
Secure and Privacy-Preserving Microblogging Services:

Attacks and Defenses

by

Jinxue Zhang

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved May 2016 by the
Graduate Supervisory Committee:

Yanchao Zhang, Chair
Junshan Zhang

Lei Ying
Gail-Joon Ahn

ARIZONA STATE UNIVERSITY

August 2016

ABSTRACT

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging

and deeply embedded into people’s daily lives. Used by hundreds of millions of users

to connect the people worldwide and share and access information in real-time, the

microblogging service has also became the target of malicious attackers due to its

massive user engagement and structural openness. Although existed, little is still

known in the community about new types of vulnerabilities in current microblogging

services which could be leveraged by the intelligence-evolving attackers, and more

importantly, the corresponding defenses that could prevent both the users and the

microblogging service providers from being attacked. This dissertation aims to un-

cover a number of challenging security and privacy issues in microblogging services

and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social

botnet, a group of collaborative social bots under the control of a single botmaster,

demonstrate the effectiveness and advantages of exploiting a social botnet for spam

distribution and digital-influence manipulation, and propose the corresponding coun-

termeasures and evaluate their effectiveness. Inspired by Pagerank, the second part

describes TrueTop, the first sybil-resilient system to find the top-K influential users in

microblogging services with very accurate results and strong resilience to sybil attacks.

TrueTop has been implemented to handle millions of nodes and 100 times more edges

on commodity computers. The third and fourth part demonstrate that microblogging

systems’ structural openness and users’ carelessness could disclose the later’s sensitive

information such as home city and age. LocInfer, a novel and lightweight system, is

presented to uncover the majority of the users in any metropolitan area; the disserta-

tion also proposes MAIF, a novel machine learning framework that leverages public

content and interaction information in microblogging services to infer users’ hidden

i

ages. Finally, the dissertation proposes the first privacy-preserving social media pub-

lishing framework to let the microblogging service providers publish their data to

any third-party without disclosing users’ privacy and meanwhile meeting the data’s

commercial utilities. This dissertation sheds the light on the state-of-the-art security

and privacy issues in the microblogging services.

ii

To My Family.

iii

ACKNOWLEDGMENTS

During past five years, it is a tremendous blessing to encounter so many great people

who have directly or indirectly make this whole thing happened.

First of all, I would like to thank my advisor Dr. Yanchao Zhang and his family.

He is always a bright role model for me as a researcher and advisor. All these work

could not make without his endless passion for seeking and solving the challenging

and meaningful research problems, his rigorousness to pursue the details, his openness

to encourage us to explore new and unknown domain, his braveness to face and solve

the difficult problems, his great patience for discussing with all our group members,

his huge tolerance for our failures and attempts, and his continuous support from

every aspect.

I also give my sincere appreciations to my committee members, Dr. Junshan

Zhang, Dr. Lei Ying, and Dr. Gail-Joon Ahn. They sacrifices their precious time

and effort to give me many constructive suggestions starting from the first year of my

graduate period.

Not only the professors from Arizona State University, this dissertation also ben-

efits from many other external scholars. Dr. Guanhua Yan from Binghamton Uni-

versity provided many insightful discussions for the Chapter 2. Dr. Xia Ben Hu from

Texas A&M University contributed the technical idea of Chapter 5 and helped to

initialize the problem formation of Chapter 6. Without them, this dissertation will

be much less interesting and comprehensive.

We act as a team–I thank for many members from ASU Cyber & Network Security

Group (CNSG). Dr. Rui Zhang helped me to settle down in ASU back in 2011 summer

and experienced with great patience my initial struggle in research. During past five

years, he has been always reachable for any discussion, and in-hand coaching in

writing and research methodologies. Over half of this dissertation has been polished

iv

by him. I also thank Jingchao Sun, Xiaocong Jin, Yimin Chen, Tao Li, and Xin Yao

for their useful discussion in each group meeting, the earnest support and help in

many emergent situations, and most importantly, the mental encouragement in every

single day in the lab.

I also thank many friends in GPCCC and ASU campus from China, U.S., Korea,

and India. Through prays, conversations, team work and play, they always recharged

me and gave me peace, support, and patience for every challenge in both work and

life. It is a great treasure to know them and befriend with them. Here I give the most

special thanks to my girlfriend Joyce Hu for the continuous and unselfish comfort and

support during the formation of this dissertation. Her coming to my life is the most

significant gift from God.

Finally, I gave my inexpressible gratefulness to my family in China. They always

trust me, support me, and comfort me, and have made huge sacrifice during past five

to ten years. This dissertation is made to honor them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

2 THE RISE OF SOCIAL BOTNETS: ATTACKS AND COUNTERMEA-

SURES . 5

2.1 Introduction . 5

2.2 Building a Social Botnet on Twitter . 7

2.3 Social Botnet for Spam Distribution. 9

2.3.1 Why the Social Botnet for Spam Distribution? 9

2.3.2 Optimal Social Botnet for Spam Distribution 11

2.3.3 Trace-driven Evaluation . 19

2.4 Social Botnet for Digital-influence Manipulation 22

2.4.1 Rise of Digital Influence . 22

2.4.2 Botnet-based Digital-influence Manipulation 25

2.5 Defenses . 33

2.5.1 Defense Against Botnet-based Spam Distribution 34

2.5.2 Defense Against Digital-influence Manipulation 39

2.6 Related Work . 46

2.7 Summary . 49

3 TRUETOP: A SYBIL-RESILIENT SYSTEM FOR USER INFLUENCE

MEASUREMENT ON TWITTER . 50

3.1 Introduction . 50

3.2 Related Work . 54

vi

CHAPTER Page

3.3 Preliminaries . 56

3.3.1 Twitter Basics . 56

3.3.2 System Model . 56

3.3.3 Threat Model . 57

3.3.4 Design Objectives . 57

3.4 TrueTop Design . 58

3.4.1 Overview . 58

3.4.2 Interaction Graph Construction . 59

3.4.3 Credit Distribution. 61

3.4.4 Sybil-Resilient Credit Distribution . 64

3.5 Performance Analysis . 68

3.6 Evaluation . 74

3.6.1 Implementation and Runtime Performance 74

3.6.2 Datasets . 74

3.6.3 Feasibility Studies. 76

3.6.4 Accuracy and Sybil Resilience Studies . 81

3.7 Summary . 91

4 YOUR ACTIONS TELL WHERE YOU ARE: UNCOVERING TWIT-

TER USERS IN A METROPOLITAN AREA . 93

4.1 Introduction . 93

4.2 Problem Statement, Terms and Notation . 96

4.3 Conjectures Validation . 97

4.3.1 Data Collection . 98

4.3.2 Datasets . 100

vii

CHAPTER Page

4.3.3 Conjecture Validation . 100

4.4 LocInfer . 103

4.4.1 Step 1: Finding Seed Users . 104

4.4.2 Step 2: Finding Candidate Users . 105

4.4.3 Step 3: Finding Target Users U . 109

4.4.4 Cost Analysis . 113

4.4.5 Countermeasure . 114

4.5 Performance Evaluation . 114

4.5.1 Methodology . 114

4.5.2 Accuracy . 115

4.5.3 Coverage . 119

4.5.4 Accuracy and Coverage Tradeoff . 120

4.5.5 Effectiveness of Countermeasure . 121

4.6 Related Work . 122

4.7 Summary . 123

5 YOUR AGE IS NO SECRET: INFERRING MICROBLOGGERS’ AGES

VIA CONTENT AND INTERACTION ANALYSIS 124

5.1 Introduction . 124

5.2 Background and Problem Statement . 127

5.3 Microbloggers’ Age Inference Framework . 128

5.3.1 Data Crawling and Analysis . 129

5.3.2 Model Tweets by τ -gram . 132

5.3.3 Modeling Content Information . 134

5.3.4 Modelling Online Interaction Information 135

viii

CHAPTER Page

5.3.5 Integrating Content and Interaction Information 138

5.3.6 An Optimization Algorithm . 138

5.3.7 Inferring Age Group of an Unknown User 141

5.4 Evaluation . 141

5.4.1 Dataset, Methodology and Metrics . 142

5.4.2 Assessing Accuracy . 145

5.4.3 Performance of the Content and Interaction information 149

5.4.4 Exploiting the Parameters . 151

5.4.5 Countermeasures . 152

5.5 Related Work . 152

5.6 Summary . 153

6 PRIVACY PRESERVING SOCIAL MEDIA PUBLISHING 154

6.1 Introduction . 154

6.2 Problem Statement . 158

6.2.1 Social Media Data Publishing . 159

6.2.2 Adversary Model (User-Linkage Attack) 161

6.2.3 Vulnerability of Current Social Media Data Publishing Policies163

6.2.4 Design Objectives . 164

6.3 Differentially Privacy-Preserving Social Media Data Publishing. 165

6.3.1 Text Modeling . 165

6.3.2 Why Differential Privacy? . 167

6.3.3 ε-Text Indistinguishability: a New Notion 169

6.3.4 Achieving ε-Text Indistinguishability . 172

6.3.5 A Working Example . 175

ix

CHAPTER Page

6.3.6 Performance Analysis . 177

6.3.7 Remarks . 179

6.4 Evaluation . 180

6.4.1 Dataset . 180

6.4.2 Privacy and Usefulness . 182

6.4.3 Performance on Classification . 182

6.4.4 Defense Against User-Linkage Attacks . 184

6.5 Related Work . 188

6.5.1 Privacy on Social Media Platforms . 188

6.5.2 Differential Privacy . 189

6.5.3 Privacy-Preserving Machine Learning . 190

6.6 Summary . 190

7 CONCLUSION AND FUTURE WORK . 191

BIBLIOGRAPHY. 193

x

LIST OF TABLES

Table Page

2.1 Six Popular Digital-influence Software Vendors. The Data Was Col-

lected at October, 2014. 24

2.2 Four Action Networks for Evaluation, Where ’F’ and ’I’ Refer to Fol-

lowing and Interaction, Respectively. 43

3.1 Dataset Characteristics. 75

3.2 The Comparison of Incoming-outgoing Ratios Between Sybil and Non-

sybil Communities Under Sum-based and Entropy-based Interaction

Graphs. 80

3.3 The Impact of Different Design Options on TrueTop Performance. 87

4.1 Seed Users in Four Metropolitan Areas in U.S. 98

4.2 Locality in Each Area. Each Element is Composed of Three Values,

Representing the Locality for the Seed Users in Each Area, the First

Type of Random User Set, and The Second Type of Random User Set,

Respectively. 101

4.3 Breaking Down the Initiator Locality by Three Types of Interactions. . 101

4.4 The Testing Multigraphs for the Evaluation. (α = 0.159) 116

5.1 The Summary of the Datasets. 144

5.2 The Performance on the Original Dataset. 147

5.3 The Performance on the Sampled Dataset. 148

xi

LIST OF FIGURES

Figure Page

2.1 Exemplary Retweeting Trees With 12 Bots, Where M = 3 And the

Botmaster’s Suspension Budget is c = 5. 15

2.2 Performance Comparison of Independent and Botnet Methods in Spam

Distribution at Different αs in Terms of the Single Objective f 21

2.3 Performance Comparison of Independent and Botnet Methods in Spam

distribution in Terms of Separate Objective. 21

2.4 Manipulating Digital Influence by Following and Retweeting. 28

2.5 Manipulation by Social Botnets with Different Audience Sizes. 30

2.6 Manipulation by Acting on Different Number of Tweets. 31

2.7 Under Different Retweeting Speeds, the Number of Days Needed to

Manipulate Digital Influence Scores from Nothing into 80-th and 90-th

Percentiles. 33

2.8 The True and False Positive Rates with Different γs. 37

2.9 Performance Comparison. 38

2.10 The Performance under the Random Attack. 45

2.11 The Performance under the Seed-targeting Attack. 45

2.12 The Impact of K on the Top-K-percent Accuracy. 47

3.1 The Interaction Graph With a Virtual Non-sybil Region H and a Vir-

tual Sybil Region S. 63

3.2 The Distribution of WEC Values. 76

3.3 Relative WEC Gap ∆′k. 77

3.4 Incoming-outgoing Ratios for Sybil Groups, Where the Same Legend

is Used in All the Figures. 79

3.5 TrueTop Performance Under Different Attack Strengths 84

xii

Figure Page

3.6 TrueTop Performance for Different Ks. 84

3.7 TrueTop Performance Under Different εs. 85

3.8 Impact of Seed Attacks with Different Weight Models. 86

3.9 Comparing TrueTop with Kred, Pagerank and WEC with Power Iter-

ation Under the Random and Community Attacks. 89

3.10 TrueTop and WEC under Seed Attacks. 90

3.11 Defense Against the Seed Attack. 90

4.1 The Average Local Neighbors of the Seed Users. 102

4.2 The Accuracy of LocInfer. 116

4.3 Detailed Accuracy Illustration. 117

4.4 The Impact of α. 118

4.5 The Impact of t. 119

4.6 The Tradeoff Between the Coverage and Accuracy. The Solid and Dash

Curves are the Coverage and Accuracy; the Marks �,4, ◦,× Represent

TS, PI, CI, and LA, Respectively. 120

4.7 Countermeasure Efficacy. 121

5.1 The Age Distribution in the Ground-truth Dataset. 130

5.2 The Age-keyword Usage Pattern. 131

5.3 The Distribution of the Age Gap on Friend Pairs. 131

5.4 The Jaccard Content Similarity on Friend Pairs. 131

5.5 The Performance of Separate Information. 150

5.6 The Impact of the Parameters λ1 and λ2. 150

5.7 The Accuracy Under Different Dataset Sizes. 150

5.8 The Accuracy Under Different Training Set Sizes. 150

xiii

Figure Page

6.1 Social Media Data Publishing. The Data Consumer Submits a Query

to Request the Data of Everyone Who Tweeted the Keyword “Super-

Sunscreen” in the Past 48 Hours. The Data Service Provider Then

Return All the Qualifying Users with Anonymous IDs and Their Re-

cent 1,000 Posts. 159

6.2 The CDF of d with Different εs. 174

6.3 The Illustration of Differentially Privacy-preserving Social Media Data

Publishing. Given Three Users with Intact Dataset, We First Use the

Text Model to Build a Matrix D, Then Add the Controlled Noise, and

Finally Release the Perturbed Matrix D′ and the Keywords in Each

Column.. 176

6.4 Determine ε by γ and rmax. 177

6.5 The Loose Upper Bound of rmax. 181

6.6 The Real rmax and the Noise Strength for Each Element. 181

6.7 The Usefulness of the Mechanism. 181

6.8 The Performance of Classification. 183

6.9 The Performance of Inference Attack I. 185

6.10 The Performance of Inference Attack II. 187

xiv

Chapter 1

INTRODUCTION

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerg-

ing and deeply embedded into people’s daily lives. As of September 2015, Twitter—

the most popular microblogging system in the world—has 320 million monthly active

users. People have been using microblogging systems in social networking, massive

information campaigns, public relationships, political campaigns, pandemic and crisis

situations, business marketing, crowdsourcing, and many other public/private con-

texts.

Used by hundreds of millions of users to connect the people worldwide and share

and access information in real-time, the microblogging service has also became the

target of malicious attackers due to its massive user engagement and structural open-

ness. Although existed, little is still known in the community about new types of

vulnerabilities in current microblogging services which could be leveraged by the

intelligence-evolving attackers, and more importantly, the corresponding defenses that

could prevent both the users and the microblogging service providers from being at-

tacked.

In this dissertation, we aim to uncover a number of challenging security and pri-

vacy issues in microblogging services and also propose corresponding defenses. The

rest of this report is structured as follows.

Chapter 2 studies the consequences of and corresponding defenses against social

botnets in the context of microblogging services. Specifically, Online social networks

(OSNs) are increasingly threatened by social bots which are software-controlled OSN

accounts that mimic human users with malicious intentions. A social botnet refers to a

1

group of social bots under the control of a single botmaster, which collaborate to con-

duct malicious behavior while mimicking the interactions among normal OSN users to

reduce their individual risk of being detected. We demonstrate the effectiveness and

advantages of exploiting a social botnet for spam distribution and digital-influence

manipulation through real experiments on Twitter and also trace-driven simulations.

We also propose the corresponding countermeasures and evaluate their effectiveness.

Our results can help help OSNs improve their bot(net) detection systems.

Chapter 3 further presents a novel defend scheme against the social botnets (or

sybil users) in the application of finding top-K influential users in the microblogging

services. To start with, influential users have great potential for accelerating infor-

mation dissemination and acquisition on Twitter. How to measure the influence of

Twitter users has attracted significant academic and industrial attention. Existing

influence measurement techniques are vulnerable to sybil users that are thriving on

Twitter. Although sybil defenses for online social networks have been extensively

investigated, they commonly assume unique mappings from human-established trust

relationships to online social associations and thus do not apply to Twitter where

users can freely follow each other. This chapter presents TrueTop, the first sybil-

resilient system to measure the influence of Twitter users. TrueTop is rooted in two

observations from real Twitter datasets. First, although non-sybil users may incau-

tiously follow strangers, they tend to be more careful and selective in retweeting,

replying to, and mentioning other users. Second, influential users usually get much

more retweets, replies, and mentions than non-influential users. Detailed theoreti-

cal studies and synthetic simulations show that TrueTop can generate very accurate

influence measurement results with strong resilience to sybil attacks.

Chapter 4 investigates one privacy threat on microblogging services, namely find-

ing the majority users in any metropolitan area. Specifically, most Twitter users do

2

not disclose their locations due to privacy concerns. Although inferring the location

of an individual Twitter user has been extensively studied, it is still missing to effec-

tively find the majority of the users in a specific geographical area without scanning

the whole Twittersphere, and obtaining these users will result in both positive and

negative significance. In this chapter, we propose LocInfer, a novel and lightweight

system to tackle this problem. LocInfer explores the fact that user communications

in Twitter exhibit strong geographic locality, which we validate through large-scale

datasets. Based on the experiments from four representative metropolitan areas in

U.S., LocInfer can discover on average 86.6% of the users with 73.2% accuracy in

each area by only checking a small set of candidate users. We also present a coun-

termeasure to the users highly sensitive to location privacy and show its efficacy by

simulations.

Chapter 5 discloses another privacy issue on Twitter, namely inferring users’ ages.

The age information of microbloggers can be very useful for many applications such

as viral marketing and social studies/surveys. Current microblogging systems, how-

ever, have very sparse age information. In this chapter, we present MAIF, a novel

framework that explores public content and interaction information in microblogging

systems to explore the hidden ages of microbloggers. We thoroughly evaluate the

accuracy of MAIF with a real-world dataset with 54,879 Twitter users. Our results

show that MAIF can achieve up to 81.38% inference accuracy and outperforms the

state of the art by 9.15%. We also discuss some countermeasures to alleviate the

possible privacy concerns caused by MAIF.

Chapter 6 considers how to prevent the microbloggers’ privacy disclosure men-

tioned above. We first identify a text-based user-linkage attack on current social

media data publishing practices, in which the real users of anonymous IDs in a pub-

lished dataset can be pinpointed based on the users’ unprotected text data. Then we

3

propose a framework for differentially privacy-preserving social media data publish-

ing for the first time in literature. Within our framework, social media data service

providers can publish perturbed datasets to provide differential privacy to social media

users while offering high data utility to social media data consumers. Our differential

privacy mechanism is based on a novel notion of ε-text indistinguishability, which

we propose to thwart the text-based user-linkage attack. Extensive experiments on

real-world and simulated datasets confirm that our framework can enable high-level

differential privacy protection and also high data utility at the same time.

We summarize our work and present several future work in Chapter 7.

