c = 2 /
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voltage. The difference between the applied voltage and the calculated voltage is the

electric field simulation error. The electric field calculation errors are shown in Table 12,

which shows that simulation errors in all cases are under 5%. Therefore, the simulation

results are believed to be reasonable and accurate.

Table 12 Simulation Errors
Conductivity ( / ) Dry 2 10 2 10 2

Error (%) 3.07 1.98 0.96 0.89

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Distance(cm)

El
ec

tr
ic

Fi
el

d(
kV

/c
m

)

c = 2 uS/cm



50

5.2.5 Conclusions

There are some conclusions can be drawn from the electric field simulation. The

electric field under dry condition is most non-uniform distributed. With the increasing of

surface conductivity, the electric field distribution becomes more uniform and the

maximum electric field value decreases.

5.3 Proposed Arc Jumping Mechanism

In electric field simulations, the dry insulator case has the highest voltage stress

compares to all other wet cases. However, when the insulator is dry, there is no danger of

either arc jumping or complete flashover. Moreover, from experimental pollution tests, it

is noticed that arc jumping can happen at high conductivity condition as well. It is believed

that voltage gradient is not the only requirement to have arc jumping.

In this study, it is proposed that the leakage current should also meet specific

requirement in order to have arc jumping. A new arc jumping mechanism including both

electric field and leakage current was proposed and explained in following.

Based on a practical method proposed by Holtzhausen, the potential gradient E next

to the arc root, as a function of arc root position can be accounted for [13]. After regression

analysis, the following relationship was obtained:

= 0.495(1 ) . (27)

where

is normalized arc length

is peak current in A
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is layer resistance in

In this equation, the instantaneous voltage gradient is calculated through arc

position and leakage current. This value is used to compare with the air breakdown

threshold value.

5.4 Arc Jumping Simulation

5.4.1 Cylinder Insulator

A uniform polluted cylinder insulator with following profiles is studied first.

Table 13 Cylinder Insulator Profiles
Insulator Length 63.5 cm

Insulator Diameter 5.08 cm

There are two cases investigated in this study, with details shown in Table 14. The

threshold value of air breakdown is selected as 8 kV/cm.

Table 14 Two Cases Studied in Cylinder Model
Case Conductivity( ) Voltage(kV)

A 20 30
B 5 55

CASE A

The arc length is shown in Figure 28 and the calculated electric field near the arc

root versus air breakdown threshold is shown in Figure 29. It can be seen from Figure 28

that the arc can only propagate along the insulator surface until approximately 30 cm due

to the insufficient applied voltage. By comparing with threshold value, it is shown that the

field strength at the end point is less than the air breakdown threshold, which means arc

jumping will not happen in this case. As a result, the arc will extinguish.
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Figure 28 Arc Length for Cylinder Model Case A

Figure 29 Field Strength for Cylinder Model Case A
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CASE B

The arc length is shown in Figure 30 and the calculated electric field near the arc

root versus air breakdown threshold is shown in Figure 31.

Figure 30 Arc Length for Cylinder Model Case B

Figure 31 Field Strength for Cylinder Model Case B
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It can be seen from Figure 30 that the arc can only propagate along the insulator

surface until approximate 31 cm due to the insufficient applied voltage. By comparing with

threshold value, it is shown that the field strength at the end point is greater than the air

breakdown threshold, which means arc jumping can happen in this case. The arc will jump

over the insulator and continue to extend.

From Case A, it can be seen that under high conductivity when arc cannot propagate

along the insulator at one point, it is most likely that arc will extinguish. For Case B with

relatively low conductivity, the arc will jump over the insulator instead if it cannot

propagate along the surface.

5.4.2 Long-rod Insulator

The long rod insulator profiles are shown in Table 15. 

Table 15 Long-rod Insulator Profiles
Leakage distance (cm) 72
Shank diameter (cm) 4
Shed diameter (cm) 12
Shed spacing (cm) 3

There are two cases investigated in this study, with details shown in Table 16. The

threshold value of air breakdown is selected as 8 kV/cm.

Table 16 Two Cases Studied in Long-rod Insulator
Case Conductivity ( ) Voltage (kV)

A 20 40
B 10 50
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CASE A

The arc length is shown in Figure 32 and the calculated electric field near the arc

root versus air breakdown threshold is shown in Figure 33. It can be seen from Figure 32

that the arc can only propagate along the insulator surface until approximate 44 cm due to

insufficient applied voltage. By comparing with threshold value, it is shown that the field

strength at the end point is larger than the air breakdown threshold, which means arc

jumping will happen in this case.

Figure 32 Arc Length for Long-rod Model Case A
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Figure 33 Field Strength for Long-rod Model Case A

CASE B

The arc length is shown in Figure 34 and the calculated electric field near the arc

root versus air breakdown threshold is shown in Figure 35.
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Figure 34 Arc Length for Long-rod Model Case B

Figure 35 Field Strength for Long-rod Model Case B
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It can be seen from Figure 34 that the arc can only propagate along the insulator

surface until approximate 39 cm due to the insufficient applied voltage. By comparing with

threshold value, it is shown that the field strength at the end point is greater than the air

breakdown threshold, which means arc jumping can happen in this case. The arc will jump

over the insulator and continue to extend.

