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ABSTRACT

How water behaves at interfaces is relevant to many scientific and technological ap-

plications; however, many subtle phenomena are unknown in aqueous solutions. In this

work, interfacial structural transition in hydration shells of a polarizable solute at critical

polarizabilities is discovered. The transition is manifested in maximum water response, the

reorientation of the water dipoles at the interface, and an increase in the density of dangling

OH bonds. This work also addresses the role of polarizability of the active site of proteins

in biological catalytic reactions. For proteins, the hydration shell becomes very heteroge-

neous and involves a relatively large number of water molecules. The molecular dynamics

simulations show that the polarizability, along with the atomic charge distribution, needs

to be a part of the picture describing how enzymes work. Non-Gaussian dynamics in time-

resolved linear and nonlinear (correlation) 2D spectra arealso analyzed.

Additionally, a theoretical formalism is presented to showthat when preferential ori-

entations of water dipoles exist at the interface, electrophoretic charges can be produced

without free charge carriers, i.e., neutral solutes can move in a constant electric field due

to the divergence of polarization at the interface. Furthermore, the concept of interface sus-

ceptibility is introduced. It involves the fluctuations of the surface charge density caused by

thermal motion and its correlation over the characteristiccorrelation length with the fluctu-

ations of the solvent charge density. Solvation free energyand interface dielectric constant

are formulated accordingly. Unlike previous approaches, the solvation free energy scales

quite well in a broad range of ion sizes, namely in the range of2-14 Å. Interface dielectric

constant is defined such that the boundary conditions in the Laplace equation describing a

micro- or mesoscopic interface are satisfied. The effectivedielectric constant of interfacial

water is found to be significantly lower than its bulk value. Molecular dynamics simulation

results show that the interface dielectric constant for a TIP3P water model changes from

i



nine to four when the effective solute radius is increased from 5 Å to 18 Å. The small

value of the interface dielectric constant of water has potentially dramatic consequences

for hydration.
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Chapter 1

INTRODUCTION AND THEORETICAL FRAMEWORK

1.1 Introduction

The solvent electrostatic response has been the focus of well-known theories such as

Born theory of ion solvation[1] and Marcus theory of electrontransfer[2, 3, 4, 5, 6]. In

this work, new theories based on the electrostatic responseof solvent under various condi-

tions are developed to address a variety of problems in condensed/soft matter and biology.

Molecular simulation methods are often developed and performed to assess the theories.

Common themes are the electrostatics of interface and electron transfer, where collective

phenomena, such as solvent polarization fluctuations, appear to play an important role due

to the correlations that can extend to large length scales and time scales.

The response of the solvent is related to the interaction of solute/reactant with the

solvent[7, 8], as well as the excluded volume of the solute[9] and is manifested in the

interfacial solvent microscopic structures, the interfacial polarization, and the fluctuations

caused by thermal nuclear motions of interface solvent molecules[10, 11, 12, 13]. These

properties play important roles in biological and chemicalphenomena such as efficient

electron transfer in biological systems, where the fluctuations are caused by a heteroge-

neous water and protein interface (as a part of solvent)[14]. The fluctuations are among

the reasons for the low energy loss of electron transport in biological systems such as the

mitochondrial membrane interface [13, 15, 16, 17], where 8-9 electrons travel over a rel-

atively large distance (tens of nanometer) to produce one Adenosine Triphosphate (ATP).

The problem is, in fact, complicated. Four complexes, i.e.,complexes I-IV, as well as
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electron carriers such as Quinone and cytochromec are usually involved in this process,

where cytochromec transports electron from complex III to complex IV at the membrane

interface[18, 19]. In this work, computational and theoretical approaches are used to ad-

dress several related phenomena at interfaces.

In principle, the electrostatics of interfaces is different from electrostatics of bulk

materials due to the electrostatic inhomogeneity, which affects solvation and interaction

of charged and polar molecules and produces a broad interfacial region with special

structure[20]. In chapter 2, the concept of interface susceptibility[12] is introduced. It

considers the fluctuations of the surface charge density caused by thermal motion and its

correlation over the characteristic correlation length with the fluctuations of the solvent

charge density. Solvation free energy is obtained as a radial integral over the interface

susceptibility function for which an exact relation is derived. Making use of this function,

an exact formalism is used to report the dielectric constantentering the boundary value

problem of electrostatics at micro- to mesoscopic interfaces. This formalism is applied to a

number of aqueous interfaces and is shown to provide robust results based on three-particle

correlation functions, which can be sampled by numerical simulations. The dielectric con-

stant of interfacial water turns out to be an order of magnitude below its bulk value.

In chapter 3, the recent discovery of a spike in the solvent polarization fluctuations in

the non-harmonic regime [21] is presented. In the non-harmonic regime, the reversible

work of creating a fluctuation of the solvent field is cancelled by the negative free energy

invested in polarizing the solute. Since both of these free energies are quadratic func-

tions of the solvent field, the quadratic terms in electrostatic free energy of solution vanish

in this regime. This discovery suggests that some configuration of the solution can pro-

duce a greater sensitivity and, as a result, a greater control of the chemical reactivity in

(bio)chemistry. This discovery is significant because the change of the solvent effect of
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dense liquid solvents at normal conditions is often hard to achieve. It is discussed how the

solvent response and microscopic structures change when the electrostatic solvation free

energy functional becomes non-harmonic. Motivated by the structural transition that oc-

curs in the non-harmonic regime, as indicated by the change in the number of OH dangling

bonds, the possibility of using this phenomenon in the (bio)organic synthesis or heteroge-

neous on-water catalysis is promising. For example, the change in the microscopic solvent

structure is important in the homogeneous and heterogeneous on-water catalyses[22, 23] or

the preferential formation of peptide bonds at the liquid-vapor interface[24]. Additionally,

solvent polarization fluctuations in the non-harmonic limit can play an important role in

reactions such as electron transfer, where the probabilityto reach the transition states can

be enhanced and they can aid the reactants to pass the activation barriers[8].

In chapter 4, a formalism is presented to explain the electrophoretic mobility of air

bubbles or oil drops in water, which is based on interfacial polarization and different sus-

ceptibilities at the solute interface and shear surface. The discrepancy between the re-

cent surface-sensitive sum frequency generation experiments[25] and macroscopic mea-

surements based on zeta potential[26] can be explained by this formalism. For nearly a

century absorbed hydroxide ions were considered to be responsible for the migration of oil

drops and air bubbles to the positive electrode and the apparent negative charge extracted

from the mobility[27, 28, 29, 30]. The possibility that mobility can be related to the order-

ing of water in the interface has been suggested[31, 32, 33, 34, 35, 36, 37]. In the attempts

to prove it, simulations have suffered from the use of inadequate ensembles[38, 39, 40]

and, more importantly, from the lack of an established theoretical framework allowing

to analyze the data from both numerical and laboratory experiments in a unified formal-

ism. A simple theoretical framework is proposed to analyze the problem and it has been

confirmed that ordering and polarization of water in the interface can produce an elec-
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trophoretic charge without free charge carriers. A number of simulations of model solutes

in several force field models of water are presented to show that the surface charge density

coming from the interfacial order is comparable with experimental estimates. It is sug-

gested that new experiments involving manipulation of nanoparticles with light to prove

the theory predictions.

Based on the power-law dependence of optical spectroscopy measurements on the ex-

ternal electric field, linear and nonlinear spectroscopiesare classified[41], and can pro-

vide important information about solvent response and its dynamics[42, 43, 44, 45]. In

chapter 5, lineshapes of linear and two-dimensional (2D) correlation spectroscopies are

derived for a model considering a linear plus quadratic dependence of the spectroscopic

transition frequency on a Gaussian nuclear coordinate of the thermal bath (linear-quadratic

coupling)[46]. These results are significant because they provide a straightforward ap-

proach for modeling the lineshape function and projecting that result onto a set of param-

eters providing insight into the underlying molecular behavior and analysis of the experi-

mental data. Importantly, it is demonstrated that both the statistics and the dynamics of the

transition frequency fluctuations are non-Gaussian and that the nonlinear dependence of

the transition frequency on the system-bath interaction can cause the two-point frequency

correlation function to differ from the bath correlation function. These results have signifi-

cant implications for the interpretation of 2D correlationspectra. The analytical results are

tested against explicit molecular dynamics simulations.

In chapter 6, the solvent response in biological systems is investigated to find potential

mechanisms to lower the activation barrier in electron transfer. This is done by perform-

ing mixed quantum mechanical/molecular dynamics simulations[47] of half reaction of

reduction of cytochromec. The main distinction of this study from previous studies isthe

inclusion of a large number, i.e. 100, of excited quantum states, which allow the active site
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to both be polarizable and change its polarizability when altering the redox state. A signif-

icant lowering of the activation barrier for electron transfer is shown when polarizability is

allowed. Mechanistically, two reorganization energies, instead of one in the Marcus theory,

are required to describe the barrier for electron transfer self-exchange[13, 15]. Polarizabil-

ity of active sites, along with the atomic charge distribution, needs to be a part of the picture

describing how enzymes work.

1.2 Solvent Response

In this section, related experimental and theoretical approaches that are used to mea-

sure/obtain the solvent response are presented. First, time-resolved and steady-state emis-

sion spectroscopies are discussed, which involve the localinhomogeneous fields (also

known as cavity fields). Second, related nonlinear spectroscopies are introduced[41, 48].

Then, a brief discussion of dielectric relaxation experiments is presented[49], which in-

volves homogeneous Maxwell fields. This section is followedby a discussion of theoretical

and simulation approaches used to investigate solvent response. At the end of this section,

it is discussed how the solvent response in proteins and large solutes is different from small

solutes whose global multipole moments and the excluded volume effects determine their

solvent responses.
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1.2.1 Experimental Approaches

1.2.1.1 Time-resolved and Steady State Emission Spectroscopies

A common way to measure the solvent response is based on monitoring the relaxation

of the excited state of the chromophore. When the excited state is prepared by fluorescence

spectroscopy, the lifetime is typically between1 ps to1 ns and many liquids near room

temperature display relaxation processes in this time regime[50]. Water at standard condi-

tions is a low viscous solvent, and fluorescence spectroscopy may be used to investigate

water response. When the chromophore has phosphorescence properties, the excited state

lifetime is long, typically between1 ms to1 s. In this case the nuclear solvent response

can be measured only if the solvent is very viscous and shows orientational relaxation

processes within the time window of the excited state lifetime. However, most solvents

crystallize at such high viscosities and supercooled or glass-forming solvents, such as 2-

methyltetrahydrofunran (MTHF) at low temperatures, are used. In addition, the number of

appropriate chromophores that has phosphorescence properties and exhibits a high change

in the dipole moment upon electronic excitations is not as numerous. Quinozaline, quino-

line, and naphthalene are famous chromophores[51].

Here, the time-dependent frequency shift of the fluorescence spectrum of a probe solute

after ultrafast excitation is discussed[52]. This measurement is based on the instantaneous

change in the charge distribution of a dissolved solute by pulsed excitation when the solute

is exposed to a pulse of light, where the pulse width is typically shorter than the decay time.

Before excitation, the solvent surrounding the solute is in equilibrium with its ground-state

electronic charge distribution. When the excitation occurs, it is instantaneous on the time

scale of solvent reorientation; therefore, the solute excited state is initially prepared in this
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ground-state solvent configuration. Therefore, this initially prepared state is a nonequilib-

rium one with respect to the solvent. As the solvent reorganizes so as to achieve equilibrium

with the new charge distribution, the emission frequenciesshift, and the progress of the sol-

vation energy relaxation is monitored. The time-evolving spectra are used to determine an

experimental response function,

Sν(t) =
ν̄(t)− ν̄(∞)

ν̄(0)− ν̄(∞)
(1.1)

whereν refers to the frequency of peak emission frequency and the average response time

may be reported as

〈τ〉 =

∫ ∞

0

Sν(t) dt (1.2)

A schematic Stokes shift dynamics of a rigid dipolar molecule at room temperature

water is shown in Figure 1.

When the solute is illuminated with a continuous beam of lightinstead of a pulse of

light, a steady state can be prepared, where Stokes shift is measured as the difference

between the center frequencies of the absorption and fluorescence.

One-half Stokes shift can be used experimentally to estimate the solvation reorganiza-

tion energy[53, 54]. In addition, one can get information about the reaction free energy

by making use of the mean energy of absorption and emission maxima. When the excited

state lifetime is known for a given probe, one may also use steady state measurements to

report the solvent relaxation times by making use of data at various temperatures and not-

ing that the solvent relaxation times should not be significantly different from the excited

state lifetime as discussed in Ref. [50].

Similarly, Stokes shift dynamics can be reported for phosphorescence spectroscopy,
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FIGURE 1: Stokes shift dynamics of a rigid dipolar molecule at room temperature water
(for simplicity, the dipolar molecule is considered to be rigid during the electronic transi-
tions). The vertical axis corresponds to the free energy surface of a reaction (solvation)
coordinate, which corresponds to nuclear degrees of freedom in solvent. Before the exci-
tation, the dipolar solute is in ground state (g) and in equilibrium with water. The vector
fieldsE andP are electric field and polarization density field, respectively and can be con-
ceived as coarse grained vector fields (see section 1.2.3 fordetails).E consists of the field
of the external charges and the electric field of all molecular bound charges. The equilib-
rium susceptibilityχeq establishes the direct proportionality between the vectorfieldsP and
E. After the excitation, the electronic degrees of freedom ofsolvent have fast responses,
while the nuclear degrees of freedom have slow responses creating a nonequilibrium state.
The solvent molecules will reorient and relax with a relaxation time ofτ during which the
emission frequencies can be monitored to report on the solvation dynamics.

8



where emission now occurs from the corresponding metastable excited state to the ground

state and the measurements are often done in the low temperature, high viscosity range.

Minor temperature changes can induce significant changes inthe solvation dynamics time

scale as shown in Figure 2 for quinoxaline in MTHF solvent.

1.2.1.2 Nonlinear Spectroscopy: Two Dimensional InfraredSpectroscopy

The relevant quantity in nonlinear spectroscopy is the optical polarizationPo[41].

Po = P(1)
o

+P(2)
o

+P(3)
o

+ · · · (1.3)

where, the polarization component tonth order in the field is denoted byP(n)
o .

Consider a molecule in the gas phase, which is described quantum mechanically, and a

time-dependent laser electric field, which is treated classically, and its frequency matches

the transition from quantum state0 to quantum state1 in the molecule. The laser pulse

creates a coherent linear superposition of the two quantum states. The time dependence of

this wavepacket corresponds to the molecular responseR and the time-dependent optical

polarization is given by

Po(t1) = Tr [m̂ρ(t1)] (1.4)

wherem̂ is the dipole moment operator andρ(t1) denotes the time evolution of the density

matrix of this single molecule in the gas phase during the coherence time

ρ01(t1) ∝ exp

(

−i

∫ t1

0

ω01(t)dt

)

(1.5)

Note that when the frequency is constant in time, the above reduces toe−iω01t1 .
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In linear response (weak laser pulse), the optical polarizations scale linearly with the

laser electric field strength. Here, the first-order response function that is convoluted with

the laser pulse electric fieldElas is given.

P(1)
o

(t) =

∫ ∞

0

dt1Elas(t− t1)R
1(t1) (1.6)

where the first-order (linear) molecular response functionis given by

R1(t1) = im2
01e

−iω01t1e−t/Th (1.7)

Here,m01 is the magnitude of transition dipole from state0 to state1 andt1 corresponds

to dephasing time period, where the off-diagonal matrixρ01 oscillates at a frequency of

ω01 and decays with the homogeneous lifetimeTh. In case of vibrational spectroscopy,

the homogeneous lifetimes are1 − 5 ps and only recently femtosecond infrared pulses

made these measurements possible because the emitted electric field can now reflect the

molecular response and not only the envelope of the laser pulse.

To incorporate the solvent effects into the above formalism, one may average the den-

sity matrix in Eq. (1.5) as follows

ρ01(t1) ∝

〈

exp

(

−i

∫ t1

0

ω01(t)dt

)

〉

(1.8)

where〈· · · 〉 denotes the ensemble average and can explain the dephasing mechanism. The

solvent fluctuations change the instantaneous frequenciesω01(t), leading to oscillating

terms that will eventually become out of phase. Therefore, the amplitude of the ensem-

ble averaged density matrix decays in time. Replacingω01(t) = ω01 + δω01(t) in Eq. (1.8)

gives
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ρ01(t1) ∝ e−iω01t1

〈

exp

(

−i

∫ t1

0

δω01(t)dt

)

〉

(1.9)

whereω01 is the average frequency.

The solvent effects can therefore be incorporated by replacing the molecular response

function of the forme±iω01te−t/Th with the response function of Eq. (1.9) or its complex

conjugate[48].

R1(t1) = im2
01e

−iω01t1

〈

exp

(

−i

∫ t1

0

δω01(t)dt

)

〉

= im2
01e

−iω01t1e−g(t1) (1.10)

whereg(t1) is the lineshape function and involves the solvent response.

Making use of cumulant expansion and truncating after the second term, the lineshape

function can be written as

g(t1) =

∫ t1

0

dt

∫ t

0

dt′〈δω01(t
′)δω01(0)〉 (1.11)

In this approximation (known as Gaussian approximation), the lineshape function only in-

volves equilibrium two-point correlation function, and the nonequilibrium solvent dynam-

ics can be formulated only in terms of equilibrium two-pointcorrelation functions[46].

Nonlinear response terms (nonlinear spectroscopy) provide higher order correlation

functions, which allows one to investigate the solvent dynamics in a more rigorous way[55,

56]. The third-order nonlinearity is the lowest-order nonzero nonlinear term in isotropic

media. Two-dimensional infrared (2DIR) spectroscopy is themost common third-order

spectroscopy in infrared spectroscopy. The most general form of 2DIR spectroscopy in

a time domain consists of three input laser pulses all havingdifferent wavevectors. The

first interaction of a laser pulse with the sample generates acoherence state, which is a

superposition of two quantum states. The system dephases for time t1. The second field
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interaction creates the population state, which corresponds to diagonal terms in the density

matrix. During the waiting time T, the system experiences population relaxation. The

last pulse creates a coherence state again, where the systemdephases during timet3. The

generated field will then have a wavevector∓
−→
k1 ±

−→
k2 +

−→
k3 , where the signs correspond

to rephasing and non-rephasing wavevectors[48]. To obtainthe frequency domain spectra,

the Fourier transform is usually performed with respect to the t1 andt3 coherence times

while timeT corresponding to the population relaxation time is not transformed.

For 2DIR, the generated emitted field from the third-order response functions con-

sists of terms combining pure dephasing terms. By considering only one of these such

terms, one can set up the calculation of the third-order lineshape function for the rephasing

diagram[48]. For the two-state system, the rest of them can be obtained by changing the

sign of the coherences in the dephasing diagrams:

g(t1, T, t3) =

〈

exp

(

−i

∫ t1

0

dτδω(τ)

)

exp

(

i

∫ t1+T+t3

t1+T

dτδω(τ)

)〉 (1.12)

wheret1 and t3 are the durations of the pump and probe pulses, respectively, andT

is the waiting time. Spectral diffusion can be identified by monitoring the changes in the

peak-shape as the population time varies (see section 5.5 for more details). As the popula-

tion time increases, the anti-diagonal linewidth broadensindicating the loss of correlations

between coherence states.

1.2.1.3 Dielectric Relaxation Spectroscopy

The inhomogeneous response of a solvent in the presence of a solute may be formulated

in terms of a homogeneous susceptibility of solvent in the absence of the solute[57]. The

latter may be obtained by dielectric relaxation spectroscopy, which measures the collective
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orientation of the dipolar molecules. It is used to identifythe dynamics of liquid/solvent

over a wide range of temperatures due to access to a wide rangeof frequencies. The total

frequency range that can be measured (after combining several techniques) to date spans

from ν = 5 nHz (τ = 1 year) to beyondν = 1 THz (τ = 0.2 ps)[49]. The experiments

can be done either in time-domain or frequency domain. Details of these experiments can

be found in Ref. [49]. Here, it is only discussed how one can obtain the liquid/solvent

response in these measurements with the focus on frequency-domain measurements.

The interaction of mobile charges within the sample with theexternal electric field, usu-

ally applied by virtue of two electrodes, is the origin of observed signal. Therefore, both

the magnitude of the interaction and the time scales involved in charge displacements are

measured by this method. It is worth mentioning that the magnitude of local fields in emis-

sion spectroscopies are orders of magnitude greater than (Maxwell) fields used in dielectric

experiments[54]. Liquid/solvent response corresponds tomicroscopical or macroscopical

charge displacements. The microscopical charge movementsare manifested in chemical

reactions, solvation, and electron transfer. The macroscopical charge movements are mani-

fested in conductivity, capacitance, and energy storage. The charge displacement can stem

from rotational motion of dipoles and/or translational mobility of charges and the amount

of energy that the external field can store in the sample is thestatic dielectric constant

(permittivity), ǫs.

The common feature in frequency-domain measurements is therelation of two equilib-

rium sinusoidal signals, i.e., the voltage,V (ω), across the sample and the current,I(ω),

through the sample. The ratioZ(ω) = V (ω)/I(ω) is called the impedance and its in-

verse is called admittance,Y . The above relations involve amplitude and phase, and are

complex valued. The liquid/solvent dielectric constant,ǫ̃(ω), can be obtained based upon

measurement of impedanceZ or admittanceY of a sample capacitor, wherẽǫ(ω) is com-
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plex valued, which includes the amplitude and phase relation between displacement and

field at each frequency:

ǫ̃(ω) = ǫ̃
′

(ω)− iǫ̃
′′

(ω) (1.13)

whereǫ̃
′

(ω) is referred to as storage factor andǫ̃
′′

(ω) is referred to as loss factor. The stor-

age factor describes the component of the polarization density in phase with the Maxwell

field while the loss factor determines the component of the polarization with a phase differ-

ence with respect to the Maxwell field, which gives rise to thedissipation of energy of the

electric field in the medium.

The relaxation behavior of liquid/solvent in time-domain measurements may be treated

by time-dependent dipole reorientation in liquid/solventvia rotational diffusion on a sphere

as proposed by Debye[58]

ǫ(t) = ǫ∞ + (ǫs − ǫ∞)(1− exp(−t/τ)) (1.14)

whereǫ∞ is the high frequency dielectric constant,ǫs is the static dielectric constant and

τ is the dielectric relaxation time. Liquid/solvent dipolesrespond to the field and can be

characterized by an exponential response function, which captures reorienting permanent

liquid/solvent dipoles.

Performing a Fourier-Laplace transform, the exponential response function can be rep-

resented in the frequency-domain to obtain the so-called Debye form of dielectric constant.

ǫ̃(ω) = ǫ∞ +
(ǫs − ǫ∞)

(1 + iωτ)
(1.15)

It is worth mentioning that a simple and exact relation exists to calculate the loss factor

on the basis of the storage component for this type of single-exponential behavior. How-

ever, there exists asymmetry in many viscous liquids whenǫ
′′

(ω) is plotted versuslogω.
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Havriliak-Negami (HN) function[59] has been suggested to capture the aforementioned

asymmetry:

ǫ̃(ω) = ǫ∞ +
(ǫs − ǫ∞)

(1 + (iωτ)α)β
(1.16)

The exponentsα andβ control the symmetric and asymmetric broadening, respectively,

with their limitations being0 < α , andαβ < 1. From this parameterization, the charac-

teristic time constant,τm = 1/ωm, can be obtained, whereωm is the angular frequency at

which the maximum of̃ǫ
′′

(ω) is observed. The resulting peak dielectric relaxation time, is

plotted in Figure 2 as a function of temperature for MTHF.

1.2.2 Theoretical and Simulation Approaches

A preliminary step towards the theoretical and simulation approaches is to describe the

solvent. In this work, we only consider classical solvents which can be treated theoreti-

cally by the methods of classical statistical mechanics[60]. A simple test of this assump-

tion for atomic solvents is to compare the de Broglie thermal wavelength and the mean

nearest-neighbor separation. Below three common approaches to investigate the solvent

polarization (response) are presented briefly. First, dielectric continuum methods are pre-

sented. Second, integral equation methods are discussed. This is followed by explicit

solvent models. At the end of the discussion of these approaches, a concise connection to

related quantum mechanical methods is given. Added to the above approaches, perturba-

tion theories[60, 61] and physical approaches based on lattice models are worth mentioning.

In the cell theory, each solvent particle moves in a certain potential in a free volume from

which a single-particle partition function may be derived.The total partition function is

then obtained as the product of all the single-particle partition functions. In a dipole-lattice
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FIGURE 2: Average solvent (2-methyltetrahydrofunran) relaxation times as defined by Eq.
(1.2) within 13 decades in time in three different probes: quinoxaline and Ru(bpy)2(CN)2 as
phosphorescence probes, and 4-aminophthalimide (4AP) as afluorescence probe for which
time resolved and steady state data has been reported. The solid line shows the results of
dielectric relaxation experiments for the solvent. Reprinted, with permission, from Ref. 52

approach[62, 63], the solvent response of a solute is represented by a lattice of dipoles with

the proper polarity to explicitly retain the dipolar natureof solvent polarization.

At the end of this section, a separate part is devoted to discussing the linear response of

the solvent because it has broad applications in the aforementioned theoretical and simula-

tion approaches.
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1.2.2.1 Dielectric Continuum Methods

A dielectric continuum method replaces the explicit chargedistribution of the solvent

with a continuous electric field, which ignores the microscopic variations due to the molecu-

lar structure of the solvent[64]. The continuous electric field, in fact, represents a statistical

average over all solvent degrees of freedom at thermal equilibrium. The Born model of ion

solvation[1] presented in1920 is the first model which uses an isotropic dielectric contin-

uum to represent the solvent, where the ion is represented bya point charge and its electric

field penetrates into the solvent. The polarization of the solvent at a given point may be

written as

P(r) = χE0(r) =
1

4π
(1−

1

ǫ
)E0(r) (1.17)

whereχ is the solvent susceptibility, which is a scalar due to the isotropy of the dielectric

continuum. E0 is the bare electric field of the ion andǫ is the pure solvent dielectric

constant. Therefore, the value ofP at any position within the solvent is solely determined

by the value ofE0 at that position and a local linear relationship holds betweenE0 andP

in the Born model.

One may note that the spherical symmetry of the field of an ion and also the spherical

symmetry of the cavity (solute) in the solvent leads to a radial solvent polarization. In

addition, the electric field of an ion is longitudinal because E0 = −∇Φ, whereΦ is the

electrostatic potential. For a spherical ion of radiusa, the Fourier transform ofE0(r),

Ẽ0(k), can be obtained analytically as

Ẽ0(k) = −
4πiqk

k2
j0(ka) (1.18)

wherej0 is the spherical Bessel function of zeroth order. This can be combined with the

spherical symmetry of the cavity to result in the longitudinal projection of the Fourier
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transformẼ0(k), ẼL
0 (k) = k̂·Ẽ0(k), wherek̂ = k/k. Therefore, in the Born model, where

k → 0, the solvent polarization response to a spherical ion is longitudinal. It is important

to note that for non-spherical solutes, where the symmetry of the cavity does not coincide

with the symmetry of the electric field, both longitudinal and transverse projections are

involved (see below).

Sixteen years after the Born model, Onsager considered the solvation of a spherical

solute with a central point dipole, in a dielectric continuum[65]. The electric field of the

dipole in such a cavity polarizes the solvent, and the resulting inhomogeneous polarization

of the solvent gives rise to a continuous field at the dipole. This field is called the Onsager

reaction field and its direction is the same as the direction of the dipole moment vector. The

reaction field coefficient,(2/a3)(ǫ−1)/(2ǫ+1), involves the solvent dielectric constant and

the radius of the solute and corresponds to solvation susceptibility (see chapter 3). One may

note that the electric field of the dipole is no longer spherically symmetric and the solvent

polarization response involves both longitudinal and transverse projections. To provide an

analytical explanation, one can obtain the Fourier transform of a point dipole at the center

of a spherical cavity as

Ẽ0(k) = −4π
[

3k̂
(

k̂ ·m0

)

−m0

] j1(ka)

ka
(1.19)

wherea is the radius of the cavity,j1 is the spherical Bessel function of first order andm0

is the dipole moment vector.

In many quantum mechanical continuum solvent models, an Onsager polarization en-

ergy operator is defined, which invokes the dipole moment operator to form an effective

Hamiltonian of a molecular solute embedded in the solvent reaction field[66] , i.e., the re-

action field is a first-order perturbation of the Hamiltonian. The Schr̈odinger equation in

solution becomes
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{

Ĥg −

[

2(ǫ− 1)

(2ǫ+ 1)

]

〈Ψ|m̂|Ψ〉

a3
m̂

}

Ψ = EΨ (1.20)

whereĤg is the Hamiltonian operator in the gas phase andm̂ is the dipole moment operator.

This non-linear Schr̈odinger equation is then solved by making use of a self-consistent

reaction field calculation.

In apparent surface charge models, also known as polarizable continuum models

(PCM)[67], the solvent polarization is represented as a set of apparent surface charges,

which are placed on the surface of the cavity containing the solute. The cavity is usually

determined by multiple overlapping spheres for each of the atoms within the molecule in-

side of the solvent and the electrostatic problem is then solved on the cavity boundary to

obtain the apparent surface charges.

1.2.2.2 Integral Equation Methods

In the liquid state, the solvent molecules are in thermal anddiffusive motion, and

changing their positions and orientations continuously. Therefore, the density of solvent

molecules is different from space to space and time to time. The integral equation methods

describe the solvent structure through these density fluctuations and the corresponding in-

termolecular pair correlation functions[68, 69, 70, 71]. They fall into two general classes.

When the solvent is described by rigid molecules, the full, angular dependent, intermolec-

ular correlations analogous to the corresponding theory for atomic liquids are used. When

the solvent molecules are described by interaction site models, the relative intermolecular

distribution of pairs of sites is considered. This second type of equation is usually referred

to as the RISM (reference interaction site method or model) equation.

The Ornstein-Zernike (OZ) equation is most popularly used to describe the density fluc-
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tuations in liquids. The equation defines a correlation function called the direct correlation

function c(r, r′) in terms of the total correlation functionh(r, r′). The total correlation

between two particles involves the direct correlation between them and also the indirect

correlation of the two particles via the influence of the firstparticle on particlei′′ and the

influence of particlei′′ on the second particle summed over all such particles with their

corresponding densities (ρ):

h(r, r′) = c(r, r′) +

∫

V

c(r, r′′)ρ(r′′)h(r′, r′′)dr′′ (1.21)

In order to solve the OZ equation, a closure is required, which relatesh(r, r′) and

c(r, r′). The general closure reads

c(r, r′) = exp [−βu(r, r′) + t(r, r′) + b(r, r′)]− 1− t(r, r′) (1.22)

wheret(r, r′) = h(r, r′) − c(r, r′) and b(r, r′) is a functional ofh(r, r′) and is known

as the bridge function and include multiple difficult integrals. Approximate methods are

therefore developed to solve the OZ equation. Here the hypernetted-chain (HNC), Percus-

Yevick (PY), and mean-spherical approximations (MSA) (seealso chapter 2) are discussed

briefly.

In the HNC closure[72, 73], the bridge function is ignored:

c(r, r′) = exp [−βu(r, r′) + t(r, r′)]− 1− t(r, r′) (1.23)

The HNC approximation works reasonably for many systems such as hard spheres and

those which involve Coulombic forces.

In the PY closure[74],exp (t(r, r′)) is also linearized:

c(r, r′) = exp [−βu(r, r′)] [1 + t(r, r′)]− 1− t(r, r′) (1.24)
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Although the PY approximation works reasonably for the systems consisting of hard

spheres, it leads to unphysical behavior for Coulombic systems.

When the systems of interest consist of spheres which interact with each other via

potential functionsu(r) = ∞ for r ≤ σ andu(r) = w(r) for r > σ, the mean-spherical

closure[75] is used:

h(r) = −1 for r ≤ σ

c(r) = −βw(r) for r > σ

(1.25)

wherew(r) is the attractive or repulsive part of the potential, andσ is the diameter of

the spheres. The MSA approximation is used for polar fluids and ionic solutions[76] and

is known to give a reasonable account of critical phenomena[77]. However, the radial

distribution functions are ill-behaved for Coulombic systems similar to the predictions of

the PY closure.

In the RISM methods, the solvent is described by interaction sites, similar to the expres-

sions that are use in force fields in classical molecular simulations. An important approx-

imation that is used in the RISM methods is to represent the molecular direct correlation

functions by a sum of the site-site direct correlation functions. When the RISM theory is

applied to single site spherical particles, it reduces to the PY theory for hard sphere fluids.

Extensions of the RISM theory have been applied to study polarand associated liquids[78].

The RISM theory can be combined withab initio methods to incorporate the electronic

quantum mechanical aspects of the solvent. For instance, the reaction field in quantum

mechanical continuum models can be replaced by a microscopic expression in terms of the

site-site radial distribution functions between solute and solvent as calculated by the RISM

theory. The electronic structure of the solute determines the statistical solvent distribution

and it, in turn, influences the electronic structure of the solute. Therefore, a self-consistent

approach is required to solve the RISM equation (RISM-SCF)[79].

21



1.2.2.3 Explicit Solvent Methods

Explicit solvent models treat the solvent molecules explicitly and are usually used in

computer molecular simulations such as molecular dynamics(MD) or Monte Carlo (MC)

simulations. When classical force fields are used, the solvent molecules are represented by

interaction sites. These empirical molecular models are obtained by fitting parameters to a

set of experimental data, which, to some extent, capture quantum and many body effects in

an effective way for the corresponding experimental properties[80, 81, 82]. Relatively long

trajectories can be obtained: in 2016, atomistic MD simulations of hundreds of thousands

of atoms up to microseconds is achievable[13, 15].

To offer the possibility of a parameter-free way of incorporating electronic quantum

effects in condensed phase simulations, first principle molecular simulations are used.Ab

initio MD or MC methods solve the Schrödinger equation and are computationally expen-

sive. A popular method is the Car–Parrinello MD (CPMD)[83], where the core electrons of

molecules are usually described by a pseudopotential (see below) and a plane wave basis set

is used to represent the wavefunction of the valence electrons. The ground state electronic

density is calculated at each step from which the forces on the nuclei are calculated. To

prevent expensive self-consistent iterative minimizations at each time step, the electronic

degrees of freedom are treated by fictitious dynamical variables such as small fictitious

masses of the electrons, which avoid a significant energy transfer from nuclei to electrons.

Depending on the problem of interest, special pseudopotentials may be developed as for

the hydrated electron, e−aq, a metastable localized species in liquid water. They replace the

complicated many-body interaction between an excess electron and solvent molecules by

an effective potential, assuming that the core electrons are static during the chemical pro-

22



cess and noting that the valence electron wave function is orthogonal to the core electron

wave functions[84].

Often long trajectories, together with realistic potential energies, are required to unravel

the physics of a problem or the corresponding mechanism. If the whole system of interest

can be divided into inner (quantum) and outer (classical) regions, then hybrid quantum

mechanics/molecular mechanics (QM/MM) approaches are used[85, 86, 87, 88, 89, 90, 91].

This approach gained considerable attention after the seminal work of Warshel and Levitt

in 1976. The calculation of the hybrid QM/MM potential energy of theentire system is

expressed as

Utot = UQM + UMM + UQM/MM (1.26)

where the first two terms are the quantum mechanical and classical potential energies, re-

spectively. The third term is the coupling term and includesthe inductive effect of the clas-

sical point charges on the quantum mechanical charges[85].Mixed QM/MM approaches

may also be developed by merging the unperturbed electronicproperties of the quantum

region with the solvent field (as a perturbation), which can be obtained from classical MD

simulations[47]. The assumption is that the forces acting on the atoms of the classical

thermal bath can be well characterized by classical force fields. In chapter 6, an example

of this approach is used to investigate the role of polarizability in the electron transfer of

cytochromec.

1.2.2.4 Linear Response of Solvent

Consider a solvent in thermal equilibrium with a solute and the solvent is exposed to

a weak perturbation from the solute. How does the solvent respond? This is the type
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of question that is addressed in linear response theory, which is essentially an applica-

tion of the fluctuation dissipation theorem[92, 93]. Based onthis theory, the electrostatic

response of the solvent to the perturbation can be obtained from knowledge of the equi-

librium fluctuations of the unperturbed solvent. A large amount of theoretical works has

been formulated in terms of the linear response of the solvent, which involves the con-

tinuum, explicit solvent, and integral equation approaches. Important relevant examples

are the Born[1], Onsager[65], Li-Kardar-Chandler[9], Matyushov microscopic theories of

solvation[57], and the Marcus theory of electron transfer,which is based on a linear re-

sponse dielectric continuum theory and the solvent fluctuations to obtain the parabolic

electron transfer free energies of reactants and products[2, 3, 4, 5, 6]. Here, the static linear

response is mostly discussed. Dynamic linear response, which is usually used to investigate

solvent dynamics, is discussed in chapter 5 (see Eq. 5.14) and appendix C.

In the Born theory of ion solvation, the free energy of ion hydration scales quadratically

with the ion charge[1]. In the Onsager theory of dipole solvation, the free energy of dipole

solvation scales quadratically with the dipole moment of solute. The proportionality coeffi-

cient, the solvation susceptibility, may be investigated in molecular details as discussed in

chapters 2 and 3. The quadratic scaling with the solute multipole leads to relations between

the cumulants of the solute-solvent interaction energies (u0s), where0 ands correspond to

solute and solvent, respectively. The linear response approximation results in the Gaussian

statistics of solute-solvent energy, and predicts the equality of the first and second (mul-

tiplied with β) cumulants of the solute-solvent energy, i.e.,〈u0s〉 = −β 〈(δu0s)
2〉, where

〈. . . 〉, stands for the statistical average over the solvent configurations in equilibrium with

the solute with a given multipole moment[11]. Note that〈u0s〉 includes the potential due to

spontaneous polarization of interface that can occur for neutral non-polar non-polarizable

solutes and also the potential produced by the solvent in response to the solute multipole
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moment. It is the latter potential which generates the quadratic scaling of the free energy

of solvation with the solute multipole. When the linear response does not hold, the free

energy of solvation is determined by an infinite expansion inthe cumulants ofu0s, which

may be truncated up to high order terms. In addition, the linear response approximation

predicts the equality of〈(δu0s)2〉0 = 〈(δu0s)
2〉, where〈. . . 〉0 now stands for the statistical

average over the configurations of the solvent in equilibrium with a neutral non-polar non-

polarizable solute, which has the repulsive part of the potential of the real solute. In chapter

2, we found that this equality holds well for neutral, anion,and cation Kihara solutes, where

the solute charges are placed at the center of solute.

Therefore, the electrostatic free energy of solvation in linear response[94] can be ob-

tained as

F0s = −
β

2
〈(δu0s)

2〉0 (1.27)

This implies that the excluded volume effect (repulsive core of the solute) by itself plays

an important role in the theory of solvation. In other words,the excluded volume effects

are more important than effects originated from the solute external field.

