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ABSTRACT 

In the United States, buildings account for 20–40% of the total energy consumption based 

on their operation and maintenance, which consume nearly 80% of their energy during 

their lifecycle. In order to reduce building energy consumption and related problems (i.e. 

global warming, air pollution, and energy shortages), numerous building technology 

programs, codes, and standards have been developed such as net-zero energy buildings, 

Leadership in Energy and Environmental Design (LEED), and the American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers 90.1. However, these programs, 

codes, and standards are typically utilized before or during the design and construction 

phases. Subsequently, it is difficult to track whether buildings could still reduce energy 

consumption post construction. This dissertation fills the gap in knowledge of analytical 

methods for building energy analysis studies for LEED buildings. It also focuses on the 

use of green space for reducing atmospheric temperature, which contributes the most to 

building energy consumption. The three primary objectives of this research are to: 1) find 

the relationship between building energy consumption, outside atmospheric temperature, 

and LEED Energy and Atmosphere credits (OEP); 2) examine the use of different green 

space layouts for reducing the atmospheric temperature of high-rise buildings; and 3) use 

data mining techniques (i.e. clustering, isolation, and anomaly detection) to identify data 

anomalies in the energy data set and evaluate LEED Energy and Atmosphere credits 

based on building energy patterns. The results found that buildings with lower OEP used 

the highest amount of energy. LEED OEP scores tended to increase the energy saving 

potential of buildings, thereby reducing the need for renovation and maintenance. The 

results also revealed that the shade and evaporation effects of green spaces around 
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buildings were more effective for lowering the daytime atmospheric temperature in the 

range of 2°C to 6.5°C. Additionally, abnormal energy consumption patterns were found 

in LEED buildings that used anomaly detection methodology analysis. Overall, LEED 

systems should be evaluated for energy performance to ensure that buildings continue to 

save energy after construction.   

 

 



iii 

 

 

 

 

 

 

 

 

 

I dedicate this dissertation to 

 my lovely wife Kyungjoo and daughter Erin (Jiho)  

& 

Family  

I am eternally grateful for your love, unwavering support, and continuing guidance.  

Without all of you this would not have been possible. 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGMENTS 

 I would like to express my deepest gratitude to my advisor, Dr. Samuel 

Ariaratnam, for his excellent guidance, caring, patience, financially supporting and 

providing me for my research studies. You also gave me the opportunities to participate 

in the conferences, which afforded me the opportunity to have more connection and to 

become involved in the funded projects, which include Environmental Protection Agency 

(EPA), Southwest Gas (SWG), and Water Research Foundation (WRF). You also gave 

me the opportunities to teach your classes, Construction Project Management II and 

Trenchless Construction Methods, over the last 3.5 years.  

 I would like to thank Dr. Oswald Chong who exposed me to new research areas, 

which I had not been involved in, such as building energy performance analysis, data 

mining techniques, learning machine, big data applications, etc. You taught me methods 

of research, how to compose academic project proposals and patiently corrected my 

writing techniques. I would also like to thank Dr. Wylie Bearup for the guidance in my 

research endeavors for the past 3.5 years and helping me to develop my background in 

heavy and civil engineering fields. You also gave me a chance to teach your class, 

Building Construction Methods, Materials and Equipment. This allowed me the 

opportunity to gain invaluable teaching experience in academia.        

 I would like to thank my research group members, Hariharan Naganathan and 

Seungteak Lee from the School of Sustainable Engineering and the Built Environment at 

Arizona State University (ASU). Your advice, reviews, and recommendations have 

helped me complete my dissertation. I wish you all the best in your future endeavors and 

look forward to collaborating with you in the future.  



v 

 

 I also would like to thank my friends, Jaemyung Lee, Dan Koo, Jinsung Cho, 

Jinyoung Hyun, and Sooyoung Moon, from Colorado State University, University of 

Louisville, Arizona State University and Korea Institute of Civil Engineering and 

Building Technology. You supported and encouraged me with your best wishes.  

I would lastly like to thank my friends from the civil engineering industry, Curt 

Slagell, Jeff Callicott and Dave Goos with AZTEC Engineering and Robert Lyons, 

Andrew Baird, Chris Woolery and Jason Fenner with Kimly-Horn Engineering.  Without 

your support and assistance, I would never have been exposed to good civil industry 

experiences, which included experiences in the roadway, drainage, utility disciplines for 

6.5 years in the U.S.  

 Finally, I would like to thank my parents (Sungtaek and Sungmi Kim), my parents 

in law (Gunil and Yangmi Suh), American parents (Lee and Rita Melendez), sisters and 

brothers (Hyojung, Jiyeon, Hyuncheol, Manho, Youngbae, Yoon, Tom and Monica 

Taylor), nieces and nephews (Doyeon, Yoonsoo, Doyoon, Soontak, Dowon, Sungho and 

Yena).   

Especially, I would like to thank to my wife, Kyungjoo and daughter, Jiho (Erin). 

You were always there cheering me up and stood by me through the good and/or bad 

times.  



vi 

 

TABLE OF CONTENTS 

                          Page 

LIST OF TABLES ...............................................................................................................x 

LIST OF FIGURES ........................................................................................................... xi 

CHAPTER 

1. INTRODUCTION .......................................................................................................1 

1.1 Research Background ............................................................................................1 

1.1.1 Understating Leadership in Energy and Environmental Design Energy and 

Atmosphere Credits and Their Relationship with Building Energy Consumption.....1 

1.1.2 The Use of Green Space in Reducing Atmosphere Temperature ..................3 

1.1.3 Applied Methodologies from past Research Studies .....................................4 

1.2 Research Objectives and Methods ........................................................................5 

1.2.1 Chapter 2: Building Energy Consumption vs LEED EA Credits ..................7 

1.2.2 Chapter 3: The Use of Greenery Space Layouts in Reducing Air 

Temperature ................................................................................................................7 

1.2.3 Chapter 4: Detect Anomalies Using Isolation Technique ..............................7 

1.3 Dissertation Format ...............................................................................................8 

2. UNDERSTANDING THE EFFECTS OF ENVIRONMENTAL FACTORS ON 

BUILDING ENERGY EFFICIENCY DESIGNS AND CREDITS ....................................9 

2.1 Abstract .................................................................................................................9 

2.2 Introduction and Scope of Research......................................................................9 

2.3 Research Objectives ............................................................................................11 

2.4 Literature Findings ..............................................................................................12 



vii 

 

CHAPTER                                                                                                                      Page 

2.4.1 Building Energy Performance and Consumption ........................................12 

2.4.2 Building Envelopment .................................................................................13 

2.4.3 Analysis Methods.........................................................................................14 

2.5 Research Methodology ........................................................................................15 

2.6 Results: Findings and Analysis ...........................................................................16 

2.6.1 Selection of LEED Buildings in Arizona State University, AZ ..................16 

2.6.2 Statistical and Correlation Analyses ............................................................18 

2.6.3 Data Pre-Processing: Calibrating Electricity Consumption .........................21 

2.6.4 Calibrated Heating and Cooling versus Atmospheric Temperature ............28 

2.6.5 Chi-Square Analysis ....................................................................................29 

2.7 Conclusions and Discussions ..............................................................................32 

2.8 Future Research ...................................................................................................34 

3. URBAN GREENERY SPACE LAYOUTS AND URBAN HEAT ISLAND: CASE 

STUDY-ANALYSIS OF HIGH RISE APARTMENT COMPLEXES IN SOUTH 

KOREA ..............................................................................................................................36 

3.1 Abstract ...............................................................................................................36 

3.2 Introduction .........................................................................................................36 

3.2.1 The Relationship Between Greenery Space and Urban Heat Island (UHI) .37 

3.2.2 Urban Heat Island Effects in Korea .............................................................37 

3.3 Research Hypothesis and Objectives ..................................................................37 

3.4 Previous Research Studies ..................................................................................38 

3.4.1 Understanding of the Concepts of Urban Heat Islands ................................38 



viii 

 

CHAPTER                                                                                                                      Page 

3.4.2 The Use of Greenery Space to save Energy Consumption ..........................39 

3.4.3 Data Analysis Methods and the Use of Greenery Spaces ............................40 

3.4.4 Approach to Reduce Urban Heat Island ......................................................41 

3.5 Research Limitations ...........................................................................................42 

3.6 Research Methodologies .....................................................................................42 

3.6.1 Selection of Greenery Space Layouts and Measurement Sites ....................42 

3.6.2 Field Measurements: Mobile and Fixed Measuring Instruments ................46 

3.7 Results: Temperature Reduction Effects by Greenery Space .............................48 

3.7.1 Comparison Between Surface Temperature and Atmosphere Temperature 48 

3.8 Finding and Analysis: Casual Analysis of Temperature Reduction by Greenery  

Space…….. .........................................................................................................54 

3.8.1 Analysis by Evaporation Effect ...................................................................54 

3.8.2 Analysis by Shade Effect .............................................................................58 

3.9 Conclusions and Discussions ..............................................................................60 

4. THE USE OF CLUSRING AND ISOLATION FOREST TECHNIQUES IN REAL-

TIME BUILDING ENERGY CONSUMPTION DATA: APPLICATION TO LEED 

BUILDINGS ......................................................................................................................64 

4.1 Abstract ...............................................................................................................64 

4.2 Introduction and Research Scope ........................................................................64 

4.3 Research Objectives ............................................................................................66 

4.4 Previous Research Studies ..................................................................................66 

4.4.1 Understanding LEED Rating Systems-EA Credits......................................67 



ix 

 

CHAPTER                                                                                                                      Page 

4.4.2 LEED EA Credits vs Building Energy Consumption ..................................68 

4.4.3 Anomaly Detections and Isolation Techniques ...........................................69 

4.5 Research Methodologies: Data Management, Clustering and Isolation 

Frameworks.........................................................................................................70 

4.5.1 Data Management ........................................................................................71 

4.5.2 Clustering Framework .................................................................................73 

4.5.3 Isolation Framework ....................................................................................74 

4.6 Results and Analysis ...........................................................................................75 

4.6.1 Clustering Module .......................................................................................75 

4.6.2 Clustering Analysis ......................................................................................76 

4.6.3 Cluster Breakdown.......................................................................................78 

4.6.4 Isolation Framework ....................................................................................79 

4.6.5 Isolation Forest Validation ...........................................................................80 

4.7 Conclusions and Discussions ..............................................................................88 

5. RESEARCH CONCLUSIONS AND DISCUSSIONS .............................................91 

5.1 Summary of Results and Contributions ..............................................................91 

5.2 Limitations of the Study and Future Research ....................................................93 

REFERENCES ..................................................................................................................95 

APPENDIX 

A SAMPLES OF PLOTS BASED ON BUILDING ENERGY USAGE DATA ...........106 

B SAMPLE OF WEATHER DATA ...............................................................................110 

 



x 

 

LIST OF TABLES 

Table               Page 

1. Climate Information Between Tempe and Mesa, AZ (Adopted from 2014 U.S. Climate 

Data) .................................................................................................................................. 17 

2. Green Building Facilities Information at Arizona State University, AZ ...................... 18 

3. Two-way Table of Energy Efficiency of LEED Buildings in ASU, AZ ...................... 31 

4. Present Conditions of Sites 1 Through 4 ...................................................................... 45 

5. Weather Information During the Field Measurement ................................................... 46 

6. Statistical Significance Test Results of Mobile Measurement ..................................... 51 

7. Weather Information Data at the Project Sites ............................................................. 51 

8. Statistical Significance Test Results of Fixed Measurement ........................................ 54 

9. LEED Certification Comparison Between LEED NC v2.2 and LEED 2009 with EA 

Achievable Points (U.S. Green Building Council, 2009) ................................................. 67 

10. Historical LEED Rating Systems from v2.0 to v3.0 (EA Credits) ............................. 68 

11. Cluster and Respective Buildings and Data Points ..................................................... 78 

12. LEED Buildings and Anomalies ................................................................................. 87 



xi 

 

LIST OF FIGURES 

Figure               Page 

1. Research Study Flow Chart (Chapter 2, 3 and 4) ........................................................... 6 

2. Climate Zone in Tempe and Mesa, Maricopa County (AZ) (Adopted from the 2014 

International Energy Conservation Code) ........................................................................ 17 

3. Scatter Plots of Energy Usages Versus Atmospheric Temperature in Daily Scale ...... 21 

4. Scatter Plots of Energy Usages and Atmospheric Temperature: .................................. 24 

5. Scatter Plots of Energy Usages and Atmospheric Temperature: .................................. 27 

6. Calibrated Scatter Plots of Energy Usages by Corresponding Minimum Energy Usages 

Versus Atmospheric Temperature in Daily Scale ............................................................. 29 

7. Actual Counts and Expected Counts in Chi-Square Test ............................................. 32 

8. Four Types of Greenery Space Layouts........................................................................ 43 

9. Locations of Field Survey Sites .................................................................................... 44 

10. Fixed-Measurement Points of Four Sites .................................................................... 48 

11. Comparison Results of Field Survey with Mobile Instrument ................................... 49 

12. Measurement Results of Mobile Field Survey............................................................ 50 

13. Changes in Air Temperature and Relative Humidity During Study Period ............... 52 

14. Mean Temperature and Humidity During Measurement Period ................................ 53 

15. Air Temperatures for the Project Sites at 14:00.......................................................... 55 

16. Air Temperature over Impervious Surface Space ....................................................... 57 

17. Schematic of Hot Air Formation Without Green Space ............................................. 58 

18. Schematic Figures of Hot Air Formation With Green Space ..................................... 59 

 



xii 

 

Figure               Page 

19. Schematic Figures of Hot Air Formation With Green Space ..................................... 60 

20. Research Methods Flowchart to Detect Anomalies Using CI Framework ................. 71 

21. Selection of Clusters ................................................................................................... 76 

22. K-means Clusters (1-4) ............................................................................................... 77 

23. Breakdown Scatterplots of Different Clusters ............................................................ 79 

24. Flow Chart: Process of Isolation Forest Algorithm .................................................... 80 

25. Cluster 1: Anomaly Detection .................................................................................... 82 

26. Cluster 2: Anomaly Detection .................................................................................... 84 

27. Cluster 3: Anomaly Detection .................................................................................... 85 

28. Cluster 4: Anomaly Detection .................................................................................... 86 



1 

 

1. INTRODUCTION  

1.1 Research Background  

1.1.1 Understating Leadership in Energy and Environmental Design Energy and 

Atmosphere Credits and Their Relationship with Building Energy Consumption 

In the United States, buildings account for 20–40% of the total energy consumption 

(Pérez-Lombard et al., 2008). The operation and maintenance of buildings consume 

nearly 80% of this large amount of energy during their lifecycle (Cole & Kernan, 1996; 

Sartori & Hestnes, 2007). Approximately 70% of energy in the United States is generated 

by nonrenewable sources, e.g., coal and oil (U.S. Energy Information Administration, 

2016). The negative effects of this type of energy consumption contribute to global 

warming, air pollution, and energy shortages. In order to reduce building energy 

consumption and related problems, sustainable development, especially sustainable 

construction, is being applauded by more official and unofficial organizations, including 

governments and environmental protection organizations. 

What causes building energy consumption? According to previous studies (U.S. 

Green Building Council, 2015; U.S. Department of Energy, 2011), buildings accounted 

for 75% of all electricity generated and consumed in the United States due to heating, 

ventilating, and air conditioning (HVAC) systems. These systems are critical in the 

energy consumption of buildings in the United States. Previous studies found that another 

crucial factor, the atmospheric temperature, affected energy consumption and variations 

(Sailor, 2001).  