5.5 Conclusions

Case A and Case B represent high and low conductivity, respectively. In the

cylinder model, arc jumping can happen at low conductivity case but that is not the case

with high conductivity. In the long-rod model, however, it shows that arc jumping can

happen at both low and high conductivities conditions. As it already shown that electric

field threshold criterion alone is insufficient to explain arc jumping phenomenon. With the

new criterion accounting for both electric field strength and leakage current, it successfully

shows that arc jumping can happen on heavily polluted insulator at certain conditions as

well.
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Chapter 6

FLASHOVER OF POLYMER INSULATORS

6.1 Polymer Insulators Flashover Mechanism

The flashover phenomenon of polymer insulators is fundamentally different than

that of porcelain insulators because of the hydrophobicity property of its polymeric surface.

This lead to a new flashover mechanism which can be classified into following stages:

1) Contamination build-up

There are two types of contamination: inland and sea pollution. Water droplets

driven by wind first contaminate insulators near the sea. The pollutants contains salts and

dirt, which are dissolved in the water droplets. When the insulator is new, its surface has

perfect hydrophobicity which can only be covered by spot contaminations. However, the

combined influences of dry band arcing and corona can reduce the hydrophobicity level.

This will lead to the formation of continuous water films on insulator surface. For inland

pollution, airborne particles generated by wind driven dust or industrial pollution are

collected on the insulator surface. Later on, the contaminated surface will be wetted by dew

and fog. Insulators usually covered by a uniform pollution layer in this type of pollution.

2) Diffusion of Low Molecular Weight (LMW) chains

This phenomenon is first reported by Karady [39]. Diffusion drives LMW polymer

chains out of the bulk to the surface. The speed of this migration is controlled by the

temperature and chain length. A lattice type layer is formed on the pollution surface by the

LMW polymer chains. This phenomenon is very important since it allows the polymer

insulator recover its hydrophobicity after 10 to 12 hours arc free period. Moreover,
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hydrophobicity recovery can happen even the surface is still contaminated. This is due to

the fact that LMW chains can penetrate the pollution layer.

3) Surface Wetting

It has been observed that there are two possible ways of wetting: migration of

pollutant to the droplets or migration of water into dry pollutant. Migration of pollutant

happens when diffusion drives the pollutant through the thin LMW chains of the insulator

surface. Pollutants such as salt will dissolve in the water droplets making it conductive.

The latter happens when diffusion drives water from the droplets through the polymer layer

and into the dry pollutant. As a result, high resistive pollution layer will be formed and

covered by conductive water droplets.

4) Localized discharges

After ohmic heating, the polymer insulator is covered by a high resistance layer,

which is scattered with conducting water droplets. The intensification of electric field

between the adjacent droplets produces surface discharges. These discharges are randomly

distributed along the insulator surface at this stage.

5) Loss of hydrophobicity

The appearance of localized surface discharges can reduce hydrophobicity, which

leads to irregular shape of wet regions. The reduction of hydrophobicity results in the

droplets to form filaments. The filaments can be extended due to the high electric field

stress. These wet regions are randomly distributed and appear as patches. The high

resistance layer is surrounded and covered by water droplets.

6) Flashover
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The enlargement of wet regions eventually connects the insulator with a conductive

path. The arc can only extend on this path when the same arc propagation criterion ( <
) is satisfied. The complete flashover is believed to take place when the arc distance is

at least 2/3 of the insulator leakage distance, which is the same as porcelain insulator.

6.2 Flashover Mathematical Model

Due to the hydrophobicity property of polymer insulator, there is a fundamental

difference of pollution flashover between polymer insulator and porcelain insulator. As a

result, their mathematical flashover models should be developed differently as well.

It has been reported that silicone rubber insulator resists the formation of a

continuous conductive layer, therefore limiting leakage current. Several experiments

demonstrated that an initially hydrophobic polymeric surface was observed to be fully

wettable after several hours of exposure to arcing [40]. The required time of this transition

is determined by the dry band arcing activity. Flashover in polymer insulators usually

occurred after their surfaces loses hydrophobicity and becomes wettable.

It is believed that for porcelain insulator there is usually only one long arc

connecting in series with the residual pollution layer. The arc most likely to start from the

high voltage electrode and end at the ground electrode. However, it is a different

phenomenon for polymer insulator, as there are many discrete water droplets on polymeric

surfaces. With the intensification of electric field by water droplets, many short arcs can

form on a polymeric surface. These arcs will have cathode drops and anode drops, which

in total about 900 V per arc [41]. Therefore, polymeric insulator will have a higher

flashover voltage than porcelain insulator due to the existence of series arcs.
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The applied voltage U can be written as:= + ( ) + ( + ) (28)

where is arc voltage( ) is pollution resistance

is leakage current

is the number of short arcs

is anode drop

is cathode drop

Based on this observation, the dynamic flashover model for porcelain insulator

which developed in Chapter 3 was used as the basis for developing the new polymer

insulator flashover model. According to Venkataraman s results [42], the arc constants for

silicone rubber insulator are: = 340 = 0.5 (29)

The dynamic arc equation for polymer insulator becomes:= (1 . ) (30)

where

is arc resistance per unit length

is arc current

is time constant

The required dielectric strength of a polymer insulator following arc extinction is:

= 1 + 51.91+ 157.51.26
0.636

(31)
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where

is gap length

is dielectric gradient of a non-uniform field air gap at ambient temperature

amounting to 5-6 kV/cm

is time measured from current zero

is arc current amplitude in the previous half cycle

With a lower leakage current, for a polymer insulator will be lower than that

of a porcelain insulator. Therefore, a higher , or dielectric strength is required for arc

reignition for polymer insulator, which results in a higher flashover voltage. Assume the

same insulator test circuit in Figure 3, a similar dynamic system differential equations can

be formed. Their solutions can be found by numerical methods for ordinary differential

equations. Like porcelain insulator, Runge-Kutta method is used to obtain the numerical

results.