In dipolar solvents,u0s corresponds to the interaction of the solute’s electric fieldE0(r)

with the dipolar solvent dipolar polarizationP(r)

u0s = −

∫

E0(r) ·P(r)dr (1.28)

In real space Eq. (1.27) can be written as

F0s = −
β

2

∫

E0γ(r
′)E0κ(r

′′)〈δPγ(r
′)δPκ(r

′′)〉0dr
′dr′′ (1.29)

whereγ, κ subscripts denote Cartesian projections and the summation over the common

indexes is assumed. In chapter 2, the solvent response function and free energy of ion

hydration is addressed based on the above equation (see Eqs.(2.7) and (2.8)). Here, the
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nonlocal response of the solvent is discussed in the reciprocal space. Eq. (1.27) can be

written directly in the form of the Fourier integral

F0s = −
β

2

∫

dk1 dk2

(2π)6
Ẽ0(k1) · 〈δP̃γ(k1)δP̃κ(k2)

∗〉0 · Ẽ0(k2)
∗ (1.30)

whereẼ0(k) is the Fourier transform of the solute field over the solvent volumeΩout out-

side the solute

Ẽ0(k) =

∫

Ωout

E0(r)e
ik·rdr (1.31)

and Ẽ0(k)
∗ and P̃κ(k)

∗ are the complex conjugates, and the nonlocal solvent response

function may be defined as a second rank tensor as

χγ,κ(k1,k2) = β〈δP̃γ(k1)δP̃κ(k2)
∗〉0 (1.32)

However, the calculation of this function is still a major challenge and various approaches

have been suggested. A preliminary step is to approximateχγ,κ with the response func-

tion of a pure solvent in the absence of the solute, i.e.,χ (k1,k2) = δk1,k2
χs(k1) =

(2π)3 δ (k1 − k2)χs(k1), where the pure solvent response function may be written in terms

of longitudinal and transverse structure factors

χs(k) =
3y

4π

[(

SL(k)k̂k̂
)

+
(

ST (k)(1− k̂k̂)
)]

(1.33)

wherey = (4π/9)βm2ρ is the density of permanent dipoles,m is the magnitude of the

solvent dipole moment, andρ is the solvent number density, and the longitudinal and trans-

verse structure factors are given in terms of unit-vector orientationŝei = mi/m and posi-
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tionsri of molecular dipoles in the bulk

SL(k) =
3

N

∑

i,j

〈

(êi · k̂)(k̂ · êj)e
ik·rij

〉

ST (k) =
3

2N

∑

i,j

〈[

(êi · êj)− (êi · k̂)(k̂ · êj)e
ik·rij

]〉

(1.34)

Here,rij = ri − rj and the statistical average is over the configurations ofN molecules of

the bulk liquid occupying the volumeV .

The approximation above is known as homogeneous approximation; however, the ex-

cluded volume can have significant effects on the dipole-dipole correlations outside the

excluded volume as reported previously by the Song-Chandler-Marcus study and verified

by our work (see chapter 2)[12, 95]. Note that the transversestructure factors do not vanish

when there is spherical asymmetry in the electric field or thecavity (solute) shape. In the

continuum limit, this can lead to a transverse catastrophe,meaning that very high, unrea-

sonable values ofF0s can be obtained.

The excluded volume effects are considered in the Gaussian field model of Li-Kardar-

Chandler[96, 9]. In this model, the solvent is described in terms of a linear responding field

(a Gaussian fluctuating field) that is expelled from the volume occupied by the solute, where

the excluded volume affects the normal modes of the system. Matyushov showed that

a correct renormalization of the inhomogeneous solvent polarization response function is

obtained in this model, which eliminates the transverse catastrophe[97]. The corresponding

free energy,W (J), can be considered as the generating functional of correlation function

〈δP̃ (k1)δP̃ (k2)
∗〉0.

W (J) = ln

[

∫

exp

(
∫

J ·Pdr− βHB

)

∏

r∈Ωin

δ [P(r)]DP

]

(1.35)

whereJ is the auxiliary field,P is the polarization field,Ωin is the volume enveloped by the
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solute,D indicates functional integration, andHB is the Hamiltonian of the pure solvent in

the absence of the solute, which may be given in the reciprocal space by

HB =
1

2

∫

dk

(2π)3
δP̃(k) · χs(k)

−1 · δP̃(k)∗ (1.36)

The solvent response function can be obtained as the second functional derivative of

the generating functional

χexc(k1,k2) = β
δ2W (J)

δJ̃(k1)δJ̃(k2)

∣

∣

∣

J=0

(1.37)

This results in an exact solution for the reciprocal space response function:

χexc(k1,k2) = χs(k1)δk1,k2
− χ

′′

(k1)θ0(k1 − k2)χs(k2) (1.38)

whereχ
′′

(k1) includesχs and the information about the solute shape and the kernel

θ0(k1 − k2) is the Fourier transform of the step function equal to unity inside the solute and

zero elsewhere. The free energy of solvation may then be obtained by replacing Eq. (1.38)

into Eq. (1.30). However, it results in a six dimensional integral convolution ink−space,

which is numerically not tractable. The SolvMol software program is developed to perform

these calculations. Details can be found in Ref. [98].

1.2.3 Inhomogeneous Interfacial Polarization

As mentioned in the previous section, the homogeneous approximation used in the sol-

vation theories is not a good one. In this section, the solvent response is discussed based on

the inhomogeneous Maxwell fields corresponding to interfacial polarization. The Maxwell

field has played a prominent role in the theories of dielectrics. In the case of a homogeneous

field produced by a planar capacitor, one gets the direct experimental access to the Maxwell
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field E through the voltage on the platesV and the distance between themd: E = V/d.

The dielectric/solvent response to the external field is therefore most conveniently repre-

sented in terms of the susceptibility to the Maxwell field. This can be viewed as both an

advantage and disadvantage sinceE itself is never accessible experimentally and only the

line integral
∫

E ·dℓ = V , producing the voltageV , can be measured[99]. In the case of an

inhomogeneous field there is no way to extract the field from the integral and experiment

generally does not have direct access to inhomogeneous fields. The problem was realized

already at the time of birth of the electromagnetic theory. Since inhomogeneous fields

cannot be accessed directly, Thompson suggested using small cavities to measure internal

fields inside dielectrics[100] to map inhomogeneous fields.This approach has in fact been

realized by modern-day spectroscopy, which allows one to evaluate the local field acting

on a dye molecule through the field-induced shift of its spectral line[101, 102]. However,

the connection between such a local field and the macroscopicMaxwell field has been elu-

sive beyond the standard prescriptions of the dielectric theory[103]. In addition, the ability

to spatially resolve the distribution of the electric field and inhomogeneous polarization

within molecular systems of nanometer scale has been limited[104].

From the theoretical perspective, the Maxwell field is well defined by the Coulomb law.

The starting point is the overall microscopic electric fieldEm, combining the fieldE0 of

the external charges with the electric field of all molecularbound charges distributed with

the charge densityρb (“b” stands for the bound charge). The result is obviously

Em = E0 + Eb (1.39)

where

Eb = −∇

∫

|r− r′|
−1
ρ′bdr

′ (1.40)

The primes here and below denote vector and scalar fields taken at the pointr′, e.g.,

ρ′b = ρb(r
′). The Maxwell field is produced from this equation as the result of two steps: (i)
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statistical average〈E〉 of the instantaneousEm over the configurations of a statistical en-

semble and (ii) coarse graining of〈E〉 over a “physically small” volume averaging out the

microscopic correlations between the molecules of the material[105]. This volume is not

precisely defined and, in fact, is never explicitly involved. The theory, as it is formulated

for bulk dielectrics and interfaces, instead introduces coarse graining through constitutive

relations as discussed in section 2.3.

By taking the divergence ofEm and substituting∇ · E0 = 4πρ0 for the density of the

external chargeρ0, one arrives at∇·Em = 4π(ρ0+ρb). Further, due to the conservation of

charge, the instantaneous density of bound charge can be replaced with the divergence of

the polarization vector fieldPm, such asρb = −∇ · Pm[105]. One arrives at the equation

for instantaneous fields

∇ · (Em + 4πPm) = 4πρ0 (1.41)

which looks very much like the standard Maxwell equation, except that the fields in this

equation refer to an arbitrary statistical configuration ofthe system. Of course, this equa-

tion is just a different form of the Coulomb law, which appliesto microscopic dimensions

and arbitrary configurations of charges. The two-step averaging and coarse graining pro-

cedure mentioned above will produce the average smoothed-out fieldsE andP and the

corresponding electric displacement vectorD = E+ 4πP. The Maxwell equation for this

coarse grained displacement vector follows from Eq. (1.41)as∇ ·D = 4πρ0.

Equation (1.41) and its coarse grained version still cannotbe solved without applying

a closure relation betweenPm andEm or betweenP andE. The connection between

microscopic fieldsPm andEm is a complex problem of statistical mechanics of liquids[60].

It is therefore assumed that coarse graining helps in eliminating this complexity and leads

to local constitutive relations between coarse grained fields

P = χE (1.42)
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This constitutive relation thus establishes the direct proportionality between the vector

fieldsP andE through the susceptibilityχ, which is a scalar for isotropic materials. Em-

pirical evidence suggests that this approximation, when used for macroscopic dielectrics,

yields the bulk dielectric susceptibilityχs, which is a material property, i.e., a parameter

characterizing bulk dielectric and independent of the sample shape (the surface effects die

off in the macroscopic limit). Correspondingly, the dielectric constant of bulk dielectric

ǫs = 1 + 4πχs is a material property as well.

This result is quite non-trivial since even for coarse grained vector fields the susceptibil-

ity χ0 to the field of external chargesE0 does not share insensitivity to the surface effects

(boundary conditions).χ0 is not a material property and it depends on the shape of the sam-

ple through the dielectric boundary value problem. Given that the inhomogeneous Maxwell

field E is not accessible experimentally, most problems of interest for applications involv-

ing inhomogeneous fields (solvation of molecules, solvent-induced shifts of spectral lines,

interfacial problems, etc.) are formulated in terms of the response to an inhomogeneous

external electric fieldE0. Nevertheless, the Maxwell field has to be introduced in order

to solve the problem since only this field is believed to provide local constitutive relations

betweenE andP required to arrive at the Laplace equation. The locality of the Maxwell

field for inhomogeneous external fields does not have firm experimental support and is

likely to be an approximation. This difficulty is responsible for many problems arising in

the general problem of electric polarization of interfaces[106].

The problem of interfacial polarization is solved in dielectric theories by replacing the

microscopic fieldsEm andPm in each point of the interface with the corresponding coarse

grained fields and then applying the local constitutive relation (1.42) to each point of the

interface. When substituted to Eq. (1.41), it leads to the Laplace equation forE fully spec-

ified in terms of external charges. However, there is no factual coarse graining when this
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procedure is applied to microscopic problems, and it is nearly impossible even to define

an algorithm of volume coarse graining when fields are changing on the scale of molecular

dimensions. The Laplace equation is obtained in such cases by direct substitutionEm → E

andPm → P and the subsequent use of the constitutive equation. As mentioned, coarse

graining of microscopic fields is not achieved directly by averaging over a judiciously cho-

sen volume, but is produced by applying a specific local form of the constitutive relation.

The smooth functionE obtained from the solution of the Laplace equation then leads to a

smoothP, instead of a highly oscillatory function characteristic of interfaces[107, 108]. It

is the constitutive relation that replaces coarse grainingover a small volume in converting

the microscopic into macroscopic fields.

Since coarse graining is in fact not performed, one can adopta somewhat different form

of the constitutive relation involving only the statistical averaged fields in the interface

〈P〉 = χ〈E〉 (1.43)

Of course, Eq. (1.43) is an approximation. In chapter 2, it isdiscussed how to build a

consistent theory of interfacial polarization when this approximation is applied. The ad-

vantage of Eq. (1.43) over Eq. (1.42) is that statistical averages are well-defined even on

the microscopic scale and one can proceed with ensemble-based algorithms of defining

susceptibilities. In other words, in contrast to smoothly varied functionsP andE in Eq.

(1.42) the corresponding fields in Eq. (1.43) will be highly oscillatory, as usually produced

by liquid-state theories and numerical simulations. Eq. (1.43) may be only applied to the

dividing surface separating the solute from the solvent. Inthis way the microscopic calcu-

lations is connected to the electrostatic boundary value problem.

If the constitutive relation is the only step separating themicroscopic Coulomb law in

Eq. (1.41) from the dielectric boundary value problem, one wonders if this procedure can

be supplemented with susceptibilities reflecting the microscopic structure of the polarized
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interface, i.e., the susceptibilityχ in Eq. (1.43). The standard Maxwell dielectric boundary

value problem in fact implements one additional approximation of replacingχ in Eq. (1.43)

with the susceptibilityχs of bulk dielectric[109]. This approximation is not required and

any scalar susceptibility can be used in solving the boundary value problem. Not surprising,

the idea of an effective susceptibility or interfacial dielectric constant has been actively

discussed in the literature[110, 111, 107, 112, 113]. In chapter 2, it is discussed how the

interface dielectric constant can be obtained from the microscopic interfacial polarization.

1.2.4 Proteins and Large Solutes

The global multipole moment of solutes accounts for solventand interfacial polariza-

tions and the free energy of solvation of simple small solutes as presented in previous

sections. However, in the case of hydrated proteins, interface polarization can be quite

different. A typical-sized protein is a heteropolymer consisting of a chain of∼50-500

amino acids. Water-soluble proteins usually have non-polar, hydrophobic groups in their

core and polar or charged residues at their surface[114]. The charged residues polarize the

water molecules surrounding the protein and make the protein-water interface very hetero-

geneous. This can result in high electrostatic noise of the protein-water interface[13].

A simple way to investigate the surface polarization is to place point dipoles close to the

solute-water interface. Recent studies by Friesenet al. found that in contrast to the linear

response expectations, the electrostatic free energy of the solution is non-harmonic at inter-

mediate dipole moment magnitudes[115]. Surface excited states as well as the structural

transition of water at the interface were observed by increasing the strength of the surface

dipole. It was concluded that the statistics of the solvent electric field fluctuations can be

different from linear response predictions once surface water molecules have close prob-
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abilities to occupy surface excited states. The non-Gaussian statistics indicate nonlinear

solvent response.

Surface polarization at a protein-water interface almost determines the properties of the

protein hydration shells and significantly disturbs the corresponding network of hydrogen

bonds. The protein hydration shells consist of a large number of water molecules, i.e.,

∼ 500 water molecules in the first hydration shells of a typical globular protein, and involve

a large number of microscopic configurations of the shell. Therefore, in contrast to simple

small solutes, the solvent polarization now involves a large number of water molecules

from the hydration shells, which can have different significant properties as compared to

bulk water. A recent study by Martinet al. investigated the dipolar response of hydration

shells of lysozyme at a wide range of temperatures by MD simulations and suggested the

existence of dipolar nanodomains in the protein hydration shells[116].

1.3 Electron Transfer

Electrons that are exchanged during a redox reaction in a solution are the source of

perturbing charges in the solvated solute/protein (reactant or product). This creates the ex-

ternal perturbing fieldξE0 in the solvent, whereξ is the charging parameter or the strength

of perturbation. Note that the energy gapX is the energy difference between the reactant

and product electronic states for a given instantaneous configuration of the system. In lin-

ear response theory, the solvent response is related to the equilibrium fluctuations of the

unperturbed solvent (〈. . . 〉0)

〈P〉ξ = ξβ〈δP(r′)δP(r′′)〉0 ∗ E0 (1.44)
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where∗ means a dot product and a spatial integration. Making use of the thermodynamic

integration method, one can obtain

∂F

∂ξ
= 〈

∂(−ξE0 ∗P)

∂ξ
〉ξ ≈ −ξE0 ∗ β〈δP(r′)δP(r′′)〉0 ∗ E0 (1.45)

Integrating over the perturbation parameterdξ results in parabolic free energies. Therefore,

two simple routes can be used to assess the validity of linearresponse in electron transfer.

One can investigate∂F
∂ξ

as a functionξ such as electron transfer between an infinitely sepa-

rate cytochromec and small heme complexes[117, 118]. When the corresponding electron

transfer free energies are available (see section 1.3.1), one can also check their parabolici-

ties. As long as there is no polarizable species involved in the reaction, in linear response

the free energies are parabolic with the same curvature.

Solvent reorganization energies can also be used to test thelinear response. They cor-

respond to the energy that is required to push the equilibrium nuclear configuration of

solvents in reactants to equilibrium nuclear configurationof solvents in products when

electron transfer does not occur. They are often reported bythe first and second cumulants

of energy gaps in reactants and/or products[119, 120].

λSt = |〈Xr〉 − 〈Xp〉|/2 (1.46)

wherer andp stand for reactant and product, respectively andSt stands for Stokes shift.

λvar(r/p) =
β

2
〈(δXr/p)

2〉 (1.47)

In linear response, when the system of interest (in electrontransfer reaction) is ergodic,

λSt = λvar(r/p). This equality is therefore one of the predictions of the Marcus theory.
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1.3.1 Electron Transfer Free Energy Surfaces

Consider a chromophore that is dissolved in a solvent. One cantrace out the fast elec-

tronic degrees of freedom of the chromophore and the solventto obtain the (partial) free

energy of the chromophore in its electronic statei

exp [−βEi] = Trel
(

exp
[

−βHtot
i

])

(1.48)

whereHtot
i is the Hamiltonian of the system in the ground (i = 1) and excited states,

β = 1/kBT , andTrel means the trace over the quantum states of the fast electronic de-

grees of freedom. Therefore, the instantaneous free energiesEi depend on the nuclear

coordinates and correspond to the Born-Oppenheimer energies. One can therefore define

the Hamiltonian of the chromophore-solvent system, where chromophore is coupled to the

collective nuclear solvent modesq, as

Hi = Ii − Ciq + (κi/2)q
2 (1.49)

whereIi is the intrinsic gas phase energy of a diabatic statei (i = g, e), Ci is the parameter

which defines the strength of chromophore-solvent couplingin the linear solvation approxi-

mation, andκi is the collective force constant, which involves the free energy of polarizing

the chromophore and nonlinear chromophore-solvent coupling. The above model, known

as the “Q-model”, was pioneered by Matyushovet al. to address the electron transfer in

condensed phase[119].

The fluctuations of the nuclear coordinates can result in theresonanceE1 = E2 during

the electronic transition. Therefore, the electron transfer free energy surface in the classical

limit can be defined based on the probability distribution ofthe instantaneous energy gaps

X = E2 − E1.
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− βFi(X) = lnPi(X) =

∫

dΓδ(∆E −X)e−βEi

∫

dΓe−βEi
(1.50)

whereΓ shows the phase space. Sections 5.6.2 and 6.4.1 discuss practical calculations of

these free energies for electron transfer in “Q-model” and cytochromec, respectively.
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Chapter 2

INTERFACE SUSCEPTIBILITY: FREE ENERGY OF HYDRATION AND

INTERFACE DIELECTRIC CONSTANT

2.1 Summary

In this chapter, the concept of interface susceptibility isintroduced. It involves the fluc-

tuations of surface charge density,δσp(r), caused by thermal motions and its correlations

over the characteristics correlation length with the fluctuations of the solvent charge den-

sity, δρ′s (see Fig. 3). The result of these mutually correlated fluctuations, integrated with

the weight of inverse distance (a reminiscent of the usual inverse distance dependence of

the Coulomb law), is what makes the interface susceptibilityfunction,χ0(r):

χ0(r) ∝

∫

(dr′/r′)〈δσp(r)δρ
′
s〉0. (2.1)

The electrostatic free energy of ion hydration and the interface dielectric constant are

formulated based on the interface susceptibility functionand studied for a spherical ion

solvated in TIP3P water by numerical simulations. The scaling of the free energy of ion

hydration with the solute size obtained from simulations significantly deviates from the

Born equation and its empirical off-set corrections. However, representing the solvation

free energy as a radial integral over the interface susceptibility function describes well the

scaling of the solvation free energy with the ion size produced in a broad range of ion

sizes by the simulations. In addition, it is found that the corresponding interface dielectric

constant changes from 9 to 4 when the effective solute radiusis increased from 5 Å to 18

Å.
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FIGURE 3: Surface charge densityσp produced by the water molecules crossing the math-
ematical surface of the radiusr (“+” indicates the partial atomic charge of the hydrogen
atoms of the water molecules). Fluctuations of the surface charge densityδσp caused by
thermal motion correlate over the characteristic correlation lengthλp with the fluctuations
of the solvent charge densityδρ′s = δρs(r

′). These mutual correlations are responsible for
the interface susceptibility in Eqs. (2.21) and (2.1).

2.2 Free Energy of Hydration

The free energyF0 of solvating an ion in a polar molecular liquid is usually described

by the linear-response equation connecting it to the ion charge q through the solvation

susceptibilityχ

F0 = −1
2
χq2. (2.2)

Many computer simulation studies have shown that the quadratic scaling with the charge

is fulfilled remarkably well and solvation can be described as linear[121, 122, 123, 124].

Given this success, the main focus, in particular in applications[125, 126, 127], is to link

the solvation susceptibilityχ to the properties of the ion and the solvent. This study is

mostly concerned with the problem of the scaling ofχ with the size of a spherical solute.

We show thatχ can be represented as a one-dimensional radial integral of the local suscep-

tibility function χ0(r). An exact formula forχ0(r) is derived [Eq. (2.21)] and evaluated by

numerical simulations.
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The Born model of ion solvation represents the solvent by a continuum polarizable

medium and the ion by a spherical cavity with the radiusa carved in the continuum.[1] The

resulting solvation susceptibility is given by the relation

χB =
1

a

(

1−
1

ǫ

)

. (2.3)

The model thus factorsχ into the geometric cavity parametera−1 and the longitudinal

susceptibility[128, 129] of the bulk polar solvent∝ (1 − ǫ−1) defined by its dielectric

constantǫ. It is typically assumed that the cavity radiusa can be connected to the solute

radiusR0 by a distance off-setδ[130, 131],

a = R0 + δ. (2.4)

We show here that this phenomenological relation does not stand the test against numerical

simulations in a sufficiently broad range of solute sizes. Wepropose instead a new equation

for the cavity radius in terms of the solute-solvent radial distribution function.

The dependence on the solvent polarity is more complex than prescribed by the Born

equation when the assumption of the continuum polarizable solvent is lifted and finite

size of the solvent molecules is explicitly included. For instance, solvation of ions by

a fluid of dipolar hard spheres with diameterσ can be calculated in the mean-spherical

approximation (MSA). One gets for the cavity radius in the Born equation[132]a(p, T ) =

R0s − ∆(p, T ). Here,R0s = R0 + σ/2 is the distance of the closest approach of the

solvent to the solute repulsive core, which is also the position of the first maximumrmax of

the solute-solvent pair distribution function. The MSA solution thus predictsδ = σ/2 −

∆(p, T ) in Eq. (2.4), where∆(p, T ), by whichR0s is reduced, is the length of longitudinal

dipolar correlations in the bulk solvent[128, 129]. Based onthis theoretical prediction

and fitting the experimental data[130], it is commonly assumed that the phenomenological

cavity radiusa should fall betweenR0 andR0s[133]. For ”soft” solutes, the position of
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the first maximumrmax of the solute-solvent radial distribution function replacesR0s[134,

135].

The parameter∆(p, T ) carries the dependence on the thermodynamic state of the sol-

vent, which is indicated by its dependence on pressurep and temperatureT . This particular

solution exemplifies the general result that the cavity radius cannot be defined as a constant

even for a given solvent/solute combination and needs instead to be a function of the sol-

vent thermodynamic state[136, 135]. Assuminga = Const gives unreliable values for the

solvation entropy and, most likely, for other thermodynamic derivatives of the solvation

free energy[135, 137, 64, 98]. What we show here is that the dependence of the cavity size

on both the thermodynamic state of the solvent and on the solute-solvent potential can be

accommodated in terms of the solute-solvent radial distribution function.

The specific problem of ion hydration presents additional complications. The solvation

susceptibilityχ in Eq. (2.2) gains an additional dependence on the sign ofq, even though

the linear scalingF0 ∝ q2 is preserved for the positive and negative charges separately[135,

122, 137]. In addition, spontaneous polarization of hydration shells around solutes carrying

no charge creates a non-zero electrostatic potential within a zero-charge solute[138]. A

solute of zero charge does not polarize the solvent in the standard dielectric theories. This is

because of the assumption that the interface susceptibility is identical to the susceptibility of

the isotropic bulk liquid (homogeneous approximation discussed below). In fact, inserting

even a charge neutral solute into an isotropic solvent breaks the isotropic symmetry. Zero

polarization at zero charge is not required by symmetry any longer and can be violated

depending on the solvent, as indeed happens for aqueous solutions.

In the case of water, a nonpolar[137, 139] or a hard-sphere (HS)[138] solute carrying no

charge produces a spontaneous polarization of the interface with a resulting nonzero poten-

tial 〈φ〉0 atq = 0 (subscript “0”). The magnitude of〈φ〉0 is hard to establish experimentally
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even at a planar interface[140, 127], and the results of simulations show a significant de-

pendence of〈φ〉0 on the adopted force field[141, 142, 124, 108, 143]. The sign of 〈φ〉0 also

depends on the definition of the cavity potential and whethercavity repulsion is applied

to water’s hydrogen atoms[144]. Given these uncertainties, we do not discuss〈φ〉0 in this

paper, focusing instead on the charge susceptibilityχ in Eq. (2.2).

The positive sign of〈φ〉0 inside HS and Lennard-Jones (LJ) cavities in point-charge

force field water was calculated from a number of previous simulations[138, 124] and also,

for an extended range of radii, in our simulations as shown byFig. 37 in chapter 7. It

adds negative solvation free energy to an anion. However, although accounting for some

solvation asymmetry, this shift of the potential is not sufficient and lower values of the

cavity radii for anions compared to cations are required in the Born solvation susceptibility

χB in Eqs. (2.2) and (2.3)[124]. Along the same lines, we find here that the second cumulant

〈(δφ)2〉0, which is the main contributor to the solvation free energy[124], is asymmetric

between cations and anions, as first discussed by Hummeret al[122]. We attribute this

asymmetry to different local densities of water around ionsof opposite charge. Once the

density profile of the interface is accommodated into the definition of the cavity radius (Eq.

(2.18) below), the Born linear susceptibility successfullyaccounts for the scaling with the

solute size produced by the simulations.

2.2.1 General Formalism

The linear-response free energy of ion solvation can be written as the multipolar expan-

sion of the solute-solvent Coulomb potential in solvent multipoles[109, 145]

F0 = −1
2

∫

[

E0 · 〈P〉E + 1
3
∇E0 : 〈Q〉E + . . .

]

dr. (2.5)
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Here,E0 is the electric field of the ion charges andP andQ are the dipolar and quadrupolar

(defined according to Ref. 145) polarization densities of thesolvent, respectively. The

brackets〈. . . 〉E denote the two polarization fields in equilibrium with the solute.

The quadrupolar term is potentially important for hydration because of a large non-

axial quadrupole moment of the water molecules reflecting its charge asymmetry. We will,

however, drop it from our discussion here and focus solely onthe dipolar polarization of

the interface. This assumption is justified for relatively large solutes since quadrupolar

solvation decays faster with the solute size than dipolar solvation[146]. Our starting point

is, therefore, the linear solvation free energy[105] written as the integral of the electric field

of an ion with the dipolar equilibrium polarization density

F0 = −1
2

∫

E0 · 〈P〉Edr. (2.6)

Returning to the symmetry arguments presented above, the charge inversionq → −q

results inE0 → −E0, which reverses the sign in Eq. (2.6). The same reversal can be

achieved by flipping all the dipoles in the solventmj → −mj thus producingP → −P.

The Hamiltonian of the liquid in the external field,H = H0 −
∫

E0 · Pdr, will remain

invariant to the simultaneousq → −q andP → −P transformation when the unperturbed

HamiltonianH0 is invariant toP → −P. This is the case with the homogeneous ap-

proximation, which assumes that the solute does not strongly perturb the solvent and its

response can be given in terms of response functions of the homogeneous solvent (Born

formula, Eq. (2.3)). This implies thatH0 is effectively the Hamiltonian of the bulk solvent.

The transformationP → −P does not change any properties of an isotropic liquid. There-

fore, the solvation susceptibility in this homogeneous approximation should be invariant to

theq → −q transformation.

Alternatively, when the isotropic symmetry of the homogeneous solvent is broken by

the repulsive core of the solute, the dipole flipmj → −mj in the interface will produce a
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physically distinct configuration even atq = 0. In other words, the HamiltonianH0, which

includes the repulsive core of the solute, is not invariant toP → −P. One therefore expects

that the observables measured even in the linear response will not demonstrate theq → −q

invariance, in contrast to the models based on the homogenous approximation. This feature

is captured by the local approximation introduced below to contrast with the homogeneous

approximation of the standard dielectric theories. We stress that theq → −q asymmetry

does not violate the quadratic scaling of the solvation freeenergy with the ion charge. It

only implies that the solvation susceptibilityχ in Eq. (2.2) should be given different values

for positive and negative ions.

We also note that the quadrupolar polarization in Eq. (2.5) eliminates the symmetry to

the simultaneous transformationq → −q andmj → −mj. Therefore, this term, when

included, will also contribute to the asymmetry of the observables to the charge inversion

q → −q. This is what is often referred to as charge asymmetry of water contributing

to solvation asymmetry[137, 147, 148]. However, a potentially more important cause of

solvation asymmetry is the difference in the density profiles of water around cations and

anions, which is ultimately related to the asymmetric molecular shape and asymmetric dis-

tribution of molecular charge in water, but cannot be pinneddown to one specific molecular

property, such as molecular quadrupole. We present below arguments suggesting that this

is essentially a “zero-order” effect, which accounts for most of the solvation asymmetry in

terms of a density-weighted effective cavity radius of ion solvation.
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2.2.2 Approximate Interface Susceptibilities

The integral in Eq. (2.6) can be re-written, in the linear response, in terms of two fields

and a two-point correlation function of the polarization field

χαβ
0s (r

′, r′′) = 4πβ〈δPα(r
′)δPβ(r

′′)〉0, (2.7)

where the average〈. . . 〉0 is now taken over the configurations of water around the repulsive

core of the solute carrying no charge andδX for a spatially varying fieldX, such asδPα,

is used here to describe deviations from statistically average values. Equation (2.6) turns

into the following relation

F0 = −
1

8π

∫

E0α(r
′)E0β(r

′′)χαβ
0s (r

′, r′′) dr′dr′′. (2.8)

Here and in Eq. (2.7)α, β subscripts denote Cartesian projections and the summation over

the common indexes is assumed.

The fundamental complexity of the solvation problem arisesfrom the fact that the

second-rank tensor susceptibilityχ0s defined by Eq. (2.7) is a three-particle correlation

function involving correlations of translations and orientations of two water molecules with

the position and orientation of the solute. This difficulty has mostly been resolved over

many years of studies by attempting to reformulate the problem in terms of two-particle

correlation functions[106]. Two possible general directions for formulating such approx-

imations can be identified. They can be labelled as either (i)a “homogeneous” approxi-

mation or (ii) a “local” approximation (to which all models with the distance-dependent

dielectric constant can be assigned[149]).

In the homogeneous approximation, one assumes that the water-water correlations are

not significantly broken by the solute and one can replaceχ0s(r
′, r′′), depending on po-

sitions of two water moleculesr′ and r′′ separately, with a homogeneous susceptibility
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χs(r
′ − r′′) depending only onr′ − r′′ (isotropic liquids)[150]

χ0s(r
′, r′′) = θV (r

′)θV (r
′′)χs(r

′ − r′′), (2.9)

whereθV (r) is a step function equal to zero inside the solute and equal tounity otherwise.

It specifies the volumeV of the solvent from which the homogeneous solvent response is

calculated.

The alternative, local approximation would take the opposite view that inserting a solute

produces a major alteration of the water structure. Therefore, in this view, the structure of

the interface, and not the correlations present in bulk water, is of main significance for

the hydration thermodynamics. One then can go to the limit ofneglecting the correlations

between different water molecules in the interface altogether and replaceχ0s(r
′, r′′) with a

local function [107]

χ0s(r
′, r′′) = δ (r′ − r′′)χ0(r

′). (2.10)

While each of these assumptions, Eqs. (2.9) and (2.10), involve approximations, both

have been widely used since they significantly simplify the problem. In terms of going

beyond the static dielectric constant of a bulk liquid, the homogeneous and local approx-

imations correspond tok-dependent,ǫ(k)[151], and distance-dependent,ǫ(r), dielectric

constants, respectively. The wavevector-dependent dielectric constantǫ(k) of a bulk mate-

rial has a solid foundation in the Kubo linear response theory[60]. On the contrary,ǫ(r) was

originally introduced as a phenomenological prescriptionto account for inhomogeneity of

the interface[125, 152, 153] and has only recently receivedmicroscopic-based definitions

for spherical[107, 154, 155], planar[111, 107, 156, 113, 157], or cylindrical[155] interfacial

geometries.

What we want to accomplish here is to give a clear mathematicalfoundation of using

the distance-dependent polarization susceptibilityχ0(r) of the interface. This study is lim-

ited to spherical solutes and, therefore, only the radial, angular-symmetric susceptibility
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is considered. We in fact find that this susceptibility provides a good reference point for

describing ion solvation upon which more advanced theoretical algorithms can be devel-

oped. We first apply each of two closures, homogeneous and local, to the linear-response

solvation free energy in Eq. (2.8) with the goal of arriving at the Born equation. We then

provide in Section 2.2.4 an exact analytical solution forχ0(r) in terms of binary correla-

tions accessible from numerical simulations.

The free energy in the homogeneous approximation is the convolution of two electric

fields at pointsr′ andr′′ with the susceptibility function depending onr′ − r′′. These types

of integrals are best taken in the invertedk-space, which both eliminates the convolution

and allows one to reduce the problem to scalar susceptibility projections. In the case of a

spherical ion, this latter reduction is the consequence of the radial symmetry of the electric

field which couples to the longitudinal projection of the susceptibility[41, 158]

F0 = −
1

2

∫

dk

(2π)3

∣

∣

∣
ẼL

0 (k)
∣

∣

∣

2

χL
s (k). (2.11)

Here, ẼL
0 = k̂ · Ẽ0, k̂ = k/k is the longitudinal projection of the Fourier transform

Ẽ0 of the electric field of the ion taken outside its repulsive core, θVE0. Its longitudinal

character, stressed by the subscript “L”, is the combined result of the longitudinal field

E0 and the spherical symmetry of the ion’s repulsive core assumed here. Non-spherical

repulsive cores require both longitudinal and transverse response projections to determine

the free energy[158, 106].

The longitudinal susceptibility[159, 129, 160] in Eq. (2.11) is given in terms of the

longitudinal structure factor of the polar liquid[161]

χL
s (k) = (3y/4π)SL(k), (2.12)

where y = (4π/9)βm2ρ is the usual parameter of the dipolar density of molecular
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dielectrics[162] carrying molecular dipolesm and having the number densityρ = N/V .

The longitudinal structure factorSL(k) is given by Eq. 1.34.

We can now apply thek-space field of the spherical ion,̃EL
0 (k) = (4πiq/k)j0(ka)

(jn(x) is the spherical Bessel function of ordern[163]), and note thatχL(k) depends on

the product ofk and the solvent molecular diameterσ. The solvation susceptibilityχ in Eq.

(2.2) takes the form

χ =
2χB

π

∫ ∞

0

dxj0(x)
2χL

(

x
σ

a

)

/χL(0), (2.13)

whereχB is the Born susceptibility in Eq. (2.3). The dependence of thelongitudinal sus-

ceptibility on the wavevectork can be neglected whenσ ≪ a. The functionχL(xσ/a) can

be then replaced withχL(0) = (4π)−1(1 − ǫ−1), with the resultχ = χB. More generally,

χL(xσ/a) can be expanded inσ/a atσ ≪ a and one gets the solvation susceptibility in the

form χ = χB

∑

n cn(σ/a)
n consistent with the MSA solution[132].

The solution for the solvation free energy simplifies even further in the local approxi-

mation given by Eq. (2.10). The solvation susceptibility inEq. (2.2) becomes

χ =

∫ ∞

0

dr

r2
χ0(r). (2.14)

From this equation, one arrives at the Born result if one assumesχ0(r) = θ(r−a)(1−ǫ−1),

whereθ(x) is the Heaviside function. More generally, from Eqs. (2.7) and (2.10) and with

the account for the radial symmetry of the ion field,χ0(r) is a scalar function given by the

relation

χ0(r) = 4πβ〈δPr(r)δMr〉0. (2.15)

Here,Pr = r̂ ·P, r̂ = r/r andMr =
∑

j mj · r̂j is the sum of all radial projections of the

liquid dipoles assuming that the spherical ion is positioned at the origin of the laboratory

coordinate frame[145].
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Equation (2.15) is the direct consequence of the local response approximation in

Eq. (2.10) and is similar in structure to analogous relations recently proposed in the

literature[154, 113]. The local approximation is a useful device for deriving analytical

approximations, but is not required for producing the interface susceptibility from simula-

tion trajectories. In section 2.2.4, we derive an alternative, and exact, equation based on

the correlation of fluctuations of the radial polarization field and the solvent “reaction”[65]

potential at the position of the ion. The connection betweenχ andχ0(r) in Eq. (2.14) is

also exact in that formulation and does not require the localassumption of Eq. (2.10).

2.2.3 Cavity Radius

The average over the solvent configurations around the solute excluding the sol-

vent from its volume,〈. . . 〉0, in Eq. (2.15) can be expressed in terms of the three-

particle distribution functiong(r1ω1, r2ω2) representing the probability to find two wa-

ter molecules at the positionsr1 andr2 and orientations of their dipoleω1 andω2 with

the solute considered as the center of the laboratory coordinate frame[145]. The average

can be taken by employing the Kirkwood superposition approximation, g(r1ω1, r2ω2) ≃

g0s(r1ω1)gss(r12ω1ω2)g0s(r2ω2), whereg0s andgss stand for the solute-solvent and solvent-

solvent distribution functions, respectively. This derivation is given in appendix A. The

closed-form expression for the local susceptibilityχ0(r) can be achieved by taking the

long-range, continuum limit for the longitudinal structure factorSL(k) → SL(0) appear-

ing in the integral representation ofχ0(r). Thek = 0 value of the structure factor produces

the standard longitudinal dielectric susceptibility,SL(0) ∝ (1− ǫ−1), with the final result

χ0(r) =
(

1− ǫ−1
)

[g0s(r)]
2 . (2.16)

Here,g0s(r) is the solute-solvent radial pair distribution function.
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The radial susceptibilityχ0(r) represents the longitudinal response function of radial

hydration shells and therefore can be connected to a radial,distant-dependent dielectric

constant of the interface

ǫr(r)
−1 = 1− χ0(r). (2.17)

It is easy to see that this function crosses zero and becomes negative in the vicinity of the

peaks ofg0s(r) in Eq. (2.16)[113]. The radial dielectric constant itself hardly has any signif-

icant physical meaning and only the radial longitudinal susceptibility χ0(r) represents the

longitudinal polarization response of the interface. Thisnotion also implies that attempts of

producing radial dielectric constantsǫr(r), and perhaps more generally position-dependent

dielectric constants, in terms of phenomenological smoothfunctions have no support of

microscopic theories[107].

