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ABSTRACT

How water behaves at interfaces is relevant to many sciemtifd technological ap-
plications; however, many subtle phenomena are unknowgue@us solutions. In this
work, interfacial structural transition in hydration slsebf a polarizable solute at critical
polarizabilities is discovered. The transition is martéelsn maximum water response, the
reorientation of the water dipoles at the interface, andharease in the density of dangling
OH bonds. This work also addresses the role of polarizgtufithe active site of proteins
in biological catalytic reactions. For proteins, the hyana shell becomes very heteroge-
neous and involves a relatively large number of water maésca he molecular dynamics
simulations show that the polarizability, along with theratc charge distribution, needs
to be a part of the picture describing how enzymes work. NansSian dynamics in time-
resolved linear and nonlinear (correlation) 2D spectraatse analyzed.

Additionally, a theoretical formalism is presented to shixat when preferential ori-
entations of water dipoles exist at the interface, elettoogtic charges can be produced
without free charge carriers, i.e., neutral solutes canano\a constant electric field due
to the divergence of polarization at the interface. Furtigee, the concept of interface sus-
ceptibility is introduced. It involves the fluctuations bktsurface charge density caused by
thermal motion and its correlation over the characteristicelation length with the fluctu-
ations of the solvent charge density. Solvation free enarglinterface dielectric constant
are formulated accordingly. Unlike previous approaches,solvation free energy scales
quite well in a broad range of ion sizes, namely in the rang2 b4 A. Interface dielectric
constant is defined such that the boundary conditions in #palce equation describing a
micro- or mesoscopic interface are satisfied. The effecligkectric constant of interfacial
water is found to be significantly lower than its bulk valueolltular dynamics simulation

results show that the interface dielectric constant for @R3H water model changes from



nine to four when the effective solute radius is increasethfs A to 18 A. The small
value of the interface dielectric constant of water has gy dramatic consequences

for hydration.
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Chapter 1

INTRODUCTION AND THEORETICAL FRAMEWORK

1.1 Introduction

The solvent electrostatic response has been the focus bkmakn theories such as
Born theory of ion solvation[1] and Marcus theory of electtaansfer[2, 3, 4, 5, 6]. In
this work, new theories based on the electrostatic respains@vent under various condi-
tions are developed to address a variety of problems in ¢wadsoft matter and biology.
Molecular simulation methods are often developed and padd to assess the theories.
Common themes are the electrostatics of interface and efettinsfer, where collective
phenomena, such as solvent polarization fluctuations aappglay an important role due
to the correlations that can extend to large length scalesianre scales.

The response of the solvent is related to the interactionohfteyreactant with the
solvent[7, 8], as well as the excluded volume of the soljtaf@l is manifested in the
interfacial solvent microscopic structures, the intedhpolarization, and the fluctuations
caused by thermal nuclear motions of interface solvent cutés[10, 11, 12, 13]. These
properties play important roles in biological and chemighénomena such as efficient
electron transfer in biological systems, where the fluobmat are caused by a heteroge-
neous water and protein interface (as a part of solvent)[T4E fluctuations are among
the reasons for the low energy loss of electron transporialogical systems such as the
mitochondrial membrane interface [13, 15, 16, 17], whe@&dectrons travel over a rel-
atively large distance (tens of nanometer) to produce orendsine Triphosphate (ATP).

The problem is, in fact, complicated. Four complexes, cemplexes I-1V, as well as



electron carriers such as Quinone and cytochreraee usually involved in this process,
where cytochrome transports electron from complex Il to complex IV at the nwame
interface[18, 19]. In this work, computational and themmadtapproaches are used to ad-
dress several related phenomena at interfaces.

In principle, the electrostatics of interfaces is diffarérom electrostatics of bulk
materials due to the electrostatic inhomogeneity, whi¢bcés solvation and interaction
of charged and polar molecules and produces a broad intdrfiagion with special
structure[20]. In chapter 2, the concept of interface spisio#ity[12] is introduced. It
considers the fluctuations of the surface charge densityechby thermal motion and its
correlation over the characteristic correlation lengtithwhe fluctuations of the solvent
charge density. Solvation free energy is obtained as alradegral over the interface
susceptibility function for which an exact relation is dexd. Making use of this function,
an exact formalism is used to report the dielectric constaering the boundary value
problem of electrostatics at micro- to mesoscopic inte$ad his formalism is applied to a
number of aqueous interfaces and is shown to provide robsslts based on three-particle
correlation functions, which can be sampled by numericab$ations. The dielectric con-
stant of interfacial water turns out to be an order of magtatbelow its bulk value.

In chapter 3, the recent discovery of a spike in the solveldration fluctuations in
the non-harmonic regime [21] is presented. In the non-haregime, the reversible
work of creating a fluctuation of the solvent field is canalby the negative free energy
invested in polarizing the solute. Since both of these freergies are quadratic func-
tions of the solvent field, the quadratic terms in electitisteee energy of solution vanish
in this regime. This discovery suggests that some configuratf the solution can pro-
duce a greater sensitivity and, as a result, a greater d¢afttbe chemical reactivity in

(bio)chemistry. This discovery is significant because thaenge of the solvent effect of



dense liquid solvents at normal conditions is often harcctoeve. It is discussed how the
solvent response and microscopic structures change wkeeglehtrostatic solvation free
energy functional becomes non-harmonic. Motivated by thectiral transition that oc-
curs in the non-harmonic regime, as indicated by the chantfeeinumber of OH dangling
bonds, the possibility of using this phenomenon in the @ggnic synthesis or heteroge-
neous on-water catalysis is promising. For example, thagda the microscopic solvent
structure is important in the homogeneous and heterogsrmowater catalyses[22, 23] or
the preferential formation of peptide bonds at the liquegbar interface[24]. Additionally,
solvent polarization fluctuations in the non-harmonic tigan play an important role in
reactions such as electron transfer, where the probatilitgach the transition states can
be enhanced and they can aid the reactants to pass theianthatriers[8].

In chapter 4, a formalism is presented to explain the elpbcetic mobility of air
bubbles or oil drops in water, which is based on interfacdapzation and different sus-
ceptibilities at the solute interface and shear surfacee discrepancy between the re-
cent surface-sensitive sum frequency generation expetgf#b] and macroscopic mea-
surements based on zeta potential[26] can be explainedidbyotimalism. For nearly a
century absorbed hydroxide ions were considered to be megge for the migration of oil
drops and air bubbles to the positive electrode and the appaegative charge extracted
from the mobility[27, 28, 29, 30]. The possibility that mbtyi can be related to the order-
ing of water in the interface has been suggested[31, 32,8353 36, 37]. In the attempts
to prove it, simulations have suffered from the use of inadée ensembles[38, 39, 40]
and, more importantly, from the lack of an established tbtcal framework allowing
to analyze the data from both numerical and laboratory exyats in a unified formal-
ism. A simple theoretical framework is proposed to analymegroblem and it has been

confirmed that ordering and polarization of water in therifigige can produce an elec-



trophoretic charge without free charge carriers. A numlbeimaulations of model solutes
in several force field models of water are presented to shatthie surface charge density
coming from the interfacial order is comparable with expemtal estimates. It is sug-
gested that new experiments involving manipulation of mpantcles with light to prove
the theory predictions.

Based on the power-law dependence of optical spectroscopguraments on the ex-
ternal electric field, linear and nonlinear spectroscopies classified[41], and can pro-
vide important information about solvent response andytsadhics[42, 43, 44, 45]. In
chapter 5, lineshapes of linear and two-dimensional (2Djetation spectroscopies are
derived for a model considering a linear plus quadratic ddpece of the spectroscopic
transition frequency on a Gaussian nuclear coordinateeatirmal bath (linear-quadratic
coupling)[46]. These results are significant because theyige a straightforward ap-
proach for modeling the lineshape function and projectiveg tesult onto a set of param-
eters providing insight into the underlying molecular bebaand analysis of the experi-
mental data. Importantly, it is demonstrated that both tagssics and the dynamics of the
transition frequency fluctuations are non-Gaussian andtiganonlinear dependence of
the transition frequency on the system-bath interactionczause the two-point frequency
correlation function to differ from the bath correlatiomfttion. These results have signifi-
cant implications for the interpretation of 2D correlatgpectra. The analytical results are
tested against explicit molecular dynamics simulations.

In chapter 6, the solvent response in biological systems/estigated to find potential
mechanisms to lower the activation barrier in electrondfan This is done by perform-
ing mixed quantum mechanical/molecular dynamics simute{d7] of half reaction of
reduction of cytochrome. The main distinction of this study from previous studiethis

inclusion of a large number, i.e. 100, of excited quanturtestavhich allow the active site



to both be polarizable and change its polarizability wheeralg the redox state. A signif-
icant lowering of the activation barrier for electron tréerds shown when polarizability is
allowed. Mechanistically, two reorganization energiasteéad of one in the Marcus theory,
are required to describe the barrier for electron trangflrexchange[13, 15]. Polarizabil-
ity of active sites, along with the atomic charge distribatineeds to be a part of the picture

describing how enzymes work.

1.2 Solvent Response

In this section, related experimental and theoretical agghtes that are used to mea-
sure/obtain the solvent response are presented. Firgrasolved and steady-state emis-
sion spectroscopies are discussed, which involve the liot@imogeneous fields (also
known as cavity fields). Second, related nonlinear spemtfmes are introduced[41, 48].
Then, a brief discussion of dielectric relaxation expenisds presented[49], which in-
volves homogeneous Maxwell fields. This section is followga discussion of theoretical
and simulation approaches used to investigate solvenbmssp At the end of this section,
it is discussed how the solvent response in proteins and &ofyites is different from small
solutes whose global multipole moments and the excludedhweleffects determine their

solvent responses.



1.2.1 Experimental Approaches

1.2.1.1 Time-resolved and Steady State Emission SpeopEsc

A common way to measure the solvent response is based onamogithe relaxation
of the excited state of the chromophore. When the excited st@trepared by fluorescence
spectroscopy, the lifetime is typically betweémps to1 ns and many liquids near room
temperature display relaxation processes in this timenef§0]. Water at standard condi-
tions is a low viscous solvent, and fluorescence spectrgse@y be used to investigate
water response. When the chromophore has phosphorescepestigs, the excited state
lifetime is long, typically between ms to1l s. In this case the nuclear solvent response
can be measured only if the solvent is very viscous and shoigstational relaxation
processes within the time window of the excited state hieti However, most solvents
crystallize at such high viscosities and supercooled asgfarming solvents, such as 2-
methyltetrahydrofunran (MTHF) at low temperatures, ardus$n addition, the number of
appropriate chromophores that has phosphorescence feserd exhibits a high change
in the dipole moment upon electronic excitations is not asenous. Quinozaline, quino-
line, and naphthalene are famous chromophores[51].

Here, the time-dependent frequency shift of the fluoresespectrum of a probe solute
after ultrafast excitation is discussed[52]. This measnet is based on the instantaneous
change in the charge distribution of a dissolved solute liygulexcitation when the solute
is exposed to a pulse of light, where the pulse width is typichorter than the decay time.
Before excitation, the solvent surrounding the solute isqumléorium with its ground-state
electronic charge distribution. When the excitation occitiis instantaneous on the time

scale of solvent reorientation; therefore, the solutetegcstate is initially prepared in this



ground-state solvent configuration. Therefore, thisaflitiprepared state is a nonequilib-
rium one with respect to the solvent. As the solvent reomgs1s0 as to achieve equilibrium
with the new charge distribution, the emission frequensief, and the progress of the sol-
vation energy relaxation is monitored. The time-evolvipg&ra are used to determine an
experimental response function,

v(t) — v(oo)

0= 50) = vl D

wherev refers to the frequency of peak emission frequency and tbage response time

may be reported as

() = /oo S,(t) dt (1.2)
0

A schematic Stokes shift dynamics of a rigid dipolar molecal room temperature
water is shown in Figure 1.

When the solute is illuminated with a continuous beam of ligistead of a pulse of
light, a steady state can be prepared, where Stokes shife@sumed as the difference
between the center frequencies of the absorption and flicemes.

One-half Stokes shift can be used experimentally to estiriiegt solvation reorganiza-
tion energy[53, 54]. In addition, one can get informatiommuibthe reaction free energy
by making use of the mean energy of absorption and emissiaginmaWhen the excited
state lifetime is known for a given probe, one may also usadststate measurements to
report the solvent relaxation times by making use of datagbus temperatures and not-
ing that the solvent relaxation times should not be sigmfigadifferent from the excited

state lifetime as discussed in Ref. [50].

Similarly, Stokes shift dynamics can be reported for phospscence spectroscopy,
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FIGURE 1: Stokes shift dynamics of a rigid dipolar moleculecem temperature water
(for simplicity, the dipolar molecule is considered to bgididuring the electronic transi-
tions). The vertical axis corresponds to the free energfasarof a reaction (solvation)
coordinate, which corresponds to nuclear degrees of fraedsolvent. Before the exci-
tation, the dipolar solute is in ground state (g) and in elgailm with water. The vector
fieldsE andP are electric field and polarization density field, resp&tyiand can be con-
ceived as coarse grained vector fields (see section 1.2d&fails).E consists of the field
of the external charges and the electric field of all molechéund charges. The equilib-
rium susceptibilityy.q €stablishes the direct proportionality between the vdatisP and
E. After the excitation, the electronic degrees of freedomsatent have fast responses,
while the nuclear degrees of freedom have slow responsasrge nonequilibrium state.
The solvent molecules will reorient and relax with a releo@atime of ~ during which the
emission frequencies can be monitored to report on the tsatvdynamics.



where emission now occurs from the corresponding metastagited state to the ground
state and the measurements are often done in the low temaperaigh viscosity range.
Minor temperature changes can induce significant changiee isolvation dynamics time

scale as shown in Figure 2 for quinoxaline in MTHF solvent.
1.2.1.2 Nonlinear Spectroscopy: Two Dimensional Infre8gectroscopy
The relevant quantity in nonlinear spectroscopy is thecappolarizationP,[41].

P, = P(()l) 4 sz) + P(()3) 4+ (13)

where, the polarization componentitth order in the field is denoted li?f)“).

Consider a molecule in the gas phase, which is describedumantchanically, and a
time-dependent laser electric field, which is treated atafly, and its frequency matches
the transition from quantum stafeto quantum staté in the molecule. The laser pulse
creates a coherent linear superposition of the two quantat@ss The time dependence of
this wavepacket corresponds to the molecular respBnaad the time-dependent optical

polarization is given by

P, () = Tr [tp(t,)] (1.4)

wherem is the dipole moment operator apft;) denotes the time evolution of the density

matrix of this single molecule in the gas phase during theeocatce time

po (1) o exp (—i /0 ' wm(t)dt) (1.5)

Note that when the frequency is constant in time, the abaheces toe—woitt,



In linear response (weak laser pulse), the optical polaozs scale linearly with the
laser electric field strength. Here, the first-order respdnaction that is convoluted with

the laser pulse electric fieM,., is given.

PO = [ dnEu(t - 1R 1) (L.6)
0

where the first-order (linear) molecular response fundsayiven by

R(t)) = im2 e wortie=t/Th (1.7)

Here,mq; is the magnitude of transition dipole from stétéo statel and¢, corresponds
to dephasing time period, where the off-diagonal matgix oscillates at a frequency of
wo1 and decays with the homogeneous lifetiffie In case of vibrational spectroscopy,
the homogeneous lifetimes ate— 5 ps and only recently femtosecond infrared pulses
made these measurements possible because the emittett dielct can now reflect the
molecular response and not only the envelope of the lassepul

To incorporate the solvent effects into the above formalisne may average the den-

sity matrix in Eq. (1.5) as follows

por (1) <eXp (—z /0 ! w01(t)dt)> (1.8)

where(- - - ) denotes the ensemble average and can explain the dephasthgmism. The
solvent fluctuations change the instantaneous frequengi€s), leading to oscillating
terms that will eventually become out of phase. Therefdre,amplitude of the ensem-
ble averaged density matrix decays in time. Replacingt) = wo + dwpr (t) in EQ. (1.8)

gives
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por(ty) oc e~ worts <exp (—z’ /Otl 5w01(t)dt)> (1.9)

wherewy; is the average frequency.
The solvent effects can therefore be incorporated by regabe molecular response
function of the forme*“oite=t/Tr with the response function of Eq. (1.9) or its complex

conjugate[48].

. tl .
R'(t)) = im3 e "ot <exp (—z/ 5w01(t)dt)> — im3 e Wt gm9(t) (1.10)
0

whereg(t,) is the lineshape function and involves the solvent response
Making use of cumulant expansion and truncating after tbersgterm, the lineshape

function can be written as

g(tl) :/Oldt/o dt’<5w01(t’)5w01(0)> (111)

In this approximation (known as Gaussian approximatidm lineshape function only in-
volves equilibrium two-point correlation function, andethonequilibrium solvent dynam-
ics can be formulated only in terms of equilibrium two-paiotrelation functions[46].
Nonlinear response terms (nonlinear spectroscopy) peokigher order correlation

functions, which allows one to investigate the solvent ayita in a more rigorous way[55,
56]. The third-order nonlinearity is the lowest-order nernonlinear term in isotropic
media. Two-dimensional infrared (2DIR) spectroscopy is riw@st common third-order
spectroscopy in infrared spectroscopy. The most genenal & 2DIR spectroscopy in
a time domain consists of three input laser pulses all haglifigrent wavevectors. The
first interaction of a laser pulse with the sample generatesharence state, which is a

superposition of two quantum states. The system dephasésfot,. The second field
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interaction creates the population state, which corredgptmdiagonal terms in the density
matrix. During the waiting time T, the system experiencepypation relaxation. The
last pulse creates a coherence state again, where the gyspdrases during timg. The
generated field will then have a Wavevecisr;)lf;—l> + k:_Q> + Ez where the signs correspond
to rephasing and non-rephasing wavevectors[48]. To olthaifrequency domain spectra,
the Fourier transform is usually performed with respect®ti andt; coherence times
while timeT" corresponding to the population relaxation time is notsfarmed.

For 2DIR, the generated emitted field from the third-ordepoese functions con-
sists of terms combining pure dephasing terms. By consigemly one of these such
terms, one can set up the calculation of the third-ordeshage function for the rephasing
diagram[48]. For the two-state system, the rest of them eaoltained by changing the

sign of the coherences in the dephasing diagrams:

Gt T ts) = <exp (—i /O ) dT&J(T))
exp (z /t ::THS dew(T)) >

wheret; andt; are the durations of the pump and probe pulses, respectaedyl’

(1.12)

is the waiting time. Spectral diffusion can be identified bgmtoring the changes in the
peak-shape as the population time varies (see sectionbnadie details). As the popula-
tion time increases, the anti-diagonal linewidth broadediating the loss of correlations

between coherence states.

1.2.1.3 Dielectric Relaxation Spectroscopy

The inhomogeneous response of a solvent in the presencelota siay be formulated
in terms of a homogeneous susceptibility of solvent in theeabe of the solute[57]. The

latter may be obtained by dielectric relaxation spectrpgcahich measures the collective
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orientation of the dipolar molecules. It is used to identtg dynamics of liquid/solvent
over a wide range of temperatures due to access to a wide odfigggjuencies. The total
frequency range that can be measured (after combiningaeeehniques) to date spans
from v = 5 nHz (- = 1 year) to beyond = 1 THz (v = 0.2 ps)[49]. The experiments
can be done either in time-domain or frequency domain. Batdithese experiments can
be found in Ref. [49]. Here, it is only discussed how one camiohlthe liquid/solvent
response in these measurements with the focus on frequkmegin measurements.

The interaction of mobile charges within the sample withakiernal electric field, usu-
ally applied by virtue of two electrodes, is the origin of ebged signal. Therefore, both
the magnitude of the interaction and the time scales ingbinecharge displacements are
measured by this method. It is worth mentioning that the rntada of local fields in emis-
sion spectroscopies are orders of magnitude greater thaxvmMI) fields used in dielectric
experiments[54]. Liquid/solvent response correspondsitwoscopical or macroscopical
charge displacements. The microscopical charge moveraeatsanifested in chemical
reactions, solvation, and electron transfer. The macpsabcharge movements are mani-
fested in conductivity, capacitance, and energy storage.charge displacement can stem
from rotational motion of dipoles and/or translational riibpof charges and the amount
of energy that the external field can store in the sample istagc dielectric constant
(permittivity), e.

The common feature in frequency-domain measurements reldigon of two equilib-
rium sinusoidal signals, i.e., the voltagé(w), across the sample and the currefity),
through the sample. The ratié(w) = V(w)/I(w) is called the impedance and its in-
verse is called admittanc,. The above relations involve amplitude and phase, and are
complex valued. The liquid/solvent dielectric constaiy;), can be obtained based upon

measurement of impedanéeor admittance&” of a sample capacitor, whe&éw) is com-
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plex valued, which includes the amplitude and phase reldigtween displacement and
field at each frequency:

/ 11

€(w) =€ (w) —i€ (w) (1.13)

whereé (w) is referred to as storage factor ahidw) is referred to as loss factor. The stor-
age factor describes the component of the polarizationityengphase with the Maxwell
field while the loss factor determines the component of tHarpration with a phase differ-
ence with respect to the Maxwell field, which gives rise todissipation of energy of the
electric field in the medium.

The relaxation behavior of liquid/solvent in time-domairasurements may be treated
by time-dependent dipole reorientation in liquid/solveiatrotational diffusion on a sphere

as proposed by Debye[58]

€(t) = €00 + (€5 — €x0) (1 — exp(—t /7)) (1.14)

wherec,, is the high frequency dielectric constaat,is the static dielectric constant and
7 is the dielectric relaxation time. Liquid/solvent dipolespond to the field and can be
characterized by an exponential response function, whaglueces reorienting permanent
liquid/solvent dipoles.

Performing a Fourier-Laplace transform, the exponengigponse function can be rep-

resented in the frequency-domain to obtain the so-calldy®é&rm of dielectric constant.

(€5 — €x)

€w) = e+ 0

(1.15)

It is worth mentioning that a simple and exact relation existcalculate the loss factor
on the basis of the storage component for this type of siagp®nential behavior. How-

ever, there exists asymmetry in many viscous liquids when) is plotted versusog w.
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Havriliak-Negami (HN) function[59] has been suggested dptare the aforementioned

asymmetry:

E(w) = exo + % (1.16)

The exponenta andg control the symmetric and asymmetric broadening, respsgti
with their limitations beind) < «, andaf < 1. From this parameterization, the charac-
teristic time constant;,, = 1/w,,, can be obtained, whetg, is the angular frequency at
which the maximum of” (w) is observed. The resulting peak dielectric relaxation fime

plotted in Figure 2 as a function of temperature for MTHF.

1.2.2 Theoretical and Simulation Approaches

A preliminary step towards the theoretical and simulatippraaches is to describe the
solvent. In this work, we only consider classical solventsch can be treated theoreti-
cally by the methods of classical statistical mechanids[@0simple test of this assump-
tion for atomic solvents is to compare the de Broglie thermavelength and the mean
nearest-neighbor separation. Below three common appredohavestigate the solvent
polarization (response) are presented briefly. Firstedtek continuum methods are pre-
sented. Second, integral equation methods are discusdad.isTfollowed by explicit
solvent models. At the end of the discussion of these appes@ concise connection to
related quantum mechanical methods is given. Added to tbheeafipproaches, perturba-
tion theories[60, 61] and physical approaches based ecdattodels are worth mentioning.
In the cell theory, each solvent particle moves in a certateqtial in a free volume from
which a single-particle partition function may be derivebhe total partition function is

then obtained as the product of all the single-particleifp@mtfunctions. In a dipole-lattice
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FIGURE 2: Average solvent (2-methyltetrahydrofunrandxakion times as defined by Eq.
(1.2) within 13 decades in time in three different probesnqgualine and Ru(bpyg)CN); as
phosphorescence probes, and 4-aminophthalimide (4AF)asrascence probe for which
time resolved and steady state data has been reported. lfthérmoshows the results of
dielectric relaxation experiments for the solvent. Reguhtvith permission, from Ref. 52

approach[62, 63], the solvent response of a solute is repted by a lattice of dipoles with
the proper polarity to explicitly retain the dipolar natufesolvent polarization.
At the end of this section, a separate part is devoted to skstg the linear response of

the solvent because it has broad applications in the aforgéomed theoretical and simula-

tion approaches.
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1.2.2.1 Dielectric Continuum Methods

A dielectric continuum method replaces the explicit chadgtribution of the solvent
with a continuous electric field, which ignores the micrqacwariations due to the molecu-
lar structure of the solvent[64]. The continuous electeddfj in fact, represents a statistical
average over all solvent degrees of freedom at thermalibguih. The Born model of ion
solvation[1] presented ih920 is the first model which uses an isotropic dielectric contin-
uum to represent the solvent, where the ion is representagbint charge and its electric
field penetrates into the solvent. The polarization of tHegesd at a given point may be

written as

1

€

P(r) = \Eo(r) = (1

wherey is the solvent susceptibility, which is a scalar due to tloérepy of the dielectric

)Eo(r) (1.17)

continuum. Eq is the bare electric field of the ion anrdis the pure solvent dielectric
constant. Therefore, the value Bfat any position within the solvent is solely determined
by the value ofE, at that position and a local linear relationship holds betwg, andP

in the Born model.

One may note that the spherical symmetry of the field of an rmhadso the spherical
symmetry of the cavity (solute) in the solvent leads to aaksgolvent polarization. In
addition, the electric field of an ion is longitudinal becally = —V®, where® is the
electrostatic potential. For a spherical ion of raditigshe Fourier transform oEg(r),
Eo(k), can be obtained analytically as

Bo(lk) = — 8 jo(ka) (1.18)

wherej, is the spherical Bessel function of zeroth order. This candmelined with the

spherical symmetry of the cavity to result in the longitwdiprojection of the Fourier
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transformE, (k), EX (k) = k-Eq(k), wherek = k/k. Therefore, in the Born model, where
k — 0, the solvent polarization response to a spherical ion igitadinal. It is important
to note that for non-spherical solutes, where the symmeéttiyeocavity does not coincide
with the symmetry of the electric field, both longitudinaldatntansverse projections are
involved (see below).

Sixteen years after the Born model, Onsager considered thatiso of a spherical
solute with a central point dipole, in a dielectric contim[65]. The electric field of the
dipole in such a cavity polarizes the solvent, and the reguibhomogeneous polarization
of the solvent gives rise to a continuous field at the dipolds Tield is called the Onsager
reaction field and its direction is the same as the directidheodipole moment vector. The
reaction field coefficien{2/a)(¢—1)/(2¢+1), involves the solvent dielectric constant and
the radius of the solute and corresponds to solvation stibdiy (see chapter 3). One may
note that the electric field of the dipole is no longer sptaiycsymmetric and the solvent
polarization response involves both longitudinal andgvanse projections. To provide an
analytical explanation, one can obtain the Fourier tramsfof a point dipole at the center

of a spherical cavity as

Eo(k) = —4n [312 (k . m0> . mo} jlli’;a> (1.19)

wherea is the radius of the cavityj; is the spherical Bessel function of first order ang
is the dipole moment vector.

In many quantum mechanical continuum solvent models, am@#olarization en-
ergy operator is defined, which invokes the dipole momentaipeto form an effective
Hamiltonian of a molecular solute embedded in the solvesttien field[66] , i.e., the re-
action field is a first-order perturbation of the Hamiltonidrhe Schodinger equation in

solution becomes
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whereﬁg is the Hamiltonian operator in the gas phase@and the dipole moment operator.
This non-linear Schirdinger equation is then solved by making use of a self-sterst
reaction field calculation.

In apparent surface charge models, also known as polagizainitinuum models
(PCM)[67], the solvent polarization is represented as a tepparent surface charges,
which are placed on the surface of the cavity containing thats. The cavity is usually
determined by multiple overlapping spheres for each of thea within the molecule in-
side of the solvent and the electrostatic problem is thevesiobn the cavity boundary to

obtain the apparent surface charges.
1.2.2.2 Integral Equation Methods

In the liquid state, the solvent molecules are in thermal difidisive motion, and
changing their positions and orientations continuousligeréfore, the density of solvent
molecules is different from space to space and time to tirhe.ifitegral equation methods
describe the solvent structure through these density #itiotus and the corresponding in-
termolecular pair correlation functions[68, 69, 70, 71hey fall into two general classes.
When the solvent is described by rigid molecules, the fulljudar dependent, intermolec-
ular correlations analogous to the corresponding theargtfumic liquids are used. When
the solvent molecules are described by interaction siteefspthe relative intermolecular
distribution of pairs of sites is considered. This seconqektyf equation is usually referred
to as the RISM (reference interaction site method or modeixgon.

The Ornstein-Zernike (OZ) equation is most popularly usetdiscribe the density fluc-
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tuations in liquids. The equation defines a correlation fiamccalled the direct correlation
function ¢(r,r’) in terms of the total correlation functiok(r,r’). The total correlation
between two particles involves the direct correlation leetwwthem and also the indirect
correlation of the two particles via the influence of the fpatticle on particle” and the
influence of particle” on the second particle summed over all such particles weir th

corresponding densitieg)(

h(r,r') = c(r,r') + /V c(r,e")p(x")h (', v")dr” (1.21)

In order to solve the OZ equation, a closure is required, Wwhetatesh(r,r’) and

c¢(r,r’). The general closure reads

c(r,r’) = exp [—SBu(r,r’) + t(r,r') + b(r,r')] — 1 — t(r, 1) (1.22)

wheret(r,r’) = h(r,r’) — ¢(r,r’) andb(r,r’) is a functional ofh(r,r’) and is known
as the bridge function and include multiple difficult intaty. Approximate methods are
therefore developed to solve the OZ equation. Here the hgtexd-chain (HNC), Percus-
Yevick (PY), and mean-spherical approximations (MSA) @se chapter 2) are discussed
briefly.

In the HNC closure[72, 73], the bridge function is ignored:

c(r,r') = exp [ Bu(r,r’) + t(r,x")] — 1 — t(r, 1) (1.23)

The HNC approximation works reasonably for many systemé$ sischard spheres and
those which involve Coulombic forces.

In the PY closure[74]exp (t(r,r")) is also linearized:

c(r,r’) = exp [—Pu(r,r")] [1 + t(r,r)] — 1 — t(r,r) (1.24)
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Although the PY approximation works reasonably for the eyst consisting of hard
spheres, it leads to unphysical behavior for Coulombic syste

When the systems of interest consist of spheres which irteriiec each other via
potential functions.(r) = oo for r < o andu(r) = w(r) for r > o, the mean-spherical

closure[75] is used:

h(r)=—1 for r<o
(1.25)

c(r) = =pw(r) for r>o

wherew(r) is the attractive or repulsive part of the potential, angs the diameter of
the spheres. The MSA approximation is used for polar fluidsianic solutions[76] and
is known to give a reasonable account of critical phenonfja[ However, the radial
distribution functions are ill-behaved for Coulombic systesimilar to the predictions of
the PY closure.

In the RISM methods, the solvent is described by interaciigs ssimilar to the expres-
sions that are use in force fields in classical molecular kitimns. An important approx-
imation that is used in the RISM methods is to represent theontdr direct correlation
functions by a sum of the site-site direct correlation fisrts. When the RISM theory is
applied to single site spherical particles, it reduces RN theory for hard sphere fluids.
Extensions of the RISM theory have been applied to study poldrassociated liquids[78].

The RISM theory can be combined wéil initio methods to incorporate the electronic
guantum mechanical aspects of the solvent. For instaneesetiction field in quantum
mechanical continuum models can be replaced by a micraseapression in terms of the
site-site radial distribution functions between solutd aalvent as calculated by the RISM
theory. The electronic structure of the solute determihesstatistical solvent distribution
and it, in turn, influences the electronic structure of thetso Therefore, a self-consistent

approach is required to solve the RISM equation (RISM-SCF)[79]
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1.2.2.3 Explicit Solvent Methods

Explicit solvent models treat the solvent molecules exi@and are usually used in
computer molecular simulations such as molecular dyna(M&¥) or Monte Carlo (MC)
simulations. When classical force fields are used, the sbiaetecules are represented by
interaction sites. These empirical molecular models ataioéd by fitting parameters to a
set of experimental data, which, to some extent, capturetgoaand many body effects in
an effective way for the corresponding experimental proggB80, 81, 82]. Relatively long
trajectories can be obtained: in 2016, atomistic MD simairet of hundreds of thousands
of atoms up to microseconds is achievable[13, 15].

To offer the possibility of a parameter-free way of incomgorg electronic quantum
effects in condensed phase simulations, first principlessdar simulations are usedb
initio MD or MC methods solve the Sabdinger equation and are computationally expen-
sive. A popular method is the Car—Parrinello MD (CPMD)[83].emhthe core electrons of
molecules are usually described by a pseudopotential édeefoand a plane wave basis set
is used to represent the wavefunction of the valence elextibhe ground state electronic
density is calculated at each step from which the forces emtlctlei are calculated. To
prevent expensive self-consistent iterative minimizaiat each time step, the electronic
degrees of freedom are treated by fictitious dynamical kgasuch as small fictitious
masses of the electrons, which avoid a significant energgfiea from nuclei to electrons.
Depending on the problem of interest, special pseudopgatemhay be developed as for
the hydrated electron,& a metastable localized species in liquid water. They mepthe
complicated many-body interaction between an excessrefeand solvent molecules by

an effective potential, assuming that the core electroasttic during the chemical pro-
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cess and noting that the valence electron wave functionth®gonal to the core electron
wave functions[84].

Often long trajectories, together with realistic potelreizergies, are required to unravel
the physics of a problem or the corresponding mechanisrhelfwhole system of interest
can be divided into inner (quantum) and outer (classicajores, then hybrid quantum
mechanics/molecular mechanics (QM/MM) approaches a{85g86, 87, 88, 89, 90, 91].
This approach gained considerable attention after thersgmwork of Warshel and Levitt
in 1976. The calculation of the hybrid QM/MM potential energy of taetire system is

expressed as

Utot = Ugm + Univt + Ugnijnv (1.26)

where the first two terms are the quantum mechanical andcdhgotential energies, re-
spectively. The third term is the coupling term and inclutthesinductive effect of the clas-
sical point charges on the quantum mechanical chargesi8&kd QM/MM approaches

may also be developed by merging the unperturbed electproerties of the quantum
region with the solvent field (as a perturbation), which carobtained from classical MD
simulations[47]. The assumption is that the forces actinghee atoms of the classical
thermal bath can be well characterized by classical fordgsfidn chapter 6, an example
of this approach is used to investigate the role of polaiiitglin the electron transfer of

cytochromec.

1.2.2.4 Linear Response of Solvent

Consider a solvent in thermal equilibrium with a solute arel sblvent is exposed to

a weak perturbation from the solute. How does the solvemqgores$? This is the type
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of question that is addressed in linear response theoryghaiki essentially an applica-
tion of the fluctuation dissipation theorem[92, 93]. Basedtos theory, the electrostatic
response of the solvent to the perturbation can be obtanoaad knowledge of the equi-
librium fluctuations of the unperturbed solvent. A large ammioof theoretical works has
been formulated in terms of the linear response of the sglwenich involves the con-
tinuum, explicit solvent, and integral equation approachknportant relevant examples
are the Born[1], Onsager[65], Li-Kardar-Chandler[9], Matiav microscopic theories of
solvation[57], and the Marcus theory of electron transfdrich is based on a linear re-
sponse dielectric continuum theory and the solvent fluxinatto obtain the parabolic
electron transfer free energies of reactants and prod@)&s#l, 5, 6]. Here, the static linear
response is mostly discussed. Dynamic linear responsehwhiisually used to investigate
solvent dynamics, is discussed in chapter 5 (see Eq. 5. tMagpendix C.

In the Born theory of ion solvation, the free energy of ion fatdm scales quadratically
with the ion charge[1]. In the Onsager theory of dipole stbrg the free energy of dipole
solvation scales quadratically with the dipole moment diitgo The proportionality coeffi-
cient, the solvation susceptibility, may be investigatediolecular details as discussed in
chapters 2 and 3. The quadratic scaling with the solute pulileads to relations between
the cumulants of the solute-solvent interaction energig3,(where0 ands correspond to
solute and solvent, respectively. The linear responsecappation results in the Gaussian
statistics of solute-solvent energy, and predicts the lagua the first and second (mul-
tiplied with 3) cumulants of the solute-solvent energy, ifw,) = —8 ((dups)?), where
(...), stands for the statistical average over the solvent carfiguns in equilibrium with
the solute with a given multipole moment[11]. Note tha4,) includes the potential due to
spontaneous polarization of interface that can occur fatraénon-polar non-polarizable

solutes and also the potential produced by the solvent pores to the solute multipole
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moment. It is the latter potential which generates the catadscaling of the free energy
of solvation with the solute multipole. When the linear resg® does not hold, the free
energy of solvation is determined by an infinite expansiothencumulants ofiy,, which
may be truncated up to high order terms. In addition, thealimesponse approximation
predicts the equality of(dues)?), = ((dues)?), where(...), now stands for the statistical
average over the configurations of the solvent in equiliorwith a neutral non-polar non-
polarizable solute, which has the repulsive part of theqt@kof the real solute. In chapter
2, we found that this equality holds well for neutral, aniand cation Kihara solutes, where
the solute charges are placed at the center of solute.

Therefore, the electrostatic free energy of solvationmedir response[94] can be ob-
tained as

Fow =~ 2 (500, (1.27)

This implies that the excluded volume effect (repulsiveecof the solute) by itself plays
an important role in the theory of solvation. In other wortlt&e excluded volume effects
are more important than effects originated from the solxtereal field.