The U.S. Green Building Council’s Leadership in Energy and Environmental 

Design (LEED) was introduced in 1998, and it has become the dominant green building 
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rating system globally. There is a common notion that LEED indicates energy efficiency, 

meaning LEED certification is often perceived as a mark of energy efficiency. To a lesser 

extent, few studies target the relevant energy efficiency standards that LEED adopts, e.g., 

the American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

(ASHRAE) 90.1. Adherence to ASHRAE 90.1 contributes to the energy efficiency of 

buildings. The Prescriptive and Performance Paths method is what LEED uses to model 

savings between baseline and design energy consumption (baseline meaning before 

energy efficient design is adopted and design meaning after energy efficient design is 

adopted). Energy efficiency requirements are further enumerated in LEED’s Credit 3 for 

Energy and Atmosphere (EA). Though LEED-certified buildings are required to use 

ASHRAE 90.1 as de facto standards, jurisdictions that adopt ASHRAE 90.1 would be 

required to achieve similar energy efficiency levels even if they do not adopt LEED (as is 

the case in Arizona). The only difference is the adoption of LEED Credit 3, wherein 

buildings are required to achieve more than the 30% requirement. 

In 2007, the U.S. Army issued Executive Order (EO) 13423 (President & 

Environmental, 2007) to call for the adoption of the Federal Leadership in High 

Performance and Sustainable Buildings. The executive order focused on reducing the 

lifecycle costs associated with environmental and energy attributes of federally owned 

building facilities by implementing the general guidelines of the Energy Policy Act of 

2005. Its policies include improving energy efficiency and reducing greenhouse gas 

emissions. As a result of EO13423, Naval Facilities Engineering Command amended the 

policy in 2008 to require LEED Silver certification of all new military construction and 

major renovation projects in the U.S. Navy and Marine Corps building inventories. 
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Furthermore, the U.S. General Services Administration has upgraded its requirements to 

LEED Gold certification level on all new federal government buildings for a more 

sustainable future (Beatty, 2010).  

In 2010, the previous study compared the energy consumption of U.S. Navy 

LEED-certified buildings and a commercial counterpart against EO13423’s mandate to 

reduce building energy consumption (Menassa, Mangasarian, Asmar, Asce, & Kirar, 

2012). Additionally, the study compared the LEED-certified buildings to the national 

average from the 2003 Commercial Building Energy Consumption Survey. The results of 

this research indicated that LEED certification alone could not guarantee the 30% savings 

for electricity called for by EO13423. Furthermore, the data showed that energy savings 

were not closely related to the number of points received in the Energy and Atmosphere 

(EA) category of the LEED certification process.  

1.1.2 The Use of Green Space in Reducing Atmosphere Temperature  

Urbanization and rapid development greatly increase the consumption of energy that 

emits greenhouse gasses. These gasses affect global climate and temperature (Kwok et 

al., 2016). Increasing global temperatures will result in a temperature increase in urban 

areas and abnormal climates, which lead to adverse effects on global climate 

(Santamouris, 2014). Research related to buildings and the urban heat island with 

external features—which include albedo, vegetation, and perforation rate—was affected 

by weather conditions, especially atmospheric temperature. The urban heat island effect 

exists because of the greater heat retention of buildings and manmade surfaces such as 

concrete and asphalt than that of vegetation (i.e., green spaces).  
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 In 2013, previous research studies found that green space was an excellent way to 

decrease high atmospheric temperature in urban areas. It also generated oxygen to replace 

carbon dioxide. Furthermore, this study included the importance of green space in 

reducing heat island effects (McPherson, 1988; Wagner et al., 2013). Previous studies 

planned various landscapes around the buildings to control solar radiation and air 

infiltration as well as to provide shade and wind protection and thereby reduce energy 

consumption in the buildings (Sawka et al., 2013).  

1.1.3 Applied Methodologies from past Research Studies  

Previous research studies used various analytical methods to analyze the building energy 

data. Regression analysis and various nonlinear analysis methods were commonly 

applied to the study of building energy. Some of these examples include Cheng’s (2015) 

nonlinear analysis and the Asadi et al. (2014) study on linear or multivariate regression 

analyses, which were applied to a large amount of energy consumption data. The Fourier 

et al. (2013) study’s multiple linear regression was used to analyze the building’s 

physical characteristics and energy performance. 

 Additionally, in other past research studies, nonlinear analysis methods were 

applied to external factors (e.g., atmospheric temperature and green space) and building 

energy consumption (Bessec, 2008; Henley & Peirson, 1997; Moral-Carcedp & Vicens-

Otero, 2005; Santamouris et al., 2014). Several previous studies also addressed the 

building energy models and examined imaginary buildings as their case studies (Huang et 

al., 2009; Kalvelage et al., 2014; Kolokotronni et al., 2012; Wan et al., 2012; Wang, 

2014; Yu et al., 2012).  
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Donovan et al. (2009) examined field surveys and electric bills to find out how to 

reduce summer energy electricity costs by approximately 5.2% using green space. Yang 

et al. (2010) found from field surveys that layout, density, and ratio of green coverage 

around buildings influenced urban heat effects in the residential buildings of Shanghai. 

They stated that shade and solar heat modified the urban heat island more than any other 

factors. Additionally, paved road space with shade was cooler than public lawn space 

without shade. Oliveira et al. (2011) asserted that even small urban green spaces could 

alleviate the urban heat island effect. They performed a case study of a 0.24 hectare 

neighborhood garden in Lisbon and found that the garden’s highest temperature was 6.9 

°C cooler than those of surrounding locations.  

Overall previous research studies, which included building energy consumption 

performance, found that the relationship between environmental factors (e.g., atmosphere 

and green space) building energy consumption, and data analysis methods required the 

use of data mining techniques (e.g., K-means clustering, isolation, and isolation forest) to 

find better empirical results and overcome the limitation of data analysis methods. 

Therefore, this research study attempts to significantly address these gaps in knowledge 

by providing comprehensive case studies.   

1.2 Research Objectives and Methods 

The primary objectives of this dissertation are to: (a) find the relationship between 

building energy consumption, outside atmospheric temperature, and LEED EA credits, 

(b) examine the use of different green space layouts to reduce the atmospheric 

temperatures of high-rise buildings, and (c) use data mining techniques, including 
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clustering and isolation, to identify data anomalies in the energy data set and evaluate 

LEED EA credits after construction based on building energy patterns.  

 The main focus of this dissertation is finding and analyzing building energy 

consumption data using various analytical methods such as data mining, which includes 

clustering, isolation, and anomaly detection. This dissertation is composed of three main 

phases, which are included in chapters 2, 3 and 4 and shown in Figure 1. The individual 

chapters will be expanded into journal format.  

 

Figure 1. Research Study Flow Chart (Chapter 2, 3 and 4) 
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1.2.1 Chapter 2: Building Energy Consumption vs LEED EA Credits 

Chapter 2 provides a detailed description of the effects of external factors on building 

energy efficiency designs and LEED EA credits. This study compared the relationship 

between the external factors and building energy consumption of LEED certified 

buildings at Arizona State University by establishing the relationships between the 

outside atmospheric temperature and the energy consumed in the building using real-time 

data. The study highlighted the fact that energy consumption data alone does not yield 

useful results, and a further pre-data process is needed to establish the cause and effect 

relationship. The findings of this study are being prepared in journal paper format for the 

Journal of Engineering, Design and Technology.   

1.2.2 Chapter 3: The Use of Greenery Space Layouts in Reducing Air Temperature 

Chapter 3 discusses how different green space layouts affect atmospheric air temperature 

around buildings, which contributes to the urban heat island effect. The aims are to 

develop an understanding of whether greenery arrangements affect the urban heat island. 

Field measurements were taken for three different layouts, namely greenery surrounding, 

in the center of, or distributed over a complex or building. The study shows that the 

layout of greenery can have a significant effect on urban heat islands given the same land 

area. This study is being prepared for the Journal of Architectural Engineering. 

1.2.3 Chapter 4: Detect Anomalies Using Isolation Technique 

Lastly, Chapter 4 presents the building energy consumption patterns of LEED buildings 

after the construction phase and finds energy consumption data abnormalities using 

clustering and isolation techniques. The purpose of this study is to examine how the 

energy consumption patterns affect LEED EA credits after construction. The results 
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showed that LEED buildings with higher OEP points had stable energy patterns and 

consumed the least amount of energy. The findings of this study are being prepared for 

the Journal of Energy Engineering. 

1.3 Dissertation Format 

This dissertation is composed of three journal papers. Each of the three subsequent 

chapters represents an independent article. Therefore, each chapter will have its own 

abstract, introduction, objectives, methodology, discussion of results, and conclusions. 

The findings of chapters 2, 3, and 4 are being prepared in journal format for the ASCE.  

 Chapter 1 presents the basis of the current body of knowledge related to this 

research study, including the research background, problem statement, methodology, 

objectives, and scopes and format. Chapter 2 provides an understanding of the effects of 

external factors on building energy efficiency designs and LEED EA credits. Chapter 3 

presents how different green space layouts affect the surrounding atmospheric air 

temperatures of high-rise buildings. Finally, Chapter 4 provides an understanding of the 

building energy consumption patterns of the post-construction phase and finds energy 

consumption data abnormalities by using clustering and isolation techniques during the 

data process. Chapter 5 includes the research summary and conclusions based on the case 

studies of Chapters 2 through 4 as well as the research limitations and contributions of 

the dissertation and future research studies. References and appendices are attached at the 

end of this dissertation.  
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2. UNDERSTANDING THE EFFECTS OF ENVIRONMENTAL FACTORS ON 

BUILDING ENERGY EFFICIENCY DESIGNS AND CREDITS 

 

2.1 Abstract 

Energy usage of buildings accounts for a large part of total energy usage in the U.S. The 

American Society of Heating, Refrigeration and Air-conditioning Engineers (AHSRAE) 

90.1 standard has been used extensively to reduce energy consumption in buildings. 

ASHRAE 90.1 has been adopted by many states and organizations, including green 

building rating systems and codes, such as the LEED Energy and Atmosphere (EA) 

credits. It is often assumed that compliance with the LEED EA credit would be 

interpreted as improved energy efficiency. This study compared the relationship between 

the environmental factors and building energy consumption of three LEED certified 

buildings at the Arizona State University, by establishing the relationships of the outside 

atmospheric temperature and the energy consumed in the building using real-time data 

generated from different sources. The study shows that there is no linear dependency 

between the selected independent factors and energy use of the studied buildings. The 

study highlighted that energy consumption data alone does not yield useful results and 

further calibration of the dataset is needed by establishing the causation and effect 

relationships.  

2.2 Introduction and Scope of Research 

Buildings accounts for 20-40% of the total energy consumed (Pérez-Lombard et al., 

2008) while building operations and maintenance consumed approximately 80% of such 

energy throughout their lifecycle (Cole & Kernan, 1996; Sartori & Hestnes, 2007) in the 

United States. As the energy is generated from non-renewable sources (e.g., fossil fuel 
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and natural gas) mostly, it increases the risk of global warming and air pollution. 

Reducing energy consumption throughout a building’s lifecycle will reduce the 

associated pollution. 

The International Energy Conservation Code (IECC), and 

ANSI/ASHRAE/IESNA Standard 90.1 Energy Standard for Building are the two 

predominant building energy codes in the United States. These codes contain building 

energy design methods that would improve building energy efficiency by a certain 

proportion over the baseline building energy consumption. 

The United States Green Building Council (USGBC) Leadership in Energy and 

Environmental Design (LEED) was introduced in 1998, and it has become the dominant 

green building rating system globally. There is a common notion that LEED equates to 

energy-efficiency. LEED-certification would often be perceived as achieving energy 

efficiency. To a lesser extent, few research targets the relevant energy efficiency 

standards that LEED adopts, i.e., ASHRAE 90.1. ASHRAE 90.1 is a standard what 

contributes to the energy efficiency of buildings. The “Prescriptive and Performance 

Paths” method is the method that LEED adopts to model savings between “baseline” and 

“design” energy consumption (baseline = before energy efficient design is adopted, and 

design = after energy efficient design is adopted). LEED’s credit 3 for Energy and 

Atmosphere (EA) further enumerates energy efficiency requirements. While LEED-

certified buildings are required to use ASHRAE 90.1 as de-facto standards, jurisdictions 

that adopt ASHRAE 90.1 would be required to achieve similar energy efficiency levels 

even if they do not adopt LEED (as in the case of Arizona). The only difference is the 
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adoption of LEED Credit 3, where buildings are required to achieve beyond the 30% 

requirement. 

A recent study on LEED buildings’ energy consumption found that LEED-

certified buildings consumed approximately 25-30% less energy than non-LEED certified 

buildings (Scofield et al., 2008). However, their research did not mention if ASHRAE 

90.1 was a mandatory code in the studied region. Alternatively, an energy efficiency 

study by the American Physical Society (APS) noted that LEED buildings use more 

energy per square foot than the average for all existing commercial buildings (Richter et 

al., 2008). This study exhibited results that deviated from prior studies on LEED-certified 

buildings. As such, this paper attempts to establish a relationship, using real-time energy 

consumption data, between additional points from LEED credit 3, and actual energy 

consumption of three buildings on the ASU campus.  

2.3 Research Objectives  

This research attempts to understand the relationship between LEED credit 3 and energy 

efficiency of buildings, particularly when energy consumption is affected by outdoor air 

temperature and real-time data (by the hour). Establishing this relationship using real-

time data is the unique approach adopted by this research. Real-time energy consumption 

data exhibits features that traditional energy consumption data does not include: 1) the 

ability to incorporate variability during different periods, and thus eliminate external 

elements on the analysis, and 2) changes to design and operational variables at different 

periods. 

The three objectives of this research study include: 1) understanding the 

relationships between energy consumption and outdoor atmospheric temperature; 2) 
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understanding the relationships between energy consumption and LEED energy credits; 

and 3) understanding the use of LEED energy credits as a tool to improve energy 

efficiency of buildings. 

2.4 Literature Findings 

Literature review included many studies on the relationships between energy use and 

factors driving energy use, especially on the use of statistical analyses for building energy 

consumption. 

2.4.1 Building Energy Performance and Consumption 

Diamond et al. (2006) studied the differences between modeled and actual energy 

performance of 21 LEED-certified buildings between December 2001 and August 2005 

using 2003-2005 utility bills, by analyzing the energy consumed by these buildings. They 

found that 18 buildings were 26% more energy efficient than the baseline design case. 

However, the research also highlighted that 21 buildings were not conclusive, and there 

are other limitations like as-built versus as-designed discrepancies, and changing 

conditions such as occupancy, weather, use, etc. 

 Newsham et al.'s (2009) study on energy use data (from New Buildings Institute, 

and 100 LEED-certified commercial and institutional buildings) found that the LEED-

certified buildings consumed between 18 and 39% less energy per floor area than non-

LEED certified buildings. However, 28-35% of LEED buildings consumed more energy 

than comparable non-LEED certified buildings. The study also found an insignificant 

correlation between measured energy performance of LEED buildings, with the level of 

LEED certification and the number of LEED energy credits earned. 
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Juan et al. (2010) studied and suggested that LEED buildings are “healthier” and 

improve work productivity, and are potentially more energy efficient than non-LEED 

certified buildings. These buildings could potentially save 25-50% energy and are thus, 

more environmental friendly, as shown in previous studies. 

 Salmon et al.'s (2008) study on 121 LEED-certified buildings, using three 

different baselines (Energy Use Intensity – EUI, average Energy Star rating, and energy 

consumption model), found that the energy performance of the LEED-certified buildings 

vary significantly. The study found that the surveyed buildings’ median EUI was 24% 

below the national average (Commercial Building Energy Consumption Survey - 

CBECS). Statistical analysis showed that the median energy performance of the LEED 

gold- and platinum-certified buildings were aligned with the energy consumption goals of 

Architecture 2030 (Wedding et al., 2008). The study also showed that adopting Energy 

Star ratings improved the energy performance of buildings regardless of their LEED 

certification status. Alternatively, the study also showed that the actual energy consumed 

at the occupancy stage of nearly half of the buildings was significantly higher than the 

computed design energy consumption. Similarly, Turner and Frankel’s (2008) study 

showed that the average site energy intensity of the surveyed LEED buildings were 25% 

to 30% more energy efficient than the national average. 