When Eq. (2.16) forχ0(r) is substituted into Eq. (2.14), one arrives at the standard

Born equation with the cavity radius defined as

1

a
=

∫ ∞

0

dr

r2
[g0s(r)]

α , (2.18)

whereα = 2 is required by Eq. (2.16). Our calculations of the response from simulations

below show that this choice ofα, following from the local approximation, overestimates the

oscillatory behavior ofχ0(r) and insteadα < 1 is required to reproduce the simulations.

Berne and co-workers[164] suggestedα = 1 in Eq. (2.18) whereas Linder and

Hoernschemeyer[136] used3g0s(r)/r4 as the integrand in Eq. (2.18) to define1/a3. All

these original propositions were given without proof, although representing the electro-

static energy by a sum over a dipolar lattice can be used to justify[63] α = 1 in Eq. (2.18).

A dipolar lattice of course does not display an interfacial density alteration and is not a

good model for testing the cavity concepts. On the other hand, our empiricalα-scaling

follows from the exact formula forχ0(r) taken from Eq. (2.21) derived in the next section

and used in Eq. (2.14), combined with its direct calculationfrom simulation trajectories.
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One can use Eq. (2.18) for a crude estimate of the scaling of the solvation free energy

with the cavity radius. This follows from ther → ∞ asymptote[145] ofg0s(r) = 1+h0s(r):

h0s(r) ∝ r−1. If h0s(r) dominates ing0s(r) near the contact, one can replace[g0s(r)]
α with

θ(r − a)[h0s(r)]
α in Eq. (2.18) to obtainF0 ∝ 1/aα+1. The power law decay in fact

gives a reasonable account of our simulation data (Fig. 5 below). However, the complete

integral representation for the cavity radius in terms of Eq. (2.18) is more consistent with

simulations. Note also that Eq. (2.18) yields the standard definition of the cavity size for

a structureless continuum interfacing the solute when the solute-solvent pair distribution

function reduces to the Heaviside function,g0s(r) = θ(r − a).

2.2.4 Exact Interface Susceptibility

In the previous section, we have discussed two approaches tohandle the inhomoge-

neous character of the interfacial response of a polar solvent in terms of the distribution

functions formalisms of liquid-state theories. Here, we provide an exact representation of

the interface susceptibilityχ0(r) in terms of correlation functions accessible from configu-

rations produced by numerical simulations.

The starting point of our analysis is the recognition of the fact that the electric field

of the ionE0 has longitudinal symmetry, implying that its curl is identically zero[109],

∇ × E0 = 0. The symmetry of the field of charges imposes a correspondingsymmetry

on the dipolar polarization densityP, which should be longitudinal as well[165]. The

longitudinal component of the polarization densityPL is directly related to the electrostatic

potentialΦp produced by the charges of the solvent[166, 20]

4πPL = ∇Φp. (2.19)

This connection can be productively used to derive the exactrelation for the interface sus-

51



ceptibility in Eq. (2.14), which can be re-written as follows

χ0(r) = (r2/q)

∫

χrβ
0s (r, r

′)E0β(r
′)dr′, (2.20)

whereχrβ
0s is given by Eq. (2.7) and the “r” superscript denotes the radial projection:χrβ

0s =

r̂αχαβ
0s . Note that this form ofχ0(r) in Eq. (2.14) is exact and does not require the local

approximation of Eq. (2.10).

By substituting Eq. (2.19) in place of theδPβ projection in Eq. (2.7) and integrating

by parts, one can eliminate the volume integral in Eq. (2.20)by noting that∇ · E0(r) =

4πqδ(r). The final result for the interfacial susceptibility is

χ0(r) = −4πβr2〈δPr(r)δφ〉0. (2.21)

Here,φ = Φp(0) is the electrostatic potential produced by the solvent at the position of the

ion at the center of the solute andδφ = Φp(0)− 〈Φp(0)〉. Further,φ can be directly related

to the molecular charge density of the solventρ′s = ρs(r
′) as follows

φ =

∫

ρ′s
r′
dr′ =

∑

j

qj
rj
, (2.22)

where the sum in the second part of the equation runs over all (partial) atomic chargesqj in

the solvent with radial distances from the ionrj.

As in Eq. (2.15) above, the average in Eq. (2.21) is taken overthe configurations of the

solvent in equilibrium with the repulsive core of the solute(subscript “0”). This prescrip-

tion allows one to calculate the interfacial susceptibility from computer simulations with

q = 0, as is done in this study. Further, the radial projection of the polarization density

Pr(r) is calculated in the radial shell betweenr andr + dr as follows

Pr(r) =
1

4πr2dr

∑

r≤rj≤r+dr

mj · r̂j. (2.23)

Finally, δPr(r) in Eq. (2.21) are the deviations ofPr(r) from average values in each shell.
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Given the obvious non-locality of the dipolar interactionsin a polar liquid, Eq. (2.21)

might look misleadingly local, suggesting a possibility todefine a local polarization re-

sponse in the interface. Clarifying the physical meaning of the correlation function in the

right-hand side of Eq. (2.21) seems therefore useful.

The radial projection of the polarization density is also the normal projection of the vec-

tor fieldP on the sphere of radiusr. Consequently,Pr(r) = σp(r) defines the density of

surface charge[109]σp(r) arising from the mathematical surface cutting through the water

molecules crossing the surface and by that creating surfacemonopoles (Fig. 3). Fluctua-

tions ofPr correspond, therefore, to fluctuations of the surface charge density,δPr = δσp.

These surface fluctuations correlate with the fluctuations of the molecular charge density

δρ′ over some correlation lengthλp. The result of these mutually correlated fluctuations,

integrated with the weight1/r′, is what makes the interface susceptibility function defined

in the introduction section. The non-locality of the interfacial response is in fact preserved

in the correlation function and is ultimately determined bythe extent of interfacial charge-

charge correlations.

2.2.5 Numerical Simulations

Several routes to access the free energyF0 are available within the linear response. The

most widely used and fastest to converge by numerical simulations[121] is through the

average potential〈φ〉 [Eq. (2.22)] of the water solvent in equilibrium with the charge q:

F0 = (q/2) (〈φ〉0 + 〈φ〉). Here, the equilibrium potential〈φ〉 includes the potential〈φ〉0

of the spontaneously polarized interface and an additionalpotential〈φq〉 produced by the

solvent in response to placing chargeq at the center of the solute. It is this second potential

that produces the quadratic scaling of the free energy with the ion charge [Eq. (2.2)] and is
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FIGURE 4: Water density profiles,ρ(r) = ρg0s(r), around the hard-sphere (HS) and
Kihara (KH) solutes as a function of growing size of the solute hard-sphere core (RHS for
KH andR0s for HS solute). The density profiles are calculated from MC simulations with
a single solute in the simulation cell containing TIP3P water at 298 K (see chapter 7 for
detail).

our focus here. The use of the average potential to calculateF0 has its disadvantages when

combined with Ewald sums used to treat electrostatic interactions in simulations. Ewald

sums require compensating the ion chargeq with the uniform background of the opposite

charge to neutralize the simulation cell[167, 168] and a corresponding correction for the

potential of the uniform background is required to calculate 〈φq〉.

To avoid this somewhat artificial situation of running simulations in a continuum back-

ground charge[169], one can simulate the solute carrying zero charge. The potential〈φq〉

can then be calculated from the perturbation theory, leading to the solvation susceptibility

in Eq. (2.2) in the form[123, 124, 147]

χ = β〈δφ2〉0. (2.24)
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The simulation cell is neutral in this case and the problem ofartificial background charge

is avoided. Furthermore, the variance of the potential doesnot depend on the presence

of the charge in the linear response,〈δφ2〉0 = 〈δφ2〉, and this route can be applied to

the calculations involving both neutral and charged solutes because the constant poten-

tial of the charged background is subtracted in the variance. We find from our simula-

tions that the equality of two variances is not satisfied for HS solutes carrying positive and

negative charges[122]:〈δφ2〉q<0 > 〈δφ2〉q>0. The structure of the interface around hard-

core objects is strongly modified by introducing even weak attractions[170], in this case

Coulomb solute-solvent interactions, but can be accommodated into the solvation suscep-

tibility through the effective cavity radius depending on the solute-solvent density profile

(see below). As the size of the HS core increases, the densityprofiles of the cations and

anions converge and the gap between the corresponding variances narrows.

2.2.6 Simulation Details

The second cumulant route to the solvation free energy [Eq. (2.24)] was adopted in our

Monte Carlo (MC) and molecular dynamics (MD) simulations of solutes of varying size

and solute-solvent potential hydrated by TIP3P[80] water at 298 K. The main goal here

is to see how the structure of the solute-water interface affects the dependence ofχ in Eq.

(2.2) on the solute size. Here, we have significantly extended the range of solute sizes

typically studied in the field of ion solvation[133, 124, 131] to the range of∼ 1 nm when

a substantial restructuring of the interface is expected tooccur[171, 172, 173]. Our goal

is also to compare the performance of the homogeneous and local approximations against

simulations and to explore the possibility of establishinga measure of the local polarity of
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the interface that can potentially replace the dielectric constant in the Born equation. We

indeed find that this local polarity can be defined in terms of the radial susceptibilityχ0(r).

A detailed description of the MC/MD simulation protocols is given in chapter 7. Here,

we only briefly describe the system setup. Two types of solutes interacting with TIP3P

water[80] at 298 K were used in the simulations. The first solute is a HS characterized

by the distance of the closest approachR0s of the water solvent to the solute. The size of

the HS solute was varied by changing this parameter in the rangeR0s = 2 − 10 Å. We

observed a strong dewetting[171, 173] of TIP3P water atR0s ≥ 5 Å (Fig. 4). Since the

dewetting phenomenon is strongly affected by the solute-solvent attraction and might not

occur for more realistic solutes of this size[170], two types of the solute-solvent attractions

were introduced. A number of single-charged (|q| = 1) anions and cations were simulated.

These introduce electrostatic attractions with the interfacial water multipoles oriented along

the ion field. These attractions, however, become weaker with increasing the solute size

and dewetting still occurs (Fig. 39 in chapter 7).

Real multi-atomic ions always involve solute-solvent dispersion attractions, which typ-

ically prevent dewetting of the interface[170]. In order torepresent this situation in our

modeling, simulations with the Kihara solute-solvent potential[174] were carried out as

well. The Kihara potential adds a layer of LJ 6-12 potential to a HS core characterized by

the radiusRHS (see chapter 7). The extent of solute-solvent attraction can be controlled by

the solute-solvent LJ energyǫLJ. The size of the solute was varied by changingRHS in the

range1 − 7.5 Å. The electrostatic potential of water at the center of the solute was calcu-

lated from the MC configurations and used to calculate the potential variance in Eq. (2.16).

Since Kihara potential does not have the problem of discontinuous forces characteristic of

HS repulsion, we used the NAMD 2.9[175] software package to calculateχ0(r) from Eq.
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FIGURE 5: Ion dimensionless solvation susceptibilityaχ from Eq. (2.2) obtained in MC
simulations and different models using the parameters of TIP3P water:ǫ = 97, σ = 2.87
Å (effective HS diameter), andm = 2.35 D. The horizontal dashed line shows the Born
result, Eq. (2.3). The points are results of MC simulations for HS and Kihara solutes
with the solute-solvent LJ energyǫLJ = 3.7 kJ/mol (“KH”) and 8 kJ/mol (“KH/8”). The
solvation free energies extracted from MC simulations are multiplied with the distancermax

from the solute center to the first maximum of the solute-solvent pair distribution function
(a = rmax). The points in the plot therefore show−2rmaxF0/q

2, where the solvation free
energyF0 is determined according to Eq. (2.24). The blue and red dashed lines are fits of
the simulation data to the dependencermax/(rmax−∆) (see text for explanation). The solid
line is the calculation with the homogeneous approximation, Eq. (2.13). The black dotted
lines are fits to the power decay∝ r−γ

max with γ = 0.9 (HS ) and 1.0 (KH).

(2.21) for two Kihara solutes. The susceptibilityχ0(r) is fundamentally a three-particle

correlation function, requiring long trajectories (∼ 200 ns) to converge.

2.2.7 Solvation Free Energy

Figure 5 shows the ion solvation susceptibilityaχ in Eq. (2.2) as a function of the cavity

radius for HS and Kihara solutes (the results for anions and cations are given in Fig. 40 in

chapter 7). The Born equation, Eq. (2.3), predicts a constantvalue, fully determined by the

dielectric constant, which is shown by the horizontal dash-dotted line. The homogeneous

approximation is shown by the solid line, and it approaches the continuum limit from above

with increasing the solute sizea, as expected from the general arguments. The calculations
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were done by applying Eq. (2.13), in which the longitudinal structure factor from numerical

simulations[176, 98] of TIP3P water was used.

The points shown in the plot refer to the dimensionless parameterrmaxχ with χ calcu-

lated according to Eq. (2.24) andrmax referring to the first maximum of the solute-solvent

pair distribution function. We note that the solvation susceptibility is affected by the nature

of the solute-solvent potential (HS vs Kihara), but is less affected by the strength of LJ

attraction. The two nearly coinciding sets of points in Fig.5 refer to the solute-solvent LJ

energy ofǫLJ = 3.7 kJ/mol (squares) and8.0 kJ/mol (diamonds) in the Kihara potential.

They demonstrate low sensitivity of the solvation susceptibility to the strength of solute-

solvent LJ attraction.

Since the cavity radiusa is an empirical parameter, which does not have to coincide

with rmax, the Born equation would predictrmaxχ ∝ rmax/(rmax−∆) (Eq. (2.4)), where∆ is

a distance offset to obtain the cavity radius fromrmax, a = rmax−∆. The simulation results

do not follow these expectations, as is shown by the dashed lines in Fig. 5 attempting to fit

the simulation points. A numerically better fit follows fromthe power decayrmaxχ ∝ r−γ
max

with γ ≃ 0.9 − 1.0. We can conclude that the scaling of the solvation susceptibility with

the solute size anticipated by the Born equation is not supported by the simulations.

The alternative to the Born equation is the integral form in Eq. (2.14), which involves

the local radial susceptibilityχ0(r). Equation (2.21) provides an exact solution for this

function, while the local approximation involves simplifications of two levels: the neglect

of the spatial extent of dipolar correlations in the hydration shell that leads to Eq. (2.15),

followed by the use of the continuum approximation in evaluating the correlator between

radial polarization and the radial dipole moment that leadsto Eq. (2.16). Two MD sim-

ulations of Kihara solutes of different size were carried out to accessχ0(r) and test both

approximations.
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ÅṪhe exact susceptibility function [Eq. (2.21)] calculatedfrom MD simulations (black
lines) is compared to the empirical relation [Eq. (2.25)] with α = 2/3 (solid red lines) and
α = 1 (dashed red lines). The blue lines indicateχ0 calculated in the local approximation
given by Eq. (2.15).

We first find thatχ0(r) as calculated from the exact relation in Eq. (2.21) is an oscilla-

tory function, with oscillations compatible with the density profile around the solute (Fig.

6). This result is consistent with Eq. (2.16), but the amplitude of oscillations is signifi-

cantly overestimated by that relation (not shown in the plot). At the same time, the local

approximation itself, without the use of the continuum limit in Eq. (2.16), is a much better

representation ofχ0(r), with only a slight overestimate of the oscillations amplitude (cf.

blue and black lines in Fig. 6). This comparison is a strong evidence in support of the local

approximation compared to the homogeneous one, suggestingthat the focus on the local

structure of the hydration shell, in contrast to the bulk-like dipolar correlations, is a better

starting point for constructing predictive theories of ionhydration.

The focus on the solute-solvent density profile to determinethe solvation susceptibility

as suggested by Eq. (2.16) is still a useful perspective, which needs to be corrected to

provide quantitatively reliable results. A better agreement with simulations can be obtained

by taking a fractional power, instead of a square, of the pairdistribution function in Eq.

(2.16). This results in the radial susceptibility functionin the form

χ0(r) =
(

1− ǫ−1
)

[g0s(r)]
α . (2.25)
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Figure 6 showsχ0(r)/r
2 (the integrand in Eq. (2.14)) withα = 2/3 compared to the MD

results. This empirical prescription is used to calculate the effective cavity radius in Eq.

(2.18).

It is important to understand the physical origin of a sublinear scaling of the interface

susceptibility function with the density profile of the interface. Allowing long-range, bulk-

like dipolar correlations in the interface leads toα = 2 in Eqs. (2.16) and (2.25). This result

physically implies that the dipolar correlations act cooperatively and enhance the suscepti-

bility in denser parts of the shell characterized by peaks ofthe radial distribution function.

When the correlations between the dipoles are neglected and only a one-particle dipolar re-

sponse is considered in the perturbation theory, one arrives[164, 63] atα = 1 in Eq. (2.25).

The sublinear scaling obtained from fitting the simulation data implies that denser parts

of the shell significantly hinder one-particle dipolar reorientations and a response weaker

than the one-particle one is produced. The linear scaling ofthe distant-dependent dielectric

constant with the density profile (α = 1) was noticed previously[107, 177], but this scal-

ing seems to apply better to the approximate, local form of the susceptibility function [Eq.

(2.15)] used in those simulations (cf. blue lines with dashed red lines in Fig. 6).

2.2.8 Effective Cavity Radius

Figure 7 compares the effective cavity radiusa calculated from Eq. (2.18) to the posi-

tion of the first peak maximumrmax of the solute-solvent radial distribution function. The

height of the peak is affected by packing advantages close toa solute of large size, in-

creasing its amplitude, and by the balance between the solute-solvent and solvent-solvent

attractions. The existence of the peak implies that the effective cavity radiusa is below

rmax, as is seen for the Kihara solute (red squares in Fig. 7), for which the amplitude of the
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first peak of the solute-solvent radial distribution functionrmax. The dashed line isa = rmax

line drawn to guide the eye. The simulations points are for hard-sphere (HS), Kihara (KH),
hard-sphere anion (A), and hard-sphere cation (C) solutes.rmax = R0s for HS solutes.

density peak stays nearly constant with the growing HS core (Fig. 4, lower panel). The situ-

ation, however, becomes more complex when the interfacial structure significantly changes

with increasing solute size.

This is the case with the HS solutes, where without the surface LJ attraction of the

Kihara potential, dewetting of the interfacial water occurs as the solute size increases (Fig.

4, upper panel). Lowering density of the interface results in an upward shift of the cavity

radiusa, which becomes greater thanrmax (blue circles in Fig. 7). HS anions and cations

show a weaker dewetting of the interface due to the solute-water attraction (Fig. 39 in

chapter 7), but the increase of the cavity radius is still observed as the attraction of the water

molecules to the solute becomes weaker with the growing solute size. In addition, the cavity

size of the cations (filled triangles in Fig. 7) is consistently greater than the cavity size of

the anions (open triangles in Fig. 7). This implies higher inmagnitude solvation energies

of the anions compared to the cations of the same size, a phenomenon well documented for

ion hydration.

The simple and significant outcome of this calculation is that assuming a constant dis-

tance offset ofrmax to define the cavity radius, such asa = rmax−∆ (as follows from the

61



0.8

0.6

0.4

0.2

0.0

 χ
B
 (

�
-1

) 

0.40.30.20.10.0

 χMC (�
-1

)

 HS
 KH
 A
 C

FIGURE 8: Solvation susceptibilityχ (Eq. (2.2)) calculated from MC simulations as
χMC = −2F0/q
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cavity radiusa calculated from Eq. (2.18). The results are reported for thehard-sphere
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MSA and often empirically assumed), has little chance to perform well for a broad range

of solute radii and solute-solvent potentials. Figure 7 in fact shows that the offset∆ can

be either positive or negative depending on the interactionpotential. The Kihara potential

might be a fortuitous case when this prescription works relatively well because the inter-

facial density profile remains almost unchanged with growing HS core due to the specific

form of this potential.

The cavity radius from Eq. (2.18) gives a good account of the free energy change with

the solute size. Figure 8 compares the solvation susceptibility χMC from MC simulations

[Eq. (2.24)] toχB [Eq. (2.3)] with the cavity radiusa given by Eq. (2.18). The slope of the

straight line betweenχB andχMC deviates from unity because of thek → 0 approximation

for the correlations between the dipoles in the hydration shell used to derive Eq. (2.18).

Nevertheless, the distinction in solvation energies of cations and anions of equal size (Fig.

7) is successfully accommodated in terms of their corresponding cavity radii.
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2.3 Interface Dielectric Constant

Some of phenomenological recipes proposed to deal with microscopic interfaces, such

as the popular distance-dependent dielectric constant forsolvation problems[125], do not

withstand the scrutiny of microscopic formulations[12]. The problem with such formula-

tions is that spatial correlation functions describing microscopic interfacial polarization are

typically highly oscillatory[107, 108] and do not allow defining simple distance-dependent

susceptibilities. If any meaningful microscopic susceptibility has a chance to enter the

standard boundary value problem, it should be consistentlyderived from the microscopic

Coulomb law in Eq. (1.41) and not introduced asad hocphenomenological recipe justified

by fitting to experimental data or results of numerical simulations. Providing such a consis-

tent approach is the goal of this article. In other words, themain question addressed here

is what is the dielectric constant, absorbing into itself the microscopic properties of the

interface, that should enter the standard dielectric boundary value problem? We provide

a general formulation of the problem, followed by specific calculations of the dielectric

response of water interfacing a spherical solute.

2.3.1 Boundary Value Problem

When one takes the statistical average in Eq. (1.41), one arrives at∇ · 〈D〉 = 0 inside

the dielectric where there are no external charges. This relation translates, through Gauss’

theorem, into the condition of discontinuity of the projection of 〈D〉 on the unit vector̂n

normal to the interface. This condition can be written as[105]

n̂ · (∇〈φ1〉 − ∇〈φ2〉) = 4πσ, (2.26)
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FIGURE 9: Surface charge density at the interface between a spherical cavity and a di-
electric with the dielectric constantǫs. The polarization density fieldP is aligned with the
radial field of a positive chargeq placed at the center of the cavity. The surface charge
densityσ is opposite in charge toq to screen its interactions with charges placed outside of
the cavity.n̂ denotes normal to the interface andr̂ = −n̂ is the unit radial vector.

whereσ is the surface charge density determined by the normal projections of the polariza-

tion densityPni = n̂ ·Pi (i = 1, 2) in two media in contact in the interface

σ = Pn1 − Pn2. (2.27)

In the standard dielectric theories, the surface charge density σ screens the external

charge. It means that if a probe charge is placed at a large distance from the interface,

the effective force between the external chargeq and the probe charge is reduced by the

opposite charge of the interface polarization and an effective chargeqeff, instead ofq, is

measured by the force. This is illustrated in Fig. 9 for the simple case of a spherical cavity

of radiusa with a chargeq placed at its center, as discussed in the numerical simulations

of aqueous solutions below. The positive chargeq will, in dielectric theories, create the

opposite in sign surface charge densityσ = −(1 − ǫ−1
s )(q/S), whereS = πa2 is the area

of the cavity. The effective charge producing the measurable force on an external probe

charge,qeff = q + σS = q/ǫs, is then reduced by the dielectric constant of the dielectric ǫs.

When the constitutive relation (1.43) is applied to statistically averaged fields〈E〉 and
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〈P〉 in Eq. (1.41),〈E〉 = −∇〈φ〉 satisfies the Laplace equation∆〈φ〉 = 0 inside the

dielectric where there are no external charges. The properties of the interface enter the

problem through the boundary condition in Eq. (2.27). Therefore, the goal of reformulating

the standard Maxwell boundary value problem needs to focus on introducing microscopic

properties of the interface into the boundary conditions ofthe Laplace equation. This is the

goal we are pursuing here.

Equation (2.27) suggests that the only property of the interface one needs to supply to

the solution of the Laplace equation is the surface charge density or the normal projection

of the polarization density. The linear response approximation[60] provides the desired

property in terms of a non-local susceptibility functionχ0(r, r
′) (generally a tensor) de-

pending on two coordinates in the interface

〈Pn(r)〉 =

∫

n̂ · χ0(r, r
′) · E0(r

′)dr′, (2.28)

where the 2-rank tensor of susceptibility is

χ0(r, r
′) = β〈δP(r)δP(r′)〉. (2.29)

Here,β = 1/(kBT ) andδP = P− 〈P〉.

The susceptibilityχ0 in Eq. (2.29) is a second rank tensor defined by the corresponding

Cartesian components[165]. For some geometries of the interface, it is convenient to con-

sider specific projections ofχ0. For instance, for the planar interface, one defines parallel

(n̂‖) and perpendicular (̂n⊥) projections[111, 107] as the scalar functionsχ‖ = n̂‖ ·χ0 · n̂‖

andχ⊥ = n̂⊥ · χ0 · n̂⊥. Similarly, for spherical solutes which we consider below,one can

define the scalar projection on the radial direction[107],χrr
0 = r̂ · χ0 · r̂. Such definitions

become less useful for interfaces of arbitrary shape. Usinglongitudinal and transverse sym-

metries of the polarization field provides a more general formulation[97, 158, 106]. Our

goal here does not involve calculating distance-dependentprojections of the susceptibility.
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We focus instead on the normal projection of the polarization density field in Eq. (2.27),

taken at the dividing surface, which can be defined for an arbitrary interface.

The two-point tensorχ0(r, r
′) depends on two positions,r and r′, separately to re-

flect its interface character and the involvement of three-body solvent-solvent-solute cor-

relations. This needs to be contrasted with the non-local susceptibility of bulk dielectrics

depending only onr− r′.

One can further assume that the length of polarization correlations in the interface is

much shorter than the characteristic dimension of the interfacial region and apply the local

approximation neglecting such correlations altogether[112]

χ0(r, r
′) = δ(r− r′)χ0(r

′). (2.30)

This approximation obviously eliminates the integral in Eq. (2.28) shifting the focus to the

inhomogeneous susceptibilityχ0(r). It can be obtained by integrating Eq. (2.29) overr′

χ0(r) = β〈δP(r)δM〉, (2.31)

whereM is the total dipole moment of the dielectric. Analogues of this equation for dif-

ferent symmetries of the interface have been proposed by by Stern and Feller[111] and

by Ballenegger and Hansen[107, 112] and extensively used in anumber of recent simula-

tions of interfacial polarization[156, 155, 113, 178]. We note that the local approximation

becomes exact in the limit of a uniform external field considered by Stern and Feller[111].

Before we proceed to the exact formula for the susceptibilitytensor, not involving the

local approximation of Eq. (2.30), it is useful to provide the connection between Eq. (2.31)

and the dielectric experiment performed by applying a uniform electric field to the bulk

dielectric. One obtains for an isotropic dielectric

(β/Ω)〈(δM)2〉 = Ω−1

∫

Ω

Tr[χ0(r)]dr, (2.32)
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where the integration is performed over the volumeΩ of the dielectric andTr[χ0] =
∑

α χ
αα
0 . The fluctuation expression on the left-hand side of this equations enters the

Kirkwood-Onsager equation for the dielectric constant[179] and thus provides the connec-

tion between the volume integrated susceptibility to the bulk dielectric constantǫs. Such

a connection is, however, not straightforward when one considers the distance dependence

of a specific projection ofχ0(r). In other words, polarization fluctuationsδP(r) still carry

microscopic information, no matter how far from the interface. These fluctuations are

coarse-grained, with the microscopic information lost, byvolume integration.

Even though the local approximation provides a fast resolution of the problem, it is not

required[20]. One can take into account the longitudinal character of the field of external

chargesE0 and the fact that
∫

P′
T · E′

0dr
′ = 0 for the transverse projection of the polariza-

tion fieldPT (Helmholtz theorem[99]). Therefore, only the longitudinal projection of the

polarizationP′ = P′
L entersχ0 in Eqs. (2.28) and (2.29). The longitudinal projection of the

polarization is in turn connected to the potential of the bound charge as[20]4πPL = −Eb,

whereEb is given by Eq. (1.40). Given thatEb = −∇φb, one can apply the Gauss theorem

to eliminate the integral in Eq. (2.28). The result is the exact relation forPn not requiring

the use of the local approximation

〈Pn〉 = −β〈δPnδU
C〉. (2.33)

Here,

δUC =
∑

i

qiδφbi (2.34)

is the fluctuation of the Coulomb interaction energy of the dielectric with the external

chargesqi; φbi is the potential of the bound charges of the dielectric at thelocation of the

chargeqi, δφbi = φbi − 〈φbi〉.

Equation (2.33) is the exact solution for the problem of the surface charge density in

the interface assuming linear response to the field of external charges. Deriving it does
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FIGURE 10: Comparison of the local [Eq. (2.37)] and exact [Eq.(2.38)] formulas for
the interface susceptibility of TIP3P water interfacing Kihara solutes of different size. The
Kihara solutes are characterized by the hard-sphere core ofthe radiiRHS = 2 and 10 Å and
the Lennard-Jones (LJ) diameter ofσLJ = 3 Å for the LJ interaction between the solute
and water’s oxygen. The position of the first peak of the radial distribution function is
approximately located atRHS + σLJ.

not require constitutive relations. If the constitutive relation (1.43) is adopted, one can find

the statistically averaged electrostatic potential of theinterface〈φ〉 from the solution of the

Laplace equation and, in addition, ask the question of what susceptibility, or dielectric con-

stant, can be assigned to the interface. Such scalar interface susceptibility can be defined

by the equation

〈Pn〉 = χ0nE0n. (2.35)

It is important to emphasize that no specific assumptions regarding either the origin of

the polarization densityPn or the electrostatic energyUC have been introduced in deriving

Eq. (2.33). Both parameters can be microscopic quantities sampled by numerical computer

simulations. For instance, a polar liquid with molecular dipolesmj with coordinatesrj will

have the polarization densityPn(r) = n̂ ·
∑

j mjδ (r− rj). Correspondingly,UC can be

viewed as the energy of Coulomb interactions of all atomic partial charges of the dielectric

with the external charges. This property is routinely provided by numerical simulations.
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Equation (2.35) can be substituted back to Eqs. (2.26) and (2.27) to produce the bound-

ary conditions for the Poisson equation

n̂ · (∇〈φ1〉 − ∇〈φ2〉) = 4π (χ0n,2 − χ0n,1) n̂ · ∇φ0, (2.36)

whereφ0 is the electrostatic potential of external charges remaining continuous at the di-

viding surface. This is the only place where the susceptibility of the interface enters the

boundary value problem. The local constitutive relations,Eqs. (1.42) and (1.43), applied

globally to the entire dielectric sample in dielectric theories, are replaced with the constitu-

tive relation in Eq. (2.35) applied to the dividing surface only.

The constitutive equation (2.35) might be a reasonable approximation for a few molec-

ular layers in the interface, but is not expected to hold globally. Likewise, the susceptibility

χ0n, and the interface dielectric constantǫint defined for spherical solutes below, are pa-

rameters characterizing the interface. We, therefore, do not expect them to approach the

dielectric susceptibility or the dielectric constant of the bulk material in any specific limit.

Even for a macroscopic interface,χ0n is still an interfacial parameter (like the surface ten-

sion), which should not be expected to be simply related to the bulk susceptibilityχs.

2.3.2 Interface of a Spherical Solute

Here we apply the arguments presented above to the problem ofwater polarization at

the interface of a spherical solute. The normal to the interface is defined outward from

the dielectric[105],̂n = −r̂, r̂ = r/r (Fig. 9). A further simplification of the geometry

is achieved by locating the external charges at the center ofthe solute. All susceptibility

tensors become scalars with the only non-zero diagonal radial componentχrr
0 = r̂ · χ0 · r̂.

We will drop the indexes for brevity with the notationχ0(r) = χrr
0 (r). For this specific
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type of interface, the local approximation leads to

χ0(r) = β〈δPr(r)δMr〉, (2.37)

wherePr = −Pn andMr = −Mn denote the radial projections of the corresponding

vectors (Fig. 9).

Since the electric field of the central chargeq is E0n = −q/r2, one can define the

distance-dependent linear interfacial susceptibilityχ0n(r) analogous to the one in Eq.

(2.35)

χ0n(r) = −βr2〈δPr(r)δφb〉, (2.38)

whereφb is the electrostatic potential produced by the dielectric at the center of the spher-

ical solute where the external charge is placed. The interfacial susceptibilityχ0n follows

from this function by adoptingr = a, i.e., the radius of the spherical surface separating

the solute from the surrounding dielectric. We note that ourEq. (2.38) is equivalent to its

integral form earlier derived by Ballenegger and Hansen[107]

χ0n(r) = 4πr2β

∫ ∞

a

〈δPr(r)δPr(r
′)〉dr′, (2.39)

where the integral overr′ producesδφb in our Eq. (2.38).

The definition of the position of the dividing dielectric surface presents a major diffi-

culty for all dielectric theories, and it is not going to go away in our formulation recasting

the problem of a microscopic polarized interface as the dielectric boundary problem. The

question we are addressing here is what is the susceptibility or the surface charge den-

sity that needs to enter the boundary conditions once such a dividing surface is defined.

However, the question relevant to this goal is how sensitivesuch a definition would be

to possible variations of the position of the dividing surface. One ideally wants a robust

definition, little sensitive to changes in the cavity radiusa.
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FIGURE 11: Definition of the interface susceptibilityχ0n in terms of the slope of
−〈δMr(r)δφb〉 according to Eq. (2.40). The dashed lines show linear fits to−〈δMr(r)δφb〉
calculated from MD simulations of Kihara solutes interfacing TIP3P water. The hard-
sphere core of the Kihara solutes was varied in simulations:RHS = 2 (red), 5 (blue), 7.5
(cyan), 10 (green), and 15 (black) Å.

Figure 10 showsχ0(r) in the local approximation [Eq. (2.37)] and the exactχ0n(r)

[Eq. (2.38)] calculated from molecular dynamics (MD) simulations performed in this study.

The simulations are done for TIP3P water[80] interfacing spherical solutes of varying di-

ameter and interacting with the oxygen of water by the Kiharapotential (a hard-sphere

repulsion core with the radiusRHS combined with a surface layer of soft Lennard-Jones

potential)[180, 154]. One has to keep in mind that correlation functions in Eqs. (2.33) and

(2.38) are fundamentally three-particle correlations involving two solvent molecules and

the solute. Relatively long MD simulations,∼ 200 ns, were therefore required to converge

them for each solute studied here. More detail on the simulation protocol is given in chapter

7 and here we discuss the results.

It is clear from the calculations that the local [Eq. (2.37)]and exact [Eq. (2.38)] for-

mulations for the radial interface susceptibility generally agree with each other. The exact

formulation is obviously preferable since it is free of the locality assumption. Both results

show an oscillatory behavior of the interface susceptibility, leading to potential uncertain-

ties when the cavity radius is altered. Some type of averaging over the oscillations is

needed to arrive at a robust definition of interfacial susceptibility and the corresponding
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FIGURE 12: Interface dielectric constantǫint plotted against the cavity radiusa = rmax

defined as the distancermax to the first peak of the solute-oxygen pair distribution function.
Circles refer to neutral Kihara solutes, while diamonds refer to anion and cation Kihara
solutes (RHS = 10 Å, rmax = 11.05 Å) with chargesq = ±1 placed at the solute’s center
(not distinguishable on the scale of the plot). The dashed line is a linear regression through
the points drawn to guide the eye.

dielectric constant. An approach developed previously[20] and adopted here is to define

χ0n as the slope of the integrated correlation function involving the instantaneous dipole

momentMr(r) of water within the sphere of radiusr and the electrostatic potentialφb.

The resulting expression provides the scalar susceptibility of the interface, averaged over

the oscillations caused by molecular granularity,

χ0n = −
β

4π

d

dr
〈δMr(r)δφb〉. (2.40)

If differential in the above equation is taken at each point,one recoversχ0n(r), with its

oscillatory behavior shown in Fig. 10. Alternatively, instead of taking the differential at

each point, we determine the linear slope in respect tor to average out the oscillations of

χ0n(r) caused by molecular granularity. This linear slope then provides us with the scalar

coarse grained susceptibility of the interface with oscillations averaged out. Figure 11

shows that indeed the slope can be well defined from the correlation function〈δMr(r)δφb〉.

The susceptibilityχ0n to a radial external fieldE0n should be associated with the in-

terface dielectric constantǫint according to the relation(ǫint − 1)/(4πǫint) = χ0n[107, 20],

72



which leads to

ǫint = [1− 4πχ0n]
−1 . (2.41)

These values, obtained from the slopes of the radial correlation functions shown in Fig. 11,

are presented in Fig. 12. We find thatǫint decreases slowly from∼ 9 to 4 as the effective

size of the solute increases from∼ 5.5 Å to 18.5 Å. Overall, the value of the interface

dielectric constant is much smaller than the bulk value for TIP3P water,ǫs ≃ 97[181].

While there is noa priori reason to anticipateǫint = ǫs, it is this assumption that is used

in the standard dielectric boundary value problem.[109] Wealso note that the definition of

ǫint by Eq. (2.41) is prone to numerical instabilities when4πχ0n becomes greater than unity

due to calculation errors.ǫint is not required for the solution of the boundary value problem

in Eq. (2.36) andχ0n is sufficient. It is presented here solely because of the history of the

subject casting the dielectric boundary value problem in terms of the dielectric constant.

The results shown by circles in Fig. 12 are obtained for neutral Kihara solutes. Even

though Eq. (2.33) contains the electrostatic interaction energy with the external charge

of the ion, which is proportional to the charge magnitude, charge cancels out when the

surface susceptibility is defined by dividing the surface polarization by the ion field in Eq.

(2.35). We therefore operate in the linear response domain,when one can assume that

the presence of the external charge does not alter the structure of the interface used to

perform the statistical averages. That this is indeed the case is demonstrated by simulating

Kihara solutes with positive and negative charges placed attheir centers. These results

are shown by diamonds in Fig. 12 and are indistinguishable from the results obtained for

neutral solutes (see chapter 7 for more detail). Our simulations are indeed consistent with

the linear response approximation.

The small value of the interface dielectric constant of water has potentially dramatic

consequences for the problem of hydration. Our formalism anticipates thatǫint is used in the
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dielectric boundary value problem. Therefore, the solvation free energy of a spherical ion

carrying chargeq and assigned the cavity radiusa is given by the standard Born equation[1,

122]F = −(1/2)χBq
2, where the Born solvation susceptibility is

χB =
1

a

(

1−
1

ǫint(a)

)

. (2.42)

Here,ǫint(a) indicates that the dependence of the Born solvation susceptibility on the cavity

radius can be more complex than the traditionally anticipateda−1 scaling.