In dipolar solventsy, corresponds to the interaction of the solute’s electrid fi&j(r)

with the dipolar solvent dipolar polarizatid®(r)

Ugs = — /Eo(r) - P(r)dr (1.28)

In real space Eq. (1.27) can be written as

Fos = _g 0y (1) By (x") (0 Py (r') 0 P (") ) ol dr” (1.29)

where~, x subscripts denote Cartesian projections and the summatemtloe common
indexes is assumed. In chapter 2, the solvent responsadurantd free energy of ion

hydration is addressed based on the above equation (se€2Ef)sand (2.8)). Here, the
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nonlocal response of the solvent is discussed in the rempsgpace. Eq. (1.27) can be

written directly in the form of the Fourier integral

O [ deEO(kl) (0P, (k1)0 P (k2)*)o - Eo(ka)* (1.30)

0s — 9 (271’)6

whereEy (k) is the Fourier transform of the solute field over the solventime ), out-

side the solute

Eo(k) = /Q Eo(r)e*dr (1.31)

and Ey(k)* and P,(k)* are the complex conjugates, and the nonlocal solvent respon

function may be defined as a second rank tensor as

X (K1, k2) = B(OP, (k1)0Pi(k2)")o (1.32)

However, the calculation of this function is still a majoratlenge and various approaches
have been suggested. A preliminary step is to approxigafewith the response func-
tion of a pure solvent in the absence of the solute, kekq,ka) = Jk, k,xs(k1) =
(27) 6 (ky — k2) xs(k1), where the pure solvent response function may be writtegring

of longitudinal and transverse structure factors

Ya(K) = i—i [(S*0)RE) + (7 (k) (1~ ki) (1.33)

wherey = (47/9)5m?p is the density of permanent dipoles, is the magnitude of the
solvent dipole moment, andgis the solvent number density, and the longitudinal andstran

verse structure factors are given in terms of unit-vect@rationsé; = m;/m and posi-
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tionsr; of molecular dipoles in the bulk

SE(k) = % > <<éi k) (k- éa')eik'r“>
5 S (1.34)
ST (k) = oIN Z < |:(éi &) — (& -k)(k- éj)elk.”jb

irj
Here,r;; = r; — r; and the statistical average is over the configuration®¥ afiolecules of
the bulk liquid occupying the volumk.

The approximation above is known as homogeneous apprarimdtowever, the ex-
cluded volume can have significant effects on the dipol@ldigorrelations outside the
excluded volume as reported previously by the Song-Chaihiéecus study and verified
by our work (see chapter 2)[12, 95]. Note that the transv&rseture factors do not vanish
when there is spherical asymmetry in the electric field orcdngty (solute) shape. In the
continuum limit, this can lead to a transverse catastroptegning that very high, unrea-
sonable values af,, can be obtained.

The excluded volume effects are considered in the Gaussilahnfiodel of Li-Kardar-
Chandler[96, 9]. In this model, the solvent is describedimteof a linear responding field
(a Gaussian fluctuating field) that is expelled from the vawuocupied by the solute, where
the excluded volume affects the normal modes of the systeratyddhov showed that
a correct renormalization of the inhomogeneous solverdarfaation response function is
obtained in this model, which eliminates the transversasteiphe[97]. The corresponding
free energy}¥'(J), can be considered as the generating functional of coiwal&tinction

(0P(k1)5P(ka)")o.

(1.35)

W(J)=1In [/exp (/J-Pdr—BHB> I[ sP@)pP

reQin

wherelJ is the auxiliary field P is the polarization field(;, is the volume enveloped by the
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solute,D indicates functional integration, arids is the Hamiltonian of the pure solventin
the absence of the solute, which may be given in the recipspege by

- [ (;1‘)3515<k>-xs<k>‘1-6P<k>* (1.36)

The solvent response function can be obtained as the seaantidhal derivative of

the generating functional

W
Xexc(k1, ko) = 5# (1.37)
0J(k1)0J (ko) l3=0
This results in an exact solution for the reciprocal spaspaase function:
Xese (K1, Ka) = Xs(K1)01 1, — X (k1)0o(k1 — k2)xs(kz) (1.38)

where x" (k1) includesy and the information about the solute shape and the kernel
0o(k1 — ko) is the Fourier transform of the step function equal to unmigide the solute and
zero elsewhere. The free energy of solvation may then bengat®y replacing Eq. (1.38)
into Eq. (1.30). However, it results in a six dimensionakgrial convolution irk—space,
which is numerically not tractable. The SolvMol softwaregiram is developed to perform

these calculations. Details can be found in Ref. [98].

1.2.3 Inhomogeneous Interfacial Polarization

As mentioned in the previous section, the homogeneous jppation used in the sol-
vation theories is not a good one. In this section, the sohe=mponse is discussed based on
the inhomogeneous Maxwell fields corresponding to intéafgolarization. The Maxwell
field has played a prominent role in the theories of dielestrin the case of a homogeneous

field produced by a planar capacitor, one gets the directrempatal access to the Maxwell
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field E through the voltage on the platésand the distance between theinE = V/d.
The dielectric/solvent response to the external field isetfoee most conveniently repre-
sented in terms of the susceptibility to the Maxwell field.isSTtan be viewed as both an
advantage and disadvantage siiicéself is never accessible experimentally and only the
line integral [ E - d¢ = V/, producing the voltag®’, can be measured[99]. In the case of an
inhomogeneous field there is no way to extract the field fromitegral and experiment
generally does not have direct access to inhomogeneous.fiElie: problem was realized
already at the time of birth of the electromagnetic theorync& inhomogeneous fields
cannot be accessed directly, Thompson suggested usinbcawviéies to measure internal
fields inside dielectrics[100] to map inhomogeneous fieldss approach has in fact been
realized by modern-day spectroscopy, which allows one &tuete the local field acting
on a dye molecule through the field-induced shift of its sédine[101, 102]. However,
the connection between such a local field and the macrostgievell field has been elu-
sive beyond the standard prescriptions of the dielectaoty{103]. In addition, the ability
to spatially resolve the distribution of the electric fielddainhomogeneous polarization
within molecular systems of nanometer scale has been tfiidd].

From the theoretical perspective, the Maxwell field is wellided by the Coulomb law.
The starting point is the overall microscopic electric figlgl, combining the field&, of
the external charges with the electric field of all molectlaund charges distributed with

the charge density, (“b” stands for the bound charge). The result is obviously
E,=E;+E, (1.39)

where
E, = —V/ v — /| ppdr’ (1.40)
The primes here and below denote vector and scalar fields takéhe pointr’, e.g.,

p, = pu(r’). The Maxwell field is produced from this equation as the resiitwo steps: (i)
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statistical averagéE) of the instantaneouk,,, over the configurations of a statistical en-
semble and (ii) coarse graining @) over a “physically small” volume averaging out the
microscopic correlations between the molecules of the madfted5]. This volume is not
precisely defined and, in fact, is never explicitly involvélche theory, as it is formulated
for bulk dielectrics and interfaces, instead introducesrse graining through constitutive
relations as discussed in section 2.3.

By taking the divergence dt,, and substitutingv - E, = 47p, for the density of the
external charge,, one arrives aV - E,,, = 4w (po + pp). Further, due to the conservation of
charge, the instantaneous density of bound charge can laeedpwith the divergence of
the polarization vector fiel#®,,, such agp, = —V - P,,[105]. One arrives at the equation
for instantaneous fields

V- (E,, +47P,,) = 4mpg (1.41)

which looks very much like the standard Maxwell equatiorgept that the fields in this
equation refer to an arbitrary statistical configuratiorihef system. Of course, this equa-
tion is just a different form of the Coulomb law, which appltesmicroscopic dimensions
and arbitrary configurations of charges. The two-step @wegaand coarse graining pro-
cedure mentioned above will produce the average smootheflebds E and P and the
corresponding electric displacement vedibe E + 47P. The Maxwell equation for this
coarse grained displacement vector follows from Eq. (1a4%) - D = 4mp,.

Equation (1.41) and its coarse grained version still cabeatolved without applying
a closure relation betweeR,, and E,,, or betweenP and E. The connection between
microscopic field®,,, andE,,, is a complex problem of statistical mechanics of liquid$[60
It is therefore assumed that coarse graining helps in editimig this complexity and leads

to local constitutive relations between coarse graineddiel

P —\E (1.42)
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This constitutive relation thus establishes the direcpproonality between the vector
fields P andE through the susceptibility, which is a scalar for isotropic materials. Em-
pirical evidence suggests that this approximation, whesd der macroscopic dielectrics,
yields the bulk dielectric susceptibility,, which is a material property, i.e., a parameter
characterizing bulk dielectric and independent of the darspape (the surface effects die
off in the macroscopic limit). Correspondingly, the dietecitonstant of bulk dielectric
es = 1 + 4wy, is a material property as well.

This result is quite non-trivial since even for coarse gedimector fields the susceptibil-
ity xo to the field of external chargds, does not share insensitivity to the surface effects
(boundary conditions)y, is not a material property and it depends on the shape of the sa
ple through the dielectric boundary value problem. Givext the inhomogeneous Maxwell
field E is not accessible experimentally, most problems of intdoesapplications involv-
ing inhomogeneous fields (solvation of molecules, solveditced shifts of spectral lines,
interfacial problems, etc.) are formulated in terms of thgponse to an inhomogeneous
external electric fields,. Nevertheless, the Maxwell field has to be introduced in iorde
to solve the problem since only this field is believed to pdeviocal constitutive relations
betweenE andP required to arrive at the Laplace equation. The localityhef Maxwell
field for inhomogeneous external fields does not have firm raxyeatal support and is
likely to be an approximation. This difficulty is respongldbr many problems arising in
the general problem of electric polarization of interfdtes].

The problem of interfacial polarization is solved in digtéctheories by replacing the
microscopic field¥,,, andP,,, in each point of the interface with the corresponding coarse
grained fields and then applying the local constitutivetraha(1.42) to each point of the
interface. When substituted to Eq. (1.41), it leads to thddagpequation foE fully spec-

ified in terms of external charges. However, there is no fataarse graining when this
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procedure is applied to microscopic problems, and it isIlgearpossible even to define
an algorithm of volume coarse graining when fields are chrapgn the scale of molecular
dimensions. The Laplace equation is obtained in such cgsisdet substitutiork,, — E
andP,, — P and the subsequent use of the constitutive equation. Asionedl, coarse
graining of microscopic fields is not achieved directly bgiaging over a judiciously cho-
sen volume, but is produced by applying a specific local fofrthe constitutive relation.
The smooth functiorit obtained from the solution of the Laplace equation thenddadc
smoothP, instead of a highly oscillatory function characteristiéragerfaces[107, 108]. It
is the constitutive relation that replaces coarse graiowegy a small volume in converting
the microscopic into macroscopic fields.

Since coarse graining is in fact not performed, one can aspimewhat different form

of the constitutive relation involving only the statistieareraged fields in the interface
(P) = x(E) (1.43)

Of course, Eq. (1.43) is an approximation. In chapter 2, discussed how to build a
consistent theory of interfacial polarization when thip@gximation is applied. The ad-
vantage of Eq. (1.43) over Eq. (1.42) is that statisticarayes are well-defined even on
the microscopic scale and one can proceed with ensembéeltzdgorithms of defining
susceptibilities. In other words, in contrast to smoothdyied functionsP and £ in Eq.
(1.42) the corresponding fields in Eq. (1.43) will be highscitlatory, as usually produced
by liquid-state theories and numerical simulations. Egd¢3L may be only applied to the
dividing surface separating the solute from the solventhisiway the microscopic calcu-
lations is connected to the electrostatic boundary valablpm.

If the constitutive relation is the only step separatingriieroscopic Coulomb law in
Eq. (1.41) from the dielectric boundary value problem, omaders if this procedure can

be supplemented with susceptibilities reflecting the nsicopic structure of the polarized
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interface, i.e., the susceptibilityin Eq. (1.43). The standard Maxwell dielectric boundary
value problem in fact implements one additional approxiomebf replacingy in Eq. (1.43)
with the susceptibilityy, of bulk dielectric[109]. This approximation is not requdrand
any scalar susceptibility can be used in solving the boynesue problem. Not surprising,
the idea of an effective susceptibility or interfacial eietric constant has been actively
discussed in the literature[110, 111, 107, 112, 113]. Irptdra2, it is discussed how the

interface dielectric constant can be obtained from the@smopic interfacial polarization.

1.2.4 Proteins and Large Solutes

The global multipole moment of solutes accounts for sohaert interfacial polariza-
tions and the free energy of solvation of simple small salis presented in previous
sections. However, in the case of hydrated proteins, sterpolarization can be quite
different. A typical-sized protein is a heteropolymer dstisg of a chain of~50-500
amino acids. Water-soluble proteins usually have nontpbiadrophobic groups in their
core and polar or charged residues at their surface[114).chirged residues polarize the
water molecules surrounding the protein and make the protaier interface very hetero-
geneous. This can result in high electrostatic noise of theem-water interface[13].

A simple way to investigate the surface polarization is txplpoint dipoles close to the
solute-water interface. Recent studies by Friestead. found that in contrast to the linear
response expectations, the electrostatic free energeadution is non-harmonic at inter-
mediate dipole moment magnitudes[115]. Surface excitgdstas well as the structural
transition of water at the interface were observed by irgingathe strength of the surface
dipole. It was concluded that the statistics of the solvésttac field fluctuations can be

different from linear response predictions once surfaceemaolecules have close prob-
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abilities to occupy surface excited states. The non-Gansstatistics indicate nonlinear
solvent response.

Surface polarization at a protein-water interface almesgtianines the properties of the
protein hydration shells and significantly disturbs theresponding network of hydrogen
bonds. The protein hydration shells consist of a large nurobevater molecules, i.e.,
~ 500 water molecules in the first hydration shells of a typicabgllar protein, and involve
a large number of microscopic configurations of the sheler&fore, in contrast to simple
small solutes, the solvent polarization now involves adangmber of water molecules
from the hydration shells, which can have different sigaificproperties as compared to
bulk water. A recent study by Martiet al. investigated the dipolar response of hydration
shells of lysozyme at a wide range of temperatures by MD stiaris and suggested the

existence of dipolar nanodomains in the protein hydratrells[116].

1.3 Electron Transfer

Electrons that are exchanged during a redox reaction inwisolare the source of
perturbing charges in the solvated solute/protein (reactaproduct). This creates the ex-
ternal perturbing field E, in the solvent, wherg¢ is the charging parameter or the strength
of perturbation. Note that the energy gapis the energy difference between the reactant
and product electronic states for a given instantaneoufsgtwation of the system. In lin-
ear response theory, the solvent response is related tajthidbgum fluctuations of the

unperturbed solvent(. . ))

(P)e = £L(0P(x")dP(r"))o x Eg (1.44)
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wherex means a dot product and a spatial integration. Making uskeeothtermodynamic

integration method, one can obtain

OF  9(—EEg +P)
AT

Integrating over the perturbation parametéresults in parabolic free energies. Therefore,

)¢ &~ —EBq  B(SP(r')5P(r")) * Eq (1.45)

two simple routes can be used to assess the validity of liresgonse in electron transfer.
One can investigat%? as a functiort such as electron transfer between an infinitely sepa-
rate cytochrome and small heme complexes[117, 118]. When the correspontinogen
transfer free energies are available (see section 1.31&)can also check their parabolici-
ties. As long as there is no polarizable species involvetierréaction, in linear response
the free energies are parabolic with the same curvature.

Solvent reorganization energies can also be used to tebhda response. They cor-
respond to the energy that is required to push the equitibmwclear configuration of
solvents in reactants to equilibrium nuclear configurawdrsolvents in products when
electron transfer does not occur. They are often reportdtefirst and second cumulants

of energy gaps in reactants and/or products[119, 120].

A= (X)) = (X)1/2 (1.46)

wherer andp stand for reactant and product, respectively @nsdtands for Stokes shift.

)\var(r/p) — g((éXr/p)2> (147)

In linear response, when the system of interest (in eled¢tearsfer reaction) is ergodic,

A3t = \var(/p) This equality is therefore one of the predictions of the ddiartheory.
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1.3.1 Electron Transfer Free Energy Surfaces

Consider a chromophore that is dissolved in a solvent. Onéraae out the fast elec-
tronic degrees of freedom of the chromophore and the soteeolbtain the (partial) free

energy of the chromophore in its electronic state

exp [~BE)] = Tra (exp [~AH]) (1.48)

where H°* is the Hamiltonian of the system in the ground=£ 1) and excited states,
B = 1/kgT, andTr, means the trace over the quantum states of the fast elecdeni

grees of freedom. Therefore, the instantaneous free esefyidepend on the nuclear
coordinates and correspond to the Born-Oppenheimer eserQiee can therefore define
the Hamiltonian of the chromophore-solvent system, whiereraophore is coupled to the

collective nuclear solvent modegsas

H,=1,—Ciq+ (Hz'/2>q2 (1.49)

wherel; is the intrinsic gas phase energy of a diabatic stéte= g, e), C; is the parameter
which defines the strength of chromophore-solvent coutiriilge linear solvation approxi-
mation, and; is the collective force constant, which involves the freergg of polarizing
the chromophore and nonlinear chromophore-solvent cogipll he above model, known
as the “Q-model”, was pioneered by Matyusheival. to address the electron transfer in
condensed phase[119].

The fluctuations of the nuclear coordinates can result imekenanceé’;, = F, during
the electronic transition. Therefore, the electron trante energy surface in the classical
limit can be defined based on the probability distributiothaf instantaneous energy gaps

X =FEy,— F.
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wherel’ shows the phase space. Sections 5.6.2 and 6.4.1 discuisgire&lculations of

— BF/(X) = In P(X)

(1.50)

these free energies for electron transfer in “Q-model” artdahromec, respectively.
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Chapter 2

INTERFACE SUSCEPTIBILITY: FREE ENERGY OF HYDRATION AND
INTERFACE DIELECTRIC CONSTANT

2.1 Summary

In this chapter, the concept of interface susceptibilitpisoduced. It involves the fluc-
tuations of surface charge density,,(r), caused by thermal motions and its correlations
over the characteristics correlation length with the flatitans of the solvent charge den-
sity, 9o/, (see Fig. 3). The result of these mutually correlated fluaing, integrated with
the weight of inverse distance (a reminiscent of the uswarse distance dependence of

the Coulomb law), is what makes the interface susceptililitgtion, yo(r):

Yolr) o / (dr' /1) (60, (r)30.)o. (2.1)

The electrostatic free energy of ion hydration and the fater dielectric constant are
formulated based on the interface susceptibility funcama studied for a spherical ion
solvated in TIP3P water by numerical simulations. The sgatif the free energy of ion
hydration with the solute size obtained from simulatiorgngicantly deviates from the
Born equation and its empirical off-set corrections. Howgewepresenting the solvation
free energy as a radial integral over the interface sudméptifunction describes well the
scaling of the solvation free energy with the ion size pretum a broad range of ion
sizes by the simulations. In addition, it is found that theresponding interface dielectric

constant changes from 9 to 4 when the effective solute raslimereased from 5 A to 18

A
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FIGURE 3: Surface charge density produced by the water molecules crossing the math-
ematical surface of the radius(“+" indicates the partial atomic charge of the hydrogen
atoms of the water molecules). Fluctuations of the surfaegge densityo, caused by
thermal motion correlate over the characteristic con@taength\, with the fluctuations

of the solvent charge density’ = dp,(r’). These mutual correlations are responsible for
the interface susceptibility in Egs. (2.21) and (2.1).

2.2 Free Energy of Hydration

The free energy, of solvating an ion in a polar molecular liquid is usually deised
by the linear-response equation connecting it to the iomgeh@ through the solvation
susceptibilityy

Fy = _%qu' (2.2)

Many computer simulation studies have shown that the qtiadsealing with the charge

is fulfilled remarkably well and solvation can be describediaear[121, 122, 123, 124].
Given this success, the main focus, in particular in appboa[125, 126, 127], is to link
the solvation susceptibility to the properties of the ion and the solvent. This study is
mostly concerned with the problem of the scalingyoivith the size of a spherical solute.
We show thaty can be represented as a one-dimensional radial integita¢ ddtal suscep-
tibility function x,(r). An exact formula fory,(r) is derived [Eq. (2.21)] and evaluated by

numerical simulations.
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The Born model of ion solvation represents the solvent by dimamm polarizable
medium and the ion by a spherical cavity with the radigsrved in the continuum.[1] The

resulting solvation susceptibility is given by the relatio

Xe = = (1 - 1) | (2.3)

a €

The model thus factorg into the geometric cavity parameter! and the longitudinal
susceptibility[128, 129] of the bulk polar solvent (1 — ') defined by its dielectric
constantk. It is typically assumed that the cavity radiusan be connected to the solute

radiusR, by a distance off-se{[130, 131],
a= Ry+ 9. (2.4)

We show here that this phenomenological relation does antighe test against numerical
simulations in a sufficiently broad range of solute sizes pVdpose instead a new equation
for the cavity radius in terms of the solute-solvent radiatrébution function.

The dependence on the solvent polarity is more complex thescpbed by the Born
equation when the assumption of the continuum polarizablieest is lifted and finite
size of the solvent molecules is explicitly included. Fostance, solvation of ions by
a fluid of dipolar hard spheres with diametercan be calculated in the mean-spherical
approximation (MSA). One gets for the cavity radius in themBequation[132}(p, T') =
Ros — A(p,T). Here,Rys = Ry + o/2 is the distance of the closest approach of the
solvent to the solute repulsive core, which is also the msif the first maximumr,ay of
the solute-solvent pair distribution function. The MSAwg@n thus predicts = /2 —
A(p,T) in Eq. (2.4), where\(p, T'), by which Ry, is reduced, is the length of longitudinal
dipolar correlations in the bulk solvent[128, 129]. Basedtlois theoretical prediction
and fitting the experimental data[130], it is commonly asedithat the phenomenological

cavity radiusa should fall betweer?, and Rys[133]. For "soft” solutes, the position of
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the first maximunmr,,sx Of the solute-solvent radial distribution function read?,;[134,
135].

The parameteA(p, T') carries the dependence on the thermodynamic state of the sol
vent, which is indicated by its dependence on presgared temperaturé. This particular
solution exemplifies the general result that the cavityusadannot be defined as a constant
even for a given solvent/solute combination and needsaddi® be a function of the sol-
vent thermodynamic state[136, 135]. Assuming C'onst gives unreliable values for the
solvation entropy and, most likely, for other thermodynamérivatives of the solvation
free energy[135, 137, 64, 98]. What we show here is that thertignce of the cavity size
on both the thermodynamic state of the solvent and on theesshlvent potential can be
accommodated in terms of the solute-solvent radial digiob function.

The specific problem of ion hydration presents additionatglications. The solvation
susceptibilityy in Eq. (2.2) gains an additional dependence on the sign e¥en though
the linear scaling, « ¢ is preserved for the positive and negative charges sepdias,
122, 137]. In addition, spontaneous polarization of hyidrashells around solutes carrying
no charge creates a non-zero electrostatic potential wéthzero-charge solute[138]. A
solute of zero charge does not polarize the solvent in timelata dielectric theories. This is
because of the assumption that the interface susceptisildentical to the susceptibility of
the isotropic bulk liquid (homogeneous approximation dgsed below). In fact, inserting
even a charge neutral solute into an isotropic solvent lsréakisotropic symmetry. Zero
polarization at zero charge is not required by symmetry amgér and can be violated
depending on the solvent, as indeed happens for agueou®sslu

In the case of water, a nonpolar[137, 139] or a hard-sphe8g[{f38] solute carrying no
charge produces a spontaneous polarization of the ineewéh a resulting nonzero poten-

tial (¢) atq = 0 (subscript “0”). The magnitude df), is hard to establish experimentally
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even at a planar interface[140, 127], and the results oflsitons show a significant de-
pendence of¢), on the adopted force field[141, 142, 124, 108, 143]. The sign)p also
depends on the definition of the cavity potential and whetlaeity repulsion is applied
to water’s hydrogen atoms[144]. Given these uncertaintiesdo not discusép), in this
paper, focusing instead on the charge susceptibilityEq. (2.2).

The positive sign of¢), inside HS and Lennard-Jones (LJ) cavities in point-charge
force field water was calculated from a number of previousuations[138, 124] and also,
for an extended range of radii, in our simulations as showirigy 37 in chapter 7. It
adds negative solvation free energy to an anion. Howeuwlowagh accounting for some
solvation asymmetry, this shift of the potential is not sudint and lower values of the
cavity radii for anions compared to cations are requirett@Born solvation susceptibility
xes IN EQs. (2.2) and (2.3)[124]. Along the same lines, we finehieat the second cumulant
((69)*)0, which is the main contributor to the solvation free enet@¥], is asymmetric
between cations and anions, as first discussed by Huretraf122]. We attribute this
asymmetry to different local densities of water around iohepposite charge. Once the
density profile of the interface is accommodated into thendefn of the cavity radius (Eq.
(2.18) below), the Born linear susceptibility successfaltgounts for the scaling with the

solute size produced by the simulations.
2.2.1 General Formalism

The linear-response free energy of ion solvation can beemrés the multipolar expan-

sion of the solute-solvent Coulomb potential in solvent ipoles[109, 145]

Fy = —%/ [Eo- (P)r+iVE;: (Q)p +...] dr. (2.5)
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Here,E is the electric field of the ion charges aRdandQ are the dipolar and quadrupolar
(defined according to Ref. 145) polarization densities ofdblent, respectively. The
brackets. .. )z denote the two polarization fields in equilibrium with thége.

The quadrupolar term is potentially important for hydratizecause of a large non-
axial quadrupole moment of the water molecules reflectmghtarge asymmetry. We will,
however, drop it from our discussion here and focus solelthendipolar polarization of
the interface. This assumption is justified for relativedyge solutes since quadrupolar
solvation decays faster with the solute size than dipollasion[146]. Our starting point
is, therefore, the linear solvation free energy[105] wntas the integral of the electric field

of an ion with the dipolar equilibrium polarization density

Returning to the symmetry arguments presented above, thigechwersiony — —¢q
results inE, — —Eg, which reverses the sign in Eq. (2.6). The same reversal ean b
achieved by flipping all the dipoles in the solven; — —m, thus producing® — —P.
The Hamiltonian of the liquid in the external fieldf = H, — [ E, - Pdr, will remain
invariant to the simultaneous— —q andP — —P transformation when the unperturbed
Hamiltonian H, is invariant toP — —P. This is the case with the homogeneous ap-
proximation, which assumes that the solute does not styqregturb the solvent and its
response can be given in terms of response functions of ti#g@neous solvent (Born
formula, Eq. (2.3)). This implies thd{ is effectively the Hamiltonian of the bulk solvent.
The transformatio® — —P does not change any properties of an isotropic liquid. There
fore, the solvation susceptibility in this homogeneousrapimation should be invariant to
theq — —q transformation.

Alternatively, when the isotropic symmetry of the homogamesolvent is broken by

the repulsive core of the solute, the dipole flip — —m; in the interface will produce a
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physically distinct configuration even @t= 0. In other words, the HamiltoniaH, which
includes the repulsive core of the solute, is not invariai® t— —P. One therefore expects
that the observables measured even in the linear respohs®tddemonstrate the — —¢g
invariance, in contrast to the models based on the homogeaparoximation. This feature
is captured by the local approximation introduced belowamatiast with the homogeneous
approximation of the standard dielectric theories. Wessttbat the; — —g asymmetry
does not violate the quadratic scaling of the solvation &eergy with the ion charge. It
only implies that the solvation susceptibilityin Eq. (2.2) should be given different values
for positive and negative ions.

We also note that the quadrupolar polarization in Eq. (2if)ieates the symmetry to
the simultaneous transformatign— —¢ andm; — —m,. Therefore, this term, when
included, will also contribute to the asymmetry of the oliabtes to the charge inversion
g — —q. This is what is often referred to as charge asymmetry of matatributing
to solvation asymmetry[137, 147, 148]. However, a potdgtiaore important cause of
solvation asymmetry is the difference in the density prefdé water around cations and
anions, which is ultimately related to the asymmetric molacshape and asymmetric dis-
tribution of molecular charge in water, but cannot be pind@an to one specific molecular
property, such as molecular quadrupole. We present belgunants suggesting that this
is essentially a “zero-order” effect, which accounts forstnaf the solvation asymmetry in

terms of a density-weighted effective cavity radius of iolvation.
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2.2.2 Approximate Interface Susceptibilities

The integral in Eg. (2.6) can be re-written, in the lineapasse, in terms of two fields

and a two-point correlation function of the polarizatiordie
XoP (¢, x") = 4mB(S P (x' )5 Pa(r"))o, (2.7)

where the average. . ), is now taken over the configurations of water around the siyeil
core of the solute carrying no charge and for a spatially varying fieldX, such asiP,,
is used here to describe deviations from statistically ayewnalues. Equation (2.6) turns

into the following relation

1
Fo= = [ Bould) Bos (e )G (0 ") dv'd”. (2.8)
e

Here and in Eq. (2.7}, 5 subscripts denote Cartesian projections and the summaten o
the common indexes is assumed.

The fundamental complexity of the solvation problem ariBesn the fact that the
second-rank tensor susceptibiligy, defined by Eq. (2.7) is a three-particle correlation
function involving correlations of translations and otiions of two water molecules with
the position and orientation of the solute. This difficultgshmostly been resolved over
many years of studies by attempting to reformulate the prakh terms of two-particle
correlation functions[106]. Two possible general direxs for formulating such approx-
imations can be identified. They can be labelled as eithex {jomogeneous” approxi-
mation or (ii) a “local” approximation (to which all modelsit the distance-dependent
dielectric constant can be assigned[149]).

In the homogeneous approximation, one assumes that the-waiter correlations are
not significantly broken by the solute and one can replagér’, r”), depending on po-

sitions of two water molecules andr” separately, with a homogeneous susceptibility
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xs(r' — r") depending only om’ — r” (isotropic liquids)[150]

Xos(r',t") = Oy (r") by (") x s (v — 1), (2.9)

wheredy, (r) is a step function equal to zero inside the solute and equality otherwise.
It specifies the volumé&” of the solvent from which the homogeneous solvent respanse i
calculated.

The alternative, local approximation would take the opigogew that inserting a solute
produces a major alteration of the water structure. Theeefa this view, the structure of
the interface, and not the correlations present in bulk rvaeof main significance for
the hydration thermodynamics. One then can go to the limitegfiecting the correlations
between different water molecules in the interface altogreand replacgs(r’, r”) with a
local function [107]

Xos(r', 1) = 8 (' = 1) xo (). (2.10)

While each of these assumptions, Egs. (2.9) and (2.10),vievagpproximations, both
have been widely used since they significantly simplify tihebpem. In terms of going
beyond the static dielectric constant of a bulk liquid, tlenlegeneous and local approx-
imations correspond té-dependente(k)[151], and distance-dependentr), dielectric
constants, respectively. The wavevector-dependentaiEleonstant (k) of a bulk mate-
rial has a solid foundation in the Kubo linear response §{€6]. On the contrary(r) was
originally introduced as a phenomenological prescriptmaccount for inhomogeneity of
the interface[125, 152, 153] and has only recently recementoscopic-based definitions
for spherical[107, 154, 155], planar[111, 107, 156, 113]1&r cylindrical[155] interfacial
geometries.

What we want to accomplish here is to give a clear mathemdbaaldation of using
the distance-dependent polarization susceptibility) of the interface. This study is lim-

ited to spherical solutes and, therefore, only the radiaduéar-symmetric susceptibility
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is considered. We in fact find that this susceptibility pd®ms a good reference point for
describing ion solvation upon which more advanced themaktlgorithms can be devel-
oped. We first apply each of two closures, homogeneous aad tocthe linear-response
solvation free energy in Eg. (2.8) with the goal of arrivirtglee Born equation. We then
provide in Section 2.2.4 an exact analytical solutione(r) in terms of binary correla-
tions accessible from numerical simulations.

The free energy in the homogeneous approximation is theotation of two electric
fields at points” andr” with the susceptibility function depending oh—r”. These types
of integrals are best taken in the inverfe@gpace, which both eliminates the convolution
and allows one to reduce the problem to scalar susceptipiigjections. In the case of a
spherical ion, this latter reduction is the consequenchefadial symmetry of the electric

field which couples to the longitudinal projection of the estibility[41, 158]

R=-; [ % B8 0| k). (2.11)

Here, B = k - Ey, k = k/k is the longitudinal projection of the Fourier transform
EO of the electric field of the ion taken outside its repulsiveecd, E,. Its longitudinal
character, stressed by the subscript “L", is the combinedltef the longitudinal field
E, and the spherical symmetry of the ion’s repulsive core assuhere. Non-spherical
repulsive cores require both longitudinal and transveespanse projections to determine
the free energy[158, 106].

The longitudinal susceptibility[159, 129, 160] in Eq. (2)1is given in terms of the

longitudinal structure factor of the polar liquid[161]
x5 (k) = (3y/4m)S* (), (2.12)

wherey = (47/9)3m?p is the usual parameter of the dipolar density of molecular
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dielectrics[162] carrying molecular dipoles and having the number density= N/V'.
The longitudinal structure factat” (k) is given by Eq. 1.34.

We can now apply thé&-space field of the spherical iod} (k) = (4mig/k)jo(ka)
(jn(x) is the spherical Bessel function of ordg163]), and note that” (k) depends on
the product ok and the solvent molecular diameterThe solvation susceptibility in EQ.
(2.2) takes the form

X = QXTB Ooodxjo(x)zxL (x%) /x*(0), (2.13)
wherey g is the Born susceptibility in Eqg. (2.3). The dependence ofldhgitudinal sus-
ceptibility on the wavevectdt can be neglected when< a. The functiony”(zo /a) can
be then replaced with?(0) = (47)71(1 — ¢~ 1), with the resulty = x5. More generally,
xE(zo/a) can be expanded in/a ato < a and one gets the solvation susceptibility in the
form x = x5 >, cn(o/a)™ consistent with the MSA solution[132].

The solution for the solvation free energy simplifies evemhier in the local approxi-

mation given by Eq. (2.10). The solvation susceptibilityeiq. (2.2) becomes

= [ Sl 214

From this equation, one arrives at the Born result if one assypir) = 0(r —a)(1—¢1),
whered(z) is the Heaviside function. More generally, from Eqgs. (279 §2.10) and with
the account for the radial symmetry of the ion field(r) is a scalar function given by the
relation

Xo(r) = 4nB{0P.(r)0 M, ). (2.15)

Here,P, =t -P,t =r/randM, = Zj m, - T; is the sum of all radial projections of the
liquid dipoles assuming that the spherical ion is posittbaethe origin of the laboratory

coordinate frame[145].
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Equation (2.15) is the direct consequence of the local mesp@pproximation in
Eq. (2.10) and is similar in structure to analogous relaioecently proposed in the
literature[154, 113]. The local approximation is a usefalide for deriving analytical
approximations, but is not required for producing the ifaee susceptibility from simula-
tion trajectories. In section 2.2.4, we derive an alteusatand exact, equation based on
the correlation of fluctuations of the radial polarizaticgldiand the solvent “reaction”[65]
potential at the position of the ion. The connection betwegemd x,(r) in Eq. (2.14) is

also exact in that formulation and does not require the lasalmption of Eg. (2.10).

2.2.3 Cavity Radius

The average over the solvent configurations around the es@xtluding the sol-
vent from its volume,(...),, in EQ. (2.15) can be expressed in terms of the three-
particle distribution functiory(r;w, rows) representing the probability to find two wa-
ter molecules at the positiong andr, and orientations of their dipole; andw,; with
the solute considered as the center of the laboratory auatedframe[145]. The average
can be taken by employing the Kirkwood superposition appnakion, g(rjw;, raws) ~
Gos(r1w1)gss(riawiwa) gos(raws), Wheregys andg,s stand for the solute-solvent and solvent-
solvent distribution functions, respectively. This datien is given in appendix A. The
closed-form expression for the local susceptibiligy(r) can be achieved by taking the
long-range, continuum limit for the longitudinal struatufiactorS* (k) — S*(0) appear-
ing in the integral representation gf(r). Thek = 0 value of the structure factor produces

the standard longitudinal dielectric susceptibilify,(0) o« (1 — ¢~1), with the final result

Xo(r) = (1 — 671> [gOS(r)]2 . (2.16)

Here,gos(r) is the solute-solvent radial pair distribution function.
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The radial susceptibility,(r) represents the longitudinal response function of radial
hydration shells and therefore can be connected to a ratissgnt-dependent dielectric
constant of the interface

&(r) " = 1— xo(r). (2.17)
It is easy to see that this function crosses zero and becoeggdive in the vicinity of the
peaks ofys(r) in Eq. (2.16)[113]. The radial dielectric constant itsedftily has any signif-
icant physical meaning and only the radial longitudinakcgyibility y(r) represents the
longitudinal polarization response of the interface. Tiason also implies that attempts of
producing radial dielectric constartgr), and perhaps more generally position-dependent
dielectric constants, in terms of phenomenological smdatictions have no support of
microscopic theories[107].

When Eqg. (2.16) fory,(r) is substituted into Eq. (2.14), one arrives at the standard

Born equation with the cavity radius defined as

AT (2.18)

a

wherea = 2 is required by Eq. (2.16). Our calculations of the respons fsimulations
below show that this choice of, following from the local approximation, overestimates th
oscillatory behavior of(r) and insteadv < 1 is required to reproduce the simulations.