2.4.2 Building Envelopment 

Cidell's (2009) study found that most LEED-certified buildings clustered in a few 

geographical locations. The research affirmed a previous study by Sinha (2008) that 

income level, educational level, and size of the service-sector correlated with the number 
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of green buildings built in the region. This suggests that the green buildings might be 

more appealing to the more affluent regions. 

Griffith et al.’s (2008) study showed that 62% of the sampled buildings and 47% 

of the sampled floor space could achieve net-zero energy use using current technologies 

and design practices. The energy-saving focused on building envelopes, lighting controls, 

plug and process load reduction, and energy efficient HVAC system, and their study 

showed a decrease in lifecycle energy consumption of 43% or more using ASHRAE 

90.1-2004. Kneifel (2010) stated that ASHRAE 90.1 focuses on cost-effective solutions 

pertaining to the Lower Energy Case (LEC), and the study confirmed the statement in 

over half of the 192 sampled building. These results also showed how quickly energy 

efficiency measures could be applied in the context of design. 

2.4.3 Analysis Methods 

Regression analysis and various non-linear analysis methods were commonly applied to 

study building energy. Some of these examples include Cheng’s (2015) non-linear 

analysis, and Asadi et al.’s (2014) linear or multivariate regression analyses, where they 

were applied on a large amount of energy consumption data. Focuier et al.’s (2013) 

multiple linear regression was used to analyze the building’s physical characteristics and 

energy performance. Clustering analyses were used to analyze building energy 

performance and applied to both design and operational stages using design documents 

and weather data from the weather stations (Heidarinejad et a.l, 2014; Hsu, 2015; 

Petcharat, et al., 2012). Cluster analysis offers the potential to analyze and test energy 

consumption of buildings by energy use intensity categorization.  
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The above reviews showed that previous research comparing energy efficiency 

and consumption differences between LEED-certified and non-LEED-certified buildings 

did not focus on the application of relevant codes and standards, i.e. ASHRAE 90.1. 

LEED credits on “Energy and Atmosphere”, more specifically Requirement 1 and Credit 

3, are the only LEED requirements that target energy use and efficiency. This research 

aims at understanding if complying with ASHRAE 90.1 alone versus achieving more 

LEED credits in credit 3 would result in improving energy efficiency (rather than 

modeling LEED certification versus non-LEED certification. 

2.5 Research Methodology 

Real-time hourly energy usage data for three sample buildings on the ASU campus were 

selected for the study. Data from 2012 to 2014 on electricity consumption were collected. 

The energy consumption data collected are for the total energy consumed by the 

buildings by the hour. Only electricity data was collected as other sources of energy (like 

natural gas) were used only infrequently. The energy usage was adjusted by dividing the 

total electricity use by the corresponding building’s floor area. The electricity usage data 

were consolidated into daily values to synchronize it with the average value of the outside 

atmospheric temperature. The resulting unit of the electricity usage is Kilowatt per square 

feet-day (Kw/Sqft-day). The real-time energy data was calibrated to minimize the effects 

of external elements (e.g. building maintenance schedule) using k-means clustering 

algorithm. K-means clustering is a method of vector quantization, originally derived from 

signal processing, that is popular for cluster analysis in data mining. K-means clustering 

aims to partition n observations into k clusters, in which each observation belongs to the 

cluster with the nearest mean, serving as a prototype of the cluster. These results in a 
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partitioning of the data space into Voronoi cells, and thus, would be used to isolate non-

relevant factors. 

The daily average outside atmospheric temperature was collected from the 

National Oceanic and Atmospheric Agency’s (NOAA) climate data. The geographical 

location for the data is set at 33.4258N latitude and -111.922W longitude (city of 

Tempe), and at 33.4222N latitude and -111.8219W longitude (city of Mesa); both 

locations are at the Weatherup Center on the Arizona State University (ASU) campus. 

The distances between the weather station and buildings are insignificant to cause any 

changes in temperature or climate. As the relative humidity in the region is extremely 

low, the electricity use for heating and cooling is mainly used to deal with the 

temperature and not to extract moisture from the atmosphere. Thus, the energy consumed 

by the buildings could be lower than the national average. 

2.6 Results: Findings and Analysis 

The electricity used for the cooling and heating for each building was calibrated to 

address the outside air temperature.  

2.6.1 Selection of LEED Buildings in Arizona State University, AZ 

Three buildings managed by the Arizona State University were selected for the study. 

The buildings were selected as they had complete information and the ASU facilities 

management team had solid documentation of the buildings. The buildings included Bio 

Design Building B and Barrett Honors College building located in Tempe, AZ, and the 

Interdisciplinary Science and Technology Building 3 (ISTB 3) located in Mesa, AZ. As 

shown in Figure 2 and Table 1, these buildings are located in the same ASHRAE climate 

zone. 
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Figure 2. Climate Zone in Tempe and Mesa, Maricopa County (AZ) (Adopted from 

the 2014 International Energy Conservation Code) 

Table 1. Climate Information Between Tempe and Mesa, AZ (Adopted from 2014 

U.S. Climate Data) 

Climate Information 

Tempe 

(9/1/2012-

8/31/2014) 

Mesa 

(9/1/2012-

8/31/2014) 

Observation 

Error 

Climate Zone 2 2 - 

Sunny Days 296 296 - 

Average July High (°F) 104.2 103.9 0.29% 

Average January Low 

(°F) 

33.8 34.1 0.88% 

Elevation (ft) 1,192 1,273 - 

 

The focus of this section is to understand how outdoor atmospheric temperature affects 

the energy consumption and performance (particularly electricity consumption) of 

LEED-certified buildings. The Optimize Energy Performance (OEP) factors (submitted 

during LEED certification process) were used to determine the LEED EA credits earned. 

Bio Design Building B earned 10 points, Barrett Honors College earned 4 points, and 

ISTB 3 earned 2 points. These points are listed with building information in Table 2. 
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Table 2. Green Building Facilities Information at Arizona State University, AZ 

Building Name Bio Design B 
Barrett Honors 

College 
ISTB 3 

Facility Purpose Office/Research Class/Office Office/Research 

Facility Gross Area (SF) 179,559 89,298 47,276 

Facility Net Area (SF) 80,940 42,663 21,304 

LEED Certification Platinum Gold Gold 

Earned OEP in EA 10 4 2 

 

LEED points for EA credit 3 represent the additional energy saving beyond the 30% 

specified on the basis of ASHRAE 90.1, and the computed values only represent the 

design values and not values at the operational phase. The energy saving is compared 

with the baseline design case (Turner & Frankel, 2008). The list of the selected buildings 

is shown in Table 2. 

2.6.2 Statistical and Correlation Analyses  

Figure 2 exhibits the scatter plots between the different aspects of atmospheric 

temperature and the electricity consumption in the three buildings. It is important to note 

that the ambient temperature in the Phoenix area is significantly higher during the 

summer, and lower during the winter, than the rest of the country (75°F during the 

summer, and 65°F during the winter). The heating load during winter is constantly less 

than 10% of the cooling load in the summer. The analyses concluded several important 

points: 

 1) The relationships between electricity consumption, atmospheric temperature, 

and earned OEP points differ in all the three buildings. The scatter plots for ISTB 3 and 

Barrett Hall seemed to suggest significant relationships between electricity consumption 
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and outdoor climate, but only a slight relationship was seen for Bio Design B. The 

impacts are significantly different, though. 

 2) Bio Design B seemed to be the most energy efficient building for the entire 

year, even though ISTB 3 seemed extremely efficient when its temperature was ideal 

(i.e., the heating and cooling systems were not running). These seem to suggest that 

changing temperatures for ISTB 3 leads to increasing electricity consumption, 

particularly heating and cooling loads. 

 3) The electricity consumption in Barrett College seemed to increase when 

outdoor temperature increased, and, unlike ISTB 3, the electricity consumption seemed to 

be less sensitive to the heating load. 

 4) While cooling and heating loads might have driven electricity consumption for 

ISTB 3 and Barrett College, the plots seem to suggest there could be other factors driving 

the electricity consumptions in both buildings. These factors include: a) air flow 

interference due to air filters, duct sizes, equipment efficiency, occupancy rates, building 

use, etc.; b) the buildings’ design and operations (including energy system operation and 

design) were influenced by their use and functions, and the electricity consumption could 

be different – the electricity consumption for laboratory would be more consistent as 

occupancy rates often remain consistent throughout the day and evening, while the 

residential hall (Barrett College) would consume more energy in the evening and 

significantly lower energy during school breaks. 

 5) Despite the differences mentioned in point 4, the operational approaches the 

facilities management department adopt have more influence on the electricity 
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consumption. If the operators operate the buildings without regard to the occupancy, 

electricity consumption will become increasingly similar.  

The bar charts in Figure 3 exhibit the average, minimum, and maximum 

electricity usages and their standard deviations. The bar charts clearly distinguish the 

electricity consumption patterns of the three buildings. The bar charts show that the Bio 

Design building is the most efficient among all three buildings, as its average electricity 

consumption is the lowest. ISTB 3 seems to be most efficient when the outdoor climate 

gets closer to ambient temperature. Bio Design building had the most consistent energy 

consumption pattern and it seems like external air temperature had the least effect on 

electricity use. The standard deviations of all three sets of data also showed that air 

temperature had the least impact on the Bio Design building, but the greatest on Barrett 

College. Further statistical analyses are presented below to provide more detail. 
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Figure 3. Scatter Plots of Energy Usages Versus Atmospheric Temperature in Daily 

Scale 

2.6.3 Data Pre-Processing: Calibrating Electricity Consumption 

Analyses in the previous section exhibit both significant and not so significant 

relationships between electricity consumption and outdoor air temperature. Further 

analyses are required to better understand the reasons behind the differences and plots. 

Building Envelop: The “V-shape” scatter plot of the ISTB 3 building in Figure 2 

suggested that the outdoor air temperature could heavily influence ISTB 3's electricity 
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consumption. Thermal heat transfer through the envelope increases the demand to heat or 

cool indoor air, as lower or higher outdoor air temperature increases energy to cool or 

heat up outdoor air to adjust the ambient air temperature. A poorly sealed building would 

also cause an increase in energy use due to the gaps between outdoor and indoor air 

temperature. Thus, the relationship between energy use and outdoor air temperature could 

mean that one or both of the relationships are happening. Energy efficient building 

envelopes would decrease the significance of the relationships, since reducing heat 

transfer from the envelope would reduce the need to heat or cool indoor air. Good quality 

construction of building envelopes also reduces the significance of the relationship. 

The significance of such a relationship on ISTB 3, and to a lesser extent on the 

Barrett College, does not mean that the Bio Design building has a better constructed and 

insulated building envelope. However, the low electricity consumption (average, 

minimum and maximum) of the Bio Design building suggests that the Bio Design 

building is an extremely energy efficient building, and this would explain the quality of 

its envelope. It is safe to assume that the envelope is well constructed. It is also safe to 

assume that the thermal heat coefficients of all three buildings are equivalent and were 

well constructed; thus, the differences in the energy performance would not be influenced 

by the building envelope. 

What explains the differences? The explanation on the quality of building envelopes 

and their construction shows that other factors influence electricity use from changing 

outdoor air temperature. Preliminary observations show that minimum electricity use 

plots are scattered across the graph, and they seem to suggest that certain factors could be 

driving the relationship. A preliminary investigation suggested that the types of building 
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occupants, hours of operations, and the types of equipment installed in the building could 

impact electricity consumption. 

Treatment and Calibration of Data: The efficiency of equipment would have the most 

significant impact on the minimum electricity consumption of each building. Heating and 

cooling equipment would normally stop during the period when minimum energy use 

occurred. During these periods, other equipment may still be running. As a result, the 

data were calibrated accordingly, using various statistical methods such as K-means. 

Therefore, the daily energy usages were adjusted by eliminating the minimum 

electricity use from the overall dataset. This filtering procedure would strengthen the 

effects of heating and cooling loads. Furthermore, preliminary analyses suggest that there 

are “unchecked” clusters among the data. The unchecked clusters are the result of mixing 

non-significant data with significant data, i.e., data influenced by outdoor air temperature 

versus those not influenced by outdoor air temperature. Bio Design B building and 

Barrett Honors College data could exhibit the presence of such clusters, and thus require 

further treatment to the data. 

Data Clustering: Cluster analysis is the procedure that groups a set of objects in such a 

way that objects in the same group are more similar to each other than to those in the 

other groups (Anderberg, 2014). It is commonly used in exploratory data mining and 

statistical data analysis to eliminate unwanted influences or factors from a set of data. 

Cluster analysis is not a specific algorithm, and has several techniques. K-means is the 

technique used in this paper.  

Clustering to eliminate data errors: The clustering of data suggests the need for further 

investigation of relationships. Unexpected clusters were found after the clustering 
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exercise. The relationship between electricity use and outdoor air temperature is distorted 

if other non-related clusters are mixed with the related clusters. Two different groups 

clustered the data Bio Design B building - ‘Before calibration’ and ‘After calibration’. 

The clustering exercise also eliminated an error from the data. The error occurred from 

February 2, 2012 to 2013, when energy consumption data was inaccurately registered. 

The clustering exercise adjusted the inaccurately registered data. The trends shown on 

these two plots was similar, even if the maximum and minimum electricity use had an 

approximately 40% difference (from 0.1969 kW/SF to 0.1466 kW/SF). The scatter plots 

were calibrated and replots are exhibited in Figure 4.  

 

Figure 4. Scatter Plots of Energy Usages and Atmospheric Temperature: 

(“Before Calibration” and “After Calibration” of Building Temperature) 

The clustering exercise was also conducted on the Barrett Honors College building’s 

electricity consumption data, and the data was separated into two groups. Figure 4 shows 

the scatter plots of electricity consumption and outdoor atmospheric temperature of the 
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Barrett Honors College. The upper-left figure is a scatter plot of energy usage of periods 

of vacations and semesters at ASU when electricity consumption is assumed to be lower. 

Clustering of data that are influenced by the occupancy rate (Barrett Honors 

College): The scatters of the two clusters explained the effects on electricity consumption 

that is influenced by occupancy. High occupancy (during the semester) is correlated with 

high electricity use. The academic schedule of ASU is used as the factor for the clustering 

exercise. Mixing clusters of low occupancy with high occupancy affect the electricity 

use’s relationships with outdoor air temperature and energy use intensity (per square 

foot). The clustering exercise thus separates the data into two clusters - one for high 

occupancy (during the semester), and one for low occupancy (during breaks). The 

analysis shows that occupancy is a factor that exhibits a significant impact on the cooling 

and heating loads. A fully occupied building exhibits a greater dependency on heating 

and cooling loads, and larger gaps between outdoor atmospheric temperature and indoor 

ambient temperature would increase heating and cooling loads. 

The relationships between building occupancy and heating/cooling energy 

consumption is critical in the analysis of energy consumption in buildings. The separation 

shows the intimate relationship between occupancy and heating/cooling load that prior 

research has yet to establish. The upper left figure (titled Barrett Hall College occupancy) 

in Figure 5 shows the “vacation” group from the “semester” group (semester group 

represents data during the semester, and the vacation group represents data during 

breaks). The data points for the vacation group are denser as it gets closer to the ambient 

temperature, while the data points for the semester group are clustered away from the 

ambient temperature and clustered around the periods when the gaps of indoor and 
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outdoor temperature were larger. This somehow suggests that electricity consumption is 

affected by both occupancy and outdoor air temperature, and there is a significant 

relationship between outdoor air temperature and occupancy. As a result, both clusters 

could be merged by subtraction of minimum energy usage points from both clusters. 