The reasons for the relative success of the Born equation in predicting the free energy

of solvation and its dramatic failure in describing entropyof solvation have long been

known[135, 182, 137, 124]. Both are related to the low sensitivity of the Born formula to

the solvent properties when the bulk dielectric constantǫs ≫ 1 is used instead ofǫint in Eq.

(2.42). The traditional form of the Born equation significantly underestimates the entropy

of solvation[135] since the termǫ−2
s ∂ǫs/∂T , appearing in the entropy, is too small. This

deficiency can be potentially remedied if, according to our calculations,ǫint ≪ ǫs. The final

verdict requires knowledge ofǫint(T ). Our estimate for TIP3P water gives(∂ǫint/∂T )V ≃

−0.8×10−4 K−1, which is significantly lower than(∂ǫs/∂T )P = −0.36 K−1 of bulk water.

Whether this low value is shared by more realistic force fieldsof water is not clear at the

moment.

2.4 Conclusions

We have presented here a consistent derivation of the radialdipolar susceptibility of

water hydrating a spherical ion. This function is viewed as amicroscopic foundation of

the distant-dependent dielectric constant of phenomenological models. An exact solution

for this function is given in terms of the correlation between fluctuations of the radial po-

larization density of water with fluctuations of the electrostatic potential created by water
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at the position of the ion [Eq. (2.21)]. The susceptibility calculated from numerical sim-

ulations shows an oscillatory behavior consistent with thedensity profile of the interface.

This function is empirically approximated by a power law of the solute-water pair distri-

bution function. Oscillations of the interface susceptibility make approximations based on

smooth distance-dependent dielectric constants of the interface inconsistent with the exact

solution.

The connection between the interface radial susceptibility and the pair distribution func-

tion has allowed us to determine the effective cavity radiusin the Born expression for the

solvation free energy. This connection would not have been possible in the absence of the

susceptibility function since developing cavity models byfitting the overall solvation en-

ergy is unreliable. The proposed algorithm incorporates the density profile of the interface

into the definition of the electrostatic cavity [Eq. (2.18)]. This expression provides correct

scaling of the hydration free energy with the solute size andsuccessfully accounts for dif-

ferent solvation energies of anions and cations of the same size in terms of different density

of water in their hydration shells.

In addition, a formalism is presented connecting the Maxwell boundary value problem

with the microscopic structure of the interface. In other words, the dielectric constant that

should enter the boundary conditions in the Laplace equation describing a polarized dielec-

tric interface is investigated. The problem is formulated in terms of the interface suscepti-

bility or, alternatively, the interface dielectric constant. This property is calculated from an

exact equation statistically averaging correlated fluctuations of the interface polarization

density and the electrostatic energy of external charges interacting with the polarized di-

electric. Evaluated by MD simulations of water interfacingspherical solutes, the interface

dielectric constant is found to be significantly lower than the corresponding bulk value.
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Chapter 3

SOLVATION SUSCEPTIBILITY IN THE NON-HARMONIC REGIME:

POLARIZABLE SOLUTES

3.1 Summary

Interfacial structural transition in hydration shells of apolarizable solute at critical po-

larizabilities is discovered. The transition is manifested in maximum water response, the

reorientation of the water dipoles at the interface, and an increase in the density of dan-

gling OH bonds. This discovery suggests that some configuration of the solution can pro-

duce a greater sensitivity and, as a result, a greater control of the chemical reactivity in

(bio)chemistry.

3.2 Introduction

When the electric fieldE0 is introduced by a solute into a condensed polar material,

the response of the medium (solvent) is largely linear: the electrostatic potential or field

of the solvent is a linear function of solute’s charge or dipole. The linear response (also

known as the Gaussian approximation) assumes a harmonic free energy as a function of

the medium collective coordinate coupled toE0[122]. In polar solvents, the dipolar po-

larization density of the solventP becomes such collective coordinate when higher-order

multipolar fields, such as the quadrupolar polarization density, are neglected[109]. The

harmonic electrostatic free energy of the solution reads

F [P] = −E0 ∗P+ (2χ)−1P ∗P, (3.1)
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where the asterisk implies both the tensor contraction and the volume integration over the

space occupied by the solvent[165]. The solvation susceptibility χ is an analog of the

susceptibility of a material to an external field, but it alsodepends on the geometry of the

solute repulsive core. This dependence enters through the Maxwell boundary conditions

whenP is approximated by a continuum polarization field.

The minimization ofF [P] in respect toP yields the equilibrium solvation free energy

F0 = −(χ/2)E0 ∗E0, which becomes the standard Born equation for a spherical ionwhen

the longitudinal susceptibilityχL ∝ (1 − ǫ−1) is used in Eq. (3.1). Since the solvent

dielectric constantǫ is large for many polar solvents,F0 is close to its saturation limit at

ǫ → ∞. Only minor changes in the solvation free energy can be achieved by changing

either the solvent or the thermodynamic state of the solution.

The situation can potentially change near the critical point of the phase diagram where

the second, harmonic term in Eq. (3.1) vanishes[183]. This term describes the reversible

work (free energy) required to change the polarization of the liquid from P = 0 to P

when the solute produces no field (E0 = 0). Correspondingly, a large quadratic penalty

for increasing the polarization makes strong variations ofF0 hard to achieve. The general

question we address here is whether one can significantly reduce the quadratic penalty and

what kind of solvent response might be expected if the quadratic term in the free energy

functional approaches zero, which corresponds toχ→ ∞.

Using the analogy with bulk phase transitions[183], we consider here a specific physi-

cal mechanism of reaching a state of vanishing harmonic expansion term. The molecular

polarizability of the solute is used to tune the harmonic response. In order to simplify the

electrostatic part of the problem, the solute is a dipolem at the center of a spherical core

characterized by the isotropic dipolar polarizabilityα. The electrostatic problem can be

recast in terms of the instantaneous fieldE, which is the projection of the electric field of
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the solvent on the solute dipole

F [E] = −mE + (κ/2)E2 − (α/2)E2 +G[E]. (3.2)

Similarly to Eq. (3.1), the second term in this equation is the harmonic free energy penalty

for producing an electric field inside the solute carrying nodipole and no polarizability.

The ′′spring constant′′ κ ∝ χ−1 carries the meaning of the solvation modulus;κ−1 =

(2/R3)(ǫ− 1)/(2ǫ+ 1) for a spherical dipole in a dielectric[65]. The third term isthe free

energy of polarizing the polarizable solute, andG[E] includes the higher-order expansion

terms.

3.3 Discussions and Results

It is clear from Eq. (3.2) that the harmonic term vanishes atκ = α. The harmonic trun-

cation becomes inadequate in the vicinity of this point and higher-order expansion terms,

given byG[E], are needed. A general form ofG[E] is, however, unknown. Therefore,

numerical Monte Carlo (MC) simulations are used here to study the vicinity of the critical

pointκ = α and the transition to non-harmonic solvation when the harmonic truncation in

Eqs. (3.1) and (3.2) becomes inapplicable. The questions addressed here are whether one

can achieve a stronger solvent response nearκ = α compared to the standard harmonic

(Gaussian) models and whether microscopic changes in the structure of the interface are

realized near the critical point.

The answers to both these questions are affirmative. Figures13 and 14 illustrate our

main findings. Figure 13 shows the average field at the solute dipole (Onsager’s reaction

field[65]) and the variance of the solvent electric field, both as functions of the solute

polarizability. We observe an inflection of the average fieldatα∗ ≃ 20− 22 Å3 (Fig. 13a)
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FIGURE 13: (a) Onsager reaction field〈E〉 for the hard-sphere (HS) and Lennard-Jones
(LJ) solutes with the dipole momentm0 = 5 D and varying polarizability in TIP3P water
atT = 298 K. The solid lines are fits to the Landau functional inE; simulation errors are
smaller than symbol sizes. (b) The variance ofE with error bars indicating the simulation
uncertainties. The solid lines refer to the Landau theory based on the fitting of〈E〉 shown
in (a). The blue triangles indicate the results of moleculardynamics simulations for the LJ
solute in modified TIP4P water (see chapter 7).

and a corresponding spike in the field variance (Fig. 13b). The field variance is proportional

to the dipolar susceptibility and the spike in the variance implies a corresponding spike in

the susceptibility. The divergenceχ → ∞ is avoided by the higher-order expansion terms

in G[E] as discussed below. We start the discussion with the question of the microscopic

origin of the susceptibility spike. We have found that it is driven by a structural transition

of the hydration shell.

The MC simulations reported here were done for two solutes: ahard-sphere (HS) solute

with the HS radiusRHS = 4.15 Å and a Lennard-Jones (LJ) solute with the LJ radius

RLJ = 3 Å. Each solute carried two opposite charges,+q and−q, placed symmetrically

relative to the solute center at the short distance ofd = 0.05 Å to model an ideal dipole.

The LJ solute additionally had a LJ12–6 site located at its center with the LJ energyǫLJ =

280 K. The dipole moment of the solute was varied by changing the magnitude ofq (see
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FIGURE 14: Solute-water distribution functionsgℓ0s(r) (Eq. (3.3)) for the LJ solutes with
the polarizabilitiesα indicated in the plot. (a) The solute-oxygen (solid lines) and solute-
hydrogen (dashed lines) radial distribution functions (ℓ = 0). The inset shows the height
of the first solute-solvent peakG. The horizontal arrow indicates the separation of the first
oxygen and hydrogen peaks. The orientational functions with ℓ = 1 andℓ = 2 are shown
in panels (b) and (c), respectively.

chapter 7 for the details of the simulation protocol). Most of the results are reported for

TIP3P water[80]. Our conclusions are not sensitive to the choice of either the water model

or specifics of the solute. This is indicated by the comparison with the results obtained

with a slightly modified TIP4P water model[80] (Fig. 13) combined with a larger distance

between opposite charges in the solute (d = 1.5 Å).

The reason for choosing two solutes was to show that the general phenomenology re-

ported here is not a property of some specific solute-solventinteraction potential, but in-

stead reflects a more general competition between the free energy gain of polarizing the

solute and the free energy penalty of orienting the solvent dipoles to create the electric

field. Two different solute sizes were adjusted to produce nearly equal polar response of

TIP3P water to the solute dipole. The reaction field is a linear function ofm at α = 0:
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〈E〉 = κ−1m. The HS and LJ solutes were chosen to produce close values ofκ in two

cases (κHS = 28.7 Å3 andκLJ = 29.6 Å3, see Fig. 41 in chapter 7).

Figure 14 illustrates the structure of the hydration shell of the polarizable LJ solute

as defined by the orientational solute-solvent distribution functionsgℓ0s(r) of increasing

order (gℓ0s(r) of the HS solute are shown in Fig. 44 in chapter 7). The function gℓ0s(r) is

given as the average Legendre polynomial of orderℓ specified by the scalar product of the

unit dipole moment̂mj and the radial unit vector̂rj of the water moleculej positioned at

distancerj from the solute center

gℓ0s(r) = ρ−1
∑

j

〈Pℓ(m̂j · r̂j)δ(rj − r)〉 . (3.3)

Here,ρ is the number density of bulk water.

The orientational structure of interfacial water next to HSand LJ solutes is consistent

with the phenomenology established for planar hydrophobicsurfaces[184], molecular non-

polar solutes[171], and hydrated nanoparticles[185] whenα is small. The height of the first

maximumG of the solute-water radial distribution function (ℓ = 0) is below the maximum

of bulk water (inset in Fig. 14a), indicating a weak dewetting of the interface[186]. In addi-

tion, the water dipoles are preferentially oriented tangentially to the dividing surface[184].

The increase of the solute polarizability dramatically changes this phenomenology, pro-

ducing a structural transition in the hydration shell. Unlike the gradual change to the hy-

drophilic behavior caused by increasing surface polarity[187], the transition observed here

is abrupt and analogous to the global loss of stability at thepoint of phase transition[183].

Increasing the solute polarizability substantially alters the density profile (ℓ = 0) and

the orientational structure (ℓ > 0) of the hydration shell. One clearly sees an increase in

the density of the first hydration layer (Fig. 14a): the maximum of the radial distribution

function grows with increasing polarizability and the firstminimum decreases in amplitude

81



40

30

20

10

 〈 
N

h〉

3020100

  
 HS
 LJ

(a)

0.40

0.30

0.20

0.10

0.00

 〈(
δN

h)
2 〉/〈

N
h〉

3020100
  α (Å

3
) 

(b)

FIGURE 15: (a) The average numbers of water molecules in the first hydration shell of HS
and LJ solutes. (b) Hydration shell compressibilities. Theerror bars indicate the simulation
uncertainties.

and becomes increasingly shallow. Near the critical polarizability α∗, producing the spike

in the electric field variance (Fig. 13b), a layering transition[188] occurs separating the first

and the second hydration layers. This transition is particularly distinct for the HS solute

(Fig. 44 in chapter 7).

Collapse of the first hydration layer is also seen as a stepwisedrop in the number of

hydration watersNh (Fig. 15a) calculated within the shell geometrically defined to extend

up to the first minimum of the radial distribution function. The variance of the number

of shell waters drops, however, faster than the average withincreasingα, resulting in an

overall decrease of the shell compressibility[189]〈(δNh)
2〉/〈Nh〉 at α > α∗ (Fig. 15b).

The structural collapse of the hydration layer is accompanied by an orientational transition

to accommodate the high density of the first-shell waters.

The first peak of the solute-hydrogen distribution functionshifts, with increasingα, to

shorter distances compared to the first solute-oxygen peak (Fig. 13a). This shift indicates
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the switch of the preferential outward (into water) orientation of the interfacial hydrogens

to the inward (toward the solute) orientation. In the range of α > α∗, the distance between

the oxygen and hydrogen peaks is≃ 1 Å, essentially equal to the O-H distance in TIP3P

water. This implies that the corresponding OH bonds are protruding from water toward the

solute, thus forming “dangling” OH bonds[190, 191].
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FIGURE 16: The number of unsatisfied hydrogen bondsNOH within the sphere of radius
rs = 7.3 Å measured from the center of HS and LJ solutes.

The appearance of dangling bonds seen from the radial distribution functions is consis-

tent with the growth of a positive first peak of the orientational distributiong20s(r) in Fig.

14c. It is also clear that the release of dangling OH eliminates the restrictions imposed by

the bulk-like tetrahedral arrangement of the water molecules and, therefore, allows the col-

lapse of the hydration layer to a higher density. The result is a distinct structural transition

releasing dangling OH bonds and occurring at the critical value of the solute polarizability

zeroing out the quadratic term in the free energy functional. The number of dangling OH

bonds can be viewed as an order parameter of the structural interfacial transition, which

can be experimentally monitored[190, 191].

The dangling bonds are identified experimentally by their separate vibrational line[190].

There is no clear connection between this spectroscopic identification and structural infor-

mation available from simulations[191]. Since we cannot directly count spectroscopically

active dangling bonds, we have calculated unsatisfied hydrogen bonds according to Wernet
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et al.[192]. The numbers of unsatisfied bonds are typically higher[191] than spectroscopic

dangling OH: about one dangling OH per four water molecules at extended hydrophobic

interfaces[190] or even lower numbers around molecular-sized solutes[191]. Nevertheless,

the numbers of unsatisfied bonds vsα might mirror the corresponding trend for dangling

bonds. Those numbers indeed increase withα when counted in water layers of different

thickness. Figure 16 shows the results for the closest hydration layer with the thickness of

the water diameter. A similar trend is seen for a wider shell (Fig. 45 in chapter 7).

The simulation data for the reaction field were fitted (solid lines in Fig. 13a) by applying

a Landau functional[183] involving the fourth and sixth order expansion terms inG[E]

in Eq. (3.2): G[E] = −(b/4)E4 + (c/6)E6. The exclusion of the odd powers inE is

required by the invariance under the inversionE → −E whenm = 0. The fit to the

reaction field from simulations is then used to calculate thevariance ofE: 〈(δE)2〉 =

[(∂2F/∂E2)|E=0]
−1. The results of these calculations are shown by the solid lines in Fig.

13b. We also find that the spike in〈(δE)2〉 does not produce a non-monotonic dependence

of the overall solvation free energy onα: F0(α) is significantly steeper atα > α∗, but the

overall dependence is still monotonic (Fig. 46 in chapter 7).

Several systems and observables can display the phenomenology reported by our sim-

ulations. The first two moments of the solvent electric field largely determine the shift

and inhomogeneous line width of optical dyes. The non-monotonic behavior of the field

variance vsα should therefore be mirrored by the spectral width. The overall line-shape

can be calculated from the Landau functionalF(E), which extends the harmonic theory of

spectroscopy of polarizable chromophores[193] to non-harmonic solvation.

Non-harmonic solvation can be anticipated for several systems. For instance, the polar-

izability of a semiconductor nanoparticle scales as the fourth power of its radius,α ∝ R4.

The proportionality coefficient can be very high:α ≃ 0.08Å
3
(R/Å)4 has been reported
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for photoexcited CdSe nanoparticles in the range of radii 1–2.5 nm[194]. From a general

scaling perspective,κ ∝ R3 for dipolar solutes in Eq. (3.2)[65] (Fig. 41 in chapter 7). With

α ∝ R4, there is always a critical size at which the transition to non-harmonic solvation

should occur. When the values ofκ obtained in our simulations are rescaled to nanopar-

ticle sizes used in Ref. 194 we find them to fall in the regime of non-harmonic solvation,

κ < α. Similar arguments apply to organic ionic solutes (such as tetraalkylammonium

cations studied in Ref. 191). The force constant scales asκ ∝ R for spherical ions, while

the polarizability of many organic molecules scales asR3. The transition to non-harmonic

solvation, and the related structural transition of the hydration layer, can be predicted for

this configuration as well.

3.4 Conclusions

We have discovered a structural density collapse of the hydration shell promoted by a

polarizable solute. The density collapse induces an orientational transition of the hydra-

tion shell dipoles. Both transitions are manifested in an increase in the density of dangling

OH bonds which have been viewed as potential catalytic centers to promote heterogeneous

catalysis[22]. Our picture is distinct from the traditional “iceberg model” anticipating en-

hanced structuring of water around a non-polar solute[195]. In contrast, high polarizability

breaks the bulk-like water structure, creating a high density of surface OH defects. The

crossover is abrupt since it is caused by zeroing of the quadratic term in the free energy,

analogous to the point of criticality in bulk phase transitions. The phenomenology reported

here is not limited to hydration of polarizable solutes, butwill extend to similar crossovers

caused by polarizable substrates in contact with interfacial water. The abrupt change of the

interfacial structure will affect water-mediated forces on the nanometer scale.
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Chapter 4

MOBILITY OF NANOMETER-SIZE SOLUTES IN WATER DRIVEN BY ELECTRIC

FIELD

4.1 Summary

The relationship of solvent response to electrokinetic phenomena is investigated. In

particular, the possibility that electrophoretic mobility, the drag experienced by a dissolved

(usually colloidal) particle in a uniform external electric field, can be related to the ordering

of water in the interface has been suggested. Attempts to prove it my simulations have

suffered from the use of inadequate ensembles and, more importantly, from the lack of

an established theoretical framework allowing to analyze the data from both numerical

and laboratory experiments in a unified formalism. A simple theoretical framework to

analyze the problem and confirm that ordering and polarization of water in the interface

can produce electrophoretic charge without free charge carriers. Simulations of various

solutes in several force-field models of water are presentedto show that the surface charge

density coming from the interfacial order is comparable with experimental estimates.

4.2 Introduction

Mobility of oil drops and air bubbles in water has been known for a long time[25] and

is traditionally linked to preferential adsorption of ions. Their counterions form the diffuse

double layer. The overall charge measured by mobility is determined by an incomplete

compensation between the charge of the adsorbed ions and thepart of the diffuse layer
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within the shear surface. The latter encircles the stagnantlayer of the electrolyte moving

together with the dissolved particle. While the overall force acting on the ions of the

electrolyte is zero, the electrokinetic drag is the result of choosing a limited volume within

the electrolyte, surrounding the colloidal particle, withan uncompensated charge. The

dragging force is thus the product of the average charge〈QR〉 within the shear surface with

the electric field acting on the charges. We show here that theidea of a limited volume cut

from the liquid and producing an excess charge can be extended to the dipolar polarization

of the interface. While the dielectric surrounding the nanoparticle is neutral overall, like

the electrolyte in the standard models, the divergent polarization of the interface produces

an uncompensated bound charge when integrated over a finite volume.

The excess of the adsorbed charge over the diffuse-layer charge, i.e., uncompensated

charge〈Q〉R 6= 0, is reflected in the sign of theζ-potential at the shear surface [26]. A

negativeζ-potential, typically recorded for oil drops and air bubbles in water, has been

attributed to the excess of the adsorbed negative charge, with the hydroxide anion being a

long-time favorite [27, 28, 29, 30].

Recent calculations [196, 197] and measurements by surface-sensitive second-

harmonic generation techniques [198, 34, 199, 200] do not support excessive adsorption

of hydroxide to the oil-water [34] and air-water [198, 199] interfaces. In addition, the total

X-ray reflection fluorescence spectroscopy [201] provides the upper estimate for the free

surface charges at the air-water interface at the level of0.002 (e/nm2). Depending on the

pH and other conditions, this estimate is up to two orders of magnitude below the surface

charge density of 0.02–0.4 (e/nm2 ) extracted from mobility [27, 29, 34, 200]. It seems

plausible that either the formalism of estimating the surface charge density from mobility

requires modification or alternative mechanisms of mobility, not involving ion adsorption,

might be involved.
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The possibility of charge-free electrophoretic mobility in water has been discussed in

the literature [31, 32, 33, 34, 35, 36, 37]. The main idea hereis that the microscopic

structure of the interface, allowing molecular order within the hydration layers, can ei-

ther produce an effective electrokinetic charge, not related to charges of free carriers, or

substantially modify the effect of adsorbed ions on the overall mobility. This proposal

has faced two difficulties. From the theoretical side, thereis no established framework of

how to translate the microscopic structure of the interface, captured by atomistic numer-

ical simulations, into the macroscopic current. Care is required in implementing correct

cutoff/boundary conditions [38, 39, 40] and statistical ensembles adequately represent-

ing the conditions of mobility measurements (as discussed briefly below). In addition,

the field strengths required to produce sufficient sampling in simulations are significantly

higher than experimental fields [185] and can potentially modify the structure of the so-

lution. From the experimental side, it is not clear how to connect the results of surface-

sensitive spectroscopies, which directly report on the polarization structure of the interface

[202, 203], with measured mobilities.

Here we address the calculation of the force acting on a nanometer-size particle dis-

solved in water and placed in a uniform external field. We do not directly calculate the

current produced in response to the external field assuming that, once the force is known,

the mobility can be calculated by applying standard equations of hydrodynamics [204, 199]

(as shown for the capillary flow in the Appendix). Mobility ofthe hydrated solute is typ-

ically expressed, through Smoluchovski’s equation (Eq. (4.2) below), in terms of either

the ζ-potential or its effective charge. We derive a relation between the effective mobil-

ity (electrokinetic) charge and the interfacial structureof the water dipoles represented by

the first-order orientational order parameter of the interface. This parameter is in princi-
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ple accessible by surface-sensitive spectroscopies [202,203, 205, 206] and by equilibrium

computer simulations of solutions [187, 103].

This model shows that the effective charge of the solute responding to the uniform

external field is not equal to the charge of the free carriers.It is therefore possible that

the effective electrokinetic charge reported by mobility measurements significantly over-

estimates the number of adsorbed ions. The orientational structure of interfacial dipoles

is the key in understanding these differences. Since the interfacial structure and dipolar

orientations in the interface can be altered by modifying the solute/substrate [187, 207, 34],

one gains the means to experimentally test both the effect ofthe interface on the effective

electrokinetic charge and the hypothesis of charge-free mobility. In particular, we suggest

that changing the polarizability of a (semiconductor) nanoparticle by exciting electron-hole

pairs can invert the sign of the mobility. This effect is driven by the relation between the

orientation of dipoles in the hydration layer with the nanoparticle polarizability [21] ma-

nipulated by light [208].

4.3 Interfacial Structure and Particle Mobility

4.3.1 General Arguments

We start by considering a single spherical ion with the charge q at its center and with

the radiusa. It is placed in a polar liquid with the bulk static dielectric constantǫs. We will

further consider a spherical liquid sample with the macroscopic radiusL and place the ion

at its center to simplify the geometry. The instantaneous charge density in the sample is

ρ = ρi + ρb, (4.1)
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whereρi = qδ(r) andρb(r) =
∑

j qjδ (r− rj) is the density of bound charge at a given

instantaneous configuration of the liquid with the atomic partial chargesqj located at the

coordinatesrj. Based on charge conservation [105],ρb = −∇ ·P is expressed in terms of

the polarization density fieldP. No specific approximation, such as the dielectric bound-

ary value problem, is assumed here. The instantaneous polarization field is given by the

microscopic expression [145, 109]

P(r) =
∑

j

mjδ (r− rj)−
1
3
∇ ·

∑

j

Qjδ (r− rj) + . . . . (4.2)

Here,mj denotes the molecular dipole,Qj is the molecular quadrupole (defined according

to Ref. [145]), and the dots refer to the higher-order multipolar terms. When the statisti-

cal average over the configurations of the liquid is performed, one arrives at statistically

averaged scalar and vector fields,〈ρb〉 and〈P〉.

From Eq. (4.1), one can calculate the overall charge within aspherical volumeΩR with

the radiusR surrounding the ion at its center

〈QR〉 =

∫

ΩR

[ρi −∇ · 〈P〉] dr. (4.3)

By using the Gauss theorem, integration in Eq. (4.3) yields

〈QR〉 = q + [SaPa − SRPR] . (4.4)

Here,Pa andPR are the average radial projections of the polarization density, Pr = r̂ · 〈P〉,

r̂ = r/r taken atr = a andr = R, respectively. Further,Sa = 4πa2 andSR = 4πR2

are the surface areas. The polarization is locally proportional to the field in the continuum

electrostatics andPr = (q/4πr2)(1− ǫ−1). Therefore, in this case,r2Pr is independent of

r and the two summands in the brackets in Eq. (4.4) cancel out. One gets〈QR〉 = q.

The dielectric sample is overall neutral and one can additionally require
∫

Ω

〈ρb〉dr = 0, (4.5)
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where the integral is taken over the liquid volumeΩ between the spheresr = a andr = L.

This relation imposes the boundary condition

a2Pa = L2PL, (4.6)

which is satisfied for continuum electrostatics.

The normal, outward to the dielectric component of the polarization fieldσq = Pn =

−Pa plays the role of the surface charge density of a discontinuous dielectric interface

[105]. While this charge originates from a divergent polarization of bound molecular

charges, it is experimentally observable. To show that, onecan consider the electrostatic

potential created by free and bound charges inside or outside of the macroscopic sample.

It is given as a sum of the electrostatic potentials arising from the free and bound charges

[99]

φ =
q

r
+

∮

Sa

σq
|r− rS|

dS =
q

r
−

(

1−
1

ǫs

)

q

r
, (4.7)

where the surface integral is over the surface of the ionSa. The overall potentialφ =

q/(rǫs) is said to be dielectrically screened. This physically implies that any probe charge

placed outside of the dielectric sample will sense the combined chargeqeff = q/ǫs, resulting

from adding the ion charge with the opposite bound charges non-uniformly distributed

around the ion and producing a non-zero divergence∇ ·P.

We now move to the next step to point out that the polarizationfield of liquid interfaces

often shows a behavior more complex thanPr ∝ r−2 of continuum electrostatics [107,

108, 113]. The functionPr often displays overscreening, which means that it can be much

larger in the magnitude at the contact with the ion than predicted by dielectric models. It

also shows oscillations caused by molecular granularity asit decays to ther−2 asymptote

at r → ∞. While the overall neutrality condition (4.6) still must hold, the charge〈Q〉R
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FIGURE 17: The radial projection of the microscopic polarization densityPr (solid line)
and its dielectric form∝ r−2 (dashed line). The volume integral of∂Pr/∂r between sur-
facesr = a and r = R in Eq. (4.3) can be non-zero, while it always vanishes in the
dielectric limit.

obtained by integrating in Eq. (4.3) over a small volumeΩR can be nonzero for a function

Pr(r) = p(r)/r2 with a generally oscillatoryp(r) such thatp(∞) = 1 (Fig. 17).

This simple observation is the basis of our proposed alteration of the standard model

of ionic mobility under the drag of a uniform electric field. We suggest that〈Q〉R 6= q if

the liquid within the shear surface, dragged along with the ion, carries some molecular in-

terfacial structure affecting the radial distribution of the polarization density. The effective

charge associated with mobility is affected by the distribution of the bound charge within

the shear surface, in addition to the total charge of free carriers.

4.3.2 Ionic Mobility

The hydrodynamic mobility of an ion is determined by the shear surface of the radius

R, which is coarse-grained to smooth out the details of molecular granularity by averaging

out the molecular motions on the time short compared to the time-scale of hydrodynamic

flow (Fig. 18). Electrostatics suggests that the force acting on the ion and its stagnant layer

is the product of the average charge〈QR〉 within the shear surface with the field acting

on these charges. This field is the cavity fieldEc [109] combining the field from external
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FIGURE 18: Ion with the chargeq and the radiusa immersed in a polar liquid in the
uniform macroscopic (Maxwell) fieldE. R indicates the radius of the shear sphere incor-
porating the stagnant layer of the liquid dragged by the fieldalong with the solute.Ec is the
cavity field of the uniformly polarized liquid created inside the shear sphere. The arrows
on the opposite sides of the spherical cavity indicate waterdipoles oriented favorably (left)
and unfavorably (right) along the external field. The difference in the chemical potential
between right and left is positive. It creates an osmotic pressure pushing the particle in the
direction opposite to the field and corresponding to an effective negative charge.

charges with the field of the polarized dielectric outside ofthe shear surface

〈F 〉 = 〈QR〉Ec. (4.8)

In dielectric theories, the cavity field inside a sphere is related to the macroscopic Maxwell

fieldE by the equation [109]

Ec =
3ǫs

2ǫs + ǫp
E, (4.9)

whereǫp is the dielectric constant of the particle.

The steady flow of dissolved particles with the speedu is reached when the electrostatic

drag is counterbalanced by hydrodynamic friction,〈F 〉 = 6πηuR, whereη is the bulk

viscosity. The resulting mobilityµ = u/E ≃ 〈QR〉/(4πηR) [ǫs ≫ ǫp, ǫs ≫ 1 in Eq. (4.1)]

gives direct access to the total charge〈QR〉. Smoluchovski’s equation, typically used in

the literature, re-writes this relation in terms of theζ-potential defined as the electrostatic

potential at the shear surfaceζ = 〈QR〉/(ǫsR) [209]. The result is the equation for the

mobility [26]

µ =
ǫsζ

4πη
. (4.10)
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This formalism is well established, and the results of mobility measurements are often

cast in terms of the effective surface charge densityσeff = 〈QR〉/S, whereS is the surface

area of the particle. We follow this established practice and focus mostly on〈QR〉 and the

correspondingσeff. The arguments given here need to be modified with the accountfor the

diffuse potential when electrolyte is present [209]. We do not consider these effects here

and focus instead on charged or uncharged particles dissolved in a polar molecular solvent,

which establishes a microscopic multipolar structure in the interface. The main outcome

of this perspective is the modification of the effective charge 〈QR〉 by the dipolar order

of the interface expressed in terms of the average cosine of the interfacial dipoles (order

parameter)p1.

Starting from Eq. (4.4), one can proceed in two steps and firstapply a reasonable ap-

proximation to the surface charge density at the shear surface. The surface charge density

at the actual physical surface of the solute then becomes ourmain focus. Since the shear

surface does not involve any physical disruption of the liquid structure, it is reasonable

to assume thatPR can be related to the field of the ion charge by the rules of continuum

electrostatics [109]SRPR = q(ǫs − 1)/ǫs. We stress that this assumption does not affect

the main points of our reasoning, as will be clear from the discussion below. With the

continuum polarization at the shear surface one gets in Eq. (4.5)

〈QR〉 = qǫ−1
s − σqSa. (4.11)

Since the microscopic susceptibility of the nanometer interface can significantly deviate

from the rules of macroscopic continuum electrostatics [107, 154, 113],σq = Pn = −Pa

is left unspecified in Eq. (4.11). The simple message delivered by Eqs. (4.10) and (4.11) is

that asymmetry in the water susceptibility between the shear and solute dividing surfaces

leads to a modification of the standard result〈QR〉 = q.

Sinceσq is given by the normal projection of the polarization density in the interface,
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Eq. (4.11) offers a new result typically absent in standard dielectric models. Those suggest

thatσq is proportional to the ion chargeq. However, if the polar liquid is spontaneously

polarized in the interface, i.e., if the interfacial dipoles possess preferential non-random

orientations caused by the interfacial order [108, 143, 210], 〈QR〉 6= 0 even atq = 0. What

is required is a nonzero radial projection of the dipolar polarization density at the solute

surface.

The dipole ordering in the interface can be described by the first-order orientational

order parameterp1 = 〈m̂ · r̂〉a, which is the average cosine of the water dipole moment

projected on the radial direction and calculated in a narrowlayer at the solute surfacer = a

[154, 103]. The surface charge density can be written in terms of the water dipole moment

m and the order parameter,−σq = (mp1/S)(dNs/dr)
∣

∣

r=a
. Here,Ns = Ns(r) is the

number of water molecules within the shell of the radiusr > a. By using the definition of

the number of water molecules in the shell in terms of the solute-solvent radial distribution

function (RDF)g0s(r), one can re-writeσq as

− σq = ρmp1G, (4.12)

whereG = g0s(a) is the contact value of the solute-solvent RDF andρ is the number

density of bulk water. Equation (4.12) is written for an arbitrary value ofq, which means

thatp1G should be calculated in the presence of the ion chargeq; σ0 corresponds toq = 0.

The value ofσq for large particles can be estimated from thea → ∞ asymptote

for the hard-sphere (HS) solute [211]GHS → βP/ρ, which results in−σq → βmp1P ,

whereP is the hydrostatic pressure. This gives for water at ambientconditions−σq ≃

10−3p1(G/GHS)(P/atm) e/nm2, whereG/GHS ≃ exp[−β∆µw] defines the affinity of wa-

ter toward the solute∆µw beyond simple HS packing preferences.

Equation (4.12) establishes the effective charge of a closed spherical interface within a

polar liquid. Its sign is fully defined by the orientational order parameterp1: it is negative

95



when the water dipoles preferentially orient toward the solute/cavity and is positive when

they point toward the bulk. This equation shows that any closed dividing surface, cutting a

volume from a polar liquid, will be dragged by an external electric field if a preferential ori-

entation of dipoles in the interface is established. This result is independent of the presence

of the electrolyte since bound charges are not screened by the ions.

The proposed formalism equally applies to the problem of a water drop in a nonpolar

solvent (oil) [36]. Equation (4.12) still defines the surface charge density with the con-

vention that the orientational order parameter is calculated by projecting the surface water

dipoles on the radial direction pointing toward water (inward in the case of a drop). To

make our assignment clear, the water-oil interface with water’s hydrogen pointing toward

the oil phase [212, 34, 213] will, according to Eqs. (4.11) and (4.12), produce a negative

charge of the water drop.

It is important to note that the electrostatic force linear in the external field,〈F 〉 ∝ Ec,

assumes an unperturbed orientational structure of the interface projected on the order pa-

rameterp1. The relaxation of the interfacial order in response to the external field would

represent the interfacial polarizability, which contributes to the overall force as a term

quadratic in the external field. We do not consider the interface polarizability here assuming

that macroscopic fields used in experiment are weak comparedto microscopic interfacial

fields [108] and do not significantly alter dipolar orientations in the interface.

The electrolyte is overall neutral and the overall force acting on the electrolyte ions is

zeroF =
∑

i qiE = 0. However, producing current requires work of the external source.

The powerP , or the rate of doing work, is related to the current densityj [109]

P =

∫

j · E dr = Pel +N0〈QR〉uE, (4.13)

wherePel = (J+−J−)E is the power required to move the electrolyte ions with the overall

current of cations and anions given asJ±; N0 is the number of colloidal particles (see
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Supplemental Material for detail). Equations (4.5) and (4.13) in principle allow a non-zero

current and power production atq = 0, i.e., for overall neutral solutes surrounded by a

polarized interface. This possibility was viewed in Ref. [214] as contradicting to Saxen

relations between the streaming potential and electro-osmotic current, which are specific

forms of the Onsager reciprocal relations [204]. We show in the Appendix that the Onsager

relations are obeyed in our model by the simple fact of being based on the Coulomb law

applied to both free and bound charges.

The drag experienced by a closed surface can be viewed as a specific form of osmosis

[215]. The gradient of the chemical potential of interfacial waters at the opposite sides of

the surface is created by the external field. It is the consequence of the favorable orienta-

tion with the field of the molecules on one side of the surface compared to the unfavorable

orientation on the opposite side [216] (surface arrows in Fig. 18). The chemical potential

gradient will result in the osmotic pressure difference on the opposite sides of the surface

as long as spontaneous order in the interface persists. Thisphysical interpretation of non-

zero mobility implies that direct numerical simulations ofthis effect will require theµVT

ensemble [211, 216], keeping the chemical potential of water constant. Since these results

are presently not available, we use more conventional NVT and NPT simulations of non-

polar and ionic solutes in water to estimate the interfacialcharge densityσq in Eq. (4.12)

from the computedp1G parameter.

4.4 Computer Simulations

We have considered HS and Kihara (KH) solutes dissolved in force-field water. The

Kihara potential is the HS core modified with the Lennard-Jones (LJ) layer at its surface
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FIGURE 19: Surface charge density of hard-sphere (HS) and Kihara (KH) solutes of
varying solute sizeR0s in SPC/E water (solid points) and TIP3P water (open points). The
LJ energyǫ0s in Eq. (4.10) was varied in the simulations: 0.65, 3.7, and 8.0 kJ/mol. The
dotted lines connect the points to guide the eye.

[180]. Specifically, the solute-solvent potential is givenas

φ0s(r) = 4ǫ0s

[

(

σ0s
r −RHS

)12

−

(

σ0s
r −RHS

)6
]

, (4.14)

whereǫ0s in the LJ energy andσ0s is the distance between the solute HS core with the

radiusRHS and water’s oxygen.σ0s = 3 Å was kept constant in the simulations, whileRHS

andǫ0s were varied.

The molecular dynamics (MD) and Monte Carlo (MC) simulations presented here ad-

dress the question of whether the productp1G characterizing water interfacing these solutes

will produceσq comparable to experiment. The experimentalσq reported in the literature

are derived from mobility through Smoluchovski’s equation[29, 34] [Eq. (4.2)]. The de-

tails of the simulation protocols have been discussed elsewhere [154, 21, 12] and are given

in chapter 7. Here we focus only on the results.

Figure 19 showsσ0/e (q = 0, e is the elementary charge) from the simulation data

changing with the size of the HS and KH solutes in TIP3P and SPC/E water models [80].