Berne and co-workers[164] suggestad = 1 in Eqg. (2.18) whereas Linder and
Hoernschemeyer[136] usedo,(r)/r* as the integrand in Eq. (2.18) to defihga?. All
these original propositions were given without proof, altgh representing the electro-
static energy by a sum over a dipolar lattice can be used tidyj&S8] o = 1 in Eq. (2.18).
A dipolar lattice of course does not display an interfaciahsity alteration and is not a
good model for testing the cavity concepts. On the other hand empiricala-scaling
follows from the exact formula fox,(r) taken from Eq. (2.21) derived in the next section

and used in Eq. (2.14), combined with its direct calculafrom simulation trajectories.
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One can use Eq. (2.18) for a crude estimate of the scalingeadlvation free energy
with the cavity radius. This follows from the— oo asymptote[145] ofios(r) = 1+hos(r):
hos(1) o< v~ If ho,(r) dominates inyo () near the contact, one can replagg (r)]* with
O(r — a)[hos(r)]* in EQ. (2.18) to obtainfy, oc 1/a“*. The power law decay in fact
gives a reasonable account of our simulation data (Fig. &\elHowever, the complete
integral representation for the cavity radius in terms of @glL8) is more consistent with
simulations. Note also that Eq. (2.18) yields the standafthition of the cavity size for
a structureless continuum interfacing the solute when thetes-solvent pair distribution

function reduces to the Heaviside functigp,(r) = 6(r — a).

2.2.4 Exact Interface Susceptibility

In the previous section, we have discussed two approachlesndle the inhomoge-
neous character of the interfacial response of a polar sblmeterms of the distribution
functions formalisms of liquid-state theories. Here, wevle an exact representation of
the interface susceptibility,(r) in terms of correlation functions accessible from configu-
rations produced by numerical simulations.

The starting point of our analysis is the recognition of thetfthat the electric field
of the ion Ey has longitudinal symmetry, implying that its curl is idexaily zero[109],

V x Ey = 0. The symmetry of the field of charges imposes a corresporglingnetry
on the dipolar polarization densitiy, which should be longitudinal as well[165]. The
longitudinal component of the polarization dendity is directly related to the electrostatic

potential®, produced by the charges of the solvent[166, 20]
A7P, = V,. (2.19)

This connection can be productively used to derive the enedation for the interface sus-
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ceptibility in Eq. (2.14), which can be re-written as follew

Yolr) = (2/g) / V2 (1) Eos ('), (2.20)

whereng is given by Eq. (2.7) and the “r” superscript denotes the&aﬂbjection:ng =
fang. Note that this form ofy,(r) in Eqg. (2.14) is exact and does not require the local
approximation of Eqg. (2.10).

By substituting Eq. (2.19) in place of the’; projection in Eq. (2.7) and integrating
by parts, one can eliminate the volume integral in Eqg. (280hoting thatV - Ey(r) =

4mqo(r). The final result for the interfacial susceptibility is
Xo(r) = =47 Br2(6P,(r)6¢)o. (2.21)

Here,p = ®,(0) is the electrostatic potential produced by the solventeptbsition of the
ion at the center of the solute and = ¢,(0) — (®,(0)). Further,p can be directly related

to the molecular charge density of the solveht= p,(r’) as follows
/ )
b= / P! = Z 5, (2.22)
where the sum in the second part of the equation runs ovepaligl) atomic chargeg; in
the solvent with radial distances from the ion
Asin Eq. (2.15) above, the average in Eq. (2.21) is taken ineconfigurations of the
solvent in equilibrium with the repulsive core of the sol@ebscript “0”). This prescrip-
tion allows one to calculate the interfacial susceptipifiom computer simulations with
g = 0, as is done in this study. Further, the radial projectionhef polarization density
P,(r) is calculated in the radial shell betweeandr + dr as follows
P.(r) L > omy-iy (2.23)
r<r;<r+dr

Finally, d P.(r) in EqQ. (2.21) are the deviations &f.(r) from average values in each shell.
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Given the obvious non-locality of the dipolar interactionsa polar liquid, Eq. (2.21)
might look misleadingly local, suggesting a possibilitydefine a local polarization re-
sponse in the interface. Clarifying the physical meanindhefdorrelation function in the
right-hand side of Eq. (2.21) seems therefore useful.

The radial projection of the polarization density is alse lormal projection of the vec-
tor field P on the sphere of radius ConsequentlyP,.(r) = o,(r) defines the density of
surface charge[109j,(r) arising from the mathematical surface cutting through th&ew
molecules crossing the surface and by that creating sunfee®poles (Fig. 3). Fluctua-
tions of P, correspond, therefore, to fluctuations of the surface ehdemsity) P, = do,,.
These surface fluctuations correlate with the fluctuatidrite molecular charge density
dp’ over some correlation lengtk,. The result of these mutually correlated fluctuations,
integrated with the weight/+’, is what makes the interface susceptibility function define
in the introduction section. The non-locality of the intagifal response is in fact preserved
in the correlation function and is ultimately determinedthg extent of interfacial charge-

charge correlations.

2.2.5 Numerical Simulations

Several routes to access the free endiggre available within the linear response. The
most widely used and fastest to converge by numerical stionk{121] is through the
average potentialo) [Eq. (2.22)] of the water solvent in equilibrium with the ecba¢:

Fy = (q/2) ({(p)o + (¢)). Here, the equilibrium potentigly) includes the potentialy),
of the spontaneously polarized interface and an additipotntial(¢,) produced by the
solvent in response to placing chargat the center of the solute. It is this second potential

that produces the quadratic scaling of the free energy Wwéhadn charge [Eq. (2.2)] and is

53



1.6 T T T T

0.8

p(gcm’)

0.4

0.0

25

20F 1%
15F &}

1of i

p(gem’)

05f i

0.0

FIGURE 4: Water density profiles(r) = pgos(r), around the hard-sphere (HS) and
Kihara (KH) solutes as a function of growing size of the seloard-sphere corez(;s for
KH and R, for HS solute). The density profiles are calculated from M@usations with
a single solute in the simulation cell containing TIP3P wate298 K (see chapter 7 for
detail).
our focus here. The use of the average potential to calchlat@s its disadvantages when
combined with Ewald sums used to treat electrostatic intenas in simulations. Ewald
sums require compensating the ion chaygeith the uniform background of the opposite
charge to neutralize the simulation cell[167, 168] and aesponding correction for the
potential of the uniform background is required to calclat,).

To avoid this somewhat artificial situation of running siations in a continuum back-
ground charge[169], one can simulate the solute carrying aearge. The potentigb,)

can then be calculated from the perturbation theory, lgatlirthe solvation susceptibility

in EQ. (2.2) in the form[123, 124, 147]

X = B{6¢%)o. (2.24)
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The simulation cell is neutral in this case and the problerartficial background charge
is avoided. Furthermore, the variance of the potential dag¢sdepend on the presence
of the charge in the linear respongég?), = (d¢*), and this route can be applied to
the calculations involving both neutral and charged salitecause the constant poten-
tial of the charged background is subtracted in the variantle find from our simula-
tions that the equality of two variances is not satisfied f8rddlutes carrying positive and
negative charges[122]5¢?),«0 > (0¢?),~0. The structure of the interface around hard-
core objects is strongly modified by introducing even wedkaations[170], in this case
Coulomb solute-solvent interactions, but can be accomraddato the solvation suscep-
tibility through the effective cavity radius depending @ tsolute-solvent density profile
(see below). As the size of the HS core increases, the dgmsififes of the cations and

anions converge and the gap between the correspondingeasiaarrows.

2.2.6 Simulation Details

The second cumulant route to the solvation free energy fE4{] was adopted in our
Monte Carlo (MC) and molecular dynamics (MD) simulations adiuses of varying size
and solute-solvent potential hydrated by TIP3P[80] wate2%8 K. The main goal here
is to see how the structure of the solute-water interfacectdfthe dependence pfin Eq.
(2.2) on the solute size. Here, we have significantly extdrttie range of solute sizes
typically studied in the field of ion solvation[133, 124, 134 the range of~ 1 nm when
a substantial restructuring of the interface is expecteactur[171, 172, 173]. Our goal
is also to compare the performance of the homogeneous aalddpproximations against

simulations and to explore the possibility of establishenmeasure of the local polarity of
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the interface that can potentially replace the dielectoigstant in the Born equation. We
indeed find that this local polarity can be defined in termdefradial susceptibility(r).

A detailed description of the MC/MD simulation protocols igen in chapter 7. Here,
we only briefly describe the system setup. Two types of ssluteeracting with TIP3P
water[80] at 298 K were used in the simulations. The first teols a HS characterized
by the distance of the closest approdef of the water solvent to the solute. The size of
the HS solute was varied by changing this parameter in thger®gs = 2 — 10 A. We
observed a strong dewetting[171, 173] of TIP3P wateR@t > 5 A (Fig. 4). Since the
dewetting phenomenon is strongly affected by the solubeesb attraction and might not
occur for more realistic solutes of this size[170], two tyjpé the solute-solvent attractions
were introduced. A number of single-chargég & 1) anions and cations were simulated.
These introduce electrostatic attractions with the iatgdl water multipoles oriented along
the ion field. These attractions, however, become weakér wireasing the solute size
and dewetting still occurs (Fig. 39 in chapter 7).

Real multi-atomic ions always involve solute-solvent dispen attractions, which typ-
ically prevent dewetting of the interface[170]. In orderrgpresent this situation in our
modeling, simulations with the Kihara solute-solvent paied[174] were carried out as
well. The Kihara potential adds a layer of LJ 6-12 potentightHS core characterized by
the radiusRys (see chapter 7). The extent of solute-solvent attractiorbeacontrolled by
the solute-solvent LJ energy;. The size of the solute was varied by changityg in the
rangel — 7.5 A. The electrostatic potential of water at the center of thlete was calcu-
lated from the MC configurations and used to calculate themi@tl variance in EqQ. (2.16).
Since Kihara potential does not have the problem of disnantis forces characteristic of

HS repulsion, we used the NAMD 2.9[175] software packageatoutatey(r) from Eq.
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FIGURE 5: lon dimensionless solvation susceptibitityfrom Eqg. (2.2) obtained in MC
simulations and different models using the parameters BBPIwatere = 97, 0 = 2.87

A (effective HS diameter), angh = 2.35 D. The horizontal dashed line shows the Born
result, Eq. (2.3). The points are results of MC simulatioos IS and Kihara solutes
with the solute-solvent LJ energy; = 3.7 kdJ/mol (“*KH”) and 8 kJ/mol (“KH/8”). The
solvation free energies extracted from MC simulations an#tiplied with the distanceax
from the solute center to the first maximum of the solute-@ai\pair distribution function
(a = rmay)- The points in the plot therefore show2rmaFo/q?, where the solvation free
energyFy is determined according to Eq. (2.24). The blue and red dblsies are fits of
the simulation data to the dependengg,/ (rmax— A) (See text for explanation). The solid
line is the calculation with the homogeneous approximatifom (2.13). The black dotted
lines are fits to the power decayr.2, with v = 0.9 (HS ) and 1.0 (KH).

max

(2.21) for two Kihara solutes. The susceptibility(r) is fundamentally a three-particle

correlation function, requiring long trajectories 00 ns) to converge.

2.2.7 Solvation Free Energy

Figure 5 shows the ion solvation susceptibility in Eq. (2.2) as a function of the cavity
radius for HS and Kihara solutes (the results for anions atidits are given in Fig. 40 in
chapter 7). The Born equation, Eqg. (2.3), predicts a constdug, fully determined by the
dielectric constant, which is shown by the horizontal ddstted line. The homogeneous
approximation is shown by the solid line, and it approachesbntinuum limit from above

with increasing the solute size as expected from the general arguments. The calculations
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were done by applying Eq. (2.13), in which the longitudinalsture factor from numerical
simulations[176, 98] of TIP3P water was used.

The points shown in the plot refer to the dimensionless patam,,,xx With y calcu-
lated according to Eq. (2.24) amglax referring to the first maximum of the solute-solvent
pair distribution function. We note that the solvation sdility is affected by the nature
of the solute-solvent potential (HS vs Kihara), but is lescéed by the strength of LJ
attraction. The two nearly coinciding sets of points in Fgefer to the solute-solvent LJ
energy ofe ; = 3.7 kd/mol (squares) angl0 kJ/mol (diamonds) in the Kihara potential.
They demonstrate low sensitivity of the solvation susd®lty to the strength of solute-
solvent LJ attraction.

Since the cavity radiusg is an empirical parameter, which does not have to coincide
with 7y, the Born equation would predighaxy o< rmax/ (rmax—A) (EQ. (2.4)), where\ is
a distance offset to obtain the cavity radius frefy, a = rmax— A. The simulation results
do not follow these expectations, as is shown by the dashed in Fig. 5 attempting to fit
the simulation points. A numerically better fit follows fraime power decaymaxx X 7max
with v ~ 0.9 — 1.0. We can conclude that the scaling of the solvation susaétitvith
the solute size anticipated by the Born equation is not supgdry the simulations.

The alternative to the Born equation is the integral form in dqL4), which involves
the local radial susceptibility,(r). Equation (2.21) provides an exact solution for this
function, while the local approximation involves simpl#itons of two levels: the neglect
of the spatial extent of dipolar correlations in the hydratshell that leads to Eq. (2.15),
followed by the use of the continuum approximation in evahgathe correlator between
radial polarization and the radial dipole moment that le@mdgq. (2.16). Two MD sim-
ulations of Kihara solutes of different size were carried touaccess(r) and test both

approximations.
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FIGURE 6: Integrand function,(r)/r? in Eq. (2.14) for Kihara solutes witlR,s = 2
AThe exact susceptibility function [Eq. (2.21)] calculatedm MD simulations (black
lines) is compared to the empirical relation [Eq. (2.25)fhwi = 2/3 (solid red lines) and
«a = 1 (dashed red lines). The blue lines indicgtecalculated in the local approximation
given by Eq. (2.15).

We first find thaty,(r) as calculated from the exact relation in Eq. (2.21) is anllasci
tory function, with oscillations compatible with the detysprofile around the solute (Fig.
6). This result is consistent with Eq. (2.16), but the anoplé of oscillations is signifi-
cantly overestimated by that relation (not shown in the)plét the same time, the local
approximation itself, without the use of the continuum timiEq. (2.16), is a much better
representation of,(r), with only a slight overestimate of the oscillations amplé (cf.
blue and black lines in Fig. 6). This comparison is a strorigexwe in support of the local
approximation compared to the homogeneous one, suggekthge focus on the local
structure of the hydration shell, in contrast to the bukleldipolar correlations, is a better
starting point for constructing predictive theories of toydration.

The focus on the solute-solvent density profile to deterrthiresolvation susceptibility
as suggested by Eq. (2.16) is still a useful perspectivechwheeds to be corrected to
provide quantitatively reliable results. A better agreatweth simulations can be obtained

by taking a fractional power, instead of a square, of the gisitribution function in Eq.

(2.16). This results in the radial susceptibility functiarthe form

Xo(r) = (1 — 6_1) [g0s(1)] . (2.25)
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Figure 6 shows,(r)/r? (the integrand in Eq. (2.14)) with = 2/3 compared to the MD
results. This empirical prescription is used to calculat eéffective cavity radius in Eq.
(2.18).

It is important to understand the physical origin of a suddinscaling of the interface
susceptibility function with the density profile of the infiece. Allowing long-range, bulk-
like dipolar correlations in the interface leadste= 2 in Egs. (2.16) and (2.25). This result
physically implies that the dipolar correlations act cagpieely and enhance the suscepti-
bility in denser parts of the shell characterized by peakbt@fadial distribution function.
When the correlations between the dipoles are neglectedrdyd one-particle dipolar re-
sponse is considered in the perturbation theory, one &fliéd, 63] atx = 1 in Eq. (2.25).
The sublinear scaling obtained from fitting the simulati@tadimplies that denser parts
of the shell significantly hinder one-patrticle dipolar rieotations and a response weaker
than the one-particle one is produced. The linear scalitigeoflistant-dependent dielectric
constant with the density profilex(= 1) was noticed previously[107, 177], but this scal-
ing seems to apply better to the approximate, local form efsilisceptibility function [Eq.

(2.15)] used in those simulations (cf. blue lines with daistesl lines in Fig. 6).

2.2.8 Effective Cavity Radius

Figure 7 compares the effective cavity radiusalculated from Eq. (2.18) to the posi-
tion of the first peak maximumy,, of the solute-solvent radial distribution function. The
height of the peak is affected by packing advantages closedolute of large size, in-
creasing its amplitude, and by the balance between theesstiivent and solvent-solvent
attractions. The existence of the peak implies that thectffe cavity radius: is below

rmax @S IS seen for the Kihara solute (red squares in Fig. 7), facimthe amplitude of the
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FIGURE 7: Cavity radius determined from Eq. (2.18) plotted against the positiornef t
first peak of the solute-solvent radial distribution funati-nax. The dashed line is = rmax
line drawn to guide the eye. The simulations points are foddsphere (HS), Kihara (KH),
hard-sphere anion (A), and hard-sphere cation (C) solutgs= R, for HS solutes.

density peak stays nearly constant with the growing HS déite 4, lower panel). The situ-
ation, however, becomes more complex when the interfaiciadtsire significantly changes

with increasing solute size.

This is the case with the HS solutes, where without the sartatattraction of the
Kihara potential, dewetting of the interfacial water occas the solute size increases (Fig.
4, upper panel). Lowering density of the interface resuitan upward shift of the cavity
radiusa, which becomes greater thap.x (blue circles in Fig. 7). HS anions and cations
show a weaker dewetting of the interface due to the solutemattraction (Fig. 39 in
chapter 7), but the increase of the cavity radius is stileobsd as the attraction of the water
molecules to the solute becomes weaker with the growingeseige. In addition, the cavity
size of the cations (filled triangles in Fig. 7) is consistggteater than the cavity size of
the anions (open triangles in Fig. 7). This implies highemiagnitude solvation energies
of the anions compared to the cations of the same size, a ptesram well documented for
ion hydration.

The simple and significant outcome of this calculation i¢ #&suming a constant dis-

tance offset ofnax to define the cavity radius, such @s= rmax — A (as follows from the
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FIGURE 8: Solvation susceptibility (Eqg. (2.2)) calculated from MC simulations as
xve = —2Fy/q* = B((6¢)*)o and from the Born equatiogg = a* (1 — ') with the
cavity radiusa calculated from Eq. (2.18). The results are reported forhidwel-sphere
(HS), Kihara (KH), and ionic (cations “C” and anions “A”) soés. The dashed lines are
linear fits through the points with the slopes 2.0 (HS), 0.Bl\kand 0.7 (C+A).

MSA and often empirically assumed), has little chance tdgoer well for a broad range
of solute radii and solute-solvent potentials. Figure 7act shows that the offsét can
be either positive or negative depending on the interagaential. The Kihara potential
might be a fortuitous case when this prescription workstikadly well because the inter-
facial density profile remains almost unchanged with growits core due to the specific
form of this potential.

The cavity radius from Eq. (2.18) gives a good account of tke énergy change with
the solute size. Figure 8 compares the solvation suschytij,c from MC simulations
[Eq. (2.24)] toxs [EQ. (2.3)] with the cavity radiua given by Eq. (2.18). The slope of the
straight line betweerg andywc deviates from unity because of the— 0 approximation
for the correlations between the dipoles in the hydratiogllaised to derive Eq. (2.18).
Nevertheless, the distinction in solvation energies aboatand anions of equal size (Fig.

7) is successfully accommodated in terms of their corredimgncavity radii.
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2.3 Interface Dielectric Constant

Some of phenomenological recipes proposed to deal withasgoapic interfaces, such
as the popular distance-dependent dielectric constasioleation problems[125], do not
withstand the scrutiny of microscopic formulations[12Jhelproblem with such formula-
tions is that spatial correlation functions describingnmscopic interfacial polarization are
typically highly oscillatory[107, 108] and do not allow defig simple distance-dependent
susceptibilities. If any meaningful microscopic susdeipty has a chance to enter the
standard boundary value problem, it should be consistelatfived from the microscopic
Coulomb law in Eqg. (1.41) and not introducedaakhocphenomenological recipe justified
by fitting to experimental data or results of numerical siatioins. Providing such a consis-
tent approach is the goal of this article. In other words,ntfaen question addressed here
is what is the dielectric constant, absorbing into itse#f thicroscopic properties of the
interface, that should enter the standard dielectric bagndalue problem? We provide
a general formulation of the problem, followed by specifitcatations of the dielectric

response of water interfacing a spherical solute.

2.3.1 Boundary Value Problem

When one takes the statistical average in Eq. (1.41), oneearaitV - (D) = 0 inside
the dielectric where there are no external charges. Thasioeltranslates, through Gauss’
theorem, into the condition of discontinuity of the projeatof (D) on the unit vectofi

normal to the interface. This condition can be written aS[10

f - (V(d1) = V(¢g)) = 4ro, (2.26)
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FIGURE 9: Surface charge density at the interface betwegrhargal cavity and a di-
electric with the dielectric constanf. The polarization density fiel® is aligned with the
radial field of a positive charge placed at the center of the cavity. The surface charge
densityo is opposite in charge t@to screen its interactions with charges placed outside of
the cavity.in denotes normal to the interface aihe- —n is the unit radial vector.

whereo is the surface charge density determined by the normalgirofes of the polariza-

tion densityP,; = i - P; (: = 1,2) in two media in contact in the interface

o = Pnl — Png. (227)

In the standard dielectric theories, the surface chargsityem screens the external
charge. It means that if a probe charge is placed at a larg@ndes from the interface,
the effective force between the external chaggend the probe charge is reduced by the
opposite charge of the interface polarization and an efflecthargeqes, instead ofg, is
measured by the force. This is illustrated in Fig. 9 for tee case of a spherical cavity
of radiusa with a charge; placed at its center, as discussed in the numerical simokti
of aqueous solutions below. The positive chaggsill, in dielectric theories, create the
opposite in sign surface charge density= —(1 — ¢, 1)(q/S), whereS = wa? is the area
of the cavity. The effective charge producing the measerédrice on an external probe
chargege = ¢ + 0S = q/¢s, is then reduced by the dielectric constant of the dieleeri

When the constitutive relation (1.43) is applied to statadty averaged fieldéE) and
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(P) in Eq. (1.41),(E) = —V/(¢) satisfies the Laplace equatiax(¢) = 0 inside the
dielectric where there are no external charges. The piiepest the interface enter the
problem through the boundary condition in Eq. (2.27). Thaes the goal of reformulating
the standard Maxwell boundary value problem needs to fonustooducing microscopic
properties of the interface into the boundary conditionthefLaplace equation. This is the
goal we are pursuing here.

Equation (2.27) suggests that the only property of the fiaberone needs to supply to
the solution of the Laplace equation is the surface chargsityeor the normal projection
of the polarization density. The linear response approttongs0] provides the desired
property in terms of a non-local susceptibility functigi(r,r’) (generally a tensor) de-

pending on two coordinates in the interface
(P,(r)) = /ﬁ “Xo(r,r") - Eg(r')dr’, (2.28)
where the 2-rank tensor of susceptibility is
Xo(r,r") = B(0P(r)dP(r')). (2.29)

Here,5 = 1/(kgT) anddP = P — (P).

The susceptibilityy, in Eq. (2.29) is a second rank tensor defined by the correspond
Cartesian components[165]. For some geometries of thdanggrit is convenient to con-
sider specific projections of,. For instance, for the planar interface, one defines péaralle
(1)) and perpendicularfy; ) projections[111, 107] as the scalar functions= iy - x, -
andy, = n, - xo - n . Similarly, for spherical solutes which we consider belone can
define the scalar projection on the radial direction[1QF],= T - x, - £. Such definitions
become less useful for interfaces of arbitrary shape. Usimgjtudinal and transverse sym-
metries of the polarization field provides a more generahtdation[97, 158, 106]. Our

goal here does not involve calculating distance-deperg®igctions of the susceptibility.
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We focus instead on the normal projection of the polarizatensity field in Eq. (2.27),
taken at the dividing surface, which can be defined for artrantyiinterface.

The two-point tensoi,(r,r’) depends on two positions, andr’, separately to re-
flect its interface character and the involvement of threéybsolvent-solvent-solute cor-
relations. This needs to be contrasted with the non-locadequtibility of bulk dielectrics
depending only om — r’.

One can further assume that the length of polarization t@dras in the interface is
much shorter than the characteristic dimension of thefext&l region and apply the local

approximation neglecting such correlations altogetHet]1
Xo(r, ') = 0(r — r')xo(r'). (2.30)

This approximation obviously eliminates the integral in E2128) shifting the focus to the

inhomogeneous susceptibilify (r). It can be obtained by integrating Eq. (2.29) over
Xo(r) = B(6P(r)dM), (2.31)

whereM is the total dipole moment of the dielectric. Analogues o #quation for dif-
ferent symmetries of the interface have been proposed bytdmy &nd Feller[111] and
by Ballenegger and Hansen[107, 112] and extensively usechim#er of recent simula-
tions of interfacial polarization[156, 155, 113, 178]. Waterthat the local approximation
becomes exact in the limit of a uniform external field consedeby Stern and Feller[111].

Before we proceed to the exact formula for the susceptiligitysor, not involving the
local approximation of Eq. (2.30), it is useful to provide ttonnection between Eqg. (2.31)
and the dielectric experiment performed by applying a unifelectric field to the bulk
dielectric. One obtains for an isotropic dielectric

(B/9)((M)?) = 0! / T o (1)), (2.32)

Q

66



where the integration is performed over the volufdeof the dielectric andIr|x,] =
Yo X5 The fluctuation expression on the left-hand side of thisaéiqos enters the
Kirkwood-Onsager equation for the dielectric constar@]lahd thus provides the connec-
tion between the volume integrated susceptibility to thkk ldielectric constant,. Such

a connection is, however, not straightforward when oneidens the distance dependence
of a specific projection ok, (r). In other words, polarization fluctuation® (r) still carry
microscopic information, no matter how far from the inteda These fluctuations are
coarse-grained, with the microscopic information lostyblume integration.

Even though the local approximation provides a fast reswiudf the problem, it is not
required[20]. One can take into account the longitudinalrabter of the field of external
charge<E, and the fact thaf P/. - Ejdr’ = 0 for the transverse projection of the polariza-
tion field Py (Helmholtz theorem[99]). Therefore, only the longitudipeojection of the
polarizationP’ = P, entersy, in Egs. (2.28) and (2.29). The longitudinal projection & th
polarization is in turn connected to the potential of thermbaharge as[20}7P; = —E,,
whereE, is given by Eq. (1.40). Given th&t, = —V ¢, one can apply the Gauss theorem
to eliminate the integral in Eq. (2.28). The result is theatxalation for P, not requiring

the use of the local approximation
(P.) = =B(6P,0U°). (2.33)

Here,
OUC = aid (2.34)
is the fluctuation of the Coulomb interaction energy of thdeadiic with the external

chargesy;; ¢u; is the potential of the bound charges of the dielectric aldhation of the

chargeg;, 6o = dvi — (Pvi)-
Equation (2.33) is the exact solution for the problem of thdaxe charge density in

the interface assuming linear response to the field of eatemarges. Deriving it does

67



Xo(r)

16 20

12
r, A

FIGURE 10: Comparison of the local [Eq. (2.37)] and exact [E338)] formulas for
the interface susceptibility of TIP3P water interfacindniiia solutes of different size. The
Kihara solutes are characterized by the hard-sphere cone o&dii Rys = 2 and 10 A and
the Lennard-Jones (LJ) diameteramf, = 3 A for the LJ interaction between the solute
and water’'s oxygen. The position of the first peak of the fadistribution function is
approximately located dtys + 0.

not require constitutive relations. If the constitutivéateon (1.43) is adopted, one can find
the statistically averaged electrostatic potential ofitierface(¢) from the solution of the
Laplace equation and, in addition, ask the question of winsteptibility, or dielectric con-
stant, can be assigned to the interface. Such scalar iogestasceptibility can be defined
by the equation

(Pa) = Xou Eon. (2.35)

It is important to emphasize that no specific assumptiorardagg either the origin of
the polarization density, or the electrostatic enerdy“ have been introduced in deriving
Eq. (2.33). Both parameters can be microscopic quantitrepkeal by numerical computer
simulations. For instance, a polar liquid with moleculgralesm; with coordinates; will
have the polarization density, (r) = - >, m;d (r — ;). Correspondinglyl/¢ can be
viewed as the energy of Coulomb interactions of all atomitiglacharges of the dielectric

with the external charges. This property is routinely pded by numerical simulations.
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Equation (2.35) can be substituted back to Eqgs. (2.26) a@d@# produce the bound-

ary conditions for the Poisson equation

n- (V(p1) — V(pq)) = 4m (Xon,Q - Xon,l) n - Vo, (2.36)

whereg, is the electrostatic potential of external charges remgigiontinuous at the di-
viding surface. This is the only place where the suscepitoif the interface enters the
boundary value problem. The local constitutive relatidegs. (1.42) and (1.43), applied
globally to the entire dielectric sample in dielectric thes, are replaced with the constitu-
tive relation in Eq. (2.35) applied to the dividing surfacdyo

The constitutive equation (2.35) might be a reasonablecapation for a few molec-
ular layers in the interface, but is not expected to hold gligbLikewise, the susceptibility
Xon, and the interface dielectric constafj defined for spherical solutes below, are pa-
rameters characterizing the interface. We, therefore,al@xpect them to approach the
dielectric susceptibility or the dielectric constant oé thulk material in any specific limit.
Even for a macroscopic interface, is still an interfacial parameter (like the surface ten-

sion), which should not be expected to be simply relatededotiik susceptibilityy .

2.3.2 Interface of a Spherical Solute

Here we apply the arguments presented above to the problevatef polarization at
the interface of a spherical solute. The normal to the iata&fis defined outward from
the dielectric[105]n = —f, & = r/r (Fig. 9). A further simplification of the geometry
is achieved by locating the external charges at the centirea$olute. All susceptibility
tensors become scalars with the only non-zero diagonallredmponeng(” = & - xo - I

We will drop the indexes for brevity with the notation () = x{ (r). For this specific
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type of interface, the local approximation leads to

Xo(r) = B{P,(r)dM,), (2.37)
where P, = —P, and M, = —M, denote the radial projections of the corresponding
vectors (Fig. 9).

Since the electric field of the central chargés E,, = —q/r? one can define the

distance-dependent linear interfacial susceptibiity,(r) analogous to the one in Eq.

(2.35)
Xon(1) = —Br2{(6P,(r)6s), (2.38)

whereg, is the electrostatic potential produced by the dielectrihe center of the spher-
ical solute where the external charge is placed. The ird@ifausceptibilityy,, follows
from this function by adopting = «, i.e., the radius of the spherical surface separating
the solute from the surrounding dielectric. We note thattequr (2.38) is equivalent to its

integral form earlier derived by Ballenegger and Hansen[107

Xon(r) = 47?8 / oo<5PT(r)6Pr(r/)>dr’, (2.39)

where the integral over producesi¢, in our Eg. (2.38).

The definition of the position of the dividing dielectric fare presents a major diffi-
culty for all dielectric theories, and it is not going to goawin our formulation recasting
the problem of a microscopic polarized interface as theedtetc boundary problem. The
guestion we are addressing here is what is the susceptibilithe surface charge den-
sity that needs to enter the boundary conditions once sudhidind) surface is defined.
However, the question relevant to this goal is how sensgiveh a definition would be
to possible variations of the position of the dividing seda One ideally wants a robust

definition, little sensitive to changes in the cavity radius
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FIGURE 11: Definition of the interface susceptibility,, in terms of the slope of
—(6 M, (r)d¢y) according to Eg. (2.40). The dashed lines show linear fits{@\/, (r)d¢,)
calculated from MD simulations of Kihara solutes interfagiTIP3P water. The hard-
sphere core of the Kihara solutes was varied in simulatidhs; = 2 (red), 5 (blue), 7.5
(cyan), 10 (green), and 15 (black) A.

Figure 10 showsy(r) in the local approximation [Eqg. (2.37)] and the exagt, ()
[Eqg. (2.38)] calculated from molecular dynamics (MD) siatidns performed in this study.
The simulations are done for TIP3P water[80] interfacingespral solutes of varying di-
ameter and interacting with the oxygen of water by the Kihaotential (a hard-sphere
repulsion core with the radiuBys combined with a surface layer of soft Lennard-Jones
potential)[180, 154]. One has to keep in mind that correfafunctions in Egs. (2.33) and
(2.38) are fundamentally three-particle correlation®imng two solvent molecules and
the solute. Relatively long MD simulations, 200 ns, were therefore required to converge
them for each solute studied here. More detail on the simonl@trotocol is given in chapter
7 and here we discuss the results.

It is clear from the calculations that the local [Eq. (2.3&)d exact [Eq. (2.38)] for-
mulations for the radial interface susceptibility genlgrafgree with each other. The exact
formulation is obviously preferable since it is free of thedlity assumption. Both results
show an oscillatory behavior of the interface susceptihileading to potential uncertain-
ties when the cavity radius is altered. Some type of avegagirer the oscillations is

needed to arrive at a robust definition of interfacial susbéjpy and the corresponding
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FIGURE 12: Interface dielectric constady; plotted against the cavity radius= rmax
defined as the distanegay to the first peak of the solute-oxygen pair distribution fim.
Circles refer to neutral Kihara solutes, while diamondsrédeanion and cation Kihara
solutes Rus = 10 A, rmax = 11.05 A) with charges; = +1 placed at the solute’s center
(not distinguishable on the scale of the plot). The dasheié a linear regression through
the points drawn to guide the eye.

dielectric constant. An approach developed previously§2@ adopted here is to define
Xon as the slope of the integrated correlation function invadvihe instantaneous dipole
momentM,.(r) of water within the sphere of radiusand the electrostatic potentia).

The resulting expression provides the scalar suscepyilofithe interface, averaged over

the oscillations caused by molecular granularity,

Xon = = 1M (1)35). (240)

If differential in the above equation is taken at each podme recovers,(r), with its
oscillatory behavior shown in Fig. 10. Alternatively, iaatl of taking the differential at
each point, we determine the linear slope in respectttbaverage out the oscillations of
Xon (1) caused by molecular granularity. This linear slope thewiges us with the scalar
coarse grained susceptibility of the interface with oatidins averaged out. Figure 11

shows that indeed the slope can be well defined from the atioelfunction(d M, (r)d¢,).

The susceptibilityy, to a radial external fieldv,,, should be associated with the in-

terface dielectric constant,; according to the relatiofi; — 1)/(47eint) = x0,[107, 20],
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which leads to

it = [1 — 4mx0n] - (2.41)

These values, obtained from the slopes of the radial céiwaléunctions shown in Fig. 11,
are presented in Fig. 12. We find thgt decreases slowly from 9 to 4 as the effective
size of the solute increases from 5.5 A to 18.5 A. Overall, the value of the interface
dielectric constant is much smaller than the bulk value fi#3P water,e, ~ 97[181].
While there is naa priori reason to anticipate,; = ¢, it is this assumption that is used
in the standard dielectric boundary value problem.[109]a/ge note that the definition of
eint DY EQ. (2.41) is prone to numerical instabilities whiery,,, becomes greater than unity
due to calculation errorsg;, is not required for the solution of the boundary value proble
in Eq. (2.36) andy,, is sufficient. It is presented here solely because of thetyiif the
subject casting the dielectric boundary value problemrimseof the dielectric constant.

The results shown by circles in Fig. 12 are obtained for méltihara solutes. Even
though Eg. (2.33) contains the electrostatic interactinergy with the external charge
of the ion, which is proportional to the charge magnitudegrgk cancels out when the
surface susceptibility is defined by dividing the surfackappation by the ion field in Eq.
(2.35). We therefore operate in the linear response domdien one can assume that
the presence of the external charge does not alter the wteuet the interface used to
perform the statistical averages. That this is indeed the sademonstrated by simulating
Kihara solutes with positive and negative charges placdtieat centers. These results
are shown by diamonds in Fig. 12 and are indistinguishabla fthe results obtained for
neutral solutes (see chapter 7 for more detail). Our sinauatare indeed consistent with
the linear response approximation.

The small value of the interface dielectric constant of wates potentially dramatic

consequences for the problem of hydration. Our formalisticipates that;. is used in the
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dielectric boundary value problem. Therefore, the sobrafree energy of a spherical ion
carrying charge and assigned the cavity radiuss given by the standard Born equation[1,

122]1 F = —(1/2)xsq*, where the Born solvation susceptibility is

szl(l— ! ) (2.42)

a €int(a)

Here,eint(a) indicates that the dependence of the Born solvation sugdégton the cavity
radius can be more complex than the traditionally antieigat* scaling.

The reasons for the relative success of the Born equatioreigimg the free energy
of solvation and its dramatic failure in describing entragysolvation have long been
known[135, 182, 137, 124]. Both are related to the low sesitof the Born formula to
the solvent properties when the bulk dielectric constant 1 is used instead aof,; in Eq.
(2.42). The traditional form of the Born equation signifidgninderestimates the entropy
of solvation[135] since the terry 20¢, /0T, appearing in the entropy, is too small. This
deficiency can be potentially remedied if, according to @lcualationsgi; < €,. The final
verdict requires knowledge @ef«(7). Our estimate for TIP3P water giv€8eiy/01),, ~
—0.8x 10~* K~!, which is significantly lower thatve, /0T, = —0.36 K~* of bulk water.
Whether this low value is shared by more realistic force fiefd&ater is not clear at the

moment.