Clustering of data that are influenced by occupancy rate (Bio Design building): 

However, this is not the case for the Bio Design B building. The data could not be 

linearly divided, and was found to be co-mingled. The two clusters were divided by the 

distance between the centroids within their clusters. The choice of initial centroids must 

consider the shape of the cluster. The two clusters are not radially shaped, but spread 

horizontally and slightly downward to the left. Before applying this algorithm, all of the 

dimensions were normalized in order to calculate the spatial distance of the vectors. 
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Figure 5. Scatter Plots of Energy Usages and Atmospheric Temperature: 

(Vacation (Inactive Occupancy) and Semester (Active Vacancy)) 

The figure on the upper-right side is an initialization of the four cluster centroids. The 

two centroids (or points) in semester group belong to the semester groups and the lower 

two clusters belong to the vacation groups. The initial centroids were deployed along the 

centerlines of the two groups. Then, all points were assigned to the closest centroid. The 



28 

 

recomputed centroids were used for the next iteration, and the iteration was stopped when 

the threshold of the distance between the previous centroid and newly calculated centroid 

became less than 0.001. The figure on the bottom left-hand side summarizes the final 

results of the four clusters. Finally, the two groups were created by adding two of the 

horizontal clusters to create active and inactive occupancy clusters, and similarly, the two 

separate minimum energy usage values of 0.2851 kW/SF and 0.2037 kW/SF for the 

active occupancy and the inactive occupancy were also chosen. 

2.6.4 Calibrated Heating and Cooling versus Atmospheric Temperature  

Building characteristics affecting relationships: The raw energy usage data has to be 

calibrated to address the corresponding minimum energy usages for a different scenario. 

The minimum energy usages were chosen for each cluster. Figure 6 shows the calibrated 

relationship of building energy usage compared to the outdoor atmospheric temperature. 

There are no visible separations for the scatter plots of all three buildings. In the bar chart 

in Figure 6, the ISTB3 building (recall that its OEP score is the lowest among the three 

studied buildings) had the most significant relationship between electricity consumption 

and outdoor atmospheric temperature. 

On the other hand, the Bio Design B building (recall that it earned the most OEP 

score) consumed only a quarter of electricity compared to ISTB 3. The Bio Design B 

building exhibited a more stable electricity consumption pattern throughout the study 

period. Barrett Honors College displayed a more moderate relationship. This somehow 

suggests that there is an inverse relationship between electricity consumption and OEP 

scores (recall LEED credit 3) – Higher OEP score results in lower energy footprint and 

less significant relationships between energy consumption and outside air temperature. 
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This suggests that better building energy efficiency design could reduce the impact of 

external effects on energy consumption. This is, however, an inconclusive statement, but 

it is worth further investigation. 

 

Figure 6. Calibrated Scatter Plots of Energy Usages by Corresponding Minimum 

Energy Usages Versus Atmospheric Temperature in Daily Scale 

2.6.5 Chi-Square Analysis 

Chi-square is used to further analyze the data. As discussed before, building performance 

is driven by a building’s characteristics and its local climate condition. This analysis 

focuses on comparing buildings with similar conditions between the internal and external 

factors. The chi-square method is used to generate an understanding of the differences 

between LEED scores for credit 3, and its effects on building energy use. The chi-square 
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technique is used as it could investigate the distributions of categorical variables 

(calibrated energy usage) and how they differ from the expected frequency (that is 

derived from three sampled buildings). The significance and differences between the 

expected frequencies and observed sample’s frequencies in the categories were 

examined. 

The difference between expected and observed frequencies of the categories was 

thoroughly examined. The null hypothesis is described as “no significant difference in 

the energy efficiency between the three buildings.” The similarity between the 

frequencies of the categorization shown in Table 3 reveals that the energy efficiency of 

the studied buildings is very different (none of the buildings are similar to each other). 

The chi-square test aims to understand the implementation of the buildings’ energy usage 

efficiency for different buildings; the chi-square statistic method was used to understand 

practical energy usages among three sampled buildings. A two-way table, which contains 

728 daily energy use for two years, was used to categorize the magnitude of the energy 

usage by a 0.05kW/SF increment, and the results are shown in Table 3. Two-way Table 

of Energy Efficiency of LEED Buildings in ASU, AZ.  

The chi-square analysis shows that daily energy use (through observation) of the 

Bio Design Building B can be categorized as the most energy efficient building among all 

three sampled buildings ((0-0.05 kW/square foot). On the contrary, a sizable proportion 

of the observations of the ISTB 3 building shows that it performs worse than the Bio 

Design B building (see Table 3). Barrett Honors College falls between both buildings. 
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Table 3. Two-way Table of Energy Efficiency of LEED Buildings in ASU, AZ 

 

Figure 7 reveals that the buildings’ expected counts for each category and the observed 

counts (of the data points among three LEED buildings) grouped in different external air 

temperature. The chi-square analysis shows that it is very common, from the general 

statistical point of view, to overcome the biases of building categorization due to the 

buildings’ energy consumption pattern. In the data used for this research study, 2184 

different observations of the energy usage for three buildings were recorded. The 

expected numbers of energy usage in each building category were significantly different 

from the occurrence of the energy efficiency categories within the research study. 

Therefore, the null hypothesis was rejected, implying that there was a significant 

difference in the energy efficiency between the three buildings and these energy 

efficiencies were not distributed proportionately to the occurrence of energy efficiency 

categories.  
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Figure 7. Actual Counts and Expected Counts in Chi-Square Test 

2.7 Conclusions and Discussions 

This study investigated the effects that both endogenous variables (e.g., LEED OEP) and 

exogenous variables (e.g., atmospheric temperature) have on the energy usage 

comparison of green buildings such as Bio Design B, Barrett Honors College and ISTB 3, 

on the ASU campus, AZ. The results of the study are concluded and summarized below:  
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1. Data Calibration and Adjustment: As shown in the results of this study, raw energy 

data was required to reconcile and harmonize to use for data analysis. In addition to 

enhance this raw data, calibration and adjustment of the data was needed to analyze 

accurately. The daily energy usages were adjusted by subtracting the minimum energy 

use. This approach allowed the research to filter electric uses from other equipment in the 

building except for heating or cooling. 

2. Data Clustering (K-means): K-means technique was utilized to find and eliminate 

data errors. For the Bio Design B building-raw data, an energy usage data error occurred 

and recorded incorrectly for 6 months during the research study, from February 2012 to 

February 2014. Based on this raw data, there was an approximately 40% energy usage 

difference (from 0.1969 kW/SF to 0.1466 kW/SF) between ‘Before calibration’ and 

‘After calibration’.  

3. Chi-Square Method: In order to verify if the results were reasonable, the chi-square 

technique was used to prove the findings. Observation counts on daily energy usage in 

the Bio Design B Building earned the highest OEP, scored 10, falling into the most 

efficient category. In contrast, the observation counts of ISTB 3 earned the lowest OEP, 

scored 2, therefore displaying less energy efficiency. As a result, the null hypothesis, 

which was defined as “no significant difference of the energy efficiency between the 

three buildings”, was rejected.  

4. Relationship between electricity consumption, atmospheric temperature and OEP 

points:  

The three buildings earned different OEP points. Electricity consumption for ISTB 3 and 

Barrett Honors College, which earned the lowest and middle points, were significantly 
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affected by atmospheric temperature; however, the Bio Design B building, which earned 

the highest OEP points, was less affected by the atmospheric temperature compared to 

the other two buildings. Also, the average electricity consumption for the Bio Design B 

building was the lowest. As a result, the building with the lowest OEP points (ISTB 3) 

used the highest amount of energy compared to the other two buildings with higher OEP. 

The study showed an inverse relationship between energy use and OEP points. 

The LEED OEP scores tend to increase the energy saving potential of the 

building, leading to fewer needs for renovation and maintenance; however, it cannot be 

verified for a one-sided approach such as energy efficiency, as the analyses suggest. 

However, this study highlighted that calibrating energy data is a better approach to 

analyze energy use in buildings and that the relationships between LEED credits (EA) 

and energy efficiency are not as simple as assumed by previous research studies. Energy 

efficiency credits in green building standards and rating systems (e.g. LEED and IgCC) 

may not reduce energy use in reality.  

2.8 Future Research 

There are more complicated factors that influence energy use and these factors have to be 

integrated into design and engineering. Instead of focusing on the scores of these energy 

credits, such as on the LEED scoreboard, the research suggests that external factors could 

be more critical. Better energy efficiency can be achieved if these external factors are 

integrated with the energy efficiency credits in LEED. Based on the research results, here 

is a list of further research to validate results in the following areas: 

1. Investigate the daily On-Peak and Off-Peak, and the monthly On-Peak and Off-

Peak energy usages using the hourly temperature data and building occupancies.  
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2. Investigate how much energy is used for heating/cooling, lighting, and office 

equipment per building, and find out how to use the energy efficiently.  

3. Quantify and weight LEED points based on greenhouse gas emissions from the 

building materials.  

4. Analyze the relationships between energy usage On-Peak/Off-Peak regarding 

building energy usage per building function and LEED points. 
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3. URBAN GREENERY SPACE LAYOUTS AND URBAN HEAT ISLAND: 

CASE STUDY-ANALYSIS OF HIGH RISE APARTMENT COMPLEXES IN 

SOUTH KOREA 

 

3.1 Abstract 

Low Solar Reflectance Index (SRI) is the key to reducing urban heat island. The greenery 

space has a low SRI due to oxygen generation that further reduces environmental 

temperature. The focus of this research is to determine air temperature differences 

affected by different greenery space layouts. The aims are to develop an understanding of 

whether greenery arrangement has an effect on urban heat island. Field measurements 

were taken for three different layouts, namely greenery surrounding a complex/building, 

greenery in the center of a complex/building, and greenery distributed over a 

complex/building. The study results exhibit gaps between significant temperature 

differences when solar heat is present (i.e., in the daytime). The sites with greenery in the 

middle of a complex generated lower urban heat island effects than the other layouts. The 

study shows that layout of greenery space (and ultimately low SRI materials) can have a 

significant effect on urban heat island, given the same land area 

3.2 Introduction  

Urbanization and rapid development increase the consumption of energy that emits 

greenhouse gases in large quantity. These gases affect global climate and temperature 

(Pachauri et al., 2014). The effects of climate change can be devastating, as predicted by 

many scientists (Gornall et al., 2010). Increasing global temperatures will result in a 

temperature increase in urban areas and abnormal climates generating adverse effects on 

global climate (Santamouris, 2014).  
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3.2.1 The Relationship Between Greenery Space and Urban Heat Island (UHI) 

Wagner et al. (2013) studied that greenery space is an excellent solution to overcome 

high temperature in urban areas and generate oxygen to replace carbon dioxide (through 

plant transpiration). Previous studies had shown the importance of greenery in reducing 

the effects of heat island effects (McPherson, 1988). Due to limited land space in many 

major cities, greenery is a luxury and takes away valuable space that could be utilized in 

other uses (like commercial and residential). As such, maximizing the use of greenery 

becomes critical; however, the understanding of greenery space and its effects on heat 

island on apartment buildings is still fairly limited.  

3.2.2 Urban Heat Island Effects in Korea 

The urban heat island effects result from urban development and greenery space 

reduction, which cause major climate change (McPherson, 1988). The Korea 

Meteorological Administration (2008) observed that the average temperature in Korea 

has increased by 1.5°C/ 100-year, which is higher than the average increase in global 

temperature (0.6±0.2°C/100-year). The urban heat island in Korea deviates considerably 

from an idealized, concentric heat island structure, mainly due to the location of the 

majority of commercial and industrial sectors and the local topography. Relatively warm 

regions extend in the east–west direction and relatively cold regions are located near the 

northern and southern mountains (Kim & Baik, 2005). 

3.3 Research Hypothesis and Objectives  

The research study attempts to develop an understanding of air temperature, relative 

humidity, and greenery space layout, focusing on a housing complex based on the 

following hypotheses: 1) greenery layout affects air temperature and relative humidity 
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surrounding the complex, and 2) there are distinctions among greenery space layouts 

along with means to reduce air temperature in housing complexes due to the different 

layouts in housing complexes.  

Regarding the hypotheses above, there are four research objectives, which are to: 1) 

demonstrate the sites where the air temperature is different, depending on greenery space 

layouts; 2) reduce air temperature within the buildings; 3) use greenery space layouts in 

reducing air temperature in different building layouts; and 4) investigate how greenery 

layout affects evaporation and shading.  

3.4 Previous Research Studies  

Research on the urban heat island effect in housing complexes have mostly focused on 

the effectiveness of greenery in reducing energy consumption and providing comfort to 

residences through mitigating that effect. 

3.4.1 Understanding of the Concepts of Urban Heat Islands  

Research related to high-rise housing complexes originates mainly from Asia. Giridharan 

et al. (2004; 2007) investigated the impact of the urban heat island on high-rise and high-

density residential complexes in Hong Kong. The results for the studies showed that the 

urban heat island, with external factors such as albedo, vegetation, and perforation rate, 

was affected by weather conditions. Taib (2010) studied thermal comfort in high-rise 

housing via surveys and temperature measurement.  

The UHI effect exists due to greater heat retention of buildings and man-made 

surfaces such as concrete and asphalt compared to the lesser heat retention and cooling 

properties of vegetation, which is more abundant in the countryside (Rosenthal et al., 

2008). The urban heat island temperature effect can be measured in terms of the urban 
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canopy layer, which refers to the space below the rooftops of buildings, and the 

mesoscale, which refers to regional temperature measurement (Voogt, 2002). 

 Wolf (2004) found that urban and suburban areas have hotter air and surface 

temperatures than rural surroundings. The hottest near-ground temperatures are found in 

areas with the least vegetation and the greatest urban development. The heat island effect 

has existed in New York City since the end of the 19th century. Monica Pena Sastre 

(Student of Urban Planning at Columbia University) found that a difference of at least 

1.8ºF (1ºC) already existed at the beginning of the 20th century between the mean 

temperature in NYC and its surrounding rural areas, and this difference increased over 

the 20th century (Sastre, 2003). Annual analysis between 1900 – 1997 shows that mean 

temperatures in New York City based on the Central Park weather station were slightly 

higher than the surrounding region by approximately 2.2ºF (1.2ºC) to 5.4ºF (3.0ºC) 

(Rosenthal et al., 2008).  

3.4.2 The Use of Greenery Space to save Energy Consumption 

Huang (1987) simulated climate influences on housing with DOE-2.1, an energy 

simulation program created at the Lawrence Berkeley Laboratory to study cooling load, 

wind speed, shade evaporation and tree size. Guidelines have suggested that trees should 

be planted to control solar radiation, but should not obstruct the wind when planted near 

buildings; trees can block solar radiation in summer and reduce energy loss in winter 

(McPherson, 1988). The National Renewable Energy Laboratory in the United States 

(NREL, 1995) proposed innovative ways to reduce energy loss in housing complexes. 

Walker et al. (2009) suggested an energy-saving landscape that can reduce energy 

consumption about 25%, by providing shade in summer and blocking winds in winter. 
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The previous studies planned various landscapes around housing to control solar 

radiation in the summer and north winds in winter to reduce energy consumption in the 

housing units. However, these studies apply to low-rise housing units, and not for high-

rise housing complexes in Asia. 

3.4.3 Data Analysis Methods and the Use of Greenery Spaces 

To investigate the heat island effect in Singapore, where high-rise buildings are common, 

the extracted thermal data from Google images was used and compared with land use 

(Jusuf et al., 2007). Simpson et al. (1996) proved with a climate simulation model that if 

trees were situated on the western side of the housing, air-conditioning energy could be 

reduced 10–50%. Simpson (2002) stated that the shade from greenery space affects 

energy consumption in housing. The results showed that the tree shape and size had a 

greater impact than their location in energy reduction.  

Donovan et al. (2009) examined field surveys and electric bills, and the results 

suggested that greenery space at the west and south sides of buildings reduced summer 

energy costs by about 5.2%; however, the energy costs increased by approximately 1.5% 

on the north sides. Yang et al. (2010) suggested from field surveys that layout, density 

and ratio of green coverage around buildings influenced urban heat effects in a high-rise 

housing complex in Shanghai. They stated that shade and solar heat modify urban heat 

island more than any other factor; additionally, paved road space with shade was cooler 

than public lawn space without shade. Oliveira et al. (2011) asserted that even small 

urban greenery spaces could alleviate the heat island effect. They performed a case study 

of a 0.24-hectare neighborhood garden in Lisbon, and found that the garden’s highest 

temperature was 6.9°C cooler than that of surrounding locations. Ewenz et al. (2012) 
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showed, through mobile measurements taken from a car, that even a small greenery space 

can mitigate the urban heat island of central business districts.  