6.3 Validation of Proposed Model

The model was validated by comparing the results with published literature. Using

the dynamic model introduced in this work, flashover voltage characteristics of a polymer

insulator can be simulated and compared.

6.3.1 Validation with a Silicone Rubber Insulator

The HTV silicone rubber insulator is selected from [42] with the geometry shown

in Figure 36.
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HV

Ground

Figure 36 HTV Silicone Rubber Insulator

The dimensions are shown in Table 17. 

Table 17 HTV Silicone Rubber Insulator Dimensions
Insulator Type Silicone Rubber

Shed spacing (cm) 3
Shed diameter (cm) 9

Leakage distance (cm) 27

Based on the flashover model developed for polymer insulator, the simulation of

above insulator was done. The simulation results and comparisons with published literature

are shown in Figure 37.
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Figure 37 Comparison with Reference Model

Figure 38 Percentage Difference of Silicone Rubber Insulator
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From Figure 38, it can be seen that proposed model is well agree with the reference

model, with the largest difference is about 10%. The reason that the smallest difference

happens in the middle range of ESDD is because the flashover voltage at low and high

ESDD in the reference are based on regression analysis instead of practical experiments.

6.3.2 Validation with Different Polymeric Materials

Figure 39 shows the configurations of insulator used in published literature [43].

The insulator dimensions are shown in Table 18.

Figure 39 Polymer Insulator

Table 18 Insulator Dimensions
Insulator material Polymer
Number of sheds 7

Shed diameter 126 mm
Trunk diameter 26 mm

Unit spacing 623 mm
Leakage distance 980 mm
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Based on the flashover model developed for polymer insulator, the simulation of

above insulator was done. The simulation results are compared with published literature

which is shown in Figure 40. 

Figure 40 Silicone Rubber Insulator
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The percentage difference of flashover voltage is shown in Figure 41.

Figure 41 Percentage Difference of Polymer Insulator
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Figure 42 EPDM Insulator

The percentage difference of flashover voltage is shown in Figure 43.

Figure 43 Percentage Difference of EPDM Insulator
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From the simulation results it can be seen that for the sample silicone rubber

insulator, the proposed model gives a flashover voltage about 4% to 8% lower than the

published literature. For the sample EPDM insulator, the difference is less than 4%.

The comparison between silicone rubber insulator and EPDM insulator was also

performed based on the proposed model. The results are shown in Figure 44.

Figure 44 Comparison of SiR and EPDM Insulators
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6.4 Polymer Insulator Aging

6.4.1 Polymer Insulator Aging

Polymer insulators outperform traditional porcelain insulators in flashover

performance due to their hydrophobicity property. However, polymeric materials are very

susceptible to environment, where they interact and change over time. The degradation of

polymeric material may result in polymer insulator aging.

Polymer insulator aging is a complex process which involved with a lot of factors.

One hypothesis for polymer insulator aging is considered as a result of dry band arcing

[44]. The aging mechanism can be categorized as following processes: dry band arcing

leads to the loss of hydrophobicity; the reduction of Low Molecular Weight chains results

in the increasing of leakage current on insulator surface; increased surface roughness

promotes the wetting and leakage current as well; the tracking and erosion resistance is

decreased due to the depolymerization of the top surface layers and changes of physical

structure; in the end, there is the ultimate tracking and erosion of polymer material.

The understanding of aging is far from fully understood and there are serious

concerns about the accuracy of existing aging models.

6.4.2 Hydrophobicity Classification

Service experience has shown that polymer insulators have better flashover

performance than porcelain under polluted conditions [45-46]. This is due to the

hydrophobicity of the polymeric material which is known to vary with time of exposure in

service [47-48]. Swedish Transmission Research Institute (STRI) proposed a pictorial

hydrophobicity chart which is now an IEC document [49-50]. When the polymeric material
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is new, the hydrophobicity is maximum and is classified as Hydrophobicity Class 1 (HC

1). When the surface is completely wettable, it is classified as HC 7, or hydrophilic. Higher

hydrophobicity class leads to a lower surface resistance, which will result in a lower

flashover voltage.

In this work, polymer insulator aging process is categorized by its hydrophobicity

classification (HC). When the insulator is new, its surface is completely hydrophobic with

HC 1. After several years in service, it will gradually lost its hydrophobicity with a typical

HC value at HC 3-4. In the end, the degradation of polymeric material will result in a HC

level at HC 6-7.

Water exists as discrete droplets on polymer insulator surface. Even when the

insulator loses its hydrophobicity, the arcing activity on polymer insulator is restrained

compared to a wet porcelain insulator. The corresponding current is smaller than that on a

porcelain surface [51].

Although the contact angle between the water drops and the surface is a good

indicator of hydrophobicity class, it is not always possible to measure it in the field [52].

A correlation between hydrophobicity class and surface resistance is illustrated in this

section.

The surface resistance of a cylinder can be described as:= [( ) ] (31)

where is the surface resistance, L is leakage distance, is the surface conductivity, D is

the mean value of shed and shank diameter, d is the pollution layer thickness.
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The hydrophobicity of silicone rubber is due to a thin layer of low molecular weight

(LMW) poly-dimethylsiloxane (PDMS) that diffuses from the bulk to the surface. The

diffusion of LMW chains can be demonstrated as [52]:= / (32)

where is mass change at time t

is initial mass

t is time

K is diffusion coefficient.