2.4 Conclusions

We have presented here a consistent derivation of the rdighalar susceptibility of
water hydrating a spherical ion. This function is viewed asieroscopic foundation of
the distant-dependent dielectric constant of phenomeieabmodels. An exact solution
for this function is given in terms of the correlation betwdkictuations of the radial po-

larization density of water with fluctuations of the elestatic potential created by water
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at the position of the ion [Eg. (2.21)]. The susceptibiliplaulated from numerical sim-
ulations shows an oscillatory behavior consistent withdaesity profile of the interface.
This function is empirically approximated by a power law loé tsolute-water pair distri-
bution function. Oscillations of the interface suscefitpmake approximations based on
smooth distance-dependent dielectric constants of tkeefame inconsistent with the exact
solution.

The connection between the interface radial susceptilaititl the pair distribution func-
tion has allowed us to determine the effective cavity radchuke Born expression for the
solvation free energy. This connection would not have baesiple in the absence of the
susceptibility function since developing cavity modelsfityng the overall solvation en-
ergy is unreliable. The proposed algorithm incorporatesdénsity profile of the interface
into the definition of the electrostatic cavity [Eq. (2.18)his expression provides correct
scaling of the hydration free energy with the solute size sunttessfully accounts for dif-
ferent solvation energies of anions and cations of the saaésterms of different density
of water in their hydration shells.

In addition, a formalism is presented connecting the Makia@lindary value problem
with the microscopic structure of the interface. In otherdag) the dielectric constant that
should enter the boundary conditions in the Laplace equatscribing a polarized dielec-
tric interface is investigated. The problem is formulatederms of the interface suscepti-
bility or, alternatively, the interface dielectric constaThis property is calculated from an
exact equation statistically averaging correlated flugtna of the interface polarization
density and the electrostatic energy of external chargesacting with the polarized di-
electric. Evaluated by MD simulations of water interfacsgherical solutes, the interface

dielectric constant is found to be significantly lower thaa torresponding bulk value.
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Chapter 3

SOLVATION SUSCEPTIBILITY IN THE NON-HARMONIC REGIME:
POLARIZABLE SOLUTES

3.1 Summary

Interfacial structural transition in hydration shells gpalarizable solute at critical po-
larizabilities is discovered. The transition is manifelsie maximum water response, the
reorientation of the water dipoles at the interface, andnaneiase in the density of dan-
gling OH bonds. This discovery suggests that some configuraf the solution can pro-
duce a greater sensitivity and, as a result, a greater d¢afttbe chemical reactivity in

(bio)chemistry.

3.2 Introduction

When the electric field, is introduced by a solute into a condensed polar material,
the response of the medium (solvent) is largely linear: tketmstatic potential or field
of the solvent is a linear function of solute’s charge or tkporhe linear response (also
known as the Gaussian approximation) assumes a harmoeieffiergy as a function of
the medium collective coordinate coupledig[122]. In polar solvents, the dipolar po-
larization density of the solve® becomes such collective coordinate when higher-order
multipolar fields, such as the quadrupolar polarizationsignare neglected[109]. The

harmonic electrostatic free energy of the solution reads

FIP] = —Eg« P+ (2)) 'P % P, (3.1)
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where the asterisk implies both the tensor contraction hedélume integration over the
space occupied by the solvent[165]. The solvation suduéfyti y is an analog of the
susceptibility of a material to an external field, but it atigpends on the geometry of the
solute repulsive core. This dependence enters through thevisll boundary conditions
whenP is approximated by a continuum polarization field.

The minimization of7[P] in respect td yields the equilibrium solvation free energy
Fy = —(x/2)Eq * Eq, which becomes the standard Born equation for a sphericaim
the longitudinal susceptibility” « (1 — ¢ ') is used in Eq. (3.1). Since the solvent
dielectric constant is large for many polar solvent$y, is close to its saturation limit at
e — oo. Only minor changes in the solvation free energy can be aetliby changing
either the solvent or the thermodynamic state of the salutio

The situation can potentially change near the critical poirthe phase diagram where
the second, harmonic term in Eq. (3.1) vanishes[183]. Téns tdescribes the reversible
work (free energy) required to change the polarization efltquid fromP = 0 to P
when the solute produces no fielB = 0). Correspondingly, a large quadratic penalty
for increasing the polarization makes strong variationsghard to achieve. The general
guestion we address here is whether one can significantlizedthe quadratic penalty and
what kind of solvent response might be expected if the quigderm in the free energy
functional approaches zero, which correspondg te oo.

Using the analogy with bulk phase transitions[183], we aershere a specific physi-
cal mechanism of reaching a state of vanishing harmonicresipa term. The molecular
polarizability of the solute is used to tune the harmonipoese. In order to simplify the
electrostatic part of the problem, the solute is a dipalat the center of a spherical core
characterized by the isotropic dipolar polarizability The electrostatic problem can be

recast in terms of the instantaneous fiéldwhich is the projection of the electric field of
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the solvent on the solute dipole
FIE] = —mE + (k/2)E* — (a/2) E® + G[E]. (3.2)

Similarly to Eqg. (3.1), the second term in this equation eslilarmonic free energy penalty
for producing an electric field inside the solute carryingdipole and no polarizability.
The ”spring constarits o ! carries the meaning of the solvation modulus;! =
(2/R3)(e — 1)/(2¢ + 1) for a spherical dipole in a dielectric[65]. The third ternthe free
energy of polarizing the polarizable solute, arF] includes the higher-order expansion

terms.

3.3 Discussions and Results

Itis clear from Eq. (3.2) that the harmonic term vanishes at«. The harmonic trun-
cation becomes inadequate in the vicinity of this point aigghér-order expansion terms,
given by G[E], are needed. A general form 6f(E] is, however, unknown. Therefore,
numerical Monte Carlo (MC) simulations are used here to sthdyicinity of the critical
point x = « and the transition to non-harmonic solvation when the harmuncation in
Egs. (3.1) and (3.2) becomes inapplicable. The questiotieasked here are whether one
can achieve a stronger solvent response rear o compared to the standard harmonic
(Gaussian) models and whether microscopic changes inrhette of the interface are

realized near the critical point.

The answers to both these questions are affirmative. Fidudesd 14 illustrate our
main findings. Figure 13 shows the average field at the solptded(Onsager’s reaction
field[65]) and the variance of the solvent electric field, bas functions of the solute

polarizability. We observe an inflection of the average fald* ~ 20 — 22 A® (Fig. 13a)
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FIGURE 13: (a) Onsager reaction fiel#l') for the hard-sphere (HS) and Lennard-Jones
(LJ) solutes with the dipole moment, = 5 D and varying polarizability in TIP3P water
at7T = 298 K. The solid lines are fits to the Landau functionalfin simulation errors are
smaller than symbol sizes. (b) The variance:ofvith error bars indicating the simulation
uncertainties. The solid lines refer to the Landau theosetan the fitting of £/) shown

in (a). The blue triangles indicate the results of molecdiaramics simulations for the LJ
solute in modified TIP4P water (see chapter 7).

and a corresponding spike in the field variance (Fig. 13bg figid variance is proportional
to the dipolar susceptibility and the spike in the variamoplies a corresponding spike in
the susceptibility. The divergenge— oo is avoided by the higher-order expansion terms
in G[E] as discussed below. We start the discussion with the questithe microscopic
origin of the susceptibility spike. We have found that it isven by a structural transition

of the hydration shell.

The MC simulations reported here were done for two solutésrd-sphere (HS) solute
with the HS radiusRys = 4.15 A and a Lennard-Jones (LJ) solute with the LJ radius
R.; = 3 A. Each solute carried two opposite charges,and —q, placed symmetrically
relative to the solute center at the short distancé ef 0.05 A to model an ideal dipole.
The LJ solute additionally had a 12—6 site located at its center with the LJ energy =

280 K. The dipole moment of the solute was varied by changing tagnitude ofy (see
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FIGURE 14: Solute-water distribution functiop$,(r) (Eq. (3.3)) for the LJ solutes with
the polarizabilitiesy indicated in the plot. (a) The solute-oxygen (solid linesdl solute-
hydrogen (dashed lines) radial distribution functiofAs<0). The inset shows the height
of the first solute-solvent peak. The horizontal arrow indicates the separation of the first
oxygen and hydrogen peaks. The orientational functionls fvit 1 and/ = 2 are shown

in panels (b) and (c), respectively.

chapter 7 for the details of the simulation protocol). Mokthe results are reported for
TIP3P water[80]. Our conclusions are not sensitive to theaehof either the water model
or specifics of the solute. This is indicated by the comparisgh the results obtained
with a slightly modified TIP4P water model[80] (Fig. 13) coiméd with a larger distance
between opposite charges in the solute=(1.5 A).

The reason for choosing two solutes was to show that the glepleenomenology re-
ported here is not a property of some specific solute-solvdeataction potential, but in-
stead reflects a more general competition between the frergyegain of polarizing the
solute and the free energy penalty of orienting the solv@mles to create the electric
field. Two different solute sizes were adjusted to produaglgieequal polar response of

TIP3P water to the solute dipole. The reaction field is a lirffaaction ofm ata = 0:
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(E) = k~'m. The HS and LJ solutes were chosen to produce close valuesnofwo
cases s = 28.7 A% andk; = 29.6 A3, see Fig. 41 in chapter 7).

Figure 14 illustrates the structure of the hydration shélihe polarizable LJ solute
as defined by the orientational solute-solvent distribufionctionsgf, () of increasing
order (g, (r) of the HS solute are shown in Fig. 44 in chapter 7). The funcsiQ(r) is
given as the average Legendre polynomial of ordgpecified by the scalar product of the
unit dipole momentn; and the radial unit vectdr; of the water moleculg positioned at
distancer; from the solute center

goo(r) = p" Y (Py(ih; - £)d(x; — 1)) . (3.3)
j
Here,p is the number density of bulk water.

The orientational structure of interfacial water next to &8l LJ solutes is consistent
with the phenomenology established for planar hydrophsbitaces[184], molecular non-
polar solutes[171], and hydrated nanoparticles[185] whessmall. The height of the first
maximumc' of the solute-water radial distribution functiofi-€ 0) is below the maximum
of bulk water (inset in Fig. 14a), indicating a weak dewegtni the interface[186]. In addi-
tion, the water dipoles are preferentially oriented tarigdiy to the dividing surface[184].
The increase of the solute polarizability dramatically raypes this phenomenology, pro-
ducing a structural transition in the hydration shell. Walthe gradual change to the hy-
drophilic behavior caused by increasing surface pold&y], the transition observed here

is abrupt and analogous to the global loss of stability aptiiat of phase transition[183].

Increasing the solute polarizability substantially atdre density profile/(= 0) and
the orientational structure (> 0) of the hydration shell. One clearly sees an increase in
the density of the first hydration layer (Fig. 14a): the maximof the radial distribution

function grows with increasing polarizability and the finsthimum decreases in amplitude
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FIGURE 15: (a) The average numbers of water molecules int$téhiydration shell of HS

and LJ solutes. (b) Hydration shell compressibilities. @ver bars indicate the simulation
uncertainties.

and becomes increasingly shallow. Near the critical poddnility o*, producing the spike
in the electric field variance (Fig. 13b), a layering traiosif188] occurs separating the first
and the second hydration layers. This transition is pddrbudistinct for the HS solute
(Fig. 44 in chapter 7).

Collapse of the first hydration layer is also seen as a stepivige in the number of
hydration watersV,, (Fig. 15a) calculated within the shell geometrically defite extend
up to the first minimum of the radial distribution function.hd variance of the number
of shell waters drops, however, faster than the averageindtieasingx, resulting in an
overall decrease of the shell compressibility[180IN,,)?)/(N,) ata > «* (Fig. 15b).
The structural collapse of the hydration layer is accomgibly an orientational transition
to accommodate the high density of the first-shell waters.

The first peak of the solute-hydrogen distribution functstifts, with increasingy, to

shorter distances compared to the first solute-oxygen gagkX3a). This shift indicates
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the switch of the preferential outward (into water) orie¢iota of the interfacial hydrogens
to the inward (toward the solute) orientation. In the ranfje o> o*, the distance between
the oxygen and hydrogen peakssisl A, essentially equal to the O-H distance in TIP3P
water. This implies that the corresponding OH bonds areydotg from water toward the

solute, thus forming “dangling” OH bonds[190, 191].
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FIGURE 16: The number of unsatisfied hydrogen boiNds within the sphere of radius
r. = 7.3 A measured from the center of HS and LJ solutes.

The appearance of dangling bonds seen from the radialldiitrn functions is consis-
tent with the growth of a positive first peak of the orientatibdistributiong?, (r) in Fig.
14c. Itis also clear that the release of dangling OH elinesahe restrictions imposed by
the bulk-like tetrahedral arrangement of the water mokesahd, therefore, allows the col-
lapse of the hydration layer to a higher density. The resudtdlistinct structural transition
releasing dangling OH bonds and occurring at the critichlevaf the solute polarizability
zeroing out the quadratic term in the free energy functioie number of dangling OH
bonds can be viewed as an order parameter of the structtealaicial transition, which
can be experimentally monitored[190, 191].

The dangling bonds are identified experimentally by thepasate vibrational line[190].
There is no clear connection between this spectroscopmtifi@ation and structural infor-
mation available from simulations[191]. Since we cannoéctly count spectroscopically

active dangling bonds, we have calculated unsatisfied lggiirbonds according to Wernet
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et al[192]. The numbers of unsatisfied bonds are typically hifgd] than spectroscopic
dangling OH: about one dangling OH per four water molecutesxtended hydrophobic
interfaces[190] or even lower numbers around moleculseessolutes[191]. Nevertheless,
the numbers of unsatisfied bonds«snight mirror the corresponding trend for dangling
bonds. Those numbers indeed increase witthen counted in water layers of different
thickness. Figure 16 shows the results for the closest higdriayer with the thickness of
the water diameter. A similar trend is seen for a wider stéadj.(45 in chapter 7).

The simulation data for the reaction field were fitted (sohé$ in Fig. 13a) by applying
a Landau functional[183] involving the fourth and sixth ercexpansion terms it+[E]
in Eq. (3.2): G[E] = —(b/4)E* + (¢/6)E®. The exclusion of the odd powers i is
required by the invariance under the inversibn— —FE whenm = 0. The fit to the
reaction field from simulations is then used to calculatevihgance ofE: ((0F)?) =
[(0*2F JOE?*)|g=o) . The results of these calculations are shown by the sol&lin Fig.
13b. We also find that the spike {(\0 £)?) does not produce a non-monotonic dependence
of the overall solvation free energy an Fy(«) is significantly steeper at > «*, but the
overall dependence is still monotonic (Fig. 46 in chapter 7)

Several systems and observables can display the phenarggneported by our sim-
ulations. The first two moments of the solvent electric fieldgely determine the shift
and inhomogeneous line width of optical dyes. The non-mamotbehavior of the field
variance vsxy should therefore be mirrored by the spectral width. The all/éne-shape
can be calculated from the Landau functiof#glF’), which extends the harmonic theory of
spectroscopy of polarizable chromophores[193] to nomrlbaic solvation.

Non-harmonic solvation can be anticipated for severaksyst For instance, the polar-
izability of a semiconductor nanoparticle scales as thettfiopower of its radiuse o< R*.

The proportionality coefficient can be very high: ~ 0.08,&3(}%/,&)4 has been reported
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for photoexcited CdSe nanoparticles in the range of radii3At[194]. From a general
scaling perspective; o< R? for dipolar solutes in Eqg. (3.2)[65] (Fig. 41 in chapter 7)ithV

a o« R*, there is always a critical size at which the transition to4ha@armonic solvation
should occur. When the values efobtained in our simulations are rescaled to nanopar-
ticle sizes used in Ref. 194 we find them to fall in the regimeai-harmonic solvation,

k < «. Similar arguments apply to organic ionic solutes (suchettaalkylammonium
cations studied in Ref. 191). The force constant scales@®sR for spherical ions, while
the polarizability of many organic molecules scalesisThe transition to non-harmonic
solvation, and the related structural transition of therhgidn layer, can be predicted for

this configuration as well.

3.4 Conclusions

We have discovered a structural density collapse of theatilr shell promoted by a
polarizable solute. The density collapse induces an @iemal transition of the hydra-
tion shell dipoles. Both transitions are manifested in andase in the density of dangling
OH bonds which have been viewed as potential catalytic cetdgpromote heterogeneous
catalysis[22]. Our picture is distinct from the traditibfi@eberg model” anticipating en-
hanced structuring of water around a non-polar solute[1i®5jontrast, high polarizability
breaks the bulk-like water structure, creating a high dgradi surface OH defects. The
crossover is abrupt since it is caused by zeroing of the @tiaderm in the free energy,
analogous to the point of criticality in bulk phase tramsis. The phenomenology reported
here is not limited to hydration of polarizable solutes, Wwilt extend to similar crossovers
caused by polarizable substrates in contact with inteafagater. The abrupt change of the

interfacial structure will affect water-mediated forcesthe nanometer scale.
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Chapter 4

MOBILITY OF NANOMETER-SIZE SOLUTES IN WATER DRIVEN BY ELECTRIC
FIELD

4.1 Summary

The relationship of solvent response to electrokineticnphgena is investigated. In
particular, the possibility that electrophoretic molyilthe drag experienced by a dissolved
(usually colloidal) particle in a uniform external electfield, can be related to the ordering
of water in the interface has been suggested. Attempts teeptaony simulations have
suffered from the use of inadequate ensembles and, moretamply, from the lack of
an established theoretical framework allowing to analyme data from both numerical
and laboratory experiments in a unified formalism. A simpledretical framework to
analyze the problem and confirm that ordering and poladrati water in the interface
can produce electrophoretic charge without free chargeecsr Simulations of various
solutes in several force-field models of water are presdntetow that the surface charge

density coming from the interfacial order is comparabléwvexperimental estimates.

4.2 Introduction

Mobility of oil drops and air bubbles in water has been knoand long time[25] and

is traditionally linked to preferential adsorption of ionEheir counterions form the diffuse

double layer. The overall charge measured by mobility i®mheihed by an incomplete

compensation between the charge of the adsorbed ions anghthef the diffuse layer
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within the shear surface. The latter encircles the stagaget of the electrolyte moving
together with the dissolved particle. While the overall gomcting on the ions of the
electrolyte is zero, the electrokinetic drag is the resuttmosing a limited volume within
the electrolyte, surrounding the colloidal particle, wgh uncompensated charge. The
dragging force is thus the product of the average ch&gge within the shear surface with
the electric field acting on the charges. We show here that#seof a limited volume cut
from the liquid and producing an excess charge can be exddndbe dipolar polarization
of the interface. While the dielectric surrounding the naartiple is neutral overall, like
the electrolyte in the standard models, the divergent @alion of the interface produces
an uncompensated bound charge when integrated over a fohii®e.

The excess of the adsorbed charge over the diffuse-layegehiee., uncompensated
charge(Q)r # 0, is reflected in the sign of th¢-potential at the shear surface [26]. A
negative(-potential, typically recorded for oil drops and air bulsbie water, has been
attributed to the excess of the adsorbed negative chargjetivé hydroxide anion being a
long-time favorite [27, 28, 29, 30].

Recent calculations [196, 197] and measurements by sustwstive second-
harmonic generation techniques [198, 34, 199, 200] do nob@ excessive adsorption
of hydroxide to the oil-water [34] and air-water [198, 198{farfaces. In addition, the total
X-ray reflection fluorescence spectroscopy [201] provithesupper estimate for the free
surface charges at the air-water interface at the leveltoR (e/nnt). Depending on the
pH and other conditions, this estimate is up to two orders ajmitude below the surface
charge density of 0.02-0.4 (e/Aextracted from mobility [27, 29, 34, 200]. It seems
plausible that either the formalism of estimating the stefaharge density from mobility
requires modification or alternative mechanisms of mahifibt involving ion adsorption,

might be involved.
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The possibility of charge-free electrophoretic mobilitywater has been discussed in
the literature [31, 32, 33, 34, 35, 36, 37]. The main idea henhat the microscopic
structure of the interface, allowing molecular order withihe hydration layers, can ei-
ther produce an effective electrokinetic charge, not eeldb charges of free carriers, or
substantially modify the effect of adsorbed ions on the alenobility. This proposal
has faced two difficulties. From the theoretical side, themo established framework of
how to translate the microscopic structure of the interfaegptured by atomistic numer-
ical simulations, into the macroscopic current. Care is irequin implementing correct
cutoff/boundary conditions [38, 39, 40] and statisticabembles adequately represent-
ing the conditions of mobility measurements (as discussely below). In addition,
the field strengths required to produce sufficient samplingimulations are significantly
higher than experimental fields [185] and can potentiallydifyothe structure of the so-
lution. From the experimental side, it is not clear how torgect the results of surface-
sensitive spectroscopies, which directly report on thandtion structure of the interface
[202, 203], with measured mobilities.

Here we address the calculation of the force acting on a natesrsize particle dis-
solved in water and placed in a uniform external field. We dbduectly calculate the
current produced in response to the external field assurhatgdnce the force is known,
the mobility can be calculated by applying standard equoatas hydrodynamics [204, 199]
(as shown for the capillary flow in the Appendix). Mobility tife hydrated solute is typ-
ically expressed, through Smoluchovski's equation (EqR)(#elow), in terms of either
the (-potential or its effective charge. We derive a relationnzstn the effective mobil-
ity (electrokinetic) charge and the interfacial structaféhe water dipoles represented by

the first-order orientational order parameter of the istegf This parameter is in princi-
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ple accessible by surface-sensitive spectroscopies PZR,205, 206] and by equilibrium
computer simulations of solutions [187, 103].

This model shows that the effective charge of the soluteomdipg to the uniform
external field is not equal to the charge of the free carridrss therefore possible that
the effective electrokinetic charge reported by mobilitgasurements significantly over-
estimates the number of adsorbed ions. The orientationadtate of interfacial dipoles
is the key in understanding these differences. Since tleefadial structure and dipolar
orientations in the interface can be altered by modifyirgggblute/substrate [187, 207, 34],
one gains the means to experimentally test both the effatieohterface on the effective
electrokinetic charge and the hypothesis of charge-frealityo In particular, we suggest
that changing the polarizability of a (semiconductor) naarticle by exciting electron-hole
pairs can invert the sign of the mobility. This effect is @nvby the relation between the
orientation of dipoles in the hydration layer with the naadjle polarizability [21] ma-

nipulated by light [208].

4.3 Interfacial Structure and Particle Mobility

4.3.1 General Arguments

We start by considering a single spherical ion with the chargt its center and with

the radius:. Itis placed in a polar liquid with the bulk static dielectaonstant,. We will

further consider a spherical liquid sample with the maaspgcradiusL and place the ion

at its center to simplify the geometry. The instantaneoasgdhdensity in the sample is

p = pi+ po, (4.1)
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wherep; = ¢é(r) andp,(r) = >_; ¢;6 (r —r;) is the density of bound charge at a given
instantaneous configuration of the liquid with the atomidiphcharges;; located at the
coordinates;. Based on charge conservation [105]= —V - P is expressed in terms of
the polarization density fiel@®. No specific approximation, such as the dielectric bound-
ary value problem, is assumed here. The instantaneouszadian field is given by the

microscopic expression [145, 109]
Pr)=) md(r—1;)—3V-) Qif(r—1;)+.... (4.2)
j j

Here,m; denotes the molecular dipolg, is the molecular quadrupole (defined according
to Ref. [145]), and the dots refer to the higher-order mulépterms. When the statisti-
cal average over the configurations of the liquid is perfatpane arrives at statistically
averaged scalar and vector fields,) and(P).

From Eq. (4.1), one can calculate the overall charge witlsipheerical volumé2 ; with

the radiusk surrounding the ion at its center

@)= [ =V P (4.9
By using the Gauss theorem, integration in Eq. (4.3) yields

(Qr) = q + [Sul’s — SrPr]. (4.4)

Here, P, and Py are the average radial projections of the polarizationitens. = t - (P),

f = r/r taken atr = a andr = R, respectively. Furthei§, = 4wa* and Sy = 47 R?
are the surface areas. The polarization is locally propoatito the field in the continuum
electrostatics an®, = (q/47r?)(1 — ¢~ 1). Therefore, in this case? P, is independent of
r and the two summands in the brackets in Eq. (4.4) cancel me.getsQr) = q.

The dielectric sample is overall neutral and one can aduitlg require

[inar=o. (4.5)
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where the integral is taken over the liquid volufdetween the spheres= a andr = L.

This relation imposes the boundary condition
a*P, = L?P;, (4.6)

which is satisfied for continuum electrostatics.

The normal, outward to the dielectric component of the prddion fieldo, = P, =
— P, plays the role of the surface charge density of a discontiautielectric interface
[105]. While this charge originates from a divergent polatian of bound molecular
charges, it is experimentally observable. To show that,cameconsider the electrostatic
potential created by free and bound charges inside or @utdithe macroscopic sample.

It is given as a sum of the electrostatic potentials arisiogifthe free and bound charges

[99]
¢:g+7{ %a dszg—<1—i)@, 4.7)
r s, |r—rg] r € ) r

where the surface integral is over the surface of theSgn The overall potentialp =

q/(res) is said to be dielectrically screened. This physically iepthat any probe charge
placed outside of the dielectric sample will sense the caetbchargees = ¢/, resulting
from adding the ion charge with the opposite bound chargesumiformly distributed

around the ion and producing a non-zero divergeviceP.

We now move to the next step to point out that the polarizdtedd of liquid interfaces
often shows a behavior more complex thBn o« r~2 of continuum electrostatics [107,
108, 113]. The functior®, often displays overscreening, which means that it can bénmuc
larger in the magnitude at the contact with the ion than ptediby dielectric models. It
also shows oscillations caused by molecular granulariiy decays to the—2 asymptote

atr — oo. While the overall neutrality condition (4.6) still must kiplthe charge@) r
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FIGURE 17: The radial projection of the microscopic polatian densityP. (solid line)
and its dielectric formx r—2 (dashed line). The volume integral 8%, /0r between sur-
facesr = a andr = R in Eq. (4.3) can be non-zero, while it always vanishes in the
dielectric limit.

obtained by integrating in Eq. (4.3) over a small voluffyg can be nonzero for a function
P.(r) = p(r)/r* with a generally oscillatory(r) such thap(oo) = 1 (Fig. 17).

This simple observation is the basis of our proposed aiteratf the standard model
of ionic mobility under the drag of a uniform electric field.eV8uggest thatQ)r # ¢ if
the liquid within the shear surface, dragged along with tme carries some molecular in-
terfacial structure affecting the radial distribution bétpolarization density. The effective
charge associated with mobility is affected by the distidouof the bound charge within

the shear surface, in addition to the total charge of freeezar

4.3.2 lonic Mobility

The hydrodynamic mobility of an ion is determined by the steaface of the radius
R, which is coarse-grained to smooth out the details of mddegranularity by averaging
out the molecular motions on the time short compared to the-8cale of hydrodynamic
flow (Fig. 18). Electrostatics suggests that the force gatimthe ion and its stagnant layer
is the product of the average char@@g) within the shear surface with the field acting

on these charges. This field is the cavity fiéld[109] combining the field from external
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FIGURE 18: lon with the charge and the radius immersed in a polar liquid in the
uniform macroscopic (Maxwell) field. R indicates the radius of the shear sphere incor-
porating the stagnant layer of the liquid dragged by the a&ddg with the soluteE. is the
cavity field of the uniformly polarized liquid created insithe shear sphere. The arrows
on the opposite sides of the spherical cavity indicate waifmles oriented favorably (left)
and unfavorably (right) along the external field. The déiece in the chemical potential
between right and left is positive. It creates an osmotisguee pushing the particle in the
direction opposite to the field and corresponding to an @ffecegative charge.

charges with the field of the polarized dielectric outsidéhefshear surface

(F) = (Qr) E. (4.8)

In dielectric theories, the cavity field inside a sphere latezl to the macroscopic Maxwell

field E by the equation [109]
36
26+ 6

(4.9)

C

whereg, is the dielectric constant of the particle.

The steady flow of dissolved particles with the speésireached when the electrostatic
drag is counterbalanced by hydrodynamic frictidd}) = 6mnuR, wheren is the bulk
viscosity. The resulting mobility = u/E ~ (Qr)/(47nR) [es > €,, €, > 1in Eq. (4.1)]
gives direct access to the total charggz). Smoluchovski’'s equation, typically used in
the literature, re-writes this relation in terms of {fy@otential defined as the electrostatic
potential at the shear surfage= (Qr)/(esR) [209]. The result is the equation for the
mobility [26]

M:i*. (4.10)
™
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This formalism is well established, and the results of mghbrheasurements are often
cast in terms of the effective surface charge densify= (Qr)/S, whereS is the surface
area of the particle. We follow this established practiceé fcus mostly on@ ) and the
correspondin@.¢. The arguments given here need to be modified with the ac¢outite
diffuse potential when electrolyte is present [209]. We b consider these effects here
and focus instead on charged or uncharged particles dessoha polar molecular solvent,
which establishes a microscopic multipolar structure mititerface. The main outcome
of this perspective is the modification of the effective geaf)r) by the dipolar order
of the interface expressed in terms of the average cosineeahterfacial dipoles (order
parameterp;.

Starting from Eqg. (4.4), one can proceed in two steps anddpply a reasonable ap-
proximation to the surface charge density at the shearcrfBhe surface charge density
at the actual physical surface of the solute then becomemaimr focus. Since the shear
surface does not involve any physical disruption of theitigstructure, it is reasonable
to assume thaP; can be related to the field of the ion charge by the rules oficonin
electrostatics [109bz Pr = q(e; — 1)/e,. We stress that this assumption does not affect
the main points of our reasoning, as will be clear from thewlsion below. With the

continuum polarization at the shear surface one gets inZ5) (

(Qr) = q€6;' — 045 (4.11)

Since the microscopic susceptibility of the nanometerrfate can significantly deviate
from the rules of macroscopic continuum electrostatic§ [154, 113]0, = P, = —F,

is left unspecified in Eq. (4.11). The simple message daoéy Egs. (4.10) and (4.11) is
that asymmetry in the water susceptibility between the rshed solute dividing surfaces
leads to a modification of the standard resgli) = g.

Sinceo, is given by the normal projection of the polarization densitthe interface,
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Eq. (4.11) offers a new result typically absent in standaetedtric models. Those suggest
thato, is proportional to the ion charge However, if the polar liquid is spontaneously
polarized in the interface, i.e., if the interfacial dipelpossess preferential non-random
orientations caused by the interfacial order [108, 143],210%) # 0 even aly = 0. What

is required is a nonzero radial projection of the dipolarapahtion density at the solute

surface.

The dipole ordering in the interface can be described by tisedrder orientational
order parametep; = (i - t),, which is the average cosine of the water dipole moment
projected on the radial direction and calculated in a natayer at the solute surface= «a
[154, 103]. The surface charge density can be written ingeshthe water dipole moment
m and the order parametero, = (mpl/S)(st/dr)‘T:a. Here, Ny = N(r) is the
number of water molecules within the shell of the radius a. By using the definition of
the number of water molecules in the shell in terms of theteedolvent radial distribution

function (RDF)go,(r), one can re-write, as
— 04 = pmp1G, (4.12)

whereG = gos(a) is the contact value of the solute-solvent RDF ani the number
density of bulk water. Equation (4.12) is written for an &mdny value ofg, which means
thatp; G should be calculated in the presence of the ion charge corresponds tg = 0.

The value ofo, for large particles can be estimated from the— oo asymptote
for the hard-sphere (HS) solute [21&}hs — BP/p, which results in—o, — Smp, P,
where P is the hydrostatic pressure. This gives for water at amhientlitions—o, =~
1073p;(G/Gus)(P/atm) e/nn¥, whereG /Gys =~ exp|—BApu,,] defines the affinity of wa-
ter toward the soluté\ .., beyond simple HS packing preferences.

Equation (4.12) establishes the effective charge of a dlepierical interface within a

polar liquid. Its sign is fully defined by the orientationabtler parametep;: it is negative
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when the water dipoles preferentially orient toward theisgtavity and is positive when
they point toward the bulk. This equation shows that anyezladividing surface, cutting a
volume from a polar liquid, will be dragged by an externatélie field if a preferential ori-
entation of dipoles in the interface is established. Thssiltas independent of the presence
of the electrolyte since bound charges are not screenedehgriks.

The proposed formalism equally applies to the problem of gef@rop in a nonpolar
solvent (oil) [36]. Equation (4.12) still defines the sudacharge density with the con-
vention that the orientational order parameter is caledldly projecting the surface water
dipoles on the radial direction pointing toward water (imev&n the case of a drop). To
make our assignment clear, the water-oil interface witrevihydrogen pointing toward
the oil phase [212, 34, 213] will, according to Egs. (4.11 &h.12), produce a negative
charge of the water drop.

It is important to note that the electrostatic force lingattie external field(F") « E.,
assumes an unperturbed orientational structure of thefaote projected on the order pa-
rameterp,. The relaxation of the interfacial order in response to tkteraal field would
represent the interfacial polarizability, which contriési to the overall force as a term
guadratic in the external field. We do not consider the iatipolarizability here assuming
that macroscopic fields used in experiment are weak companeicroscopic interfacial
fields [108] and do not significantly alter dipolar orientaus in the interface.

The electrolyte is overall neutral and the overall forceracon the electrolyte ions is
zeroF = ) . ¢,E = 0. However, producing current requires work of the exteroairse.

The powerP, or the rate of doing work, is related to the current dengjiy09]
P= /j -Edr = Py + No(Qr)uFE, (4.13)

whereP, = (J, — J_)E is the power required to move the electrolyte ions with theralt

current of cations and anions given &s; N, is the number of colloidal particles (see
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Supplemental Material for detail). Equations (4.5) and3}in principle allow a non-zero
current and power production at= 0, i.e., for overall neutral solutes surrounded by a
polarized interface. This possibility was viewed in Ref.4Ras contradicting to Saxen
relations between the streaming potential and electrastisraurrent, which are specific
forms of the Onsager reciprocal relations [204]. We show@Appendix that the Onsager
relations are obeyed in our model by the simple fact of besgeld on the Coulomb law
applied to both free and bound charges.

The drag experienced by a closed surface can be viewed asificsfigm of osmosis
[215]. The gradient of the chemical potential of interfaeiaters at the opposite sides of
the surface is created by the external field. It is the corsecgi of the favorable orienta-
tion with the field of the molecules on one side of the surfamapared to the unfavorable
orientation on the opposite side [216] (surface arrows g1 E8). The chemical potential
gradient will result in the osmotic pressure difference lom dpposite sides of the surface
as long as spontaneous order in the interface persists.phfigcal interpretation of non-
zero mobility implies that direct numerical simulationstbis effect will require the:VT
ensemble [211, 216], keeping the chemical potential of m@iastant. Since these results
are presently not available, we use more conventional NMTNIRT simulations of non-
polar and ionic solutes in water to estimate the interfaci@rge density, in Eq. (4.12)

from the computeg, G parameter.

4.4 Computer Simulations

We have considered HS and Kihara (KH) solutes dissolvedriceféield water. The

Kihara potential is the HS core modified with the Lennarde¥o(LJ) layer at its surface
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FIGURE 19: Surface charge density of hard-sphere (HS) améridi (KH) solutes of
varying solute sizeR,, in SPC/E water (solid points) and TIP3P water (open pointeg T
LJ energye, in EQ. (4.10) was varied in the simulations: 0.65, 3.7, afdkd/mol. The
dotted lines connect the points to guide the eye.

[180]. Specifically, the solute-solvent potential is givaen

- 12 - 6
— 4 S _ S
Folr) o [(7’ - RHS) (7" - RHS)

whereey, in the LI energy and, is the distance between the solute HS core with the

(4.14)

)

radiusRys and water’s oxygens,, = 3 A was kept constant in the simulations, whitgs
andey, were varied.

The molecular dynamics (MD) and Monte Carlo (MC) simulationssgnted here ad-
dress the question of whether the product characterizing water interfacing these solutes
will produce o, comparable to experiment. The experimentateported in the literature
are derived from mobility through Smoluchovski’'s equatj@8, 34] [Eq. (4.2)]. The de-
tails of the simulation protocols have been discussed &lsen[154, 21, 12] and are given
in chapter 7. Here we focus only on the results.

Figure 19 showsry/e (¢ = 0, e is the elementary charge) from the simulation data
changing with the size of the HS and KH solutes in TIP3P and ER@ter models [80].
The size of the KH solute is measurediag = Rus + 0o [EQ. (4.10)]. It approximates
well the position of the first peak of the solute-solvent RDRe Bize of the HS solutB;
is defined as the distance of the closest approach of the watgen to the solute. It gives

the exact position of the RDF’s first peak.
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The sign of the surface charge density is negative for botamtSKH solutes, reflecting
the preferential orientation of the surface water dipatés the bulk. Increasing the solute-
solvent LJ attraction makes the hydration shell densereféscted by a highero,. The
fast drop of—o for the HS solute is caused by its partial dewetting [189] kg, > 5
A.