3.4.4 Approach to Reduce Urban Heat Island 

Studies of urban heat island in Korean housing complexes mainly concern temperature 

change relative to floor area index and building-to-land ratio, evaluating indoor/outdoor 

thermal comfort, building shape, and finishing material. Whang et al. (2003) researched 

temperature changes associated with land use by measuring single-family homes and 

apartment complexes. They predicted temperature change by considering a discomfort 

index and land-use patterns. Hong et al. (2003) drew correlations between areas of 

greenery space, water permeability ratio, floor area index, building-to-land ratio, 

temperature using biotope survey data, and temperature derived from Landsat Thematic 

Mapper images in the southern Seoul residential area. The greenery space area and water 

permeability ratio were inversely proportional to the urban heat island, and floor area 

index and building-to-land ratio were directly proportional. Whang et al. (2008) 

measured thermal characteristics of surfaces, air currents, and solar radiation in summer. 

They suggested that the environment of high-rise housing complexes had a higher 

temperature and weaker wind speeds than other places, which can create an 

uncomfortable environment. They also stated that approaches are needed to improve 

thermal comfort in high-rise housing (Jusuf et al., 2007).  

Previous research studies have indicated that urban heat islands were severe in 

highly populated areas where high-rise buildings areas are common and the lack of 

greenery space contributed to increasing atmospheric temperature. Prior research also 

stressed the importance of greenery spaces in alleviating the impacts of rising 
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atmospheric temperature. Most research studies are related to urban heat islands in highly 

populated housing developments. The urban planning agencies set the rules for different 

development strategies, such as defining plot ratio, developmental use, floor area ratio, 

building façade and material types, design, and area of coverage. Developers are required 

to comply with these rules; however, there are no specific research studies focusing on 

greenery space layout and its effects on the surrounding atmospheric temperature and 

relative humidity around highly urbanized areas. The foci of this research are to: 1) 

Understand the relationships between different green space layouts and atmospheric 

temperature/relative humidity, and 2) Understand if the relationship could become a 

policy driver in using greenery space as a strategy to reduce heat island effect. 

3.5 Research Limitations  

From previous research studies, low-rise buildings were shown to have different cooling 

and heating loads depending on the location of trees (McPherson, 1988). However, this 

research study has limited research conditions due to numerous high-rise buildings within 

housing complexes in Korea. Therefore, this study aims to discover means by which to 

reduce air temperatures within buildings and how to use greenery space layouts in 

reducing air temperatures in housing complexes.  

3.6 Research Methodologies 

This research study was conducted during summer and focused on sunny days, between 

12:00 and 16:00, when human activity and cooling loads are at their peak.  

3.6.1 Selection of Greenery Space Layouts and Measurement Sites  

To classify greenery space layouts in Korea, 70 apartment complexes in the Seoul 

metropolitan areas, which are called the City of Il-San, were selected as a case study.  
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Figure 8. Four Types of Greenery Space Layouts 

 shows four different layout types, which include greenery space around buildings, in the 

center of complexes, over the entire complex, and no greenery space, which were 

examined in this research study.  

  

Green spaces in the center of the buildings 

(Location: Il-San) 

Green spaces in the entire buildings: center, 

around and near the buildings. 

(Location: Il-San) 

  

Green spaces around buildings 

(Location: Il-San) 

No Greenery Space 

(Location: Il-San) 

 

Figure 8. Four Types of Greenery Space Layouts 
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Mobile and fixed-measurement instruments were installed to collect data from the project 

sites. Several apartment complexes were selected based on similar building arrangement, 

shapes and space composition. These selected sites have different types of greenery 

spaces and were built in the same time period. Additionally, the selected apartment 

buildings have similar heights and floor area indexes. Apartment building exterior and 

pavement colors have the same composition and similar albedo as well. Finally, all sites 

are located within 500m from the selected buildings to avoid errors from variations in 

latitude and longitude.  
Figure 9 shows the locations of the project sites. 

  
Sites 1–3: the main group Site 4: the comparison group 

Site 1: Greenery space around the buildings Site 2: Greenery space in the center of the 

buildings 

Site 3: Greenery space over the entire buildings Site 4: No greenery space  

 

Figure 9. Locations of Field Survey Sites 

Sites 1-3 are the main groups to compare to Site 4, which has no greenery space (public 

parking lot). This parking lot is located approximately within 400m from the Site 3, with 

a similar environmental geometry location as compared to the other three sites. Table 4 

lists in detail the site conditions.   
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Table 4. Present Conditions of Sites 1 Through 4 
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3.6.2 Field Measurements: Mobile and Fixed Measuring Instruments  

Three types of mobile instruments, which include Testo AG: 845, 425 and 454, were 

utilized to measure four elements, which include atmospheric temperature, surface 

temperature, mean radiant temperature (MRT), and wind speed. The surface temperatures 

were measured with the Testo 845 to compensate for the variation of temperature in the 

instrument. Based on the results, the measurement points were established and were 

collected using the outdoor air flow measurement equipment. Table 5 lists weather 

information during the field measurement.   

Table 5. Weather Information During the Field Measurement 

Day Weather 
Wind 

Speed 

Relative 

humidity 

Visi

bility 

(km) 

* 

cloudiness 

points 

Rainfall 

(mm) 
Instrument Time 

20.Aug

. 

2010 

Slightly 

covered 

skies 

Strong 

sun 

<1m

/s 
68% 12 6 0 Testo 845 

12:00 

~ 24:00 

21.Aug

. 

2010 

Clear 

Skies 

Very 

strong 

sun 

2~3

m/s 
62% 15 5 0 Testo 845 

12:00 

~ 24:00 

24.Aug

. 

2010 

Very 

cloudy 

skies 

Rainy 

from 

19:00 

<1m

/s 
89% 15 6 0.5 Testo 845 

12:00 

~ 19:00 

4.Sep. 

2010 

Clear 

Skies 

Strong 

sun 

1-

2m/s 
75.8% 17 5 0 

Testo 435 

Testo 845 

12:00 

~02:00 

7.Sep. 

2010 

Clear 

Skies 

Strong 

sun 

2~3

m/s 
56.5% 18 3 0 

Testo 454 

Testo 845 

12:00 ~ 

24:00 
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(*Cloud Data points: 0-Clear/ 10-Cloud) 

To screen sites using precise measurements, four initial points were selected to measure 

the air temperatures and surface temperatures. This process was repeated three times in 

August with the Testo 845, every 2 hours beginning at 12:00, at each project site. Each 

point had the same albedo and was at a similar position, such as in front of an apartment’s 

entrance or in the middle of a walkway. When the air temperatures were measured at a 

height of 1.5m, the surface temperatures had the same albedo. The collected data clearly 

shows a temperature difference between greenery space and no greenery space. To 

construct isotherms, inverse distance weighting was used within ArcGIS 9.3. 

 After the mobile field survey was conducted to measure the air temperatures and 

related humidity, two units of the automatic temperature-humidity measuring instruments 

were installed at each site. The data logger for the automatic temperature-humidity 

instruments measured and collected the air temperatures and relative humidity data every 

3 minutes, from September 17 to 30, 2010.  Figure 10 shows the site locations and two 

units of instruments in the aerial photos.  
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Site 1: greenery space around the buildings Site 2: greenery space in the center of the 

complex 

  

Site 3: greenery space over the entire 

complex 

Site 4: Parking lots 

Figure 10. Fixed-Measurement Points of Four Sites 

3.7 Results: Temperature Reduction Effects by Greenery Space  

3.7.1 Comparison Between Surface Temperature and Atmosphere Temperature 

From the air temperatures measurement at Sites 1–3 layouts, Site 1 had the highest 

temperatures and Site 3 the lowest. Temperature variation was greatest at 14:00 for the 

surface temperatures and the air temperatures at the sites. After sunset, there was little 

difference in temperature variation. Figure 11 shows the comparison results between 

surface temperatures and air temperatures.  
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Figure 11. Comparison Results of Field Survey with Mobile Instrument 

(Left: Surface Temperature/ Right: Atmohsphere Temperatures) 

 

Based on the results in Figure 11, U-shaped building spaces had no differences in wind 

speed, because the buildings blocked the wind. Site 3 was the lowest temperature and Site 

1 had the highest air temperature. The air temperature at Site 1 through 3 dropped 

significantly after 22:00. However, Site 4 stored large amounts of heat during daytime 

due to the coverage by black asphalt. The asphalt at Site 4 did not have the cooling 

effects of greenery space. Between 12:00 and 16:00, the surface temperature at Sites 1 

and 4 were higher than in Sites 2 and 3. 

In daytime temperature, the mean radiant temperatures changed significantly; 

however, it had no significant difference after sunset. At Site 3, there was little difference 

between the air temperature and the mean radiant temperature as compared to other sites 

1, 2 and 4. These sites had significant differences, from 5°C to 10°C. The measurement 
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results of the air temperatures, surface temperatures, mean radiant temperatures and 

relative humidity at the sites are shown in Figure 12.  
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Figure 12. Measurement Results of Mobile Field Survey 

The surface temperatures of Site 3 did not show a large change and had the tendency to 

remain constant. The portable measurement results of Sites 1–4 show that different 

greenery spaces layout had a spatial distribution in temperature during daytime. To 

examine if there is significance difference between the means of sites, the statistical 

method, which is the one-way analysis of variance (ANOVA), was used, and the results 

are shown in Table 6.  
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Table 6. Statistical Significance Test Results of Mobile Measurement 

Time 
Significant 

probability 

Scheffe 

1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

14h/04/Sep 0.000 0.000 0.000 0.003 0.477 0.000 0.000 

14h/07/Sep 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Based on the results in Table 3, there was a similarity between Sites 2 and 3. For further 

analysis to enhance experiment consistency and approach, it was necessary to perform 

continuous monitoring through fixed equipment for the same period to facilitate 

observation of temperature variation. To achieve reliable results for temperature 

reduction, the data logger was installed at Sites 1–4 to measure air temperatures and 

relative humidity. The meteorological data is shown in Table 7.  

Table 7. Weather Information Data at the Project Sites 

Time 

Average 

temperature 

(°C) 

Maximum 

temperature 

(°C) 

Minimum 

temperature 

(°C) 

Average 

cloudiness 

points 

Rainfall 

(mm) 

17.Sep.2010 22.3 28.8 18.0 8.0 0 

18.Sep.2010 24.0 29.9 19.7 5.6 0 

19.Sep.2010 20.5 22.4 18.9 10.0 35 

20.Sep.2010 22.0 27.9 18.6 9.1 6.5 

21.Sep.2010 20.4 22.6 15.9 10.0 45.5 

22.Sep.2010 15.8 19.6 11.3 7.8 0 

23.Sep.2010 15.3 24.3 10.0 0.8 0 

24.Sep.2010 15.6 23.8 9.0 0.4 0 

25.Sep.2010 17.0 24.7 11.7 2.0 0 

26.Sep.2010 16.7 25.0 12.3 3.8 0 

27.Sep.2010 17.1 24.1 11.9 6.5 0.5 

28.Sep.2010 13.8 18.9 7.7 0.8 0 

29.Sep.2010 10.7 16.5 5.5 5.8 0 

30.Sep.2010 12.6 22.1 6.5 4.1 0 
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The temperature in September in the City of Il-san tended to drop gradually during the 

study period. The changes in air temperature and relative humidity during measurement 

period are shown in Site 1: Greenery space around building; Site 2: Greenery space in center of complex; 

Site 3: Greenery space over entire complex; Site 4: Comparison group (No Greenery Space) 

Figure 13. 
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Site 3: Greenery space over entire complex; Site 4: Comparison group (No Greenery Space) 

Figure 13. Changes in Air Temperature and Relative Humidity During Study Period 

To organize the data more precisely, the data were classified into 24-hour intervals. 

Analysis of daytime temperature results were based on sunny days. The 2-week site 

measurement results showed the same phenomena during the 2 weeks of research study 

period. To follow the temperature trend, the data were analyzed based on days 6, 7, 8, 

and 9 (excluding the highest day 1 and lowest days 11 and 12); 30-minute temporal data 

are shown in Figure 14.  
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Figure 14. Mean Temperature and Humidity During Measurement Period 

Site 1, with greenery space around buildings, had higher temperatures than Sites 2 and 3; 

Site 2 was slightly warmer than Site 3. Site 4, the control, had a significantly warmer 

temperature distribution than Sites 1–3. During daytime, temperatures varied between 

Sites 1–3, but there were slight changes after sunset. Site 4, with no greenery space, had 

the warmest temperature distribution by far, and little decline after sunset. Average RH 

tended to follow the order Site 3 > Site 2 > Site 1 > Site 4, in contrast to that of air 

temperature, with Site 4 > Site 1 > Site 2 > Site 3. Based on the results of field 

measurements, the air temperature at Site 1 was higher and its RH lower than the other 

sites. The averages and standard deviations from fixed measurement show that the 

temperature of greenery space over the entire complex is similar to that in the center but 

lower than around the buildings, by 0.2–2°C, depending on the layout. To statistically 

verify each destination, data were subjected to the ANOVA test using SPSS in Table 8. 

This table shows differences in temperature change; however, the differences of the 

center and entire site layouts were proven neutral or slight. Therefore, if it is difficult to 

construct greenery space over an entire complex, a similar effect can be achieved by 
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constructing it in its center. From measurements of the U-shaped complex, we discovered 

that temperature was affected by the layout, and had a daytime variation. Therefore, the 

lower the housing complex temperature, the more effective it is to establish greenery 

space in the center of a complex than to use the other layouts.  

Table 8. Statistical Significance Test Results of Fixed Measurement 

Levene  Significant 

probability 

Scheffe 

 
1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

28.504 0.000 0.015 0.001 0.000 0.874 0.000 0.000 

 

1=green space around building; 2=green space in center of complex; 3=green space over 

entire complex; 4=control group / p<0.05 or less 

 

3.8 Finding and Analysis: Casual Analysis of Temperature Reduction by 

Greenery Space  

3.8.1 Analysis by Evaporation Effect 

The temperature differences from these experiments of greenery space layout were 

analyzed in terms of evaporation and shade effects. To determine the evaporation effect 

dependent on greenery space layout, isotherms were constructed using mobile 

measurement results and via fixed measurements over impervious surfaces. The 

isotherms were at 0.5°C intervals over impervious surfaces and depicted various 

temperatures around greenery spaces. The isotherms from mobile measurement results 

show that greenery space temperatures were 0.5–5°C lower than those of impervious 

surfaces. The cool air around greenery spaces moderates the hot air formed on those 

surfaces. The air temperatures for all project sites are shown in Figure 15.  
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Figure 15. Air Temperatures for the Project Sites at 14:00 

Through evaporation, greenery space should be cooler than areas with impervious 

surfaces, and this has been proven through several studies (NASA, 2010). The 

temperature of greenery space around buildings was lower than that of impervious 

surface space by 3–5°C. When there is cool air near greenery space, it does not affect the 

entire complex or persist near buildings. A small greenery space creates a little cool air 
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over impervious surfaces. Such a small greenery space can cool a housing complex, but 

its size is not adequate to compensate the hot air produced within that complex. 

Consequentially, the greenery space around buildings was 3–5°C warmer than at the 

center of the complex.  