The relationship between HC and surface resistance based on previous published

experimental data can be described as [53-54]:= [(52 7 )/45)] (33)

where is the surface resistance at HC 1

is the present hydrophobicity class.

6.4.3 Impact of Hydrophobicity on Flashover Performance

The model was validated by comparing results with published literature [43]. Figure

39 shows the insulator geometry modeled and Table 18 lists the important dimensions.

For the same insulator, the correlation between hydrophobicity class and ESDD

was investigated based on equation (33). The completely hydrophobic (HC 1) was assumed

to have an ESDD of 0.02 / with short circuit current 50 A. The corresponding

ESDD of the same insulator as a function of HC is shown in Figure 45. The hydrophobicity

effect on flashover voltage is shown in Figure 46. Similar results can be found in recent

published literature [55].
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From Figure 45, it can be seen that with a base ESDD of 0.02 / at HC 1,

the corresponding ESDD at higher HC levels will increase gradually. Simulation results

from Figure 46 shows that flashover voltage will decrease with the increase of

hydrophobicity classification levels. For HC 7, the flashover voltage is about 62% of the

flashover voltage at HC 1.

Figure 45 Relationship between Hydrophobicity Classification and ESDD
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Figure 46 Hydrophobicity Classification Effect on Flashover Voltage
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Chapter 7

SOURCE STRENGTH IMPACT ON FLASHOVER

7.1 Short Circuit Current Estimation

From Chapter 4, it was demonstrated that test source strength has significant

influence on the insulator flashover performance. The short circuit current is a good

indicator of a power source strength. A test source with high short circuit current is

considered to be a powerful source and weak source is one that has limited short circuit

current. IEC 60506 and IEEE Standard 4 both list recommended minimum requirements

of short circuit current [5, 18].

From published data, it can be seen that even for powerful source in the laboratory,

the maximum short circuit current is no greater than 50 A [3]. On the other hand, the short

circuit current in real power systems is at least a few thousand amperes. To estimate the

short circuit capacity of a practical power system, the IEEE 30-bus system as shown in

Figure 47 was studied [56].
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Figure 47 IEEE 30-bus System

A fault was created at different locations in the system. The short circuit was

determined and used to calculated equivalent impedance parameters.

Table 19 Short Circuit Current Calculation
Fault at Bus Short Circuit Current (p.u.) Short Circuit Current (A)

1 5.4 2353
2 5.9 2585
3 5.1 2244
4 5.8 2531
5 4.9 2133
6 6.1 2675
7 4.9 2149
8 5.4 2383
9 4.4 254586
10 4.2 7295
11 3.3 17098
12 4.1 7237
13 3.4 17812
14 2.6 4613
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15 3.4 6005
16 3.1 5441
17 3.5 6084
18 2.6 4563
19 2.6 4598
20 2.8 4816
21 3.6 6295
22 3.6 6250
23 2.6 4586
24 2.9 5113
25 2.2 3806
26 1.1 1948
27 2.3 4045
28 4.9 2136
29 1.3 2320
30 1.2 2154

Three different locations that have smallest short circuit current are shown in Table

20. The short circuit current results agree well with the published literature [57].

Table 20 IEEE 30-bus Test System Short Circuit Capacity

Fault at Bus Short Circuit
Current

Equivalent
Resistance

Equivalent
Inductance

26 1948 A 30 0.19 H
5 2133 A 17 0.12 H
28 2136 A 15 0.1 H

Other IEEE test cases including 14-bus and 118-bus were investigated as well.

After the study of short circuit capacity of different IEEE test cases of practical power

systems, the equivalent resistance was found to be in the range 12-52 , and the equivalent

inductance 0.1-0.7 H.

After test source short circuit current was determined, following test source

parameters will be used throughout this chapter. For the power system in the field

represented by a powerful source, it has a short circuit current of 1600 A, equivalent

resistance 31 , and equivalent inductance 0.3 H. For the laboratory power source, it is
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represented by a relatively weak source with short circuit current at 16 A, equivalent resistance

7648 , and equivalent inductance 51 H.

Table 21 Typical Source Parameters
Test Source Power System Laboratory

Short Circuit Current 1600 A 16 A
Equivalent Resistance 31 7648
Equivalent Inductance 0.3 H 51 H

7.2 Source Strength Impact with Respect to Source Capacitance

In this study, a NGK porcelain suspension insulator is used [43]. The insulator

geometry is shown in Figure 48 and its dimensions are shown in Table 22.

Figure 48 NGK Porcelain Suspension Insulator

Table 22 NGK Porcelain Insulator Geometry

Insulator material Porcelain
Number of sheds 10

Shed diameter 160 mm
Trunk diameter 80 mm

Unit spacing 585 mm
Leakage distance 1020 mm

To begin with, the source strength impact on insulator flashover voltage with

respect to equivalent capacitance was studied. With the contamination severity at 0.1/ , the simulation result is shown in Figure 49-52.

The simulation result of porcelain insulator is shown in Figure 49. The percentage

difference of flashover voltage is shown in Figure 50. 
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Figure 49 Source Strength Impact on Porcelain Insulator

Figure 50 Percentage Difference of Source Strength on Porcelain Insulator
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The simulation result of polymer insulator is shown in Figure 51. The percentage

difference of flashover voltage is shown in Figure 52. 