4

Chapter 2

THE RISE OF SOCIAL BOTNETS: ATTACKS AND COUNTERMEASURES

2.1 Introduction

Online social networks (OSNs) are increasingly threatened by social bots (52)

which are software-controlled OSN accounts that mimic human users with malicious

intentions. For example, according to a May 2012 article in Bloomberg Businessweek,

1 as many as 40% of the accounts on Facebook, Twitter, and other popular OSNs

are spammer accounts (or social bots), and about 8% of the messages sent via social

networks are spams, approximately twice the volume of six months ago. There have

been reports on various attacks, abuses, and manipulations based on social bots (51),

such as infiltrating Facebook (26) or Twitter (23; 53), launching spam campaign

(57; 62; 132), and conducting political astroturf (119; 120).

A social botnet refers to a group of social bots under the control of a single botmas-

ter, which collaborate to conduct malicious behavior while mimicking the interactions

among normal OSN users to reduce their individual risk of being detected. For ex-

ample, social bots on Twitter can follow others and retweet/answer others’ tweets.

Since a skewed following/followers (FF) ratio is a typical feature for social bots on

Twitter (141), maintaining a balanced FF ratio in the social botnet makes it much

easier for individual bots to escape detection. Creating a social botnet is also fairly

easy due to the open APIs published by OSN providers. For example, we successfully

created a network of 1,000 accounts on Twitter with $57 to purchase 1,000 accounts

instead of manually creating them.

1http://www.businessweek.com/articles/2012-05-24/likejacking-spammers-hit-social-media

5

Despite various studies (58; 151; 59) confirming the existence of social botnets,

neither have the greater danger from social botnets been unveiled nor have the coun-

termeasures targeted on social botnets been proposed. In this chapter, we first report

two new social botnet attacks on Twitter, one of the most popular OSNs with over

302M monthly active users as of June 2015 and over 500M new tweets daily. Then

we propose two defenses on the reported attacks, respectively. Our results help un-

derstand the potentially detrimental effects of social botnets and shed the light for

Twitter and other OSNs to improve their bot(net) detection systems. More specifi-

cally, this chapter makes the following contributions.

Firstly, we demonstrate the effectiveness and advantages of exploiting a social

botnet for spam distribution on Twitter. This attack is motivated by that Twitter

currently only suspends the accounts that originate spam tweets without punishing

those retweeting spam tweets (11). If the social botnet is organized as a retweet tree in

which only the root originates spam tweets and all the others merely retweet spams, all

the social bots except the root bot can escape suspension. Given a set of social bots,

we formulate the formation of the retweeting tree as a multi-objective optimization

problem to minimize the time taken for a spam tweet to reach a maximum number

of victim Twitter users at the lowest cost of the botmaster. Since the optimization is

NP-hard, we give a heuristic solution and confirm its efficacy with real experiments

on Twitter and trace-driven simulations.

Secondly, we show that a social botnet can easily manipulate the digital influence

(30; 143) of Twitter users, which has been increasingly used in ad targeting (144; 6),

customer-service improvement (75), recruitment (66), and many other applications.

This attack stems from the fact that almost all existing digital-influence tools such as

Klout, Kred, and Retweet Rank, measure a user’s digital influence exclusively based

6

on his 2 interactions with others users on Twitter. If social bots collaborate to ma-

nipulate the interactions of target Twitter users, they could effectively manipulate the

victims’ digital influence. The efficacy of this attack is confirmed by real experiments

on Twitter.

Finally, we propose two countermeasures to defend against the two reported at-

tacks, respectively. To defend against the botnet-based spam distribution, we main-

tain a spam score for each user and update the score whenever the corresponding

user retweets a spam. The user is suspended if his spam score exceeds a predefined

threshold. To defense against the botnet-based influence manipulation attacks, we

propose to find sufficient credible users and only use the interactions originated from

these credible users for digital-influence measurement. Moreover, based on the mea-

surement in Section §2.4, we design a new model to compute the influence score

which is resilient to the manipulation from a single credible social bot. We confirm

the effectiveness of both defenses via detailed simulation studies driven by real-world

datasets.

The rest of the chapter is organized as follows. §2.2 introduces the construction

of a social botnet on Twitter. §2.3 and §2.4 show the efficacy and merits of using the

social botnet for spam distribution and digital-influence manipulation, respectively.

§2.5 details and evaluates two countermeasures. §2.6 discusses the related work. §3.7

concludes this chapter.

2.2 Building a Social Botnet on Twitter

In this chapter, we focus on networked social bots in Twitter, so we first outline

the Twitter basics to help illustrate our work. The readers familiar with Twitter

can safely skip this paragraph without any loss of continuity. Unlike Facebook, the

2No gender implication.

7

social relationships on Twitter are unidirectional by users following others. If user A

follows user B, A is B’s follower, and B is A’s friend. In most cases, a user does not

need prior consent from another user whom he wants to follow. Twitter also allows

users to control who can follow them, but this feature is rarely used. In addition,

users can choose to unfollow others and block their selected followers. A Twitter user

can send text-based posts of up to 140 characters, known as tweets, which can be

read by all its followers. Tweets can be public (the default setting) and are visible

to anyone with or without a Twitter account, and they can also be protected and

are only visible to previously approved Twitter followers. A retweet is a re-posting of

someone else’s tweet. A user can retweet the tweets of anyone he follows or does not

follow, and his retweets can be seen by all his followers. Moreover, a user can reply

to a tweet and ensure that specific users can see his posts by mentioning them via

inserting “@username” for every specific user into his posts. Finally, each user has a

timeline which shows all the latest tweets, retweets, and replies of his followers.

We construct a social botnet on Twitter consisting of a botmaster and a number of

social bots which are legitimate Twitter accounts. Twitter accounts can be manually

created or purchased at affordable prices. For example, we bought 1,000 Twitter

accounts with $57 from some Internet sellers for experimental purposes only. The

botmaster is in the form of a Java application, which we developed from scratch

based on the OAuth protocol (7) and open Twitter APIs. It could perform all the

Twitter operations on behalf of all social bots to make the bots look like legitimate

users.

8

2.3 Social Botnet for Spam Distribution

2.3.1 Why the Social Botnet for Spam Distribution?

As the popularity of Twitter rapidly grows, spammers have started to distribute

spam tweets which can be broadly defined as unwanted tweets that contains malicious

URLs in most cases or occasionally malicious texts (62; 132; 35). According to a study

in 2010 (62), roughly 8% of the URLs in tweets are malicious ones that direct users

to scams/malware/phishing sites, and about 0.13% of the spam URLs will be clicked.

Given the massive scale of Twitter, understanding how spam tweets are distributed

is important for designing effective spam defenses as we will demonstrate in § 2.5.

The simplest method for spam distribution is to let social bots distribute spam

tweets independently from each other, which we refer to as the independent method.

In particular, the botmaster can instruct every bot to directly post spam tweets

which can be seen by all its followers. According to the Twitter rules, 3 the accounts

considered as spam originators will be permanently suspended. Since there are so-

phisticated techniques such as (131; 95) detecting malicious URLs, this independent

approach may subject almost all social bots to permanent suspension in a short time

window.

A more advanced method, which we propose and refer to as the botnet method,

is to exploit the fact that Twitter currently only suspends the originators of spam

tweets without punishing their retweeters. In the simplest case, the botmaster forms

a single retweeting tree, where every bot is associated with a unique vertex and is

followed by its children bots. Then only the root bot originates spam tweets, and all

the others simply retweet the spam tweets from their respective parent. Given the

same set of social bots, both methods can distribute spam tweets to the same set

3http://support.twitter.com/articles/18311\#

9

of non-bot Twitter users, but only the root bot will be suspended under the botnet

method. Obviously, the botnet method is economically beneficial for the botmaster

because it involves non-trivial human effort or money to create a large social botnet.

We use an experiment on Twitter to validate our conjecture for the independent

method. Our experiment uses three different social botnets with each containing 100

bots. The experiment proceeds in hours. At the beginning of every hour, every bot

in the same botnet almost simultaneously posts a spam tweet comprising two parts.

The first part is different from every bot and randomly selected from the list of tweets

returned after querying “music,” while the second part is an identical malicious URL

randomly selected from the Shalla’s blacklists (http://www.shallalist.de/) and

shortened using the bitly service (http://bitly.com) for use on Twitter. We find

that all the bots in the three botnets are suspected in two, five, and six hours. Based

on this experiment, we can safely conjecture that the independent method will cause

most bots in a larger botnet to be suspended in a short period, thus putting the

botmaster at serious economic disadvantage.

We use a separate set of experiments to shed light on the advantage of the botnet

method. In this experiment, we first use 111 bots to build a full 10-ary tree of depth

two, i.e., each node except the leaves has exactly 10 children. The experiment proceeds

in hourly rounds repeatedly on these 111 bots. At the beginning of every hour of the

first round, the root bot posts a spam tweet, while all its descendants merely retweet

the spam tweet after a small random delay. Then we replace the suspended bot by a

random bot alive from the same network, re-organize the bot tree, and start the next

round. We totally run the experiments for five rounds, in each of which only the root

bot is suspended after six hours on average, and all other bots who just retweet the

spams (with five times) remain alive. To check whether the bots will be suspended

by retweeting more spams, we reduce the spamming frequency from one per hour to

10

one per day, and repeat the experiment for ten more rounds, and all the retweeting

bots were still alive at the end of the experiment. In addition, we use the similar

methodology to test three other different botnets of 2, 40, and 100 bots, respectively,

and obtain the similar results.

It has been very challenging in the research community to conduct experimental

studies about the attacks on online social networks and also the corresponding coun-

termeasures. In the experiments above, we have to control the social bots to post ma-

licious URLs to evaluate Twitter’s suspension policy, which may harm benign users.

To minimize the negative impact on the legitimate users, we adopted a methodology

similar to (26; 132; 101; 152). Specifically, none of the purchased accounts followed

any legitimate user and thus were very unlikely to be followed by legitimate users,

which greatly reduced the possibility of the posted spams being viewed by legitimate

users. In addition, we deleted every spam tweet immediately after the experiment

to further avoid it being clicked by legitimate users. Our experiments clearly show

that Twitter has a much more strict policy against posting original spam tweets than

retweeting spam tweets.

2.3.2 Optimal Social Botnet for Spam Distribution

§2.3.1 motivates the benefits of using the social botnet for spam distribution on

Twitter. Given a set of social bots, what is the optimal way for spam distribution?

We give an affirmative answer to this important question in this section.

Problem Setting and Performance Metrics

We consider a botnet V of n bots, where each bot i ∈ [1, n] can be followed by

other bots and also other Twitter users outside the botnet (called non-bot followers

hereafter). Let Fi denote the non-bot followers of bot i. Note that Fi ∩ Fj may

11

be non-empty (∀i 6= j), meaning that any two bots may have overlapping non-bot

followers. We further let F =
⋃n
i=1Fi. How to attract non-bot followers for the bots

is related to social engineering (37) and orthogonal to the focus of this chapter. Note

that it is very easy in practice for a bot to attract many non-bot followers, as shown

in (23; 26; 59; 151).

The botmaster distributes spam tweets along one or multiple retweeting trees, and

the vertices of every retweeting tree corresponds to a disjoint subset of the n bots.

In addition, every bot in a retweeting tree is followed by its children. As discussed,

the root of every retweeting tree will originate spam tweets, which will appear in

the Twitter timeline of its children bots and then be retweeted. The distribution of

a particular spam tweet finishes until all the bots on all the retweeting trees either

tweet or retweet it once and only once.

Given a set V with n bots and F , we propose three metrics to evaluate the efficacy

of botnet-based spam distribution.

• Coverage: Let C denote the non-bot receivers of a given spam tweet and be

called the coverage set. The coverage of spam distribution is then defined as

|C|
|F| ∈ [0, 1].

• Delay : We define the delay of spam distribution, denoted by τ , as the average

time for each user in C to see a given spam tweet since it is generated by the

root bot. A user may follow multiple bots and thus see the same spam tweet

multiple times, in which case only the first time is counted.

• Cost : We use |S| and |S̃| to define the cost of spam distribution, where S

denotes the indices of suspended bots after distributing a given spam, and S̃

denotes the set of non-bot followers will be lost due to the suspension of S, i.e.,

S̃ = C \ (
⋃
i∈V\S Fi).

12

The above metrics motivates three design objectives. First, we obviously want

to maximize the coverage to be one, which happens when all the n bots participate

in spam distribution by belonging to one retweeting tree. Second, many malicious

URLs in spam tweets are hosted on compromised servers and will be invalidated once

detected, and Twitter will remove spam tweets as soon as they are identified. It is

thus also important to minimize the delay. Finally, since it incurs non-trivial human

effort or money to create bots and attract followers for them, it is critical to minimize

the cost as well.

Design Constraints

A major design challenge is how to circumvent Twitter’s suspension rules 4 that are

evolving in accordance with changing user (mis)behavior. We classify the suspension

rules into strict and loose ones. Violators of strict rules will be immediately sus-

pended. The strict rule most relevant to our work is that the users originate spam

tweets containing malicious URLs will be suspended. In contrast, a violator of loose

rules will initially become suspicious and later be suspended if his violations of re-

lated loose rules exceed some unknown threshold Twitter defines and uses internally.

Examples of loose rules include repeatedly posting others’ tweets as your own or the

same tweet, massively following/unfollowing people in a short time period, etc. In

addition, the research community have discovered many useful loose rules for spam-

tweet detection such as those in (78; 82; 125; 123; 131; 150; 157) which are likely

to be or have been adopted by Twitter into their evolving suspension-rule list. As

discussed, we use the botnet method for spam distribution in order to largely circum-

vent this strict rule. In the following, we introduce five design constraints related to

some loose rules we consider most relevant. By following these constraints, the social

4http://support.twitter.com/articles/18311#

13

bots can cause much less suspicion to Twitter and thus are much less likely to be

suspended.

1. The maximum height of a retweeting tree is K = 10 according to (78). Hence

we claim that any spam tweet will not be retweeted more than 10 times.

2. A bot only retweets the spam tweets posted by its parent bot on the retweeting

tree it follows, as retweeting the tweets from non-followed users is known to be effective

in detecting spam tweets (123).

3. Any spam tweet from an arbitrary bot will be retweeted by at most 100r percent

of its followers. As r approaches one, the bot will become increasingly suspicious

according to community-based spam detection algorithms (56; 35). Recall that the

followers of any bot i ∈ [1, n] comprise other bots and also non-bot users (i.e., Fi).

Note that non-bot followers rarely retweet spam tweets in practice, but we require all

bot followers to retweet spam tweets. Then bot i can have no more than d r|Fi|
1−r e bot

followers.

4. The retweeting lag at any hop j ∈ [1, K] is a random variable ti which follows

a hop-wise statistical distribution according to (78), as it is quite abnormal for a user

to immediately retweet a post once seeing it. Here the retweeting lag is defined as

the time elapsed when a bot sees a spam tweet until it retweets it.

5. The social bots within the first M hops will be suspended once Twitter finds

that they are involved in (re)tweeting a spam tweet. This constraint is motivated by

recent findings (151) that spammer accounts on Twitter tend to be connected and

clustered by mutual followings. It is thus reasonable to assume that Twitter either

have been utilized or will soon utilize these research findings to suspend the accounts

involved in distributing a spam tweet within the first M > 0 hops. After introducing

this constraint, we relax the third one by allowing arbitrary topology in the first M

hops because all of its bots will be suspended.

14

M = 3

(a)

(b)

(c)

c = 5

Figure 2.1: Exemplary Retweeting Trees With 12 Bots, Where M = 3 And the

Botmaster’s Suspension Budget is c = 5.

Problem Formulation

Give the above design objectives and constraints, we now attempt to formulate

botnet-based spam distribution as an optimization problem. The major challenge

lies in the infeasibility of simultaneously achieving the maximum coverage, the min-

imum delay, and the minimum cost. Fig. 2.1 shows an example with 12 bots and

M = 3, and we assume that every bot has the same number of non-bot followers. In

one extreme shown in Fig. 2.1(a), we can minimize the delay τ by letting every bot

be a root bot, but the cost is obviously the maximum possible because all the bots

will be suspended. In the other extreme shown in Fig. 2.1(b), we can form a single

retweeting tree with exactly three bots within the first three hops, in which case we

can achieve the minimum possible cost, but the achievable delay will always be larger

than that in the first case no matter how the retweeting tree beyond three hops is

formed. In addition, we assume for the second case that the retweeting tree can in-

clude all the 12 bots, leading to the same coverage of one as in the first case. If there

are too many bots, however, some of them may not be able to be incorporated into

the retweeting tree due to the first and third constraints, and the resulting coverage

will be smaller than that of the first case.

15

To deal with the above challenge, assume that the botmaster has a suspension

budget c ∈ [M,n] bots, referring to the maximum number of suspended bots it can

tolerate. Note that the more bots in the first M hops, the more non-bot followers

in F closer to the root bot which can receive a given spam tweet in shorter time,

and thus the smaller the delay. Under the budget constraint, the minimum delay can

hence be achieved only when there are exactly c bots within the first M hops, as

shown in Fig. 2.1(c) with c = 5.

What is the optimal way to form a retweeting tree as in Fig. 2.1(c) given the

cost, coverage, and delay requirements? Recall that the cost is defined by |S| and

|S̃|. Since |S| = c under the budget constraint, we just need to minimize |S̃|. To

mathematically express the cost and coverage requirements, we let {Vk}Kk=1 denote K

disjoint subsets of the bot indices {1, . . . , n}, where K = 10 is the maximum height

of the retweeting tree (see Constraint 1), Vk denote the bot indices at level k of the

retweeting tree, and
⋃K
k=1 Vi ⊆ {1, . . . , n}. If the optimal retweeting tree eventually

found is of depth K∗ < K, the sets {Vk}Kk=K∗+1 will all be empty. Recall that Fi

denotes the set of non-bot followers of bot i ∈ [1, n] and that F =
⋃n
i=1Fi. Then

we have S̃ = C \ (
⋃
i∈Vk,k∈[M+1,K∗]Fi) and the coverage set C =

⋃
i∈Vk,k∈[1,K]Fi ⊆ F

and need to maximize |C|. Since S̃ ⊆ C, we can combine the cost and coverage

requirements into a single metric |S̃||C| and then attempt to minimize it.

It is a little more complicated to derive the delay. As discussed, a non-bot user

may follow multiple bots at different levels, in which case it is considered a follower on

the lowest level among those. Let Φk denote the set of non-bot followers at k ∈ [1, K].

It follows that Φ1 = Fi (i ∈ V1) and Φk =
⋃
i∈Vk Fi−

⋃k−1
l=1 Φl for k ∈ [1, K]. According

to Constraint 4, it takes
∑k

j=1 tj for a spam tweet to reach level-k non-bot followers,

where tj denotes the retweeting lag of hop j ∈ [1, K], and t1 = 0. Since there are

totally |Φk| non-bot followers at level k and |C| non-bot followers across all levels, we

16

can compute the delay as

τ =
1

|C|

K∑
k=1

k∑
j=1

tj|Φk| .

Finally, we reduce the three-objective optimization problem to the following single-

objective minimization problem.

min f({Vk}Kk=1) = αβ
|S̃|
|C|

+ (1− α)τ

s.t.
K⋃
k=1

Vi ⊆ {1, . . . , n}

Vi ∩ Vj = φ, ∀i 6= j ∈ [1, K]

|
M⋃
k=1

Vi| ≤ c

∑
i∈Vk

d r|Fi|
1− r

e ≥ |Vk+1|,∀k ∈ [M − 1, K − 1]

(2.1)

We have two remarks here. First, α ∈ [0, 1] is a adjustable weight that reflects the

relative importance of coverage and delay, and β is a fixed scaling factor to unify two

different objective units. Second, the last constraint is due to the aforementioned

third design constraint.