The size of the KH solute is measured asR0s = RHS + σ0s [Eq. (4.10)]. It approximates

well the position of the first peak of the solute-solvent RDF. The size of the HS soluteR0s

is defined as the distance of the closest approach of the wateroxygen to the solute. It gives

the exact position of the RDF’s first peak.
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The sign of the surface charge density is negative for both HSand KH solutes, reflecting

the preferential orientation of the surface water dipoles into the bulk. Increasing the solute-

solvent LJ attraction makes the hydration shell denser, as reflected by a higher−σ0. The

fast drop of−σ0 for the HS solute is caused by its partial dewetting [189] when R0s ≥ 5

Å.

The magnitude ofσ0 is somewhat higher than the values typically reported from mobil-

ity measurements (∼ −0.04 (e/nm2) for hexadecane in 0.2 mM NaCl atpH = 7 [29]). We

estimated theζ-potential for theǫ0s = 0.65 kJ/mol Kihara solute [154] (Fig. 19). It turned

out thatσ0R2
0s is an approximately linear function ofR0s (Fig. B1 in appendix B) such

thatζ ≃ 0.026(e/nm)(R0s/R) for large Kihara solutes. Neglecting the difference between

R0s andR in this limit results inζ ≃ 38 mV. This number is not very different in magni-

tude from those typically reported experimentally. For instance,ζ ≃ −81 ± 14 mV was

reported for xylene droplets in 10−5M NaCl electrolyte atpH = 6 [27]. For water at room

temperature, the Debye-Hückel length isκ−1 ≃ 3/c1/2 Å for a single-charge electrolyte

with the molar concentrationc [217]. For the cited experiment, one getsκ−1 ≃ 103 Å and

the amount of counterion charge within the stagnant layer of< 1 nm in thickness [218]

can be neglected. The measuredζ-potential thus reflects the effective electrokinetic surface

charge. We stress that our solutes are significantly smallerin size than oil drops used in the

mobility measurements (∼ 100 [200] to∼ 200− 300 [34] nm) and have a smooth surface,

in contrast to the corrugated surface of oil emulsions [213].

The experimentalζ-potential [27] has the sign opposite to that calculated forthe Kihara

solutes. The reason is the positive sign ofp1 in the Kihara-water interface, while negative

p1 values have been recently reported for the oil-water interface [34, 205]. The access to

water orientation in the interface is experimentally provided by heterodyne-detected vibra-

tional sum-frequency generation (VSFG) spectroscopy through the imaginary part of the
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The calculations are done according to Eq. (4.12); the dotted lines connect the points.σq is
negative for cations and positive for anions.

VSFG signalImχ(2) [205, 206]. The combination of the sign ofImχ(2) and its intensity in

principle gives access top1, although in reality fitting of simulations to experimentalspec-

tra is required [219]. Resolving all features of the experimentally reportedImχ(2) requires

including three-body interactions in the force field model of water [219]. Whether the same

is true regarding the values ofp1 is not clear at the moment, although there are indications

that three-site models of water somewhat overestimate its spontaneous orientational struc-

ture in the interface [143]. In addition to spontaneous orientation in the uncharged interface,

the orientation of water dipoles and correspondingp1 are strongly affected by the presence

of ions [206, 220] as we discuss next.

The potential situation with hydrated ions is illustrated in Fig. 20, whereσq is calculated

from Eq. (4.12) for HS cations and anions of varying size in TIP3P water in the absence of

counterions [12]. The main observation here is thatσq significantly exceeds in the absolute

magnitude the prediction of the continuum electrostatics.This means|〈QR〉| ≫ |q| in

Eq. (4.10), which should lead to an overestimate of the number of adsorbed ions when the

standard equations for the screening of free charge carriers in electrolytes are applied to the

analysis of the mobility data [209].

The overpolarization of the water dipoles attached to the surface ions might have sig-

nificant implications for the interpretation of the mobility data. Figure 20 indicates that
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the microscopic orientational order of the water dipoles next to a positive ion will signif-

icantly enhance its effective electrokinetic charge determined from the mobility measure-

ment. Correspondingly, a negative adsorbed ion will appear more negative in the particle

mobility. Therefore, the actual concentration of adsorbedions can be significantly lower

than estimated from mobility. This observation might help to explain the disagreement be-

tween the electrokinetic measurements [29, 34, 200] and surface-sensitive spectroscopies

[198, 34, 199, 200] regarding the concentration of the surface adsorbed ions. The actual

extent of overpolarization requires more extensive simulations in realistic electrolytes. One

also should not underestimate the potential effect of corrugation of any real water-oil inter-

face [213], which will affect the average contact RDFG in Eq. (4.12).

Figure 20 indicates that surface charge densities of large positive and negative ions with

|q| = 1 charge at the center are close in magnitude. However, this outcome might not hold

for small ions adsorbed at the surface of a large particle. The productp1G is generally

asymmetric between cations and anions because of the asymmetry in the charge distribu-

tion of the water molecule [137]. In that case, the orientational order and the corresponding

surface charge density will not compensate between the oppositely charged adsorbed ions,

and a non-vanishingσq will follow even at the total zero charge. The observable conse-

quence of this asymmetry would be a shift between the iso-electric point of electrokinetic

mobility and the point of zero charge, as reported for some systems [221]. Overall, the

main result of the general formalism summarized by Eq. (4.11) and simulations performed

here is that the charge of free carriers and the effective electrokinetic charge incorporating

the interfacial dipolar order can be significantly different.
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FIGURE 21: The order parameterp1 (a) and the surface charge densityσ0 (b) vs the
polarizability of a polarizable HS solute, carrying the isotropic polarizabilityα and dipole
momentm0 = 5 D, in TIP3P water (error bars show the uncertainties of calculations). The
horizontal arrow indicates the photoinduced alteration ofthe polarizability that inverts the
mobility of the nanoparticle.

4.5 Experimental Testing and Conclusions

In conclusion, we have derived a simple equation [Eqs. (4.11) and (4.12)] relating the

effective charge of a hydrated nanoparticle to the orientational order in the interface and

the water density in contact with the solute. Both parameterscarry asymmetry between

positive and negative charges. Therefore, the surface charge densityσq induced by the

positive and negative free carriers will not compensate andproduce an overall nonzero

value even when the total charge is zero. The electrokineticcharge can be substantially

enhanced by the dipolar order in the interface and the theorypredicts a non-zero effective

charge when the interface is spontaneously polarized in theabsence of free charge carriers

(charge-free mobility). The values of the surface charge density derived from simulations

of uncharged nanometer-size solutes are consistent or exceed those typically reported from

mobility measurements.

Our development traces in spirit the well-established mechanism of electrophoretic mo-

bility due to ions of electrolyte. Both ions and the dipoles ofthe solution surrounding the
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colloidal particle are neutral overall. However, there is an excess of ions within the shear

surface of the particle, which results in the electrokinetic charge. Similarly, due to specifics

of the divergent interfacial polarization, there is an inbalance in the bound charge between

the polarized liquid inside and outside of the shear surface. The excess bound charge needs

to be added to the excess free charge to establish the effective electrokinetic charge.

The derivation is performed here for a spherical solute, where the geometry of the in-

terface produces a divergent radial polarization field. Themodel is not directly extendable

to flat interfaces studied by simulations in the past [32, 39]. While the polarization field is

clearly inhomogeneous next to a planar surface, it often demonstrates positive and negative

spikes [32, 108], which can potentially compensate each other when the field is applied

parallel to the interface to produce electrophoretic flow. The force〈Fx〉 along the plane of

the surface (x-axis) writes

〈Fx〉 = ExS

∫

ρb(z)dz, (4.15)

whereS is the surface area. If the density of the bound chargeρb(z) integrates to zero, there

is no net force. In this regard, the roughness of the interface, as suggested by Knechtet al.

[32], can provide the required conditions for a divergent polarization field which cannot be

reduced to a one-dimensional integral shown above.

The direct connection between the mobility of nanoparticles in water and the orienta-

tional order of the water dipoles in the interface offers opportunities for testing this predic-

tion by experiment. One possible direction is the modification of the surface with chemical

groups (surface dipoles) altering the interfacial order [187]. We, however, recently discov-

ered another property dramatically affecting the interfacial dipoles: the polarizability of

the solute. Increasing the solute polarizability drives the solute-water system to the point

of instability of harmonic fluctuations expressed in terms of the solvent electric field inside

the solute as the order parameter. Reaching the point of global instability toward fluctua-
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tions drives a structural transition of the hydration layer, which reorients the water dipoles

and creates a high density of dangling OH bonds [21]. The emergent new structure of the

interface also suggests, according to Eq. (4.11), the alteration of the sign ofσ0 (q = 0).

The results of MC simulations of HS solutes with changing isotropic dipolar polariz-

ability α at the solute’s center are presented in Fig. 21. The size of the solute is maintained

constant and only the polarizability is varied. One observes a switch from a positive to a

negative surface charge with increasing polarizability. In other words, the isoelectric point

of electrophoretic mobility can be reached, and crossed, bymanipulating the polarizabil-

ity of the dissolved particle. This observation opens the door to experimental testing of

the model. Polarizability of semiconductor nanoparticlescan be dramatically increased by

photoexcitation [208], which is predicted to invert the nanoparticles’ mobility (horizontal

arrow in Fig. 21b).
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Chapter 5

NON-GAUSSIAN LINESHAPES AND DYNAMICS OF TIME-RESOLVED LINEAR

AND NONLINEAR (CORRELATION) SPECTRA

5.1 Summary

A model is proposed for treating non-Gaussian frequency fluctuations that arise from

nonlinear system-bath coupling. It provides an analytical, closed-form expression for the

lineshape function. This result is significant because it provides a straightforward approach

for modeling the lineshape function and projecting that result onto a set of parameters that

provide insight into the underlying molecular behavior. The analytical results are compared

to explicit MD simulations to verify the validity of the approach showing that the analytical

method exhibits good agreement with the MD simulation.

5.2 Introduction

Statistics and dynamics of the frequency of light absorption/emission in either visi-

ble/UV or infrared parts of the spectrum are widely used to study the nuclear dynamics of

condensed media. Lineshapes of stationary optical absorption and emission report on the

statistics of microscopic (molecular-scale) fluctuations, while time-resolved changes of the

lineshape (predominantly the line peak and width) report ontheir dynamics[42, 43, 44, 45].

In these types of experiments, linear time-resolved spectroscopies provide the time evolu-

tion of the spectral moments (one-point averages)[45], while nonlinear spectroscopies give

access to two-point time correlation functions of the transition frequency[41, 222, 48, 223].
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Time evolution of the transition frequency directly reports on the dynamics of the ther-

mal bath when it is a linear function of some subset of the bathnuclear coordinates (linear

chromophore-bath coupling). Standard electrostatic models of solvation indeed suggest a

linear coupling between permanent charges of the solute andthe solvent. For instance, if

the distribution of the chromophore’s molecular charge is given by a dipolem0, it couples

linearly to the electric field of the mediumE and the electrostatic solute-solvent interaction

energy is simply−m0 · E[224, 101]. If the electric field is a Gaussian stochastic variable,

i.e., only the first two cumulants ofE contribute to the cumulant generating functional (line

broadening function)[225, 41, 226], the statistics of the transition frequency is Gaussian as

well.

While the interaction of the solute dipole with the solvent electric field is linear, the

free energy of polarizing the chromophore,−(α0/2)E
2, scales quadratically withE and

linearly with the electronic polarizability of the chromophoreα0[101]. When the dipolar

and polarization terms are combined together, the solute-medium coupling is linear plus

quadratic in the solvent field, which we call the “quadratic coupling” for brevity. As a con-

sequence, the statistics of the energy gap[227, 119] and thetime evolution of the spectral

lineshape[193, 228] show non-Gaussian character even for aGaussian thermal bath driving

the transition. In other words, the statistics of the electric field E is Gaussian by virtue of

long range electrostatic interactions involving many molecules (central limit theorem), but

this Gaussian many-particle statistics is projected on non-Gaussian statistics of an internal

variable (transition frequency) of a single/dilute solutewhen the coupling to the Gaussian

thermal bath is nonlinear.

The same quadratic dependence of the transition energy on nuclear coordinates ap-

pears when frequencies of a subset of nuclear modes change between two electronic

states involved in the transition (Duschinsky’s rotation[229]). Given that several phys-
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ical mechanisms result in the same phenomenology[119], it is not surprising that non-

Gaussian statistics and/or nonlinear dynamics of spectrallineshapes, implying deviations

from expectations of linear coupling models, have been recently reported for a number of

systems[230, 231, 232, 233, 234, 235].

One faces, however, the dilemma of whether to assign the observations to either

intrinsically non-Gaussian fluctuations of the medium[233, 56, 234] or to a nonlinear

chromophore-medium coupling[227, 119, 236]. However, thetwo perspectives can be

merged into one question of what can be expected as observable consequences of non-

Gaussian statistics and/or dynamics of the transition frequency, produced in either scenario,

when recorded by linear and nonlinear spectroscopies[237].

Addressing this question is the goal of this study. We reporthere on the development of

a model based on the quadratic dependence of the transition frequency on a subset of Gaus-

sian nuclear modes of the thermal bath. The model exactly sums up infinite series of cumu-

lants and thus does not rely on truncated cumulant approximations[41]. It can, therefore,

attribute non-Gaussian lineshapes and their complex dynamics to either the non-Gaussian

statistics of the transition frequency (originating from either the quadratic solute-solvent

coupling or from changes of intrinsic solvent frequencies)or to non-Gaussian dynamics

(existence of higher-order time correlation functions notreducible to the second-order one).

Our agenda here is to provide a closed-form analytical framework for analyzing stationary

and time-resolved, linear and nonlinear, spectroscopic lineshapes. The model’s ability to

incorporate both the non-Gaussian statistics and non-Gaussian dynamics significantly ex-

pands its reach compared to models based on the linear coupling to the thermal bath.

The quadratic solute-solvent coupling (known as the Q-model, “Q” for the quadratic

term in the coupling) was previously applied to study the effects of non-Gaussian statis-

tics of the donor-acceptor energy gap on electron-transferreactions[119, 120]. The main
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property of interest in that problem is the equilibrium distribution P (Ω) of the transition

frequencyΩ. The rate of an electron-transfer reaction is proportionalto the probability

P (0) of radiationless transition atΩ = 0. Two main distinctions from the traditional

linear coupling models[5] are seen as the asymmetry of the distribution and a linear ex-

ponential decay of the probability at the distribution’s shallower wing, in contrast to the

Gaussian quadratic exponential decay (Figure 22). Both non-Gaussian features arise from

the summation of an infinite series of cumulants ofΩ, instead of applying a two-cumulant

approximation[5]. The question this model naturally posesis how this non-Gaussian statis-

tics extends to the realm of dynamics probed by linear time-resolved and non-linear corre-

lation spectroscopies[41, 48]. This is the question addressed in this article.

Recent studies of vibrational lineshapes by 2D correlation spectroscopy[48] have indi-

cated that higher-order time correlation functions influence the time evolution of the ob-

served lineshapes[233, 56, 238]. There is also growing evidence that these non-Gaussian

dynamics might be linked to quadratic solute-solvent coupling. The statistics of the vi-

brational frequency has been successfully mapped on the statistics of the medium electric

fieldE‖ projected on the direction of vibrational stretch[231]. This Stark-effect parameter-

ization is usually achieved by fittingΩ(E‖) to a quadratic function ofE‖[239, 240]. The

electrostatic field is often found to be a nearly Gaussian stochastic variable, while the fre-

quency becomes a non-Gaussian variable, both statistically and dynamically, because of

the quadratic term inΩ(E‖)[238]. The physical reason for the quadratic term in the Stark-

effect parameterization is the polarizability of the vibrational mode[241]. This is the same

physics as was originally suggested in the Q-model of optical transitions[227, 193] and,

given the Gaussian statistics of the fluctuating electric field, the mathematical formalism is

identical in both applications.

Since the mathematical framework behind nonlinear/non-Gaussain spectral features re-
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FIGURE 22: The distribution of transition frequencies in the Gaussian approximation
(dashed line) and in the non-Gaussian Q-model (solid line).The Gaussian dashed line
corresponds to the Q-model parameterα = κ/∆κ → ∞ (Eqs. (5.3) and (5.4)); the solid
line was calculated withα = 1.8.

ported by optical and vibrational spectroscopies might be common, we use here a physical

system that is easier to implement in force field Molecular Dynamics (MD) simulations.

Following our early studies of electron-transfer reactions[120], we consider a single solute

carrying the dipole moment and polarizability. Both change with the electronic transition.

By altering the relative magnitudes of changes in the dipole moment (linear coupling) and

polarizability (quadratic coupling) one can adjust the statistics and dynamics of the transi-

tion energy from Gaussian (zero polarizability) to increasingly non-Gaussian. We stress,

however, that the reach of the model is broader than this specific physical situation since

it can be mapped on a number of phenomena involving the quadratic dependence of a

collective coordinate on Gaussian nuclear modes of the thermal bath.

The standard formalism for setting up the dynamical equations of motion follows two

steps. One first calculates the potential energy as a function of a dynamic coordinate. In

the case of a collective coordinate (transition frequencyΩ(t) in our case), this potential

energy becomes the potential of mean force, a free energy. This part of the calculation

is accomplished exactly within the Q-model[119]. The potential of mean forceF (Ω) =

−β−1 ln[P (Ω)]+Const is obtained from the statistical distribution functionP (Ω), such as
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the one shown in Figure 22. The next step is to useF (Ω) to produce the mechanical force

acting on the collective coordinate in an equation of motiondescribing its evolution[242].

For the problem of fluctuating transition frequency, one canset up a Langevin equation

for Ω(t) evolving in the potentialF (Ω). The solution of the Langevin equation, or of the

corresponding Fokker-Planck equation[225], would produce the propagatorP (Ω, t|Ω0, 0)

sufficient to calculate two-point time correlation functions of any order.

The second step in this program currently cannot be carried out exactly because of the

lack of established solutions for stochastic dynamics in anharmonic potentials in general

and in the one produced by the Q-model in particular (Figure 22). Therefore, for the sake

of calculating the two-point correlation functions, we make an approximation following

two steps. We first assume that the medium coordinate (electric field E or the coordi-

nateq below) is a Gaussian overdamped stochastic variable obeying the well-characterized

Ornstein-Uhlenbeck stochastic process[243, 225]. We thenproject the known propagator

P (q, t|q0, 0) on the coordinateΩ(q). While this approach allows an analytical solution for

2D correlation spectra[48], it is clearly an approximationwhen applied to time correlation

functions, which needs testing against direct MD simulations. We will, therefore, start

below with outlining the analytical formalism, followed bythe simulation results.

5.3 Time-resolved Lineshapes

We will consider a chromophore coupled to the nuclear modeq of the medium and

residing in either the ground (g) or excited (e) state. The Hamiltonian of the chromophore-

medium system isHg in the ground state andHe in the excited state. The absorption of

the radiation photon att = 0 results in theg → e transition with the time-dependent
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Hamiltonian

H(t) = Hg + ~Ω(q)θ(t) (5.1)

Here, the vertical (Franck-Condon) transition frequency is

~Ω(q) = He(q)−Hg(q) (5.2)

andθ(t) is the Heaviside step function.

We will further assume that each of the states is characterized by a Hamiltonian

quadratic in the coordinateq, with both coefficientsCi andκi (i = g, e) changing with

the excitation[119]

Hi = Ii − Ciq + (κi/2)q
2 (5.3)

The transition frequency is then a quadratic function ofq

~Ω(q) = ~Ω0 −∆Cq + (∆κ/2)q2 (5.4)

where~Ω0 = Ie − Ig, ∆C = Ce − Cg, and∆κ = κe − κg. The standard linear coupling

models of spectroscopy assume∆κ = 0. We will label this limit as the L-model (“L” for

linear), while the case of∆κ 6= 0 will be labeled as the Q-model (“Q” for quadratic)[119].

Time-resolved linear spectroscopy monitors the time change of the spectral

lineshape[244]

I(Ω, t) = 〈δ[Ω− Ω(q(t))]〉t (5.5)

where the average is taken over the evolving distribution function of the coordinateq at

time t.

Non-equilibrium distribution of nuclear coordinates is created by moving the ground

state equilibrium distribution function

Pg(Ω) =

∫

δ(Ω− Ω(q))Pg(q)dq (5.6)
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FIGURE 23: Time evolution of the lineshape after the ground state equilibrium distri-
bution att = 0 is promoted, by photoexcitation, to a non-parabolic free energy excited
surface. The time change of the spectral line-width is caused by a nonzero value of∆κ
in Eq. (5.4). The consequence of this term in the transition frequency is a non-Gaussian
time-dependent lineshape described by Eq. (5.24). An example calculation of the time-
dependent line-width is shown in Figure 24.

to the excited state potential curve at timet = 0 (Figure 23);Pg(q) is the equilibrium

ground state distribution ofq. The evolution of the nuclear coordinates of the system

with the chromophore in its excited state is described by theconditional probability[225]

(propagator)Pe(q, t|q0, 0). It gives the probability to find the nuclear coordinate withthe

valueq at t = t given that it wasq0 at t = 0. The average in Eq. (5.5) then becomes

〈. . . 〉t =

∫

. . . Pe(q, t|q0, 0)Pg(q0)dqdq0 (5.7)

Equation (5.7) projects the dynamics of the coordinateq(t) on the dynamics of

Ω(q(t))[193]. There is no approximation involved in this procedurefor calculating one-

time averages, but it becomes approximate for two-time correlation functions as we discuss

below.

There are a number of established results for L-models of spectroscopy based on the

assumption of the Gaussian statistics of the stationary medium fluctuations and, for time-

112



resolved measurements, of their Gaussian dynamics[234]. The former assumes that only

the first two cumulants ofq are significant for time-independent (stationary) lineshapes

measured in the limitt → ∞. The corresponding absorption and emission lineshapes

are given by Gaussian functions[245], with their maxima separated by the Stokes shift

∆Ω = Ω̄g − Ω̄e,

Ii(Ω) ∝ exp

[

−
(Ω− Ω̄i)

2

2σ2

]

(5.8)

Here,Ω̄i is the first spectral moment, equal to the position of the linemaximum for Gaus-

sian lineshapes. Further, the Gaussian width

σ2 = 〈(δΩ)2〉 = 2λ/(β~2) (5.9)

is related to the Stokes shift by the condition2λ = ~∆Ω[120]; λ is the (nuclear) reorgani-

zation energy[246].

Time-dependent lineshapes are often empirically approximated by Gaussian functions

with a time-dependent maximum̄Ωi(t) and a time-dependent spectral widthσ(t)[247, 228]

Ii(Ω, t) ∝ exp

[

−
(Ω− Ω̄i(t))

2

2σ(t)2

]

(5.10)

The evolution of the maximum position gives the normalized dynamic Stokes-shift function

SΩ,i(t) =
Ω̄i(t)− Ω̄i(∞)

Ω̄i(0)− Ω̄i(∞)
(5.11)

A similar function can be defined for the spectral width

Sσ(t) =
σ(t)2 − σ(∞)2

σ(0)2 − σ(∞)2
(5.12)

where the stationary spectral widthσ(∞) = σ (Eq. (5.9)) is reached in the limitt→ ∞.

The empirical Gaussian approximation of the time-dependent lineshape, as in Eq.

(5.10), does not imply Gaussian dynamics of the transition frequency. The common mean-

ing assigned to this term is the neglect of all time correlation functions〈δΩ(t1) . . . δΩ(tn)〉
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with n > 2 in the cumulant generating functional. Alternatively, this approximation implies

expressing all even-order time correlation functions as powers of the two-time correlation

function, known as Wick’s theorem (odd correlation function vanish)[248]. What it practi-

cally means is known as the second-cumulant approximation,which replaces the generat-

ing functional of the transition frequency with the corresponding second cumulant[41, 226]

e−gi(t) =

〈

exp

(

−i

∫ t

0

dτδΩ(τ)

)〉

i

≃ exp

[

−

∫ t

0

dτ

∫ τ

0

dτ ′C2,i(τ, τ
′)

] (5.13)

whereC2,i(τ, τ
′) = 〈δΩ(τ)δΩ(τ ′)〉i. This approximation results in Kubo-type functions

gi(t) evolving the spectral lineshape from a Lorentzian to a Gaussian on the relaxation

time of the thermal bath[41, 48]. These models thus predict thatσ(t) reaches a constant

value,σ(t) = Const in Eq. (5.10), once the lineshape becomes Gaussian. There are, how-

ever, other approximations than just the second-cumulant approximation that are typically

assumed in analyzing spectral dynamics.

It is commonly assumed that the correlation functionC2,i(t) in Eq. (5.13) does not de-

pend on the electronic state[249, 250],C2,g(t, 0) = C2,e(t, 0) = C2(t, 0), which is true

for the L-models. Further, the linear response approximation[60] in Ω(q) relates non-

equilibrium dynamics of the spectral maximum to the equilibrium two-point correlation

function[251, 250, 252], as is also derived in appendix C.

SΩ,i(t) = S2(t) (5.14)

whereS2(t) = C2(t, 0)/C2(0, 0). Equation (5.14) holds for either of the two states[249,

250, 252] and, therefore, the index indicating the state hasbeen dropped on its right-hand

side. Since the second-cumulant approximation in Eq. (5.13) and the linear relation in Eq.

(5.14) are not necessarily equivalent, we will reserve the term “Gaussian dynamics” for the

former[253] and “linear dynamics” for the latter[251, 249,250, 252].
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The linear response approximation also allows one to calculateSσ(t) in Eq. (5.12),

which yields (see appendix C)

Sσ(t) =
(β~σ)−1S3(t) + 2S2(t)− S2(t)

2

1 + (β~σ)−1S3(0)
(5.15)

Here,

S3(t) = σ−3〈δΩ(t)2δΩ(0)〉 (5.16)

is the skewness correlation function[234], with the stationary spectral widthσ given by Eq.

(5.9). Note that linear response does not stipulate Gaussian dynamics, and only the small-

ness of the perturbation introduced in the solvent by the electronic transition is required.

The linear functionΩ(q) of the L-models directly relates the Stokes-shift correlation

function in Eq. (5.11), calculated in the linear response approximation, to the medium

dynamics

SΩ(t) = S2(t) = χ(t) (5.17)

Here,

χ(t) = σ−2
q 〈δq(t)δq(0)〉 (5.18)

represents the dynamics of the bath andσ2
q = 〈(δq)2〉 = (βκ)−1 is the variance ofq. Equa-

tion (5.17) is, therefore, the basis for using spectroscopyto study the intrinsic dynamics of

condensed media.

The results of applying the linear response approximation to the Stokes-shift dynamics

are identical to the exact solution for the diffusive, overdamped dynamics over parabolic

free energy surfaces obtained as a linear projection ofq(t) on the reaction coordinateΩ(t)

(L-models)[254, 244]. The dynamics ofq(t) is given by the stochastic Ornstein-Uhlenbeck

process with the propagator[243, 225]

Pe(q, t|q0, 0) ∝ exp

[

−
βκe
2

(δq − δq0χ(t))
2

1− χ(t)2

]

(5.19)
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whereδq = q − qe andδq0 = q0 − qe are the deviations of the, respectively, final and

initial coordinates from the equilibrium valueqe in the excited state. When this propagator

is used in Eqs. (5.5) and (5.7) withκg = κe, one arrives at the linear response result for

the Stokes-shift correlation function in Eq. (5.17) and, inaddition, at a time-independent

spectral width in Eq. (5.10)

σ(t) = Const (5.20)

The physical meaning of Eq. (5.20) is straightforward: the relaxation of the ground

state population, promoted to the exited surface with the same parabolic curvature as of

the ground surface, produces no change in the distribution width (Figure 23). Only a

time-dependent shift of the spectral maximum should be observed. Ornstein-Uhlenbeck

dynamics ofΩ(t) (L-models) also yield vanishing odd time correlation functions and a

direct relation between higher order correlation functions andS2(t), for instance

S4(t) = 〈(δΩ)4〉−1〈δΩ(t)2δΩ(0)2〉 = 1
3
+ 2

3
S2(t)

2 (5.21)

This relation will be used below to test the Gaussian character of the dynamics ofΩ(t)

produced by MD simulations.

Equations (5.19) and (5.20) suggest that a nonlinear dependenceΩ(q(t)) on the

Ornstein-Uhlenbeck stochastic variableq(t) is required to produce a time-dependent width

in the time-resolved lineshape in Eq. (5.10). This is indeeda feature of the dynamic ver-

sion of the Q-model[193]. Another consequence of this extension is the loss of a direct link

between spectroscopic and bath dynamics, as we discuss below.

The quadratic solute-solvent coupling also makes the dynamics of the transition fre-

quency non-Gaussian. This can be demonstrated by calculating the skewness time correla-

tion function (Eq. (5.16))

S3,i(t) = (αi

√

2βλi)
−1χ(t)(2 + χ(t)) (5.22)
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Here,αi = κi/∆κ and

λi = β~2C2,i(0, 0)/2 (5.23)

is the state-dependent reorganization energy. In derivingEq. (5.22), the terms of the order

(βλi)
−1 compared to the main contribution were dropped. When the sameprocedure is

applied toS4(t), one arrives at the Gaussian formula for the correlation function in Eq.

(5.21).

5.4 Linear Time-resolved Spectroscopy

The time average in Eq. (5.5) can be directly carried out withthe Ornstein-Uhlenbeck

propagator in Eq. (5.19). The calculations are outlined in appendix C and here we only

present the final result for the time-dependent lineshape function[193]

I(Ω, t) ∝ |Ω− ω0|
−1/2e−β~|α(t)(Ω−ω0)|

× I1

(

2β
√

|α(t)3λ(t)~(Ω− ω0)|
)

(5.24)

Here,I1(x) is a modified Bessel function and the proportionality coefficient normalizes the

lineshape. Thet → ∞ limit gives the stationary probability of the transition frequency in

the excited statePe(Ω) shown by the solid line in Figure 22.

The lineshape function in Eq. (5.24) is clearly non-Gaussian, with two time-dependent

functions,λ(t) andα(t). The former determine the width dynamics,σ(t)2 ∝ λ(t), the

latter, α(t) = κ(t)/∆κ, controls the extent of non-Gaussian character of the evolving

lineshape. Here,κ(t) is the dynamically evolving force constant of the medium coordinate

q, which changes fromκg at t = 0 to κe at t → ∞ (see appendix C). The parameterα(t)

is inversely proportional to the change in the force constant ∆κ in Eq. (5.4). Therefore,

Eq. (5.24) becomes a Gaussian function of Eq. (5.10) in the limit ∆κ → 0. In addition,
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the limiting frequencyω0 = Ω0 −∆C2/(2~∆κ) in Eq. (5.24), beyond which the Q-model

intensity is identically zero[119], shifts to infinity at∆κ→ 0.

The reorganization functionλ(t) in Eq. (5.24) evolves in time between the initial,λg,

and final,λe 6= λg, values given by Eq. (5.23). This time-dependent function (Figure 24) is

given by the equation

λ(t) =
κ2g
2κe

(

Ce

κe
−
Cg

κg

)2

ζ(t)

[

1 +
∆κ

κg
χ(t)2

]

(5.25)

where

ζ(t) = [1 + (∆κ/κg)χ(t)]
2 (5.26)

It is clear thatλ(t) = Const andσ(t) = Const, in agreement with the result of L-models

in Eq. (5.20), whenκg = κe and∆κ = 0.

The non-Gaussian lineshape in Eq. (5.24) can often be represented by a time-dependent

Gaussian function given by Eq. (5.10). The reorganization functionλ(t) then gives the

time dependent linewidth(~σ(t))2 = 2λ(t)/β, while the line maximum̄Ω(t) is given by

the relation

Ω̄(t) = ω0 + ζ(t)∆C2/(2~∆κ) (5.27)

From this equation, the Stokes-shift correlation functionbecomes

SΩ(t) = ρχ(t) + (1− ρ)χ(t)2 (5.28)

whereρ = (2κg)/(κg + κe). This function is a quadratic function inχ(t) and, obviously,

is not the same asχ(t). Therefore, Eq. (5.17) does not hold and the Stokes-shift dynamics

do not directly report on the medium dynamics. From Eq. (5.25), Sσ(t) is a linear com-

bination of powers ofχ(t) up to the fourth order and one getsSσ(t) 6= SΩ(t). At the

same time,Sσ(t) becomes an algebraic function ofSΩ(t) and that relation can be used

for testing the consistency of the observed dynamics with the predictions of the dynamic
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Q-model. Another important consequence of Eq. (5.28) is that the Stokes-shift dynamics

are bi-exponential even if the medium dynamics are single-exponential.

Returning to equilibrium correlation functions, the Ornstein-Uhlenbeck propagator in

Eq. (5.19) can be used to calculateS2(t) in the Q-model. The result, neglecting a small

correction of the order1/(βλi), isS2(t) = χ(t). We, therefore, obtain

Sσ(t) 6= SΩ(t) 6= S2(t) = χ(t) (5.29)

We find the last equality to hold very accurately in our MD simulations of polarizable

solutes in water presented below, even for a non-exponential χ(t).

We show in appendix C that the skewness correlation functiondoes not contribute sig-

nificantly to the linear response correlation functionSσ(t) in Eq. (5.15), which then be-

comes a quadratic function ofχ(t). On the other hand,σ(t)2 ∝ λ(t) in Eq. (5.25) is a

fourth-order function inχ(t). Therefore,Sσ(t) is of fourth order inχ(t) as well. We con-

clude that the linear response approximation cannot be applied to the width dynamics in

the Q-model scenario.

It is useful to illustrate the analytical results with specific calculations. We show in

Figure C1 in appendix C functionsSΩ(t) andSσ(t) plotted directly vs.χ(t) for different

values of∆κ/κg. The deviations of two spectral functions from the bath dynamics increase

with growing |∆κ|, but the effect of this quadratic coupling term on the width dynamics is

more significant than on the Stokes-shift dynamics. This is also illustrated in Figure 24 in

application to a more specific model related to our MD simulations.

Our simulations described below are done for a model solute in water, changing both

its dipole moment and polarizability with photoexcitation. In anticipation of the specific

results presented below, we use this model here to illustrate the nonlinear time evolution of

the lineshape, which is not directly accessible by equilibrium MD simulations.
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FIGURE 24: λ(t) from Eq. (5.25). The inset showsχ(t) given by single exponential
decay (Eq. (5.30), blue) andSΩ(t) (Eq. (5.28), red) vs.t/τc. The calculations are done for
a transition with∆m/mg = 1 and∆κ/κg = −0.5; λ(0) = λg andλ(∞) = λe.

Figure 24 showsλ(t), representing the evolution of the line width, and the Stokes-

shift correlation functionSΩ(t) (inset in Figure 24). The parameters are chosen to allow

the reorganization energy to increase by approximately a factor of two while evolving on

the excited state surface (Figure 23). Despite this large increase in the spectral width, in

contrast to expectations of the L-models (Eq. (5.20)), the Stokes-shift correlation function

is nearly identical toχ(t) chosen in the form of a single-exponential decay

χ(t) = e−t/τc (5.30)

whereτc is the relaxation time of the bath[42]. Even thoughSΩ(t) does not directly repro-

duce the medium dynamics (Eq. (5.29)),SΩ(t) andχ(t) are very close, consistent with the

MD results presented below.

To summarize, the Stokes-shift dynamics is a good reporter of the medium dynamics

even for a quadratic solute-solvent coupling. Therefore, the time dependence of the spectral

width should be used as an indicator of nonlinear dynamics[228]. The next question is

whether nonlinear correlation spectroscopy can provide a more sensitive tool. This question

was partially addressed in the past, and it was shown[233, 56] that 2D spectra are not

very sensitive to intrinsic non-Gaussian fluctuations of the thermal bath in L-models of

spectroscopy. Below we explore a different scenario of Gaussian medium fluctuations
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combined with the Q-model of spectroscopy. Distinct and observable effects of nonlinear

dynamics on 2D spectra are reported.

5.5 2D Correlation Spectroscopy

5.5.1 Line Broadening Function

The lineshape of linear spectroscopy involves the average of the off-diagonal element

of the density matrixρge(t) over the individual molecules. This average defines the line

broadening functiong(t) in Eq. (5.13)[41, 48]. Third order response functions of nonlinear

correlation spectroscopy involve terms, typically represented by double sided Feynman

diagrams, combining pure dephasing with population relaxation. We will consider only

one such term here, since, for the two-state system, the restof them can be obtained by

changing the sign of the coherences in the dephasing diagrams[48]. We, therefore, set up

the calculation of the third-order lineshape function for the rephasing diagram (altering

signs in the complex exponent)

Ψ(t1, T, t2) =

〈

exp

(

−i

∫ t1

0

dτδΩ(τ)

)

exp

(

i

∫ t1+T+t2

t1+T

dτδΩ(τ)

)〉 (5.31)

wheret1 andt2 are the durations of the pump and probe pulses, respectively, andT is the

population evolution, or waiting, time.

The frequency fluctuations are driven by the quadratic coupling to the stochastic vari-

ableq performing overdamped fluctuations in a harmonic potentialand thus described by

the Ornstein-Uhlenbeck process (Eq. (5.19))[225]. Since the statistics and dynamics are

non-Gaussian, the truncated cumulant approximation does not apply here and the problem

needs to be directly integrated. This goal is achieved by path integration[255] in the space
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of stochastic trajectoriesq(τ) as shown in appendix C. The path integral can be evaluated

exactly for a quadraticΩ(q), leading to a novel analytical form for the line broadening func-

tion. We start the discussion with the standard L-model to set up the analytical framework

for the next step incorporating the quadratic coupling withthe bath.

For the L-model (∆κ = 0 in Eq. (5.4)), Eq. (5.31) gives the Gaussian lineshape

function[42, 41]

Ψ(t1, T, t2) = exp [φ(t1, T, t2)] (5.32)

Here,

φ(t1, T, t2) = −g(t1)− g(t2)
∗ + χ(T )p(t1)p(t2)

∗ (5.33)

where asterisks denote complex conjugation. Further,

g(t) = (∆τc)
2 [t/τc − 1 + χ(t)] (5.34)

with (~∆)2 = (∆C)2σ2
q is the standard Kubo’s lineshape function[42, 41, 48] and

p(t) = (∆τc) [1− χ(t)] (5.35)

Equation (5.33), even though not presented in this form previously, is equivalent to the

more commonly used relation[41] obtained from the second-order cumulant expansion of

Eq. (5.31)

φ(t1, T, t2) =− g(t1)− g(t2) + g(T )− g(t1 + T )

−g(t2 + T ) + g(t1 + t2 + T )

(5.36)

In the short-time approximation, neglecting the decay of the frequency correlations during

the two coherence timest1 and t2, Eq. (5.33) reduces to the relation used in the past to

model 2D lineshapes[256, 223, 257, 258]

φ(t1, T, t2) = −(∆2/2)
[

t21 + t22 − 2χ(T )t1t2
]

(5.37)
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Further, Eq. (5.33) is derived for a rephasing response function in which the phase

of the transition frequency switches fromiδΩ(τ) on the time interval0 ≤ τ ≤ t1 to

complex conjugate−iδΩ(τ) on the time intervalt1 + T ≤ τ ≤ t1 + T + t2 (Eq. (5.31)).