Figure 51 Source Strength Impact on Polymer Insulator

Figure 52 Percentage Difference of Source Strength on Polymer Insulator
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7.3 Source Strength Impact with Respect to ESDD

Besides the influence of capacitance on source strength impact, the performance of

source strength under different contamination severity is also the interest of this research.

For the same sources parameters shown in Table 21, the simulation results of source

strength impact on flashover voltage with respect of ESDD are shown in Figure 53-56.

The simulation result of porcelain insulator is shown in Figure 53.

Figure 53 Source Strength Impact on Porcelain Insulator with Different ESDD
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The percentage difference of flashover voltage is shown in Figure 54.

Figure 54 Percentage Difference of Porcelain Insulator with Different ESDD
The simulation result of polymer insulator is shown in Figure 55.

Figure 55 Source Strength Impact on Polymer Insulator with Different ESDD
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The percentage difference of flashover voltage is shown in Figure 56.

Figure 56 Percentage Difference of Polymer Insulator with Different ESDD
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(a) (b)
Figure 57 Insulators with Different Diameters

Table 23 Insulators Dimensions
Insulator type Suspension Post

Number of sheds 7 8
Shed diameter 126 mm 160 mm
Trunk diameter 26 mm 90 mm

Unit spacing 623 mm 334 mm
Leakage distance 980 mm 986 mm

To begin with, the same test source was used to compare their flashover

performance.
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Figure 58 Flashover Voltages of Different Diameters
The percentage difference is shown in Figure 59.

Figure 59 Percentage Difference of Flashover Voltages
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Assume both insulators is fed by same powerful source and weak source. The

source strength influence for different shed diameters is studied.

Figure 60 Source Strength Impact of Suspension Insulator

Figure 61 Percentage Difference of Flashover Voltage
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The simulation of post type insulator is shown in Figure 62. The percentage

difference of flashover voltage is shown in Figure 63. 

Figure 62 Source Strength Impact on Post Insulator

Figure 63 Percentage Difference of Flashover Voltage
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7.5 Source Strength Impact with Respect to Voltage Level

It is also the interest of this research to investigate different voltage levels influence

on the source strength effects on flashover voltage. In this section, 230 kV class, 345 kV

class, and 500 kV class outdoor insulators are studied. For each voltage level, a porcelain

suspension insulator, a polymer suspension insulator and a porcelain post insulator were

compared [58-60]. The insulators used in this study are shown in Figure 64 (a), (b), (c).

(a) Porcelain Suspension Insulator

(b) Polymer Suspension Insulator

(c) Porcelain Post Insulator

Figure 64 Three Different Types of Insulators



90

7.5.1 Source Strength Impact on 230 kV Insulators

Insulators dimensions are shown in Table 24.

Table 24 230 kV Insulator Details

Insulator type Porcelain Suspension Polymer Suspension Porcelain Post
Number of sheds 14 30/29 32

Shed diameter 25.4 cm 10.6/7.6 cm 24.4 cm
Trunk diameter 10.8 cm 4 cm 21.6 cm

Unit spacing 204.4 cm 207.5 203.2 cm
Leakage distance 427 cm 418.9 cm 419.1 cm

To begin with, flashover voltages for three different types of insulators under the

same test source were studied. The simulation results are shown in Figure 65.

Figure 65 Flashover Voltages Comparison
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Figure 66 Porcelain and Polymer Comparison

Figure 67 Porcelain Suspension and Post Comparison
For the same sources parameters, the simulation results of source strength impact

on flashover voltage are shown in Figure 68-73. The simulation result of porcelain

0.02 0.04 0.06 0.08 0.1 0.12 0.14
62

63

64

65

66

67

68

69

ESDD (mg/cm2)

P
er

ce
nt

ag
e

D
iff

er
en

ce
(%

)

0.02 0.04 0.06 0.08 0.1 0.12 0.14
15.5

16

16.5

17

17.5

18

18.5

ESDD (mg/cm2)

Pe
rc

en
ta

ge
D

iff
er

en
ce

(%
)



92

suspension insulator is shown in Figure 68, and percentage difference is shown in Figure

69.

Figure 68 Source Strength Impact of Porcelain Suspension Insulator

Figure 69 Percentage Difference of Porcelain Suspension Insulator
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The simulation result of polymer suspension insulator is shown in Figure 70. The

percentage difference of flashover voltage is shown in Figure 71.

Figure 70 Source Strength Impact of Polymer Suspension Insulator

Figure 71 Percentage Difference of Polymer Suspension Insulator
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The simulation result of porcelain post insulator is shown in Figure 72. The

percentage difference of flashover voltage is shown in Figure 73.

Figure 72 Source Strength Impact of Porcelain Post Insulator

Figure 73 Percentage Difference of Porcelain Post Insulator
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7.5.2 Source Strength Impact on 345 kV Insulators

Insulators dimensions are shown in Table 25.

Table 25 345 kV Insulator Details
Insulator type Porcelain Suspension Polymer Suspension Porcelain Post

Number of sheds 18 37/36 44
Shed diameter 25.4 cm 10.6/7.6 cm 24.7 cm
Trunk diameter 10.8 cm 4 cm 21.6 cm

Unit spacing 262.8cm 249.5 269.2 cm
Leakage distance 549 cm 518.3 cm 586.7 cm

To begin with, the flashover voltage for three different types of insulators under the

same test source was studied.