The magnitude of, is somewhat higher than the values typically reported fraobim
ity measurementsy —0.04 (e/nn¥) for hexadecane in 0.2 mM NaCl atl = 7[29]). We
estimated th&-potential for thes,, = 0.65 kd/mol Kihara solute [154] (Fig. 19). It turned
out thatoo R3, is an approximately linear function dty, (Fig. B1 in appendix B) such
that¢ ~ 0.026(e/nm)( R/ R) for large Kihara solutes. Neglecting the difference betwee
Ros and R in this limit results in¢ ~ 38 mV. This number is not very different in magni-
tude from those typically reported experimentally. Fotamnse,( ~ —81 + 14 mV was
reported for xylene droplets in 10M NaCl electrolyte apH = 6 [27]. For water at room
temperature, the Debye-Hiickel length«is' ~ 3/c!/? A for a single-charge electrolyte
with the molar concentration[217]. For the cited experiment, one gets' ~ 10 A and
the amount of counterion charge within the stagnant layet df nm in thickness [218]
can be neglected. The measugegotential thus reflects the effective electrokinetic acef
charge. We stress that our solutes are significantly smal&ze than oil drops used in the
mobility measurements{( 100 [200] to ~ 200 — 300 [34] nm) and have a smooth surface,
in contrast to the corrugated surface of oil emulsions [213]

The experimentaj-potential [27] has the sign opposite to that calculatediferKihara
solutes. The reason is the positive sigrppfn the Kihara-water interface, while negative
p1 values have been recently reported for the oil-water iater34, 205]. The access to
water orientation in the interface is experimentally pded by heterodyne-detected vibra-

tional sum-frequency generation (VSFG) spectroscopyutiindhe imaginary part of the
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FIGURE 20: Surface charge density of HS cations (C) and aniahén TIP3P water.
The calculations are done according to Eq. (4.12); the ddittes connect the points,, is
negative for cations and positive for anions.

VSFG signallmy® [205, 206]. The combination of the sign bfixy(? and its intensity in
principle gives access @, although in reality fitting of simulations to experimensalec-

tra is required [219]. Resolving all features of the experitaly reportedmy? requires
including three-body interactions in the force field modekater [219]. Whether the same

is true regarding the values pf is not clear at the moment, although there are indications
that three-site models of water somewhat overestimat@astaneous orientational struc-
ture in the interface [143]. In addition to spontaneousrdggon in the uncharged interface,
the orientation of water dipoles and correspondingre strongly affected by the presence

of ions [206, 220] as we discuss next.

The potential situation with hydrated ions is illustratedrig. 20, where,, is calculated
from Eq. (4.12) for HS cations and anions of varying size iR3P water in the absence of
counterions [12]. The main observation here is thatignificantly exceeds in the absolute
magnitude the prediction of the continuum electrostati€his means(Qr)| > |q¢| in
Eqg. (4.10), which should lead to an overestimate of the nurobadsorbed ions when the
standard equations for the screening of free charge camielectrolytes are applied to the
analysis of the mobility data [209].

The overpolarization of the water dipoles attached to thieasa ions might have sig-

nificant implications for the interpretation of the mobjlidata. Figure 20 indicates that
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the microscopic orientational order of the water dipolest e a positive ion will signif-
icantly enhance its effective electrokinetic charge deteed from the mobility measure-
ment. Correspondingly, a negative adsorbed ion will appeaemegative in the particle
mobility. Therefore, the actual concentration of adsortmed can be significantly lower
than estimated from mobility. This observation might h@gxplain the disagreement be-
tween the electrokinetic measurements [29, 34, 200] arfds@#sensitive spectroscopies
[198, 34, 199, 200] regarding the concentration of the serfadsorbed ions. The actual
extent of overpolarization requires more extensive sitiuia in realistic electrolytes. One
also should not underestimate the potential effect of gation of any real water-oil inter-
face [213], which will affect the average contact RDFn Eq. (4.12).

Figure 20 indicates that surface charge densities of lavgiye and negative ions with
l[g| = 1 charge at the center are close in magnitude. However, thi®me might not hold
for small ions adsorbed at the surface of a large particlee gioductp,G is generally
asymmetric between cations and anions because of the aggmméhe charge distribu-
tion of the water molecule [137]. In that case, the orieptal order and the corresponding
surface charge density will not compensate between thesitepocharged adsorbed ions,
and a non-vanishing, will follow even at the total zero charge. The observablesesn
guence of this asymmetry would be a shift between the isttredgooint of electrokinetic
mobility and the point of zero charge, as reported for sonstesys [221]. Overall, the
main result of the general formalism summarized by Eq. (4abtl simulations performed
here is that the charge of free carriers and the effectivereld@netic charge incorporating

the interfacial dipolar order can be significantly diffeten
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4.5 Experimental Testing and Conclusions

In conclusion, we have derived a simple equation [Eqgs. {4abdl (4.12)] relating the
effective charge of a hydrated nanopatrticle to the oriemat order in the interface and
the water density in contact with the solute. Both parametarsy asymmetry between
positive and negative charges. Therefore, the surfacegehdensitys, induced by the
positive and negative free carriers will not compensate @nodiuce an overall nonzero
value even when the total charge is zero. The electrokimgi@zge can be substantially
enhanced by the dipolar order in the interface and the the@dicts a non-zero effective
charge when the interface is spontaneously polarized ialtbsence of free charge carriers
(charge-free mobility). The values of the surface chargesitig derived from simulations
of uncharged nanometer-size solutes are consistent oe@xicese typically reported from
mobility measurements.

Our development traces in spirit the well-established raeidm of electrophoretic mo-

bility due to ions of electrolyte. Both ions and the dipoleghs solution surrounding the
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colloidal particle are neutral overall. However, therensexcess of ions within the shear
surface of the particle, which results in the electrokimeliarge. Similarly, due to specifics
of the divergent interfacial polarization, there is an iialpae in the bound charge between
the polarized liquid inside and outside of the shear surfabe excess bound charge needs
to be added to the excess free charge to establish the effettictrokinetic charge.

The derivation is performed here for a spherical solute,revtiee geometry of the in-
terface produces a divergent radial polarization field. moelel is not directly extendable
to flat interfaces studied by simulations in the past [32, 3%hile the polarization field is
clearly inhomogeneous next to a planar surface, it oftenohstnates positive and negative
spikes [32, 108], which can potentially compensate eachrodihen the field is applied
parallel to the interface to produce electrophoretic flowe Torce(F,) along the plane of

the surfacef-axis) writes
(F,) = E,S / oo(2)dz, (4.15)

whereS is the surface area. If the density of the bound chayge) integrates to zero, there
is no net force. In this regard, the roughness of the interfas suggested by Kneddital.
[32], can provide the required conditions for a divergerapgation field which cannot be
reduced to a one-dimensional integral shown above.

The direct connection between the mobility of nanoparsicitewater and the orienta-
tional order of the water dipoles in the interface offersaynities for testing this predic-
tion by experiment. One possible direction is the modifarabf the surface with chemical
groups (surface dipoles) altering the interfacial ord&7[]1 We, however, recently discov-
ered another property dramatically affecting the intediadipoles: the polarizability of
the solute. Increasing the solute polarizability drives slolute-water system to the point
of instability of harmonic fluctuations expressed in terrhhe solvent electric field inside

the solute as the order parameter. Reaching the point of Iglmtability toward fluctua-
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tions drives a structural transition of the hydration layenich reorients the water dipoles
and creates a high density of dangling OH bonds [21]. The gemémew structure of the
interface also suggests, according to Eq. (4.11), theaaiber of the sign oty (¢ = 0).

The results of MC simulations of HS solutes with changindgrgaic dipolar polariz-
ability « at the solute’s center are presented in Fig. 21. The sizeedlute is maintained
constant and only the polarizability is varied. One obsevaswitch from a positive to a
negative surface charge with increasing polarizabilityother words, the isoelectric point
of electrophoretic mobility can be reached, and crossednanipulating the polarizabil-
ity of the dissolved particle. This observation opens therdo experimental testing of
the model. Polarizability of semiconductor nanoparticdas be dramatically increased by
photoexcitation [208], which is predicted to invert the aparticles’ mobility (horizontal

arrow in Fig. 21b).
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Chapter 5

NON-GAUSSIAN LINESHAPES AND DYNAMICS OF TIME-RESOLVED LINER
AND NONLINEAR (CORRELATION) SPECTRA

5.1 Summary

A model is proposed for treating non-Gaussian frequencyuaimons that arise from
nonlinear system-bath coupling. It provides an analyticlised-form expression for the
lineshape function. This result is significant becauseaviales a straightforward approach
for modeling the lineshape function and projecting thatitssnto a set of parameters that
provide insight into the underlying molecular behaviore®malytical results are compared
to explicit MD simulations to verify the validity of the appeich showing that the analytical

method exhibits good agreement with the MD simulation.

5.2 Introduction

Statistics and dynamics of the frequency of light absorpémission in either visi-
ble/UV or infrared parts of the spectrum are widely used tolgthe nuclear dynamics of
condensed media. Lineshapes of stationary optical aligorghd emission report on the
statistics of microscopic (molecular-scale) fluctuatiomisile time-resolved changes of the
lineshape (predominantly the line peak and width) repotheir dynamics[42, 43, 44, 45].
In these types of experiments, linear time-resolved spsctipies provide the time evolu-
tion of the spectral moments (one-point averages)[45]lentonlinear spectroscopies give

access to two-point time correlation functions of the titams frequency[41, 222, 48, 223].
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Time evolution of the transition frequency directly reoon the dynamics of the ther-
mal bath when it is a linear function of some subset of the hatilear coordinates (linear
chromophore-bath coupling). Standard electrostatic fsaofesolvation indeed suggest a
linear coupling between permanent charges of the soluterenslolvent. For instance, if
the distribution of the chromophore’s molecular chargevemby a dipolem, it couples
linearly to the electric field of the mediui and the electrostatic solute-solvent interaction
energy is simply-m, - E[224, 101]. If the electric field is a Gaussian stochasticalde,
i.e., only the first two cumulants @& contribute to the cumulant generating functional (line
broadening function)[225, 41, 226], the statistics of tla@sition frequency is Gaussian as
well.

While the interaction of the solute dipole with the solvergottic field is linear, the
free energy of polarizing the chromophore(«/2) E?, scales quadratically witf’ and
linearly with the electronic polarizability of the chromuogre ay[101]. When the dipolar
and polarization terms are combined together, the sol@atm coupling is linear plus
quadratic in the solvent field, which we call the “quadratepling” for brevity. As a con-
sequence, the statistics of the energy gap[227, 119] antihtieeevolution of the spectral
lineshape[193, 228] show non-Gaussian character everGauasian thermal bath driving
the transition. In other words, the statistics of the eledteld E is Gaussian by virtue of
long range electrostatic interactions involving many rooles (central limit theorem), but
this Gaussian many-particle statistics is projected or@aunssian statistics of an internal
variable (transition frequency) of a single/dilute soluteen the coupling to the Gaussian
thermal bath is nonlinear.

The same quadratic dependence of the transition energy deanuwcoordinates ap-
pears when frequencies of a subset of nuclear modes chamgeenetwo electronic

states involved in the transition (Duschinsky’s rotatk2f)]). Given that several phys-
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ical mechanisms result in the same phenomenology[119§ iitot surprising that non-
Gaussian statistics and/or nonlinear dynamics of spdateghapes, implying deviations
from expectations of linear coupling models, have beenntbceeported for a number of
systems[230, 231, 232, 233, 234, 235].

One faces, however, the dilemma of whether to assign thenadigms to either
intrinsically non-Gaussian fluctuations of the medium[288, 234] or to a nonlinear
chromophore-medium coupling[227, 119, 236]. However, tthe perspectives can be
merged into one question of what can be expected as obsergabtequences of non-
Gaussian statistics and/or dynamics of the transitioruaqy, produced in either scenario,
when recorded by linear and nonlinear spectroscopies[237]

Addressing this question is the goal of this study. We rejperé on the development of
a model based on the quadratic dependence of the transigigueincy on a subset of Gaus-
sian nuclear modes of the thermal bath. The model exactlg symmfinite series of cumu-
lants and thus does not rely on truncated cumulant appraxing41]. It can, therefore,
attribute non-Gaussian lineshapes and their complex dipsaim either the non-Gaussian
statistics of the transition frequency (originating froither the quadratic solute-solvent
coupling or from changes of intrinsic solvent frequenciesjo non-Gaussian dynamics
(existence of higher-order time correlation functionsnealucible to the second-order one).
Our agenda here is to provide a closed-form analytical freonle for analyzing stationary
and time-resolved, linear and nonlinear, spectroscopéshapes. The model’s ability to
incorporate both the non-Gaussian statistics and nonskaudynamics significantly ex-
pands its reach compared to models based on the linear nguplthe thermal bath.

The quadratic solute-solvent coupling (known as the Q-hd@® for the quadratic
term in the coupling) was previously applied to study the@!s of non-Gaussian statis-

tics of the donor-acceptor energy gap on electron-tramsfestions[119, 120]. The main
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property of interest in that problem is the equilibrium diaition P(2) of the transition
frequency(). The rate of an electron-transfer reaction is proportidoahe probability
P(0) of radiationless transition & = 0. Two main distinctions from the traditional
linear coupling models[5] are seen as the asymmetry of thiilolition and a linear ex-
ponential decay of the probability at the distribution'sistwer wing, in contrast to the
Gaussian quadratic exponential decay (Figure 22). BothGemnssian features arise from
the summation of an infinite series of cumulant$Xinstead of applying a two-cumulant
approximation[5]. The question this model naturally pasdsw this non-Gaussian statis-
tics extends to the realm of dynamics probed by linear ties®ived and non-linear corre-
lation spectroscopies[41, 48]. This is the question adee# this article.

Recent studies of vibrational lineshapes by 2D correlatpetsoscopy[48] have indi-
cated that higher-order time correlation functions infeethe time evolution of the ob-
served lineshapes[233, 56, 238]. There is also growingeene that these non-Gaussian
dynamics might be linked to quadratic solute-solvent cigpl The statistics of the vi-
brational frequency has been successfully mapped on thstisof the medium electric
field & projected on the direction of vibrational stretch[231].isT8tark-effect parameter-
ization is usually achieved by fitting (%) to a quadratic function of’[239, 240]. The
electrostatic field is often found to be a nearly Gaussiadhststic variable, while the fre-
guency becomes a non-Gaussian variable, both statigt@atl dynamically, because of
the quadratic term if2( £ )[238]. The physical reason for the quadratic term in thekStar
effect parameterization is the polarizability of the vitooaal mode[241]. This is the same
physics as was originally suggested in the Q-model of optreasitions[227, 193] and,
given the Gaussian statistics of the fluctuating electrld fine mathematical formalism is
identical in both applications.

Since the mathematical framework behind nonlinear/nonsSain spectral features re-
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FIGURE 22: The distribution of transition frequencies i tBaussian approximation
(dashed line) and in the non-Gaussian Q-model (solid ling)e Gaussian dashed line
corresponds to the Q-model parameter x/Ax — oo (Egs. (5.3) and (5.4)); the solid
line was calculated with = 1.8.

ported by optical and vibrational spectroscopies mightdimaraon, we use here a physical
system that is easier to implement in force field Moleculan&yics (MD) simulations.
Following our early studies of electron-transfer reac{@20], we consider a single solute
carrying the dipole moment and polarizability. Both changithe electronic transition.
By altering the relative magnitudes of changes in the dipaleent (linear coupling) and
polarizability (quadratic coupling) one can adjust theistes and dynamics of the transi-
tion energy from Gaussian (zero polarizability) to inciegly non-Gaussian. We stress,
however, that the reach of the model is broader than thigfgppbysical situation since
it can be mapped on a number of phenomena involving the quadi@endence of a

collective coordinate on Gaussian nuclear modes of thendrath.

The standard formalism for setting up the dynamical equataf motion follows two
steps. One first calculates the potential energy as a funofia dynamic coordinate. In
the case of a collective coordinate (transition frequefi¢s) in our case), this potential
energy becomes the potential of mean force, a free energig pHnt of the calculation
is accomplished exactly within the Q-model[119]. The ptitdrof mean forcef'(2) =

— B~ In[P(2)] 4+ Const is obtained from the statistical distribution functi®(2), such as
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the one shown in Figure 22. The next step is to H$Q) to produce the mechanical force
acting on the collective coordinate in an equation of motlescribing its evolution[242].
For the problem of fluctuating transition frequency, one sahup a Langevin equation
for Q(t) evolving in the potentiaF'(2). The solution of the Langevin equation, or of the
corresponding Fokker-Planck equation[225], would predie propagatoP(£2, |2, 0)
sufficient to calculate two-point time correlation functgof any order.

The second step in this program currently cannot be cartééxactly because of the
lack of established solutions for stochastic dynamics imaamonic potentials in general
and in the one produced by the Q-model in particular (Fig@e Zherefore, for the sake
of calculating the two-point correlation functions, we raakn approximation following
two steps. We first assume that the medium coordinate (eldettd E or the coordi-
nateq below) is a Gaussian overdamped stochastic variable opéyawell-characterized
Ornstein-Uhlenbeck stochastic process[243, 225]. We pineject the known propagator
P(q,t|q0,0) on the coordinat&(q). While this approach allows an analytical solution for
2D correlation spectra[48], it is clearly an approximatwinen applied to time correlation
functions, which needs testing against direct MD simutatio We will, therefore, start

below with outlining the analytical formalism, followed Itiye simulation results.
5.3 Time-resolved Lineshapes
We will consider a chromophore coupled to the nuclear mpadé the medium and
residing in either the ground (g) or excited (e) state. Thehtanian of the chromophore-

medium system ig7, in the ground state and. in the excited state. The absorption of

the radiation photon at = 0 results in theg — e transition with the time-dependent
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Hamiltonian

H(t) = H, + hQ(q)0(t) (5.1)

Here, the vertical (Franck-Condon) transition frequency is

fiQUq) = He(q) — Hy(q) (5.2)

andd(t) is the Heaviside step function.

We will further assume that each of the states is charaetkrizy a Hamiltonian
quadratic in the coordinatg with both coefficients”; andx; (i = g,e) changing with
the excitation[119]

H; =I; — Ciq + (r:/2)¢" (5.3)

The transition frequency is then a quadratic functiog of
AQ(q) = W — ACq + (Ak/2)q” (5.4)

wherenf)y = I, — I,, AC = C, — C,, andAx = k. — k4. The standard linear coupling
models of spectroscopy assua = 0. We will label this limit as the L-model (“L” for

linear), while the case akx # 0 will be labeled as the Q-model (“Q” for quadratic)[119].

Time-resolved linear spectroscopy monitors the time chamg the spectral
lineshape[244]
1(2,1) = (612 — Q(q(£))])e (5.5)

where the average is taken over the evolving distributiorction of the coordinatg at
timet.
Non-equilibrium distribution of nuclear coordinates i®ated by moving the ground

state equilibrium distribution function

Py(Q) = / 5(92 — 0(g)) Py ()da (5.6)
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FIGURE 23: Time evolution of the lineshape after the groutadesequilibrium distri-
bution att = 0 is promoted, by photoexcitation, to a non-parabolic freergy excited
surface. The time change of the spectral line-width is cdlsea nonzero value ohx

in Eq. (5.4). The consequence of this term in the transitrequdency is a non-Gaussian
time-dependent lineshape described by Eq. (5.24). An ebaogiculation of the time-
dependent line-width is shown in Figure 24.

to the excited state potential curve at time= 0 (Figure 23); P,(q) is the equilibrium
ground state distribution of. The evolution of the nuclear coordinates of the system
with the chromophore in its excited state is described byctrelitional probability[225]
(propagator)P.(q, t|qo, 0). It gives the probability to find the nuclear coordinate wittle

valueq att = t given that it wasgy, att = 0. The average in Eq. (5.5) then becomes

()= / . P4 t]d0, 0) P (q0)dqdlao (5.7)

Equation (5.7) projects the dynamics of the coordingtg on the dynamics of
Q(q(t))[193]. There is no approximation involved in this procedtoe calculating one-
time averages, but it becomes approximate for two-timestation functions as we discuss
below.

There are a number of established results for L-models aftspscopy based on the

assumption of the Gaussian statistics of the stationaryiumetluctuations and, for time-
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resolved measurements, of their Gaussian dynamics[23#.fdrmer assumes that only
the first two cumulants of are significant for time-independent (stationary) lingssa
measured in the limit — oo. The corresponding absorption and emission lineshapes
are given by Gaussian functions[245], with their maximaasafed by the Stokes shift

AQ =0, - 0.,

(5.8)

1) ey [- O]

202

Here, ), is the first spectral moment, equal to the position of the firaximum for Gaus-

sian lineshapes. Further, the Gaussian width
0% = ((69)%) = 2)/(BR?) (5.9)

is related to the Stokes shift by the conditidh = AAQ[120]; A is the (nuclear) reorgani-
zation energy[246].
Time-dependent lineshapes are often empirically appratethby Gaussian functions

with a time-dependent maximuf (¢) and a time-dependent spectral widtt)[247, 228]

Kttt )8 Qi(t)q (5.10)

L;(Q,t) < exp {—< 20(1)?

The evolution of the maximum position gives the normalizgdaimic Stokes-shift function

f?z‘(t) — (}z’(oo)
Q;(0) — Q;(00)

Sa,i(t) = (5.11)
A similar function can be defined for the spectral width

So(t) = — (5.12)

where the stationary spectral widifico) = o (Eq. (5.9)) is reached in the limit— oo.
The empirical Gaussian approximation of the time-depentleashape, as in Eg.
(5.10), does not imply Gaussian dynamics of the transitieqdency. The common mean-

ing assigned to this term is the neglect of all time correfafunctions(d€2(¢;) . .. §Q(¢,))
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with n > 2 in the cumulant generating functional. Alternativelysthpproximation implies
expressing all even-order time correlation functions agee of the two-time correlation
function, known as Wick’s theorem (odd correlation funoti@nish)[248]. What it practi-
cally means is known as the second-cumulant approximatrbich replaces the generat-

ing functional of the transition frequency with the corresging second cumulant[41, 226]

t
e 9t — <exp (—z/ dT(SQ(T)>>
0 i
t T
~ exp {—/ dT/ dr'Cy (T, T/):|
0 0

whereCy (7, 7") = (0Q(7)6Q(7"));. This approximation results in Kubo-type functions

(5.13)

g:(t) evolving the spectral lineshape from a Lorentzian to a Ganssn the relaxation
time of the thermal bath[41, 48]. These models thus prettd(¢) reaches a constant
value,o(t) = Const in EQ. (5.10), once the lineshape becomes Gaussian. Tresrbaw-
ever, other approximations than just the second-cumufgroximation that are typically
assumed in analyzing spectral dynamics.

It is commonly assumed that the correlation functiosn (¢) in Eq. (5.13) does not de-
pend on the electronic state[249, 250}, ,(t,0) = C5.(t,0) = C»(¢,0), which is true
for the L-models. Further, the linear response approxongdiO] in 2(¢) relates non-
equilibrium dynamics of the spectral maximum to the equiililm two-point correlation

function[251, 250, 252], as is also derived in appendix C.
Sm(t) = Sa(t) (5.14)

whereSy(t) = Cs(t,0)/C5(0,0). Equation (5.14) holds for either of the two states[249,
250, 252] and, therefore, the index indicating the statedeas dropped on its right-hand
side. Since the second-cumulant approximation in Eq. {5f8 the linear relation in Eq.
(5.14) are not necessarily equivalent, we will reserveghet‘Gaussian dynamics” for the

former[253] and “linear dynamics” for the latter[251, 2450, 252].
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The linear response approximation also allows one to catled,(¢) in Eq. (5.12),

which yields (see appendix C)

(Bho) 1 S5(t) + 28a(t) — Sa(t)?
1+ (Bho)~155(0)

Sy (t) = (5.15)

Here,

Sa(t) = o3 (5Q()250(0)) (5.16)

is the skewness correlation function[234], with the staity spectral widtlr given by Eq.
(5.9). Note that linear response does not stipulate Gaudgiaamics, and only the small-
ness of the perturbation introduced in the solvent by thetrgric transition is required.

The linear functiorf)(q) of the L-models directly relates the Stokes-shift coriefat
function in Eq. (5.11), calculated in the linear responspraximation, to the medium
dynamics

Sa(t) = Sx(t) = x(t) (5.17)

Here,

x(t) = o, %(8q(t)dq(0)) (5.18)

represents the dynamics of the bath afid= ((d¢)*) = (8x)~" is the variance of. Equa-
tion (5.17) is, therefore, the basis for using spectros¢opgudy the intrinsic dynamics of
condensed media.

The results of applying the linear response approximatdhe Stokes-shift dynamics
are identical to the exact solution for the diffusive, oargped dynamics over parabolic
free energy surfaces obtained as a linear projectiarigfon the reaction coordinate(t)
(L-models)[254, 244]. The dynamics @ft) is given by the stochastic Ornstein-Uhlenbeck
process with the propagator[243, 225]

~ Bre (6 — dgox(1))?
21—ty

Pe(Q7t|q070) X exp (519)
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wheredq = ¢ — q. anddqy = qo — q. are the deviations of the, respectively, final and
initial coordinates from the equilibrium valug in the excited state. When this propagator
is used in Egs. (5.5) and (5.7) with, = «., one arrives at the linear response result for
the Stokes-shift correlation function in Eq. (5.17) andaddition, at a time-independent
spectral width in Eqg. (5.10)

o(t) = Const (5.20)

The physical meaning of Eq. (5.20) is straightforward: tekxation of the ground
state population, promoted to the exited surface with tmeesparabolic curvature as of
the ground surface, produces no change in the distributioithwFigure 23). Only a
time-dependent shift of the spectral maximum should bergbge Ornstein-Uhlenbeck
dynamics ofQ)(¢) (L-models) also yield vanishing odd time correlation fuons and a

direct relation between higher order correlation funciiandS,(¢), for instance
Sa(t) = ((69)")~HEQH202(0)%) = & + 25,(1)? (5.21)

This relation will be used below to test the Gaussian charaaf the dynamics of)(¢)
produced by MD simulations.

Equations (5.19) and (5.20) suggest that a nonlinear depeed2(q(¢)) on the
Ornstein-Uhlenbeck stochastic variable) is required to produce a time-dependent width
in the time-resolved lineshape in Eqg. (5.10). This is indaddature of the dynamic ver-
sion of the Q-model[193]. Another consequence of this esitenis the loss of a direct link
between spectroscopic and bath dynamics, as we discusg belo

The quadratic solute-solvent coupling also makes the dysaof the transition fre-
guency non-Gaussian. This can be demonstrated by catwythe skewness time correla-

tion function (Eq. (5.16))
Ss.(t) = (ci/28X) " x(1)(2 + x(t)) (5.22)
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Here,a; = x;/Ax and

N\ = BR*C44(0,0)/2 (5.23)
is the state-dependent reorganization energy. In deriZing5.22), the terms of the order
(BXi)~! compared to the main contribution were dropped. When the saoeedure is

applied toS,(t), one arrives at the Gaussian formula for the correlatioretion in Eq.

(5.21).
5.4 Linear Time-resolved Spectroscopy

The time average in Eq. (5.5) can be directly carried out #ithOrnstein-Uhlenbeck
propagator in Eq. (5.19). The calculations are outlinedgpesadix C and here we only

present the final result for the time-dependent lineshapetion[193]
[(Q7 t) X |Q — w0|_1/2e—5ﬁ|a(t)((2_w())|

(5.24)
x Iy (28+/Ja@PNO R = w0)])

Here,I; (z) is a modified Bessel function and the proportionality coedfitihormalizes the
lineshape. The — oo limit gives the stationary probability of the transitiorefiuency in
the excited staté,({2) shown by the solid line in Figure 22.

The lineshape function in Eq. (5.24) is clearly non-Gaussiath two time-dependent
functions, \(t) anda(t). The former determine the width dynamiest)? < A(t), the
latter, a(t) = k(t)/Ax, controls the extent of non-Gaussian character of the a@lv
lineshape. Heres(t) is the dynamically evolving force constant of the mediumrdotate
¢, which changes from, att = 0 to k. att — oo (see appendix C). The parametdr)
is inversely proportional to the change in the force cortstas in Eq. (5.4). Therefore,

Eq. (5.24) becomes a Gaussian function of Eq. (5.10) in thg A« — 0. In addition,
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the limiting frequencyu, = Qo — AC?/(2hAk) in Eq. (5.24), beyond which the Q-model
intensity is identically zero[119], shifts to infinity &x — 0.

The reorganization functioi(t) in Eq. (5.24) evolves in time between the initial,,
and final,\. # \,, values given by Eq. (5.23). This time-dependent functiégyre 24) is

given by the equation

A = (L) g |1+ 2y (5.25)
where
() = [1+ (Ar/r)x(1))? (5.26)

It is clear that\(¢) = Const ando(t) = Const, in agreement with the result of L-models
in Eq. (5.20), whemn, = k. andAx = 0.

The non-Gaussian lineshape in Eqg. (5.24) can often be pexsby a time-dependent
Gaussian function given by Eq. (5.10). The reorganizatiorction A(¢) then gives the
time dependent linewidthio (¢))? = 2A(t)/3, while the line maximunf)(t) is given by
the relation

Q(t) = wo + C(t)AC?/(2hAK) (5.27)

From this equation, the Stokes-shift correlation functiesomes

Sa(t) = px(t) + (1 — p)x(t)? (5.28)

wherep = (2r,)/(kg + ke). This function is a quadratic function ip(¢) and, obviously,
is not the same ag(t). Therefore, Eq. (5.17) does not hold and the Stokes-shifaahycs
do not directly report on the medium dynamics. From Eq. (5.85(¢) is a linear com-
bination of powers ofy(¢) up to the fourth order and one gefs(t) # Sq(t). At the
same time,S, () becomes an algebraic function 6f(¢) and that relation can be used

for testing the consistency of the observed dynamics wighpttedictions of the dynamic

118



Q-model. Another important consequence of Eq. (5.28) isttie Stokes-shift dynamics
are bi-exponential even if the medium dynamics are singfeeential.

Returning to equilibrium correlation functions, the Ormst&hlenbeck propagator in
Eg. (5.19) can be used to calculaig(t) in the Q-model. The result, neglecting a small

correction of the ordet/(5\;), is So(t) = x(t). We, therefore, obtain

So(t) # Salt) # Sa(t) = x(t) (5.29)

We find the last equality to hold very accurately in our MD slations of polarizable
solutes in water presented below, even for a non-exporeyitia

We show in appendix C that the skewness correlation functa®s not contribute sig-
nificantly to the linear response correlation functign¢) in Eq. (5.15), which then be-
comes a quadratic function gf(t). On the other hands(¢)? o A(t) in Eq. (5.25) is a
fourth-order function iny(¢). Therefore,S,(t) is of fourth order iny(¢) as well. We con-
clude that the linear response approximation cannot beegpfa the width dynamics in
the Q-model scenario.

It is useful to illustrate the analytical results with sgccalculations. We show in
Figure C1 in appendix C functions,(¢) andS,(t) plotted directly vs.(¢) for different
values ofAx/k,. The deviations of two spectral functions from the bath dyita increase

with growing|Ax

, but the effect of this quadratic coupling term on the widginamics is
more significant than on the Stokes-shift dynamics. Thidsis glustrated in Figure 24 in
application to a more specific model related to our MD simaie.

Our simulations described below are done for a model sofuteater, changing both
its dipole moment and polarizability with photoexcitatiolm anticipation of the specific
results presented below, we use this model here to illesthat nonlinear time evolution of

the lineshape, which is not directly accessible by equiliorMD simulations.
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FIGURE 24: \(t) from Eq. (5.25). The inset showgt) given by single exponential
decay (Eg. (5.30), blue) anth(¢) (Eq. (5.28), red) vst/7.. The calculations are done for
a transition withAm/m, = 1 andAx/k, = —0.5; A(0) = A\, andA(c0) = A..

Figure 24 shows\(t), representing the evolution of the line width, and the Sseke
shift correlation functionSqg(¢) (inset in Figure 24). The parameters are chosen to allow
the reorganization energy to increase by approximateltifaf two while evolving on
the excited state surface (Figure 23). Despite this largeease in the spectral width, in
contrast to expectations of the L-models (Eq. (5.20)), tho&és-shift correlation function

is nearly identical to¢(¢) chosen in the form of a single-exponential decay
x(t) = et/ (5.30)

wherer, is the relaxation time of the bath[42]. Even thousih(¢) does not directly repro-
duce the medium dynamics (Eq. (5.29%(¢t) andx(t) are very close, consistent with the
MD results presented below.

To summarize, the Stokes-shift dynamics is a good repoftdreomedium dynamics
even for a quadratic solute-solvent coupling. Thereftretime dependence of the spectral
width should be used as an indicator of nonlinear dynami&[2 The next question is
whether nonlinear correlation spectroscopy can provider@sensitive tool. This question
was partially addressed in the past, and it was shown[23Btha6 2D spectra are not
very sensitive to intrinsic non-Gaussian fluctuations @& thermal bath in L-models of

spectroscopy. Below we explore a different scenario of Gansmedium fluctuations
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combined with the Q-model of spectroscopy. Distinct andeokable effects of nonlinear

dynamics on 2D spectra are reported.
5.5 2D Correlation Spectroscopy
5.5.1 Line Broadening Function

The lineshape of linear spectroscopy involves the averageeooff-diagonal element
of the density matrix,.(¢) over the individual molecules. This average defines the line
broadening functiog(t) in Eq. (5.13)[41, 48]. Third order response functions of limear
correlation spectroscopy involve terms, typically repréed by double sided Feynman
diagrams, combining pure dephasing with population relasa We will consider only
one such term here, since, for the two-state system, thetélsem can be obtained by
changing the sign of the coherences in the dephasing diaf48m We, therefore, set up
the calculation of the third-order lineshape function foe rephasing diagram (altering

signs in the complex exponent)

U(ty, T, ty) = <exp (—z’/otl dT§Q(7))
exp (@ /t t:THQ d759(7)> >

wheret; andt, are the durations of the pump and probe pulses, respectaredff’ is the

(5.31)

population evolution, or waiting, time.

The frequency fluctuations are driven by the quadratic aogb the stochastic vari-
ableq performing overdamped fluctuations in a harmonic potetial thus described by
the Ornstein-Uhlenbeck process (Eg. (5.19))[225]. Siheestatistics and dynamics are
non-Gaussian, the truncated cumulant approximation doespply here and the problem

needs to be directly integrated. This goal is achieved bly jpa¢gration[255] in the space
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of stochastic trajectorieg 7) as shown in appendix C. The path integral can be evaluated
exactly for a quadratif(q), leading to a novel analytical form for the line broadeningd-
tion. We start the discussion with the standard L-model taipehe analytical framework
for the next step incorporating the quadratic coupling \ilida bath.
For the L-model Ax = 0 in Eq. (5.4)), Eqg. (5.31) gives the Gaussian lineshape
function[42, 41]
U(ty, T,ta) = exp[o(t1, T, t2)] (5.32)

Here,
o(tr, T, ta) = —g(t1) — g(t2)" + x(T)p(t1)p(t2)” (5.33)
where asterisks denote complex conjugation. Further,
g(t) = (A1) [t/7e — 1+ x(1)] (5.34)

with (hA)? = (AC)?0} is the standard Kubo's lineshape function[42, 41, 48] and

p(t) = (A7) [1 = x(1)] (5.35)

Equation (5.33), even though not presented in this formipusly, is equivalent to the
more commonly used relation[41] obtained from the secamgrocumulant expansion of

Eq. (5.31)

P(t1, T, ty) = — g(t1) — g(t2) + g(T) — g(ts + T)

—g(ta+T)+ gty +t2+T)

(5.36)

In the short-time approximation, neglecting the decay efftequency correlations during
the two coherence times andt,, Eqg. (5.33) reduces to the relation used in the past to

model 2D lineshapes[256, 223, 257, 258]

¢(t1, T, ts) = —(A%/2) [t] + 15 — 2x(T)tita) (5.37)
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Further, Eq. (5.33) is derived for a rephasing responsetifumén which the phase
of the transition frequency switches froii2(7) on the time interval < 7 < ¢; to
complex conjugate-i6€2(7) on the time intervat; + 7 < 7 < t; + T + ¢, (EqQ. (5.31)).
The non-rephasing diagrams preserve the same-sigft(7) on both time intervals. The
non-rephasingl (¢, T', t,) will, therefore, be given by Eq. (5.32) with the correspani

functiong(t,, T, t,) as follows

o(t1, T, ta) = —g(t1) — g(t2) — x(T)p(t1)p(t2) (5.38)

The physical meaning of Eq. (5.33) is quite clear. Each foncy(¢) describes
the homogeneous and inhomogeneous broadening of linesqaddy pump and probe
pulses, while the last term shows the decay of coherenceebetthem on the popula-
tion relaxation timel’, with the exponential time correlation function of the resl mode
x(T) = exp(—T/7.). Given physical transparency of the equation, we will preséts
general structure when extending the calculations front.theodel to the Q-model.

Adopting the full quadratic form of2(¢q) of Eq. (5.4) still allows an exact analytical
solution for the line broadening function (see appendix @k Tain consequence of this

extension is an appearance of an effective complex retaxéither. /e, where
e =1 — 2it,Ar/(kSBh) (5.39)

We show in appendix C that the function&@) andp(t) in Eq. (5.33) are replaced with

g(t) = (AT.)? [i - 2tamhE

T, € 2 (5.40)
N 2+ 1\ (tanh(7/2))? N p(f)? '
2¢ 1+ ecotht 2
t = et/7. and
- €2+ 1 coshet + esinht — 1
p(t) = (A7) (5.41)

2¢ sinht + ecosht
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-g(t)

t/1.