The non-rephasing diagrams preserve the same sign−iδΩ(τ) on both time intervals. The

non-rephasing̃Ψ(t1, T, t2) will, therefore, be given by Eq. (5.32) with the corresponding

functionφ̃(t1, T, t2) as follows

φ̃(t1, T, t2) = −g(t1)− g(t2)− χ(T )p(t1)p(t2) (5.38)

The physical meaning of Eq. (5.33) is quite clear. Each function g(t) describes

the homogeneous and inhomogeneous broadening of lines produced by pump and probe

pulses, while the last term shows the decay of coherence between them on the popula-

tion relaxation timeT , with the exponential time correlation function of the nuclear mode

χ(T ) = exp(−T/τc). Given physical transparency of the equation, we will preserve its

general structure when extending the calculations from theL-model to the Q-model.

Adopting the full quadratic form ofΩ(q) of Eq. (5.4) still allows an exact analytical

solution for the line broadening function (see appendix C). The main consequence of this

extension is an appearance of an effective complex relaxation timeτc/ǫ, where

ǫ2 = 1− 2iτc∆κ/(κβ~) (5.39)

We show in appendix C that the functionsg(t) andp(t) in Eq. (5.33) are replaced with

g(t) = (∆τc)
2

[

t

τc
−

2

ǫ
tanh

t̃

2

+

(

ǫ2 + 1

2ǫ

)2
(tanh(t̃/2))2

1 + ǫ coth t̃

]

+
p(t̃)2

2

(5.40)

t̃ = ǫt/τc and

p(t̃) = (∆τc)
ǫ2 + 1

2ǫ

cosh ǫt̃+ ǫ sinh t̃− 1

sinh t̃+ ǫ cosh t̃
(5.41)
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FIGURE 25: Function−g(t)/(∆τc)2 vs. t/τc for the Kubo lineshape (black, Eq. (5.34))
and for the Q-model (Eqs. (5.40) and (5.41)). The parametersǫ (Eq. (5.39)) is given as
ǫ2 = 1− iǫ′′ with ǫ′′ = 2 (blue) andǫ′′ = 10 (red). The dashed lines refer to the imaginary
part ofg(t).

These functions reduce to the previous expressions when∆κ = 0 andǫ = 1.

The short-time approximation forg(t) andp(t) results in

φ(t1, T, t2) =− (∆2/8)
[

(ct1)
2 + (c∗t2)

2

− 2|c|2χ(T )t1t2
]

(5.42)

wherec = 1+ǫ2. This equation becomes Eq. (5.37) of L-models at∆κ = 0 andǫ = 1. The

magnitude ofǫ can, however, be fairly large at the typical conditions of optical experiment.

Given thatβ~ ≃ 2.5 × 10−14 s and∆κ/κ ≃ 1, one expectsǫ2 ≃ −80i at τc ≃ 1 ps. For

these large magnitudes ofǫ, the short-time approximation in Eqs. (5.40) and (5.41)t ≪

τc/|ǫ| is limited to time-scales of tens of femtoseconds. However,for the polarizability of

the OH stretch vibration[240], our estimate presented below gives∆κ/κ = α−1
g ≃ −0.04

and thusǫ2 ≃ 1 + 3i.

That the short-time approximation becomes inaccurate for|ǫ| ≫ 1 is illustrated in

Figure 25 where we compare the standard Kubo’s line broadening function−g(t) from

Eq. (5.34) to−g(t) from Eq. (5.40). The Q-model’s−g(t) develops a positive spike with

increasing|ǫ|, before turning into the negative territory, where it decays faster than Kubo’s

−g(t). This shows that the quadratic approximation of Eq. (5.42) is insufficient since it
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does not give a convergent Fourier integral at imaginary andlarge in magnitudeǫ; higher

order expansion terms int are required. This comparison also implies that the approximate

methods of extracting the medium correlation functionχ(t) from either the eccentricity

function or the slope of the center line obtained from correlation spectra, which are justified

by the short-time approximation[257, 223, 258], are not applicable anymore as we discuss

next.

5.5.2 2D Lineshape

We use here the broadening function derived above to produce2D correlation spectra

of a two-state system[48]. The calculations are done for thecommonly presented purely

absorptive 2D spectrum given by the sum of the rephasing and non-rephasing spectra,

after the inversion of the sign of theω1 variable in the rephasing part,Rabs(ω1, ω3) ∝

Re
[

R(−ω1, ω3, T ) + R̃(ω1, ω3, T )
]

. Each spectrum component here is obtained by

Fourier transform ofΨ(t1, T, t2) (Eqs. (5.32) and (5.33) forR(−ω1, ω3, T )) andΨ̃(t1, T, t2)

(Eq. (5.38) forR̃(ω1, ω3, T )) in time variablest1 andt2.

Different metrics have been proposed to access the frequency time correlation function

S2(t) directly from the evolution of 2D spectra in order to avoid fitting the lineshape to a

predefined broadening function. These metrics themselves are largely justified on the basis

of the short-time approximation[257, 223, 258] (Eq. (5.37)) and can be considered only

as guidelines, disregarding the motional narrowing, to distinguish between different relax-

ation patterns. In particular, the eccentricity analysis[257, 223] is based on the ratio of the

line widths measured along the diagonalω1 = ω3 direction (σ‖) and along the antidiagonal

direction (σ⊥). The short-time approximation then predicts access to thefrequency cor-

relation function of the bathχ(T ) from the combination of the diagonal and antidiagonal
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FIGURE 26: Time-dependent eccentricity function (Eq. (5.43)) calculated from the L-
model (diamonds) and from the Q-model (circles). The solid line showsS2(t) = χ(t) and
the dashed line is a two-exponents plus a constant offset fit through the circles. The model
parameters are the same as in Figure 25:∆τc = 5, ǫ2 = 1+0.3i for the Q-model andǫ = 1
for the L-model.

widths as a function of the waiting time,SE(T ) = S2(T ) = χ(T ), where

SE(T ) =
σ‖(T )

2 − σ⊥(T )
2

σ‖(T )2 + σ⊥(T )2
(5.43)

Repeating the arguments of ref [257] it is easy to show that a double Fourier transfor-

mation of the Q-model short-time expansion in Eq. (5.42) (under the conditions of conver-

gence) should also yieldχ(T ) = SE(T ). The short-time approximation becomes, however,

limited to very short times once an imaginary part is included in ǫ, as is seen from the tail

of SE(T ) in Figure 26 deviating fromχ(T ) at longer waiting times. The eccentricity func-

tion does not correctly reproduce the frequency correlation functionS2(t) = χ(t) in the

Q-model (filled circles in Figure 26), while this metric is quite reliable in L-models (open

diamonds in Figure 26).

An alternative approach toS2(t) is to measure the evolution of the slope of the center

line[258, 259]. In this approach, cuts of 2D contours are made at constantω1 and max-

ima of the profiles along theω3 frequency are collected as a function ofω1. The time

dependence of the slope of the center line gives access toS2(t)[258]. Recent experimen-

tal and theoretical studies, however, have shown that the center line develops a bend for
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FIGURE 27: 2D spectra at different time delaysT calculated from L-model (ǫ = 1) and
Q-model (ǫ2 = 1 + 0.3i in Eq. (5.39));∆τc = 5. The red dots indicate the center line.

some systems[234, 235]. A similar phenomenology follows from the dynamic Q-model

developed here.

To demonstrate the new qualitative features introduced by the Q-model compared to the

L-model, we use the parameters typical for vibrational spectroscopy and compare purely

absorptive 2D spectra of a two-state system produced with the standard Kubo’s broaden-

ing function (Eqs. (5.33)–(5.35)) to the same spectra obtained with the new broadening

function derived here (Eqs. (5.33), (5.40), and (5.41)). These results are presented in four

panels of Figure 27, where the left two panels show the linearKubo’s result and the right

two panels show the result of the Q-model. The main difference between the linear and

quadratic models of line broadening is the asymmetry of the purely absorptive spectrum

introduced by the complexǫ in Eq. (5.39). The observable consequence is the bending of

the center line.
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5.6 Numerical Simulations

5.6.1 Polar-polarizable Chromophores

In order to test the model by numerical simulations, a particular realization of the

quadratic solute-solvent coupling due to solute’s polarizability[227, 120] was used. The

nuclear coordinate in this setup becomes the instantaneouselectric fieldE of the solvent

interacting with the solute dipolem0i and polarizing the solute as determined by its elec-

tronic polarizabilityα0i (assumed to be isotropic). Since both the dipole moment and the

polarizability change with the electronic transition, theinstantaneous transition frequency

in Eq. (5.4) becomes

~Ω(E) = ~Ω0 −∆m0 · E− (∆α0/2)E
2 (5.44)

where∆m0 = m0e −m0g and∆α0 = α0e − α0g.

The problem of electronic transitions in polarizable chromophores can be completely

mapped on the Q-model if one additionally assumes that the distribution of the electric field

is Gaussian. This implies that the term in the Hamiltonian describing fluctuations of the

electric field inside a solute carrying no charges and polarizability is quadratic,(4ap)−1E2,

whereap denotes the response coefficient (susceptibility) such that the chemical potential

of solvating the dipolem0i is µi = −apfi(m0i)
2. Here,

fi = [1− 2apα0i]
−1 (5.45)

is a factor accounting for the enhancement of the solute dipole due to an effective, mean-

field addition of the induced and permanent dipoles[65]. Therefore, ifα0i = 0, ap is the

linear susceptibility of the polar liquid solvent to the solute permanent dipole. It is given by

the Onsager equation[65] when the solute is a sphere of radiusR in a continuum dielectric
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with the static dielectric constantǫs

ap =
1

R3

ǫs − 1

2ǫs + 1
(5.46)

The simulations reported below are performed in a non-polarizable force field of water.

Therefore, the discussion is limited to a non-polarizable solvent. An extension to a more

general case of polarizable solvents can be found elsewhere[227, 193].

With these assumptions, the Hamiltonians of the ground and excited states of the solute

become

Hi = Ii −m0i · E− (α0i/2)E
2 + (4ap)

−1E2 (5.47)

The mapping of the Q-model on Eq. (5.47) is straightforward and achieved by equating

κi in Eq. (5.3) to(2ap)−1 − α0i and∆κ to −∆α0. The reorganization energies in two

electronic states become

λi = apfi (∆m0 + 2apfi∆α0m0i)
2 (5.48)

In addition, the average transition frequencies are

~Ω̄i = ~Ω0 − 2apfi
(

∆m0 ·m0i + apfi∆α0m
2
0i

)

(5.49)

The same equation can be written in a more compact form as

~Ω̄i = ~ω0 + αiλi (5.50)

whereω0 = Ω0 + (∆m0)
2/(2~∆α0) and

αi = −(2apfi∆α0)
−1 (5.51)

Before proceeding to MD simulations, we provide estimates ofthe typical values of

αi that might be seen in optical and IR spectroscopies. For optical absorption,∆α0 > 0

and can be of the same order of magnitude as the polarizability of the ground state∆α0 ∼
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α0g[260, 227]. Given that polarizabilities of many organic molecules can be estimated as

α0g ≃ R3/3[261], one gets for the parameter controlling non-Gaussianbehaviorαg ≃ −2

in Eq. (5.51) (α = 1.8 is used in Figure 22). For OH stretch, the quadratic Stark effect

results in[240]∆α0 ≃ 0.12 Å3. Assuming∆α0 ≃ α0g andR ≃ 1.4 Å, one getsαg ≃ −23.

Further, a nonlinear dependence of the vibrational frequency on the electric field, consistent

with altering polarizability, was observed for X-H group vibrations[241]. The numerical

estimate of∆α0 from these measurements is still a subject of uncertainty and cannot be

used here for mapping on the Q-model.

The numerical simulations of electronic transitions in polarizable chromophores pre-

sented below separately address the statistics and dynamics of the transition frequency. We

first start with analyzing the free energy surfaces of the twoelectronic states as functions

of the transition frequencyΩ. Those are given in the Q-model by Eq. (5.24), in which

the two stationary states are obtained by assigningα(t) to its initial, αg = α(t = 0), and

final, αe = α(t = ∞), values given by Eq. (5.51). We then proceed to the next step of

analyzing the dynamics of the transition frequency, focusing in particular on nonlinear vs.

non-Gaussian dynamics caused by the quadratic solute-solvent coupling of a polarizable

chromophore.

5.6.2 Free Energy Surfaces

The system that we have chosen to analyze is made of a spherical solute with the radius

R = 3 Å dissolved in TIP4P water (Figure 28). The solute interactswith the oxygens of

water by the Lennard-Jones (LJ) potential and, additionally, carries two opposite chargesq

separated by the distanceR = 2d. Polarizability of the solute is modeled by a Drude parti-

cle placed at its center (Figure 28)[262]. Isotropic polarizability of the soluteα0 = q2D/kD

130



FIGURE 28: Polar-polarizable solute used in molecular dynamics simulations. A
Lennard-Jones (LJ) solute of the radiusR contains two opposite charges separated by
2d = R. The negative charge−qD at the center of the LJ solute is compensated by a
Drude particle carrying the charge+qD. The charge and the spring constantkD connecting
the Drude particle to the LJ particle define the solute polarizability α0 = q2D/kD. Alter-
ing qD is used to change the polarizability of the solute. The parameters of the solute and
solvent force fields are given in chapter 7.

is achieved in simulations by allowing isotropic motions ofthe Drude particle constrained

only by the potential energy penalty of stretching the spring with the force constantkD.

The magnitude of the Drude particle chargeqD was changed to produce different values of

α0. NAMD[263] was used to integrate the MD trajectories. More details on the simulation

protocol, force field parameters, and the analysis of the simulation trajectories are given in

chapter 7. Here, we proceed directly to the results.

Two sets of simulations were performed to test the model. In the first set, the dipole

moment of the solute was varied at zero polarizabilityα0i = 0. The average solvent elec-

tric field as a function ofm0 then yields the susceptibilityap = 0.0167 Å−3. The Onsager

equation (Eq. (5.46)) predictsap = 0.0181 with ǫs = 59 of TIP4P water[264]. A some-

what higher value from the Onsager equation with the dielectric cavity radius equated to

the van der Waals radius of the solute is consistent with previous simulations[97]. The

simulations of polarizable chromophores were done in two dipolar states withm0g = 5

D andm0e = 10 D and the corresponding polarizabilitiesα0g = 5 Å3 andα0e = 15 Å3.
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FIGURE 29: Free energy surfaces of the ground (g) and excited(e) states for non-
polarizable (a) and polarizable (b) chromophores. The solid lines are the calculations with
the Q-model usingap = 0.0167 Å−3 as the sole input parameter. The dots represent distri-
butions of the energy gap produced by MD simulations. All curves are brought to the same
baseline at the positions of their minima.

For the sake of comparison, the same dipolar configurations of the solute were used to pro-

duce the free energy surfacesFi(Ω) = −β−1 ln[Pi(Ω)] for polarizable and non-polarizable

chromophores (Figure 29).

The parabolic free energy surfaces of the Gaussian statistics (Eq. (5.8)) are calculated

with α0i = 0 in Eqs. (5.48)–(5.50). The results are compared in Figure 29a to direct sam-

pling of the energy gapΩ(E) (Eq. (5.44)) along MD trajectories. Corresponding free en-

ergy surfaces for polarizable chromophores are compared toEq. (5.24) in Figure 29b. The

results for the solvent-induced shifts∆Ωi = Ω̄i−Ω0 and reorganization energies are listed

in Table 1. Simulations are in quantitative agreement with the Q-model for both purely

dipolar and polarizable chromophores. A slight discrepancy between simulations and the-

ory in the positions of the parabolas’ minima atm0g = 5 D, seen in both cases, is probably
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TABLE 1: Solvent-induced spectral shifts and reorganization energies in two states of
the polarizable and non-polarizable chromophore. The results of MD simulations are com-
pared to calculations according to Eqs. (5.48)–(5.50) employing a single input parameter
ap = 0.0167 Å−3 obtained from MD simulations of non-polarizable chromophores with
varying magnitude of the dipole moment (See chapter 7).

Parametersa MD, eV Theory, eV
m0i α0i −~∆Ωi λi

b −~∆Ωi λi
b

5 0 0.52 0.26 0.48 0.26
10 0 1.04 0.26 1.04 0.26
5(g)c 5 0.68 0.57 0.75 0.62
10(e)c 15 3.54 2.83 3.51 2.88

aChromophore’s dipole (D) and polarizability (Å3). bReorganization energies are calculated
according to Eq. (5.9).cg and e denote ground and excited states, respectively.

caused by the non-point solute dipole in simulations and a corresponding contribution of

the solute quadrupole to the solvation energy.

5.6.3 Dynamics

The free energy surfaces presented in Figure 29 suggest thatdynamics of the transition

frequency should slow down for states with higher solute polarizability. The curvature of

Fi(Ω) is the restoring force constant of the harmonic motion, which loses its stiffness with

increasingα0. The same statement applies to the dynamics of the solvent electric field

E. The harmonic stiffness constant for the equations of field evolution is (2ap)−1 − α0i

(Eq. (5.47)), and it decreases with increasing solute polarizability. As a result, the time

correlation functionS‖(t) ∝ 〈δE‖(t)E‖(0)〉 of the field projection on the solute dipole

E‖(t) slows down with increasing solute polarizability (see Figure 47 in chapter 7)[265,

266]. This observation, goes beyond the mathematical framework of the dynamical Q-

model following from the Ornstein-Uhlenbeck propagator inEq. (5.19).

Equation (5.19) assumes that all the dependence of the dynamics of the transition fre-
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quency on the electronic state of the chromophore appears asa result of the quadratic

coupling to the coordinateq(t), the dynamics of which are not affected by changes in the

chromophore. This assumption can of course be modified by assigning the dependence

of the relaxation functionχ(t) on the electronic state of the chromophoreχ(t) → χi(t),

i = g, e. This alteration breaks the independence of the Stokes-shift and equilibrium cor-

relation functions on the electronic state of the chromophore, but preserves the equality

betweenS2,i(t) andχi(t). We find from our simulations thatS2,i(t) matchesS‖,i(t) really

well. Points showingS‖,i(t) in Figure 30 essentially coincide on the plot scale with the

solid lines representingS2,i(t). The origin of the dependence ofS2,i(t) on the electronic

statei = g, e can, therefore, be assigned to the corresponding dependence of the dynamics

of the nuclear coordinate.

The Q-model predicts distinctions betweenSσ,i(t), SΩ,i(t), andS2,i(t) calculated in the

same electronic state (Eq. (5.29)). All these predictions go beyond the standard expecta-

tions of L-models[249, 250, 252], implying that the dynamics are nonlinear. We find all

these predictions to hold when tested against MD simulations: all correlation functions

depend on the electronic state of the chromophore (cf. linesof different color in Figure 30)

and the three correlation functions are different for the same electronic state (cf. different

lines of the same color in Figure 30). However,SΩ,i(t) is still a reasonable estimate ofχi(t)

andSσ,i(t) are close to bothSΩ,i(t) andχi(t). The main difference in the dynamics of two

states comes from the dependence ofχi(t) on the electronic state of the chromophore. The

next question to address is whether higher-order time correlation functions are non-zero,

i.e., whether the dynamics are non-Gaussian.

We start by comparing the skewness time correlation function S3,i(t) (Eq. (5.16)),

which is identically zero for Gaussian dynamics, between MDsimulations and the Q-

model (Eq. (5.22)). The Q-model predictsS3,i(0) ∝ −∆α0 (α−1
i ∝ ∆κ, ∆κ = −∆α0
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FIGURE 30: Normalized correlation functions calculated for the ground (blue,m0g = 5 D
andα0g = 5 Å3) and excited (red,m0e = 10 D andα0e = 15 Å3) states of the polarizable
chromophore. The solid lines refer toS2,i(t), with the superimposed dots showing the
self-correlation functionS‖,i(t) of the solvent field projected on the solute dipole. The
dashed and dash-dotted lines showSΩ,i(t) (Eq. (5.28)) andSσ,i(t) (Eqs. (5.12) and (5.25)),
respectively.

in Eq. (5.22)). Since∆α = α0e − α0g > 0, it implies thatS3,i(0) < 0. This is indeed

observed in MD simulations for bothS3,g(0) andS3,e(0) (Ω(t) is defined by Eq. (5.44) for

both states). Moreover, the agreement between the skewnessfunctions calculated from MD

and from the Q-model is nearly quantitative for the ground state (cf. dashed and solid blue

lines in Figure 31). Further, Eq. (5.16) predicts that the skewness function should depend

on the chromophore’s state and, in particular,S3,e(0) should be smaller in the magnitude

thanS3,g(0) because of the larger reorganization energy of the exited state,λe > λg (Table

1). This is indeed confirmed by MD, but the alteration ofS3,e(0) compared toS3,g(0) is

greater in MD simulations than predicted by the Q-model. Theagreement between the

theory and simulations is only qualitative for the excited state skewness function.

The correlation functionsS4,i(t) calculated from MD are practically indistinguishable

from their corresponding Gaussian limits (Eq. (5.21), see Figure 48 in chapter 7). This is

the result of the fact that the non-Gaussian corrections to Eq. (5.21) scale as(βλi)−1 in

S4,i(t) and the knowledge of the second-order correlation functionS2,i(t) is sufficient to

describeS4,i(t).
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FIGURE 31: Skewness correlation functionS3,i(t) (Eq. (5.16)) calculated from MD sim-
ulations (dashed lines) and from the Q-model (Eq. (5.22), solid lines). The calculations
are done for the ground (blue,m0g = 5 D andα0g = 5 Å3) and excited (red,m0e = 10
D andα0e = 15 Å3) states of the polarizable chromophore. In both calculations, we have
∆m0 = 5 D and∆α0 = 10 Å3 in Eq. (5.44), consistent with the definition of the transition
frequency in Figure 29. The time correlation functionχ(t) = S‖(t) from MD simulations
of a non-polarizable solute was used in Eq. (5.22) (see Figure 47 in chapter 7).

The conclusion that can be drawn from calculations of time correlation functions is

that the procedure adopted in the analytical model of projecting the Gaussian dynamics

of nuclear medium coordinates on the transition frequency quadratic in these coordinates

is generally supported by simulations. We also conclude that transient effects in time-

resolved linear spectra going beyond the standard linear models, such as the dependence of

the spectral width on time shown in Figure 24, arise from moving the equilibrium distribu-

tion belonging to one free energy surface to a free energy surface with a different curvature

(Figure 23). The evolution of the excited-surface packet requires two correlation functions,

S2,e(t) andS3,e(t). The effect of non-Gaussian dynamics is, therefore, mostlylimited to

a non-zero skewness functionS3,i(t) and does not affect the higher-order time correlation

functions, which can be calculated based on the Gaussian dynamics.
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5.7 Discussion

Two types of non-traditional dynamical effects of condensed materials on the time evo-

lution of molecular spectra have recently come under scrutiny: (1) nonlinear dynamics and

(2) non-Gaussian dynamics. The former puts under one umbrella all possible deviations

from the results of L-models combined with the linear response approximation. The latter

requires high-order time correlation functions not reducible to the second-order one.

Three consequences of nonlinear dynamics are typically recognized: (i) Stokes-shift

correlation functions distinct from equilibrium correlation functions of both the transition

frequency and the intrinsic nuclear coordinates of the thermal bath[250], (ii) differences

between equilibrium time correlation functions in the ground and excited states of the

chromophore[251, 249], and (iii) time evolution of the spectral width[244, 193, 228]. All

these features are qualitatively reproduced by the Q-model.

The model achieves a more complete description of static andtime-resolved lineshapes

by summing an infinite series of spectral cumulants, insteadof relying on the commonly

applied two-cumulant approximation (zero cumulants beyond second order). The model

yields non-Gaussian linear lineshapes (Eq. (5.24)) and predicts time evolution of the spec-

tral linewidth (point (iii)).

The quadratic chromophore-medium coupling also requires anew analytical form for

the line broadening function of 2D correlation spectra (Eqs. (5.33), (5.40), and (5.41)).

Time evolution of 2D spectra shows bending of the center lineand the deviation of the

eccentricity function from the correlation function describing the bath dynamics. Given

these complications, standard metrics of extracting the two-point correlation function from

2D spectra (center line, eccentricity function, etc.) do not apply here and direct fitting of
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2D profiles to the line broadening function is required. Alternatives to direct fitting are

clearly desirable[257, 223, 258, 259], but have not been established so far for the Q-model.

There is an important qualitative difference between two signatures of nonlinear dy-

namics:SΩ,i(t) 6= S2,i(t), Sσ,i 6= SΩ,i (point (i)) andS2,g(t) 6= S2,e(t) (point (ii)). The

former inequalities require going beyond the linear response (see appendix C), which is

achieved here by summing an infinite series of transition frequency cumulants. By com-

parison, the difference betweenS2,g(t) andS2,e(t) can be accommodated within the linear

response approximation once different force constantsκi for the nuclear coordinate are

allowed in the ground and excited states (e.g., through solute’s polarizability). The lin-

ear response approximation for these correlation functions requires the smallness of only

the transition frequencyΩ(t) relative toHg for absorption and relative toHe for emission.

While linear expansion inΩ(t) is performed, different force constantsκi will project onto

state-dependent time correlation functionsχi(t) of the nuclear mode. Even within the lin-

ear response approximation, differentS2,i(t) will be produced for the ground and excited

states.

The issue of non-Gaussian dynamics (point (2) above) is often entangled with nonlinear

effects, but is in fact a separate issue. It is studied here bycombining the dynamical Q-

model with MD simulations. The third-order (skewness) timecorrelation function is non-

zero for polarizable chromophores, thus corresponding to non-Gaussian dynamics of the

transition frequency. The effect of non-Gaussian dynamics, within the present model, does

not extend beyond the third-order correlation function.
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Chapter 6

ROLE OF POLARIZABILITY OF THE ACTIVE SITE OF CYTOCHROMEC IN THE

ELECTRON TRANSFER ACTIVATION BARRIER

6.1 Summary

Enzymes in biology’s energy chains operate with low energy input distributed through

multiple electron transfer steps between protein active sites. The general challenge of bi-

ological design is how to lower the activation barrier without sacrificing a large negative

reaction free energy. It is shown that this goal is achieved through a large polarizability

of the active site. It is polarizable by allowing a large number of excited states, which are

populated quantum mechanically by electrostatic fluctuations of the protein and hydration

water shells. This perspective is achieved by extensive mixed quantum mechanical/ molec-

ular dynamics simulations of the half reaction of reductionof cytochromec. The barrier for

electron transfer is consistently lowered by increasing the number of excited states included

in the Hamiltonian of the active site diagonalized along theclassical trajectory. Therefore,

molecular polarizability, in addition to much studied electrostatics of permanent charges,

is a key parameter to consider in order to understand how enzymes work.

6.2 Introduction

Cytochromec is an essential redox protein in bacterial photosynthesis and respira-

tory energy chains of mitochondria. Its redox function is toshuttle electrons between

membrane-bound energy complexes, such as between thebc1 complex and cytochromec
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oxidase in respiration [267]. The redox activity occurs in hemec covalently bound to the

polypeptide [268] (Fig. 32A). The mechanism of transferring the electron, which alters the

redox state of the heme, is generally understood within the Marcus theory of electron trans-

fer [6]. It stipulates that the reaction is activated by nuclear fluctuations of the thermal bath,

which in the case of protein electron transfer is a highly heterogeneous protein-water inter-

face. The prevailing modes, frequencies, and coupling strengths of those medium modes

to the heme’s electronic states are the parameters establishing the overall activation barrier

of the reaction [114, 89, 13].

Hydration does not significantly affect vibrational cooling of the heme [269] and THz

absorption of well-hydrated samples is nearly insensitiveto the oxidation state [270]. These

observations suggest little direct contact of water with the heme [269]. Therefore, cy-

tochromec is a good model system to which basic assumptions of the Marcus theory apply

[271, 117, 47]. Potential complications of water penetrating the active site [272] and of

conformational transitions upon changing the redox state [268] are largely insignificant.

Our present simulations support this general assessment when applied to the active site

represented by fixed atomic charges. However, the main result of this study is the finding

that polarizability of the active site extends the problem of protein electron transfer beyond

the standard model [119] by dramatic reduction of the activation barrier.

The established paradigm of the Marcus theory is based on thetwo-state description

involving electronic energy levels of either the electron donor or the acceptor [6]. Nuclear

fluctuations of the medium bring these two energy levels intoresonance, allowing tunnel-

ing to occur [273]. The free energy (reversible work) required to create the resonance

condition is determined by two parameters, the reaction free energy∆G0 and the medium

reorganization energyλ. The formulation further simplifies when∆G0 is zero for either

self-exchange electron transfer or for a half redox reaction occurring at the electrode. The
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activation free energy (activation barrier) is then fully determined by the reorganization

energy [6]

F act = λ/4. (6.1)

Early calculations and numerical simulations of protein electron transfer produced val-

ues of the reorganization energy in the range of 0.7–0.8 eV. More recent molecular dynam-

ics (MD) simulations employing improved force field and significantly longer trajectories

resulted in an upward revision of these values toward those more traditional for redox chem-

istry, ∼ 1.0 − 1.5 eV [274, 47, 275, 89] (or even higher [276]). The upward revision of

the reorganization energy implies a higher activation barrier in Eq. (6.1) and a much slower

rate. On the other hand, electrode kinetics measurements typically report much lower val-

ues,λ ∼ 0.4 − 0.5 eV [277, 278], when estimated from the Marcus relation in Eq.(6.1).

It implies that either the results of numerical simulationsfor λ are grossly incorrect or the

relation between the activation barrier and the reorganization energy needs a revision. Here

we present arguments that the latter is the case. The revision of the barrier height arises

from introducing polarizability of the protein’s active site (Fig. 32B).

Equation (6.1) can be derived by considering two crossing parabolasFi(X) = (X ±

X0)
2/(4λ) (i = Red,Ox) plotted against the energy gap reaction coordinateX as defined

by Warshel [279] (Fig. 32B). The crossing pointF1(X) = F2(X) is the transition state of

zero energy gapX = 0, where tunneling occurs [280, 281, 282]. The Marcus formulation

follows from requiringX0 = λ as stipulated by the fluctuation-dissipation theorem [92].

Recent simulations have shown that proteins are often unableto sample their entire

phase space on the reaction time-scale. This ergodicity breaking [13] eliminates the restric-

tion on the reaction parameters imposed by the fluctuation-dissipation theorem. In particu-

lar,X0 andλ become two separate parameters [283, 13] and finding the activation barrier

requires three parameters (X0, λ, and∆G0), instead of two parameters of the Marcus the-
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ory. Sampling of the entire phase space is never realistically possible, but the problem is

drastically elevated for proteins because of their rugged energy landscape, similar to those

found for fragile glasses [284, 285]. The dynamics and statistics of proteins are charac-

terized by many local minima, in which the protein-water system can be trapped never

reaching its true thermodynamic minimum [286]. Electron-transfer reactions between non-

equilibrium trapped states do not follow the strict restrictionX0 = λ [13].

The direct mechanistic consequence of this new perspectiveis more flexibility in fine-

tuning the activation barrier of electron transfer [13, 91]. SinceX0 refers to the average

of the vertical transition energy, it defines the position ofthe maximum of an optical spec-

troscopic line [246] and can be associated with the Stokes shift of optical spectroscopy.

One can therefore define the Stokes shift reorganization energy asλSt = X0 [119]. The

three-parameter description leads to the following activation barrier when∆G0 = 0 [13]

F act = λr/4 = (λSt)2/(4λ), (6.2)

where the “reaction”λr can be identified with the Marcus reorganization energy in Eq.

(6.1).

The reorganization energy in the denominator in Eq. (6.2) isdefined as the variance of

the reaction coordinate

λ = 〈(δX)2〉/(2kBT ), (6.3)

wherekB is the Boltzmann constant andT is the temperature. Note that long trajectories,

> 100 ns or longer [15], are required to convergeλ (see Fig. 52 in chapter 7). Because of

this difficulty, most simulations, with few exceptions [89], reportλSt instead ofλ.

It is clear that the activation barrier can be lowered compared to Eq. (6.1) of the Marcus

model whenλSt < λ. The parameter

κG = λ/λSt (6.4)
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quantifies the difference between two reorganization energies in the three-parameter model

[283]. Note that electrochemical kinetic measurements report λr = (λSt)2/λ. The low

values of such effective reorganization energies [277, 287, 288] are therefore consistent

with κG > 1 as schematically shown in Fig. 32B. It is also clear that the rate maximum

plotted against the driving force−∆G0 (the Marcus inverted parabola [6]) gives the value

of λSt = X0 only.

Important for biological applications is thatκG > 1 lowers the activation barrier with-

out requiring more negative reaction free energy, which is ascarce commodity in biological

energy chains [267]. It seems therefore possible that the evolutionary pressure has favored

the glassy character of the protein fluctuations, and their high fragility [284], to promote

electron transport consuming less free energy input for itsoperation.
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FIGURE 32: (A) Hydrated cytochromec with the heme active site shown in green. (B)
The free energy surfaces of a half reaction in the Marcus model (Eq. (6.1)) of fixed atomic
charges (solid lines) and in the polarizable model withλSt < λ (Eq. (6.2)). (C) The ac-
tive site representation by atomic chargesqα in classical simulations and by a Hamiltonian
matrix coupled to the classical bath in QM/MD simulations. (D) The mechanism of com-
pensation of protein and water electrostatics through polarizing the interfacial water dipoles
by the charged residues of the protein.
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6.3 Theoretical and Computational Methods

The Marcus formulation of the electron-transfer theory canbe viewed as the first-order

quantum-mechanical perturbation of the electronic energylevels by the thermal bath. The

perturbation Hamiltonian comes from integrating the electronic densityρe(r) with the elec-

trostatic potential of the bathφ(r): H ′ =
∫

ρe(r)φ(r)dr. When the electronic density is

given by a set of atomic chargesqα, one arrives at the force-field formulation often imple-

mented in classical simulations. The solute-solvent Hamiltonian is obtained by summing

up partial atomic charges with the bath potentials at their locations:H ′ =
∑

α qαφα (Fig.

32C). However, fluctuations of the medium not only alter the donor-acceptor energy gap

(between HOMO and LUMO), but also the entire manyfold of the electronic energy states.

Each instantaneous nuclear configuration of the medium willproduce a different extent

of electronic delocalization between those available electronic states, or, alternatively, a

different deformation of the electronic density.

The ability of the electronic distribution to deform in an external field is associated with

its electronic polarizability. In the dipolar approximation, it is given in terms of transition

dipolesµkm linking different electronic sates of the molecule throughthe electric field of

the bathEb (Fig. 32C). The standard quantum-mechanical perturbation theory leads to the

quadratic Stark effect [289], shifting the energy levelk by the amount(−αk/2)E
2
b scaled

with the polarizability of that state

αk = 2
∑

m 6=k

|µkm|
2/∆Emk (6.5)

determined by a set of transition dipoles and energy gaps∆Emk = Em−Ek of all possible

virtual excitations.

Perturbation theory is not required to introduce polarizability into the description of

electron transfer. A more accurate formalism is achieved byusing the empirical valence-
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bond approximation introduced by Warshel and Weiss [290, 291, 292]. It produces the

instantaneous energies of the donor and acceptor by diagonalizing the Hamiltonian matrix

incorporating the coupling to the medium into the diagonal (electrostatics) and off-diagonal

(transition dipoles) matrix elements. This approach has been widely used for a number of

biologically relevant systems in the past [293, 88] and has recently been implemented in

the form of the perturbed matrix algorithm [47] in application to protein electron transfer.

We follow this general formalism in the simulations presented in this paper. Our main goal

is to explore the possibility of lowering the barrier for electron transfer by including mixing

between the quantum states (polarizability). From the morefundamental perspective, our

study asks the question of whether including polarizability of the enzyme’s active site, in

contrast to the picture of fixed atomic charges, might reducethe barrier of an enzymetic re-

action. In other words, the question is whether polarizability is one of the tools of biology’s

catalytic capability [294].

6.3.1 QM/MD Simulations

The goal of our simulation strategy is to go beyond the assumption of fixed atomic

charges in the modeling of the redox active site. We introduce the ability of the electronic

density of the heme in cytochromec to redistribute in response to a thermal fluctuation

of the bath. This goal is shared by essentially all QM/MM algorithms which all start by

defining the quantum center, i.e., a part of the system which can be treated on the quantum-

mechanical (QM) level [86, 87, 88, 89, 90, 91]. The choice of the level of QM calculations

is dictated by the physics of the problem and, to a large degree, by the time-scale required

to capture the essential collective modes of the thermal bath contributing to the activation

barrier. Protein electron transfer is a difficult problem for QM algorithms because long
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time scales are very essential here. Classical simulations of electron transfer have shown

that a broad range of bath time-scales affects the reorganization energy [283, 89]. The time-

scales of∼ 1 ns represent global elastic deformations of the protein shape, which have to

be included for a realistic description ofλ. These motions produce large fluctuations of

electrostatic potential inside the protein by shifting charged surface residues and surface

water polarized by them [13] (Fig. 32D). As more elastic modes enter the observation

window (the length of the simulation trajectory), the reorganization energy grows nearly

continuously through the range of time-scales up to tens of microseconds currently reached

by simulations [15]. Given these constraints imposed by thephysics of the problem, a

QM algorithm needs to capture the entire range of thermal motions sampled by classical

simulations.

The method of perturbed matrix [47] imposes essentially no QM overhead on the clas-

sical MD. It assumes that the forces acting on the atoms of theclassical thermal bath can

be well characterized by classical force fields. One therefore performs long classical MD

simulations of the entire system producing the dynamics of the classical bath. This clas-

sical dynamics is then used to recalculate the parameters ofthe quantum center affected

by the electrostatic interactions with the bath. Since long-range electrostatics is the main

factor influencing the positions of the donor and acceptor energy levels involved in electron

transfer [114], this algorithm is particularly well suitedfor this problem.

The QM component is implemented here by expanding the electrostatic potential of

the bathφ(r) around the potentialφFe at the heme iron and truncating the expansion at the

dipolar term. The matrix elements of the quantum center Hamiltonian then become

Hjk = (Ej +QφFe) δjk − µjk · Eb, (6.6)

whereQ is the total charge of the quantum center. The quantum statesj = 0, . . . ,M
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FIGURE 33: Free energy surfacesFi(X), i = Red,Ox of cytochromec in the Ox (left
curves) and Red (right curves) states. The blue points/linesrefer to classical MD and the
red points/lines refer to the QM/MD simulations. The solid lines are fits of the statistics
calculated from simulation data to parabolas. Panel (A) refers to a non-polarizable quantum
center (ξ = 0). Panel (B) refers to a polarizable quantum center withξ = 1 and∆α = −31
Å3. The lower panel demonstrates the depression of the barrierheight upon allowing a
non-zero∆α (see Fig. 54 in chapter 7 for∆α = −123 Å3).

include the ground state of the quantum center,j = 0, and a number of its excited states

produced here by ZINDO/S calculations for the oxidized (Ox,Q = −1) and reduced (Red,

Q = −2) states. The polarizability is a slowly converging function of the number of

excited statesM ; the results presented here were obtained forM = 100. ReducingM

makes the quantum center less polarizable and eventually brings the system back to the

Marcus domain. This was the result of a recent calculation employingM = 12 [47].