Figure 74 Flashover Voltages Comparison
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porcelain suspension insulator is shown in Figure 75. The percentage difference of

flashover voltage is shown in Figure 76.

Figure 75 Source Strength Impact of Porcelain Suspension Insulator

Figure 76 Percentage Difference of Porcelain Suspension Insulator
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The simulation result of polymer suspension insulator is shown in Figure 77. The

percentage difference of flashover voltage is shown in Figure 78.

Figure 77 Source Strength Impact of Polymer Suspension Insulator

Figure 78 Percentage Difference of Polymer Suspension Insulator
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The simulation result of porcelain post insulator is shown in Figure 79. The

percentage difference of flashover voltage is shown in Figure 80.

Figure 79 Source Strength Impact of Porcelain Post Insulator

Figure 80 Percentage Difference of Porcelain Post Insulator
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7.5.3 Source Strength Impact on 500 kV Insulators

Insulators dimensions are shown in Table 26.

Table 26 500 kV Insulator Details
Insulator type Porcelain Suspension Polymer Suspension Porcelain Post

Number of sheds 24 55/54 54
Shed diameter 25.4 cm 10.6/7.6 cm 24.7 cm
Trunk diameter 10.8 cm 4 cm 23.8 cm

Unit spacing 350.4 cm 357.5 325.1 cm
Leakage distance 732 cm 773.9 cm 711.2 cm

To begin with, the flashover voltage for three different types of insulators under the

same test source was studied.

Figure 81 Flashover Voltages Comparison

For the same sources parameters, simulation results of source strength impact on
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Figure 82 Source Strength Impact of Porcelain Suspension Insulator

Figure 83 Percentage Difference of Porcelain Suspension Insulator
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The simulation result of polymer suspension insulator is shown in Figure 84. The

percentage difference of flashover voltage is shown in Figure 85.

Figure 84 Source Strength Impact of Polymer Suspension Insulator

Figure 85 Percentage Difference of Polymer Suspension Insulator
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The simulation result of porcelain post insulator is shown in Figure 86. The

percentage difference of flashover voltage is shown in Figure 87.

Figure 86 Source Strength Impact of Porcelain Post Insulator

Figure 87 Percentage Difference of Porcelain Post Insulator
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7.6 Conclusions

1. For all cases that were studied in this chapter, there is an obvious decrement of

insulator flashover voltage when it is supplied by a powerful source when compared to a

weak source.

2. Small test source capacitance value will result in a larger flashover voltage

difference between weak source and powerful source.

3. Simulation results show that higher ESDD value will lead to a larger flashover

voltage difference between weak source and powerful source.

4. The study of insulator with different shed profiles suggests that source strength

has a larger impact on insulators with larger shed diameters.

5. From the study of source strength impact with different insulator voltage levels,

source strength has the largest influence on the decrement of flashover voltage for a

porcelain post type insulator. Porcelain suspension insulator has the second largest

decrement, and a polymer insulator has the least decrement. For 230 kV, the difference of

flashover voltage for a porcelain post insulator is 23%, a porcelain suspension insulator is

21%, and a polymer suspension insulator is 15%. For 345 kV, the difference of flashover

voltage for a porcelain post insulator is 25%, a porcelain suspension insulator is 24%, and

a polymer suspension insulator is 16%. For 500 kV, the difference of flashover voltage for

a porcelain post insulator is 30%, a porcelain suspension insulator is 28%, and a polymer

suspension insulator is 18%.

6. From the comparison with higher system voltage insulators, it can be concluded

that test source strength tends to have a larger impact on flashover voltage for higher

voltage level insulators.
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Chapter 8

STUDY OF FLASHOVER PROBABILITY

8.1 Problem Statement

Studies that have been done so far on insulator flashover mainly focus on traditional

deterministic method, in which the contamination severity is specified, and a certain level

of supply voltage is applied on the insulator. Deterministic method can only predict

whether an insulator would flashover or withstand. However, it has been suggested by

some researchers that insulator flashover is indeed a probabilistic process given both

contamination severity and the withstand voltage are probabilistic variables [61-63].

In this chapter, a probability approach to predict the likelihood of insulator

flashover is proposed based on the deterministic model developed in Chapter 3. 

8.2 Flashover Probability Functions

Probabilistic approaches consider parameters as variables and take into account

statistical distributions of variables. The probabilities of flashover voltage and other factors

are combined by assuming that all factors are independent of each other. It is proposed that

the probability of insulator flashover under contamination conditions is dependent on the

supply voltage and pollution severity.

Since the flashover probability function in actual test conditions is unknown,

several probability functions are assumed. Three types of distribution functions that widely

used in practice were studied and compared.
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1. Normal Distribution( , ) = ( ( )) (33)

where

U is the applied voltage;

( ) is 50% flashover voltage at a certain ESDD which is obtained from

developed computer deterministic model;

is the flashover voltage standard deviation;

is the integration step.

2. Weibull Distribution= 1 exp ( ) > (34)= 0 < (35)

where

is applied voltage

is shape parameter

is scale parameter

= 2 2
3. Logistic Distribution = [ ( ) / ] (36)

where

= 8
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Assuming sufficient wetting, and the same sample insulator in Figure 7 with a

surface conductivity of 120 / was studied. It has been reported that the flashover

standard deviation in artificial contamination test and natural contamination conditions are

5% and 20% respectively. After obtained from the dynamic model developed in

Chapter 3, the comparison of flashover probabilities with different distribution functions is

shown in Figure 88. The probability differences of any two distributions were calculated

as shown in Figure 89.