The above optimization problem can be viewed as a variation of classical set

partition problem (SPP), which is NP-hard. In what follows, we introduce a heuristic

approximation solution by constructing a collection of disjointed subsets {Vk}Kk=0 from

the botnet set.

Heuristic Solution

Our intuition is to use all the budget c and fill the first M hops of the retweeting

trees with the bots having the lowest suspension cost in terms of the number of lost

non-bot followers. We then recursively place the bots with the highest number of

17

non-bot followers from level M + 1 to the last level, in order to reduce the average

latency as well as cost.

To begin with, our approximation is built on the solutions to the traditional

maximum coverage problem (or MaxCover) and the minimum coverage problem

(MinCover), which is to select k sets from a collection of subsets of a ground set so

that the their union is maximized (34) or minimized, respectively. MaxCover and

MinCover problems are both NP-hard and have greedy approximation algorithms

by iteratively selecting the maximum or minimum subset after extracting the selected

elements, respectively.

Our solution consists of the following two steps. First, given the budget c for S

and that all the followers in S̃ will be lost because of the suspension, we minimize

the objective |S̃| by using MinCover to choose c bots as S̃ with the minimum total

number of non-bot followers. In doing so, we can determine the union of the bot set

for the first M level. The bot subset in each level will be determined later. Here

we just assume that S̃ has been divided into the M groups, each corresponding to

the bots in one of the first M levels. Second, we construct {Vk}Kk=M+1 to greedily

increase the coverage C and at the same time lower the average delay T . Specifically,

assuming that we have known VM , to determine VM+1, we first set the cardinality

of VM+1 be equal to
∑

i∈Vkd
r|Fi|
1−r e according to the last constraint in (2.1) and then

use MaxCover to choose a subset of |VM+1| bots from the remaining bot set with

the maximum number of non-bot followers. We repeat this greedy selection for every

level k = M + 2, . . . , K.

The remaining problem is how to partition S̃ into M subsets, each corresponding

to one of the first M levels. A heuristic observation here is that we need to maximize

|VM |, as the more non-bot followers of the social bots in the Mth level, the more social

bots in level M+1 and subsequent levels, and also the lower average delay according to

18

the last constraint in (2.1). Given the budget |S̃| = c, we obtain |VM |max = c−M +1

when the retweeting forest has a single tree whose first M − 1 levels form a straight

line, as shown in Fig. 2.1(b). The bots in the Mth level is then determined by using

MaxCover to choose the c − M + 1 bots from S̃ with the maximum number of

non-bot followers.

To determine the level for each of the remaining M−1 bots, we sort the remaining

M − 1 bots in S̃ in the descending order according to the number of their non-bot

followers and assign them to the corresponding level, e.g., the bot with the highest

number of non-bot followers will be assigned to the first level. Note that it is possible

that after we maximizing the number of bots at the Mth level, the remaining bots

are less than the allowed on the Mth level, so the (M + 1)-th is not full. To further

reduce the average delay in such cases, we move the exceeding bots in the Mth level

to the first level.

After determining {Vi}Ki=1 from the social-bot set {1, . . . , n}, we can then build

the final retweeting forest (tree). Specifically, the number of retweeting trees is equal

to the cardinality of V1, which is one if the (M + 1)-th level is full or greater than

one otherwise. We then randomly choose one social bot from V1 to be the root of

the retweeting tree with more than one level, which is followed by the bots from the

second to Mth level determined by V2 to VM , respectively. Finally, we build the level

from k = M + 1 to K by selecting certain number of social bots from Vk according

the last constraint in Eq. (2.1).

2.3.3 Trace-driven Evaluation

We conduct trace-driven simulations to compare the performance of spam distri-

bution using the independent and botnet methods, as well as evaluating the tradeoffs

among the multiple goals in the botnet method.

19

The evaluation for independent bots is straightforward. In particular, given the

bot set V with |V| = n, we place all the bots in the first level which will be suspended

completely. We then have C = S̃ = n, and τ = 0. The single objective in Problem

(2.1) is thus f = α.

To evaluate the botnet method, we set up the simulations according to existing

measurement data and heuristics. We set K = 10, and t1 = 0, ti = 0.5i hour for

i = 2, . . . K according to (78). To build {Fi}ni=1, we generate |Fi| according to the

Gaussian distribution with µ = 32 as the average number of followers in the dataset

of (78). We also set the variance to σ2 = 5, generate a legitimate follower set F with

|F| = 6000, 5 and randomly choose |Fi| followers from the set F for each bot i. In

addition, according to (151), the average path length of the spammer community is

2.60, so we set M = 3 to suspend the bots in the first three hops of F . Finally, we

set β to one and the retweeting ratio r = 0.2. Due to space constraints, we focus on

on the impact of α, c, and n and do not report the impact of |F|, σ2, r, M, or β in

this chapter.

Fig. 2.2 compares the independent and botnet methods using the objective func-

tion f with different weights α. As stated before, f is simply equal to α for the

independent case because τ = 0 and S̃ = C. For the botnet method, the objective

f is the weighted sum of |S̃||C| and the delay τ . When α is small, τ has higher impact

on f than |S̃|
|C| , while when α is large, |S̃||C| will dominate f . Specifically, we can see

from Fig. 2.2a that when α = 0.4, the independent method outperforms the botnet

method with smaller f . However, as shown in Fig. 2.2b, when α increases to 0.65, the

botnet method can achieve lower f than the independent method does. This trend

is more obvious for the same reason in Fig. 2.2c where α = 0.9.

5For the Gaussian distribution with µ = 32 and σ2 = 5, the probability for generating a negative
|Fi| is negligible.

20

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

|S|

f

n=100, botnet
n=300, botnet
n=500, botnet
n=*, independent

(a) α = 0.4

0 20 40 60 80 100

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

|S|

f

n=100, botnet
n=300, botnet
n=500, botnet
n=*, independent

(b) α = 0.65

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S|

f

n=100, botnet
n=300, botnet
n=500, botnet
n=*, independent

(c) α = 0.9

Figure 2.2: Performance Comparison of Independent and Botnet Methods in Spam

Distribution at Different αs in Terms of the Single Objective f .

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S

C
os

t

n=100, botnet
n=300, botnet
n=500, botnet
n=*, independent

(a) #lost legitimate followers

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

S

D
el

ay

n=100, botnet
n=300, botnet
n=500, botnet
n=*, independent

(b) Average delay τ (hours)

Figure 2.3: Performance Comparison of Independent and Botnet Methods in Spam

distribution in Terms of Separate Objective.

21

Figs. 2.3 compare the two methods in terms of separate objectives including the

number of lost legitimate followers and the average delay under different budget

|S| = c. We can see that both methods have the same coverage |C|, which is equal to

|F|, as well as the maximum value of C. In addition, we can see from Fig. 2.3b that

the delay of the independent method is zero, while that of botnet method could be

on the order of hours. Finally, Fig. 2.3a shows that the botnet method has significant

advantage than the independent method in terms of |S̃|, the number of lost legitimate

followers, as |S̃| is always equal to |F| for the independent scheme.

Finally, the botnet size n also has some impact on separate objectives in the

botnet case. Fig. 2.3a shows that |S̃||C| decreases as n increases. The reason is that the

larger n, the more bots with less non-bot followers will be assigned to the first M

levels, resulting in smaller |S̃| and thus larger |S̃||C| . In addition, Fig. 2.3b shows that

the larger n, the higher the average delay τ , which is also expected.

In summary, from the view point of the botmaster, these evaluations show that

the botnet scheme is more flexible than the independent method when considering

multiple objectives of the spam distribution at the same time.

2.4 Social Botnet for Digital-influence Manipulation

In this section, we first briefly introduce digital influence and then experimentally

show the efficacy of using the social botnet to manipulate digital influence.

2.4.1 Rise of Digital Influence

Digital influence is one of the hottest trends in social media and is defined as “the

ability to cause effect, change behavior, and drive measurable outcomes online” in

(122). The huge commercial potential of digital influence is in line with the increas-

ingly recognized importance of word-of-mouth marketing on social networks. There

22

are also growing business cases in which various companies successfully promoted

their services/products by reaching out to most influential social-network users in

their respective context (122).

The future of digital influence also relies on effective tools to measure it. As re-

ported in (122), there are over 20 popular digital-influence software vendors such as

Klout (1) , Kred (2), Retweet Rank (3), PeerIndex (8), TwitterGrade (10) and Twit-

alyzer (9). Every vendor has its proprietary method to compute an influence score

for a given user based on his activities within his affiliated social network such as

Twitter, Facebook, Google+, and LinkedIn, and higher scores represent greater influ-

ence. As shown in Table 2.1, Klout, Kred, and PeerIndex use normalized scores with

different average values and scales, while RetweetRank, TweetGrader, and Twitalyzer

represent digital-influence scores using percentile.

The typical business model of digital-influence vendors is based around connect-

ing businesses with individuals of high influence. Companies have paid to contact

individuals with high influence scores in hopes that free merchandise and other perks

will influence them to spread positive publicity for them. For example, in 2011 Chevy

offered 139 3-day test drives of its 2012 Sonic model to selected participants with the

Klout score of at least 35 (144). As another example, it has been reported that some

recruiters have used the digital-influence scores to select qualified candidates (66).

In addition, customer service providers like Genesys prioritize customer complaints

according to their digital-influence scores to avoid the amplification of complaints by

influential users in OSNs (75). Klout announced a growth of 2,000 new partners over

a one year period in May 2012.

23

D
ig

it
a
l-

in
fl

u
en

ce
sc

o
re

V
en

d
or

S
ta

rt
#

u
se

rs
(M

)
U

p
d

a
te

S
ca

le
A

ve
ra

g
e

9
0
-p

er
ce

n
ti

le
T

a
rg

et
O

S
N

s

K
lo

u
t

20
08

62
0+

d
a
il

y
0
-1

0
0

2
0

5
0

T
w

it
te

r,
F

a
ce

b
o
o
k
,

L
in

ke
d

In
,

G
o
o
g
le

+
,

In
st

a
g
ra

m
,

F
o
u

rs
q
u

a
re

K
re

d
20

11
-

h
o
u
rl

y
0
-1

0
0
0

5
0
0

6
5
6

T
w

it
te

r,
L

in
ke

d
In

,
F

a
ce

b
o
o
k
,
Q

u
o
ra

P
ee

rI
n

d
ex

20
09

50
+

d
a
il

y
0
-1

0
0

1
9

4
2

T
w

it
te

r,
F

a
ce

b
o
o
k

R
et

w
ee

t
R

an
k

20
08

3.
5

h
o
u

rl
y

0
-1

0
0

5
0

9
0

T
w

it
te

r

T
w

ee
t

G
ra

d
er

20
10

10
+

d
a
il

y
0
-1

0
0

5
0

9
0

T
w

it
te

r

T
w

it
al

y
ze

r
20

09
1

d
a
il

y
0
-1

0
0

5
0

9
0

T
w

it
te

r

T
ab

le
2.

1:
S
ix

P
op

u
la

r
D

ig
it

al
-i

n
fl
u
en

ce
S
of

tw
ar

e
V

en
d
or

s.
T

h
e

D
at

a
W

as
C

ol
le

ct
ed

at
O

ct
ob

er
,

20
14

.

24

2.4.2 Botnet-based Digital-influence Manipulation

Given the great potential of digital influence, whether it can be maliciously ma-

nipulated is an important research issue. For example, assume that malicious users

could collude to significantly increase their influence scores. A company using the

digital-influence service may consider them most influential and choose them as the

targets of important marketing campaigns by mistake, thus having potentially huge

financial loss, while malicious users can potentially benefit, e.g., by getting free sam-

ple products. In addition, malicious users may attract more legitimate followers who

tend to follow most influential users and thus become more influential.

As the first work of its kind, we now explore the feasibility of using the botnet to

manipulate digital influence. Our studies involve three most popular digital-influence

vendors for Twitter users: Klout, Kred, and Retweet Rank. For clarity, we summarize

their key features as follows.

• Klout: The Klout score of a Twitter user is on the scale of 1 to 100 and updated

daily based on how frequently he or she is retweeted and mentioned in the last

90 days. The average Klout score is close to 20, and the score of the 90th

percentile is over 50. 6

• Kred: The Kred score of a Twitter user is on the scale of 1 to 1,000 and

updated in real time according to how frequently he or she is retweeted, replied,

mentioned, and followed on Twitter in the last 1,000 days. 7

• Retweet Rank: It ranks the users based on how many times they each have been

retweeted recently and how many followers/friends they each have. 8 Retweet

6http://therealtimereport.com/2012/04/11/how-good-is-your-klout-score/

7http://kred.com/rules

8http://www.retweetrank.com/view/about

25

ranks are updated on an hourly basis, and a retweet rank of x means that the

corresponding user is the xth most influential on Twitter. A retweet rank score

can also be translated into a percentile number ranging from 1 to 100, indicating

how the user score comparing with other Twitter users.

Given a social botnet of n bots, we want to investigate whether it is feasible to

generate an arbitrary influence score di for every bot i ∈ [1, n] under each of the

above three tools. Since every bot is usually indistinguishable from a legitimate

user, our investigation can also shed light on the feasibility of using the botnet to

manipulate the influence score of an arbitrary Twitter user. Since every digital-

influence vendor (including the above three) usually keeps confidential its detailed

algorithm for computing influence scores, our studies are purely based on real Twitter

experiments. According to (122), we conjecture that the following three factors play

the important role in determining a user’s digital-influence score.

• Actions. Both the number and the type of actions have large impacts on a user’s

digital-influence score. Intuitively, the more actions the user can attract, the

higher his digital-influence score. Moreover, different types of actions may have

different impacts. For example, retweeting or replying should be more indicative

than following because the latter has been shown to be more vulnerable to fake

(151).

• Audiences. Given a target user u, we define all the users who have retweeted or

replied u’s tweets, or mentioned or followed u as u’s audiences. We conjecture

that the larger the audience size, the higher the digital-influence scores. The

intuition is that the target user is more influential if each of his 100 tweets is

retweeted by a different user than all 100 tweets are retweeted by the same one

26

user. We also conjecture that the higher the digital-influence scores his audience

have, the higher the target user’s digital-influence score.

• Popularity of tweets. The digital-influence score of a target user is determined

by the popularity of his tweets. We want to explore how the distribution of

tweets popularity determine the target user’s overall influence.

Based on these factors, we then present how to orchestrate the social botnets to

manipulate the digital-influence scores.

Impact of Different Actions

Since almost all digital-influence tools measure a Twitter users digital influence as

his ability to drive others to actions, our first experiment aims to evaluate the social

botnet’s impact with following, retweeting, and mentioning. We do not consider

replying, as replying is treated by Twitter as a special type of mentioning and is thus

expected to have the same effect as mentioning actions.

The first set of experiments involves n = 1, 000 social bots, each of which has no

interaction with any other Twitter account and hence is not scored by Klout, Kred,

or Retweet Rank. Note that Klout assigns an influence score of 10 to new users, while

Kred and Retweet Rank both assign a zero score to new users. We randomly choose

three disjoint groups, each containing 10 social bots and performing a unique action.

For every social bot in the following group, we add 10 randomly chosen social bots as

followers each day of the first 10 days and then 100 followers each day of the next 10

days. Likewise, every social bot in the retweeting (or mentioning) group is retweeted

(or mentioned) by randomly chosen social bots 10, 100 and 1000 times each day in the

first, second, and the last 10 days, respectively. Since different vendors have different

schedules for score updating, we report the social bots’ influence scores observed at

27

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

The number of followers

S
co

re
s

retweetrank
Kred
Klout

(a) Impact of Following

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

The number of retweetings

S
co

re
s

retweetrank
Kred
Klout

(b) Impact of Retweeting

Figure 2.4: Manipulating Digital Influence by Following and Retweeting.

every midnight. In addition, since the three vendors have different score scales, we

normalize different influence scores with respect to the corresponding maximum scores

to facilitate direct comparison. In particular, we show x/100 and y/1000 for a Klout

score x and a Kred score y, respectively, and report the percentile score for Tweet

Rank.

Figs. 2.4a∼2.4b show the impact of following and retweeting 9 actions on Klout,

Kred, and Retweet Rank influence scores, where every data point is the average

across the same group. We can see from Fig. 2.4a that the Klout influence score is

not affected by the number of followers, while both Kred and Retweet Rank influence

scores increase as the number of followers increases. This indicates that a social

botnet can easily boost the Kred and Retweet Rank influence scores of its members

by purposely following each other. Moreover, we can see from Fig. 2.4b that all three

types of influence scores increase as the number that a user is retweeted increases.

9Mentioning action has similar result with retweeting (161). We omitted here due to space
constraints.

28

On the one hand, this makes much sense, as the higher the frequency in which a user

is retweeted, the higher influence of that user has in its local neighborhood. On the

other hand, this also renders the influence score measurement system vulnerable to

social botnets, as colluding social bots can fake arbitrarily high retweeting frequency

for any target user.

We can also see from Figs. 2.4a and 2.4b that none of our experiments has been

able to escalate a user’s influence score to an extremely high value, and we conjecture

that there are two reasons for such difficulty. First, the audience size is limited,

as we only have 1,000 social bots for experiment. We will show in the next set of

experiments that the audience size has a large impact on the digital-influence scores.

Second, it is likely that all the vendors have set up rules such that it is extremely

difficult to achieve almost full digital-influence scores (1; 2; 3). Nevertheless, at the

end of the experiments, Table 2.1 shows that all the digital-influence scores being

manipulated have exceeded the 90-th percentile.

Impact of Different Audience Sizes

In this set of experiments, we measure the impact of different audience sizes on

digital-influence scores. Recall that we define a user u’s audiences as the set of users

who have retweeted, mentioned, or followed u. We then try to answer the following

questions. First, for two users with different audience sizes but the same numbers of

actions, will the one with more audiences have a higher digital-influence score than

the other? Second, it there an upper limit for a single social bot to manipulate the

influence score of a target user? There could be two alternative answers to each of the

two questions. On the one hand, if the digital-influence scores are related to both the

number of incoming actions and the audience size, a single user should have limited

power to manipulate the target user’s influence score, and we thus need a large social

29

Number of retweetings
0 100 200 300 400 500 600 700

S
co

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 social bots
10 social bots
1 social bot

(a) Klout Scores

Number of retweetings
0 100 200 300 400 500 600 700

S
co

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 bots, Retweet Rank
10 bots, Retweet Rank
1 bot, Retweet Rank
100 bots, Kred
10 bots, Kred
1 bot, Kred

(b) Kred and Retweet Rank Scores

Figure 2.5: Manipulation by Social Botnets with Different Audience Sizes.

botnet to manipulate the target user’s influence score to some extremely high value.

On the other hand, if the digital-influence scores may not relate to the audience size,

then 100 incoming actions from 100 different social bots would yield the same result

as 100 incoming actions from a single social bot.

To verify which of the two conjectures is correct, we build three social botnets with

1, 10, and 100 bots, respectively. For each social botnet, we set 10 target users and

retweet 100 tweets of each target each day for seven days. In other words, each bot

in the three social botnets retweets 100, 10, and 1 times per day, respectively. Fig 2.5

shows the digital-influence scores of the 30 targets. As we can see, the audience size

has no impact on both Kred and Retweet Rank scores but has large impact on the

Klout scores. Specifically, the larger the audience size, the higher the Klout scores,

and vice versa. Moreover, the Klout scores experience a sharp increase in the first day

and then increase much slower in the following days. As a result, a single social bot

can manipulate a target user’s Kred and Retweet Rank scores with a large number

30

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of retweetings

S
co

re
s

100 tweets
Single tweet

(a) Klout Scores

Number of retweetings
0 100 200 300 400 500 600 700

S
co

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 tweet, Retweet Rank
100 tweets, Retweet Rank
1 tweet, Kred
100 tweets, Kred

(b) Kred and Retweet Rank Scores

Figure 2.6: Manipulation by Acting on Different Number of Tweets.

of actions, while both large audience sizes and significant actions are necessary to

obtain high Klout scores. We also conclude that Klout is more resilient to the social

botnet than Kred and Retweet Rank.