FIGURE 25: Function-g(t)/(A7.)? vs.t/7. for the Kubo lineshape (black, Eq. (5.34))
and for the Q-model (Egs. (5.40) and (5.41)). The parametéEs). (5.39)) is given as
€2 = 1 — ie” with ¢ = 2 (blue) and” = 10 (red). The dashed lines refer to the imaginary
part of g(t).

These functions reduce to the previous expressions Whes 0 ande = 1.

The short-time approximation f@r(t) andp(t) results in

O(t1, T, ts) = — (A*/8)[(ct1)* + (c*t2)?

— 2|l x(T)tats]

(5.42)

wherec = 1+¢€2. This equation becomes Eq. (5.37) of L-modeldat= 0 ande = 1. The
magnitude ok can, however, be fairly large at the typical conditions dicg experiment.
Given thatBh ~ 2.5 x 107 s andAx/k ~ 1, one expects® ~ —80i at7, ~ 1 ps. For
these large magnitudes ef the short-time approximation in Egs. (5.40) and (5.4%&«
7./|€| is limited to time-scales of tens of femtoseconds. Howewegrthe polarizability of
the OH stretch vibration[240], our estimate presentedvbgivesAr/x = a; ! ~ —0.04

g

and thus? ~ 1 + 3i.

That the short-time approximation becomes inaccuratdefors> 1 is illustrated in
Figure 25 where we compare the standard Kubo’s line broadefuinction—g(¢) from
Eq. (5.34) to—g(t) from Eq. (5.40). The Q-model’s ¢(t) develops a positive spike with

increasinge

, before turning into the negative territory, where it dectgster than Kubo'’s

—g(t). This shows that the quadratic approximation of Eq. (5.42phsufficient since it
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does not give a convergent Fourier integral at imaginarylarge in magnitude; higher
order expansion terms trare required. This comparison also implies that the apprate
methods of extracting the medium correlation functigi) from either the eccentricity
function or the slope of the center line obtained from catieh spectra, which are justified
by the short-time approximation[257, 223, 258], are notiapple anymore as we discuss

next.
5.5.2 2D Lineshape

We use here the broadening function derived above to pro2iDasorrelation spectra
of a two-state system[48]. The calculations are done foictramonly presented purely
absorptive 2D spectrum given by the sum of the rephasing andréphasing spectra,
after the inversion of the sign of the, variable in the rephasing parRapdw:,ws) o
Re | R(—wy,ws, T) + R(Wl,W37T)]. Each spectrum component here is obtained by
Fourier transform of (t,, T', t,) (Egs. (5.32) and (5.33) fdR(—w:, ws, T)) and ¥ (t1, T’ t,)
(Eq. (5.38) forR(wy, ws, T)) in time variableg; andt,.

Different metrics have been proposed to access the fregumne correlation function
Sy (t) directly from the evolution of 2D spectra in order to avoiditfig the lineshape to a
predefined broadening function. These metrics themsetedargely justified on the basis
of the short-time approximation[257, 223, 258] (Eq. (5)3Nd can be considered only
as guidelines, disregarding the motional narrowing, ttirtisiish between different relax-
ation patterns. In particular, the eccentricity analy&h3], 223] is based on the ratio of the
line widths measured along the diagonal= w; direction ) and along the antidiagonal
direction ¢ ). The short-time approximation then predicts access tdrédguency cor-

relation function of the batly(7") from the combination of the diagonal and antidiagonal
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FIGURE 26: Time-dependent eccentricity function (Eq. &)4calculated from the L-
model (diamonds) and from the Q-model (circles). The satid showsS,(¢) = x(¢) and
the dashed line is a two-exponents plus a constant offsatditigh the circles. The model
parameters are the same as in Figure/2h; = 5, €2 = 1+ 0.3: for the Q-model and = 1
for the L-model.

widths as a function of the waiting tim&g(7T") = Sa(T") = x(T'), where

_oy(T)* — o (T)?
o) = @y oy (543)

Repeating the arguments of ref [257] it is easy to show thatudldd~ourier transfor-
mation of the Q-model short-time expansion in Eq. (5.42f@rrthe conditions of conver-
gence) should also yielgd(7") = Sg(T'). The short-time approximation becomes, however,
limited to very short times once an imaginary part is incllittee, as is seen from the tail
of Sg(T') in Figure 26 deviating frony(7') at longer waiting times. The eccentricity func-
tion does not correctly reproduce the frequency correlatimction Sz (t) = x(¢) in the
Q-model (filled circles in Figure 26), while this metric isitureliable in L-models (open

diamonds in Figure 26).

An alternative approach t8,(¢) is to measure the evolution of the slope of the center
line[258, 259]. In this approach, cuts of 2D contours are enadconstant;, and max-
ima of the profiles along the; frequency are collected as a functionwf. The time
dependence of the slope of the center line gives acceSgtff258]. Recent experimen-

tal and theoretical studies, however, have shown that theecéne develops a bend for
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FIGURE 27: 2D spectra at different time deldyscalculated from L-modele(= 1) and
Q-model €2 = 1+ 0.3i in Eq. (5.39));A7. = 5. The red dots indicate the center line.

some systems[234, 235]. A similar phenomenology follovesrfithe dynamic Q-model

developed here.

To demonstrate the new qualitative features introduceti&model compared to the
L-model, we use the parameters typical for vibrational sescopy and compare purely
absorptive 2D spectra of a two-state system produced witlstéindard Kubo’s broaden-
ing function (Egs. (5.33)—(5.35)) to the same spectra abthwith the new broadening
function derived here (Egs. (5.33), (5.40), and (5.41))eSéhresults are presented in four
panels of Figure 27, where the left two panels show the likeduo’s result and the right
two panels show the result of the Q-model. The main diffeedmetween the linear and
quadratic models of line broadening is the asymmetry of trelg absorptive spectrum
introduced by the complexin Eq. (5.39). The observable consequence is the bending of

the center line.
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5.6 Numerical Simulations

5.6.1 Polar-polarizable Chromophores

In order to test the model by numerical simulations, a paldicrealization of the
guadratic solute-solvent coupling due to solute’s poédility[227, 120] was used. The
nuclear coordinate in this setup becomes the instantaredeasic fieldE of the solvent
interacting with the solute dipolm,; and polarizing the solute as determined by its elec-
tronic polarizabilitya; (assumed to be isotropic). Since both the dipole momentlaad t
polarizability change with the electronic transition, thetantaneous transition frequency

in EQ. (5.4) becomes

whereAm, = my, — my, andAay = ape — Qpg.

The problem of electronic transitions in polarizable chopimores can be completely
mapped on the Q-model if one additionally assumes that giglalition of the electric field
is Gaussian. This implies that the term in the Hamiltoniascdéing fluctuations of the
electric field inside a solute carrying no charges and padaility is quadratic(4a,) ' E?,
wherea, denotes the response coefficient (susceptibility) sudhthigachemical potential

of solvating the dipoleny; is pi; = —a, fi(mo;)?. Here,
fi=1[1—2a,00,]"" (5.45)

is a factor accounting for the enhancement of the solutelelighoe to an effective, mean-
field addition of the induced and permanent dipoles[65]. réfwe, if o, = 0, a, is the
linear susceptibility of the polar liquid solvent to thest® permanent dipole. It is given by

the Onsager equation[65] when the solute is a sphere ofg@tin a continuum dielectric
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with the static dielectric constant

1 oe—1
 OR32,+1

(5.46)

Qp

The simulations reported below are performed in a non-pahble force field of water.
Therefore, the discussion is limited to a non-polarizableent. An extension to a more
general case of polarizable solvents can be found elsej@2ate193].

With these assumptions, the Hamiltonians of the ground &citkel states of the solute
become

H; = I; — my; - E — (ap;/2) E® + (4a,) ' E? (5.47)

The mapping of the Q-model on Eq. (5.47) is straightforward achieved by equating
k; in Eq. (5.3) to(2a,)™" — ap; and Ak to —Aap. The reorganization energies in two

electronic states become
Xi = ap f; (Amg + 2a, f;Aagmg;)? (5.48)
In addition, the average transition frequencies are
hQ; = hQ — 2a, f; (Amo - myg; + apfiAagmgi) (5.49)
The same equation can be written in a more compact form as
Ay = hwo + i (5.50)
wherew, = Qg + (Amyg)?/(2hAay) and
o = —(2a,fiAag) ! (5.51)

Before proceeding to MD simulations, we provide estimatetheftypical values of
«; that might be seen in optical and IR spectroscopies. FocalpibsorptionAagy > 0

and can be of the same order of magnitude as the polarizatilihe ground staté\a ~
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ay[260, 227]. Given that polarizabilities of many organic emlles can be estimated as
ooy ~ R?/3[261], one gets for the parameter controlling non-Gausséraviora, ~ —2

in Eq. (5.51) & = 1.8 is used in Figure 22). For OH stretch, the quadratic Starkceff
results in[240)Aqq ~ 0.12 A%, AssumingAag ~ ag, andR ~ 1.4 A, one getsy, ~ —23.
Further, a nonlinear dependence of the vibrational frequen the electric field, consistent
with altering polarizability, was observed for X-H groupvations[241]. The numerical
estimate ofA«, from these measurements is still a subject of uncertaintycamnot be
used here for mapping on the Q-model.

The numerical simulations of electronic transitions ingrable chromophores pre-
sented below separately address the statistics and dysafiltee transition frequency. We
first start with analyzing the free energy surfaces of the éeaztronic states as functions
of the transition frequenc{2. Those are given in the Q-model by Eq. (5.24), in which
the two stationary states are obtained by assigniftg to its initial, o, = a(t = 0), and
final, a. = a(t = ), values given by Eg. (5.51). We then proceed to the next step o
analyzing the dynamics of the transition frequency, foogisn particular on nonlinear vs.
non-Gaussian dynamics caused by the quadratic solutergatoupling of a polarizable

chromophore.

5.6.2 Free Energy Surfaces

The system that we have chosen to analyze is made of a slsedici@ with the radius
R = 3 A dissolved in TIP4P water (Figure 28). The solute interadgth the oxygens of
water by the Lennard-Jones (LJ) potential and, additignedirries two opposite charges
separated by the distanée= 2d. Polarizability of the solute is modeled by a Drude parti-

cle placed at its center (Figure 28)[262]. Isotropic paability of the soluteny = ¢3 /kp
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FIGURE 28: Polar-polarizable solute used in molecular dyica simulations. A
Lennard-Jones (LJ) solute of the radiitscontains two opposite charges separated by
2d = R. The negative charge¢p at the center of the LJ solute is compensated by a
Drude patrticle carrying the charge;p. The charge and the spring constagtconnecting

the Drude particle to the LJ particle define the solute pedduility oy = ¢3/kp. Alter-

ing ¢p is used to change the polarizability of the solute. The patars of the solute and
solvent force fields are given in chapter 7.

is achieved in simulations by allowing isotropic motiongtoé Drude particle constrained
only by the potential energy penalty of stretching the gprivith the force constarkp.
The magnitude of the Drude particle chargewas changed to produce different values of
ap. NAMDI[263] was used to integrate the MD trajectories. Moetails on the simulation
protocol, force field parameters, and the analysis of thelsition trajectories are given in
chapter 7. Here, we proceed directly to the results.

Two sets of simulations were performed to test the modelhénfirst set, the dipole
moment of the solute was varied at zero polarizabiigy = 0. The average solvent elec-
tric field as a function ofn, then yields the susceptibility, = 0.0167 A=3. The Onsager
equation (Eq. (5.46)) predicts, = 0.0181 with ¢, = 59 of TIP4P water[264]. A some-
what higher value from the Onsager equation with the digtectvity radius equated to
the van der Waals radius of the solute is consistent withipusvsimulations[97]. The
simulations of polarizable chromophores were done in tywldr states withn,, = 5

D andmg. = 10 D and the corresponding polarizabilities, = 5 A* andag. = 15 A®.
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FIGURE 29: Free energy surfaces of the ground (g) and excggdtates for non-
polarizable (a) and polarizable (b) chromophores. Theldiles are the calculations with
the Q-model using, = 0.0167 A3 as the sole input parameter. The dots represent distri-
butions of the energy gap produced by MD simulations. Allvesrare brought to the same
baseline at the positions of their minima.

For the sake of comparison, the same dipolar configuratibtiesolute were used to pro-
duce the free energy surfaceg)) = — 3! In[P;(Q)] for polarizable and non-polarizable

chromophores (Figure 29).

The parabolic free energy surfaces of the Gaussian stat{&Q. (5.8)) are calculated
with ap; = 0 in Egs. (5.48)—(5.50). The results are compared in Figueet@@lirect sam-
pling of the energy gaf(E) (Eq. (5.44)) along MD trajectories. Corresponding free en-
ergy surfaces for polarizable chromophores are compargd.t(6.24) in Figure 29b. The
results for the solvent-induced shifts), = Q, — ), and reorganization energies are listed
in Table 1. Simulations are in quantitative agreement whth @-model for both purely
dipolar and polarizable chromophores. A slight discregdretween simulations and the-

ory in the positions of the parabolas’ minimara$, = 5 D, seen in both cases, is probably
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TABLE 1: Solvent-induced spectral shifts and reorgan@atenergies in two states of
the polarizable and non-polarizable chromophore. ThdteestiMD simulations are com-
pared to calculations according to Egs. (5.48)—(5.50) ewipd) a single input parameter
a, = 0.0167 A3 obtained from MD simulations of non-polarizable chromoggsowith
varying magnitude of the dipole moment (See chapter 7).

Parametefs MD, eV Theory, eV
mo; Q; —hAQZ )\ib —hAQZ )\ib
5 0 052 026 048 0.26
10 0 1.04 0.26 1.04 0.26

5(9)° 5) 0.68 0.57 0.75 0.62
10(ey 15 3.54 2.83 3.51 2.88
aChromophore’s dipole (D) and polarizability { PReorganization energies are calculated
according to Eq. (5.9).°g and e denote ground and excited states, respectively.

caused by the non-point solute dipole in simulations andreesponding contribution of

the solute quadrupole to the solvation energy.

5.6.3 Dynamics

The free energy surfaces presented in Figure 29 suggeshthamics of the transition
frequency should slow down for states with higher solutepoability. The curvature of
F;(Q) is the restoring force constant of the harmonic motion, Whises its stiffness with
increasinga,. The same statement applies to the dynamics of the solvedtriel field
E. The harmonic stiffness constant for the equations of fietution is (2a,)™! — ay;
(Eq. (5.47)), and it decreases with increasing solute fzalbility. As a result, the time
correlation functionS(t) oc (£ (t)E)(0)) of the field projection on the solute dipole
E)(t) slows down with increasing solute polarizability (see Fe&yd7 in chapter 7)[265,
266]. This observation, goes beyond the mathematical frarleof the dynamical Q-
model following from the Ornstein-Uhlenbeck propagatoEm (5.19).

Equation (5.19) assumes that all the dependence of the dysamthe transition fre-
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guency on the electronic state of the chromophore appeaasrasult of the quadratic
coupling to the coordinatg(t), the dynamics of which are not affected by changes in the
chromophore. This assumption can of course be modified bgrasg the dependence
of the relaxation function((¢) on the electronic state of the chromopharé) — x.(¢),

i = g,e. This alteration breaks the independence of the Stokdisestd equilibrium cor-
relation functions on the electronic state of the chromophbut preserves the equality
betweens; ;(t) andy;(t). We find from our simulations thaft, ;(t) matchesS) ;(t) really
well. Points showingS ;(¢) in Figure 30 essentially coincide on the plot scale with the
solid lines representing, ;(¢). The origin of the dependence 6% ,;(¢) on the electronic
statei = g, e can, therefore, be assigned to the corresponding dependétite dynamics

of the nuclear coordinate.

The Q-model predicts distinctions betwe®n; (), Sq.;(t), andS, ;(¢) calculated in the
same electronic state (Eg. (5.29)). All these predictiombgyond the standard expecta-
tions of L-models[249, 250, 252], implying that the dynashare nonlinear. We find all
these predictions to hold when tested against MD simulatiail correlation functions
depend on the electronic state of the chromophore (cf. bhdgdferent color in Figure 30)
and the three correlation functions are different for theea&lectronic state (cf. different
lines of the same color in Figure 30). Howevss,; (1) is still a reasonable estimate pf(¢)
andsS, ;(t) are close to botly, ;(t) andy;(t). The main difference in the dynamics of two
states comes from the dependencg ©f) on the electronic state of the chromophore. The
next question to address is whether higher-order time letiva functions are non-zero,

i.e., whether the dynamics are non-Gaussian.

We start by comparing the skewness time correlation functig;(t) (Eqg. (5.16)),
which is identically zero for Gaussian dynamics, between BDulations and the Q-

model (Eqg. (5.22)). The Q-model predicts;(0) o< —Aag (o' o« Ak, Ak = —Adqy
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S(t)

t, ps

FIGURE 30: Normalized correlation functions calculatedtfee ground (bluep,, = 5D
andag, = 5 A%) and excited (redy. = 10 D andag, = 15 A%) states of the polarizable
chromophore. The solid lines refer & ;(¢), with the superimposed dots showing the
self-correlation functionS ;(t) of the solvent field projected on the solute dipole. The
dashed and dash-dotted lines shew (¢) (Eq. (5.28)) and, ;(t) (Egs. (5.12) and (5.25)),
respectively.

in Eq. (5.22)). Since\a = ape — oy > 0, it implies thatS;;(0) < 0. This is indeed
observed in MD simulations for botb} ,(0) and.S; . (0) (€2(¢) is defined by Eq. (5.44) for
both states). Moreover, the agreement between the skefumes®ns calculated from MD
and from the Q-model is nearly quantitative for the grourades{cf. dashed and solid blue
lines in Figure 31). Further, Eq. (5.16) predicts that thewakess function should depend
on the chromophore’s state and, in particulay,.(0) should be smaller in the magnitude
thanSs ,(0) because of the larger reorganization energy of the exitgd, st > )\, (Table
1). This is indeed confirmed by MD, but the alterationf.(0) compared toS; ,(0) is
greater in MD simulations than predicted by the Q-model. @geeement between the
theory and simulations is only qualitative for the excitéates skewness function.

The correlation functionsy ;(¢) calculated from MD are practically indistinguishable
from their corresponding Gaussian limits (Eq. (5.21), seefe 48 in chapter 7). This is
the result of the fact that the non-Gaussian correctionsgto(E21) scale ag3);) ! in
S,.i(t) and the knowledge of the second-order correlation func$igyit) is sufficient to

describeSy;(t).
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FIGURE 31: Skewness correlation functisg;(¢) (Eq. (5.16)) calculated from MD sim-
ulations (dashed lines) and from the Q-model (Eq. (5.22)d $mes). The calculations
are done for the ground (bluey,, = 5 D andag, = 5 A3) and excited (redyny. = 10
D andag. = 15 A®) states of the polarizable chromophore. In both calcutatiove have
Amg = 5D andAag = 10 A% in Eq. (5.44), consistent with the definition of the trarsiti
frequency in Figure 29. The time correlation functigft) = S)(¢) from MD simulations
of a non-polarizable solute was used in EqQ. (5.22) (see Eigurin chapter 7).

The conclusion that can be drawn from calculations of timeetation functions is
that the procedure adopted in the analytical model of ptimjgdhe Gaussian dynamics
of nuclear medium coordinates on the transition frequen@dcatic in these coordinates
is generally supported by simulations. We also conclude tilaasient effects in time-
resolved linear spectra going beyond the standard linedefapsuch as the dependence of
the spectral width on time shown in Figure 24, arise from mg\the equilibrium distribu-
tion belonging to one free energy surface to a free enerdgsiwith a different curvature
(Figure 23). The evolution of the excited-surface packetinre@s two correlation functions,
Sa.(t) andS;.(t). The effect of non-Gaussian dynamics is, therefore, mdistiiyed to
a non-zero skewness functiéi ;(¢) and does not affect the higher-order time correlation

functions, which can be calculated based on the Gaussiantyga.
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5.7 Discussion

Two types of non-traditional dynamical effects of condehswterials on the time evo-
lution of molecular spectra have recently come under sgrufil) nonlinear dynamics and
(2) non-Gaussian dynamics. The former puts under one ufatatlpossible deviations
from the results of L-models combined with the linear reg@approximation. The latter
requires high-order time correlation functions not rediecto the second-order one.

Three consequences of nonlinear dynamics are typicallygrézed: (i) Stokes-shift
correlation functions distinct from equilibrium corratat functions of both the transition
frequency and the intrinsic nuclear coordinates of thentaéibath[250], (ii) differences
between equilibrium time correlation functions in the grduand excited states of the
chromophore[251, 249], and (iii) time evolution of the spalcwidth[244, 193, 228]. All
these features are qualitatively reproduced by the Q-model

The model achieves a more complete description of statitianedresolved lineshapes
by summing an infinite series of spectral cumulants, instédaélying on the commonly
applied two-cumulant approximation (zero cumulants beysecond order). The model
yields non-Gaussian linear lineshapes (Eq. (5.24)) andigigetime evolution of the spec-
tral linewidth (point (iii)).

The quadratic chromophore-medium coupling also requinesvaanalytical form for
the line broadening function of 2D correlation spectra (§s33), (5.40), and (5.41)).
Time evolution of 2D spectra shows bending of the center ¢ind the deviation of the
eccentricity function from the correlation function dabarg the bath dynamics. Given
these complications, standard metrics of extracting tleegwint correlation function from

2D spectra (center line, eccentricity function, etc.) doayaply here and direct fitting of
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2D profiles to the line broadening function is required. Alegives to direct fitting are
clearly desirable[257, 223, 258, 259], but have not beeabéshed so far for the Q-model.

There is an important qualitative difference between tvgmaiures of nonlinear dy-
namics: Sq;(t) # S2i(t), Ssi # Sa, (point (i) andS; ,(t) # Sa.(t) (point (ii)). The
former inequalities require going beyond the linear respofsee appendix C), which is
achieved here by summing an infinite series of transitioguemcy cumulants. By com-
parison, the difference betweéh ,(t) and.S; .(t) can be accommodated within the linear
response approximation once different force constapt®r the nuclear coordinate are
allowed in the ground and excited states (e.g., throughtesslpolarizability). The lin-
ear response approximation for these correlation funstrequires the smallness of only
the transition frequenc§(t) relative toH, for absorption and relative tf. for emission.
While linear expansion if(¢) is performed, different force constantswill project onto
state-dependent time correlation functionét) of the nuclear mode. Even within the lin-
ear response approximation, differest;(¢) will be produced for the ground and excited
states.

The issue of non-Gaussian dynamics (point (2) above) is@téangled with nonlinear
effects, but is in fact a separate issue. It is studied hereobybining the dynamical Q-
model with MD simulations. The third-order (skewness) ticoerelation function is non-
zero for polarizable chromophores, thus correspondingpte@aussian dynamics of the
transition frequency. The effect of non-Gaussian dynawain the present model, does

not extend beyond the third-order correlation function.
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Chapter 6

ROLE OF POLARIZABILITY OF THE ACTIVE SITE OF CYTOCHROMEC IN THE
ELECTRON TRANSFER ACTIVATION BARRIER

6.1 Summary

Enzymes in biology’s energy chains operate with low enengyi distributed through
multiple electron transfer steps between protein actitessiThe general challenge of bi-
ological design is how to lower the activation barrier withgacrificing a large negative
reaction free energy. It is shown that this goal is achievedugh a large polarizability
of the active site. It is polarizable by allowing a large nianbf excited states, which are
populated quantum mechanically by electrostatic fluotwatiof the protein and hydration
water shells. This perspective is achieved by extensivednipiantum mechanical/ molec-
ular dynamics simulations of the half reaction of reductbnytochromec. The barrier for
electron transfer is consistently lowered by increasiegiiimber of excited states included
in the Hamiltonian of the active site diagonalized alongdlassical trajectory. Therefore,
molecular polarizability, in addition to much studied dtestatics of permanent charges,

is a key parameter to consider in order to understand howneezyvork.

6.2 Introduction

Cytochromec is an essential redox protein in bacterial photosynthesis raspira-

tory energy chains of mitochondria. Its redox function isstattle electrons between

membrane-bound energy complexes, such as betwedia;tllemplex and cytochrome
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oxidase in respiration [267]. The redox activity occurs @ntec covalently bound to the
polypeptide [268] (Fig. 32A). The mechanism of transfegrine electron, which alters the
redox state of the heme, is generally understood within taechik theory of electron trans-
fer [6]. It stipulates that the reaction is activated by eaclfluctuations of the thermal bath,
which in the case of protein electron transfer is a highlyeh@eneous protein-water inter-
face. The prevailing modes, frequencies, and couplingngths of those medium modes
to the heme’s electronic states are the parameters esiaglihe overall activation barrier
of the reaction [114, 89, 13].

Hydration does not significantly affect vibrational cogjiof the heme [269] and THz
absorption of well-hydrated samples is nearly insensititbe oxidation state [270]. These
observations suggest little direct contact of water with tleme [269]. Therefore, cy-
tochromec is a good model system to which basic assumptions of the Mdhaory apply
[271, 117, 47]. Potential complications of water penetigatihe active site [272] and of
conformational transitions upon changing the redox sta&8] are largely insignificant.
Our present simulations support this general assessmeat afplied to the active site
represented by fixed atomic charges. However, the maintrefstiiis study is the finding
that polarizability of the active site extends the probldrmprotein electron transfer beyond
the standard model [119] by dramatic reduction of the atitiwebarrier.

The established paradigm of the Marcus theory is based otwihatate description
involving electronic energy levels of either the electramdr or the acceptor [6]. Nuclear
fluctuations of the medium bring these two energy levels regmnance, allowing tunnel-
ing to occur [273]. The free energy (reversible work) regdito create the resonance
condition is determined by two parameters, the reaction éreergyAG, and the medium
reorganization energ¥. The formulation further simplifies wheA G|, is zero for either

self-exchange electron transfer or for a half redox reaaticcurring at the electrode. The
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activation free energy (activation barrier) is then fullgtermined by the reorganization
energy [6]
Fot= )\/4. (6.1)

Early calculations and numerical simulations of proteegcaion transfer produced val-
ues of the reorganization energy in the range of 0.7—-0.8 eWveecent molecular dynam-
ics (MD) simulations employing improved force field and sfgpantly longer trajectories
resulted in an upward revision of these values toward thase tmaditional for redox chem-
istry, ~ 1.0 — 1.5 eV [274, 47, 275, 89] (or even higher [276]). The upward newiof
the reorganization energy implies a higher activationibaimn Eq. (6.1) and a much slower
rate. On the other hand, electrode kinetics measuremggitatly report much lower val-
ues,\ ~ 0.4 — 0.5 eV [277, 278], when estimated from the Marcus relation in Bdl).

It implies that either the results of numerical simulatidmis)\ are grossly incorrect or the

relation between the activation barrier and the reorgdéioiz@nergy needs a revision. Here
we present arguments that the latter is the case. The rewsithe barrier height arises

from introducing polarizability of the protein’s activaei(Fig. 32B).

Equation (6.1) can be derived by considering two crossimglpdasr;(X) = (X +
X0)?/(4)) (i = Red, Ox) plotted against the energy gap reaction coordidates defined
by Warshel [279] (Fig. 32B). The crossing poifit(X) = F»(X) is the transition state of
zero energy gagX = 0, where tunneling occurs [280, 281, 282]. The Marcus forttha
follows from requiringX, = X\ as stipulated by the fluctuation-dissipation theorem [92].

Recent simulations have shown that proteins are often unaldample their entire
phase space on the reaction time-scale. This ergodiciaklrg [13] eliminates the restric-
tion on the reaction parameters imposed by the fluctuatissightion theorem. In particu-
lar, X, and\ become two separate parameters [283, 13] and finding theaoti barrier

requires three parameterX{, A, andAG,), instead of two parameters of the Marcus the-
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ory. Sampling of the entire phase space is never realistipaksible, but the problem is
drastically elevated for proteins because of their ruggetgy landscape, similar to those
found for fragile glasses [284, 285]. The dynamics and sttesi of proteins are charac-
terized by many local minima, in which the protein-waterteys can be trapped never
reaching its true thermodynamic minimum [286]. Electroamsfer reactions between non-
equilibrium trapped states do not follow the strict resioic X, = X [13].

The direct mechanistic consequence of this new perspéastivere flexibility in fine-
tuning the activation barrier of electron transfer [13,.9%]nce X, refers to the average
of the vertical transition energy, it defines the positionh& maximum of an optical spec-
troscopic line [246] and can be associated with the Stokésafhoptical spectroscopy.
One can therefore define the Stokes shift reorganizatiomggras\St = X, [119]. The

three-parameter description leads to the following atitwebarrier whemAG, = 0 [13]
Foo = \'/4 = (A%)2/(4N), 6.2)

where the “reaction’\” can be identified with the Marcus reorganization energy in Eq
(6.1).

The reorganization energy in the denominator in Eq. (6.8efed as the variance of
the reaction coordinate

A= ((0X)*)/(2keT), (6.3)

wherekg is the Boltzmann constant arffdis the temperature. Note that long trajectories,
> 100 ns or longer [15], are required to converyésee Fig. 52 in chapter 7). Because of
this difficulty, most simulations, with few exceptions [88port\Stinstead of).

Itis clear that the activation barrier can be lowered cormgado Eq. (6.1) of the Marcus

model whem\S' < \. The parameter

kg = A2 (6.4)
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guantifies the difference between two reorganization eegig the three-parameter model
[283]. Note that electrochemical kinetic measuremententeld = (AS)2/)X. The low
values of such effective reorganization energies [277, 288] are therefore consistent
with k¢ > 1 as schematically shown in Fig. 32B. It is also clear that tihe naaximum
plotted against the driving force AG,, (the Marcus inverted parabola [6]) gives the value
of ASt= X, only.

Important for biological applications is that, > 1 lowers the activation barrier with-
out requiring more negative reaction free energy, whichsisaace commodity in biological
energy chains [267]. It seems therefore possible that tbkeigonary pressure has favored
the glassy character of the protein fluctuations, and thghr fragility [284], to promote

electron transport consuming less free energy input faptration.
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FIGURE 32: (A) Hydrated cytochromewith the heme active site shown in green. (B)
The free energy surfaces of a half reaction in the Marcus h{&dg (6.1)) of fixed atomic
charges (solid lines) and in the polarizable model with < X (Eq. (6.2)). (C) The ac-
tive site representation by atomic charggsn classical simulations and by a Hamiltonian
matrix coupled to the classical bath in QM/MD simulation®) The mechanism of com-
pensation of protein and water electrostatics throughrizotg the interfacial water dipoles
by the charged residues of the protein.
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6.3 Theoretical and Computational Methods

The Marcus formulation of the electron-transfer theory lsarviewed as the first-order
guantum-mechanical perturbation of the electronic enkxggis by the thermal bath. The
perturbation Hamiltonian comes from integrating the etedt densityp. (r) with the elec-
trostatic potential of the bath(r): H' = [ p.(r)¢(r)dr. When the electronic density is
given by a set of atomic charges, one arrives at the force-field formulation often imple-
mented in classical simulations. The solute-solvent Hamihn is obtained by summing
up partial atomic charges with the bath potentials at ttogiations: 4’ = ) ¢.¢. (Fig.
32C). However, fluctuations of the medium not only alter thaateacceptor energy gap
(between HOMO and LUMO), but also the entire manyfold of tlee&onic energy states.
Each instantaneous nuclear configuration of the mediumpsitiuce a different extent
of electronic delocalization between those availabletedacc states, or, alternatively, a
different deformation of the electronic density.

The ability of the electronic distribution to deform in artesnal field is associated with
its electronic polarizability. In the dipolar approximai, it is given in terms of transition
dipoles,.,, linking different electronic sates of the molecule throulgé electric field of
the bathF, (Fig. 32C). The standard quantum-mechanical perturbatieory leads to the
quadratic Stark effect [289], shifting the energy lekeédy the amoun{—a«;/2) E? scaled
with the polarizability of that state

ap =2 Z |tk |* | A B (6.5)
m#k

determined by a set of transition dipoles and energy galps,. = E,, — E;. of all possible
virtual excitations.
Perturbation theory is not required to introduce polari#ghinto the description of

electron transfer. A more accurate formalism is achieveddigg the empirical valence-
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bond approximation introduced by Warshel and Weiss [29Q, 292]. It produces the
instantaneous energies of the donor and acceptor by dikgjogahe Hamiltonian matrix
incorporating the coupling to the medium into the diagoeld¢trostatics) and off-diagonal
(transition dipoles) matrix elements. This approach hanhbeidely used for a number of
biologically relevant systems in the past [293, 88] and leaemtly been implemented in
the form of the perturbed matrix algorithm [47] in applicatito protein electron transfer.
We follow this general formalism in the simulations presehin this paper. Our main goal
is to explore the possibility of lowering the barrier for el@n transfer by including mixing
between the quantum states (polarizability). From the nmandamental perspective, our
study asks the question of whether including polarizabditthe enzyme’s active site, in
contrast to the picture of fixed atomic charges, might redibedoarrier of an enzymetic re-
action. In other words, the question is whether polarizighg one of the tools of biology’s

catalytic capability [294].

6.3.1 QM/MD Simulations

The goal of our simulation strategy is to go beyond the assompf fixed atomic
charges in the modeling of the redox active site. We intredte ability of the electronic
density of the heme in cytochronmeto redistribute in response to a thermal fluctuation
of the bath. This goal is shared by essentially all QM/MM aidpons which all start by
defining the quantum center, i.e., a part of the system wlaatbe treated on the quantum-
mechanical (QM) level [86, 87, 88, 89, 90, 91]. The choiceneflevel of QM calculations
is dictated by the physics of the problem and, to a large @edrethe time-scale required
to capture the essential collective modes of the thermal dattributing to the activation

barrier. Protein electron transfer is a difficult problenmn @M algorithms because long
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time scales are very essential here. Classical simulatibekectron transfer have shown
that a broad range of bath time-scales affects the reorg@mizenergy [283, 89]. The time-
scales of~ 1 ns represent global elastic deformations of the proteipshahich have to
be included for a realistic description af These motions produce large fluctuations of
electrostatic potential inside the protein by shifting rgjesl surface residues and surface
water polarized by them [13] (Fig. 32D). As more elastic no@ater the observation
window (the length of the simulation trajectory), the reamigation energy grows nearly
continuously through the range of time-scales up to tensafaseconds currently reached
by simulations [15]. Given these constraints imposed bypimngsics of the problem, a
QM algorithm needs to capture the entire range of thermalanstsampled by classical
simulations.

The method of perturbed matrix [47] imposes essentially Modyerhead on the clas-
sical MD. It assumes that the forces acting on the atoms oflt#ssical thermal bath can
be well characterized by classical force fields. One theegberforms long classical MD
simulations of the entire system producing the dynamichefdassical bath. This clas-
sical dynamics is then used to recalculate the parametdiseajuantum center affected
by the electrostatic interactions with the bath. Since {oagge electrostatics is the main
factor influencing the positions of the donor and acceptergnlevels involved in electron

transfer [114], this algorithm is particularly well suitéat this problem.

The QM component is implemented here by expanding the elgatic potential of
the bathy(r) around the potentiabe at the heme iron and truncating the expansion at the

dipolar term. The matrix elements of the quantum center Haman then become

Hj, = (Ej + Qére) Ok — Mk - Ey, (6.6)

where @ is the total charge of the quantum center. The quantum sjates0, ..., M
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FIGURE 33: Free energy surfacéy X ), : = Red,Ox of cytochrome in the Ox (left
curves) and Red (right curves) states. The blue points/liekes to classical MD and the
red points/lines refer to the QM/MD simulations. The solitek are fits of the statistics
calculated from simulation data to parabolas. Panel (Arsb a non-polarizable quantum
center £ = 0). Panel (B) refers to a polarizable quantum center @ith1 andAa = —31
A3, The lower panel demonstrates the depression of the béeight upon allowing a
non-zeroAa (see Fig. 54 in chapter 7 faka = —123 A?).

include the ground state of the quantum centes 0, and a number of its excited states
produced here by ZINDO/S calculations for the oxidized (Qx —1) and reduced (Red,
@ = —2) states. The polarizability is a slowly converging funatiof the number of
excited states\/; the results presented here were obtainedMbr= 100. ReducingM
makes the quantum center less polarizable and eventuatigsbthe system back to the
Marcus domain. This was the result of a recent calculatiopleymg M = 12 [47].