Figure 88 Flashover Probability Plots for Different Distribution Functions
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Figure 89 Probability Differences of Different Distribution Functions
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degree. In this section, it aims to study the effects of source strength on flashover

probability.

It is reported that standard deviation is about 5% for artificially contaminated and

wetted insulators. However, a higher around 20% is found in case of naturally

contaminated insulators in natural wetting conditions [61]. Thus in this simulation = 5%
is assumed for weak source and = 20% is assumed for powerful source. With the source

parameters shown in Table 27, the simulation results are shown in Figure 90.

Table 27 Source Parameters
Power Source Powerful Weak

Short Circuit Current 1000 A 6 A
Equivalent Resistance 42.59 9358.82
Equivalent Inductance 0.24 H 68.96 H

Figure 90 Source Strength Effect on Flashover Probability
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By comparing the test sources in Table 27, Figure 90 shows that flashover can

occur over a wider range of voltage in the field than in the laboratory (source satisfying

the IEC standard). For the sample insulator in this study, flashover can happen at supply

voltage as low as 13 kV for the field source, but even for a powerful laboratory source,

flashover will not happen until the voltage reaches 24 kV. In the laboratory, the range of

voltage that causes a change of flashover probability from 10-90% is within 13% of the

critical (50%) flashover voltage value, while in the field this variation is about 48%. This

suggests that insulators in service can flashover over a wider range of contamination

severity than predicted by laboratory tests. The ESDD range that corresponds to 10-90%

flashover probability is 0.016-0.13 / for the field source. For the laboratory

source, this range is 0.025-0.042 / .

8.3.2 Effect of Insulation Materials

High voltage insulators are usually categorized by their dielectric materials. Three

main classes of dielectrics that have been used are porcelain, polymer and glass. Due to the

differences of their dielectric properties, they are expected to have different flashover

probabilities even under the same conditions. Both porcelain and polymer insulators rated

at 230 kV were evaluated in this research. Figures 91 and 92 show the flashover probability

curves as a function of applied voltage for the porcelain and polymer insulator cases,

respectively.
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Figure 91 Flashover Probability of 230 kV Rated Porcelain Insulators

Figure 92 Flashover Probability of 230 kV Rated Polymer Insulators
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For porcelain insulator in laboratory test, it has a 50% flashover probability when

% = 240 . It has a 10% flashover probability when applied voltage is % =217 , and a 90% flashover probability when applied voltage is % = 263 . This

suggests that the range of voltage that causes a change of flashover probability from 10-

90% is within % %% 100% = 19%. For the same insulator in service, this range is

within 44%. In comparison with polymer insulators, these ranges are 15% for the

laboratory source and 34% for the field source. This result shows that flashover can happen

over a wider voltage range for field source than in the laboratory. In addition, flashovers

of polymer insulators most likely to happen over a tighter range of voltage compared to

porcelain insulators.

8.3.3 Effect of Insulator Shapes

The flashover probability of insulator with different shapes was studied. To begin

with, a long rod type insulator and a post type insulator are studied. Both insulators are

porcelain material with 230 kV class. Figure 93 shows their geometry details and Table 28

shows insulator dimensions.
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Figure 93 Insulator Geometries

Table 28 Insulator Dimensions
Insulator type Porcelain Longrod Porcelain Post

Number of sheds 14 32
Shed diameter 25.4 cm 24.4 cm
Trunk diameter 10.8 cm 21.6 cm

Unit spacing 204.4 cm 203.2 cm
Leakage distance 427 cm 419.1 cm

For the same pollution level at 0.1 / , the study of their flashover

performance is done. Flashover probabilities of both insulators under the same supply

voltage are shown in Figure 94.
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Figure 94 Flashover Probabilities Variations
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Figure 95 Flashover Probability of Different Hydrophobicity Classifications
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8.3.5 Effect of Insulator Strings in Parallel

Assume there are  numbers of insulator strings connected in parallel and their

flashover probabilities are independent of each other. If the flashover probability of the th

insulator string is , then withstand probability of this string is=  1 (37)

The withstand probability of all insulator strings is= (1 ) (1 ) (1 ) (1 ) = (1 ) (38)

The probability of at least 1 insulator string flashover happens is= 1 (1 ) (39)

In the case that all insulator strings have the same flashover probability , the

probability of equation (39) becomes=  1 (1 ) (40)

Equation (40) is identical to the results from EPRI red book [64].
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To begin with, the simulation of insulator strings flashover probability was done to

compare with the published reference [64]. Figure 96 shows the simulation results of a

single string and 14 strings with respect of applied voltage per unit. A total of 8 units were

selected in this study.

Figure 96 Simulation Results of Flashover Probability of 14 Strings
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Then the influence of number of insulator strings on flashover probability was

studied. A single insulator with flashover probability of 1% is assumed as the original case.

It can be seen from Figure 97 that overall flashover probability will gradually increase with

the increase of numbers of insulators in parallel.

Figure 97 Numbers of Parallel Insulators Effects on Flashover Probability

The simulation also shows that with an original flashover probability of 1%, the

overall probability when there are 120 units connected in parallel will increase to 70%.

In order to study the flashover probability of insulators with different HC levels. It

is assumed that when HC = 1, the single insulator has a flashover probability of 0.01%.