Impact of Tweet Popularity

From the first set of experiments, we can see that the retweeting is the most effective

way to manipulate a target user’s digital-influence score. Given the same audience,

the attacker can either retweet a single tweet of the target user to make this tweet very

popular or retweet many of target user tweets so that each tweet will be less popular.

We would like to answer which strategy will yield higher digital-influence score, i.e.,

whether tweet popularity has any impact on the digital-influence scores? To answer

this question, we build a social botnet with 100 bots. We then select two groups with

each containing 10 target users for manipulation. For the first group, each target first

publishes a tweet, which is then retweeted by all the 100 social bots; while for the

second group, each target user publishes 100 tweets, each of which is retweeted by

31

one social bot. We repeat this process daily and measure the digital-influence scores

of the 20 targets. As we can see from Fig 2.6, the tweet popularity has no impact

on both Klout and Kred scores and limited impact on the Retweet Rank score. In

particular, adopting the second strategy will lead to a slightly higher Retweet Rank

score of the target user.

Speed of Digital-influence Manipulation

Our last experiment targets evaluating how fast influence scores can be manipulated.

Same with the last set of experiments, we choose the retweeting as the action due to

its effectiveness. For this purpose, we randomly select another three different groups

of social bots, each containing 10 target bots. Every bot in the first, second, and

third groups is retweeted 10, 100, and 1,000 times every day by random bots until

the scores reach the 90th percentile, which corresponds to 50, 656, and 90 in Klout,

Kred, and Retweet Rank, respectively.

Fig. 2.7 further shows the impact of retweeting frequency on the change of influence

scores, where every data point represents the average across the same bot group. In

particular, we can see that the number of days needed to increase the group average

influence score from the initial value to 80-th or 90-th percentile is approximately

inversely proportional to the retweeting frequency. In addition, we can see that for

all three vendors, it is possible by retweeting 1000 times per day to reach the 80-th

percentile and the 90-th percentile with only one and two days, respectively.

Remarks

We have two remarks to make. First, at the end of the experiments, no account was

suspended by Twitter, as none of the accounts had conducted illegitimate activities

such as spamming and aggressively following and unfollowing which could trigger sus-

32

10
1

10
2

10
3

10
0

10
1

10
2

The number of retweetings per day

T
he

 n
um

be
r

of
 d

ay
s

us
ed

Kred
Klout
retweetrank

(a) 80-th Percentile

10
1

10
2

10
3

10
0

10
1

10
2

The number of retweetings per day

T
he

 n
um

be
r

of
 d

ay
s

us
ed

Kred
Klout
retweetrank

(b) 90-th Percentile

Figure 2.7: Under Different Retweeting Speeds, the Number of Days Needed to Ma-

nipulate Digital Influence Scores from Nothing into 80-th and 90-th Percentiles.

pension by Twitter. In addition, both the spam distribution and the digital influence

manipulation attacks show that social botnet has significant advantage over isolated

bots. In particular, even though the attacker can disseminate spams to the same le-

gitimate recipients using isolated bots, those isolated bots will be quickly suspended

under Twitter’s current policy or its variation and thus incurs significant cost for the

attacker. Moreover, it is extremely difficult for the attacker to boost a single bot’s

digital influence score solely by letting the target bot tweet or retweet other legitimate

users’ tweets, as long as the digital influence is not entirely determined by outgoing

interactions, as it is difficult for bots to attract incoming interactions from legitimate

users.

2.5 Defenses

In this section, we propose two countermeasures for the two attacks above, re-

spectively.

33

2.5.1 Defense Against Botnet-based Spam Distribution

Recall that in social botnet-based spam distribution, the attacker exploits retweet-

ing trees to distribute spams (i.e., tweets with malicious URLs) such that only the

bots on the first M (e.g., M = 1 in Twitter currently) levels of retweeting trees will

be suspended.

To defend against this attack, we propose to track each user’s history of participat-

ing in spam distribution and suspend a user if his accumulated suspicious behaviors

exceed some threshold. Specifically, for each user v we maintain a spam score sv,

which is updated every time user v retweets a spam. Once sv exceeds a predefined

threshold, user v is labeled as a spammer and suspended.

We now discuss how sv is updated. Our intuition is that the closer the user to

the spam source, the more likely he is a member of the social botnet. The reason is

that social botnet usually prefers shorter retweeting path for fast spam dissemination,

while a spam tweet traversing a long retweeting path, i.e., sequentially retweeted by

many accounts, incurs large delay and gives more time for Twitter to detect them.

To reflect this idea, whenever a user retweets a spam, we update his spam score as

sv = sv + γd , (2.2)

where d is the number of retweeting hops between the spam source to v, and γ ≤ 1 is

the attenuation factor of distance. Note that d = 0 if user v is the source of a spam.

In this way, any user who has retweeted spams is punished by having his spam score

increased. Once a user’s spam score exceeds certain predetermined threshold, the user

is suspended. Note that Twitter currently suspends a user whenever he has published

one spam tweet. To mimic the current Twitter policy, we can set the threshold as

one.

34

Evaluation

Similar to Section 2.3.3, we built a Twitter subnet composed of 6000 legitimate users

and 400 social bots. Each social bot has |Fi| legitimate followers, where |Fi| is drawn

from Gaussian distribution with µ = 32 and δ2 = 5, and each social bot follows

all other social bots. We assume that the attacker builds the optimal retweeting tree

according to Section 2.3.2. We adopt similar parameters as in Section 2.3.3 by setting

M = 3, α = 0.2, c = 10, and K = 10.

To model the spam campaign, we conduct the experiment in multiple rounds. In

each round, we randomly select one social bot to publish a spam tweet and other

social bots that have not been suspended to retweet the spam tweet according to the

retweeting forest. We assume that the legitimate users retweet the spam occasionally

with probability β. At the end of each round, we update the spam scores for each

bot and legitimate user according to Eq. (2.2). If sv ≥ 1 for some user v, we remove

v from the simulated network. We then start the next round by randomly selecting a

bot as the new source and continue the spam distribution. To reduce the randomness,

we repeat each experiment 100 times and report the averages.

We evaluate the proposed defense in comparison with three other baseline defenses

as follows.

• Defense I. The original defense that suspends the users in the first M levels

from the spam source, which is considered by the attacker to launch the optimal

spam distribution as discussed in Section 3.2.

• Defense II. Any user who retweets δ spams is suspended, regardless of its

distance to the spam source, where δ is a system parameter.

• Defense III. Assume that user v has retweeted a spam tweet t within M hops

from the source and that t has been retweeted by nt users in total. The spam

35

score for v is updated as

sv = sv + 1/ log(1 + nt) .

Defense III extends Defense I and II by taking the popularity of individual spam

tweet into account. The intuition is that the more users retweet a spam tweet,

the more deceiving the spam tweet, and the less likely that any individual user

who retweets it is a bot. We also use the system parameter δ as the suspending

threshold for this defense scheme.

• Defense IV. The proposed defense.

We use four metrics to compare the proposed defense with the three baseline

defenses. To begin with, let Nbots and Nlegit be the numbers of social bots and

legitimate users, respectively. Also let Sbots and Slegit be the numbers of suspended

social bots and legitimate users, respectively. We define the following four metrics.

• True positive rate (TPR): the ratio of the suspended bots over the total bots,

which can be computed as Sbots/Nbots. This metric is also referred to as recall.

• False positive rate (FPR): the ratio of suspended legitimate users over all the

legitimate users, which can be computed as Slegit/Nlegit.

• Precision: the ratio of suspended bots over all suspended users, which can be

computed as Sbots/(Slegit + Sbots).

• Overall performance: TPR − P · FPR where P is the penalty parameter for

FPR.

We adopted overall performance here because FPR has much larger impact than TPR

from the service provider’s point of view, as suspending a legitimate user damages its

reputation and incurs much severer consequences than a social bot evading detection.

36

Round
0 2 4 6 8 10

T
ru

e
P

os
iti

ve
 R

at
e

0

0.2

0.4

0.6

0.8

1

.=0.9

.=0.8

.=0.7

.=0.6

.=0.5

(a) True Positive Rate

Round
0 2 4 6 8 10

F
al

se
 P

os
iti

ve
 R

at
e

#10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

.=0.9

.=0.8

.=0.7

.=0.6

.=0.5

(b) False Positive Rate

Figure 2.8: The True and False Positive Rates with Different γs.

Fig. 2.8 shows the true positive and false positive rates with different γs which are

the attenuation factors of distance. As we can see, the proposed defense could quickly

detect all the social bots when γ is large. Specifically, when γ = 0.9, all the social

bots can be detected and suspended in the second round. Moreover, as expected, the

ratio of true suspension at the same round will decrease as γ decreases. Finally, there

is an anticipated tradeoff between false and true positive rates for different γs. The

larger γ, the higher true positive rate but also the higher false positive rate, and vice

versa. In the following experiments, we set γ = 0.7 by default.

Fig. 2.9 compares the proposed defense with the three baselines under different

βs, i.e., the probability of a legitimate user retweeting a spam tweet. We can make

five observations here. First, Fig. 2.9a shows that β has no impact on the TPR,

but Fig. 2.9b shows that the larger β, the higher FPR for all four defenses, which is

consistent with the definition of β. Second, Fig. 2.9a shows that Defense II has the

highest TPR = 100% in every round. The reason is that when δ = 1.0 all the social

bots will be suspended after the first round. Defense IV has the second highest

37

0 2 4 6 8 10

Round

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e Defense II, -=0.01

Defense II, -=0.1
Defense IV, -=0.01
Defense IV, -=0.1
Defense I, -=0.01
Defense I, -=0.1
Defense III, -=0.01
Defense III, -=0.1

(a) True Positive Rate (Recall)

0 2 4 6 8 10
Round

10-5

100

F
al

se
 P

os
iti

ve
 R

at
e

Defense II, -=0.1
Defense II, -=0.01
Defense I, -=0.1
Defense I, -=0.01
Defense IV, -=0.1
Defense IV, -=0.01
Defense III, -=0.1
Defense III, -=0.01

(b) False Positive Rate

0 2 4 6 8 10

Round

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Defense IV, -=0.1
Defense III, -=0.1
Defense I, -=0.1
Defense II, -=0.1

(c) Precision

1 0 1 0 0 1 0 0 0 1 0 0 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ov
era

ll P
erf

orm
an

ce

P

 D e f e n s e I D e f e n s e I I
 D e f e n s e I I I D e f e n s e I V

(d) Overall Performance

Figure 2.9: Performance Comparison.

38

TPR and needs about five rounds to approach 100%. Defense I and III both have

lower TPR because they only examine the users in the first M = 3 levels instead of

the whole network. Third, Fig. 2.9b shows that the FPR of the proposed defense is

lower than those of Defenses I and II but slightly higher than that of Defense III.

This is because Defense I and II have much less restrict conditions for suspending

users than Defense IV. Fourth, Fig. 2.9c shows that Defenses IV and III have the

precision close to 100% after the first and sixth rounds, respectively, as they both

incur low false positives and sufficiently high true positives. Defense III has 0%

of precision before the sixth round because it did not suspend any social bot in the

first five rounds. In contrast, both Defense I and II have relatively low precision

because they misclassified many normal users as bots. Finally, Fig. 2.9d shows that

the proposed defense has better overall performance than all three baselines with

penalty factor P varying from 10 to 10000. The reason is that Defense IV has much

lower FPR than Defense I and II and higher TPR than Defense III. In summary,

the proposed defense outperforms all three baselines as it can effectively detect social

bots while being friendly to legitimate users.

2.5.2 Defense Against Digital-influence Manipulation

As discussed in Section 2.4, all the digital-influence software vendors consider

the number of actions and/or the audience size as the major factors in evaluating a

user’s digital-influence, which makes them vulnerable to the social botnet. To address

this vulnerability, we propose a new digital-influence measurement scheme inspired

by (63). The key idea is to find sufficient credible users and only use the actions

from them to compute digital-influence scores for other users. Specifically, given a

social network with user set V and all the actions (including following, retweeting,

mentioning, and replying) among the users, we first find a subset V ∗ ⊆ V of users

39

that are credible.

We then define the digital-influence score of each user v based on the actions from

the credible user set V ∗. Specifically, assume that user v has received aj actions from

each user j ∈ V ∗. The digital influence score for v is then given by as

score(v) =
∑
j∈V ∗

f(aj) (2.3)

where

f(aj) =

aj if aj = 0, 1,

1 + λ · exp(− 1
aj

) else,

(2.4)

and λ is a system parameter that represents the maximum impact of actions from a

single user on one’s score. In practice, we can set λ = 1 such that a single user could

contribute the score by at most 2. It is easy to see that the above score definition takes

both the number of actions and the audience size into account, which captures the key

ideas behind Klout, Kred, Retweet Rank scores as well our findings in Section 2.4.2.

The challenge is then how to find the credible user set V ∗. To tackle this challenge,

we observe that although the actions among the social bots and from the social bots

to the legitimate users are unpredictable, legitimate users usually carefully choose

whom to interact, so there are much fewer actions from legitimate users to social

bots. Based on this observation, we first find a small number of trusted users, which

could either be the verified users maintained by Twitter or manually verified.

We then assign each trusted user some initial credits and distribute the credits

along the action edges in multiple rounds. In each round, every user with credits keeps

one unit of credit for himself and distributes the remaining credits to his neighbors

along the action edges. The credit distribution process terminates when no user has

extra credits to distribute. Since legitimate users are more likely to receive credits

than social bots during the process, every user who has received at least one unit of

40

credit is considered credible.

More specifically, we first construct an action graph for credit distribution. Given

the user set V and all their actions during the period T , we build a weighted and

directed action graph G = (V,E), where each user corresponds to a vertex in V , and

there is an arc eij from user i to user j an edge with the weight wij if user i has

retweeted, replied, or mentioned user j for wij times during the period T . We do not

consider the following action because it has been reported that normal users could

carelessly follow back whoever has followed them (151; 59).

We then design a credit distribution scheme on G = (V,E), which consists of seeds

selection, initial credit assignment, iterative credit distribution, and termination. To

initiate credit distribution, we first select a seed set S from V which are trusted users

such as the verified users maintained by Twitter or manually verified, and partition

the whole graph into a tree of multiple levels, in which the seed users occupy the

first level, their one-hop outgoing neighbors occupy the second level, and so on. A

node is assigned to the highest level if its incoming neighbors appear at different

levels. We then assign each seed s with the amount of credits proportional to the

sum of weights of its outgoing edges, i.e., wo(s)Ctotal/
∑

s∈S wo(s), where Ctotal is the

total amount of initial credits, and wo(s) is the sum of weights of the seed s’s all

outgoing edges. We then distribute the credit from the seed users along the tree level

by level. Specifically, if a user v at the nth level has c(v) units of credit, he holds one

unit of credit for himself and distributes the remaining c(v)− 1 units of credit to its

outgoing neighbors at the (n + 1)th level, where the amount of credits received by

neighbor v′ is proportional to the edge weight evv′ . In other words, neighbor v′ receives

wvv′(c(v)−1)/
∑

u∈O(v)wvu
units of credits. The credits could only be distributed from

one level to the immediate higher level and are rounded to the closest integer. The

credit distribution terminates if none of the nodes has any extra credit to distribute

41

to its outgoing neighbors.

The choice of Ctotal represents the tradeoff between true and false positive rates.

On the one hand, with a larger Ctotal, we could discover more credible users and

compute digital-influence scores for more legitimate users at the cost of more social

bots obtaining credits and being labelled as credible users. On the other hand, a

smaller Ctotal will result in fewer credible users being discovered as well as fewer

social bots being labelled as credible users. As in (135), we set Ctotal = O(
√
|V |) to

strike a good balance between true and false positive rates. The idea is that at the

end of credit distribution, approximately Ctotal users will each hold one unit of credit

and be labelled as credible. If we set Ctotal = O(
√
|V |) and the interaction graph is

well-connected, with high probability there exists at least one arc from some credible

users to each of the |V | users while the credit distribution will terminate in O(log |V |)

levels with decreasing credits per arc such that each attack arc from legitimate users

to social bots is expected to receive only O(1) of credits (135).

Evaluation

We follow the approach taken by (155; 29; 160) to evaluate the performance of the

digital-influence measurement scheme. Specifically, we first use the Twitter geo-search

API (13) to collect the users in a specific metropolitan area and then crawl the latest

600 tweets of each user to extract the interactions such as retweets, replies, and

mentions. We create four datasets from the four representative area in U.S. as shown

in Table 2.2.

For each dataset, we build one ground-truth network composed of both legitimate

users and social botnets. Specifically, we first build one legitimate action subgraph

from the interactions among the legitimate users in the that area, where each vertex

corresponds with one legitimate user, and an edge from one user to another corre-

42

Table 2.2: Four Action Networks for Evaluation, Where ’F’ and ’I’ Refer to Following

and Interaction, Respectively.

Area #Users #F-edges #I-edges (#Weights)

Tucson (TS) 28,161 830,926 162,333 (669,006)

Philadelphia (PI) 144,033 5,462,013 1,434,375 (4,972,689)

Chicago (CI) 318,632 14,737,526 3,631,469 (12,010,986)

Los Angeles (LA) 300,148 18,333,774 4,391,542 (14,048,838)

sponds to interaction from the former to the latter. We further create a completely-

connected social botnet with the same number of social bots as the legitimate users.

We then construct a ground-truth network by connecting the legitimate action sub-

graph and the social botnet with a number of attack edges from legitimate action

subgraph to the social botnet. Here we assume that there is no edge from the social

botnet to the legitimate action subgraph, which is clearly in favor of the social bots,

as the social bots would only lose credits through such edges.

The attack edges are constructed in the following way. Assuming that there are

total g edges in the legitimate action subgraph, we create ωg attack edges with unit

weight, where ω is the ratio representing attack strength. As in (160), we vary the ω

from 10−5 to 10−4 of the total edges in each legitimate subgraph. We use ground-truth

networks to conduct the credit distribution and find the credible user subset V ∗.

As in (29), we consider two types of attacks. In the random attack, we randomly

choose ωg legitimate users and connect each of them to one randomly chosen social

bot with an attack edge. In this case, the attacker is unaware of which users are seed.

In the seed-targeting attack, we create ωg attack edges between the social botnet and

ωg users randomly chosen from 100ωg legitimate users with shortest distances to the

seeds. This type of attack mimics the case that the attacker tries to acquire positions

43

close to the seed users to gain more credits during credit distribution. For both

attacks, we assume that the social botnet can arbitrarily distribute received credits

internally. For example, suppose that the social botnet receives Cbots credits after

the credit distribution, they distribute these credits to Cbots social bots each with one

credit, such that all Cbots bots become credible users.

We evaluate the performance of the proposed digital-influence measurement scheme

using the following metrics.

• Top-K-percent accuracy. Let U1 be the list of legitimate users ranked by their

total numbers of incoming interactions. Also let U2 be the list of legitimate

users ranked by their digital influence scores obtained by applying the proposed

digital-influence measurement scheme to the ground-truth network. Further let

U1(K) and U2(K) be the top-K-percent users in U1 and U2, respectively. The

top-K-percent accuracy is defined as |U1(K)∩U2(K)|
|U1(K)| . The more accurate of the

proposed scheme, the higher the ratio of common users in these two top-K lists,

and vice versa.

• Social-bot influence ranking. Let bot b be the bot with the highest digital

influence score output by the proposed digital-influence measurement scheme.