The Hamiltonian matrix in Eq. (6.6) is diagonalized at each instantaneous value of the

potentialφFe and the electric fieldEb along the simulation trajectory to produce the mini-

mum eigenvaluesEOx/Red
g corresponding to the ground state in either oxidized or reduced

states of the active site. The electron-transfer reaction coordinate, monitoring the transition

to the activation stateX = 0, is given as [279]

X = EOx
g − ERed

g . (6.7)
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The limit of classical simulations is obtained by representing the quantum center by a

set of atomic charges coupled to the bath through the corresponding electrostatic potentials

φα (Fig. 32C). The reaction coordinate of electron transfer becomes in this case

X =
∑

α

∆qαφα, (6.8)

where∆qα = qOx
α −qRed

α . More details on the definition of the quantum center, quantum cal-

culations, and the protocols of classical simulations are provided in Materials and Methods

below and in chapter 7. Here we discuss the results of our analysis.

6.4 Results

6.4.1 Free Energy Surfaces of Electron Transfer

The free energy surfaces of electron transferFi(X) = −kBT ln[Pi(X)] (i = Ox,Red)

follow from probabilitiesPi(X) calculated from classical trajectories with the quantum (Eq.

(6.7)) or classical (Eq. (6.8)) definitions of the reaction coordinateX. Since our focus is on

a half reaction, we do not consider a more complex problem of calculating the redox poten-

tial [87, 89] and focus solely on the reorganization energies. We first note that the quantum

and classical algorithms are consistent with each other when the polarizability of the active

site is turned off (Fig. 33A). In order to study the effect of the active site polarizability,

we introduced scaling of the transition dipoles with the scaling factor ξ: µmk → ξµmk.

The non-polarizable active site corresponds toξ = 0 when coupling between the quantum

states is turned off. Even in that limit, the algorithms of calculatingX are still somewhat

different in the quantum and classical cases since we use an expansion of the potential in

the quantum Hamiltonian in Eq. (6.6), in contrast to a full set of atomic charges in the clas-

sical MD. However, the free energy surfaces obtained in the two approaches are consistent
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(Fig. 33A), suggesting little effect on the charge distribution within the active site on the

electron-transfer barrier. One can further examine the effect of charge distribution in the

active site by assuming the complete localization of the charge on the heme iron,∆qFe = 1.

This extreme case and the calculation with distributed charge are compared in Table 2 and

give consistent results.
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FIGURE 34: Reorganization energiesλ andλSt against the scaling factor altering the
transition dipoles asµkm → ξµkm. The points are the results of calculations with error
bars shown and the lines are regressions through the point toguide the eye.

This result might seem to be trivial since standard electrostatics suggests that the inter-

action of a point charge (localization) with the surrounding medium is equivalent to that

of a charge uniformly spread over the conducting surface (delocalization). However, it is

often suggested that delocalizing the electronic density of the active site is an optimization

mechanism to reduce the reorganization energy [87]. While this mechanism is expected to

lower the reorganization energy of localized skeletal vibrations [274, 268], we see little evi-

dence for it altering the medium (protein and water) reorganization energy. It is also useful

to keep in mind that most reactions relevant to biology’s energy chains occur at relatively

small magnitudes of the driving force−∆G0 and, therefore, proceed in the normal region

of electron transfer when quantum vibrations have essentially no effect on the activation

barrier [245]. We instead argue here that the reorganization energyλ is maximized, and not

minimized, for polarizable active sites. SinceλSt remains nearly unaffected, the activation
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barrier in Eq. (6.2) can be reduced (Fig. 32B) due to a large value of the parameterκG (Eq.

(6.4)).

6.4.2 Effect of Polarizability on the Reorganization Energy

The main goal of our analysis is to establish whetherλ can significantly exceedλSt

when polarizability of the protein’s active site is turned on. We first note thatλ ≃ λSt,

in accord with the standard Marcus theory [6], in the classical MD simulations (Table 2).

This result is in agreement with previous simulations of this protein [271, 47], although

we still find κG > 1. A reasonable agreement with the Marcus theory found here isnot

always shared by other redox proteins. We have foundλ > λSt for a number of redox

proteins (κG ≃ 1.7 − 3.2 for electron transfer reactions in bacterial reaction centers [283,

13]). The reasons why cytochromec falls on the lower end ofκG values are important

to understand. We discuss below the mechanism of compensation between the protein

and water fluctuations loweringκG. Here we first look at how altering the physical model

from a set of fixed atomic charges to a fluctuating charge distribution affects the activation

barrier.

Table 2 and Fig. 34 summarize our findings. The reorganization energyλ is calculated

according to Eq. (6.3), while2λSt = 〈X〉Red−〈X〉Ox is calculated from the average energy

gaps in two redox states. The polarizability of the quantum center is continuously increased

in Fig. 34 by scaling the ZINDO/S transition dipoles,µjk → ξµjk. The corresponding

polarizabilities, calculated from Eq. (6.5), are listed inTable 2. As mentioned above, the

polarizability significantly drops when fewer states are included and the statistics of the

electron-transfer energy gap returns back toκG ≃ 1 of the Marcus theory (Table 7 in

chapter 7).
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TABLE 2: Reorganization energies (eV).a

Method λSt λOx λRed κG
b

Classical
Classical MD 1.26 1.67 1.64 1.3
∆qFe = 1c 1.13 1.57 1.50 1.4
αRed, ∆α/Å3 (ξ)d Quantum Mechanical
0.0, 0.0(0) 1.13 1.57 1.50 1.4
54, −31(1) 1.24 3.07 2.32 2.2
216, −123(2) 1.40 6.40 5.16 4.1
1, −3e 0.89 0.92 1.32 1.3

aThe error bars are±(0.04 − 0.06) eV for the classical calcula-
tions and±(0.04 − 0.2) eV for the quantum calculations. More
details can be found in Table 8 in chapter 7.bκG defined by Eq.
(6.4). cCalculated from the variance of electrostatic potential at
the heme iron thus assuming that charge is fully transferred to the
heme iron in the half reaction.dThe difference of the quantum
center polarizability in the Ox and Red states calculated from Eq.
(6.5); the number in the bracket is the factor scaling the transition
dipole moments,µkm → ξµkm (also see Fig. 34).eThe results
of simulations from Ref. 47,∆α is estimated from the present
calculations based onM = 10.

Increasing the polarizability clearly separatesλOx/Red from λSt (Fig. 34). According to

Eq. (6.2), this should lower the activation energy, as is also seen from direct calculations

shown in Fig. 33B. The main result of our calculations is that electron transfer involving po-

larizable active sites should proceed with lower activation barriers, without requiring more

negative reaction free energy. Why this is the case can be seenfrom the following general

arguments. The reversible work of creating a fluctuation of the bath field is a quadratic

function of the field,(γ/2)E2
b , in linear response. The negative free energy invested in po-

larizing the solute reduces this energy as(γ − αi)E
2
b /2. One expects, therefore, a smaller

activation barrier to reachX = 0, as we observe. There is also a possibility of breaking

the harmonic stability atγ ≃ αi, when water response passes through a spike [21]. One

can anticipate that an electron-transfer enzyme can reach its lowest activation barrier in this

regime.
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6.4.3 Electrostatics of Protein and Water

The overall reorganization energy is a gauge of the strengthof thermal fluctuations af-

fecting the active site, with water and protein being its twomain components. It is therefore

of great mechanistic interest to understand what are the relative contributions of protein and

water to fluctuations experienced by the active site. In contrast to some early suggestions

that soluble proteins can effectively screen water from theactive site and thus produce an

effectively nonpolar environment, a number of recent simulations have clearly shown that

water can never be neglected [89]. In fact, reorganization energies turn out to be com-

parable in magnitude to those traditionally reported for soluble synthetic donor-acceptor

complexes [47, 275, 89, 15]. This upward revision of reorganization energies for protein

electron transfer raises important mechanistic questionsof how high efficiency of biolog-

ical energy chains is achieved and how the motions of proteinand water combine in the

overall activation barrier.

One first needs to realize that there is a significant screening between the water and

protein contributions to the electron-transfer energy gap. The water dipoles are oriented by

the ionized surface residues of the protein to produce the electrostatic potential opposite in

sign to the potential of the protein (Fig. 32D). As a result, the protein (p) and water (w)

contributions toX0 = 〈Xw〉+ 〈Xp〉 are typically opposite in sign and similar in magnitude

(Fig. 35A). The value ofX0 is the result of their incomplete compensation. The same

physics applies to the variance ofX, that is to the reorganization energy in Eq. (6.3).

The reorganization energy obtained from Eq. (6.3) becomes the sum of three compo-

nents: protein,λp, water,λw, and a cross component,λpw = 〈δXpδXw〉/(kBT ), produced

by correlated protein and water fluctuations. Consistent with the opposite signs of〈Xp〉

and〈Xw〉, the cross component is negative and compensates much larger individual pro-
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used to fit the time correlation functionCX(t) from classical MD simulations.

tein and water contributions [295]. For instance, forλOx = 1.67 eV listed in Table 2, one

hasλp = 2.28 eV,λw = 3.39 eV andλpw = −4.0 eV (see Table 8 in chapter 7).

6.4.4 Dynamics

The compensation between the protein and water fluctuations, displayed in the overall

value ofλ, shows itself even more dramatically in the Stokes shift dynamics of the energy

gap variableX(t). To study the dynamics, one has to turn to time correlation functions.

The simplest one is the binary auto-correlation functionCX(t) = 〈δX(t)δX(0)〉, where

δX(t) = X(t) − X0. The t = 0 value of this correlation function is proportional to the
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reorganization energy and one can anticipate that the physics of protein-water electrostatic

compensation should extend into the time domain. It does, but we also find new dynam-

ics pertinent to each component, which loses its prominencein the overall Stokes-shift

dynamics due to the compensation effect.

Figure 35B shows the loss spectrum of the Stokes-shift dynamics. The loss function

χ′′(ω) characterizes the rate of energy exchange, at a given frequency, between the active

site and the thermal bath. It can be thought of as the rate of energy dissipation, at a given

frequency, of some energy (e.g., photon) absorbed by the active site. The overall energy

dissipated into surrounding is then given by integratingχ′′(ω)/ω over all frequencies. In

our calculations,2kBTχ
′′(ω) = ωCX(ω) is obtained from the frequency Fourier transform

of the time correlation function [92].

The peaks ofχ′′(ω) show the characteristic relaxation times of the modes coupled to

the electron-transfer coordinate and their intensities represent the coupling strengths. The

main striking observation from the plot is the presence of slow dynamics in both the protein

and water components characterized by nearly equal relaxation times. These common

dynamics, in the nanosecond time domain (see chapter 7), represent elastic modes altering

the shape of the protein and simultaneously shifting the surface water molecules oriented

by charged protein residues (Fig. 32D) [13]. The slow dynamics, however, nearly disappear

in the overallχ′′(ω) due to a strong compensation (screening) between protein and water

electrostatic contributions. It is this compensation thatbringsλ in a near accord withλSt

in the case of cytochromec. The lack of this compensation makes the two reorganization

energies deviate from each other, often significantly, for other proteins [13].
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6.4.5 Mechanistic Aspects

Our QM/MD calculations produce the effective reorganization energy in Eq. (6.2)

λr ≃ 0.57 eV, λ = (λOx + λRed)/2 not far from∼ 0.6 eV viewed to be the average num-

ber from solution-based measurements [278]. One still has to be aware that the present

simulations do not include polarizability of water and molecular groups of the protein [91].

The reorganization energies can potentially decrease if induced dipoles are included. The

Pekar factor of dielectric models predicts a drop ofλ by the factor(ǫ/ǫ∞−1)/(ǫ−1) when

switching from a nonpolarizable to a polarizable dielectric; ǫ andǫ∞ are, correspondingly,

the static and high-frequency dielectric constants of the thermal bath. However, simula-

tions of model systems [296] show that this drop is an overestimate and the reorganization

energy decreases only by∼ 20% upon the inclusion of induced dipoles. All these results

apply, however, to the Marcus picture withλSt = λ. It is not currently clear how induced

dipoles affect each distinct reorganization energyλSt andλ. In addition, a drop in the mag-

nitude of the reorganization energy upon including induceddipoles is mostly off-set by

the reorganization energy arising from translational motions of induced dipoles (induction

reorganization energy, see chapter 7).

As mentioned above,κG > 1 requires either incomplete sampling (ergodicity breaking),

when some configurations are not accessible, or the breakdown of the Gaussian picture of

the medium fluctuations and generally non-parabolic free energy surfaces. The latter sce-

nario is indeed realized for donor-acceptor systems with polarizabilities different between

the two electron-transfer states [119]. However, this scenario requiresλOx 6= λRed. This

seems to be generally true for polarizable active sites (Table 2), but the extent of deviation

is hard to estimate with limited sampling available from protein simulations. We also note

that the dynamics of the energy gapX(t) follow the Gaussian approximation. It is tested by
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the ability to produce the fourth-order time correlation function of the energy gap in terms

of the Stokes shift dynamics (Fig. S6 in chapter 7) [46]. Overall, we cannot clearly assign

κG > 1 found in our simulations to non-Gaussian character of the energy gap fluctuations.

6.5 Conclusions

Energy chains of biology rely on a very short list of redox centers to transfer electrons

[267]. They mostly include hemes of cytochromes, iron-sulfur clusters, and cupredoxins.

One wonders if they are used to allow distinctly different electron-transfer mechanisms

or have been selected based on similar mechanistic properties. A partial answer comes

from biology. Cytochromec6, a heme protein, is used interchangeably with plastocyanin,

a cupredoxin, in cyanobacteria to catalytically connect photosystems I and II [268] (only

plastocyanin is used in higher plants). Numerical simulations have shown thatλ ≫ λSt,

attributed in this study to a high polarizability of the active site, is achieved in plastocyanin

through insufficient compensation between water and protein electrostatics, which does

not require a polarizable active site [283]. Does it mean that evolutionary pressure chooses

redox proteins withλ ≫ λSt, regardless of the mechanism producing the desired result?

We do not have a definitive answer at this time. Studies of the effect of polarizability on

electron transfer in all three classes of redox centers are required to address this question.

What our study convincingly shows is that increasing the polarizability of the protein’s

active site can significantly reduce the activation barrierof a catalytic reaction, electron

transfer in this case. Interaction of atomic charges of the active site with the electrostatic

potential of the surrounding medium is clearly an essentialpart of the enzyme’s catalytic

action [297]. It might be true as well that not only the distribution of molecular charge, but
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also its ability to deform in the external field (polarizability) is an important tool employed

by nature to catalyze biological reactions.
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Chapter 7

SIMULATION AND ANALYSIS PROTOCOLS

7.1 Hard Sphere and Kihara (Non-polarizable) Solutes in Water

Monte Carlo (MC) and molecular dynamics (MD) simulations werecarried out in the

configuration of a single solute in the cubic box consisting of TIP3P water molecules[80].

All MC simulations were performed at298 K in a box length of40 Å consisting of TIP3P

water molecules for two types of solutes : a hard sphere (HS) solute and a modification of

the HS potential in the Kihara form that includes a Lennard-Jones layer outside of the HS

core[174]. The Kihara potential thus has the form

U0s(r) = 4ǫ0S

[

(

σ0s

r −RHS

)12

−

(

σ0s

r −RHS

)6
]

, (7.1)

where “0” and “s” stand for the solute and solvent, respectively, andr is the distance

between the solute center and the oxygen of water. Further,RHS is the radius of the HS

core andǫ0s is the solute-solvent LJ energy. Theǫ0s values of3.7 and8.0 kJ/mol and a

σ0S = 3 Å were used in the simulations. The solute size was varied by changing the radius

of the HS coreRHS = 1, 2, 3, 4, 5, 6, and7.5 Å. For the HS solute, the size of the HS core

corresponds to the distance of the closest approach of water’s oxygenR0s. This distance

was also varied in the simulations in the rangeR0s = 2–15 Å.

We have also performed NVT MC simulations of single-charged(|q| = 1) HS cations

and anions in TIP3P water (see section 7.1.4). The ion sizes were varied in the range of2–

10 Å. All simulations were performed with the same simulation protocol as for the neutral

solutes: Ewald sums were used to correct for the cutoff of theelectrostatic interactions.

The Ewald convergence parameter of6.4/L was used for the box of sizeL. The value of

158



kmax = 7 was used for the reciprocal-space calculations, and all real-space electrostatic

interactions in the simulation box were calculated. For theLJ potential, a cutoff distance of

14 Å was used, and tail corrections were added to account for thelong-range contributions.

Each simulation consisted of5×104 equilibration MC cycles and(4−6)×105 production

cycles (each cycle consists ofN trial moves, whereN is the number of molecules in the

system). Translational and rotational trial moves were assigned the probabilities of0.6 and

0.4, respectively.

Molecular dynamics (MD) simulations were carried out at298 K in the configuration

of a single Kihara solute in the cubic box consisting of6180− 6650 TIP3P charmm water

molecules with an original water density of1.0 g/cm3[80]. Simulations were performed

in a box length of60 Å. The ǫ0s values of3.7 kJ/mol and aσ0S = 3 Å were used in the

simulations. The solute size was varied by changing the radius of the HS coreRHS = 2,

5, 7.5, 10, and15 Å. We also performed MD simulations of single-charged (q = 1) Kihara

cations and anions withRHS = 7.5 Å in TIP3P water. All simulations were performed with

the same simulation protocol as for the neutral solutes.

The NAMD 2.10[175] software program was used for all MD simulations. An energy

minimization was performed, followed by5 ns NVT equilibration. Production runs were

completed for200 ns in the NVT ensemble and the time step of2 fs. The integration

used a Langevin thermostat with a Langevin coupling coefficient of 5 ps−1. The hydrogen-

oxygen and hydrogen-hydrogen distances in waters were constrained with the non-iterative

SETTLE algorithm to make the water molecules completely rigid. We also used a cutoff

distance of12 Å for LJ and electrostatic calculations, with a smoothing function applied

at 10 Å, and a pair list distance of14 Å. Long-range electrostatics interactions were calcu-

lated with the smooth particle mesh Ewald (PME) method and a grid spacing of1 Å. The
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electrostatic potential at the center of the solute was obtained with the Ewald summation

method.

7.1.1 Finite Size Effects on the Interface Susceptibility Function

The exact interface susceptibility function is given by

χ0(r) = −4πβr2〈δPr(r)δφ〉 (7.2)

Here,φ is the electrostatic potential produced by the solvent at the center of the solute and

Pr = r̂ ·P, r̂ = r/r, whereP is the polarization density.

In this section, finite size effects on the interface susceptibility function are investigated.

These effects may lead to significant errors in the estimation of the interface dielectric

constant. We present the results which show that these finite-size effects are expected to

be negligible when the ratio of the simulation box length to the diameter of the solute is

relatively large, i.e., about three. Kihara solutes withRHS = 2 and5 Å were solvated in

simulation boxes with lengths of38.5 Å and50 Å , respectively, where an original water

density was1.0 g/cm3. The same simulation protocol as presented in section 7.1 above was

used for these two simulations. Figure 36 compares the exactinterface susceptibility for

two different Kihara solutes with two different box lengthseach. As can be seen, the finite

size effects for these system sizes are almost negligible.
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FIGURE 36: The exact interface susceptibility function as defined by Eq. (7.2) for two
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Comparison of the interface susceptibility for Kihara solute withRHS = 2 Å simulated in
simulation boxes of38.5 Å and60 Å . (Bottom) Comparison of the interface susceptibility
for Kihara solute withRHS = 5 Å simulated in simulation boxes of50 Å and60 Å .

7.1.2 Electrostatic Potential Inside Cavity

Figure 37 shows the electrostatic potential of TIP3P water inside the spherical solute

carrying no charge. The results for the HS cores of varying radius and KH cores with two

values of the LJ energyǫLJ (Eq. (7.1)) are shown. The positive sign of the potential is

consistent with previous simulations of uncharged HS[138]and LJ[124] solutes.
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7.1.3 Neutral, Cation, and Anion Kihara Solutes

As shown in section 2.3.2, we did not observe significant differences between the in-

terface dielectric constants of neutral, anion, and cationKihara solutes withRHS = 5 Å.

First, we show in Figure 38 that the difference in the exact interface susceptibilities for

these solutes is also small. Next, we use pair distribution functions (PDFs) to provide more

detailed information about the structure of water around these solutes.

The PDFs are defined as

gl0S(r) = (V/N)

〈

∑

j

Pl(cos θmj)δ(rj − r)

〉

(7.3)

whereθmj is the angle formed by the dipole moment vector of the water molecule and the

vector between the center of the solute and the water center of mass (COM), ~r0COM, where

~r0COM points in the direction of COM.V andN are the system volume and the number

of particles, respectively. Note that the zeroth-order distribution function is the standard

radial distribution function (RDF), i.e.,g00S(r) = g0S(r).

The RDFs of the neutral, cation, and anion Kihara solutes are shown in Figure 38. As

can be seen, the RDFs are almost the same and are characterizedby a first peak centered
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around11.1 Å with a height of4.35. This is followed by a minimum around12.5 Å and a

second peak around13.8 Å.

In addition, one can use the first and second order solute-COM distribution functions as

defined in Eq. (7.3) to characterize the orientational structures of water around the Kihara

solutes. Figure 38 shows the difference in the first order distribution functions for the

neutral, cation, and anion Kihara solutes. The positive values of the first order distribution

function around11.1 Å indicate that on average water dipoles preferentially orient toward

the bulk. Our data shows that this situation is more pronounced for cations. We also found

that the second order distribution functions are negative around 11.1 Å showing that a

considerable number water dipoles are tangential to the radial projection (data not shown).

Finally, we observed that the variances of the electrostatic potentials at the centers of cation,

anion, and neutral Kihara solutes are the same within the statistical uncertainties (see table

3).
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TABLE 3: The variances of electrostatic potentials at the centers of cation, anion, and
neutral Kihara solutes withRHS = 5 Å . β is inverse temperature and e is the elementary
charge. The uncertainties are standard deviations.

Solute eβ〈δφ2〉 [eV/e]
Neutral 0.800± 0.003
Anion 0.801± 0.002
Cation 0.800± 0.003

7.1.4 HS Cations and Anions

Figure 39 shows the density profile of water around the HS cations and anions with

changing the distance of the closest approach of water’s oxygenR0s = rmax. The intro-

duction of the ionic charge into the HS core results in an attraction to water multipoles,

which, however, becomes weaker with increasing solute size. The weakening of solute-

solvent attractions lowers water’s density at the ion’s surface, although this dewetting is

less pronounced compared to the HS solute without charge (shown in Figure 4 in chapter

2).

Figure 40 showsrmaxχ vs rmax for anions and cations of varying size. Here one notes

that the solvation free energy is more negative for anions compared to cations of the same

size. The explanation of this well-established phenomenology is sought in terms of denser

hydration shells of anions compared to cations. The result of this difference in the free

energy is a smaller effective cavity radius for anions compared to cations.

7.2 Hard Sphere and Lennard-Jones Polarizable Solutes in Water

Hard sphere (HS) and Lennard Jones (LJ) potentials are used to model the solute-

solvent interactions. The dipole moment at the center of thesolute is created by placing
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(R0s). The density profiles are calculated from MC simulations with a single solute in the
simulation cell containing TIP3P water at 298 K.

two opposite charges+q and−q at the distanced from the solute center. The distance

between the charges is2d and the dipole moment of the solute is varied by changing the

magnitude ofq, such thatq = m/(9.6d), wherem is in units of D andd is in Å. The

details of the simulation protocol are slightly different in Monte Carlo (MC) and molecular

dynamics (MD) simulations and we discuss them separately.

7.2.1 Monte Carlo Simulations

The total potential energy is the sum of solvent-solvent,Uss, and solute-solvent,U0s,

components in MC simulations. The solvent-solvent part is the sum of LJ and Coulomb

(C) interactions defined for the TIP3P force-field water[80]Uss = ULJ
ss + UC

ss. The
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solute-solvent part of the Hamiltonian includes the Coulombinteractions of the permanent

charges,UC
0s, and the free energy of polarizing the solute by the electricfield of the solvent

E given as−(1/2)αE2 (isotropic polarizabilityα). The repulsive part of the solute-solvent

potential,UHS/LJ
0s , is modeled by either the HS core or by the solute-solvent LJ potential. The

overall solute-solvent potential thus becomes

U0s = UHS/LJ
0s + UC

0s − (α/2)E2. (7.4)

The radius of the HS solute wasRHS = 4.15 Å (the distance between the centers of the HS

solute and oxygen of water). The LJ solute had a LJ12–6 site with the LJ diameterσLJ = 6

Å and the LJ energyǫLJ = 280 K. The separation between the positive and negative charges

forming the solute dipole wasd = 0.05 Å.

MC simulations were done in the canonical ensemble with1000 TIP3P water molecules

and one polar-polarizable HS or LJ solute atT = 298 K and the water density of0.995

g/cm3. Each simulation consisted of(0.8− 1)× 105 equilibration cycles and(2− 5)× 105

production cycles (each cycle involvesN trial moves, whereN is the number of molecules

in the system). Success probabilities of0.6 and 0.4 were adopted for translations and
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rotations, respectively. The probabilities for selectinga water molecule and the solute

were set equal to0.85 and0.15, respectively. A cutoff distance of12 Å was used for the

LJ interactions, and tail corrections were applied to incorporate long-range contributions.

Periodic boundary conditions and Ewald sums were used to calculate both the solvent-

solvent and solute-solvent Coulomb interactions and for theelectric fieldE at the center of

the spherical solute. The Ewald convergence parameter was0.21 Å−1 and the reciprocal

space maximum wavevector was set atkmax = 7.
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FIGURE 41: Panel (a): Onsager reaction field for the HS and LJ solutes with varying
dipole moments and zero polarizability. The dashed lines show the linear fits yieldingκ
values of28.7 Å3 (HS) and29.6 Å3 (LJ) in TIP3P water; the value ofκ in m-TIP4P water is
29.9 Å3. The statistical errors are smaller than symbol sizes. The black and red points and
lines refer to simulations in TIP3P water, the blue points and the blue dashed line refer to
the modified TIP4P (m-TIP4P) water. Panel (b): MC results forthe Onsager reaction field
for LJ solutes in m-TIP4P water with varying solute size and dipole moment. The reaction
field is plotted againstm/R3, whereR = σLJ/2.
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Different sizes of the HS and LJ solutes were adjusted to provide nearly equal suscep-

tibilities of TIP3P water to the solute dipole. The average solvent field〈E〉 caused by the

solute dipolem (Onsager reaction field[65]) was calculated for different magnitudes of the

non-polarizable solute (α = 0). In the linear response,〈E〉 = κ−1m andκ was calculated

as the linear slope of〈E〉 vsm (Figure 41a). The dipole moment of the solute was fixed at

m = 5 D in the simulations withα > 0.

In addition to simulations with fixed solute sizes, the LJ diameterσLJ of the LJ solute

was varied to test the expected scaling of the solvation susceptibility with the solute radius

R: χ ∝ R−3. This set of MC simulations employedσLJ = 4, 6, and 8 Å with 1840–1900

m-TIP4P waters in the simulation box. BothσLJ and the magnitude of the dipole moment

were varied in these simulations carried out for2 × 104 MC cycles. Figure 41b shows the

collapse of all simulation data for the average solvent fieldplotted againstm/R3, where

R = σLJ/2. The expected scaling is confirmed.

7.2.1.1 Performance of MC Codes

The MC codes are developed in the Matyushov group. Both are parallelized with dis-

tributed memory, using the Message Passing Interface (MPI)standard for communication.

For all simulations of polar-polarizable solutes in water,the Ewald summation method

involves the triple sum over|k|, moleculei, and moleculej. The electric field and electro-

static potential are calculated accordingly. The hot spotsare the corresponding DO loops

in the Ewald sum method and cyclic distributions are used forparallelization, where the

iterations are assigned to processes in a round-robin fashion. The code performance for

simulations of the polar-polarizable solute on the Stampede supercomputer at Texas is re-

ported in Figure 42.
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7.2.2 Molecular Dynamics Simulations

The kinetic energy of the solute in MD simulations is determined by the masses of the

solute sites:mLJ = 39.6 amu,m+ = 1 amu,m− = 1 amu, andmD = 0.4 amu, where

“D” denotes the Drude oscillator site used to model the solute polarizability. The potential

energy is the sum of the LJ,ULJ, electrostatic,Uel, and bonded,Ub, interactions and, in

addition, the elastic energy of the harmonic Drude particle

U = 1
2
kDr

2
D + Ub + ULJ + Uel. (7.5)

The non-bonded interactions include the solute-solvent LJand electrostatic interactions,

ULJ + Uel. The bonded interactions are harmonic in bond stretches andthe bending angle

θ = +LJ−, where “+” and “−” denote, respectively, the positive and negative sites. The

resulting potential energy of the bonded interactions has the form

Ub =
1
2

∑

bonds

kb(r − req)
2 + 1

2
kθ(θ − θeq)

2. (7.6)
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The force constants in Eqs. (7.5) and (7.6) are:kD = 1000 kcal mol−1 Å−2, kLJ+ = kLJ− =

k+− = 3000 kcal mol−1 Å−2, kθ = 500 kcal mol−1 rad−2. The equilibrium bond lengths

and the angle are:req(LJ+) = req(LJ−) = 1.5 Å, req(+−) = 3 Å, θeq = 180o.

The polarizability of the solute is modeled by a Drude particle with chargeqD attached

to the center of the solute by a harmonic spring. Isotropic polarizability of the solute

α = q2D/kD is achieved by allowing isotropic motions of the Drude particle constrained

only by the potential energy penalty of stretching the spring. The magnitude ofqD was

changed to produce different values ofα, i.e.,qD = (kDα/332.1)
1/2, wherekD andα are in

units of kcal mol−1 Å−2 and Å3, respectively.

FIGURE 43: Polar-polarizable solute used in molecular dynamics simulations.

The LJ site hadσLJ = 6 Å and the solute-water interaction energy ofǫLJ = 280 K. Two

other interaction sites, placed symmetrically relative tothe center at the distance ofd = 1.5

Å, carried opposite charges of+q and−q and a mass of1 atomic mass unit (amu). A large

force constant was used to keep the positions of these two interaction sites fixed.

The solvent model used in MD simulations is closely related to TIP4P[80] and SWM4-

DP water models. The geometry of water is fixed and four interaction sites define the force

field: one oxygen, two hydrogens, and an additional masslessparticle M located at a fixed

distancelOM along the bisector of the HOH angle (Table 4). A classical Drude oscillator is
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attached by a harmonic spring with the force constant ofkD to the oxygen site. Its mass is

set to0.4 amu and the mass of the oxygen is set to15.5994 amu, such that the total mass

of the oxygen-Drude pair is equal to the oxygen mass of15.9994 amu. However, in our

simulations, the Drude particle was neutral and, therefore, did not introduce any solvent

polarizability. This dummy particle was used to comply withthe requirement, imposed by

the NAMD 2.9 software program, to incorporate a Drude oscillator into the solvent model

when performing molecular dynamics (MD) simulations of a Drude-polarizable solute.

TABLE 4: Parameters for the modified TIP4P (m-TIP4P) water model, compared with the
TIP4P and SWM4-DP models.

Parameter TIP4P SWM4-DP m-TIP4P
lOH, Å 0.957 0.957 0.957
θ◦HOH 104.52 104.52 104.52

lOM, Å 0.150 0.238 0.238
qO/|e| 0 −1.772 0
qM/|e| −1.040 −1.108 −1.040
qH/|e| 0.520 0.554 0.520
qD/|e| 1.77 0

kD, kcal mol−1 Å−2 1000 1000

ǫO, kcal mol−1 0.1525 0.2057 0.2057

σO, Å 3.154 3.180 3.180

The molecular dynamics program NAMD 2.9 was used for MD simulations. The solute

was solvated with1000 water molecules and an energy minimization was performed for

100, 000 steps. The system was then heated to300 K by 50 K increments, each evolving

for 100, 000 steps. Next, a5 ns NPT simulation at1 atm and300 K was performed by

using the Langevin barostat and thermostat. This was followed by5 ns NVT equilibration.

Production runs were done for50 ns in the NVT ensemble at300 K and the time step of1

fs.
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The integration used a dual Langevin thermostat to freeze the Drude oscillators at1 K,

while maintaining the other degrees of freedom at300 K. Cooling the polarization degrees

of freedom with a separate thermostat is based on the fact that the equilibrium and diffusion

properties of cold dipoles are independent of the value of the dipole inertia parameter as

long as it is sufficiently small[298]. The temperature for Drude oscillators should be small

enough to leave almost no kinetic energy to the Drude-atom vibrations, yet large enough to

allow the Drude particles to readjust to the room-temperature motion of the atoms.

The hydrogen-oxygen and hydrogen-hydrogen distances in waters were constrained

with the non-iterative SETTLE algorithm to make the water molecules completely rigid.

We also used a box length of31.95 Å, a cutoff distance of12 Å for LJ and electrostatic

calculations with a smoothing function applied at10 Å, and a pair list distance of14 Å.

Long-range electrostatics interactions were calculated with the smooth particle mesh Ewald

(PME) method and a grid spacing of1 Å.

7.2.3 Analysis of Interfacial Structures

The solute-solvent distribution functions are defined as

gℓ0s(r) = ρ−1

〈

∑

j

Pℓ(m̂j · r̂j)δ(rj − r)

〉

, (7.7)

whereρ is the number density of bulk water. Here,m̂j is the unit vector of water’s dipole

moment andPℓ(x) is the Legendre polynomial of orderℓ. In this notation,g00s(r) = g0s(r)

becomes the standard radial distribution function (RDF).

The solid lines in Figure 44a show the solute-oxygen RDFs of the HS solute with

the HS radius ofRHS = 4.15 Å and the dipole moment of5 D. The dashed lines report

the solute-hydrogen RDFs. The first solute-hydrogen peak shifts, with increasingα, to
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FIGURE 44: Results of Monte Carlo simulations of the HS solute with the HS radius
of RHS = 4.15 Å and the dipole moment of5 D dissolved in TIP3P water at 298 K and
the density of 0.995 gr/cm3. (a) Solute-oxygen (solid lines) and solute-hydrogen (dashed
lines) RDFs with different colors marking the values of the solute polarizability: 0 (cyan),
10 (blue), 20 (green), 29.5 (red), 35 (black). The inset depicts the height of the RDF’s first
peak. The solute-oxygen first order (b) and second order (c) orientational functions (Eq.
(7.7)) are for the same solutes as in (a).

distances shorter than the first solute-oxygen peak. This suggests that the water molecules

of the first hydration shell flip their hydrogen atoms from an outward orientation at lower

α to an inward orientation at higherα.

The RDF peaks can be quite sharp. Therefore, making use of a reasonably coarse

grid tends to significantly reduce the peak height. On the other hand, a very small grid

does not produce a sufficient statistical accuracy. Therefore, the height of the first solute-

water maximumG was calculated by finding a compromise grid. Values ofG at high

polarizabilities show a collapse of the first hydration layer (Figure 44a).

The first- and second-order orientational distribution functions of water around the HS
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FIGURE 45: The number of unsatisfied hydrogen bonds of TIP3P water within the shell
of radius 15.2 Å from the center of the solute.

solute are shown in Figures 44b-c. They also confirm preferential dipolar ordering of water

molecules in the first hydration layer.

To identify unsatisfied hydrogen bonds, the Wernetet al.[192] definition of hydrogen

bonds is used. It requires the O· · ·O distance,R (Å), to be bounded by a quadratic function

of the H−O · · ·O angle,θ (degrees),R(θ) ≤ −0.00044θ2 + 3.3. Making use of this

definition, the number of water molecules that donate their hydrogens in hydrogen bonds is

obtained. Finally, the number of unsatisfied hydrogen bondsis calculated from the numbers

of zero- and single-donors. Figure 45 shows the number of unsatisfied hydrogen bonds in

a spherical region of the radiusR = 15.2 Å from the center of the solute. The calculations

are done for different values ofα for both the HS and LJ solutes.

7.2.4 Landau Functional and Solvation Free Energy

The average solvent field at the solute center (Onsager reaction field) obtained from

MC simulations was fitted to the Landau functional in the form

F [E] = −mE + (κ/2)E2 − (α/2)E2 +G[E] (7.8)
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FIGURE 46: Solvation free energy of dipolar HS and LJ solutesvs the solute polarizabil-
ity. The free energies are calculated by minimizing the Landau functional in the electric
field (see main text for more detail).

whereG[E] = −(b/4)E4+(c/6)E6 was used in the fit. The average field is obtained from

the conditionF ′[E] = 0. The fit of 〈E〉 vs α shown in Figure 13 in chapter 3 required

bLJ = 11.6 D4/eV3, cLJ = 11.0 D6/eV5 andbHS = −1.9 D4/eV3, cHS = 30.2 D6/eV5.

The equilibrium free energy,F0, of HS and LJ solutes is obtained by minimizing the

Landau functional in terms of the solvent electric field (Eq.(7.8)). Figure 46 shows the

free energy as a function of polarizability indicating thatF0(α) remains uniform, despite a

clear maximum of the field variance as a function of polarizability.

7.3 Q-model & Non-Gaussian Dynamics: Analysis of Time Correlation Functions

Here we present additional results and analysis of chapter 5regarding the time correla-

tion function of the electric field of the solvent at the center of the solute

S‖(t) = 〈(δE‖)
2〉−1〈δE‖(t) · δE‖(0)〉 (7.9)

and the corresponding correlation function of the transition frequency

S2(t) = 〈δΩ(t)δΩ(0)〉/〈(δΩ)2〉 (7.10)
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Both time correlation functions were fitted to a function combining the initial Gaussian

decay, a damped harmonic oscillator, and two exponential decay functions[299]

φ(t) = Age
−ω2

gt
2/2 + Ahe

−t/τh cosωht+
2

∑

i=1

Bie
−αit (7.11)

The expansion ofφ(t) in powers oft contains only even terms. Therefore, all odd time

derivatives ofφ(t) att = 0 must vanish[60]. We therefore impose the following restrictions

on the fitting parameters in eq (7.11):φ(0) = 1 andφ̇s(0) = 0. With these constraints, the

normalized time correlation function takes the form

φ(t) = e−ω2
gt

2/2 +
Ne
∑

i=1

Bigi(t) (7.12)

where

gi(t) = e−αit + (αiτh − 1) e−ω2
gt

2/2 − αiτhe
−t/τh cosωht (7.13)

The results of fittingS‖(t) andS2(t) to eq (7.12) are listed in Table 5.