Figure 98 shows the simulation results.
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Figure 98 Flashover Probability of Multiple Strings

Table 29 shows a summary of flashover probabilities with different HC

combinations of 120 insulator strings.

Table 29 Summary of Flashover Probabilities
No. of HC 1 
Insulators

No. of HC 3
Insulators

No. of HC 5
Insulators

No. of HC 7 
Insulators

Flashover
Probability

120 0 0 0 1.2%
0 120 0 0 2.5%
0 0 120 0 14.3%
0 0 0 120 100%
30 30 30 30 91.7%
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8.3.6 Effect of Leakage Distance

The flashover probability of insulator strings with different leakage distances was

studied as well. The dimensions of two insulator strings are shown in Table 30. The

simulation results are shown in Figure 99. Simulation results from Figure 99 was based on

the assumption from [64] that the standard deviation is 10%.

Table 30 Insulator Details
Insulator String A B

Strings in Parallel 14 14
Units 8 10

Leakage Distance 244 cm 305 cm
50% Flashover Voltage 140.2 kV 175.6 kV

Figure 99 Flashover Probability of Different Leakage Distances
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The flashover probability of polymer insulator with different leakage distances was

studied as well. The dimensions of 230 kV class insulator is shown in Table 31. 

Table 31 Insulator Dimensions
Insulator type Polymer Suspension

Number of sheds 30/29
Shed diameter 10.6/7.6 cm
Trunk diameter 4 cm

Unit spacing 207.5
Leakage distance 418.9 cm

It can been seen from Table 31 that the 230 kV insulator has a leakage distance of

419 cm. In this work, the HC 1 insulator with original leakage distance is assumed to have

a flashover probability of 50%. The purpose of this study is to find out what leakage

distances are required for insulator with different hydrophobicity classifications to also

have a flashover probability of 50%. The simulation results are shown in Figure 100. The

standard deviation in this research is assumed at 10%.



121

Figure 100 Leakage Distance Variations

Figure 101 Leakage Distance Ratio
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8.4 Conclusions

1. Three popular probability functions are studied and compared in this research.

From simulation results, it can be seen that normal distribution curve lies between other

two types of distribution functions. The differences between models are all less than 5%

and relatively small. The largest difference occurs between Weibull distribution and

logistic distribution. It is concluded that three probability models are reasonable and can

well represent the insulator flashover probability. However, Weibull distribution likely to

be the best choice because its advantage at low probability events.

2. The study of source strength effect on flashover probability shows that flashover

probability of powerful source has a larger voltage span than that of weak source. Flashover

can happens at supply voltage as low as 14 kV for powerful source, but weak source will

not have flashover until the voltage reaches 26 kV. For the same applied voltage, powerful

source has a higher probability to flashover than weak source.

3. The investigation on different dielectric materials show that flashover of polymer

insulators likely to happen in a tighter range of voltages than that of porcelain insulators.

4. From the study of multiple insulator strings connected in parallel, it is

demonstrated that multiple insulator strings will increase the risk of flashover. However, it

can be mitigated by increase the insulator leakage distance.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

The conclusions drawn from this work can be summarized in five groups as follows:

1. In this dissertation mathematical dynamic models to account for insulator AC

flashover under contaminated conditions were developed. The characteristics of a polluted

insulator, including different phases of arcing process, namely arc dynamics, arc re-ignition

and arc motion are successfully modeled. The porcelain insulator dynamic model is further

developed to predict the flashover performance for polymer insulator. The aging effect of

polymer insulator was also investigated in terms of hydrophobicity classifications.

2. This research constitutes a systematic investigation of the interaction between

test source and insulator during flashover process. The source parameters are found to have

a considerable influence on the insulator flashover outcome. The equivalent impedance of

the test source can have significant influence on the source voltage drop, shape of leakage

current and the transient recovery voltage. The shunt capacitance can mitigate the error

generated by weak source by lowering the flashover voltage, but this effect has not been

seen in flashover energized by powerful source.

3. The model is used to study the arc jumping phenomenon which is reported by

some researchers. A new arc jumping mechanism is proposed by considering both the

electric field and leakage current. The results of simulation show that the arc jumping can

not only happens at low conductivity condition but also high conductivity if there is enough

leakage current.
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4. The study of source strength impact on insulator flashover performance is the

main contribution of this research. Source strength influence on different types of insulators

with various geometries are systematically investigated and reported. Besides that, 230 kV,

345 kV, and 500 kV insulators are studied as well to compare the effects of source strength

on their flashover performance.

5. The investigation of the insulator flashover probability is also done in this

dissertation. Based on the proposed insulator flashover model, different probability

functions are studied to predict the probability of flashover. The impacts of source strength,

insulation material, hydrophobicity classification, leakage distance, and numbers of

insulators in parallel on flashover probability were studied as well.

9.2 Future Work

There are some topics that can be further pursued for future research. The following

work is suggested for future study:

Ø Continuing work could be done to study the DC source parameters impact

on the insulator flashover performance. It is interesting to study how the

DC source parameters would impact the insulator flashover and its

comparison to AC source.

Ø Non-uniform distribution of contaminant on insulator surface is another

possible approach to extend present model and compare with the results

under uniform contamination conditions.
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Ø Further development of the model is required to account for the statistical

nature of the phenomena including pollution distribution, wetting of the

insulator surface.

Ø Experimental investigations of the arc jumping and the probability of

flashover in AC testing could be done to compare with results from

theoretical models.
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