Social-bot influence ranking is defined as b’s rank in percentile in U1. The lower

the bot’s percentile, the higher resilience to the social botnet, and vice versa.

Fig. 2.10 and Fig. 2.11 show the top-10-percent accuracy and the social-bot influ-

ence ranking under two types of attacks with attack strength varying from 10−5 to

10−4. In general, we see similar trend in all scenarios for all the four datasets, mean-

ing that the results are consistent across different datasets. Moreover, in all cases,

the accuracy is always larger than 70%, meaning that the proposed digital-influence

measurement scheme can discover 70% of top-10% influential users under the social

44

Attack strength #10-5
2 4 6 8 10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100
PI
CI
TS
LA

(a) Top-10-percent Accuracy

Attack strength #10-5
2 4 6 8 10

S
oc

ia
l-b

ot
 R

an
ki

ng
 (

P
er

ce
nt

ile
)

0

20

40

60

80

100

Kred
TS
PI
CI
LA

(b) Social-bot Influence Ranking

Figure 2.10: The Performance under the Random Attack.

Attack strength #10-5
2 4 6 8 10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100
PI
CI
TS
LA

(a) Top-10-percent Accuracy

Attack strength #10-5
2 4 6 8 10

S
oc

ia
l-b

ot
 R

an
ki

ng
 (

P
er

ce
nt

ile
)

0

20

40

60

80

100

Kred
CI
PI
TS
LA

(b) Social-bot Influence Ranking

Figure 2.11: The Performance under the Seed-targeting Attack.

45

botnet attack. We can also see in Fig. 2.10a and Fig. 2.11a that the the accuracy is

insensitive to the change of attack strength. The reason is that the top influential

users attract actions from many legitimate users, who have higher chances to acquire

the credits and become credible users in the presence of attack edges. In contrast, as

shown in in Fig. 2.10b and Fig. 2.11b, the social-bot influence ranking increases as

the attack strength increases under both types of attacks. This is expected, because

as attack strength increases, more social bots will acquire credits to become credible

users and affect target bots’ influence scores. We can also see from Figs. 2.10b and

2.11b that the social-bot influence ranking is below top 40% and top 20% under the

random attack and seed-targeting attack, respectively.

Fig. 2.10b and Fig. 2.11b also compare the proposed defense with the existing

influence measurement vendor Kred. 10 As we can see, the bot’s influence score

could always rank at the first position because we assumed that there are infinite

actions between any two bots in the botnet. In contrast, the proposed scheme could

effectively defend against the manipulation from social botnets.

Fig. 2.12 shows the impact of K on the top-K-percent accuracy, which generally

increases until to 100% when K increases from 10 to 100. Overall, the accuracy is

higher than 70% in the figures, and K = 10 in previous experiments is representative

among the worst cases.

In summary, experiment results show that the proposed digital-influence measure-

ment scheme is resilient to the social botnet attack.

2.6 Related Work

In this section, we discuss the prior work tightly related to our work in this chapter.

10we choose Kred because only Kred has publish its influence score model on http://kred.com/
rules.

46

TopK (%)
0 20 40 60 80 100

A
cc

ur
ac

y
(%

)

70

75

80

85

90

95

100

LA
CI
PI
TS

(a) Random Attack

TopK (%)
0 20 40 60 80 100

A
cc

ur
ac

y
(%

)

70

75

80

85

90

95

100

LA
CI
PI
TS

(b) Seed-targeting Attack

Figure 2.12: The Impact of K on the Top-K-percent Accuracy.

The social botnet has received attention only recently. Ferrara et al. summarized

the research on social bots in (52). Boshmaf et al. showed that a social botnet is very

effective in connecting to many random or targeted Facebook users (i.e., large-scale

infiltration) (26). The work in (152; 53) shows how the spammers become smarter to

embed themselves into Twitter. Messias et al. used two sicalbots to manipulate the

Klout and Twitalyzer scores by following and tweeting actions(101). Our preliminary

work (161) was independently done from (101) and shows how social bots could

cooperate to manipulate the influence scores of Klout, Kred, and Retweet Rank.

There is a rich literature on spam detection in OSNs. The first line of work

such as (157; 123; 131; 56; 125; 82; 150; 20; 141; 83) considers independent spam

bots and comes up with different methods to characterize and detect them. For

example, Song et al. found that the distance between the sender and receiver of

a message is larger for spammers than legitimate users (123). Zhang et al. found

that automated spammers usually show some temporal pattern which can be used

for detection (157). Another features and the corresponding machine learning effort

47

can be found in (131; 56; 125; 82; 150; 20; 141; 83). Some of these results such as

(123) have been incorporated into our design constraints in § 2.3.2.

The second line of work such as (57; 62; 132; 35; 151; 59) focuses on character-

izing and detecting organized spam campaigns launched by an army of spam bots.

We discover a new method for effective spam campaign in this chapter, and whether

the results in (57; 62; 132; 35; 151; 59) can be directly or adapted to detect our

method is certainly challenging and worthy of further investigation. Moreover, spam

bots are evolving towards more intelligence. Yang et al. found that instead of sep-

arate communities, spam bots embedded themselves into the network by building

small-world-like networks between them and also maintaining tight links with ex-

ternal legitimate users(151). Meanwhile, Ghosh et al. discovered the similarly rich

connections between spam bots and the legitimate users(59). Our work is consis-

tent with this trending and explore the new attacks by using the spam bots’ growing

intelligence.

There are effective solutions such as (29; 138; 139; 135; 154; 155) to detecting

Sybil accounts in distributed systems under the control of a single attacker. These

solutions commonly assume that the link between two accounts corresponds to a

real social relationship difficult to establish and impossible to forge. Moreover, all of

these system assume that the connection is undirected. In this chapter, we designed

the defense scheme for directed and weighted Twitter network by using the similar

observation that the amount of interactions from a legitimate user to a social bot

is usually far less than that in the reverse direction in § 2.5.2. We also found that

using the interaction network yields better defense performance than the following

networks. Although § 2.5.2 has illustrate an example by using the trustworthiness of

interactions to defend against the specific digital-influence manipulation attack, we

can use the same observation but different methods to identify the social botnets and

48

then eliminate them from the microblogging system.

Also related is the research on computing the digital influence score (30; 143; 16).

For example, Cha et al., compared three influence ranking lists in Twitter by counting

the number of retweets, mentions and followers and found that the influenced defined

by the number of followers is very different with the other two metrics (30). Bakshy

et al. (16) proposed to measure user influence based on his ability to post the tweets

that generates a cascade of retweets. This line of research does not consider the

impact of the social botnet. This work is also different from our previous work (160)

which focuses on finding the sybil-resilient top-K influential users in Twitter.

2.7 Summary

In this chapter, we firmly validated the efficacy and merits of botnet-based spam

distribution and digital-influence manipulation on Twitter through thorough exper-

iments and trace-driven simulations. We also propose the countermeasures corre-

sponding to these two attacks and demonstrate their effectiveness.

49

Chapter 3

TRUETOP: A SYBIL-RESILIENT SYSTEM FOR USER INFLUENCE

MEASUREMENT ON TWITTER

3.1 Introduction

Influential Twitter users have great potential for accelerating information dissem-

ination and acquisition. For example, to launch a viral marketing campaign for a new

product via Twitter, a known strategy is for the marketer to seed the product with a

few selected influential users who can potentially influence a disproportionately large

number of others and also quickly trigger a cascade of influence. As another example,

in the event of a national crisis, the governmental authority can conduct a massive

information campaign by disseminating truthful information via influential users to

effectively achieve strategic goals and also counteract rumors. As the last example,

to have realtime situational awareness about a physical region of interest, military

agencies can recruit volunteers in the target region via influential Twitter users there

and then outsource the collection of in-situ information to the volunteers.

The strong promise of influential users leads to the growing attention on how to

measure the influence of a Twitter user (30; 78; 143; 16). There are also over 20 com-

mercial tools available for measuring twitterers’ online influence. Common to these

research proposals (30; 78; 143; 16) and commercial tools is to capture the qualita-

tive feature of online influence as “the ability to cause effect, change behavior, and

drive measurable outcomes online” (122) and to quantify a twitterer’s online influence

based on his/her interactions with others.

50

The rise of social bots (52) or sybils (45) in general on Twitter is jeopardizing

trustworthy influence measurement. In a sybil attack, the adversary coordinates

many fake accounts (also called bots or sybil users hereafter) to unfairly overpower

non-sybil users. Despite various efforts to detect sybil users on Twitter (20; 62; 125;

131; 56; 133), sybil users are still thriving on Twitter. For example, a recent study (4)

revealed that at least 10% of Twitter users are sybil users. Given the exclusive reliance

of existing influence measurement techniques on user interactions, the adversary could

coordinate his sybil users to create arbitrary interactions to inflate their influence

scores on Twitter. Since influence scores are relatively defined, the adversary could

also effectively deflate the influence scores of non-sybil Twitter users. According to

our recent study (161), an adversary controlling 1,000 sybil users can quickly generate

an influence score in the 95th percentile for any sybil user under popular influence

measurement tools such as Klout (1), Kred (2), and Retweet Rank (3). In a similar

study (101), Messias et al. used two social bots to successfully obtain high Klout

scores.

The lack of sybil-resilient influence measurement services on Twitter can be detri-

mental. Specifically, there is a growing market for influence measurement services

with more than 20 service providers available (122). If these service providers fail to

provide trustworthy measurement results due to sybil attacks, they will have extreme

difficulty getting customers and surviving, and their customers could not achieve

effective information dissemination or acquisition as expected.

The root cause for the vulnerability of existing influence measurement techniques

to sybil attacks lies in the incautious use of user interactions. Specifically, Twitter

permits four types of publicly visible user interactions, including follow, retweet, reply,

and mention. The interactions about any user can be further classified into incoming

interactions towards him and outgoing interactions from him. Since a sybil user can

51

freely follow, retweet, reply to, and mention other sybil or non-sybil users, extensive

outgoing interactions are fairly easy to create and thus unsuitable for sybil-resilient

influence measurement. In addition, since sybil users could easily get many legitimate

followers (59; 151; 126), the number of followers each user has should also be ruled out.

In contrast, we observe from real Twitter data that non-sybil users tend to be more

selective in retweeting, replying to, and mentioning other users. This observation is in

line with the real-life scenario: one may exchange business cards with many strangers

but will be more cautious in choosing whom to further interact with. This means that

incoming retweets, replies, and mentions are much more trustworthy information for

measuring user influence. Existing influence measurement techniques, however, use

all incoming and outgoing interactions in a non-discriminative way.

We propose TrueTop, a novel sybil-resilient influence measurement system based

on the incoming retweets, replies, and mentions each Twitter user has. TrueTop

provides on-demand influence measurement services to various customers such as

business companies and government agencies. Given a target set of Twitter users

(e.g., those in a geographic area of interest), TrueTop outputs a ranked list of top-K

influential users for a desirable integer K ≥ 1. TrueTop is designed to be sybil-resilient

and also accurate, which means that the TrueTop output contains bounded sybil users

and the true top-K non-sybil users with overwhelming probability, respectively.

The main design challenge for TrueTop is that sybil users can arbitrarily interact

among themselves, so it is not sybil-resilient to evaluate a user’s influence directly

based on his total incoming retweets, replies, and mentions. We propose the following

method to tackle this challenge. Given the target set of users, we first construct a

weighted directed interaction graph, in which every vertex corresponds to a unique

user in the target set. An edge from vertex a to vertex b exists if user a has ever

retweeted, replied to, or mentioned user b, and the edge weight is proportional to the

52

number of retweets, replies, and mentions from a to b. Imagine that the interaction

graph consists of a virtual non-sybil region with all non-sybil users and a virtual sybil

region with all sybil users. Given our previous observations, both the number of edges

and the total edge weights from the non-sybil region to the sybil region should be

much smaller than those in the reverse direction. Then we seed some carefully chosen

vertices (or users) in the non-sybil region with some credits and let every vertex in the

whole graph allocate its current credits to its direct successors proportionally to the

corresponding edge weights in every iteration. After sufficient iterations, the top-K

influential non-sybil users are very likely to stand out, as they can accumulate many

credits due to their abundant incoming retweets, replies, and mentions. In contrast,

the total credits flowing into the sybil region can be very limited, so even the sybil

users with many incoming interactions from sybil followers may end up with few

credits. We can thus achieve sybil-resilient influence measurement by counting the

final credits at every vertex.

This chapter makes the following contributions.

• We motivate and formulate the problem of sybil-resilient influence measure-

ments on Twitter.

• We propose TrueTop, a novel influence measurement system that can identify

the top-K influential users in a target set of Twitter users with high accuracy

in the presence of sybil attacks by exploiting the selectivity of non-sybil users

in interacting with other users.

• We confirm the high accuracy and sybil-resilience of TrueTop by detailed theo-

retical analysis and extensive experiments on real datasets.

The rest of this chapter is organized as follows. Section 3.2 surveys the related

work. Section 5.3.5 introduces Twitter basics, our system and threat models, and our

53

design objectives. Section 3.4 illustrates the TrueTop design. Section 3.5 theoretically

analyzes the accuracy and sybil resilience of TrueTop. Section 3.6 evaluates the

performance of TrueTop by detailed experiments. Section 3.7 summarizes the chapter.

3.2 Related Work

There is significant effort to explore social networks for effective sybil defenses in

various distributed systems, such as SybilGuard (155) and SybilLimit (154) for P2P

networks, SumUp (135) for online voting systems, and SybilInfer (41), SybilDefense

(142), and SybilRank (29) for online social networks. A common assumption is that

each node can be mapped into one in an undirected social network graph where

every edge corresponds to a human-established trust relation. Although the attacker

can create many sybil accounts, he cannot establish an arbitrarily large number of

social trust relations with non-sybil users. Moreover, all schemes assume that the

honest region is fast mixing and separate from the sybil region. Built upon these two

key insights, these schemes conduct varying community detection methods (140) to

limit the number of sybil users admitted into or their impact in various application

scenarios.

Recent measurement studies have questioned these two assumptions. Yang et al.

(153) showed that sybil users on the Facebook-like Renren network can have their

friend requests accepted by many non-sybil users. A similar result targeting Face-

book was reported in (26). Blending sybil users into the non-sybil community would

reduce the effectiveness of the existing sybil defenses (76). In addition, the work in

(120; 59; 101; 161; 52) showed that sybil users successfully acquired a number of follow-

ings from non-sybil users on Twitter. All these findings indicate that neither bidirec-

tional friendships in Fackbook-like OSNs nor unidirectional followings in Twitter-like

microblogging systems can be used as the trustable mirroring of real social relations.

54

Moreover, it has been shown in (105; 104) that the mixing time of many practical

and directed social graphs is much longer than previously expected. Since neither of

the two key assumptions underlying the schemes in (155; 135; 41; 140; 154; 142; 29)

holds in directed networks such as Twitter, they are not directly applicable to our

targeted scenario. Our TrueTop system does not rely on either assumption.

As a special kind of sybil users, spammers in Twitter has attracted considerable

attention in recent years. A common approach adopted by existing work (20; 125;

62; 131; 56; 133; 49; 68) is to detect spammers by measuring the behavioral difference

between spammers and legitimate users. Spammers are a special type of sybil users,

and the detection of general sybil users on Twitter remains an open challenge.

There is a rich literature for influence measurement on Twitter. Cha et al. (30)

found that the numbers of retweets and mentions serve as better metrics than the

number of followers in measuring user influence. Bakshy et al. (16) proposed to mea-

sure user influence based on his ability to post the tweets that generates a cascade of

retweets. TwitterRank (143) combines link structure and topical similarity between

Twitter users and uses a modified PageRank algorithm to calculate user influence.

Pal and Counts (114) also proposed a framework to identify topical authorities in

microblogging systems. All these schemes are vulnerable to sybil users who can forge

arbitrary information employed by these schemes for influence measurement. More-

over, many metrics used by these schemes have been incorporated into commercial

influence measurement tools (122), and the vulnerability of representative tools to

sybil attacks has been experimentally verified in (161).

Also related is the research on modelling, measuring, and analyzing the interac-

tions in OSNs, e.g., (36; 21; 145; 71; 147). Our work is the first to build a weighted

directed interaction graph from historical incoming retweets, replies, and mentions

on Twitter and use it for identifying influential users.

55

3.3 Preliminaries

3.3.1 Twitter Basics

We illustrate the basic operations on Twitter to help understand our design. The

social relationships on Twitter are unidirectional by users following others. If user

A follows user B, A is B’s follower, and B is A’s followee. A user usually needs

no prior consent from his followees. Twitter also allows each user to approve/deny

every following request, but this option is relatively rarely used. A user can send

text-based messages of up to 140 characters, known as tweets, which can be read by

all his followers. Tweets can be visible to anyone with or without a Twitter account,

and they can also be protected and are only visible to approved followers. There

are three special kinds of tweets corresponding to three operations. A retweet is a

re-posting of someone else’s tweet, a reply corresponds to a response to a tweet, and a

mention refers to inserting “@username” in a tweet to ensure that the specified user

can see this tweet. Finally, each user has a timeline which shows all the latest tweets

(including original tweets, retweets, replies, and mentions) of his followees. Also note

that Twitter allows direct messages to be sent between users. Since those direct

messages are not publicly visible, they cannot be used to measure user influence.

3.3.2 System Model

TrueTop is run by a service provider (SP) offering on-demand influence measure-

ment services to customers such as viral marketers, government/military agencies, or

even individuals. Given a measurement request, the TrueTop SP first determines the

target set of Twitter users to evaluate, denoted by U . The users in U can be directly

given by the customer or identified by the TrueTop SP according to some common

features specified by the customer. For example, the customer can specify a target

56

geographic region, a target age group, a target topic (e.g., music), etc. As said, True-

Top relies on incoming interactions among the users in U , i.e., the retweets, replies,

and mentions each user in U has received from all the other users in U . So we assume

that the SP has a reliable way to obtain the incoming interaction data needed, e.g.,

directly from Twitter, via crawling, or from some third-party providers of social me-

dia data. For example, Gnip (http://gnip.com/) is an authorized reseller of Twitter

data. TrueTop is designed to output a ranked list of top-K influential users in U ,

where K ≥ 1 denotes a customer-specified integer.

3.3.3 Threat Model

Let Ũ denote all possible sybil users in U . We assume that the SP knows neither

which user in U is a sybil user nor how many sybil users there are; otherwise, the

identified sybil users can be simply removed from U . Based on the recent measurement

study (59), we assume that each sybil user may have followed and also been followed

by some non-sybil and sybil users in U . There may be a single attacker controlling Ũ

or multiple independent ones with each controlling an exclusive subset of Ũ . TrueTop

can deal with both cases without modification, so we focus on the more challenging

former case hereafter. The goal of the attacker is to gain high influence scores for his

sybil users and maximize the number of users in the TrueTop output.

3.3.4 Design Objectives

Let U∗K and UK denote the top-K non-sybil influential users in U and the TrueTop

output, respectively. We have two major design objectives.

• Accuracy : TrueTop should identify the true top-K non-sybil users, which means

the difference between U∗K and UK should be very small.

57

• Sybil resilience: TrueTop should not identify sybil users as top-K users, i.e.,

the the intersection UK ∩ Ũ should be very small.

3.4 TrueTop Design

3.4.1 Overview

TrueTop is motivated by the observation that incoming retweets, replies, and

mentions are more trustworthy for measuring user influence than outgoing interac-

tions. So our first step is to construct an interaction graph, in which every vertex

corresponds to a unique user in the target set U , and every directed edge indicates

totally non-zero retweets, replies, and mentions from the tail user to the head user.

In addition, the weight of every edge is a non-decreasing function of related retweets,

replies, and mentions.