Cool air from greenery space affects the temperature of impervious surface space; 

this space between greenery space and buildings had temperatures very similar to that of 

the greenery space. This result shows that given a certain size of greenery space, the 

temperature of impervious surface space can be cooled to a temperature similar to that of 

green space. Specifically, if green spaces of a certain size are situated like stepping 

stones, the temperature of impervious surface space between the greenery spaces can be 

reduced by their evaporation effects. According to the theory of landscape ecology, it is 

ideal if habitat patches are located contiguously, even if this cannot be done on a large 

scale. If it is a patch of sufficient size for larger animals, it should be preserved for 

wildlife habitat. However, if a large patch cannot be maintained for certain reasons, 

assembling small patches can provide suitable biotic habitats for smaller animals (like 

birds). This theory applies to greenery space evaporation effects under similar conditions, 

such that air temperature can be reduced about 3–5°C. The average temperature for 

greenery space in the entirety of the complex is lower by as much as 5°C relative to that 

for green space around buildings, and 3°C lower than for green space in the center of the 

complex. The isothermal analysis shows lower temperatures over the greenery space. 

From the measurement results, the evaporation effects of greenery space of a certain 

size can mitigate the high temperature over impervious surfaces. Therefore, the inclusion 

of such greenery space within impervious surface spaces can reduce internal residence 
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temperature over that of a continuous impervious surface space lacking green space. In 

other words, evaporation effects of green space impact impervious surface space when 

those green spaces are situated contiguously, like habitat patches. Within a residential 

complex where it is difficult to create large green spaces, distribution of certain sized 

green space between impervious surface spaces can reduce temperature, although this 

effect is weaker than with large-scale green spaces. However, the size of green space 

required to cool the hot air over impervious surfaces needs further study. 

To determine evaporation effects depending on greenery space layout, we compared 

impervious surface space temperatures for the three different layouts. The results show 

that the greenery space around buildings maintains higher temperatures than other 

layouts. The difference in temperature persisted during both strong sunshine and after 

sunset. The air temperature over impervious surface space is shown in Figure 16.  
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Figure 16. Air Temperature over Impervious Surface Space 
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3.8.2 Analysis by Shade Effect 

The shade was created and modulated by buildings and greenery spaces during the 

daytime. With increased shade space in the living environment, there is more thermal 

comfort than in other situations at the same time. In the present experiment, the space 

with the most shade was Site 3, and Site 1 had the least shade. The numerous flat-type 

apartment complexes are shaped in either straight, U-shaped, or square-shaped types in 

Korea. With such configurations, depending on the movement of the sun, shade always 

forms around buildings, but spaces between them are constantly exposed to the sun, 

therefore heating the air. The schematic figure of hot air formation without green space is 

shown Figure 17.  

 

Figure 17. Schematic of Hot Air Formation Without Green Space 

Based on the measurement results of greenery space layout, the major effect was 

analyzed between evaporation and shade of green space. These are the two major effects 

W E 



59 

 

leading to the formation of the park cool island (PCI) effect. There are significant 

implications of the variance of PCI effects of green space within the layout. To control 

hot air in impervious surface space between buildings, we should use evaporation and 

shade effects on green spaces. If green spaces are sited around buildings, the two effects 

act near the buildings, and we cannot control hot air from the impervious surface spaces. 

The schematic figures of hot air information with green space are shown in Figure 18 and 

Figure 19.  

 

Figure 18. Schematic Figures of Hot Air Formation With Green Space  

(Greenery Space around Buildings) 

W E 
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Figure 19. Schematic Figures of Hot Air Formation With Green Space  

(Greenery Space in Center of Complex) 

However, if green space is placed in the center of a complex, shade from buildings and 

greenery space do not overlap, and we can moderate the hot air from impermeable 

surface spaces between buildings. This solution situates the PCI effect in the most 

vulnerable space, which does not benefit from the shade of tall buildings. 

3.9 Conclusions and Discussions 

To enhance temperature reduction within limited greenery spaces, the space was divided 

into three layout types and temperature changes observed. The air temperature and mean 

radiant temperature were lower than at other sites when green spaces were placed over 

the entire complex site, whereas, when greenery spaces were placed around the complex, 

it was the highest. In the mobile investigation, the air temperature was slightly higher for 

greenery space in the center of the complex relative to that over the entire complex. In the 

fixed investigation, the two complex types had similar air temperatures. The three types 

of complexes showed differences from 12:00 to 16:00, with a maximum at 14:00.  

W E 
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Two conclusions were found based on the results, which are as follows: 1) 

Impervious surface space interspersed between greenery spaces is cooled by the latter 

spaces even though they are not large enough. Small greenery spaces assembled in 

stepping stones have effects similar to that of a large greenery space. This is the PCI 

effect, and air cooled by green spaces spreads to surrounding areas. The PCI effect was 

studied on several occasions by Bongardt (2006), Chen Yu et al. (2006), and others. 

Through field survey and simulation, these studies demonstrated that green spaces had a 

PCI effect on themselves and surrounding impervious surface spaces. A field survey in 

the present experiment showed the same phenomenon. If green space is constructed 

around the impermeable pavement, the PCI effect, like patches in landscape ecology, will 

act over the pavement surfaces. Therefore, it is useful to reduce daytime temperature in 

cities and housing complexes; 2) To lower daytime temperature in high-rise building 

complexes with equal green space area, it is better to put the space in the center of the 

complexes rather than around buildings. If the buildings are of parallel shape, U-shape or 

square shape, hot air forms in the central parts of complexes, which are used mostly for 

parking lots. If green spaces are around buildings, shade and evaporation effects remain 

around these buildings and do not affect the central hot air, which elevates temperatures 

in the entire apartment complex. If the greenery spaces are constructed in the center of 

the complex instead of impermeable pavement, the shade and evaporation effects of the 

space moderate hot air and concentration of strong sunshine. This mitigates the urban 

heat island effect.  

Where there is a shade effect, the air temperature difference is from 0.5°C to 2.5°C, 

and the surface temperature from 3°C to 8°C. These results are consistent with previous 
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research (Onishi et al., 2010) and (Yang et al., 2010), which shows that impervious 

surface parking area with trees is more efficient than only a lawn plaza in reducing the 

heat island effect. From these results, it can be seen that green space shade reduces 

temperatures along with the evaporation effect. Although impervious pavement is 

necessary for a residential complex, green spaces should permit shading at 14:00 to 

reduce the temperature. Shading can also reduce the temperature at other times, so that 

green space should be created to continuously mitigate the heat island effect. 

It is necessary to transform all available outdoor space into green space in housing 

complexes to realize temperature reduction, but this is difficult to accomplish. However, 

similar effects can be attained by placing green space in the center of complexes. If there 

are green spaces only around buildings, planting the complex parking lot with green 

space techniques can achieve effects similar to a green space in the middle of a complex. 

Even if green space is positioned in the center of a complex, hot air can be created 

over impermeable roads. However, if green space is created around the impermeable 

pavement, the PCI effect, which is like patches in landscape ecology, will cool the hot air 

over the pavement. These green space layouts will reduce the cooling load during 

daytime and increase the thermal comfort of residents.  

Oliveira et al. (2011) stated that only 0.24 ha of garden space can reduce 

temperatures by as much as 6°C over the surroundings. Three of the sites in the present 

study have a similar area (about 0.5 ha) and plant growth, but these can make a difference 

in temperature with a green space layout. With such layouts, we can mitigate urban heat 

island more effectively. 
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To investigate temperature changes versus greenery space layout in apartment 

complexes, all other variables were controlled. In the future, we must consider other 

variables that affect internal temperatures of residences to develop various methods of 

temperature reduction. By quantifying the effects of such variables on temperature 

reduction, we can obtain more accurate tools for mitigating urban heat islands. To reduce 

the heating effects of impervious surfaces, further study is needed to determine the 

minimum green space size that can reduce the temperature, since we did not address the 

effective size in this work. In the future, it is necessary to measure temperature reduction 

effects of varying amounts of green space. 
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4. THE USE OF CLUSRING AND ISOLATION FOREST TECHNIQUES IN 

REAL-TIME BUILDING ENERGY CONSUMPTION DATA: APPLICATION 

TO LEED BUILDINGS 

 

4.1 Abstract  

Buildings are the highest consumer of energy in the United States in many different 

sectors including transportation, industry, commercial, and residential buildings. To 

reduce building energy consumption, many different building technologies, programs, 

codes, and standards—such as Leadership in Energy and Environmental Design (LEED); 

Home Energy Rating System (HERS); and the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE)—have been developed based 

on building environmental performance assessment and energy simulation models. 

However, these programs, codes, and standards are utilized before or during the design 

and construction phases. For this reason, it is challenging to track whether buildings 

could still save energy after construction. The purpose of this study is to detect anomalies 

from the energy consumption dataset of LEED institutional buildings. The anomalies are 

identified using two different data mining techniques, clustering and isolation Forest. The 

paper demonstrates an integrated data mining approach that helps in evaluating LEED 

Energy and Atmosphere credits after construction.  

4.2 Introduction and Research Scope 

Based on the Commercial Building Energy Consumption Survey (CBECS) in 2016, there 

were 5.6 million commercial buildings in the United States in 2012, comprising 87 

billion square feet of floor space (USEIA, 2016). This level indicates a 14% increase in 

the number of buildings and a 21% growth in floor space since 2003 (USEIA, 2013). A 
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building’s size, function, and geographic location are the key elements that affect the use 

of energy consumption.  

 In the United States, people spend 90% of their time indoors, working, living, 

shopping, and entertaining in buildings that consume much energy (Bose & Diette, 

2016). Since most energy comes directly or indirectly from fossil fuels, buildings are 

responsible for large amounts of greenhouse gas (GHG) emissions, representing 

approximately 36% of the entire nation’s annual energy consumption (UNEP, 2009). 

Building energy consumption and GHG generation have been increased and are projected 

by the EIA to increase another 30% by 2030 (Kwok et al., 2016). 

 The United States accounts for approximately 20% of world energy consumption. 

Buildings consume roughly half (49%) of energy consumed in the US, which is the same 

energy consumption from the combined sectors of transportation and industry. According 

to the U.S. Energy Information Agency (EIA), fossil fuels supply three-quarters (76%) of 

the energy consumed by the building sector. The use of fossil fuels to generate energy 

results in the production of carbon dioxide and other GHGs that scientists increasingly 

agree are driving climate change.  

In order to achieve more than 60% energy consumption reduction for the building 

sector, new technologies, regulations, integrated building design, and other strategies will 

be required (Torcellini, 2006).  However, these new technologies will not assure 

efficiency improvement by themselves. In order to save energy consumption, many 

different energy-saving programs, codes, and design standards (e.g., ASHRAE 90.1, 

LEED) have been tried, such as solar heating, passive cooling, natural ventilation flow, 

and use of daylight, for building sites and their surroundings; however, these standards 
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are applied during the pre-construction phase to meet the requirements. Therefore, this 

study presented that LEED EA credits, which are representative as a design standard in 

this study, are still effective for energy saving after the construction phase. As such, this 

paper attempts to find energy consumption patterns using real-time energy consumption 

data using clustering analysis, to find anomalies using the isolation forest method and 

finally to examine the LEED EA credits after construction. 

4.3 Research Objectives 

This research study endeavors to understand the building energy consumption patterns 

for the post-construction phase and find energy consumption data anomalies using the 

clustering and isolation forest techniques during data processing. The research study has 

three primary objectives: (1) to identify building energy consumption patterns using 

clustering analysis, (2) to detect anomalies in the clustered dataset using the isolation 

forest method, and (3) to examine how these anomalies impact the LEED EA and OEP 

credits of the certified buildings.  

4.4 Previous Research Studies  

Over the decades, extensive research studies have been performed by various researchers 

on energy consumption, energy modeling, performance assessment, and LEED 

certifications. A few studies have evaluated the relationship between building energy 

consumption and LEED EA credits and the use of different statistical analysis to analyze 

building energy performance (Wu et al., 2016). The research identifies the gaps in prior 

studies and thus evaluates LEED EA credits using data mining methods to find the 

pattern of consumption and anomalies in those patterns. 
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4.4.1 Understanding LEED Rating Systems-EA Credits  

The LEED standard is widely used for rating buildings’ performance in the United States 

(Fowler et al., 2006). There are six categories of LEED credits, which include Location 

and Transportation, Sustainable Sites, Water Efficiency, Energy and Atmosphere, 

Materials and Resources, Indoor Environmental Quality, Innovation and Regional 

Priority and four different LEED certification levels, including certifield, silver, gold, and 

platinum that are based on the number of points awarded in Table 9. 

Table 9. LEED Certification Comparison Between LEED NC v2.2 and LEED 2009 

with EA Achievable Points (U.S. Green Building Council, 2009) 

 

Certification Level LEED-NC v2.2 LEED v2009 

Certified 26-32 40-49 

Silver 33-38 50-59 

Gold 39-51 60-79 

Platinum 52-69 80-110 

EA Achievable Points 17 35 

 

The LEED system has grown over the past years. Since LEED version 1.0 in 1998 and 

v2.0/2.2 in 2000, the certification system has been upgraded to nine rating system 

products, which include Homes, Neighborhood Development , Commercial Interiors, 

Core and Shell, New Construction, Existing Building, Schools, Retail, and Healthcare. In 

2009, LEED v2009 or v3 was built based on the previous version of the rating system, 

and LEED v4, which launched in 2013, focused on increasing technical stringency from 

the past versions and developed new requirements for project types. The historical LEED 

Rating Systems (only focusing on EA credits) from v2.0 to v3.0 are shown in Table 10. 

The difference between the new rating systems and the old versions is that each point has 

been devalued and specified in LEED 2009. To achieve points for the EA category, EAc1 
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(Optimize Energy performance) has added nine more points and EAc2 (Renewable 

Energy) has added four more points.  

Table 10. Historical LEED Rating Systems from v2.0 to v3.0 (EA Credits) 

v2.0/ v2.1 v2.2 v3 or v 2009

Prereq 1. Fundamental Building Systems Commissioning Required Required Required

Prereq 2. Minimum Energy Performance Required Required Required

Prereq 3. CFC Reduction in HVAC&R Equipment Required Required Required

EAc1 Optimize Energy Performance 1 to 10 1 to 10 1 to 19

EAc2 Renewable Energy 1 to 3 1 to 3 1 to 7

EAc3 Additional Commissioning 1 1 2

EAc4 Ozone Depletion 1 1 2

EAc5 Measurement & Verfication 1 1 3

EAc6 Green Power 1 1 2

17 17 35Points

Acquirable Points
Description

 

4.4.2 LEED EA Credits vs Building Energy Consumption 

Building operation is responsible for about 30% of GHG emission and accounts for about 

40% of primary energy consumption globally (Kwok et al., 2016). Furthermore, GHG 

emission from the building sector is expected to grow in the next decades as a result of 

rapid economic growth (Grubb et al., 1991). The U.S. Green Building Council (USGBC) 

and its LEED green building rating systems were designed (USGBC, 2007) to reduce the 

environmental and health impacts of buildings.  

 The LEED rating system is a framework that facilitates a streamlined 

implementation of sustainable construction principles (USGBC, 2003a). The three main 

types of benefits of sustainable constructions are environmental, economic, and health 

and community (Diamond et al., 2006). For environmental aspects in particular, benefits 

include improved air and water quality, reduced energy and water consumption, and 

reduced waste disposal (USGBC, 2003b, 2004). However, the LEED rating is tallied 

during the pre-construction phase to award points based on simultaneous construction 
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and design development (USGBC, 2003b). In addition, the early design and pre-

construction phases of a building are the most critical times to make decisions on its 

sustainability features (Azhar et al., 2010). Due to the LEED point systems, those 

designing LEED rating systems are more concerned with earning points than creating 

environmentally friendly buildings (Ding, 2008). No matter how unsustainable a building 

is, it can get LEED certification (Retzalff, 2009).  