The Hamiltonian matrix in Eg. (6.6) is diagonalized at eawtantaneous value of the
potentialpee and the electric fields, along the simulation trajectory to produce the mini-
mum eigenvalue@é’x’Red corresponding to the ground state in either oxidized orcedu
states of the active site. The electron-transfer reacti@ndinate, monitoring the transition

to the activation stat& = 0, is given as [279]

X = EQ* - Eg*. (6.7)
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The limit of classical simulations is obtained by representhe quantum center by a
set of atomic charges coupled to the bath through the canelpg electrostatic potentials

¢« (Fig. 32C). The reaction coordinate of electron transfeobes in this case
X = Z AQQ¢Q7 (68)

whereAq, = ¢©*— ¢ More details on the definition of the quantum center, quardal-
culations, and the protocols of classical simulations apgiged in Materials and Methods

below and in chapter 7. Here we discuss the results of ouysisal
6.4 Results
6.4.1 Free Energy Surfaces of Electron Transfer

The free energy surfaces of electron trangfgrX) = —kg7 In[P;(X)] (i = Ox,Red)
follow from probabilitiesP; (.X') calculated from classical trajectories with the quantum (E
(6.7)) or classical (Eqg. (6.8)) definitions of the reactiooinateX. Since our focus is on
a half reaction, we do not consider a more complex problenalcitating the redox poten-
tial [87, 89] and focus solely on the reorganization enexgie first note that the quantum
and classical algorithms are consistent with each othenwlepolarizability of the active
site is turned off (Fig. 33A). In order to study the effect b&tactive site polarizability,
we introduced scaling of the transition dipoles with thelisgafactor &: . — £t
The non-polarizable active site corresponds te 0 when coupling between the quantum
states is turned off. Even in that limit, the algorithms olfcaéating X are still somewhat
different in the quantum and classical cases since we usgpamgion of the potential in
the quantum Hamiltonian in Eq. (6.6), in contrast to a futldfeatomic charges in the clas-

sical MD. However, the free energy surfaces obtained inilieatpproaches are consistent

148



(Fig. 33A), suggesting little effect on the charge disttibao within the active site on the
electron-transfer barrier. One can further examine theceff charge distribution in the
active site by assuming the complete localization of thegdan the heme iron\gre = 1.
This extreme case and the calculation with distributedg#nare compared in Table 2 and

give consistent results.

FIGURE 34: Reorganization energigsand A5 against the scaling factor altering the
transition dipoles ag,, — Sprn. The points are the results of calculations with error
bars shown and the lines are regressions through the pajuide the eye.

This result might seem to be trivial since standard eletdtms suggests that the inter-
action of a point charge (localization) with the surrourtgdimedium is equivalent to that
of a charge uniformly spread over the conducting surfack¢dézation). However, it is
often suggested that delocalizing the electronic dens$itigepactive site is an optimization
mechanism to reduce the reorganization energy [87]. Whidentiechanism is expected to
lower the reorganization energy of localized skeletalations [274, 268], we see little evi-
dence for it altering the medium (protein and water) reoizgion energy. It is also useful
to keep in mind that most reactions relevant to biology’'srgnehains occur at relatively
small magnitudes of the driving forceAG\ and, therefore, proceed in the normal region
of electron transfer when quantum vibrations have esdbntia effect on the activation
barrier [245]. We instead argue here that the reorganizain@rgy) is maximized, and not

minimized, for polarizable active sites. Sink® remains nearly unaffected, the activation
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barrier in Eq. (6.2) can be reduced (Fig. 32B) due to a largeevaf the parametei; (EQ.
(6.4)).

6.4.2 Effect of Polarizability on the Reorganization Energy

The main goal of our analysis is to establish whetharan significantly exceedt
when polarizability of the protein’s active site is turned. owe first note that ~ S,
in accord with the standard Marcus theory [6], in the claddidD simulations (Table 2).
This result is in agreement with previous simulations o$ thiotein [271, 47], although
we still find kg > 1. A reasonable agreement with the Marcus theory found hemetis
always shared by other redox proteins. We have found A\S! for a number of redox
proteins k¢ ~ 1.7 — 3.2 for electron transfer reactions in bacterial reaction eenf283,
13]). The reasons why cytochronegfalls on the lower end of values are important
to understand. We discuss below the mechanism of compendagitween the protein
and water fluctuations lowering;. Here we first look at how altering the physical model
from a set of fixed atomic charges to a fluctuating chargeiligton affects the activation
barrier.

Table 2 and Fig. 34 summarize our findings. The reorganizaiergy)\ is calculated
according to Eq. (6.3), whil2A®' = (X)req— (X )ox is calculated from the average energy
gaps in two redox states. The polarizability of the quantenter is continuously increased
in Fig. 34 by scaling the ZINDO/S transition dipolgs;, — &u,;. The corresponding
polarizabilities, calculated from Eq. (6.5), are listedTeble 2. As mentioned above, the
polarizability significantly drops when fewer states areluded and the statistics of the
electron-transfer energy gap returns back:to ~ 1 of the Marcus theory (Table 7 in

chapter 7).
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TABLE 2: Reorganization energies (eV).

Method ASt AOx ARed /ﬁgb
Classical

Classical MD 1.26 1.67 1.64 1.3
Agre = 1° 1.13 1.57 1.50 1.4
ares AalA® ()7 Quantum Mechanical

0.0, 0.0(0) 113 157 150 1.4
54, —31(1) 1.24 307 232 22
216, —123(2) 1.40 6.40 5.16 4.1
1, -3¢ 0.89 092 1.32 1.3

®The error bars are-(0.04 — 0.06) eV for the classical calcula-
tions and+(0.04 — 0.2) eV for the quantum calculations. More
details can be found in Table 8 in chapter’% defined by Eq.
(6.4). “Calculated from the variance of electrostatic potential at
the heme iron thus assuming that charge is fully transferred to the
heme iron in the half reactiorf'The difference of the quantum
center polarizability in the Ox and Red states calculated from Eq.
(6.5); the number in the bracket is the factor scaling the transition
dipole momentspu,, — &pim (@lso see Fig. 34)¢The results

of simulations from Ref. 47A« is estimated from the present
calculations based ol = 10.

Increasing the polarizability clearly separaté¥’Redfrom A\t (Fig. 34). According to
Eq. (6.2), this should lower the activation energy, as is aken from direct calculations
shown in Fig. 33B. The main result of our calculations is thetteon transfer involving po-
larizable active sites should proceed with lower activabarriers, without requiring more
negative reaction free energy. Why this is the case can befsgarihe following general
arguments. The reversible work of creating a fluctuationhef lbath field is a quadratic
function of the field,(y/2) EZ, in linear response. The negative free energy invested-in po
larizing the solute reduces this energy(as- «;) E? /2. One expects, therefore, a smaller
activation barrier to reacX’ = 0, as we observe. There is also a possibility of breaking
the harmonic stability at ~ «;, when water response passes through a spike [21]. One
can anticipate that an electron-transfer enzyme can réaldwiest activation barrier in this

regime.
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6.4.3 Electrostatics of Protein and Water

The overall reorganization energy is a gauge of the streoigtthermal fluctuations af-
fecting the active site, with water and protein being its tmain components. Itis therefore
of great mechanistic interest to understand what are thgvelcontributions of protein and
water to fluctuations experienced by the active site. Inrashto some early suggestions
that soluble proteins can effectively screen water fromaitteve site and thus produce an
effectively nonpolar environment, a number of recent satiahs have clearly shown that
water can never be neglected [89]. In fact, reorganizatioergges turn out to be com-
parable in magnitude to those traditionally reported fdulsie synthetic donor-acceptor
complexes [47, 275, 89, 15]. This upward revision of reoizgtion energies for protein
electron transfer raises important mechanistic questbim®w high efficiency of biolog-
ical energy chains is achieved and how the motions of pr@redwater combine in the
overall activation barrier.

One first needs to realize that there is a significant scrgem&tween the water and
protein contributions to the electron-transfer energy. Jde water dipoles are oriented by
the ionized surface residues of the protein to produce #wrelstatic potential opposite in
sign to the potential of the protein (Fig. 32D). As a resuig protein (p) and water (w)
contributions taX, = (X,,) + (X,,) are typically opposite in sign and similar in magnitude
(Fig. 35A). The value ofX, is the result of their incomplete compensation. The same

physics applies to the variance &f, that is to the reorganization energy in Eq. (6.3).

The reorganization energy obtained from Eq. (6.3) becommestm of three compo-
nents: proteiny,, water,\,,, and a cross componemt,,, = (6.X,0X,,)/(kgT), produced
by correlated protein and water fluctuations. Consistertt e opposite signs qfX,,)

and(X,), the cross component is negative and compensates much iladgedual pro-

152



1.6F T T T T 3
LA - |
12f 2% [y 1
— |
el ]
a7 M/
0.4t .
L HY A \ 1
00 1 1 1 L wl L
6 4 2 0 2 4 6
~
>
:—/
=<

FIGURE 35: (A) Distribution of the electron-transfer cowmrate (black) and its protein
(green) and water (blue) parts (classical MD). The soligédimefer to the Ox state and
the dashed lines refer to the Red state. The distance betiveenaxima of Red and Ox
distributions is the Stokes shifg\St. (B) Loss functiony”(v), 27 = w from protein
(green), water (blue), and total (black) fluctuationsXaf The solid black line shows the
classical MD and the dashed line represents the QM/MD sitionla at{ = 1 (Table
2). The loss functions are normalized to give the correspgetorganization component
from [° x"(v)dv/(7v). The shaded areas represent separate Debye relaxati@sgesc
used to fit the time correlation functiariy (¢) from classical MD simulations.

tein and water contributions [295]. For instance, i@ = 1.67 eV listed in Table 2, one

has\, = 2.28 eV, \,, = 3.39 eV and),,, = —4.0 eV (see Table 8 in chapter 7).

6.4.4 Dynamics

The compensation between the protein and water fluctuatiigsayed in the overall
value of \, shows itself even more dramatically in the Stokes shiftasigits of the energy
gap variableX (t). To study the dynamics, one has to turn to time correlatiorctions.
The simplest one is the binary auto-correlation function(t) = (6 X (¢)6X(0)), where

dX(t) = X(t) — Xo. Thet = 0 value of this correlation function is proportional to the
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reorganization energy and one can anticipate that the ghgéiprotein-water electrostatic
compensation should extend into the time domain. It doeswbeualso find new dynam-
ics pertinent to each component, which loses its prominémdke overall Stokes-shift
dynamics due to the compensation effect.

Figure 35B shows the loss spectrum of the Stokes-shift dygganThe loss function
X" (w) characterizes the rate of energy exchange, at a given fnegueetween the active
site and the thermal bath. It can be thought of as the rateefygrdissipation, at a given
frequency, of some energy (e.g., photon) absorbed by theeasite. The overall energy
dissipated into surrounding is then given by integratifigv) /w over all frequencies. In
our calculations2kgTx" (w) = wCx (w) is obtained from the frequency Fourier transform
of the time correlation function [92].

The peaks ofy”(w) show the characteristic relaxation times of the modes eulifu
the electron-transfer coordinate and their intensitipsa®ent the coupling strengths. The
main striking observation from the plot is the presenceafislynamics in both the protein
and water components characterized by nearly equal redaxames. These common
dynamics, in the nanosecond time domain (see chapter Tgs@q elastic modes altering
the shape of the protein and simultaneously shifting theasarwater molecules oriented
by charged protein residues (Fig. 32D) [13]. The slow dymaniiowever, nearly disappear
in the overally”(w) due to a strong compensation (screening) between protdimvater
electrostatic contributions. It is this compensation théigs \ in a near accord withSt
in the case of cytochrome The lack of this compensation makes the two reorganization

energies deviate from each other, often significantly, tbeoproteins [13].
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6.4.5 Mechanistic Aspects

Our QM/MD calculations produce the effective reorgan@atenergy in Eq. (6.2)
A"~ 0.57 eV, A = (Aox + Ared)/2 not far from~ 0.6 eV viewed to be the average num-
ber from solution-based measurements [278]. One still bdwetaware that the present
simulations do not include polarizability of water and nealar groups of the protein [91].
The reorganization energies can potentially decreaselifded dipoles are included. The
Pekar factor of dielectric models predicts a drop diy the factor(e/e., —1)/(e—1) when
switching from a nonpolarizable to a polarizable dielectriande., are, correspondingly,
the static and high-frequency dielectric constants of begnhal bath. However, simula-
tions of model systems [296] show that this drop is an ovenasé and the reorganization
energy decreases only by 20% upon the inclusion of induced dipoles. All these results
apply, however, to the Marcus picture witit = \. It is not currently clear how induced
dipoles affect each distinct reorganization enexgyand\. In addition, a drop in the mag-
nitude of the reorganization energy upon including indudgmbles is mostly off-set by
the reorganization energy arising from translational ortiof induced dipoles (induction
reorganization energy, see chapter 7).

As mentioned above; > 1 requires either incomplete sampling (ergodicity breaking
when some configurations are not accessible, or the breakdbthhie Gaussian picture of
the medium fluctuations and generally non-parabolic freggnsurfaces. The latter sce-
nario is indeed realized for donor-acceptor systems withrpabilities different between
the two electron-transfer states [119]. However, this agerrequireS\ox # Areg¢ This
seems to be generally true for polarizable active sitesl€T2)) but the extent of deviation
is hard to estimate with limited sampling available fromtpmo simulations. We also note

that the dynamics of the energy gapt) follow the Gaussian approximation. It is tested by
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the ability to produce the fourth-order time correlationdtion of the energy gap in terms
of the Stokes shift dynamics (Fig. S6 in chapter 7) [46]. @llewe cannot clearly assign

kg > 1 found in our simulations to non-Gaussian character of tieeggngap fluctuations.

6.5 Conclusions

Energy chains of biology rely on a very short list of redoxtees to transfer electrons
[267]. They mostly include hemes of cytochromes, irontgutflusters, and cupredoxins.
One wonders if they are used to allow distinctly differergotton-transfer mechanisms
or have been selected based on similar mechanistic preperfi partial answer comes
from biology. Cytochrome&6, a heme protein, is used interchangeably with plastocyanin
a cupredoxin, in cyanobacteria to catalytically connedtpsystems | and Il [268] (only
plastocyanin is used in higher plants). Numerical simataihave shown that > %,
attributed in this study to a high polarizability of the &etsite, is achieved in plastocyanin
through insufficient compensation between water and pragigctrostatics, which does
not require a polarizable active site [283]. Does it meahékialutionary pressure chooses
redox proteins with\ > A\, regardless of the mechanism producing the desired result?
We do not have a definitive answer at this time. Studies of tleeteof polarizability on
electron transfer in all three classes of redox centerseapéired to address this question.

What our study convincingly shows is that increasing the niaaility of the protein’s
active site can significantly reduce the activation baroiea catalytic reaction, electron
transfer in this case. Interaction of atomic charges of tiiwa site with the electrostatic
potential of the surrounding medium is clearly an esseptal of the enzyme’s catalytic

action [297]. 1t might be true as well that not only the distition of molecular charge, but
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also its ability to deform in the external field (polarizatyi) is an important tool employed

by nature to catalyze biological reactions.
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Chapter 7
SIMULATION AND ANALYSIS PROTOCOLS
7.1 Hard Sphere and Kihara (Non-polarizable) Solutes ireYVat

Monte Carlo (MC) and molecular dynamics (MD) simulations weaeried out in the
configuration of a single solute in the cubic box consistih@I®3P water molecules[80].
All MC simulations were performed 808 K in a box length of40 A consisting of TIP3P
water molecules for two types of solutes : a hard sphere (Bl8jesand a modification of
the HS potential in the Kihara form that includes a Lennamde3 layer outside of the HS

core[174]. The Kihara potential thus has the form

12 6
00s 00s
1/ s = 4 —
0s(7) 0s [(T - RHS) <7‘ - RHS)

where “0” and “s” stand for the solute and solvent, respetfjvandr is the distance

, (7.1)

between the solute center and the oxygen of water. Furthgyjs the radius of the HS
core ande, is the solute-solvent LJ energy. Thg values of3.7 and 8.0 kJ/mol and a
oos = 3 A were used in the simulations. The solute size was variechbpging the radius
of the HS coreRys = 1, 2, 3, 4, 5, 6, and7.5 A. For the HS solute, the size of the HS core
corresponds to the distance of the closest approach of 'svatgrgen Ry;. This distance
was also varied in the simulations in the radgig = 2-15 A.

We have also performed NVT MC simulations of single-charfjed= 1) HS cations
and anions in TIP3P water (see section 7.1.4). The ion siees varied in the range @
10 A. All simulations were performed with the same simulatiatpcol as for the neutral
solutes: Ewald sums were used to correct for the cutoff ofefkeetrostatic interactions.

The Ewald convergence parametei6of/ L was used for the box of size. The value of
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kmax = 7 was used for the reciprocal-space calculations, and dlspesce electrostatic
interactions in the simulation box were calculated. Foitheotential, a cutoff distance of
14 A was used, and tail corrections were added to account fdotigerange contributions.
Each simulation consisted 6fx 10* equilibration MC cycles an¢i — 6) x 10° production
cycles (each cycle consists of trial moves, whereV is the number of molecules in the
system). Translational and rotational trial moves wereyagsl the probabilities af.6 and
0.4, respectively.

Molecular dynamics (MD) simulations were carried ou28® K in the configuration
of a single Kihara solute in the cubic box consisting©¥0 — 6650 TIP3P charmm water
molecules with an original water density f) g/cn¥[80]. Simulations were performed
in a box length of60 A. The ¢, values 0f3.7 kd/mol and args = 3 A were used in the
simulations. The solute size was varied by changing theusadli the HS cord?ys = 2,
5,7.5,10, and15 A. We also performed MD simulations of single-charged=(1) Kihara
cations and anions witRys = 7.5 A in TIP3P water. All simulations were performed with
the same simulation protocol as for the neutral solutes.

The NAMD 2.10[175] software program was used for all MD siatidns. An energy
minimization was performed, followed byns NVT equilibration. Production runs were
completed for200 ns in the NVT ensemble and the time step2ofs. The integration
used a Langevin thermostat with a Langevin coupling coefficof 5 pst. The hydrogen-
oxygen and hydrogen-hydrogen distances in waters werdragresd with the non-iterative
SETTLE algorithm to make the water molecules completelidri§Ve also used a cutoff
distance ofl2 A for LJ and electrostatic calculations, with a smoothingdiion applied
at10 A, and a pair list distance dft A. Long-range electrostatics interactions were calcu-

lated with the smooth particle mesh Ewald (PME) method anddaspacing ofl A. The
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electrostatic potential at the center of the solute wasiodtawith the Ewald summation

method.

7.1.1 Finite Size Effects on the Interface Susceptibilityé&tion

The exact interface susceptibility function is given by

Xo(r) = —47Br2(§ P.(r)d¢) (7.2)

Here,¢ is the electrostatic potential produced by the solventat#nter of the solute and
P, =1-P,t =r/r, whereP is the polarization density.

In this section, finite size effects on the interface susb#py function are investigated.
These effects may lead to significant errors in the estimatiothe interface dielectric
constant. We present the results which show that these-§iizig¢eeffects are expected to
be negligible when the ratio of the simulation box lengthhe tiameter of the solute is
relatively large, i.e., about three. Kihara solutes wiifis = 2 and5 A were solvated in
simulation boxes with lengths 8.5 A and50 A , respectively, where an original water
density wad .0 g/cn. The same simulation protocol as presented in section DJMealas
used for these two simulations. Figure 36 compares the @xi@cface susceptibility for
two different Kihara solutes with two different box lengtach. As can be seen, the finite

size effects for these system sizes are almost negligible.
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FIGURE 36: The exact interface susceptibility function asirled by Eq. (7.2) for two
different sizes of Kihara solutes solvated in simulatioxdsof different lengths. (Top)
Comparison of the interface susceptibility for Kihara selwiith Rys = 2 A simulated in
simulation boxes 038.5 A and60 A . (Bottom) Comparison of the interface susceptibility
for Kihara solute withRys = 5 A simulated in simulation boxes &f) A and60 A .

7.1.2 Electrostatic Potential Inside Cavity
Figure 37 shows the electrostatic potential of TIP3P watside the spherical solute
carrying no charge. The results for the HS cores of varyidgusand KH cores with two

values of the LJ energyi; (Eq. (7.1)) are shown. The positive sign of the potential is

consistent with previous simulations of uncharged HS[E3®] LJ[124] solutes.

161



11 T T T T T

-1

r|| 10% } s i (] [ B
gk ® HS -

13t L
8h ¢ .

i. @ ia L] | ]
s ¥ *
* 3 3 =

61 1 1 1 1
2 4 6 8 10 12

FIGURE 37: The electrostatic potentiab), inside hard-sphere (HS) and Kihara (KH)
solutes of varying sizej ; = 3.7 (KH) and8.0 (KH/8) kJ/mol are used for the KH potential.

<@>,, kcal mol e

E 3

7.1.3 Neutral, Cation, and Anion Kihara Solutes

As shown in section 2.3.2, we did not observe significanedgiices between the in-
terface dielectric constants of neutral, anion, and catitrara solutes withRys = 5 A.
First, we show in Figure 38 that the difference in the exatdriace susceptibilities for
these solutes is also small. Next, we use pair distributioctions (PDFs) to provide more
detailed information about the structure of water arourgéhsolutes.

The PDFs are defined as

gOS V/N <Z Pl COS em] )> (73)

whered,,; is the angle formed by the dipole moment vector of the watdeoute and the
vector between the center of the solute and the water ceiteass (COM);ocom, Where
rocom points in the direction of COMV and N are the system volume and the number
of particles, respectively. Note that the zeroth-ordetrithistion function is the standard
radial distribution function (RDF), i.eg)(r) = gos(r).

The RDFs of the neutral, cation, and anion Kihara solutestares in Figure 38. As

can be seen, the RDFs are almost the same and are characbgriadulst peak centered
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around11.1 A with a height of4.35. This is followed by a minimum arount2.5 A and a
second peak arournid.8 A.

In addition, one can use the first and second order solute-Ci&tibdition functions as
defined in Eqg. (7.3) to characterize the orientational stineés of water around the Kihara
solutes. Figure 38 shows the difference in the first ordetridigion functions for the
neutral, cation, and anion Kihara solutes. The positivaesbf the first order distribution
function around. 1.1 A indicate that on average water dipoles preferentiallgmrioward
the bulk. Our data shows that this situation is more pronedtior cations. We also found
that the second order distribution functions are negatieeired 11.1 A showing that a
considerable number water dipoles are tangential to thalnaibjection (data not shown).
Finally, we observed that the variances of the electraspatientials at the centers of cation,
anion, and neutral Kihara solutes are the same within thiststal uncertainties (see table

3).
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FIGURE 38: (A) The exact interface susceptibility funcsdor neutral, cation, and anion
Kihara solutes withRys = 5 A (B) RDFs (C) The first order solute-COM distribution
functions
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TABLE 3: The variances of electrostatic potentials at thetees of cation, anion, and
neutral Kihara solutes witikys = 5 A . 3 is inverse temperature and e is the elementary
charge. The uncertainties are standard deviations.

Solute  &(5¢?) [eV/e]
Neutral 0.800 + 0.003
Anion  0.801 &+ 0.002
Cation  0.800 £ 0.003

7.1.4 HS Cations and Anions

Figure 39 shows the density profile of water around the H®gatand anions with
changing the distance of the closest approach of water'geny®o; = mmax. The intro-
duction of the ionic charge into the HS core results in araation to water multipoles,
which, however, becomes weaker with increasing solute sTdee weakening of solute-
solvent attractions lowers water’'s density at the ion’date, although this dewetting is
less pronounced compared to the HS solute without chargev(sim Figure 4 in chapter

2).

Figure 40 showsmaxx VS rmax fOr anions and cations of varying size. Here one notes
that the solvation free energy is more negative for aniomspared to cations of the same
size. The explanation of this well-established phenonagpois sought in terms of denser
hydration shells of anions compared to cations. The reguhis difference in the free

energy is a smaller effective cavity radius for anions comgdo cations.

7.2 Hard Sphere and Lennard-Jones Polarizable Solutestar Wa

Hard sphere (HS) and Lennard Jones (LJ) potentials are wsetbdlel the solute-

solvent interactions. The dipole moment at the center otiete is created by placing
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FIGURE 39: Water density profiles around the hard-spheierta{HS-Cation) and hard-
sphere anions (HS-anion) as a function of growing size ofsiblate hard-sphere core
(Ros).- The density profiles are calculated from MC simulationgwai single solute in the
simulation cell containing TIP3P water at 298 K.

two opposite charges¢ and —q at the distancel from the solute center. The distance
between the charges 2g and the dipole moment of the solute is varied by changing the
magnitude ofg, such thaty; = m/(9.6d), wherem is in units of D andd is in A. The
details of the simulation protocol are slightly differentMonte Carlo (MC) and molecular

dynamics (MD) simulations and we discuss them separately.
7.2.1 Monte Carlo Simulations
The total potential energy is the sum of solvent-solvént, and solute-solvent/y,,

components in MC simulations. The solvent-solvent parhésgum of LJ and Coulomb

(C) interactions defined for the TIP3P force-field water[8Q} = U- + US. The
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FIGURE 40: Reduced linear susceptibility.x for cation (C) and anion (A) HS solutes
in TIP3P water at 298 K. The solvation susceptibilityis calculated from the variance
of the electrostatic potential at the position of the ionkes tenter of the HS solute as
x = B{(6¢)%)o. For HS solutes, the position of the first maximugy coincides with the
distance of the closest approach of water’s oxygen to theéesslcenterR,.

solute-solvent part of the Hamiltonian includes the Coulontéractions of the permanent
charges{/,, and the free energy of polarizing the solute by the elefigid of the solvent
E given as—(1/2)aE? (isotropic polarizabilityy). The repulsive part of the solute-solvent
potential U}S'Y, is modeled by either the HS core or by the solute-solventttdrgial. The

overall solute-solvent potential thus becomes

Ups = UM 1 US — (a)2) E2. (7.4)

The radius of the HS solute wdg,s = 4.15 A (the distance between the centers of the HS
solute and oxygen of water). The LJ solute had a2-& site with the LJ diameter, ; = 6

A and the LJ energy; = 280 K. The separation between the positive and negative charges
forming the solute dipole wag= 0.05 A.

MC simulations were done in the canonical ensemble with) TIP3P water molecules
and one polar-polarizable HS or LJ solute/at= 298 K and the water density af.995
g/cm?. Each simulation consisted .8 — 1) x 10° equilibration cycles an¢2 — 5) x 10°
production cycles (each cycle involvastrial moves, wheréV is the number of molecules

in the system). Success probabilities(of and 0.4 were adopted for translations and
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rotations, respectively. The probabilities for selectmgvater molecule and the solute
were set equal t0.85 and0.15, respectively. A cutoff distance a2 A was used for the
LJ interactions, and tail corrections were applied to ipooate long-range contributions.
Periodic boundary conditions and Ewald sums were used tlea¢ both the solvent-
solvent and solute-solvent Coulomb interactions and foeteetric field~ at the center of
the spherical solute. The Ewald convergence parametef\®@ash —' and the reciprocal

space maximum wavevector was setat, = 7.
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g 0.4} : II:'J]/m—TIPAP i
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FIGURE 41: Panel (a): Onsager reaction field for the HS anddlJtes with varying
dipole moments and zero polarizability. The dashed linesvsie linear fits yieldings:
values oR28.7 A3 (HS) and29.6 A® (LJ) in TIP3P water; the value afin m-TIP4P water is
29.9 A, The statistical errors are smaller than symbol sizes. Tdekland red points and
lines refer to simulations in TIP3P water, the blue pointd tre blue dashed line refer to
the modified TIP4P (m-TIP4P) water. Panel (b): MC resultgfierOnsager reaction field
for LJ solutes in m-TIP4P water with varying solute size amqbtt moment. The reaction
field is plotted against:/ R?, whereR = o 5/2.
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Different sizes of the HS and LJ solutes were adjusted toigeovearly equal suscep-
tibilities of TIP3P water to the solute dipole. The averaglent field (£) caused by the
solute dipolen (Onsager reaction field[65]) was calculated for differeaigmitudes of the
non-polarizable solutex(= 0). In the linear responséF) = ~~'m andx was calculated
as the linear slope gft’) vsm (Figure 41a). The dipole moment of the solute was fixed at
m = 5 D in the simulations withx > 0.

In addition to simulations with fixed solute sizes, the LJntgdero ; of the LJ solute
was varied to test the expected scaling of the solvationefuslity with the solute radius
R: x < R~3. This set of MC simulations employexd; = 4, 6, and 8 A with 1840-1900
m-TIP4P waters in the simulation box. Bath; and the magnitude of the dipole moment
were varied in these simulations carried outZox 10* MC cycles. Figure 41b shows the
collapse of all simulation data for the average solvent fpgtidted againstn/R3, where

R = o13/2. The expected scaling is confirmed.

7.2.1.1 Performance of MC Codes

The MC codes are developed in the Matyushov group. Both aadlgiazed with dis-
tributed memory, using the Message Passing Interface (stRhdard for communication.
For all simulations of polar-polarizable solutes in watiie Ewald summation method
involves the triple sum ovédk|, moleculei, and moleculg. The electric field and electro-
static potential are calculated accordingly. The hot spotsthe corresponding DO loops
in the Ewald sum method and cyclic distributions are usedéoallelization, where the
iterations are assigned to processes in a round-robindiasiihe code performance for
simulations of the polar-polarizable solute on the Starepggercomputer at Texas is re-

ported in Figure 42.
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FIGURE 42: Performance scaling of the MC code for simulatioh polar-polarizable
solutes in water.

7.2.2 Molecular Dynamics Simulations

The kinetic energy of the solute in MD simulations is deterad by the masses of the
solute sitesim;; = 39.6 amu,m, = 1 amu,m_ = 1 amu, andnp = 0.4 amu, where
“D” denotes the Drude oscillator site used to model the sobatlarizability. The potential
energy is the sum of the LJj ;, electrostaticl/g, and bonded(/,, interactions and, in

addition, the elastic energy of the harmonic Drude particle

U=1Lkprd + Uy + Uy + Uq. (7.5)

2
The non-bonded interactions include the solute-solvenand electrostatic interactions,
UL; + Ug. The bonded interactions are harmonic in bond stretcheshenblending angle
6 = +LJ—, where “+” and “—" denote, respectively, the positive and negative site® Th
resulting potential energy of the bonded interactions hagdrm

Uy =1 ky(r —req)” + 2ko(60 — Oeg)”. (7.6)

bonds
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The force constants in Egs. (7.5) and (7.6) &ge= 1000 kcal mot* A=2, ky, = k. =
k,_ = 3000 kcal mot* A—2, k, = 500 kcal mot! rad=2. The equilibrium bond lengths
and the angle areiq(LI+) = reg(LI—) = 1.5 A, 1eq(+—) = 3 A, feq = 180°.

The polarizability of the solute is modeled by a Drude péatwith charge;p attached
to the center of the solute by a harmonic spring. Isotropianmability of the solute
a = ¢3/kp is achieved by allowing isotropic motions of the Drude paeticonstrained
only by the potential energy penalty of stretching the gprifhe magnitude ofp was
changed to produce different valueswofi.e.,qp = (kpar/332.1)'/2, wherekp anda are in

units of kcal mot! A2 and &, respectively.

FIGURE 43: Polar-polarizable solute used in molecular dyica simulations.

The LJ site had; = 6 A and the solute-water interaction energygf= 280 K. Two
other interaction sites, placed symmetrically relativéhscenter at the distancedf= 1.5
A, carried opposite charges f; and—q and a mass of atomic mass unit (amu). A large
force constant was used to keep the positions of these teraition sites fixed.

The solvent model used in MD simulations is closely relate@P4P[80] and SWM4-
DP water models. The geometry of water is fixed and four ictéra sites define the force
field: one oxygen, two hydrogens, and an additional maspkadicle M located at a fixed

distancdoy along the bisector of the HOH angle (Table 4). A classicalderascillator is
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attached by a harmonic spring with the force constaripdb the oxygen site. Its mass is
set to0.4 amu and the mass of the oxygen is set3id994 amu, such that the total mass
of the oxygen-Drude pair is equal to the oxygen mas$5a1994 amu. However, in our
simulations, the Drude particle was neutral and, therefdick not introduce any solvent
polarizability. This dummy particle was used to comply witle requirement, imposed by
the NAMD 2.9 software program, to incorporate a Drude ostol into the solvent model

when performing molecular dynamics (MD) simulations of ai@e-polarizable solute.

TABLE 4: Parameters for the modified TIP4P (m-TIP4P) watedelpcompared with the
TIP4P and SWM4-DP models.

Parameter TIPAP SWM4-DP m-TIP4P
lon, A 0.957 0.957 0.957
% oH 104.52 104.52 104.52
lom, A 0.150 0.238 0.238
qo/|e| 0 —1.772 0
am/ el —1.040 —1.108 —1.040
an/el 0.520 0.554 0.520
an/|e| 1.77 0
kp, kcal molt A—2 1000 1000
€o, kcal mol! 0.1525 0.2057 0.2057
oo, A 3.154 3.180 3.180

The molecular dynamics program NAMD 2.9 was used for MD satiahs. The solute
was solvated with 000 water molecules and an energy minimization was performed fo
100, 000 steps. The system was then heated® K by 50 K increments, each evolving
for 100,000 steps. Next, & ns NPT simulation at atm and300 K was performed by
using the Langevin barostat and thermostat. This was fekblay5 ns NVT equilibration.
Production runs were done 60 ns in the NVT ensemble 800 K and the time step of

fs.
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The integration used a dual Langevin thermostat to freez®thide oscillators at K,
while maintaining the other degrees of freedom@t K. Cooling the polarization degrees
of freedom with a separate thermostat is based on the fa¢h#aquilibrium and diffusion
properties of cold dipoles are independent of the value @fdipole inertia parameter as
long as it is sufficiently small[298]. The temperature foubDe oscillators should be small
enough to leave almost no kinetic energy to the Drude-attmations, yet large enough to
allow the Drude particles to readjust to the room-tempeeatuotion of the atoms.

The hydrogen-oxygen and hydrogen-hydrogen distances iarsvavere constrained
with the non-iterative SETTLE algorithm to make the waterlecales completely rigid.
We also used a box length 81.95 A, a cutoff distance oi2 A for LJ and electrostatic
calculations with a smoothing function appliediatA, and a pair list distance af4 A.
Long-range electrostatics interactions were calculatéutive smooth particle mesh Ewald

(PME) method and a grid spacing bA.

7.2.3 Analysis of Interfacial Structures

The solute-solvent distribution functions are defined as

gos(r) = p~! <Z Py(i; - £5)0(r; — I‘)> , (7.7)
j
wherep is the number density of bulk water. Her,; is the unit vector of water’s dipole
moment and? () is the Legendre polynomial of ordér In this notationg), (r) = gos(r)
becomes the standard radial distribution function (RDF).
The solid lines in Figure 44a show the solute-oxygen RDFs efHl$ solute with
the HS radius ofRys = 4.15 A and the dipole moment df D. The dashed lines report

the solute-hydrogen RDFs. The first solute-hydrogen pedksshvith increasingy, to
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FIGURE 44: Results of Monte Carlo simulations of the HS soluii wthe HS radius
of Rys = 4.15 A and the dipole moment df D dissolved in TIP3P water at 298 K and
the density of 0.995 gr/ctn (a) Solute-oxygen (solid lines) and solute-hydrogen l{des
lines) RDFs with different colors marking the values of theusopolarizability: O (cyan),
10 (blue), 20 (green), 29.5 (red), 35 (black). The insetasghe height of the RDF's first
peak. The solute-oxygen first order (b) and second orderr{ehtational functions (Eq.
(7.7)) are for the same solutes as in (a).

distances shorter than the first solute-oxygen peak. Tlyigesis that the water molecules
of the first hydration shell flip their hydrogen atoms from arveard orientation at lower
a to an inward orientation at higher.

The RDF peaks can be quite sharp. Therefore, making use ofsaralaly coarse
grid tends to significantly reduce the peak height. On therliand, a very small grid
does not produce a sufficient statistical accuracy. Thezetbe height of the first solute-
water maximumG was calculated by finding a compromise grid. ValuesGoét high
polarizabilities show a collapse of the first hydration laffegure 44a).

The first- and second-order orientational distributionchions of water around the HS
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FIGURE 45: The number of unsatisfied hydrogen bonds of TIP&@mwithin the shell
of radius 15.2 A from the center of the solute.

solute are shown in Figures 44b-c. They also confirm prefedeatipolar ordering of water
molecules in the first hydration layer.

To identify unsatisfied hydrogen bonds, the Wereteal [192] definition of hydrogen
bonds is used. It requires the QO distanceR (A), to be bounded by a quadratic function
of the H— O---0O angle,d (degrees)R(6) < —0.000446% + 3.3. Making use of this
definition, the number of water molecules that donate thairdgens in hydrogen bonds is
obtained. Finally, the number of unsatisfied hydrogen badalculated from the numbers
of zero- and single-donors. Figure 45 shows the number dtigfied hydrogen bonds in
a spherical region of the radius = 15.2 A from the center of the solute. The calculations

are done for different values offor both the HS and LJ solutes.

7.2.4 Landau Functional and Solvation Free Energy

The average solvent field at the solute center (Onsageliordatid) obtained from

MC simulations was fitted to the Landau functional in the form

FIE] = —mE + (k/2)E* — (a/2) E* + G[E] (7.8)
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FIGURE 46: Solvation free energy of dipolar HS and LJ solwwethe solute polarizabil-

ity. The free energies are calculated by minimizing the laantuinctional in the electric

field (see main text for more detail).

whereG|[E] = —(b/4)E* + (¢/6) E® was used in the fit. The average field is obtained from
the conditionF’[E] = 0. The fit of () vs a shown in Figure 13 in chapter 3 required
by = 11.6 D*eV?3, c.y = 11.0 D%/eV® andbuys = —1.9 D*/eV?, cys = 30.2 DS/eV°.