The next step is to choose a suitable metric to quantify the influence of every user

(vertex) in the interaction graph. TrueTop adopts weighted eigenvector centrality

(WEC for short) (108), the de facto metric for measuring the influence of a node in

a weighted directed graph. Specifically, the WEC score of every user corresponds to

his influence score, which depends on the weights of his incoming edges, the number

of his direct predecessors, and their influence scores which are further determined

by their respective incoming edges and direct predecessors. The WEC score reflects

an intuition that the influence of a user is better indicated by the interactions from

influential users than those from less influential users.

We uses iterative credit distribution for the convenience to describe and under-

stand our method. Specifically, we select some random users (called seeds) in the

interaction graph and seed each with some credits. In each iteration, we allocate

all the credits each user receives in the last iteration to his direct successors propor-

58

tionally to individual edge weights. The credits each user receives in one iteration

are expected to stabilize after sufficient iterations and be proportional to his WEC

score. It can be easily shown that iterative credit distribution is equivalent to power

iteration (80), a standard technique for computing WEC scores. Since sybil users

can create arbitrary interactions among themselves, some of them may gain enough

credits to appear in the top-K list. TrueTop achieves high sybil resilience by carefully

choosing the initial seeds and also early terminating iterative credit distribution.

In what follows, we first illustrate the construction of the interaction graph in

Section 3.4.2. Next, we present an iterative credit distribution scheme over the in-

teraction graph in Section 3.4.3. Finally, we introduce how to achieve sybil-resilient

iterative credit distribution in Section 3.4.4.

3.4.2 Interaction Graph Construction

Given the target users U and their interaction data, TrueTop first builds a weighted

directed interaction graph denoted by G = 〈U ,V〉, where U is abused to denote the

vertex set, and every edge vi,j ∈ V (i, j ∈ U) is directed and indicates that there

are some retweets, replies, and/or mentions from user i to j. The major challenge

here is to determine the weight wi,j of every edge vi,j. As shown in Fig. 3.1, G can

be divided into a virtual sybil region S including all the sybil users and a virtual

non-sybil region H including all the non-sybil users. The sybil-resilience requirement

for TrueTop requires that the sum of the edge weights from the non-sybil region to

the sybil region is small, while the accuracy requirement for TrueTop demands that

the weight wi,j reflects the true influence of user j on i in the target period. Let Ii,j

denote the set of time-indexed retweets, replies, and mentions from user i to j. We

consider the following two methods for defining the edge weights.

• Sum-based. In this method, wi,j equals |Ii,j|. Sum-based edge weights satisfy

59

the sybil-resilient requirement, as the total edge weights from the non-sybil

region to the sybil region are as limited as the number of retweets, replies, and

mentions from non-sybil users to sybil users. They also partially satisfy the

accuracy requirement, as the more interactions from i to j, the more influence

j likely has on i, and the higher wi,j. Sum-based edge weights, however, fail to

catch the temporal aspect of interactions. For example, consider another direct

predecessor of j, say l, where |Ii,j| = |Il,j|. Assume that the interactions in

Il,j occurred in the last few days in the target period, while those in Ii,j were

spread more evenly. It may be natural to say that j has stronger influence on

user i than on user l, but we have wi,j = wl,j for sum-based methods.

• Entropy-based. In this method, we divide the target period into µ equal-length

epochs for some system parameter µ ≥ 1 and denote the total number of

retweets, replies, and mentions from user i to j in epoch xth by dx, where |Ii,j| =∑µ
x=1 dx. Then we define the edge weight wi,j = (1 −

∑µ
x=1

dx
|Ii,j | log dx

|Ii,j |)|Ii,j|.

The more consistent the interactions from i to j in time, the higher wi,j, and

vice versa. When all the interactions happen in a single epoch, the weight is

identical to sum-based |Ii,j|. Entropy-based edge weights can also satisfy the

sybil-resilience requirement, as non-sybil users unlikely have consistent inter-

actions to sybil users so that the total edge weight from the non-sybil region

to the sybil region can be expectedly small. In contrast to sum-based edge

weights, entropy-based edge weights successfully catch the temporal informa-

tion in the interactions while failing to reflect the volume of the interactions.

So they partially satisfy the accuracy requirement as well.

The effects of the above methods are compared in Section 3.6. There may be other

ways to define the edge weights. For example, we can let wi,j equal a linear combina-

60

tion of the edge weights derived under sum-based and entropy methods, respectively;

we can also assign different weights to retweets, replies, and mentions according to

slightly different effort and/or social implication related to performing these interac-

tions. A further study on such issues is left as future work due to space constraints.

Note that we only consider retweets, replies, and mentions in the weight defi-

nitions because they are representative on Twitter and have been used in all the

existing influence measurement techniques. Some other factors could also impact the

user influence, such as following connections and favorites. As stated before, since

sybil users could easily get many legitimate followers (59; 151; 126), the following

connections fail to achieve the sybil resilience and hence should be ruled out for the

influence measurement. On Twitter, a user could favor the tweets from other users,

but there is no public Twitter API which can return the favorite user list for any

given tweet. Should a public Twitter API for retrieving favorites become available,

we can easily incorporate favorites into TrueTop.

3.4.3 Credit Distribution

TrueTop uses the WEC score of every user in G = 〈U ,V〉 as his influence score.

Specifically, let πi denote the WEC score of user i in G and W = (wi,j) denote the

normalized weighted adjacency matrix of G. The vector π = 〈π1, π2, . . . , π|U|〉 is the

dominant eigenvector of W, i.e., the solution to the equation πW = π according to

(108).

Power iteration (80) is a common technique to compute the WEC vector π. Let

v0 be a random vector composed of |U| nonnegative elements totalling one. In power

iteration, π is computed in an iterative fashion as

π = lim
t→∞

x(t) = lim
t→∞

v0W
t , (3.1)

61

where x(t) = x(t−1)W with the initial x(0) = v0. If G is strongly connected, π exists,

is unique, and is unrelated to v0. In practice, power iteration normally terminates if

‖x(t) − x(t−1)‖1 < ν for some acceptable error threshold ν (e.g., 10−9).

The WEC vector only exists in a strongly connected graph (108), in which every

vertex is reachable from every other vertex. Although G itself may be not strongly

connected in practice, it usually has a giant strongly connected component (GSCC)

which includes the majority of the vertexes and edges and is dramatically larger

than all other strongly connected components (SCCs). Since the most influential

users should have intensive interactions with other users, the top-K influential users

should be in the GSCC with overwhelming probability. Our subsequent operations

thus apply to the GSCC only. The verification of the existence of GSCC in real

datasets is deferred to Section 3.6.

TrueTop uses iterative credit distribution instead to compute π to facilitate the

presentation. Initially, we randomly select a few users (called seeds) in G and initialize

each with the same number of notional credits totalling one. At every iteration, we

allocate the credits each user receives in the last iteration to his direct successors

proportionally to the corresponding edge weights. Let C
(t)
j denote the number of

credits at any user j ∈ U after t iterations, which are proportional to his influence

score measured after t iterations. C
(t)
j is a real number in general and can be computed

as

C
(t)
j =

∑
i∈IN(j)

wi,jC
(t−1)
i∑

k∈OUT(i)wi,k
, (3.2)

where IN(j) and OUT(i) denote the direct predecessors of user j and the direct succes-

sors of user i in G, respectively. Similarly, we can terminate credit distribution when∑
j∈U |C

(t)
j − C

(t−1)
j | < η for some acceptable error threshold η (e.g., 10−9).

We can easily show that iterative credit distribution above is equivalent to power

62

Sybil RegionNon-sybil Region

Figure 3.1: The Interaction Graph With a Virtual Non-sybil Region H and a Virtual

Sybil Region S.

iteration. In particular, assume that s seeds are chosen in iterative credit distribution,

each having 1/s credits initially. We further select v0 for power iteration such that

the ith element equals 1/s if user i is a seed and zero otherwise. Then Eq. (3.2) is

apparently the element-wise expression of x(t) = x(t−1)W. Since power iteration does

not depend on a specific v0, we have x
(t)
j = C

(t)
j for any user j ∈ U after t iterations.

Iterative credit distribution described above is still subject to sybil attacks. To see

this, consider Fig. 3.1 where the interaction graph is divided into a virtual non-sybil

region H and a virtual sybil region S. We denote the total edge weights within H,

within S, from H to S, and from S to H by WH, WS , αWH, and βWS , respectively,

where α � 1. Although the adversary has no control over WH and α, he can easily

manipulate WS and β to make βWS very small. Even if all the seeds are chosen from

H in the best scenario, more and more credits will flow into and stay in S as time

goes by. We have the following proposition about the vulnerability of iterative credit

distribution to sybil attacks.

Proposition 3.4.1. Assume that the total edge weights from the non-sybil region H

to the sybil region S and from S to H are α and β fractions of the total edge weights in

63

H and S, respectively. The total credits in S increase monotonically with the iteration

t and asymptotically approach to α
α+β

.

Proof. Let the total credits in H and S at t-th iteration be C
(t)
H and C

(t)
S , respectively.

According to the credit distribution defined in Eq. 3.2, after the t-th iteration, the

average credits flowed from H to S and S to H are αC
(t)
H and βC

(t)
S , respectively.

Meanwhile, the total credits in the whole network is constant to 1. Hence,

C
(t)
H = (1− α)C

(t−1)
H + βC

(t−1)
S

= (1− α)C
(t−1)
H + β(1− C(t−1)

H)

= (1− α− β)C
(t−1)
H + β

= (1− α− β)t−1C
(1)
H + ((1− α− β)t−2 + . . .+ 1)β

= (
1

α + β
− 1)α(1− α− β)t−1 +

β

α + β

and

C
(t)
S = 1− C(t)

H = (1− 1

α + β
)α(1− α− β)t−1 +

α

α + β

Since α � 1 and β � 1, C
(t)
H will decrease monotonically and C

(t)
S will increase

monotonically. When t→∞, C
(t)
S = α

α+β
.

Since the adversary can well control the topology within S, most credits in S can

go to a few sybil users who may eventually appear in the top-K influential users.

3.4.4 Sybil-Resilient Credit Distribution

TrueTop adopts the following two defenses against sybil attacks such that most

credits can stay in the non-sybil region for sufficient iterations.

The first defense is to use non-sybil seeds only so that credit distribution can

start from the non-sybil region H. We propose to use verified Twitter users as seeds

64

by three reasons. First, Twitter has certified their authenticity. Each verified user

has a blue verified badge on his profile page and is followed by the official Twitter

account @verified. Second, there are many verified users available as candidate seeds.

As of April 2014, Twitter has verified more than 88,600 accounts among 255 million

monthly active users and keeps verifying more. Since G can be expected to contain

many users in practice, there should be at least one verified user in G with very high

probability. Finally, since verified users are usually public figures such as politicians,

celebrities, or business leaders, we can trust them to be very cautious in whom to

retweet, reply to, and mention. This implies that the immediate successors of verified

users on the interaction graph G are very likely to be non-sybil users as well, so are the

successors’ immediate successors. If we start credit distribution from verified users,

most credits can be expected to stay inside H after many iterations.

How many seeds should we choose? Some verified users may be very close to the

sybil region, but we cannot tell who they are. Ideally speaking, we should choose the

verified users far from the sybil region. On the one hand, if a verified user is randomly

chosen as the sole seed, he may be too close to the sybil region. On the other hand,

if we use all the verified users in G as the seeds, it is very likely that some of them

are close to the sybil region. In addition, the number of seeds affects the convergence

of iterative credit distribution: the more seeds, the faster the algorithm converges. It

is impossible to specify the decisive rules for seed selection, so we randomly choose

s ≥ 1 seeds from the verified users in G and experimentally evaluate the impact of

seed selection in Section 3.6.

How should we assign the initial credits among the s seeds? We propose two

methods as follows.

• Basic method. The total credits are evenly assigned to the s seeds. This straight-

forward method assumes that each seed has the same importance for credit

65

distribution.

• Reverse-WEC. Since the credits flow out from the seeds, we can assign more

initial credits to the seeds who can quickly reach more users to speed up the

algorithm convergence. For this purpose, we conduct the credit distribution

introduced in Section 3.4.3 over an inverse interaction graph generated from G

by reversing the directions of all the edges and also setting all the edge weights

to one. The final credits at each user naturally reflects his connectivity in G. So

we select the verified users with the top-K highest credits as the seeds and then

assign to each of them the initial credits proportional to their credits obtained

via reverse credit distribution.

The second defense is to early terminate iterative credit distribution before it

converges in the whole graph G. To see the necessity and intuition for this defense,

recall that we start credit distribution from non-sybil seeds in the non-sybil region.

Since the total edge weight from the non-sybil region to the sybil region is relatively

small, we can expect credit distribution to converge much faster in the non-sybil

region than in the whole G. In addition, the most influential non-sybil users normally

have many incoming interactions and thus a rich number of credit sources in G. So

they can quickly accumulate a lot of credits to stand out much faster than other

non-sybil users. If we early terminate iterative credit distribution, most or all of the

sybil users would not get enough credits to appear in the resulting top-K influential

users, so we can achieve sybil resilience. However, if credit distribution stops too

early, some true top-K influential non-sybil users may not get enough credits to be

ranked in the top-K list, leading to an inaccurate result.

We design a simple but effective algorithm to tackle the dilemma between sybil

resilience and accuracy. The key idea is to monitor the ranking change of the can-

66

didate top-K users in two consecutive iterations. Whenever the ranking change is

no larger than an acceptable threshold, we terminate the algorithm and output the

current top-K users as the top-K influential users. This algorithm is directly built

on our observation above. Specifically, since the top-K non-sybil influential users is

more likely to stand out much faster than both sybil users and other non-sybil users

during credit distribution, their rankings are more likely to become stable in fewer

iterations as well. We detail the algorithm as follows and postpone its performance

analysis to Section 3.5.

Algorithm 1: Find the top-K influential users

input : Interaction graph G; s seed users; K; maximum number of iterations

T ; ranking-error tolerance ε

output: The top-K influential users

1 Assign initial credits among s seed users by either basic or reverse-WEC

method;

2 t← 1;

3 while t < T do

4 Distribute the credit in the t-th iteration according to Eq. 3.2;

5 Rank the users by their credits and obtain the candidate top-K users R(t);

6 Compute the ranking distance d(K)(t) between R(t) and R(t−1) as in

Eq. 3.3;

7 if d(K)(t) <= ε then

8 break;

9 t← t+ 1;

10 return R(t) as the top-K influential users

Let r(t)(u) and r(t−1)(u) denote the rankings of user u in iterations t and t − 1,

67

respectively. We define the ranking distance d(K)(t) between R(t) and R(t−1) as

d(K)(t) =
∑

u∈R(t)(K)∪R(t−1)(K)

|r(t)(u)− r(t−1)(u)| . (3.3)

The algorithm above has two key parameters: T and ε. The former dictates the

maximum number of iterations, and the latter specifies the maximum ranking error

tolerance. The larger T , the longer the algorithm execution time, the more accurate

the top-K influential users, the more credits flowing into the sybil region and thus the

less sybil resilience, and vice versa. In contrast, the larger ε, the shorter the algorithm

execution time, the less accurate the top-K influential users, the fewer credits flowing

into the sybil region and thus the higher sybil resilience, and vice versa. In practice,

we can let ε < K, meaning that each user in the current top-K list has experienced

a ranking change of less than one on average in contrast to the previous iteration.

3.5 Performance Analysis

In this section, we analyze the accuracy and sybil resilience of TrueTop. Recall

that U∗K denotes the true top-K influential users in the non-sybil region, UK denotes

the TrueTop output (i.e., the output of Alg. 10), and Ũ denotes all the sybil users in

the sybil region. So we can use UK ∩ U∗K and UK ∩ Ũ to measure the accuracy and

sybil-resilience of TrueTop, respectively.

To make the performance analysis tractable, we first assume that Alg. 10 runs

in the non-sybil region only, so we can conduct an upper-bound analysis about the

accuracy of TrueTop by setting the ranking error tolerance parameter ε = 0 and T

extremely large such that Alg. 10 terminates only when a stable top-K user list is

found. We then show that Alg. 10 will terminate in asymptotically the same number

of iterations for ε = 0, based on which we finally estimate the number of sybil users

appearing in UK . As stated before, the larger ε, the shorter the algorithm execution

68

time, the less accurate the top-K influential users, the fewer credits flowing into the

sybil region and thus the higher sybil resilience, and vice versa. Hence by setting

ε = 0, we can provide the lower and upper bounds for sybil resilience and accuracy,

respectively. As for arbitrary ε > 0, we unfortunately cannot obtain the closed-form

analytical result for sybil resilience or accuracy and thus resort to experiments to

evaluate its impact in Section 3.6.

The following concepts are needed for the accuracy analysis.

Definition 3.5.1 ((Relative) Error Bound). Let π denote the true WEC vector of

non-sybil users and the k-ranked user refer to the one with the kth highest WEC score

τk in π. Let τ
(t)
k denote the WEC score of the k-ranked user after iteration t. Then

e
(t)
k = |τ (t)k − τk| is defined as the error bound for the k-ranked node after iteration t,

and e
′(t)
k = e

(t)
k /τk is defined as the relative error bound.

Definition 3.5.2 ((Relative) WEC gap). The WEC gap for the k-ranked node is

defined as ∆k = τk− τk+1, and ∆′k = ∆k/τk is the correspondingly relative WEC gap.

Lemma 3.5.1. Let W denote the normalized weighted adjacency matrix of the non-

sybil region with n users, among which there are s seed users. Construct v0 for power

iteration (see Eq. 3.1) such that the ith element equals 1/s if user i is a seed and zero

otherwise. Then the relative error bound for the k-ranked user satisfies e
′(t)
k ≤ λt,

where λ < 1 denotes W’s second largest eigenvalue.

Proof. According to the Perron-Frobenius theory (18), the matrix W is irreducible

and has the largest eigenvalue of 1, and all other eigenvalues are absolutely less than

1, denoted as 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn > −1. Moreover, if we denote the

corresponding n eigenvectors as v1,v2, . . . ,vn, then |v1| = 1 and we denote v1 as the

WEC vector π. Next if W is diagonalizable, then v1,v2, . . . ,vn can be orthogonal

69

to expand the whole space of Rn. For the case of non-diagonalizable W, we can use

the Jordan canonical form to transform it into a diagonalizable one (121).

Since v1,v2,v3, . . . ,vn are orthogonal, v0 can be written as

v0 =
n∑
i=1

aivi (3.4)

where ai ∈ R. We argue that if W is stochastic and irreducible then a1 = 1. To see

why, we first notice that since W is stochastic, W1 = 1. It follows that vTi W1 =

λiv
T
i 1 = vTi 1. The eigenvector corresponding to λ1 is the stationary distribution of

Markov Chain W. Since W is irreducible, λi < 1 and λi 6= 1 when i 6= 1. Thus we

can see that vTi 1 = 0 for i 6= 1. Multiplying 1 at both sides of Eq. 3.4, it follows that

v01 = a1v11. Since both v0 and v1 are non-negative vectors with the sum of 1, we

have a1 = 1.

Thus Eq. 3.4 can be simplified as

v0 = v1 +
n∑
i=2

aivi = π +
n∑
i=2

aivi .

Multiplying Wt at both sides and keeping using the equation viW = λiW, we

can obtain

x(t) = v0W
t = (π +

n∑
i=2

aivi)W
t = π +

n∑
i=2

λtiaivi .

Let λ = max(|λ2|, |λn|). As the t → ∞, λt will become dominant and it follows

that |(x(t) − π)i| = O(λt)

Moreover, for j ∈ U \ s,
∑n

i=1 aivi,j = v0,j = 0. Hence,

e
(t)
j = |

n∑
i=2

λtiaivi,j| ≤ λt|
n∑
i=2

aivi,j| = λt| − v1,j| = λtπj .