4.4.3 Anomaly Detections and Isolation Techniques  

Anomaly detection techniques used to be classified into two main categories, anomaly 

detection and misuse detection. Anomaly detection means storing a user’s behaviors in a 

database and comparing the user’s current behavior with the data in the database. Also, if 

the deviation is large enough, this signifies an abnormality in the network (Chaturvedi et 

al., 2012; Lappas & Pelechrinis, 2007; Sun & Wang, 2009; Sushil et al., 2012). In 

contrast to misuse detection, anomaly detection utilizes the reverse approach. In other 

words, it defines normal system behavior and defines any other behavior as abnormal 

(Helman et al., 1992). The anomaly detection technique has been used in various fields to 

detect network intrusion or failure, such as credit card fraud (Van et al., 2015), auto 

insurance fraud (Nian et al., 2016), tax fraud (Bonchi et al., 1999), customer activity 

monitoring and profiling (Singh & Singh, 2015), malware/spyware detection (Aziz et al., 

2015), data cleaning (Sapienza et al., 2015), and securities fraud (Barse et al., 2003). 

Usually anomaly detection techniques are applied for the same reasons: (a) to identify 

normality by calculating, (b) to determine a metric to calculate an observation, and (c) to 

observe metric measurements, including anomalies (Ian Davidson, 2007).  
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Existing models of anomaly detection constructs a standard profile and identify 

instances that do not confirm to the standard profile (Liu, Ting, & Zhou, 2008). Isolation-

based anomaly detectors are a new kind of anomaly detector that does not rely on any 

density or distance measure (Liu et al., 2010). Several extensive studies have detected 

anomalies for both static and dynamic network topologies (Abe, Zadrozny, & Langford, 

2006; Akoglu, Tong, & Koutra, 2015; Bhuyan, Bhattacharyya, & Kalita, 2014; Gogoi, 

Bhattacharyya, Borah, & Kalita, 2011). For automation purposes, isolation Forest 

(iForest) is probably the best approach for numeric attributes, since random forest cannot 

handle nominal attributes unless converted to numeric form (Carrasquilla, 2010). Also, 

Vengertsev et al. (2005) evaluated three types of anomalies to determine graph anomaly 

datasets and identified that iForest showed the best accuracy for global and local 

anomalies. In addition, iForest is a mass-based approach that employs the level of depth 

and gives a better scope of integration with other methods for better accuracy (Ting, 

2009). Thus, with different datasets, isolation forest proves to be more accurate when 

compared with other anomaly detection methods, which serves as a motivation for 

implementing an isolation anomaly detection method in the energy consumption datasets 

of LEED buildings. The research involving data management, clustering of data, and 

anomaly detection using the isolation forest algorithm is explained in the following 

sections.  

4.5 Research Methodologies: Data Management, Clustering and Isolation 

Frameworks 

For this research study, two different data mining techniques, k-means clustering and 

isolation forest, were applied to analyze real-time building energy consumption data. 
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These techniques were selected for different purposes and to implement a unique 

approach to energy consumption analysis for LEED institutional buildings. The primary 

intention of this study was to identify LEED certified buildings with similar consumption 

patterns using k-means clustering and to detect anomalies in these patterns to evaluate the 

LEED EA credit points of the certified buildings. To detect anomalies, the modified 

isolation forest algorithm was proposed to build an ensemble of iTrees for the clustered 

dataset and then detect anomalies of the instances that had shorter paths on the iTrees 

stumps. Figure 20 represents the proposed research methodology to detect anomalies on 

the consumption pattern of LEED buildings, the clustered-isolation (CI) framework.  

 

Figure 20. Research Methods Flowchart to Detect Anomalies Using CI Framework 

4.5.1 Data Management 

Data-gathering methods are often loosely controlled, resulting in out-of-range values, 

impossible data combinations, missing values, redundant information, and noisy and 

unreliable data. The process of data management involves two different steps, including 
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data extraction and data screening. The primary data collected for the research include 

data from the energy information system (EIS) of an institution of nine LEED buildings, 

which are extensively used for different research, classes, and administrative purposes. 

They are yearly data of the daily totals from the nine buildings, which include building 

energy consumption (electricity). 

4.5.1.1 Data Extraction 

The second part of data collection involves data extraction from different reliable sources 

using the Python Beautiful Soup algorithm (Yih et al., 2006). The primary task of this 

data extraction was to understand the interpretations of the dataset. The output label 

needed to be clearly stated to help in correlating and analyzing the data features. This 

could be done using Fisher information, which provides a way of measuring the extent of 

how much one feature is dependent on another within the dataset. The dataset was 

analyzed for its ability to undergo dimensionality reduction, which helps to understand 

output visually. In this study, data extraction on external factors was performed to speed 

up the process of data collection. The factors include climate data such as temperature, 

humidity, and precipitation from the U.S. meteorological department. The algorithm and 

data extraction were learned at the machine learning repository at the University of 

California, Irvine, which has datasets of different meteorological data (UCI, 2015). 

4.5.1.2 Data Screening 

The dataset included 3,294 data points from nine different buildings with a small 

dimensionality, and there was a need to look for false positives in the data and omit them. 

Another Python script was written to check for these anomalies. Thus, this needs to be 



73 

 

cleaned up or omitted to analyze certain models. Furthermore, the data screening process 

simplifies the search space a level further by consolidating valid samples.  

4.5.2 Clustering Framework 

Partitioning data into groups based on their consumption trends and pattern was essential 

to detect anomalies between different ranges of energy consumption. It helped in 

comparing with LEED EA credits with respective to the consumption range. The research 

involved yearly data on energy consumption of LEED certified buildings. According to 

Rodrigues et al. (2003), good clustering criteria include two parameters: compactness and 

separation. The k-means algorithm minimizes the mean square errors between each 

sample and its associated cluster center, where k refers to the pre-specified number of 

clusters (Rodrigues et al., 2003). The algorithms have the advantage of clear geometrical 

and statistical explanation and work conveniently with numerical attributes (Chicco, 

Napoli, & Piglione, 2006). K-means algorithms take the input parameter, k, and partition 

a set of n objects into k clusters so that the resulting intracluster similarity is high and at 

the same time the inter-cluster similarity is low (Han & Kamber, 2006). It has been 

shown that k-means algorithms perform better than another commonly used clustering 

algorithm, Kohonen Self-Organized Maps (SOM), on energy consumption (Rodrigues et 

al., 2003). Indeed, SOM performs better when the dimensionality is high (Jain, Murty, & 

Flynn, 1999), but K-means are better suited when dimensionality is relatively low (four 

clusters), which is the case for our application. 

 The research involved two steps: clustering using k-means clustering and anomaly 

detection using the isolation forest method. The primary focus of clustering analysis was 

to identify buildings with similar consumption patterns and group them together. The 
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reason to do this was to connect with the isolation forest method. During isolation forest, 

the computer selects a subsample by itself. It was necessary to make sure that anomaly 

detection was performed on comprehensive similar consumption patterned data rather 

than random unpatterned datasets, which could impact the accuracy of the anomalies. 

Thus, clustering using k-means was used to cluster buildings with similar energy 

consumption together.  

Since the research involved nine LEED buildings, it was possible to identify 

anomalies for small datasets using traditional methods. However, the goal of this research 

was to implement a novel technique for analyzing energy consumption data that could 

handle both large and small datasets.  

4.5.3 Isolation Framework 

The proposed CI framework detects anomalies from the clustered buildings to learn the 

pattern of anomalies for LEED buildings with similar consumption patterns. For this 

study, isolation forest is used as the anomaly detection method because it is faster and 

more reliable than other outlier detection methods. Hodge and Austin (2004) studied 

three different types of anomaly detection—unsupervised clustering, supervised 

classification, and semi-supervised recognition—and identified semi-supervised detection 

to be the most effective method with the greatest accuracy. Ensemble-based minimum 

margin active learning is a simple, novel method for detecting anomalies using 

unsupervised learning (Hodge & Austin, 2004; Yamanishi, Takeuchi, Williams, & Milne, 

2004). To detect anomalies and to select high-confidence unlabeled factors, a new and 

novel isolation forest algorithm was adopted that was faster and had greater accuracy 

than Oak Ridge Cyber Analytics (ORCA) and random forest (Liu et al., 2008). The most 
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important assumptions of the isolation forest algorithm are that the anomalies are a 

minority and the attribute values are different from each other (Liu et al., 2008). The 

isolation forest algorithm is best suited to high dimensionality (Liu et al., 2008), where 

the presence of irrelevant attributes (unlabeled data) is high (the case in big data), and in 

situations where the training set requires no anomalies, which is an important 

requirement for the CI framework.  

 The isolation forest has three stages: training, testing, and evaluation. The method 

builds an iTree for the consumption dataset, and then normal consumption patterns are 

clustered at the top end of the tree, whereas the anomalies stay at the roots. The 

advantage of iTrees is that it can provide results of high dimensionality and efficiency 

with few subsampling data. It requires minimal time and memory to run the program and 

select the best among the irrelevant attributes.  

4.6 Results and Analysis 

The section has three different subsections including the clustering module, where some 

clusters and clustering of buildings based on energy consumption are explained using k-

means algorithms. The second part includes the isolation forest module, where each 

cluster is processed by training and testing using the isolation forest algorithm. The final 

section includes the LEED EA credits of the buildings and their respective anomaly 

points, which provide us an overview of the impact of anomalous points on LEED EA 

credits, particularly on “Optimizing Energy Performance.” 

4.6.1 Clustering Module 

As discussed in the previous section, clustering is performed using a k-means clustering 

that is more suitable (for this research) and reliable. The segmentation of millions of data 
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points and the dataset is done after cleaning the data. Figure 21 explains the number of 

clusters selected using the consumption data.  

 

Figure 21. Selection of Clusters 

The first step is to identify the points for all samples in a spatial domain. Once the point 

is fixed in the spatial domain, the centroid is plotted for all clusters. Third, the points 

nearest to the centroids are identified, and the centroids are recalculated and shifted. This 

step gives the weighted averages of all points, and finally, iteration is continued until 

saturation. Cluster analysis is a bottom-up approach because statistical analysis is 

involved. The selection of clusters is done using the clustering algorithm. From Figure 

21, it is noted that there is a steep curve from 1 until 4 and then the graph is more 

saturated from 4 to 14 clusters. This helps to identify that the number of clusters for the 

datatype can be effectively four.  

4.6.2 Clustering Analysis 

The k-means algorithm was used to cluster buildings into four different clusters. Each 

cluster had different sets of buildings, and some of them overlapped with other clusters. 
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Figure 22 illustrates the four different clusters in the dimensionality space. Using the k-

means clustering algorithms, data were plotted to visualize the clusters of buildings, as 

shown in Figure 22. The different colors in the scatter plots represent different clusters 

connected with the discriminant coordinates on the X- and Y-axes, respectively. From the 

figure, it is evident the buildings are equally segmented and thus there are not many 

changes in the number of data points. 

 

Figure 22. K-means Clusters (1-4) 

Cluster 1 has two buildings and 731 data points. Similarly, Cluster 2 has 1,066 data 

points with three buildings, Cluster 3 has 747 data points with three buildings, and 

Cluster 4 has 746 points with three buildings. Thus, the clusters share almost close to 
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equal numbers of data points. Table 11 shows the different clusters and their respective 

buildings and numbers of data points. 

Table 11. Cluster and Respective Buildings and Data Points 

Clusters Building Number 
Number of Data points 

(Days of Energy Usage) 

1 3,8 731 

2 1,5,9 1066 

3 2,4,5 747 

4 1,6,7 746 

 

4.6.3 Cluster Breakdown 

After clustering, each cluster was tested by the scatter plots to understand if the clusters 

were well grouped together. Figure 23 shows four different clusters and the buildings 

scattered on each cluster. It is clear that Cluster 1 has a group of energy consumption 

patterns that are plotted on different spatial dimensions. Based on the scatter plots, the 

outliers were visualized efficiently in a few clusters from the figure below.  
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Figure 23. Breakdown Scatterplots of Different Clusters 

Even though Cluster 1 looked like a group all together, it was necessary to see a deeper 

analysis of this dataset to find energy consumption patterns. It is obvious from Clusters 2, 

3, and 4 that there were outliers. The primary goal was to check whether these outliers 

were anomalies regarding consumption to determine the impact on the LEED EA credits.  

4.6.4 Isolation Framework 

After clustering, the next step was to identify the anomalies using the isolation forest 

algorithm. Isolation forest was identified as an efficient anomaly detection method due to 

its faster process and better accuracy than the random forest and local outlier factor 

(LOC) methods (Liu et al., 2010). Each cluster of data was also utilized to identify 

anomalies using the iForest algorithm. Figure 24 shows a flowchart to explain the process 

of the isolation forest algorithm.  
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Figure 24. Flow Chart: Process of Isolation Forest Algorithm 

4.6.5 Isolation Forest Validation 

The isolation framework involves three different algorithms, including the iForest 

algorithm, in which the sample size and number of trees are the inputs. The second 

algorithm is the iTrees algorithm, in which the tree height and height limit are given as 

inputs. The final algorithm is the path length algorithm, which provides the longest and 

shortest path lengths of the anomalies along with the anomaly points. Finally, the 

anomaly score is determined for each anomaly point and is important to understand the 

anomalous behavior of energy consumption. The following subsections explain the 

anomalies of each cluster, the buildings connected with these anomalies, and LEED EA 

credit evaluation.  
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4.6.5.1 Cluster 1 Anomaly Detection 

As discussed earlier, Cluster 1 contained two different LEED buildings of similar 

consumption pattern together and had about 730 points. Figure 23 shows that Cluster 1 

did not have many anomalies. The iForest algorithm was performed using the R 

programming language, and the outputs were stored as csv files for further processing. 

Anomaly detection using the iForest algorithm involves two different processes. The first 

stage is training, in which the machine learns the pattern of consumption of similar data 

points. In this study, the machine was trained with 60% of the data points and tested with 

40% of the data points. The advantage with Isolation Forest is that it requires very few 

subsamples to identify anomalies and thus requires less processing time than other 

detection methods.  

The first step in running the iForest algorithm was to identify the subsample size. 

Empirically, the sample size was determined to be 28 or 256, within which the algorithm 

could provide enough details to perform anomaly detection over a wide range of data 

points (Liu et al., 2012). With the available dataset, 256 sample sizes were determined for 

each cluster, which contributed close to 30% of the data points of each cluster. The 

second step was to finalize the number of trees or the iterations to which the data must be 

processed. Based on the recommendation from (Liu et al., 2008), the path lengths usually 

converge well before 100 iterations, and thus 100 iterations used to converge the number 

of trees for this study. The iforest algorithm was processed with the subsample (n = 256 

and number of trees t = 100). The other important inputs were the height limits of the 

trees beyond which the trees did not converge or branch out. For this type of data to 
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converge, the height limit is determined to be 10 for all four clusters. So the path length 

numbers were equal to or lesser than the height limit.  

After all the required inputs were provided, the first steps of the iForest algorithm 

and iTree algorithm were processed to identify the anomalies from the 100 iterations and 

256 samples. This is a new approach to anomaly detection from energy consumption 

data. This study was ensured that each cluster was treated in a similar way and regularly 

tested the algorithm for any discrepancies. Figure 25 shows the possible anomalous range 

and the specific anomalies in that range of data points. From Cluster 1, 57 anomalies 

identified as well as their path lengths and anomaly scores.  

 Cluster 1 has two buildings grouped under them that includes Building 3 and 

Building 8 out of which Building 3 had only six anomalous points and Building 8 had the 

rest of the 51 anomalous points.  

 

Figure 25. Cluster 1: Anomaly Detection 

Cluster 1 Anomaly Detection 
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4.6.5.2 Path Length and Anomaly Score 

According to the isolation algorithm, the anomalous points are close to the root of the tree 

and the normal points further away, and a deeper tree has more convergence. The 

anomaly score ranges from 0.5 to 1, and when the value tends to be closer to 1, it 

indicates the higher strength of the anomalous point. Also, data points with short path 

length numbers are closer to the root of the tree, which means the data points are 

anomalous points for the given dataset.  