TABLE 5: Fitting coefficients of the fits ofS‖(t) andS2(t) to Eq. (7.12). Relaxation times
τi = α−1

i are in fs, the frequencies are in fs−1.

m0, D α0, Å3 b1 b2 τ1 τ2 ωG ωh τh
Field correlation function,S‖(t)

5 0 0.88 0.068 1983 131 0.139 0.21 23.5
5 5 0.90 0.063 2795 158 0.131 0.20 23.6
10 0 0.97 0.016 11859 144 0.089 4.66 5.1
10 15 0.98 0.011 27164 243 0.089 23.26 4.6

Frequency correlation function,S2(t)
5 0 0.51 0.13 130 438 0.125 0.20 27.8
5 5 0.54 0.17 131 447 0.125 0.20 25.3
10 0 0.53 0.12 140 580 0.120 0.19 27.2
10 15 0.44 0.48 83 591 0.157 0.21 14.9

Figure 47 showsS‖(t) calculated at different values of the solute polarizability α0i

and two values of the solute dipolem0i. We observe the slowing down of the electric
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FIGURE 47: Time autocorrelation functionS‖(t) (Eq. (7.9)) of the projectionE‖(t) of
the solvent electric field on the direction of the solute dipole moment. The lines mark the
following configurations of the solute:m0 = 5 D, α0 = 0 (green),m0 = 5 D, α0 = 5 Å3

(blue), andm0 = 10 D, α0 = 15 Å3 (red).

field relaxation as the solute polarizability increases. Asdiscussed in the main text, and

elsewhere[265], the main reason for this change is the softening of the force constant of

harmonic fluctuations of the solvent field. This effect is not, however, a part of the dynam-

ical Q-model, which instead assumes the dynamics of the nuclear variableq(t) unaffected

by the solute.

In order to study the non-Gaussian character of the transition frequency dynamics,

higher order correlation functionsS3(t), S4(t), andSσ(t) (see main text) were calculated

from MD simulations. The functionS3(t) enters the width time evolution functionSσ(t),

which recovers its Gaussian form atS3(t) = 0 (eq 15 in the main text). Correspondingly,

the Gaussian approximation for the correlationS4(t) function is given by eq 21 in the main

text.

Time correlation functionsS4(t) andSσ(t) calculated from MD simulations are shown

in the upper and lower panels of Figure 48. The solid lines in the upper panel of Figure 48

are the fourth order correlation functions obtained directly from simulations. The dashed

lines in the same figure, which are nearly indistinguishablefrom the solid lines on the scale
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FIGURE 48:S4(t) andSσ(t) calculated for polarizable and non-polarizable solutes from
MD simulations (solid lines) and from their Gaussian approximations (points) by using the
second-order correlation functionS2(t) from MD simulations;m0 = 10 D.

of the plot, are the corresponding Gaussian approximations. A similar situation is seen

for Sσ(t) in the lower panel of Figure 48: the solid lines obtained withaccount for the

skewness functionS3(t) in eq 15 in the main text are indistinguishable from the dotted

lines obtained by puttingS3(t) = 0 in the same equation. As explained in detail in the

main text, these results is a consequence of scaling of non-Gaussian contributions toSσ(t)

and toS4(t) with the small parameters(βλi)−1/2 and (βλi)
−1, respectively. The main

result of these calculation is a relatively small effect of non-Gaussian dynamics on these

two time correlation functions because of this diminishingscaling of the corresponding

non-Gaussian contributions.
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7.4 Cytochromec in Water

7.4.1 Classical Molecular Dynamics (MD) Simulations

The NMR solution structure of reduced horse heart cytochrome c (PDB 1GIW) was

adopted as the starting configuration for classical MD simulations. The CHARMM 27

[300] force field was used for the peptide chain, while the parameters for the heme group

in the reduced (Red) and oxidized (Ox) states were adopted by combining atomic charges

from Leu et al. [301] with the bonded and van der Waals parameters from Kaszuba et

al.[302]. Patches were applied to connect the heme group to the protein matrix through

ligation of two cysteine residues (res. No 14 and 17) and a single methionine residue (No

80).

Most electron-transfer cytochromes form 6-coordinated His-Fe-Met complex[303].

The Fe-His bond is, however, weaker than the Fe-Met bond and can break in some forms

of cytochrome c[304]. The stretching frequency of the Fe-His bond in 6-coordinated cy-

tochromes is∼ 220 − 240 cm−1[304]. The breaking of the Fe–Nǫ bond was previously

modeled by QM/MM simulations[304] and the resulting potential is shown by points in

Figure 49. A Morse potential was used to represent the results of the simulations

U(r) = De

[

1− e−γ(r−re)
]2

(7.14)

with the well depthDe = 9.0 kcal/mol, the well widthγ = 1.52 Å−1, and the equilibrium

bond distancere = 2.33 Å (Figure 49). The potential in Eq. (7.14) was applied to the simu-

lations in the form of the force by utilizing NAMD tclForces functionality. The bond does

not break during the simulation time, but the Morse potential allows additional flexibility

of the system along the bond stretch coordinate.

From the original PDB structure, crystallographic water molecules were taken from the
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FIGURE 49: Morse potential modeling the Fe–Nǫ bond. The red points are from Ref. 304
while the black line represents the Morse potential in Eq. (7.14) withDe = 9.0 kcal/mol,
γ = 1.52 Å−1, and the equilibrium bond distancere = 2.33 Å.

1YCC PDB file and, after aligning the two protein structures, were added to the 1GIW

cytochromec structure. To assure that the protein was properly saturated with water, we

performed a “soaking” procedure. It consisted of making a small sphere of water sur-

rounding the protein with a total system size of 5497 atoms. From this structure, 150 ns

simulations were performed. Finally, from the last frame ofthese longer simulations, a

box (100.1Å×100.1Å× 100.1Å) consisting of a total of 101440 atoms was created and

additional water molecules added to the total of 33231 molecules. This addition of water

was followed by 20 ns NPT simulations allowing the newly created box to relax around the

sphere. This NPT equilibration was followed by 10 ns NVT equilibration for each redox

state. All force field parameters were applied using VMD’s “psfgen” tool and TIP3P water

molecules were added using VMD’s “solvate” plugin[175].

All simulations were performed using NAMD software program[175]. For all initial

systems created a steepest decent minimization was performed for 2000 steps. The NPT

equilibration simulation was done using the Langevin dynamics in NAMD with the follow-

ing parameter set: a damping coefficient of 1 ps−1, piston period of 100 fs, the piston decay

time of 50 fs, the piston target pressure of 1.01325 bar, and constant temperature control
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FIGURE 50: The radial distribution function for the distance between the heme iron and
the water’s oxygen averaged over 1 ns of the simulation trajectory taken at 50 ns and 120
ns.

set to 300 K. The NVT simulations were performed using the same parameters as the NPT

simulations, but removing the constant pressure controls.Long-range electrostatic interac-

tions were treated with the particle mesh Ewald technique using a cutoff distance of 12.0

Å. A 2.0 fs time step was used for all simulations.250 ns MD simulations were carried out

for trajectories production. Additional10 ns simulations were performed with the saving

frequency of8 fs to study the short time dynamics.

Figure 50 shows the iron-oxygen pair distribution functionin the Ox and Red states of

the protein. One can detect the presence of a water molecule next to the heme in the Red

state. This water molecule leaves the heme pocket on the timescale of the simulation when

the protein is in the Ox state. This difference in wetting of the heme pocket, however, does

not translate into any noticeable differences in the electron transfer reorganization energies

in two redox states.
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TABLE 6: Excitation energies for various sizes of the QC in the Red state. QCs and
QCm are the small and medium QCs. QC denotes the quantum center adopted for QM/MD
calculations. All values are obtained by the ZINDO/S method(eV).

System ∆E0−1 ∆E0−2 ∆E0−3 ∆E0−4 ∆E0−5

QCs −0.23 −0.11 0.79 1.19 1.79
QCm 0.83 0.92 1.07 1.77 1.79
QC 0.84 0.89 1.01 1.76 1.78

FIGURE 51: Quantum center (QC): the heme group (gray) and the amino acids bonded
to the heme, cysteine (green), methionine (orange), and histidine (blue).

7.4.2 Polarizable Active Site

A portion of cytochromec was chosen as the quantum center (QC) and was treated

quantum mechanically, with the rest of the system treated atthe classical atomistic level.

Three different sizes of QC were initially chosen. The smallest QC (QCs) only consisted of

the heme. The medium size QC (QCm) consisted of the heme, HIS, and MET ligated amino

acids, and the largest QC (adopted for the analysis, Figure 51) contained the heme, HIS,

MET, and two CYS ligated amino acids. In all cases, hydrogen atoms were added to satisfy

valency. Table 6 shows the unperturbed excitation energiesfor all QCs, which shows that

the results for the largest QC are not significantly different from QCm. The geometry of

QC was optimized by freezing all the atoms except the added hydrogens.
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TABLE 7: Scalar polarizabilities (Å3) calculated with ZINDO/S for different numbers of
excited statesM , ∆α = αOx − αRed.

M αOx αRed ∆α
100 23.3 54.1 -30.8
80 21.2 53.8 -32.6
60 18.3 52.0 -33.7
40 14.2 47.3 -33.1
20 6.5 40.6 -34.1
10 1.3 4.2 -2.9
5 3.3 3.6 -0.3

The Hamiltonian matrix of the QC in the electrostatic field ofthe surrounding classical

subsystem can be written as follows[47]

Hjk = (Ej +QφFe) δjk − µjk · Eb. (7.15)

Here,Q is the total charge of the quantum center,µjk is the transition dipole between

states with energiesEj andEk, andφFe andEb denoting correspondingly the electrostatic

potential and the electric field of the classical subsystem at the heme iron. The multipolar

terms of the order higher than the dipole are omitted here.

GAUSSSIAN’09[305] was used for all quantum calculations ofthe QC in vacuum (Red

and Ox states) using the ZINDO/S method[306]. The charges ofthe Red (singlet) and Ox

(doublet) QC were−2 and−1, respectively. The Hamiltonian matrix was formed by using

M = 100 excited states. These states formed the set of parameters inEq. (7.15) and

were also used to calculate the polarizability tensor of theQC according to the perturbation

formula

ααβ
0 = 2

∑

j>0

µα
0jµ

β
j0

Ej − E0

, (7.16)

whereE0 is ground state energy andα, β denote the Cartesian components. Scalar polariz-

abilities reported in Table 7 are traces of the corresponding tensors,α = 1
3
Tr (α0).
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7.4.3 Electron Transfer Energy Gap

The energy gap in classical MD simulations is defined as

X =
∑

j

∆qjφ
EW
j +X ′′ (7.17)

where∆qj = qOx
j − qRed

j , qOx
j and qRed

j are the corresponding partial atomic charges in

the Ox and Red states, respectively.φEW
j is the Ewald lattice sum electrostatic potential

of the protein and water discussed below.X ′′ is the correction to the electrostatic energy

from the interaction with the background charge of the periodic Wigner lattice [168]. The

energy gap for the quantum mechanical approach is defined as the difference between the

lowest eigenvaluesEOx/Red
g of the oxidized and reduced states obtained by diagonalizing

the corresponding Hamiltonian matrices in Eq. (7.15)

X = EOx
g − ERed

g . (7.18)

7.4.4 Ewald Sum Corrections

The treatment of long-range electrostatic interactions byNAMD software package

[175] involves particle mesh Ewald sums. The simulation of aredox half reaction requires,

in contrast to electron transfer between the donor and acceptor, changing the charge of the

system. This change in the physics of the problem requires introducing corrections to the

calculations of the electrostatic energies[167, 168, 307]. Most of the corrections for the

Ewald sums electrostatics discussed in the literature[307] are concerned with the equilib-

rium solvation free energy. The problem at hand here is different. We want to establish the

corrections to the instantaneous energy gapX(t) due to the use of the electrostatics pro-
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duced by the lattice of replicated simulations cells instead of the infinite polarized thermal

bath.

The main point of concern in using the Ewald lattice sums for the calculation of the

energy gap of a half reaction is the fact that the simulation cell is either explicitly neutral-

ized or it is neutralized implicitly by a uniform backgroundcharge spread throughout the

cell. In our present simulations, we do not use electrolyte to neutralize the simulation cell

to avoid complications from the movement of the electrolyteions. Similar setups, with

no neutralizing electrolyte were used in early work by Hummer, Pratt, and Garcia [122].

Those are often even harder to sample adequately than the fluctuations of the multipolar

polarization of the protein-water interface. The issue is clearly demonstrated by Figure

52, which shows that trajectories longer than 200 ns are required to sample water-protein

fluctuations contributing toλ. Sampling ion motions would require even longer trajecto-

ries [308]. The absence of neutralizing electrolyte implies that the overall simulation cell

carries the charge ofQOx = 9 andQRed = 8 in Ox and Red states, respectively. The QC

charges are correspondingly−1 and−2.

The reaction coordinateX is the difference of energies of Ox and Red state, and one

can think of it as the energy difference arising from bringing a single positive charge to the

Red state of the QC and distributing it over all∆qj sites where charge density is changed in

the half reaction. This extra positive charge will interactwith the periodic Ewald potential

ψ created by the protein-water solvent and by the lattice of replicated simulation cells. The

instantaneous configuration of the bath with the set of atomic chargesqk will therefore

produce the energy gap componentX ′ =
∑

j 6=k ∆qjψjkqk, where the lattice potential is

usually given as[167]

ψjk =
erfc(κrjk)

rjk
+

4π

L3

∑

k 6=0

1

k2
eik·rjk−k2/(4κ2) −

π

κ2L3
. (7.19)

Here, rjk = |rj − rk|, L is the side length of the cubic simulation cell, andk are the
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wavevectors of the reciprocal lattice. Correspondingly, one getsφEW
j =

∑

k ψjkqk in Eq.

(7.17). The lattice potential in Eq. (7.19), with the last term dropped, is calculated by

NAMD [175]; κ = 0.2579 Å−1 was adopted in the simulations and in the analysis of the

simulaltion trajectories.

The calculation of the interaction of the fictitious positive charge transferred to the

QC with the uniform background charge requires more care. The transferred charge will

interact with the total chargeQRed of the cell in the Red state, but will also create its

own replicated images and the corresponding background charge. Those images and the

corresponding background charge are not physical charges and one has to assume that they

are created instantaneously as the extra charge is transferred to the cell (even though the

transfer of electron is essentially instantaneous in respect to the nuclear coordinates). The

corresponding contribution to the energy differenceX will therefore be the free energy of

charging, in contrast to the energy of interacting with the existing chargeQRed. The result

is

X ′′ = −
∑

j

∆q2j
2L

c′ζEW −
∑

j

QRed∆qj
L

c′ζEW, (7.20)

whereζEW = 2.837297 comes from the self-energy of a point charge in the cubic Wigner

lattice [168] andc′ = 1− ǫ−1
s is the correction for the “under-solvation” effects [167].The

latter correction accounts for the difference of the solvent potential in a replicated lattice

compared to an infinite system. It is commonly estimated fromthe difference in correspond-

ing continuum solvation energies as calculated by Hummeret al. [168] and Hünenberger

and McCammon [307]. Therefore, the correctionc′ involves the dielectric constant of the

solventǫs entering the boundary value problem. When the charges∆qj are spread over the

active site immersed in a polarizable solvent with instantaneously responding electronic

polarization,c′ in Eq. (7.20) is replaced by the Pekar factorc0 = ǫ−1
∞ − ǫ−1

s , whereǫ∞ is

the electronic dielectric constant [309] (not a part of our force field).
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Since
∑

j ∆qj = 1, one can simplify the above equation to

X ′′ = −
c′ζEW

2L

∑

j

∆q2j −
c′QRed

L
ζEW. (7.21)

The overall instantaneous energy gap is given by the sum of the lattice part and the inter-

action with the background charge,X = X ′ + X ′′. Since the definition of the reaction

coordinate is the same in the Red and Ox sampling simulations,it is easy to see thatX ′′

causes only a constant shift of the energy gap, which does notaffect eitherλSt or λ. We

additionally note that Figure 35 in chapter 6 shows the distribution of the Ewald sum com-

ponentX ′ of the reaction coordinate only, thus omitting theX ′′ correction. This is done

to show the relative energies of interaction of the active site with the protein and water

components separately, for which the corresponding corrections due to background charge

are not easy to establish. As mentioned, any changes to this procedure will only shift the

corresponding distributions, without affecting the reported reorganization energies.

We also note that the effect of the system size [309] is small in our simulations. This is

shown is Table 8 where we list the results of simulations of a much smaller system, with

only 6626 TIP3P water molecules present in the simulation cell. Despite a smaller system

size and a somewhat shorter trajectories, the results are generally consistent with those

obtained for a larger system.

7.4.5 Statistics

Two reorganization energies of electron transfer are considered here:λSt andλ. The

former is defined in terms of the average energy gap〈X〉 in Red and Ox states:λSt =

(〈X〉Red− 〈X〉Ox) /2. The latter is given through the variance,λi = β〈(δX)2〉i/2 averaged

over the configurations in equilibrium with the corresponding redox state of the protein,i =

Red,Ox. Table 8 reports both reorganization energies and Figure 52 shows the evolution
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TABLE 8: Reorganization energies (eV). The uncertainties are estimated from block
averages along the simulation trajectory.

Classical
State λ λp λw

Oxa 1.67± 0.08 2.28± 0.25 3.39± 0.27
Reda 1.64± 0.06 2.98± 0.24 2.46± 0.20

Method λSt λOx λRed

Eq. 7.17 1.26± 0.04 1.67± 0.08 1.64± 0.06
Localizedb 1.13± 0.04 1.57± 0.08 1.50± 0.06
Smallc 1.04 1.24 1.49

Quantum Mechanical
∆αd/Å3 λSt λOx λRed

0.0 1.13± 0.04 1.57± 0.08 1.50± 0.05
-7.7 1.17± 0.03 2.06± 0.10 1.60± 0.06
-30.8 1.24± 0.03 3.07± 0.13 2.32± 0.06
-69.2 1.32± 0.04 4.52± 0.19 3.50± 0.09
-122.9 1.40± 0.05 6.40± 0.25 5.16± 0.13

aBased on Eq. (7.17) andλ = β 〈δX2〉 /2, bEnergy gap is obtained asX = eφFe, where
φFe is the bath electrostatic potential at the heme iron,cSmall simulation system with
21625 atoms, 6626 TIP3P waters, and with the trajectory length of 70 ns.dBased on the
scaling of the transition dipole moments.

of the average energy gap and its variance obtained from classical MD simulations. The

splitting of the reorganization energyλ from classical simulations into the protein and water

components is also reported in Table 8. Note thatλp (protein) andλw (water) do not add

up toλ because the cross termλpw due to correlated protein-water fluctuations is negative

and typically large in magnitude.

Figure 53 shows the free energy surfaces of the half reactionin oxidized and reduced

states of cytochromec when the polarizability change between Ox and Red states is equal

to −122.9 Å3. The corresponding free energy surfaces for∆α = −30.8 Å3 are shown in

the main text.
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FIGURE 53: Free energy surfaces of the half reaction in Ox (left) and Red (right) states of
cytochromec. The transition dipoles in the quantum calculations are scaled to produce the
the polarizability change in the redox reaction:∆α = −122.9 Å3. The blue circles show
the results of classical MD simulations, the red squares indicate the quantum mechanical
simulations, and the solid lines are fits to parabolas.

7.4.6 Dynamics

The main dynamic function studied here is the time auto-correlation function of the

energy gap (Stokes-shift dynamics)CX(t) = 〈δX(t)δX(0)〉. This correlation function

calculated from MD trajectories in Red and Ox states of cytochromec was fitted to five

decaying exponents

S2(t) = CX(t)/CX(0) =
5

∑

n=1

Ane
−t/τn (7.22)
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TABLE 9: The fit parameters for the time correlation functions of the energy gap to the
sum of 5 exponential functions (Eq. (7.22), relaxation times τn are in ps).

Component A1 A2 A3 A4 A5 τ1 τ2 τ3 τ4 τ5
Red

Total 0.55 0.14 0.14 0.05 0.12 0.10 6.8 57 746 28380
Protein 0.14 0.05 0.13 0.25 0.44 0.06 2.3 13 106 1793
Water 0.24 0.13 0.16 0.28 0.19 0.01 4.7 78 853 5725

Ox
Total 0.53 0.13 0.07 0.06 0.22 0.08 2.5 21 339 4685

Protein 0.15 0.10 0.16 0.14 0.45 0.01 11.4 144 813 5333
Water 0.22 0.10 0.08 0.17 0.43 0.13 2.9 23 246 4038
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FIGURE 54: S4(t) calculated from MD simulations and from Eq. (7.24) (Gaussian ap-
proximation) by using the second-order correlation functionS2(t) for oxidized and reduced
states.

with the fitting parameters listed in Table 9. The fitted functions were then Laplace-Fourier

transformed to obtain the loss functionχ′′(ω) discussed in the main text. The procedure

was repeated for the protein and water components of the energy gap to obtain the cor-

responding loss functions and the dynamics of the protein and water components of the

thermal bath affecting electron transfer.
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We have additionally studied the higher-order time correlation function in order to test

whether the dynamics of the energy gap are Gaussian [46, 310]. The normalized fourth-

order time correlation functionsS4(t) is defined as follows

S4(t) = 〈(δX)4〉−1〈δX(t)2δX(0)2〉. (7.23)

If the dynamics are Gaussian, the fourth-order time correlation function does not carry any

new dynamic information and can be determined in terms of thenormalized Stokes-shift

correlation functionS2(t) in Eq. (7.22)

S4(t) =
1

3
+

2

3
S2(t)

2. (7.24)

This relation was tested by MD simulations. Figure 54 comparesS4(t) directly calcu-

lated from MD trajectories forX(t) to Eq. (7.24). We find a good agreement between the

two results in both redox states, testifying to the accuracyof the Gaussian approximation.
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APPENDIX A

LOCAL INTERFACIAL SUSCEPTIBILITY
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Here the local susceptibility of the interfaceχ0(r) is derived based on the formalism

of pair distribution functions of the theory of liquids[145]. The starting expression for the

susceptibility is

χ0(r) = 4πβ〈δPr(r)δMr〉0, (A.1)

whereβ = 1/(kBT ). The instantaneous value of the fluctuating radial projection of the

solvent polarization density is given by the expression

Pr(r) =
∑

j

(mj · r̂j) δ (r− rj) (A.2)

and δPr(r) = Pr(r) − 〈Pr(r)〉0. Further,Mr is the integral ofPr(r) over the volume

occupied by the solvent andmj is the dipole moment of moleculej with the positionrj.

The equation forχ0(r) can be split into the two-particle (solute-solvent) and three particle

(solute-solvent-solvent) terms

χ0(r) = 4πβ
∑

j

〈(mj · r̂j)
2δ (r− rj)〉0

+ 4πβ
∑

j 6=k

〈(mj · r̂j)(mk · r̂k)δ (r− rj)〉0.

(A.3)

The first summand is given in terms of the solute-solvent pairdistribution functiong0s(rω1)

as

χ
(1)
0 (r1) = 4πβρ

∫

dω1

4π
(m1 · r̂1)

2g0s(r1ω1), (A.4)

whereρ is the number density of the liquid. For dipolar liquids, thepair distribution func-

tion can be expanded in rotational invariants as follows[145, 60]

g0s(r1ω1) = g
(0)
0s (r1) + g∆(r1)∆(1, r̂1) + . . . , (A.5)

where∆(1, r̂1) = (ê1 · r̂1). The angular integral involving angular projections of thepair

distribution function is zero and one gets

χ
(1)
0 (r) = 3yg

(0)
0s (r), (A.6)
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wherey = (4π/9)βρm2 is the usual density of dipoles in a polar liquid[162, 60].

The second, three-particle term in Eq. (A.3) can be expressed in terms of the three-

particle solute-solvent-solvent distribution functiong(r1ω1, r2ω2) as follows

χ
(2)
0 (r1) =9yρ

∫

dr2
dω1dω2

(4π)2
(ê1 · r̂1)(r̂2 · ê2)

[g(r1ω1, r2ω2)− g0s(r1ω1)g0s(r2ω2)]

(A.7)

With the use of the Kirkwood superposition approximation[145], this equation becomes

χ
(2)
0 (r1) =9yρ

∫

dr2
dω1dω2

(4π)2
(ê1 · r̂1)(r̂2 · ê2)

g0s(r1ω1)g0s(r2ω2)hss(12),

(A.8)

wherehss(12) = gss(12) − 1 is the solvent-solvent pair correlation function depending

on the positions and orientations of two solvent molecules,1 = {r1ω1}. As before, the

solvent-solvent correlation function is expanded in rotational invariants as follows

hss(12) = h(0)(r12) + h∆(r12)∆(12) + hD(r12)D12(12), (A.9)

where andD12(1, 2) = 3(ê1 · r̂12)(r̂12 · ê2)− (ê1 · ê2), r12 = r2− r1, andêi are unit vectors

along molecular dipoles. Further,h∆(r12) andhD(r12) are the radial projections of the pair

correlation function on the corresponding rotational invariants.

The calculation of the integral over the orientations of twomolecules of the solvent

is performed similarly for each projectionh∆ andhD; theh(0) projection gives zero from

angular integration. For the∆-projection one obtains upon transferring to the inverted

k-space

χ
(2)
0∆(r) = yρg

(0)
0s (r)

∫

dr2g
(0)
0s (r2)

∫

dk

(2π)3
j1(kr)j1(kr2)h̃

∆(k),

(A.10)

whereh̃∆(k) is the zero-order Hankel transform (Ref. 162, p. 235) ofh∆(r) andjn(x) is

the spherical Bessel function of the ordern. A similar relation for theD-projection leads

216



to the expression containing̃hD(k), which is the second-order Hankel transform ofhD(r).

For a general orderℓ one has[162]

h̃ℓ(k) = 4πiℓ
∫ ∞

0

r2jℓ(kr)h(r)dr. (A.11)

In order to arrive at a closed-form expression for the local susceptibilityχ0(r), we

will simplify the problem by considering thek → 0 limit of both h̃∆ andh̃D projections.

This approximation is valid in the limit of large solutes, substantially exceeding in size

the solvent molecules. The problem then significantly simplifies due to the orthogonality

property of the spherical Bessel functions

∫ ∞

0

jn(kr)jn(kr
′)k2dk =

π

2r2
δ(r − r′). (A.12)

We get as the result for the sum of∆ andD terms contributing toχ(2)
0 the following simple

relation

χ
(2)
0 (r) = yρ

[

g
(0)
0s (r)

]2 (

h̃∆(0) + 2h̃D(0)
)

. (A.13)

One can connect this expression to the longitudinal dielectric susceptibility since the term

in the round brackets in Eq. (A.13) is directly related to thek = 0 value of the longitudinal

structure factor[60, 162]

SL(k) = 1 + (ρ/3)
[

h̃∆(k) + 2h̃D(k)
]

. (A.14)

We finally obtain for the local susceptibility

χ0(r) =
(

1− ǫ−1
)

[

g
(0)
0s (r)

]2

− 3yg
(0)
0s (r)h

(0)
0s (r), (A.15)

whereh(0)0s (r) = g
(0)
0s (r) − 1. The second term in this relation represents electrostaticpo-

tential fluctuations due to translational motions of the solvent multipoles. In contrast to

orientational dipolar fluctuations, these fluctuations areshort-ranged with the result that

the proportionality toβ in the density of dipolesy is not eliminated. The term appearing
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here is a result of the perturbation approach to these density fluctuations, which becomes

unreliable for highly polar solvents with large values ofy. Renormalization of the po-

larity dependence by higher-order correlations (such as Stell’s Padé approximation[145])

is required in the limit ofy ≫ 1. Since any theory of this kind[61] would significantly

complicate our discussion, this term is dropped from the final expression forχ0(r) used

in the main text. Note also that this term is identically zeroin the limit of a structureless

continuum surrounding the solute since in that caseg
(0)
0s (r) = θ(r − rmax) andg(0)0s h

(0)
0s = 0.
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In order to prove the Onsager reciprocal relations for the problem of electro-osmotic

current, one needs to consider the volume transportV in response to the applied gradient of

the external electrostatic potential∇φext and the streaming currentI in response to the ap-

plied pressure gradient∇p: V = L12∇φext, I = L21∇p. The Onsager reciprocal relations

then requireL12 = L21.

We start with the equation of motion for the stationary flow ofan incompressible fluid

(∇ · v = 0) along thez-axis of a capillary [311]

− η∇2vz + ρ(v · ∇)vz = −∇zp+ fz. (B.1)

Here,vz(x, y) changes only along the cross section of the capillary (x, y axes) and, there-

fore,∇2 = ∂2/∂x2 + ∂2/∂y2. Further,η is the viscosity andρ is the fluid density. Since

no convective motion of the liquid occurs,(v · ∇)vz vanishes.

In contrast to the standard textbook description considering free charges only, the force

densityfz in Eq. (B.1) is caused by a constant external field,Ez = −∇zφext, applied to the

entire, free and bound, charge:fz = ρ(r)Ez, ρ = ρi−∇·P. Since the curl ofP disappears

in the divergence∇ ·P, one can putP = −∇φb with the results

ρ = −
1

4π
∇2φ, φ = φi − 4πφb, (B.2)

whereφi is the electrostatic potential of free charges.

We now proceed to calculatevz under the action of the forcefz assuming no pressure

applied to the capillary. The result from Eqs. (B.1) and (B.2) is

vz = −
φ0 − φ

4πη
Ez, (B.3)

whereφ0 is the potential at the shear surface at whichvz = 0. In standard notations

φ0 = ǫsζ, whereζ is theζ-potential andǫs accounts for the screening by bound charges.

Here, the potential of bound charges is a part ofφ and ǫs does not appear explicitly. A
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similar line of arguments can be applied to the potential of free chargesφi connected to

φ through a closure relation. When the constitutive relationsof continuous dielectrics are

used, one hasφ = ǫsφi, whereφi can be determined from solving the Poisson-Boltzmann

equation for the electrolyte next to the capillary wall. These details are irrelevant to our

purpose since the derivation requires only the Coulomb law and the corresponding Laplace

equation.

From Eq. (B.3), one gets the volume transport

V =

∫

vzdS = L12∇zφext (B.4)

with

L12 =
φ0

4πη

∫

(1− φ/φ0)dS. (B.5)

We now turn to the streaming current when the capillary is subjected to the pressure

gradient−∇zp. The current is given by the equation

I =

∫

vzρdS =
1

4π

∫

(φ0 − φ)∇2vzdS. (B.6)

We now putfz = 0 in Eq. (B.1), which results in

I = L21∇zp. (B.7)

It is easy to see that

L21 = L12, (B.8)

whereL12 is given by Eq. (B.5).

B.0.7 ζ potential

Here we present the calculation of theζ-potential based on the MD data for the Kihara

solute in SPC/E water[154]. In the absence of electrolyte effects, theζ-potential is given
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FIGURE B1: ζR calculated from Eq. (B.9) for the Kihara solutes withǫ0s = 0.65 kJ/mol
in SPC/E water (ǫs = 71). The dashed line is the linear fit:−0.0076 + 0.0264(R0s/nm).

by the relation

ζ =
4πR2

0sσ0
ǫsR

. (B.9)

We have noticed thatσ0R2
0s is well reproduced by a linear dependence at largeR0s: ζ ≃

0.026(R0s/R)(e/nm) (Fig. B1). Neglecting the difference betweenR0s andR at large

sizes of the solutes, one getsζ = 38 mV in the limit of large solutes.

B.1 Power of the external source

It is instructive to derive the power required from an external source to move the dis-

solved colloidal particles. The rate of doing work on altering polarization of the liquid

is

P =

∫

Ṗ · Edr. (B.10)

If the reference frame is placed at the particle drifting with the velocityu, then the solvent

moves with the velocity−u opposite to the direction of the drift anḋP = ṙ∂Pr/∂r =

−u∂P/∂r. One gets for the power

P = −N0uE

∫

(∂Pr/∂r)dr = 4πN0u
[

a2Pa −R2PR

]

E, (B.11)
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whereN0 is the number of colloidal particles. From Eq. (5) in the maintext, when the flux

of free charge is added to the polarization current, one getsfor the colloidal particles

P = N0uE〈QR〉. (B.12)
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Here the derivations of the Stokes-shift,Sω(t) and spectral width,Sσ(t) in terms of

time correlation functions are presented using the Kubo-Zwanzig linear response [60].

One can consider propagation of the dynamics by either employing statistical averages

over the ground-state or excited-state equilibrium ensemble [249]. In the former case, the

time-dependent Hamiltonian isH(t) = Hg(t) + ω(t)θ(t), whereω(t) = He(t) − Hg(t)

is considered as the linear response perturbation andθ(t) is the Heaviside function. In

the latter case, one hasH(t) = He(t) − ω(t)θ(−t). We assume that the ground-state

equilibrium distribution of the chromophores is promoted to the excited state att = 0 and

starts to evolve on the excite surface fort > 0. The derivation repeats the same steps

in either definition of the perturbation. We provide here thederivation steps when the

statistical average is taken over the ground-state equilibrium distribution.

C.1 Stokes-shift correlation function

The linear response to the perturbationH ′(t) = ω(t)θ(t) is given by [60]

〈ω〉t − 〈ω〉0 = −β~

∫ t

−∞

〈ω(t− s)ω̇(0)〉θ(s)ds (C.1)

whereβ = 1/(kBT ) and〈ω〉0 = 〈ω〉t=0. After integration, one obtains

〈ω〉t − 〈ω〉0 = β~σ2 [S2(t)− 1] (C.2)

whereσ2 = 〈(δω)2〉, andS2(t) =
〈δw(t)δw(0)〉

〈(δω)2〉
is the time equilibrium correlation function.

From Eq. (C.2), one immediately getsSΩ(t) = S2(t).
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C.2 Width dynamics

The spectral linewidth,σ(t), at timet is given by the relation

σ2(t) = 〈ω2〉t − (〈ω〉t)
2 (C.3)

One can obtain the linear response prediction for the evolution of spectral linewidth to

the perturbationH ′(t) = ~ω(t)θ(t) by integrating the following equations from the Kubo-

Zwanzig linear response approximation:

〈ω2〉t − 〈ω2〉0 = −β~

∫ t

−∞

〈ω(t− s)2ω̇(0)〉θ(s)ds (C.4)

whereβ = 1/(kBT ) and〈ω〉0 = 〈ω〉 and the statistical averages in the angular brackets

are over the equilibrium ensemble described by the HamiltonianHg.

After integration of Eq. C.4, one obtains

〈ω2〉t − 〈ω2〉0 = β~〈ω(t)2ω(0)〉 − β~〈ω3〉 (C.5)

The above equation can be re-written as

〈ω2〉t − 〈ω2〉∞ = β~σ3S3(t) + 2β~σ2〈ω〉S2(t) (C.6)

where

S3(t) =
〈δω(t)2δω(0)〉

〈δω2〉3/2
(C.7)

Making use of Eqs. C.2 and C.5 one can obtain

(〈ω〉t)
2 − (〈ω〉∞)2 = 2β~σ2〈ω〉0S2(t)

+ (β~)2σ4
(

S2(t)
2 − 2S2(t)

)

(C.8)
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FIGURE C1: SΩ(t) andSσ(t) vs. χ(t) for different values of∆κ/κg: 0.2 (green), 1.5
(red), and 4 (blue);∆C/Cg = 2 was kept for all curves.

Figure C1 shows the Stokes-shift and width time correlation functions vs.χ(t). The

deviation from the straight line thus quantifies the distinction between the dynamics of

spectroscopic observables and the medium dynamics. The figure illustrates the point made

in the main text that the width dynamics is a significantly more sensitive measure of the

non-linear chromophore-bath coupling than the Stokes shift dynamics. The latter appears

to remain a reliable probe of the medium dynamics even at the conditions of severe nonlin-

earity.

C.3 P (qf , tf |qi, ti)

Here we present the derivation of the path integral combining the Lagrangian of the

stochastic variable satisfying the stochastic Langevin equation of motion with the evolution

of the off-diagonal element of the density matrix of the two state system. We first simplify

the notation introducing the variablex = δq = q−q0 of deviation ofq from its equilibrium

valueq0 and write the transition frequency in the form[119]

Ω(x) = ax+ 1
2
bx2 (C.9)
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where~a = −∆C + ∆κqg and~b = ∆κ. In this notation, the propagator we are seeking

to calculate is given by the equation

P (xf , tf |xi, ti) =

∫

{xf ,xi}

Dx(τ)

exp

[

i

∫ tf

ti

dτΩ(x)−

∫ tf

ti

L(x, ẋ)dτ

] (C.10)

The effective Lagrangian defining the equation of motion minimizing the action[255] is

then found from the equation
d

dt

∂L̃

∂ẋ
−
∂L̃

∂x
= 0 (C.11)

where

L̃(x, ẋ) =
1

4D
(ẋ+ γx)2 − iΩ(x) (C.12)

The equation of motion reads

ẍ− ǫ2x = γ2f, f = −2iaD/γ2 (C.13)

where

ǫ2 = γ2 − 2ibD. (C.14)

The solution of eq (C.12) withxi = x(ti) andxf = x(tf ) is

x(τ) =xi
sinh ǫ(tf − τ)

sinh ǫ∆t
+ xf

sinh ǫ(τ − ti)

sinh ǫ∆t

+ q(τ − ti)− q(∆t)
sinh ǫ(τ − ti)

sinh ǫ∆t

(C.15)

where∆t = tf − ti and

q(τ) = f (cosh ǫτ − 1) (C.16)

According to the standard rules of performing Gaussian pathintegrals (with the La-

grangian bilinear in the path variable)[255], the result ofintegration can be obtained by
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calculating the action on the trajectory satisfying the equation of motion. The correspond-

ing action (neglecting a constant term affecting normalization) is

S(xf , tf |xi, ti) =−
1

4D
xẋ

∣

∣

tf

ti
−

1

4σ2
q

(x2f − x2i )

+i

∫ tf

ti

dτ(Ω(x)−
x

2
Ω′(x))

(C.17)

whereD = γσ2
q andσ2

q = 〈(δq)2〉 were used.

As is easy to see, the term quadratic inx disappears from the integral in eq (C.17) and

only the linear term survives. The substitution of eq (C.15) into eq (C.17) leads to the

following expression

S(xf , tf |xi, ti) = −
x2f − x2i
4σ2

q

−
ǫ

4D
(x2i + x2f ) coth ǫ∆t

+
ǫ

2D

xixf
sinh ǫ∆t

−
f ǫ̃

2D
(xi + xf ) tanh

ǫ∆t

2
+ ψ(∆t)

(C.18)

whereǫ̃ = (ǫ2 + γ2)/(2ǫ) and

ψ(t) =
f 2

4σ2
q

[

γt−
2γ

ǫ
tanh

ǫt

2

]

(C.19)

The propagator in eq (C.10) is therefore given in terms of the minimum action in eq (C.18)

as

P (xf , tf |xi, ti) = N exp [S(xf , tf |xi, ti)] (C.20)

whereN is a normalization constant.
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