Lemma 3.5.1 states that the rank of each user in iteration t approaches its true

rank for sufficiently large t.

70

In addition, Ghoshal and Barabasi (60) recently found that if the WEC vector

(Pagerank in their paper) follows power law distribution, the gap between the kth

and (k + 1)th WEC scores decreases with k. We thus have the following lemma.

Lemma 3.5.2. (60) If the WEC vector π follows a power-law distribution with pa-

rameter γ, the relative WEC gap for the k-ranked user satisfies ∆′k ≈ 1
k(γ−1) .

The proof of Lemma 3.5.2 is straightforward according to (60) and omitted here

due to space constraints. In Section 3.6, we show that the WEC vectors for real

Twitter datasets indeed follow the power-law distribution. We then have the following

theorem based on Lemma 3.5.1 and Lemma 3.5.2.

Theorem 3.5.1. For iterative credit distribution in a strongly-connected weighted

directed graph with the monotone-decreasing ∆′k with k, if λt ≤ ∆′k/2 in iteration t,

the ranked list of users with top-k credits remain the same in subsequent iterations.

Proof. The conclusion is composed of two parts. We begin with the first part, i.e.,

if λt ≤ ∆′k/2 at the t-th iteration, then x1 > x2 > . . . xk. Consider the k- and

(k − 1)-ranked nodes. Since the relative WEC gap ∆′k is monotone decreasing for k,

we have

e′k ≤ λt ≤ ∆′k/2 < ∆′k−1/2

Combined with e′k−1 ≤ λt in Lemma 3.5.1, we can get e′k−1 < ∆′k−1/2. In other words, ek = |xk − πk| ≤ ∆k/2,

ek−1 = |xk−1 − πk−1| < ∆k−1/2.

By several operations, we have

xk−1 − xk > ((πk−1 − πk)− (πk − πk+1))/2 > 0

71

which holds since ∆k/πk < ∆k−1/πk−1 < ∆k−1/πk. Similarly, we can find that xk−2 >

xk, . . . , x1 > xk. Moreover, if starting from (k − 1)-ranked node (it holds as e′k−1 ≤

λt ≤ ∆′k−1/2), we have xk−2 > xk−1, . . . , x1 > xk−1 and thus x1 > x2 > . . . > xk.

Then we prove the second part, i.e., if λt ≤ ∆′k/2 at the t-th iteration, then

xk > xj, where j is from k + 1 to n. Consider the k- and (k + 1)-ranked nodes. We

have ek+1 ≤ λtπk+1 < λtπk ≤ ∆k/2,

ek ≤ λtπk ≤ ∆k/2.

Hence,

xk+1 − xk < 0

and so for all other nodes with the rankings larger than k.

Since λt is geometrically decreasing for t, λt < ∆′k/2 holds for all the following

iterations and so does the conclusion.

Theorem 3.5.1 indicates that if there are no sybil users, Alg. 10 (or TrueTop)

can generate the true top-K influential non-sybil users if λt ≤ ∆′K/2, i.e., when t ≤

− log(2K(γ−1))/ log(λ) or t = O(| log(K)/ log(λ)|) iterations. This also corresponds

to the case of ε = 0 with 100% accuracy. Since the total edge weights from/to the

non-sybil region to/from the sybil region are relatively very small, we can expect that

the sybil region has little impact on the influence rankings of non-sybil users. So the

accuracy of TrueTop under sybil attacks is tightly related to how many sybil users

can show up in the top-K list, i.e., the sybil-resilience of TrueTop, as analyzed in the

following theorem.

Theorem 3.5.2. Let α be the ratio of the total edge weight from the non-sybil region

to the sybil region over the total edge weights in the non-sybil region. Assume that

the attacker wants to place as many sybils into the top-K list as possible by retaining

72

all the credits flowing into the sybil region. The number of sybil users in the top-K

list after early termination in t = O(log(K)/ log(λ)) iterations is upper-bounded by

K(1− (1− α)t)/(1− α)t.

Proof. According to (60), the expected k-ranked WEC is

〈π〉k ≈
Γ(k − 1

γ−1)

Γ(k)

According to Proposition 3.4.1, the number of credits for S after the t-th iteration is

given by:

C
(t)
S = 1− C(t)

H = (1− 1

α + β
)α(1− α− β)t−1 +

α

α + β

The maximum C
(t)
S can be obtained as 1 − (1 − α)t when β → 0, i.e., the sybils

conduct very limited interactions to the non-sybil users. Moreover, since the attacker

wants to place as many sybils into the top-K list as possible, he can just divide the

total credits C
(t)
S by the k-ranked WEC value. Then the number of sybils that own

〈π〉K credits is given by

n(K) =
C

(t)
S

C
(t)
H 〈π〉K

≈ 1− (1− α)t

(1− α)t〈π〉K

Here we further approximate the 〈π〉K . For the power law distribution, 2 ≤ γ < 3.

Thus
Γ(k − 1

γ−1)

Γ(k)
>

Γ(k − 1)

Γ(k)
=

1

k

Hence, we can obtain n(K) < K(1− (1− α)t)/(1− α)t.

Accordingly, we can easily derive the lower bound for the accuracy of TrueTop

because there are at least K(2 − 1/(1 − α)t) true top-K non-sybil users in the final

top-K list. Note that since α� 1 and K is usually at the scale of 1,000 and 10,000,

this upper bound is far less than K, meaning that there are only negligible sybil users

in the top-K list.

73

3.6 Evaluation

In this section, we thoroughly evaluate the performance of TrueTop. We first

introduce some implementation details and the runtime performance, followed by the

datasets used in our evaluations. Next, we verify two underlying assumptions in

our design. Finally, we evaluate the accuracy and sybil resilience of TrueTop under

various sybil attacks.

3.6.1 Implementation and Runtime Performance

TrueTop is composed of two main components: the interaction graph construction

and the credit distribution with early termination. We implemented both with a total

of 2000+ lines of mixed code of Python and C++. Specifically, to efficiently handle

the large-scale interaction networks (millions of nodes and billions of edges) in a

commodity PC, we adopted the Graphchi computing framework (79) to implement

the credit distribution of TrueTop. On our desktop with 3.4GHz Intel-i7 3770 CPU,

16G Memory, a 7200RPM hard disk, and Ubuntu 12.04 LTS, one single iteration of

credit distribution took 0.3s, 2.5s, 9.2s, and 17.1s for our four datasets in Table 3.1

with 4K, 10K, 1M and 2M nodes, respectively. For a graph with 2M nodes, TrueTop

can thus find the top-1000 influential users after 1,000 iterations within less than five

hours on a commodity PC. Since TrueTop is expected to be run by a service provider

with much more powerful computation resources, its runtime performance should be

acceptable.

3.6.2 Datasets

We crawled four representative datasets with public Twitter APIs. The SF and TS

datasets include all the active users who have specified San Francisco Bay Area and

74

Table 3.1: Dataset Characteristics.

SF TS Random Music

Crawling period 8/30-11/30, 2013 6/28-9/28, 2013

#users 176,506 5,827 1,999,834 999,807

#edges 1,493,924 40,031 63,803,204 34,688854

#users in GSCC
104,000 4,127 1,541,343 687,693

(58.9%) (70.8%) (77.1%) (68.9%)

#edges in GSCC
1,305,834 36,189 55,781,520 30,170,774

(87.4%) (90.4%) (87.4%) (87.0%)

#users in 2nd SCC 357 6 82 21

Tucson, Arizona in the location field of their public profiles in the crawling (or target)

period, respectively. In addition, the Random dataset contains a random set of active

Twitter users in the target period, and the Music dataset contains the active users

who have used the keyword “music” in their tweets in the target period. Each dataset

includes all the user IDs and also their time-indexed tweets during the target period,

which include original tweets, retweets, replies, and mentions. Then we constructed

two interaction graphs for each dataset according to the process in Section 3.4.2, one

for sum-based edge weights and the other for entropy-based edge weights.

Table 3.1 summarizes the basic statistics of the interaction graphs of each dataset,

which apply to both sum-based and entropy-based edge weights. As we can see,

each interaction graph has a giant strongly connected component (GSCC) which

is far larger than the second largest SCC. Since TrueTop measures user influence

based on incoming interactions, the top-K influential users are in the GSCC with

overwhelming probability. Our subsequent evaluations are thus done on the GSCC

75

10
−10

10
−5

10
0

10
−6

10
−4

10
−2

10
0

WEC value

C
C

D
F

TS
SF
Music
Random

Slope:
−1.27

(a) Sum-based

10
−10

10
−5

10
0

10
−6

10
−4

10
−2

10
0

WEC value

C
C

D
F

TS
SF
Music
Random

Slope:
−1.19

(b) Entropy-based

Figure 3.2: The Distribution of WEC Values.

in each interaction graph only. We obtained very similar evaluation results for sum-

based and entropy-based interaction graphs. Due to space limitations, we report the

results for sum-based interaction graphs in most cases.

3.6.3 Feasibility Studies

WEC Value Characteristics

TrueTop bases its early termination of iterative credit distribution on two assump-

tions. First, the WEC values of non-sybil nodes follow a power-law distribution.

Second, the relative WEC gap ∆′k decreases as k increases. Now we verify these two

assumptions.

Fig. 3.2 shows the log-log CCDF of the WEC values. We can see that all the CCDF

curves are close to straight lines with the slopes from -2 to -1 for the WEC values

larger than 10−6. Since a power-law distribution with PDF p(x) = (γ − 1)x−γ has a

CCDF F̄ (x) = x1−γ, the WEC values of each interaction graph follow a power-law

distribution with parameter γ from 2 to 3.

76

(a) SF (b) TS

(c) Music (d) Random

Figure 3.3: Relative WEC Gap ∆′k.

Fig. 3.3 shows the log-log scale of ∆′k as a function of k, where the results are

shown up to k = 105 due to space constraints. We computed the WEC values by

using ν = 10−4 as the error tolerance threshold of power iterations, which led to

about 1,000 iterations. ∆′k obviously decreases with an approximate slope of -1 in the

log-log scale, which coincides well with the analysis in Lemma 3.5.2.

77

Interaction Analysis

Since there is no benchmark for the real-world sybils on Twitter, we designed an

experiment to estimate the total edge weight from the non-sybil region to the sybil

region in order to verify that it is relatively very small. To catch the growing in-

telligence of Twitter sybils, we adopted the behavior of the emerging social bots

(101; 161; 52). Our experiment run as follows. We first purchased 1000 Twitter ac-

counts, then divided them to mimic legitimate activities as in (101; 161), and finally

investigated how many legitimate users will follow or interact with them. Specifically,

we divided these 1000 accounts into five groups of equal size, each corresponding to

a unique activity among following, tweeting, retweeting, mentioning, and replying.

We ran the experiment for 30 days. In each day, we let each sybil user in each group

initiate 10 activities corresponding to that group. For example, each sybil user in the

Following group followed 10 randomly-chosen new users in each dataset every day.

Except the sybil users in the Tweeting group, the sybil users in all the other groups

initiated the corresponding activities only towards randomly chosen new users in each

dataset. We also recorded the total followings/mentions/retweets/replies every sybil

group received each day. In addition, we chose the Random, SF, and Music datasets

as the target datasets in the first 14, middle 8, and last 8 days, respectively.

Fig. 3.4 shows the incoming-outgoing (I-O) ratios of each sybil group, which is

defined as the number of total followings/mentions/retweets/replies each sybil group

received every day over the total number of interactions initialized from the sybil

group in the same day (i.e., 2,000). We have two observations. First, non-sybil users

are very careful about whom to interact with and rarely interact with sybil users.

Second, sybil users can get a non-trivial number of non-sybil followers. We manually

found that most non-sybil followers are normal users out of reciprocity, social capi-

78

0 10 20 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Day

A
ve

ra
ge

 I−
O

 r
at

io

(a) Following

0 10 20 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Day

A
ve

ra
ge

 I−
O

 r
at

io

Incoming followings
Incoming retweets
Incoming mentions
Incoming replies

(b) Tweeting

0 10 20 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Day

A
ve

ra
ge

 I−
O

 r
at

io

Incoming followings
Incoming retweets
Incoming mentions
Incoming replies

(c) Retweeting

0 10 20 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Day

A
ve

ra
ge

 I−
O

 r
at

io

Incoming followings
Incoming retweets
Incoming mentions
Incoming replies

(d) Mentioning

0 10 20 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Day

A
ve

ra
ge

 I−
O

 r
at

io

Incoming followings
Incoming retweets
Incoming mentions
Incoming replies

(e) Replying

Figure 3.4: Incoming-outgoing Ratios for Sybil Groups, Where the Same Legend is

Used in All the Figures.

79

Table 3.2: The Comparison of Incoming-outgoing Ratios Between Sybil and Non-sybil

Communities Under Sum-based and Entropy-based Interaction Graphs.

Graph Model Community SF Random Music

Sum
Non-sybil 0.89 1.04 0.70

Sybil 0.08 0.08 0.08

Entropy
Non-sybil 1.54 1.15 0.60

Sybil 0.04 0.07 0.05

talists, or even spam accounts not suspended by Twitter, and this observation is in

line with prior results in (59; 151). So incoming followings are less trustworthy for

evaluating user influence than incoming replies, mentions, and retweets.

To compute the I-O ratios of the sybil and non-sybil communities, we randomly

chose 30 groups of 200 users from each of Random, SF, and Music datasets. We then

recorded the incoming and outgoing interactions of each non-sybil group every day

in the same experimental period. The I-O ratio for each sybil or non-sybil group

is redefined as the total incoming edge weight over the total outgoing edge weight.

Table 3.2 compares the average I-O ratios of the sybil and non-sybil groups for both

sum-based and entropy-based edge weights. As we can see, non-sybil communities

always have much higher I-O ratios (i.e., much more balanced incoming and outgoing

interactions) than sybil communities. Moreover, the entropy-based weight model

yields lower and higher I-O ratios than the sum-based weight model for the sybil and

non-sybil communities, respectively. We thus expect that the entropy-based weight

model can lead to better sybil resilience than the sum-based model (as shown in

Table 3.3).

80

3.6.4 Accuracy and Sybil Resilience Studies

Evaluation Methodologies

Since large-scale real experiments on Twitter inevitably violate the Twitter ToS,

we resort to synthetic simulations to evaluate the accuracy and sybil resilience of

TrueTop. We used all the four datasets and obtained quite consistent results. Below

we show the evaluation results for the SF dataset only due to space constraints.

We modelled the strength of sybil attacks on Twitter by a parameter α, which

refers to the ratio of the total edge weight in the non-sybil region over that from

the non-sybil region to the sybil region. The default value of α, denoted by α∗, is

obtained from our datasets as follows. Assume that the network is composed of a

non-sybil region with n1 twitterers and a sybil region with n2 twitterers. According

to our experiments, we found that about 0.98‰ of the users in the SF dataset have

been suspended, so we set n1 = 1000n2. Moreover, assume that each non-sybil user

initiate one interaction (i.e., retweeting, mentioning, or replying) to each of the other

n1− 1 users, leading to n1(n1− 1) outgoing interactions. According to Table 3.2, the

average I-O ratio of the non-sybil community for the sum-based interaction network

is (0.89 + 1.04 + 0.7)/3 ≈ 0.88. Therefore, the n1 non-sybil users can receive about

1.88n1(n1−1) ≈ 1.88n2
1 incoming and outgoing interactions. Similarly, the sybil users

issue totally n2n1 interactions to the non-sybil region and receive about 0.08n2n1

interactions from non-sybil users. We thus have the following approximation

α∗ =
0.08n2n1

1.88n2
1

≈ 4.2 ∗ 10−5. (3.5)

We used the following method to simulate the sybil region, which has been adopted

in (155; 29). Given the interaction graph constructed from the SF dataset, we can

expect that the majority of the 104,000 users there are non-sybil users, but we cannot

tell which users are sybil or non-sybil users. So we manually attached to the original

81

interaction graph a sybil region which is a complete digraph of 500 sybil users and ran

TrueTop over this augmented interaction graph. We assume the worst-case scenario

in which the attacker aims to retain all the credits flowing into the sybil region, so

there is no interaction from the sybil region to the non-sybil region. We then added

wg random links of weight one from the non-sybil region to the sybil region, which is

equivalent to assuming that there are wg accidental one-time interactions from non-

sybil users to sybil users. wg varied from 10 to 200 in our experiments. Since the total

edge weight of the original interaction graph is about 106, we effectively simulated

the parameter α from 10−5 to 2 × 10−4. To simplify the presentation, we equate wg

with α and call it the attack strength as well hereafter.

We considered three strategies for the attacker to add the wg links. In the random

attack, the attacker randomly selects wg users in the non-sybil region and adds a

link of weight one from each to a randomly chosen user in the sybil region. In the

community attack, the attacker performs a breadth-first search from a random user in

the non-sybil region until wg users are found, and it adds a link from each discovered

user to a random user in the sybil region. In the seed attack, we fixed 10 seed users in

the non-sybil region and assumed that the attacker knows all of them. The attacker

performed a breadth-first search from the 10 seed users and randomly chose wg users

closest to any of the 10 seed users. It finally adds a link of weight one from each of

them to a random user in the sybil region. Obviously, the seed attack corresponds

to the strongest attack. We conducted 50 experiments for each attack and report

the average result below. In addition, we chose 100 verified users as seed users in all

simulations.

Now we introduce some metrics to measure the accuracy and sybil resilience.

Recall that UK , U∗K , and Ũ denote the TrueTop output, the true top-K influential

users in the non-sybil region, and all the sybil users, respectively. We obtained U∗K

82

by running power iteration over the non-sybil region only with the error tolerance

ν = 10−8. We measure the accuracy of TrueTop by comparing UK and U∗K via the

following two types of errors.

• Type-I error: d(K)/K, where d(K) is the distance between UK and U∗K and

computed according to Eq. (3.3). The metric measures the average rank offset

of U∗K from UK .

• Type-II error: (K − |U∗K ∩ UK |). This metric measures how many true top-K

users are missed by TrueTop.

The sybil resilience of TrueTop is inversely proportional to #sybil = |Ũ ∩ UK |. After

iterative credit distribution in TrueTop terminates, assumes that totally C credits are

retained in the sybil region. Let C1, . . . , CK denote the credits of the top-K influential

users in the non-sybil region in a non-decreasing order. Also assume that the attacker

tries to maximize #sybil by arbitrarily manipulating the topology of the sybil region

such that the C credits can flow into a few sybil users. We can derive #sybil as follows:

#sybil =

0 if C < CK ,

argmax
1≤x≤K

C ≥ xCK+1−x else.

Basic Results

Fig. 3.5 shows the performance of TrueTop under different attack strengths in random

and community attacks. In this experiment, we set K = 100 and ε = 0. As the attack

strength increases from 10 to 200, the type-I error is flat with less than one, and the

type-II error is below two, both showing the high accuracy of TrueTop under different

attack strengths. Moreover, the number of top-100 sybil users, i.e., #sybil, slowly

increases as wg increases, which is as expected. #sybil, however, stays below four for

83

0 100 200
0

1

2

3

4

5

Attack strength

E
rr

or

0 100 200
0

2

4

6

8

10

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(a) Random Attack

0 100 200
0

1

2

3

4

5

Attack strength

E
rr

or

0 100 200
0

2

4

6

8

10

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(b) Community Attack

Figure 3.5: TrueTop Performance Under Different Attack Strengths

0 500 1000
0

1

2

3

4

5

Top K

E
rr

or

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(a) Random Attack

0 500 1000
0

1

2

3

4

5

Top K

E
rr

or

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(b) Community Attack

Figure 3.6: TrueTop Performance for Different Ks.

both attacks. In addition, larger wg is likely to increase the number of iterations and

thus make the top-K list more accurate. So we can see that the type-II error overall

decreases with increasing wg.