 From Cluster 1, the average path length was 2.83 (path length starts from the 1st 

node as 1), which indicates that the anomalous points in this cluster made sense and were 

accurate. Also, the average anomaly score of the cluster anomalies was 0.83, which again 

proves that the anomalous points had a higher degree of accuracy. Thus, the inference 

from this cluster is that Building 8 had more anomalies, which will be discussed under 

the LEED credit evaluation section.  

4.6.5.3 Cluster 2 Anomaly Detection 

From Figure 4, it is clear that Cluster 2 has anomalies from a total of three buildings it 

possesses. The isolation forest and isolation tree algorithms were repeated with the 

subsample size of 256 from about 1,066 points, and the number of trees was kept as 100 

iterations. Figure 26 shows the anomaly ranges of the cluster and the anomaly points on 

the consumption pattern.  
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Figure 26. Cluster 2: Anomaly Detection 

The buildings connected in Cluster 2 are Building 1, Building 5, and Building 9. The 

anomalies were all in Building 1, and Building 5 and 9 had no anomalies in this cluster. 

4.6.5.4 Path Length and Anomaly Score 

The average path length of the cluster anomalies was 4.8. This indicates that the 

anomalies were identified in this cluster after several converging iterations. Also, the 

average anomaly score of this building was 0.79, which was closer to 1, explaining the 

strength of the anomaly points. 

Cluster 2 Anomaly Detection 
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4.6.5.5 Cluster 3 Anomaly detection 

Cluster 3 contained three buildings: Building 2, Building 4, and Building 5. All of these 

buildings shared similar consumption patterns, and an isolation algorithm was utilized to 

identify the anomalies from 748 data points. Figure 27 shows the anomaly range and 

anomaly points based on data points from Cluster 3.   

 

Figure 27. Cluster 3: Anomaly Detection 

Of the total of 53 anomaly points, Building 5 had the most among all three buildings with 

40 points, and Building 4 had 13 points. This indicates that Building 5 must have an 

impact on their buildings' LEED points.   

4.6.5.6 Path Length and Anomaly score  

The average path length of the cluster was 4.3, and the average anomaly score stayed at 

0.75, which was on the higher side in terms of accuracy. Thus, the points at Building 5 

need more investigation to optimize the energy performance.  

Cluster 3 Anomaly Detection 
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4.6.5.7 Cluster 4 Anomaly Detection 

The final cluster, Cluster 4, included Buildings 6 and 7 and some consumption patterns of 

Building 1. The cluster had a total of 747 points, out of which 256 random samples were 

given as input for the iForest algorithm. With the same module, 48 points of anomalies 

were identified in Cluster 4. Figure 28 shows the anomalous points over the range of 

anomalous data points. 

 

Figure 28. Cluster 4: Anomaly Detection 

From the analysis, 30 anomalous points were in Building 6, and 18 points of anomalies 

were from Building 7. The one building in this cluster repeated from Cluster 2 was 

Building 1. However, any anomalies could not be found from the consumption pattern 

and hence, no cumulative anomaly calculation is required in this paper.  

4.6.5.8 Path Length and Anomaly Score 

The average path length and the average anomaly scores were 3.3 and 0.74, indicating 

that the degree of accuracy was good in this cluster as well. The motive to identify the 

Cluster 4 Anomaly Detection 
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path length and anomaly score was to make sure the anomaly points of the similar 

consumption pattern (clusters) were accurate and had no discrepancies. Thus, anomaly 

detection was performed using the isolation forest algorithm and isolation tree algorithm, 

and the results are discussed. To run the algorithms, R programming was used during the 

entire process with Matlab plotting syntax.   

4.6.5.9 LEED Credit Evaluation 

Using iForest and iTrees, the anomalies were determined from each cluster and its 

respective buildings. Except Building 2, all of the buildings’ anomalies ranged from as 

low as six points to the maximum of 53 points. The table below shows all of the buildings 

and their LEED E/A credit scores on their subcredits. From the analysis, it is evident that 

Building 1 and Building 8 had the highest numbers of anomalous points with 51, 

followed by Building 5 with 40 points. All of these buildings are LEED gold certified and 

have optimized energy performance points close to 10. Table 12 below shows the 

buildings and their percentages of anomalous points based on their LEED credit scores.  

Table 12. LEED Buildings and Anomalies 

Building 

Number 

Anomalous 

Data Points 

Total 

Data 

Points 

Percentage 

of 

Anomalies 

LEED 

EA 

Score 

OEP 

Score 
Certification 

1 51 365 14% 13 10 Gold 

2 0 365 0% 33 7 Platinum 

3 6 365 1.6% 15 10 Gold 

4 13 365 3.5% 3 2 Silver 

5 40 365 11% 3 2 Gold 

6 30 365 8.2% 15 10 Platinum 

7 18 365 5% 6 4 Gold 

8 51 365 14% 7 5 Gold 

9 0 365 0% 5 3 Silver 
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From the table, it can be inferred that the percentage of anomalies in each building ranged 

from 1.6% to 14%. Building 1 and 8 had similar anomaly percentages in relation to their 

LEED EA scores, which were 13 and 7. They are the gold certified buildings with the 

highest anomaly percentages when compared to the silver certified Building 4 (3.5% 

anomalies). Also, both the buildings scored 10 (out of 10) on the Optimized Energy 

Performance (OEP) credit at the time of pre-construction, which is contradictory to the 

results achieved by the analysis. This indicates that the trend of anomalies in these 

buildings has changed the optimized energy performance, and there is a requirement to 

re-examine the energy credits of these buildings in the post-construction phase. There is a 

similar case with Building 5, with 11% anomalies, but the buildings’ EA and OEP credits 

are lower (3 and 2), making it clear regarding energy points.  

The other important building is Building 6, which has 8% anomalies and is LEED 

platinum certified with 15 points of total EA credits and a full 10 points of OEP credits. 

This is again an issue when compared with Building 2, which is LEED platinum certified 

and has no anomalies. Also, Building 2 has 33 EA points (out of 35 in the new version), 

which proves the efficiency of this building.  

The other inference from the table is that Building 3 is relatively efficient with 

fewer anomalies, which means that the energy consumption of the Building 3 does not 

have a lot of abnormal behaviors and has good points on both EA and OEP credits (15 

and 10) respectively.   

4.7 Conclusions and Discussions 

Research and models have been developed to determine real-time anomalies, and alarm 

systems have been implemented to notify users of them. Data mining techniques of 
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clustering and isolation were utilized as methods in the field of energy consumption 

analysis to quicken and improve the accuracy of anomaly detection. LEED credits are 

assigned to the buildings based on their energy and other credit performances 

immediately pre-construction phase. As discussed earlier, anomalies are abnormal 

behaviors of building energy consumption during different times of the year. The 

research involves the integration of two data mining techniques, clustering and isolation 

forest. Clustering was used to identify buildings with similar consumption patterns and to 

group them together. The isolation forest algorithm was used to identify the anomalies 

from these clusters and to connect these anomalies with their respective buildings. Later, 

this was examined with LEED EA and OEP credits of the buildings to understand the 

impact of the anomalies on LEED credits.  

This study was done to detect the abnormalities in the buildings, which in turn 

could affect the energy performance of the buildings. With variations in energy 

performance, the credit scores can largely vary, which makes LEED certification more 

questionable post construction. The data used in this research were preprocessed and 

were of high quality, indicating that the anomalies were none other than abnormal 

behaviors in the energy consumption of the buildings. Thus, the research recommends 

regular inspection of energy performance to improve and disapprove certification for 

LEED buildings.  

 This research study was limited to nine LEED buildings due to the lack of reliable 

data. A future study needs to integrate the isolation forest technique as an important 

process of energy analysis of all buildings through which anomalies will be detected and 

treated, thus helping the analyst to know more about the energy performance of the 
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building. The findings from this research make it evident that irrespective of the type of 

LEED certification, buildings must be evaluated for their ENERGY performance at 

regular intervals, and take necessary steps to maintain their credit scores.  
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5. RESEARCH CONCLUSIONS AND DISCUSSIONS 

5.1 Summary of Results and Contributions 

The main aims of this dissertation are to (a) find the relationship between building energy 

consumption, outside atmospheric temperature, and LEED EA credits, (b) examine the 

use of different green space layouts to reduce the atmospheric temperatures of high-rise 

buildings, and (c) use data mining techniques such as clustering, isolation, and anomaly 

detection to identify data anomalies of building energy consumption and examine LEED 

EA and OEP credits to understand the impact of the anomalies on LEED credits. 

The analysis presented in Chapter 2 contributed in four ways. Based on the 

previous research studies, it was hard to handle the real-time building energy data and 

find the relationship between the use of building energy and LEED EA credits. First, data 

calibration and adjustment were required to clean, complement, and analyze the raw 

energy data. In this manner, the data analysis could improve and get better results. 

Second, a data mining technique (K-means clustering) was applied to examine and 

eliminate the data errors in an energy data set. Third, the chi-square method was utilized 

to verify the results of data mining and determine whether they were reasonable. Lastly, 

the LEED building with the lowest OEP points consumed the highest amount of energy. 

Therefore, this study showed that there was a relationship between building energy 

consumption and LEED OEP points. This study also showed that the results of the data 

mining technique matched those of the previous studies, which applied different methods 

(e.g., regression and non-regression). However, this study highlighted that calibrating 

energy data was a better approach to analyzing energy consumption in buildings and that 
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the relationships between LEED OEP points and energy efficiency are not as simple as 

previous research studies assumed.  

 The analysis presented in Chapter 3 presents a method to reduce atmosphere 

temperature using different green space layouts. For this study, four green space layouts 

were selected to observe atmospheric temperature changes. Based on the results, two 

conclusions were found. First, the impervious surface space interspersed between green 

spaces was cooler even if these spaces were not large enough due to the park cool island 

effect and the cooling of air by green spaces. Based on the results, when green space was 

constructed around the impermeable pavement, the park cool island effect would act over 

the pavement surfaces. Thus, it was a very effective way to reduce daytime atmospheric 

temperature in building areas. Second, this study showed that green spaces around 

buildings were more effective for lowering daytime atmospheric temperatures by 

approximately 2 °C to 6.5 °C due to the higher shade and evaporation effects. In addition, 

these spaces did not affect the central hot air, which elevated temperatures in the entire 

building area. Thus, these spaces mitigated the urban heat island effect.  

 In Chapter 4, the data mining techniques of clustering and isolation were utilized 

as methods in the field of energy consumption analysis to quicken and improve the 

accuracy of anomaly detection. Buildings are assigned LEED credits based on their 

energy and other credit performances immediately following the preconstruction phase. 

The goal of this study was to detect the abnormalities in the buildings, which in turn 

could affect their energy performance. The credit scores can vary widely with variations 

in energy performance, which makes post-construction LEED certification more 

questionable. The data used in this research were preprocessed and high quality, 
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indicating that the anomalies were none other than abnormal behaviors in the energy 

consumption of the buildings. Thus, the research recommends regular inspection of 

energy performance to improve and disapprove certification for LEED buildings.  

5.2 Limitations of the Study and Future Research 

This dissertation was composed of three topics, and each chapter provided different case 

studies with various factors (e.g., LEED EA Credits and OEP score, atmospheric 

temperature, real-time building energy consumption data, and green space) and analytical 

methods (e.g., K-means clustering, chi-square, isolation forest, and anomaly detection). 

The studies in each chapter had limited research conditions and future research studies 

for the following chapters.  

In Chapter 2, this study investigated the effects that both endogenous variables 

(e.g., LEED OEP) and exogenous variables (e.g., atmospheric temperature) have on the 

energy usage comparison of green buildings. However, The LEED OEP scores tended to 

increase the energy saving potentials of the buildings, which reduced the need for 

renovation and maintenance. However, the analyses suggest that this cannot be verified 

for a one-sided approach such as energy efficiency. However, this study highlighted that 

calibrating energy data is a better approach to analyzing energy use in buildings and that 

the relationships between LEED EA credits and energy efficiency are not as simple as 

previous research studies assumed. Energy efficiency credits in green building standards 

and rating systems (e.g., LEED and International Green Construction Code) may not 

reduce energy use in reality.  

In Chapter 3, the research condition was limited due to the different cases 

between the previous and current studies. The previous studies focused on low-rise 
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buildings. Therefore, these buildings had different cooling and heating loads based on the 

green space layouts. However, the current study focused on high-rise buildings. 

Therefore, this study aims to discover means of reducing air temperatures within 

buildings and using green space layouts to reduce air temperatures in housing complexes. 

For the future research study, other variables that affect the internal temperatures of 

residences need to be considered for the development of various methods of temperature 

reduction. Accurate tools are needed to mitigate urban heat islands by quantifying the 

effects of such variables on temperature reduction. Further study is needed to reduce the 

heating effects of impervious surfaces and determine the minimum green space size that 

can reduce the temperature, since minimum green space in this work did not address 

effective size.  

In Chapter 4, the research study was limited to nine LEED buildings due to the 

lack of reliable data. A future study needs to integrate the isolation forest technique as an 

important process of energy analysis for all buildings in which anomalies will be detected 

and treated. This would help the analyst know more about the energy performance of the 

building. The findings from this research make it evident that irrespective of the type of 

LEED certification, buildings must be evaluated for their energy performance at regular 

intervals and take necessary steps to maintain their LEED EA credit scores.  
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APPENDIX A 

CHAPTER 2: SAMPLES OF PLOTS BASED ON BUILDING ENERGY USAGE 

DATA 
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A.1. Weather Data Sample 

Time Info 
Low Temp 

(F*) 

Mean 

Temp 

(F*) 

High Temp 

(F*) 

Precip. 

(in) 

Mean Wind 

Speed 

(mph) 

9/1/2012 84 95.2 105.1 0 6.33 

9/2/2012 88 96.6 107.1 0 5.41 

9/3/2012 88 95.4 107.1 0 5.87 

9/4/2012 80.1 93.1 104 0 9.55 

9/5/2012 81 90.5 100.9 0 10.93 

9/6/2012 82.9 93 102 0 8.17 

9/7/2012 72 83.5 102 0 7.6 

9/8/2012 73 84 93.9 0.51 6.33 

9/9/2012 79 86.8 93.9 0 11.85 

9/10/2012 75.9 84.9 98.1 0.03 5.87 

9/11/2012 72 80.1 98.1 0.03 6.21 

9/12/2012 73 81 93.9 0.02 2.99 

9/13/2012 75 79 100 0 5.18 

9/14/2012 79 88.5 100 0 11.16 

9/15/2012 78.1 85.8 98.1 0 8.98 

9/16/2012 73 86.1 100 0 4.26 

9/17/2012 73.9 87.5 100 0 5.06 

9/18/2012 77 89.2 102 0 4.49 

9/19/2012 78.1 91 105.1 0 4.49 

9/20/2012 79 91.2 105.1 0 4.26 

9/21/2012 78.1 91.1 105.1 0 5.18 

9/22/2012 78.1 91.4 106 0 3.8 

9/23/2012 79 92.2 106 0 4.83 

9/24/2012 79 89.9 102.9 0 5.06 

9/25/2012 75.9 88.9 100.9 0 7.83 

9/26/2012 73.9 85.6 99 0 6.44 

9/27/2012 73.9 85.4 97 0 4.6 

9/28/2012 75 85.6 98.1 0 4.49 

9/29/2012 75 86.6 98.1 0 5.52 

9/30/2012 75 87.6 102.9 0 4.14 

. 

. 

 

8/29/2014 82.9 96.3 108 0 5.87 

8/30/2014 82.9 96.1 111 0 6.44 
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8/31/2014 82.9 97.3 111 0 6.79 

 

 A.2. Temperature vs Energy Usage for three buildings (Raw Data) 

 

 

A.3. Temperature vs Energy Usage for three buildings (Separated by weekdays and 

weekends) 

. 

 

 

A.4. Temperature vs Energy Usage for three buildings (Separated by year-2012 to 2014) 
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A.5. Deviation of Temperature vs Energy Usage  
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APPENDIX B 

CHAPTER 3: SAMPLE OF WEATHER DATA 
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B.1. Weather Hourly Data  

 

 

 