The equilibrium free energy,, of HS and LJ solutes is obtained by minimizing the
Landau functional in terms of the solvent electric field (Eg8)). Figure 46 shows the
free energy as a function of polarizability indicating ta{«) remains uniform, despite a

clear maximum of the field variance as a function of polarizgb

7.3 Q-model & Non-Gaussian Dynamics: Analysis of Time Catieh Functions

Here we present additional results and analysis of chaptegarding the time correla-
tion function of the electric field of the solvent at the cerdethe solute
Si(t) = ((6E))*) " (0B (t) - 6B (0)) (7.9)

and the corresponding correlation function of the traosifrequency

Sa(t) = (89(t)60(0)) /{(69)) (7.10)
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Both time correlation functions were fitted to a function canitg the initial Gaussian
decay, a damped harmonic oscillator, and two exponentaydfinctions[299]
2
O(t) = Age it 4 Ape ™ coswyt + Z Bje~ot (7.11)
=1
The expansion ob(t) in powers oft contains only even terms. Therefore, all odd time
derivatives ofy(t) att = 0 must vanish[60]. We therefore impose the following resiits
on the fitting parameters in eq (7.11)0) = 1 and,(0) = 0. With these constraints, the

normalized time correlation function takes the form

Ne
() = e "2 3" Bigi(t) (7.12)
i=1
where
gi(t) = e " + (aym, — 1) emwit?/2 _ a;mhe '™ coswt (7.13)

The results of fittingS (¢) and.S,(t) to eq (7.12) are listed in Table 5.

TABLE 5: Fitting coefficients of the fits af)(¢) andS,(t) to Eq. (7.12). Relaxation times
7, = «; ! arein fs, the frequencies are infs

mo, D ag, A by by T T wg W Th
Field correlation functiong ()

5 0 0.88 0.068 1983 131 0.139 0.21 235
5 5 0.90 0.063 2795 158 0.131 0.20 23.6
10 0 0.97 0.016 11859 144 0.089 4.66 5.1
10 15 0.98 0.011 27164 243 0.089 23.26 4.6
Frequency correlation functio®y(¢)
5 0 0.51 0.13 130 438 0.125 0.20 27.8
5 5 0.54 0.17 131 447 0.125 0.20 25.3
10 0 0.53 0.12 140 580 0.120 0.19 27.2
10 15 0.44 0.48 83 591 0.157 0.21 14.9

Figure 47 showsS)(t) calculated at different values of the solute polarizapitit;

and two values of the solute dipoley;. We observe the slowing down of the electric
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FIGURE 47: Time autocorrelation functio (¢) (Eq. (7.9)) of the projectiory(¢) of
the solvent electric field on the direction of the solute tépmoment. The lines mark the
following configurations of the soluten, = 5 D, oy = 0 (green),mo = 5D, ap = 5 A3
(blue), andny = 10 D, ap = 15 A3 (red).

field relaxation as the solute polarizability increases. dissussed in the main text, and
elsewhere[265], the main reason for this change is thersofjeof the force constant of
harmonic fluctuations of the solvent field. This effect is,itwever, a part of the dynam-
ical Q-model, which instead assumes the dynamics of theeaughriable;(t) unaffected

by the solute.

In order to study the non-Gaussian character of the transftequency dynamics,
higher order correlation functions;(t), S4(t), andS,(t) (see main text) were calculated
from MD simulations. The functioy;(¢) enters the width time evolution functia$), (¢),
which recovers its Gaussian form.&f(¢) = 0 (eq 15 in the main text). Correspondingly,
the Gaussian approximation for the correlatirit) function is given by eq 21 in the main

text.

Time correlation functions$y(¢) and.S,(¢) calculated from MD simulations are shown
in the upper and lower panels of Figure 48. The solid lines@upper panel of Figure 48
are the fourth order correlation functions obtained diyeltbm simulations. The dashed

lines in the same figure, which are nearly indistinguishé&iolen the solid lines on the scale
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FIGURE 48:5,(t) andS,(t) calculated for polarizable and non-polarizable solutemfr
MD simulations (solid lines) and from their Gaussian appr@tions (points) by using the
second-order correlation functigf(¢) from MD simulationsyn, = 10 D.

of the plot, are the corresponding Gaussian approximatiédnsimilar situation is seen
for S,(t) in the lower panel of Figure 48: the solid lines obtained véttount for the
skewness functiorb;(¢) in eq 15 in the main text are indistinguishable from the abtte
lines obtained by puttings;(¢) = 0 in the same equation. As explained in detail in the
main text, these results is a consequence of scaling of raarsskan contributions t6, (¢)
and toSy(t) with the small parameter§3)\;)~/2 and (3);)~!, respectively. The main
result of these calculation is a relatively small effect ohrGaussian dynamics on these
two time correlation functions because of this diminishgwgling of the corresponding

non-Gaussian contributions.
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7.4 Cytochrome in Water
7.4.1 Classical Molecular Dynamics (MD) Simulations

The NMR solution structure of reduced horse heart cytoclkrotPDB 1GIW) was
adopted as the starting configuration for classical MD satioths. The CHARMM 27
[300] force field was used for the peptide chain, while theapaaters for the heme group
in the reduced (Red) and oxidized (Ox) states were adoptedpicing atomic charges
from Leu et al. [301] with the bonded and van der Waals parameters from Keset
al.[302]. Patches were applied to connect the heme group tortiteip matrix through
ligation of two cysteine residues (res. No 14 and 17) and glesimethionine residue (No
80).

Most electron-transfer cytochromes form 6-coordinateg-Fg-Met complex[303].
The Fe-His bond is, however, weaker than the Fe-Met bond andeak in some forms
of cytochrome c[304]. The stretching frequency of the Fe-bthind in 6-coordinated cy-
tochromes isv 220 — 240 cm~![304]. The breaking of the Fe-d\bond was previously
modeled by QM/MM simulations[304] and the resulting potaints shown by points in

Figure 49. A Morse potential was used to represent the sestithe simulations
U(r) = D, [1 — e (7.14)

with the well depthD, = 9.0 kcal/mol, the well widthy = 1.52 A~', and the equilibrium
bond distance, = 2.33 A (Figure 49). The potential in Eq. (7.14) was applied to tineus
lations in the form of the force by utilizing NAMD tclForcearictionality. The bond does
not break during the simulation time, but the Morse potéftiaws additional flexibility
of the system along the bond stretch coordinate.

From the original PDB structure, crystallographic wateitenales were taken from the

179



U(r) (kcal/mol)

FIGURE 49: Morse potential modeling the Fe~dbnd. The red points are from Ref. 304
while the black line represents the Morse potential in EqL4ywith D, = 9.0 kcal/mol,
v =1.52 A~1, and the equilibrium bond distancge= 2.33 A.

1YCC PDB file and, after aligning the two protein structuregrevadded to the 1GIW
cytochromec structure. To assure that the protein was properly sathinatidn water, we
performed a “soaking” procedure. It consisted of making alksphere of water sur-
rounding the protein with a total system size of 5497 atomenfthis structure, 150 ns
simulations were performed. Finally, from the last frameladse longer simulations, a
box (100.1A<100.1Ax 100.1A) consisting of a total of 101440 atoms was created and
additional water molecules added to the total of 33231 mubdsc This addition of water
was followed by 20 ns NPT simulations allowing the newly teeldbox to relax around the
sphere. This NPT equilibration was followed by 10 ns NVT d&huation for each redox
state. All force field parameters were applied using VMD'sftgen” tool and TIP3P water

molecules were added using VMD’s “solvate” plugin[175].

All simulations were performed using NAMD software progfaib]. For all initial
systems created a steepest decent minimization was pedoion 2000 steps. The NPT
equilibration simulation was done using the Langevin dyicarim NAMD with the follow-
ing parameter set: a damping coefficient of 1'ppiston period of 100 fs, the piston decay

time of 50 fs, the piston target pressure of 1.01325 bar, andtant temperature control

180



T T T
—— Ox - (50ns)
04+ ----- Ox - (120ns) -
—— Red - (50ns) R

--- Red - (120ns) D

g(r)

FIGURE 50: The radial distribution function for the distenmetween the heme iron and
the water’'s oxygen averaged over 1 ns of the simulationdrayg taken at 50 ns and 120
ns.

set to 300 K. The NVT simulations were performed using theesparameters as the NPT
simulations, but removing the constant pressure contt@sg-range electrostatic interac-
tions were treated with the particle mesh Ewald techniquregus cutoff distance of 12.0
A. A 2.0 fs time step was used for all simulatio$0 ns MD simulations were carried out
for trajectories production. Additiondl ns simulations were performed with the saving

frequency oR fs to study the short time dynamics.

Figure 50 shows the iron-oxygen pair distribution functiothe Ox and Red states of
the protein. One can detect the presence of a water moleextdéathe heme in the Red
state. This water molecule leaves the heme pocket on thestiaie of the simulation when
the protein is in the Ox state. This difference in wettinghe heme pocket, however, does
not translate into any noticeable differences in the edexctransfer reorganization energies

in two redox states.
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TABLE 6: Excitation energies for various sizes of the QC ie fRed state. QCand
QGC,, are the small and medium QCs. QC denotes the quantum cenfgeddor QM/MD
calculations. All values are obtained by the ZINDO/S met{ed).

System AE(),l AEO,Q AEO,3 AEO,4 AEO,5

QG —-0.23 —0.11 0.79 1.19 1.79
QGCh 0.83 0.92 1.07 1.77 1.79
QC 0.84 0.89 1.01 1.76 1.78

FIGURE 51: Quantum center (QC): the heme group (gray) andrtheaacids bonded
to the heme, cysteine (green), methionine (orange), atidines (blue).

7.4.2 Polarizable Active Site

A portion of cytochromec was chosen as the quantum center (QC) and was treated
guantum mechanically, with the rest of the system treateédeatlassical atomistic level.
Three different sizes of QC were initially chosen. The seslQC (QG) only consisted of
the heme. The medium size QC (RXtonsisted of the heme, HIS, and MET ligated amino
acids, and the largest QC (adopted for the analysis, Figlyedntained the heme, HIS,
MET, and two CYS ligated amino acids. In all cases, hydrogematwere added to satisfy
valency. Table 6 shows the unperturbed excitation enefgresl QCs, which shows that
the results for the largest QC are not significantly difféefeom QC,. The geometry of

QC was optimized by freezing all the atoms except the adddbigens.
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TABLE 7: Scalar polarizabilities (& calculated with ZINDO/S for different numbers of
excited stated/, Aa = aox — QRed-

M  aox ared A«
100 23.3 54.1 -30.8
80 21.2 538 -32.6
60 183 52.0 -33.7
40 142 47.3 -33.1
20 6.5 406 -34.1
10 13 42 -29
5 33 36 -03

The Hamiltonian matrix of the QC in the electrostatic fieldtw# surrounding classical

subsystem can be written as follows[47]
Hj, = (Ej + Qére) Ok — M. - Ey. (7.15)

Here, () is the total charge of the quantum centgr;, is the transition dipole between
states with energieB; and £, and¢r. andE, denoting correspondingly the electrostatic
potential and the electric field of the classical subsystetheaheme iron. The multipolar
terms of the order higher than the dipole are omitted here.

GAUSSSIAN’09[305] was used for all quantum calculationghaf QC in vacuum (Red
and Ox states) using the ZINDO/S method[306]. The chargéseoRed (singlet) and Ox
(doublet) QC were-2 and—1, respectively. The Hamiltonian matrix was formed by using
M = 100 excited states. These states formed the set of paramet&g. iv.15) and
were also used to calculate the polarizability tensor ofQeaccording to the perturbation

formula

MO]M]O
=9 7.16
2 E Ey (7.16)

Jj>0

whereF is ground state energy aid 5 denote the Cartesian components. Scalar polariz-

abilities reported in Table 7 are traces of the correspantinsorsg = %Tr (o).
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7.4.3 Electron Transfer Energy Gap
The energy gap in classical MD simulations is defined as

X =) Aggf"+ X" (7.17)

J

where Ag; = ¢ — ¢7*% ¢9* and ¢ are the corresponding partial atomic charges in
the Ox and Red states, respectived;;?w is the Ewald lattice sum electrostatic potential
of the protein and water discussed beloW! is the correction to the electrostatic energy
from the interaction with the background charge of the mkcidVigner lattice [168]. The
energy gap for the quantum mechanical approach is defindwakifference between the
lowest eigenvalueE;)X’Red of the oxidized and reduced states obtained by diagonglizin

the corresponding Hamiltonian matrices in Eq. (7.15)

X =E>— EX (7.18)
7.4.4 Ewald Sum Corrections

The treatment of long-range electrostatic interactiondNB®WD software package
[175] involves particle mesh Ewald sums. The simulation iddox half reaction requires,
in contrast to electron transfer between the donor and &mcehanging the charge of the
system. This change in the physics of the problem requitesduacing corrections to the
calculations of the electrostatic energies[167, 168, 304¢st of the corrections for the
Ewald sums electrostatics discussed in the literaturg[&@G¥ concerned with the equilib-
rium solvation free energy. The problem at hand here ismdiffe We want to establish the

corrections to the instantaneous energy ggp) due to the use of the electrostatics pro-
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duced by the lattice of replicated simulations cells ingtetthe infinite polarized thermal
bath.

The main point of concern in using the Ewald lattice sums lier ¢alculation of the
energy gap of a half reaction is the fact that the simulatihis either explicitly neutral-
ized or it is neutralized implicitly by a uniform backgrountarge spread throughout the
cell. In our present simulations, we do not use electrolytedutralize the simulation cell
to avoid complications from the movement of the electroigies. Similar setups, with
no neutralizing electrolyte were used in early work by Humnieatt, and Garcia [122].
Those are often even harder to sample adequately than theaflions of the multipolar
polarization of the protein-water interface. The issueléady demonstrated by Figure
52, which shows that trajectories longer than 200 ns areinedjto sample water-protein
fluctuations contributing ta.. Sampling ion motions would require even longer trajecto-
ries [308]. The absence of neutralizing electrolyte ingptigat the overall simulation cell
carries the charge dpox = 9 andQreq = 8 in Ox and Red states, respectively. The QC
charges are correspondinghi and—2.

The reaction coordinat& is the difference of energies of Ox and Red state, and one
can think of it as the energy difference arising from briggansingle positive charge to the
Red state of the QC and distributing it over al}; sites where charge density is changed in
the half reaction. This extra positive charge will interath the periodic Ewald potential
1) created by the protein-water solvent and by the lattice mifgated simulation cells. The
instantaneous configuration of the bath with the set of atartharges;, will therefore

produce the energy gap componeéft = > ., Ag;v;kq,, Where the lattice potential is

J#k
usually given as[167]
erfc(krjy) 4w L ier k2 /(4r2) T
o KT k7) . 7.19
Vi Tk * L3 = k2° K2L3 (7.19)

Here,r;, = |r; — ri|, L is the side length of the cubic simulation cell, akdre the
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wavevectors of the reciprocal lattice. Correspondingle gathzS'JT:W = > . Vg in EQ.
(7.17). The lattice potential in Eq. (7.19), with the lastntedropped, is calculated by
NAMD [175]; x = 0.2579 A~! was adopted in the simulations and in the analysis of the
simulaltion trajectories.

The calculation of the interaction of the fictitious posgticharge transferred to the
QC with the uniform background charge requires more care tldnsferred charge will
interact with the total charg@greq Of the cell in the Red state, but will also create its
own replicated images and the corresponding backgroungiehd hose images and the
corresponding background charge are not physical chargksree has to assume that they
are created instantaneously as the extra charge is treetsfer the cell (even though the
transfer of electron is essentially instantaneous in @dpethe nuclear coordinates). The
corresponding contribution to the energy differedcavill therefore be the free energy of
charging, in contrast to the energy of interacting with tkisting chargeres The result
is )

X" = - Z %c'cm - Z —QREEA% ¢ Gew, (7.20)
where(gw = 2.837297 comes from the self-energy of a point charge in the cubic \&fign
lattice [168] and”’ = 1 — ¢, ! is the correction for the “under-solvation” effects [16The
latter correction accounts for the difference of the saiymtential in a replicated lattice
compared to an infinite system. Itis commonly estimated fiteerdifference in correspond-
ing continuum solvation energies as calculated by Humehat. [168] and Hlinenberger
and McCammon [307]. Therefore, the correctidimvolves the dielectric constant of the
solvente, entering the boundary value problem. When the chafggsare spread over the
active site immersed in a polarizable solvent with instaatasly responding electronic
polarization,c’ in Eq. (7.20) is replaced by the Pekar factpr= ¢! — ¢;!, wheree,, is

the electronic dielectric constant [309] (not a part of aarcé field).
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Sincezj Ag; = 1, one can simplify the above equation to

X" = —C/QCZW ; Ag? — C/QLRedgEW. (7.21)
The overall instantaneous energy gap is given by the sumedfttice part and the inter-
action with the background charg&, = X’ + X”. Since the definition of the reaction
coordinate is the same in the Red and Ox sampling simulatibisseasy to see that”
causes only a constant shift of the energy gap, which doeaffeatt either\S' or \. We
additionally note that Figure 35 in chapter 6 shows the ithstion of the Ewald sum com-
ponentX’ of the reaction coordinate only, thus omitting thé correction. This is done
to show the relative energies of interaction of the active wiith the protein and water
components separately, for which the corresponding cioorecdue to background charge
are not easy to establish. As mentioned, any changes tortheegure will only shift the
corresponding distributions, without affecting the répdrreorganization energies.

We also note that the effect of the system size [309] is smalur simulations. This is
shown is Table 8 where we list the results of simulations ofugimsmaller system, with
only 6626 TIP3P water molecules present in the simulatidin Despite a smaller system
size and a somewhat shorter trajectories, the results axeraly consistent with those

obtained for a larger system.
7.4.5 Statistics

Two reorganization energies of electron transfer are densd here\Stand\. The
former is defined in terms of the average energy ¢&p in Red and Ox states\St =
({(X)rea— (X)ox) /2. The latter is given through the variance,= 3((§X)?);/2 averaged
over the configurations in equilibrium with the correspangiedox state of the protein=

Red,Ox. Table 8 reports both reorganization energies anaté-i62 shows the evolution
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TABLE 8: Reorganization energies (eV). The uncertainties estimated from block
averages along the simulation trajectory.
Classical
State A Ap Aw
Ox® 1.67£0.08 2.284+0.25 3.39+0.27
Red 1.64+£0.06 2.98+0.24 2.46+0.20
Method ASt )\Ox )\Red
Eqg. 7.17 1.26 £0.04 1.67+0.08 1.64+0.06
Localized 1.13+0.04 1.574+0.08 1.50 =+ 0.06
Smalf 1.04 1.24 1.49
Quantum Mechanical
AatlA3 A\St Aox ARed
0.0 1.134+0.04 1.57+0.08 1.50+0.05
-7.7 1.174+0.03 2.06 +£0.10 1.60 £ 0.06
-30.8 1.24 £0.03 3.07+0.13 2.3240.06
-69.2 1.32+£0.04 4.524+0.19 3.504+0.09
-122.9 1.40+0.05 6.40+0.25 5.16 £0.13

“Based on Eq. (7.17) and= 3 (§X?) /2, YEnergy gap is obtained a§ = e¢re, Where
¢re IS the bath electrostatic potential at the heme if@mall simulation system with
21625 atoms, 6626 TIP3P waters, and with the trajectonytienfy70 ns.Based on the
scaling of the transition dipole moments.
of the average energy gap and its variance obtained frorsicld3vVID simulations. The
splitting of the reorganization energyfrom classical simulations into the protein and water
components is also reported in Table 8. Note thafprotein) and\,, (water) do not add
up to A because the cross terky,, due to correlated protein-water fluctuations is negative
and typically large in magnitude.

Figure 53 shows the free energy surfaces of the half reastioridized and reduced
states of cytochromewhen the polarizability change between Ox and Red statesis eq

to —122.9 A%, The corresponding free energy surfaces/for = —30.8 A® are shown in

the main text.
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FIGURE 52: The evolution of (X)req — (X)ox)/2 (A%) and B{(6X)?);/2 (\i, i =
Red, Ox) along classical MD trajectories obtained from simulasiof cytochrome in Ox

and Red states.

Fi(X) (eV)

FIGURE 53: Free energy surfaces of the half reaction in G @ad Red (right) states of
cytochromec. The transition dipoles in the quantum calculations aréesida produce the
the polarizability change in the redox reactiahay = —122.9 A3, The blue circles show
the results of classical MD simulations, the red squaresate the quantum mechanical
simulations, and the solid lines are fits to parabolas.

7.4.6 Dynamics

The main dynamic function studied here is the time autoetation function of the

energy gap (Stokes-shift dynamiaS) (¢) = (d.X(¢)6X(0)). This correlation function

calculated from MD trajectories in Red and Ox states of cytoete c was fitted to five

decaying exponents
Sy(t) = Cx(t)/Cx (0 ZA et/ (7.22)
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TABLE 9: The fit parameters for the time correlation funcsasf the energy gap to the
sum of 5 exponential functions (Eq. (7.22), relaxation smgeare in ps).

Component A1 A2 Ag A4 A5 T1 To T3 T4 s
Red
Total 055 0.14 0.14 005 0.12 0.10 6.8 57 746 28380
Protein 0.14 0.05 0.13 0.25 044 0.06 23 13 106 1793
Water 0.24 0.13 0.16 028 0.19 001 4.7 78 853 5725
Ox
Total 0.53 0.13 0.07 0.06 0.22 0.08 25 21 339 4685
Protein 0.15 0.10 0.16 0.14 045 0.01 114 144 813 5333
Water 0.22 0.10 0.08 0.17 043 0.13 29 23 246 4038
1.0 e
. 0.8 : Z;uoszian Approximation
f;’ro.e—
0.4}
0.2
1.0
0.8 — S, Red -
= —— Gaussian Approximation
o 0.6f
0.4+
02 ul | L | ul

10" 10°
t (ns)

FIGURE 54: S4(t) calculated from MD simulations and from Eq. (7.24) (Gaussip-
proximation) by using the second-order correlation fusrct,(¢) for oxidized and reduced

states.

with the fitting parameters listed in Table 9. The fitted fumas were then Laplace-Fourier

transformed to obtain the loss functigfi(w) discussed in the main text. The procedure

was repeated for the protein and water components of thgem@p to obtain the cor-

responding loss functions and the dynamics of the proteithveater components of the

thermal bath affecting electron transfer.
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We have additionally studied the higher-order time cotretafunction in order to test
whether the dynamics of the energy gap are Gaussian [46, 31@ normalized fourth-

order time correlation functionS,(¢) is defined as follows

Sa(t) = ((0X)") 70X (t)*0.X(0)). (7.23)

If the dynamics are Gaussian, the fourth-order time cagldunction does not carry any
new dynamic information and can be determined in terms ohtivenalized Stokes-shift

correlation functionSy(¢) in Eq. (7.22)
Si(t) = = + =Sa ()2 (7.24)

This relation was tested by MD simulations. Figure 54 corap8i(t) directly calcu-
lated from MD trajectories foX (¢) to Eq. (7.24). We find a good agreement between the

two results in both redox states, testifying to the accurddize Gaussian approximation.
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APPENDIX A

LOCAL INTERFACIAL SUSCEPTIBILITY
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Here the local susceptibility of the interfagg(r) is derived based on the formalism
of pair distribution functions of the theory of liquids[I}5 he starting expression for the
susceptibility is

Xo(r) = 4w {0 P, (r)d M, )0, (A1)

where = 1/(kgT). The instantaneous value of the fluctuating radial prapectf the
solvent polarization density is given by the expression
P(r) =) (m;-#)6(r—r)) (A.2)
j

andéP,.(r) = P.(r) — (P.(r))o. Further,M, is the integral ofP,(r) over the volume
occupied by the solvent ang; is the dipole moment of moleculewith the positionr;.
The equation for,(r) can be split into the two-particle (solute-solvent) aneéhparticle
(solute-solvent-solvent) terms

Xo(r) =478 ((my - #;)%0 (r —1;))g

j

(A.3)
+47B ) ((my - £5)(my - £4)0 (r —1;))o.
J#k
The first summand is given in terms of the solute-solventdgtiatribution functiony, (rw; )

as

dw .
Xél)(rl) = 475P/ 4—7:(1“11 : 1'1)2905(1'1%)7 (A.4)

wherep is the number density of the liquid. For dipolar liquids, fhear distribution func-

tion can be expanded in rotational invariants as followS[B0]

gos(riwn) = g8 (1) + g2 (r) AL #1) + .. (A.5)

whereA(1,t,) = (&, - #;). The angular integral involving angular projections of taer

distribution function is zero and one gets

XS (r) = 3ygs (r), (A.6)
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wherey = (47/9)3pm? is the usual density of dipoles in a polar liquid[162, 60].
The second, three-particle term in Eq. (A.3) can be expdesséerms of the three-
particle solute-solvent-solvent distribution functigfr;w;, row-) as follows

dwidws . . . .
X((J2)(7"1) :93/0/651‘2W(91 - 1)(F2 - &)
(A.7)

[g(rlwla F2w2) - gos(rlwl)gos(FQWQ)]

With the use of the Kirkwood superposition approximatieH]l this equation becomes

VD) =0yp / i, S 1) ) -

gOs(rlwl)g()s(rQWQ)hss(12)a
whereh,(12) = gs(12) — 1 is the solvent-solvent pair correlation function depegdin
on the positions and orientations of two solvent molecules; {rw;}. As before, the

solvent-solvent correlation function is expanded in riotsl invariants as follows
hes(12) = hO (1) + R (r12) A(12) 4+ AP (r15) D15 (12), (A.9)

where andD15(1,2) = 3(&; - 12)(T12 - &) — (&1 - €2), 1o = ry — 1y, aNdé; are unit vectors
along molecular dipoles. Furthér)(r ;) andh” (r,,) are the radial projections of the pair
correlation function on the corresponding rotational maats.

The calculation of the integral over the orientations of twolecules of the solvent
is performed similarly for each projectigrt® andh”; the h(?) projection gives zero from
angular integration. For thé-projection one obtains upon transferring to the inverted
k-space

Y2 () = ypg®(r) / drag® (ry)
(A.10)

/ %mm)jmm%),

whereh? (k) is the zero-order Hankel transform (Ref. 162, p. 235p9fr) andj, (z) is

the spherical Bessel function of the orderA similar relation for theD-projection leads
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to the expression containirid’ (k), which is the second-order Hankel transformhéf(r).

For a general ordetrone has[162]

h(k) = 4mi* /000 25, (kr)h(r)dr. (A.11)

In order to arrive at a closed-form expression for the locaceptibility xo(r), we
will simplify the problem by considering the — 0 limit of both 42 andh” projections.
This approximation is valid in the limit of large solutes bstantially exceeding in size
the solvent molecules. The problem then significantly sifiegl due to the orthogonality

property of the spherical Bessel functions

/ () g (Rt )i dE = %5(7" — 7). (A.12)
0 T

We get as the result for the sumAfand D terms contributing ta\” the following simple
relation

X&) = [d )] (40) + 20°0)) (A.13)

One can connect this expression to the longitudinal dietestisceptibility since the term

in the round brackets in Eq. (A.13) is directly related to he 0 value of the longitudinal

structure factor[60, 162]
SE(k) =1+ (p/3) [EA(k) + 2?#’(@] . (A.14)
We finally obtain for the local susceptibility

xolr) = (1= ) [o2r)] "~ 3yl () (), (A.15)

Wherehé? (r) = 9(()(5))(7“) — 1. The second term in this relation represents electrogpatic

tential fluctuations due to translational motions of thevent multipoles. In contrast to
orientational dipolar fluctuations, these fluctuations strert-ranged with the result that

the proportionality ta3 in the density of dipoleg is not eliminated. The term appearing
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here is a result of the perturbation approach to these gdhsituations, which becomes
unreliable for highly polar solvents with large valuesiof Renormalization of the po-
larity dependence by higher-order correlations (such ab'sSPadé approximation[145])
is required in the limit ofy > 1. Since any theory of this kind[61] would significantly
complicate our discussion, this term is dropped from thed xaression fory,(r) used
in the main text. Note also that this term is identically zarahe limit of a structureless

continuum surrounding the solute since in that ogS&r) = 6(r — rmax) andg{hlY = 0.
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ELECTRO-OSMOTIC CURRENT: ONSAGER RECIPROCAL RELATIONS
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In order to prove the Onsager reciprocal relations for thablem of electro-osmotic
current, one needs to consider the volume trangpamntresponse to the applied gradient of
the external electrostatic potentib, and the streaming curreftin response to the ap-
plied pressure gradieMp: V = L5V oex, I = L1 Vp. The Onsager reciprocal relations
then requirel, = Lo.

We start with the equation of motion for the stationary flonaafincompressible fluid

(V - v = 0) along thez-axis of a capillary [311]
— Vv, +p(v- Vv, = -V.p+ f.. (B.1)

Here,v,(z,y) changes only along the cross section of the capillary @xes) and, there-
fore, V2 = 9%/02* + 0%/0y®. Further,y is the viscosity ang is the fluid density. Since
no convective motion of the liquid occurs; - V)v, vanishes.

In contrast to the standard textbook description considdree charges only, the force
densityf, in Eq. (B.1) is caused by a constant external fiégld= —V . ¢ex, applied to the
entire, free and bound, chargg: = p(r)E., p = p; — V- P. Since the curl oP disappears

in the divergencé&’ - P, one can puP = —V ¢, with the results

p= =V, o=~ dnt, ®2)
7

whereg; is the electrostatic potential of free charges.
We now proceed to calculate under the action of the forcg assuming no pressure

applied to the capillary. The result from Eqgs. (B.1) and (Bs2) i

P~
B 47

z

E., (B.3)

where ¢, is the potential at the shear surface at which= 0. In standard notations
oo = €5C, where( is the(-potential and, accounts for the screening by bound charges.

Here, the potential of bound charges is a partband e, does not appear explicitly. A
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similar line of arguments can be applied to the potentialreé fcharge®; connected to

¢ through a closure relation. When the constitutive relatioinsontinuous dielectrics are
used, one has = ¢,¢;, whereg; can be determined from solving the Poisson-Boltzmann
equation for the electrolyte next to the capillary wall. $ealetails are irrelevant to our
purpose since the derivation requires only the Coulomb latla® corresponding Laplace
equation.

From Eq. (B.3), one gets the volume transport

V= /Uzds = L12V . Qext (B-4)
with
L= ﬁr—n [ = o/onas (B.5)

We now turn to the streaming current when the capillary igestibd to the pressure

gradient—V _p. The current is given by the equation
I= /vzpdS = i/(% — $)V?0.dS. (B.6)
We now putf, = 0 in Eq. (B.1), which results in
[ =LyV.p. (B.7)

It is easy to see that

Loy = Lyo, (B.8)

whereL; is given by Eq. (B.5).
B.0.7 ( potential

Here we present the calculation of tiypotential based on the MD data for the Kihara

solute in SPC/E water[154]. In the absence of electrolytect$f the(-potential is given
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FIGURE B1: (R calculated from Eg. (B.9) for the Kihara solutes with = 0.65 kJ/mol
in SPC/E waterd; = 71). The dashed line is the linear fit:0.0076 + 0.0264( Ros/nm).

by the relation
_ AmR§,00

(= R (B.9)

We have noticed that, 2, is well reproduced by a linear dependence at lakge ¢ ~
0.026( Rys/R)(e/nm) (Fig. B1). Neglecting the difference betweély, and R at large

sizes of the solutes, one g&ts- 38 mV in the limit of large solutes.

B.1 Power of the external source

It is instructive to derive the power required from an exédrsource to move the dis-
solved colloidal particles. The rate of doing work on aligripolarization of the liquid
is

P= /P-Edr. (B.10)

If the reference frame is placed at the particle driftinghtie velocityu, then the solvent
moves with the velocity-« opposite to the direction of the drift arld = roP, JOr =

—udP/0r. One gets for the power

P = —NOuE/(aPr/ar)dr = 4w Nyu [aQPa — RQPR} B, (B.11)
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whereV; is the number of colloidal particles. From Eq. (5) in the mixt, when the flux

of free charge is added to the polarization current, onefgetbe colloidal particles
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LINEAR RESPONSE FOR SPECTRAL CORRELATION FUNCTIONS
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Here the derivations of the Stokes-shift,(¢) and spectral widthS,(¢) in terms of
time correlation functions are presented using the KubaiZzig linear response [60].

One can consider propagation of the dynamics by either gnmgstatistical averages
over the ground-state or excited-state equilibrium ensefi@d9]. In the former case, the
time-dependent Hamiltonian B (t) = H,(t) + w(t)0(t), wherew(t) = H.(t) — H,(t)
is considered as the linear response perturbationfahds the Heaviside function. In
the latter case, one hd$(t) = H.(t) — w(t)f(—t). We assume that the ground-state
equilibrium distribution of the chromophores is promotedtte excited state at= 0 and
starts to evolve on the excite surface tor- 0. The derivation repeats the same steps
in either definition of the perturbation. We provide here tlegivation steps when the

statistical average is taken over the ground-state equitibdistribution.
C.1 Stokes-shift correlation function

The linear response to the perturbatidf(t) = w(t)0(t) is given by [60]

@h = (who==5h [ (o(t = 2(0)0(s)ds (1)

—00

wheref = 1/(kgT') and(w) = (w);—o. After integration, one obtains
(W) — (w)o = BRo? [Sy(t) — 1] (C.2)

whereo? = ((dw)?), andS,(t) = L4550 is the time equilibrium correlation function.

From Eq. (C.2), one immediately gefs () = Sa(t).
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C.2 Width dynamics

The spectral linewidthy (¢), at timet is given by the relation
o*(t) = ()¢ — ((W)e)’ (C.3)

One can obtain the linear response prediction for the eeolatf spectral linewidth to
the perturbation?’(t) = hw(t)0(t) by integrating the following equations from the Kubo-

Zwanzig linear response approximation:

t
(W2, — (WP)o = —Ph / (w(t — )%(0))0(s)ds (C.4)
wheres = 1/(kgT') and(w), = (w) and the statistical averages in the angular brackets

are over the equilibrium ensemble described by the Haméltof,.

After integration of Eq. C.4, one obtains
(W = (w”)o = BR(w(t)*w(0)) — Bh{w’) (C.5)

The above equation can be re-written as

(W3 — (0%)oe = BRO*Ss(t) + 28h0% (w) Sa(t) (C.6)
where
_ {dw(t)*ow(0))
Sg(t) = W (C7)

Making use of Egs. C.2 and C.5 one can obtain

((W)e)? = ((w)eo)? = 28h0*(w)oSa(?)
+ (BR)*0* (Sa(t)? — 255(t))

(C.8)
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FIGURE C1: S,(t) andS,(t) vs. x(t) for different values ofAx/k,: 0.2 (green), 1.5
(red), and 4 (blue)AC/C, = 2 was kept for all curves.

Figure C1 shows the Stokes-shift and width time correlatiorcfions vs.x(t). The
deviation from the straight line thus quantifies the digtort between the dynamics of
spectroscopic observables and the medium dynamics. The fiistrates the point made
in the main text that the width dynamics is a significantly eneensitive measure of the
non-linear chromophore-bath coupling than the Stokes diiifamics. The latter appears
to remain a reliable probe of the medium dynamics even atdghditions of severe nonlin-

earity.
C.3 P(Qf? tf|qia tl)

Here we present the derivation of the path integral compinive Lagrangian of the
stochastic variable satisfying the stochastic Langeviraggn of motion with the evolution
of the off-diagonal element of the density matrix of the twats system. We first simplify
the notation introducing the variahte= 6q = ¢ — g of deviation ofq from its equilibrium

valueq, and write the transition frequency in the form[119]

Q(z) = az + 1ba” (C.9
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whereha = —AC + Arg, andhb = Ak. In this notation, the propagator we are seeking

to calculate is given by the equation

P(xy, tyle, t;) = / Dzx(T)
{zf,2:}

exp {z /t 7 i e) - /t _tf Lz, z)dT}

7

(C.10)

The effective Lagrangian defining the equation of motionimining the action[255] is

then found from the equation

doL 0L
e A1
dt 0t  Ox 0 (C.11)
where
~ 1
L(z, i) = E(a'c +y1)* — i) (C.12)
The equation of motion reads
i—x =~2f, f=—2iaD/v? (C.13)
where
€2 =~%—2bD. (C.14)

The solution of eq (C.12) with; = «(¢;) andxy = z(ty) is

o(7) =z sinhe(tf —7) . sinbe(r —t;)
sinh eAt sinh e At (C.15)

sinhe(rT — ¢t;
+q(r —t;) — Q(At)ﬁ

whereAt = t; — t;, and

q(1) = f (cosher — 1) (C.16)

According to the standard rules of performing Gaussian pd#grals (with the La-

grangian bilinear in the path variable)[255], the resulirgégration can be obtained by
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calculating the action on the trajectory satisfying theatmun of motion. The correspond-

ing action (neglecting a constant term affecting normaéliry is

1 1
S(ag tylwi ti) = — ], — 5 (F — )
q
., ! (C.17)
—i—i/ dr(Q(z) — EQ/(I))
t;

whereD = yo? ando; = ((d¢)*) were used.
As is easy to see, the term quadraticcidisappears from the integral in eq (C.17) and
only the linear term survives. The substitution of eq (C.16) ieq (C.17) leads to the

following expression

2

CTRTRD ki (2 + 22) coth eAt
Tfylf|Ts,ti) = — z xy) cothe
4o} 4D N (C.18)
€ T;T € t
35 sinh A7 ~ 5+ ) tanh 5=+ 9(A)
whereé = (2 +~%)/(2¢) and
s 27
W(t) = 402 vt — tanh 5 (C.19)

The propagator in eq (C.10) is therefore given in terms of themum action in eq (C.18)

as

P(xy,te|zi,t;) = Nexp [S(xs, telai, t;)] (C.20)

whereN is a normalization constant.
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