Fig. 3.6 shows the performance of TrueTop under different Ks in random and

community attacks. In this experiment, we set the wg = 100 and ε = 0. We also

normalized #sybil by K. Although #sybil/K slowly increases with K due to more

84

0 50 100
0

2

4

6

8

10

ε

E
rr

or

0 50 100
0

2

4

6

8

10

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(a) Random Attack

0 50 100
0

2

4

6

8

10

ε

E
rr

or

0 50 100
0

2

4

6

8

10

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(b) Community Attack

Figure 3.7: TrueTop Performance Under Different εs.

iterations, it is always less than 6%. In addition, both type-I and type-II errors are

always less than two, indicating the high accuracy of TrueTop.

Fig. 3.7 shows the performance of TrueTop under different εs in random and

community attacks. In this experiment, we set wg = 100 and K = 100. As expected,

the larger the error tolerance ε, the larger both type-I and type-II errors. In contrast,

#sybil decreases with increasing ε due to fewer iterations towards credit distribution

termination.

Fig. 3.8 shows the performance of TrueTop under seed attacks for both sum-based

and entropy-based edge weights. In this experiment, we set K = 100 and ε = 0. In

addition, we randomly selected wg users from d = 3, 000 immediate successors of 10

random seed users, from which wg links of weight one were added to the sybil region.

We can have three observations from Fig. 3.8. First, TrueTop is still very accurate

as both type-I and type-II errors are always less than 2. Second, seed attacks can

yield more sybil users in the top-K list than both random and community attacks.

Finally, entropy-based edge weights enable stronger sybil resilience than sum-based

edge weights, as the former can dramatically increase the total edge weight in the

85

0 100 200
0

1

2

3

4

5

Attack strength

E
rr

or

0 100 200
0

4

8

12

16

20

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(a) Sum-based

0 100 200
0

1

2

3

4

5

Attack strength

E
rr

or

0 100 200
0

4

8

12

16

20

T
op

−
K

 s
yb

ils

Top−K Sybils
Type−I Error
Type−II Error

(b) Entropy-based

Figure 3.8: Impact of Seed Attacks with Different Weight Models.

non-sybil region in contrast to the total edge weight from the non-sybil region to the

sybil region. An effective defense against the seed attack is deferred to Fig. 3.11.

Table 3.3 shows the impact of design choices on the TrueTop performance. In this

set of experiments, we set K = 100, ε = 0, wg from 10 to 200, and d = 3, 000 for the

seed attack. We compared the basic and reverse-WEC methods for seed selection,

sum-based and entropy-based methods for determining edge weights, and also 10

versus 100 seed users. For simplicity, we added up the type-I errors, type-II errors,

and #sybil values under different attack strengths for each design choice, respectively.

For each pair of design choices, we subtracted the sum of the second choice from that

of the first one for the type-I error, type-II error, and #sybil, respectively. Since most

results in Table 3.3 are positive, it is clear that the second choice in each pair can

achieve higher accuracy and sybil resilience in most cases. Specifically, as expected,

the entropy-based weight model yields better sybil resilience performance than the

sum-based model.

86

T
ab

le
3.

3:
T

h
e

Im
p
ac

t
of

D
iff

er
en

t
D

es
ig

n
O

p
ti

on
s

on
T

ru
eT

op
P

er
fo

rm
an

ce
.

R
an

d
om

at
ta

ck
C

om
m

u
n

it
y

at
ta

ck
S

ee
d

at
ta

ck

S
ee

d
se

le
ct

io
n

:
0.

11
0.

23
2

-0
.0

17
-0

.0
3

-0
.1

9
-0

.1
92

0.
11

0.
19

0.
31

6
b

as
ic

v
s.

rw
ec

E
d

ge
w

ei
g
h
ts

:
0.

07
-0

.0
02

0.
22

6
0.

08
0.

00
0.

57
2

-0
.0

71
0.

32
7

0.
87

1
su

m
v
s.

en
tr

o
p
y

#
o
f

se
ed

s:
4.

26
0.

09
9

0.
12

2
2.

89
0.

12
1

0.
07

8
3.

66
0.

13
6

2.
8

1
0

v
s.

1
00

T
y
p

e-
I

T
y
p

e-
II

#
sy
b
il

T
y
p

e-
I

T
y
p

e-
II

#
sy
b
il

T
y
p

e-
I

T
y
p

e-
II

#
sy
b
il

87

Comparison with Other Methods

We compare our algorithm with the following methods.

1. Kred (2). Since Kred has publish its influence score algorithm on http://kred.

com/rules, we select it as the benchmark mechanism. Kred only computes the

influence score by how many interactions a user have received in the past 1,000

days. During our 90-days experiment, we let each of the 500 sybils retweet each

other sybil once per day. Therefore, each sybil receives 44,910 interactions from

the sybils in the end. We will see that this conservative attack is sufficient for

filling the top-K list with mostly sybils.

2. Pagerank (113). One may think about using the Pagerank value of each user in

the interaction graph to evaluate his influence. Modified power iteration with

non-zero reset probability is commonly used to compute Pagerank values. We

set the rest probability to 0.15.

3. WEC by power iteration. This method corresponds to TrueTop without early

termination.

Fig. 3.9 compares the number of top-100 sybils of TrueTop with those of Kred,

Pagerank and WEC by power iteration. As we can see, TrueTop allows less than

4 sybil users in the top-100 list under both random and community attacks. By

comparison, the sybils in Kred can easily occupy 99 positions of the top-100 list. We

also expect they will occupy all the top-100 positions if more interactions between

the sybils were conducted. This is because the sybils can obtain unlimited incoming

interactions from other sybils. Under WEC with power iteration, sybil users can

occupy a significant portion in the top-100 list, as a lot more credits flow into and

stay in the sybil region when power iteration terminates in contrast to TrueTop. In

88

Attack strength
0 50 100 150 200

T
op

-K
 s

yb
ils

0

20

40

60

80

100

Kred
Pagerank, 500 sybils
Pagerank, 1000 sybils
WEC
TrueTop

(a) Under Random Attacks

Attack strength
0 50 100 150 200

T
op

-K
 s

yb
ils

0

20

40

60

80

100

Kred
Pagerank, 500 sybils
Pagerank, 1000 sybils
WEC
TrueTop

(b) Under Community Attacks

Figure 3.9: Comparing TrueTop with Kred, Pagerank and WEC with Power Iteration

Under the Random and Community Attacks.

addition, Pagerank leads to more top-100 sybil users than TrueTop and is less sensitive

to the attack strength than WEC with power iteration. However, if we increase the

number of sybil users from 500 to 1,000 without changing the attack strength, the

top-100 sybil users under Pagerank will increase. This is because the more sybil

users, the higher probability that credit distribution jumps to the sybil region due

to resetting operations, the higher Pagerank values of some sybil users. So Pagerank

is not sybil-resilient either, which is consistent with (32). In contrast, both TrueTop

and WEC with power iteration are insensitive to the size of the sybil region.

Since WEC with power iteration is equivalent to seed-based iterative credit distri-

bution without early termination, we also compare it with TrueTop with regard to the

resilience to the seed attack. Note that Pagerank is not vulnerable to the seed attack

because it does not use any seed user. Fig. 3.10 compares the top-100 sybil users of

the two methods under the seed attack, where the number of immediate successors of

the 10 victim seed users varies from d = 5000 to 10, 000 for the fixed attack strength

89

0 5000 10000
0

20

40

60

80

100

Neighbor size

T
op

−
K

 s
yb

ils

WEC, sum
WEC, entropy
TrueTop, sum
TrueTop, entropy

Figure 3.10: TrueTop and WEC under

Seed Attacks.

10
1

10
2

10
30

10

20

30

40

#seeds

T
op

−
K

 s
yb

ils

d = 500
d = 1000
d = 1500
d = 2000
d = 2500

Figure 3.11: Defense Against the Seed

Attack.

wg = 100. As we can see, both methods yield more top-100 sybil users as d increases

under sum-based and also entropy-based edge weights. This result is quite intuitive:

the smaller d, the fewer nodes sharing the initial credits from the seed users, the more

credits flowing into the sybil region over the wg links, and vice versa.

An effective defense again the seed attack is to select more seed users and/or

choose the verified users with more immediate successors as seed users. The efficacy

of this defense is shown in Fig. 3.11. In this experiment, we assume that the attacker

picked up 10 random seed users and then randomly selected d immediate successors

of them for adding the wg links to the sybil region. We varied the number of seeds

from 10 to 800 for each value of d. As we can see, we can dramatically improve the

resilience of TrueTop to the seed attack by increasing both the number of seed users

and the number of immediate successors of the seed users.

Remarks

We have three remarks on the performance evaluation above. First, our evaluation re-

sults demonstrate the lower-bound performance of TrueTop. Specifically, we adopted

90

a very strong attacker model by assuming that the attacker withholds all the credits

flowing into the sybil region by having zero interactions to the non-sybil region. In

practice, sybil users often try to initiate interactions with non-sybil users for other

purposes such as spamming and phishing than merely aiming to gain high influence

scores. Therefore, we can expect fewer credits to stay in the sybil region than under

our attacker model such that TrueTop shall have higher accuracy and sybil resilience

in more practical settings. Second, we admit that our evaluations are not complete

given so many design choices for TrueTop as shown in Table 3.3 and many possible

attack strategies. We have only shown some important results here as the examples

and expect similar results for other design choices and attack strategies. Finally, we

modelled the sybil behavior in accordance with prior work (101; 161; 52). There

are more advanced sybil attacks such as astroturfing (120) which could attract more

legitimate interactions from non-sybil users. Unfortunately, there is no efficient way

to simulate such advanced sybil attacks on a large scale. Instead, we use high attack

strength wg to model them in the experiment. As expected, TrueTop performs worse

for higher wg but still shows better performance in contrast to other methods. The

performance of TrueTop will certainly degrade if the sybils could completely mimic

the behavior of legitimate users, but manipulating the sybils to behave so intelligently

will involve huge adversarial effort. TrueTop can thus significantly raise the bar for

attacks on influence measurement.

3.7 Summary

Influential users are vital to accelerate large-scale information dissemination and

acquisition on Twitter. In this chapter, we presented TrueTop, the first sybil-resilient

system to measure the influence of Twitter users to the best of our knowledge. Our

91

theoretical studies and also performance evaluations confirmed the high accuracy and

sybil resilience of TrueTop.

92

Chapter 4

YOUR ACTIONS TELL WHERE YOU ARE: UNCOVERING TWITTER USERS

IN A METROPOLITAN AREA

4.1 Introduction

User privacy is arguably a major concern about Twitter. Specifically, user profiles

and tweets may contain sensitive information about life, work, health, hobbies, politi-

cal opinions, etc. Twitter currently offers little protection for user profiles and tweets

which are virtually visible to anyone with or without an account. 1 Consequently,

many users employ pseudonyms instead of real names in their profiles. In addition,

Twitter users often hide their home locations (location for short thereafter), which are

permanent and static city-level regions (e.g., Philadelphia) where most of their daily

activities occur. Specifically, they may either not indicate their locations or report

very general locations (e.g., state-level) in their profiles; they may not indicate their

locations in their tweets either. For example, less than 34% of Twitter users explic-

itly specify their locations in their profiles (84), only 16% of Twitter users indicate

city-level locations, and only 0.5% of tweets have a geo-tag (88).

There have been some efforts to infer a Twitter user’s hidden location. Content-

based methods (65; 33; 96; 88; 97) try to infer hidden locations based on geographic

hints such as city landmarks in tweets. For example, a user who frequently mentions

“Golden Bridge” in his tweets may indicate his location in the Bay Area. In contrast,

network-based methods (15; 100; 73; 149; 38) leverage the fact that geographically-

close people tend to form a connection or community in Online Social Networks

1Although Twitter allows a user to make his information visible to approved followers only, this
privacy enhancement is rarely used in practice.

93

(OSNs) (117), so a user’s location can be inferred from those of his online neighbors

(or neighbors’ neighbors, etc). Based on different estimation techniques, all these

efforts (65; 33; 96; 88; 97; 15; 100; 73; 149; 38) seek to address the same question:

how can we infer a Twitter user’s hidden location from all his location-related tweets

and/or OSN neighbors’ locations?

This chapter targets a different and more challenging problem: is it feasible to

efficiently discover the majority of Twitter users in any city-level metropolitan area

(A) without collaborating with Twitter? Since only 16% of Twitter users register

city-level locations(88), it is infeasible to tackle our problem by directly checking

users’ tweets and profiles. In addition, directly applying any prior solution (65; 33;

96; 88; 97; 15; 100; 73; 149; 38) would inevitably involve checking every (255 million)

Twitter user’s tweets, followers, and/or followees, thus leading to a prohibitive cost.

An affirmative answer to our target problem above would have significant posi-

tive and negative impacts. On the positive side, finding the majority of the users

in a specific area can not only benefit many applications such as local event detec-

tion and recommendation, business marketing, and emergency-alert dissemination,

but also offer a feasible way to sample Twitter to facilitate the research concerning

geographically related information. On the negative side, if an attacker can infer the

majority of the Twitter users in a specific area, he could easily combine the location

information with user tweets to better profile Twitter users who may or may not

use pseudonyms, thus breaching their privacy and subjecting them to many identity-

based attacks. Moreover, the Twitter users with exposed locations are vulnerable to

large-scale location-based or geo-targeted spam campaigns (124).

In this chapter, we propose LocInfer, a novel and lightweight solution to the above

problem for the first time in literature. The design of LocInfer is driven by two conjec-

tures. First, a small but nontrivial fraction of users (15.9% on average in our datasets)

94

have specified a credible location in the target area A in their personal profiles, each of

which is referred to as a seed user hereafter. Second, user communications in Twitter

exhibit strong geographic locality in the sense that the users in the same area tend to

interact more often than with those from outside. We confirm these two conjectures

through large-scale datasets involving four representative metropolitan areas in U.S.

Built upon these conjectures, LocInfer iteratively checks the immediate neighbors of

the seed set, and the users who have tight connections with the seed set become

new seeds and are added to the seed set. The final seed set contains the majority of

Twitter users in A with overwhelming probability. LocInfer is highly efficient because

only a small number of candidate users need to be checked in contrast to almost all

the Twitter users when the existing methods (65; 33; 96; 88; 97; 15; 100; 73; 149; 38)

are applied to our problem.

Our contributions can be summarized as follows.

• We motivate and formulate the problem of large-scale location inference, which

is challenging given that only a small fraction of Twitter users have specified a

credible city-level location in their personal profiles.

• We design LocInfer, a novel and lightweight solution that can uncover the ma-

jority of the Twitter users in a specific metropolitan area.

• We conduct extensive experiments to evaluate LocInfer using four large-scale

datasets. Our results show that LocInfer can successfully discover on average

86.6% of the users with 73.2% accuracy.

• We propose a countermeasure against LocInfer for the Twitter users worrying

about their location privacy and evaluate its effectiveness via simluations.

The rest of this chapter is organized as follows. Section 4.2 defines the problem.

95

Section 4.3 validates our two conjectures through four large-scale datasets. Section 4.4

details the LocInfer design. Section 4.5 evaluates LocInfer and our countermeasure.

Section 4.6 surveys the related work. Section 4.7 summarizes the chapter.

4.2 Problem Statement, Terms and Notation

We use a directed and weighted multigraph 2 to model the diverse communi-

cations between Twitter users. In Twitter, people can follow others without mutual

consent; they can mention others in their own tweets; they can also reply to or retweet

others’ tweets. We classify these communications into two categories: following and

interacting (retweeting, replying, and mentioning), denoted by symbols F and I,

respectively. Such diverse communications are modeled as a directed and weighted

multigraph G = 〈V,E〉, where each vertex v ∈ V represents a user. We refer to a

directed edge for the following type as a following edge and a directed edge for the

interacting type as an interacting edge. A following edge eFij ∈ E is formed when

user i followed j; we call user i a follower of j and j a followee of i. In contrast, an

interacting edge eIij ∈ E is formed when user i mentioned, replied to, or retweeted j

at least once; we call user i a responder of j and j an initiator of i. To model the

interaction strength, we define w(eIij), the weight of edge eIij, as the total number of

retweets, replies, and mentions from user i to j. For consistency, we also define the

weight of any following edge as one. We use NFI (u), NFO (u), NII (u), NIO(u) to repre-

sent u’s one-hop followers, followees, responders, and initiators, respectively. We also

define the one-hop neighbors of u as N(u) = NFI (u) ∪NFO (u) ∪NII (u) ∪NIO(u).

Large-Scale Location Inference. Given a Twitter multigraph G = 〈V,E〉 and a

target metropolitan area A, we aim to obtain a target user list U which contains the

majority of Twitter users in A without collaborating with Twitter.

2In a multigraph, two vertices may be connected by more than one edge.

96

Design goals. LocInfer is designed with the following goals.

• High coverage. The target user list U should cover the majority of Twitter users

in A. If we denote the actual Twitter users in A by U∗, the coverage can be

computed as |U ∩ U∗|/|U∗|.

• High accuracy 3 . The target users in U should be indeed located in A. The

accuracy can be computed as |U ∩ U∗|/|U |.

• Efficiency. LocInfer should only involve checking Twitter users proportional in

quantity to the population in A in contrast to existing methods (65; 33; 96; 88;

97; 15; 100; 73; 149; 38) which all need to check all the Twitter users. This

efficiency requirement is particularly important because without Twitter’s col-

laboration, the only free way to obtain the users’ information is via third-party

APIs, which is time-consum-

ing as Twitter has strict rate limits on APIs invoking (13). For example, an au-

thenticated user can only invoke the get-followers API 15 times per 15 minutes.

Hence if we invoke this API once for each of the 255 million Twitter users, it

will spend a single authenticated user about 485 years to obtain all the Twitter

users’ followers.

4.3 Conjectures Validation

As we mentioned in Section 4.1, LocInfer is built upon two important conjectures.

• Conjecture 1 : A small but nontrivial fraction of users have specified a credible

location in the target area A in their personal profiles.

3Note that coverage and accuracy correspond to the widely-used recall and precision, respectively.
In this chapter we use the coverage and accuracy to make the meaning more straightforward in the
context of user uncovering in an area.

97

Table 4.1: Seed Users in Four Metropolitan Areas in U.S.

Area A
Population

#Twitter users
#seed users #seeds with

(rank in U.S.) (over #Twitter users) ≥ 1M followers

Tucson (TS) 996,544 (57th) 150,478 28,161 (18.65%) 0

Philadelphia (PI) 6,034,678 (7th) 911,236 144,033 (15.9%) 3

Chicago (CI) 9,522,434 (3rd) 1,437,888 318,632 (22.21%) 11

Los Angeles (LA) 16,400,000 (2nd) 2,476,400 300,148 (12.12%) 174

• Conjecture 2 : User communications in Twitter exhibit strong geographic local-

ity in the sense that the users in the same area tend to communicate more often

than with those from outside.

In this section, we validate these two conjectures using four large-scale datasets.

4.3.1 Data Collection

We collect ground-truth Twitter users in different metropolitan areas by checking

the self-reported locations in their profiles, a methodology that has been used to

obtain the ground truth in (65; 33; 96; 88; 97; 15; 100; 73; 149; 38). Specifically,

we use the Twitter geo-search API designed to return the recent or popular tweets

in a specified geo-circle defined by latitude, longitude, and radius (13). For any

interested area A, we convert it into a geo-circle for the geo-search API, and we do

not differentiate A and its corresponding geo-circle hereafter. The geo-search API

returns the tweets from three types of users.

• Geo-tagged users : The users who recently published some tweets with a geo-tag

in A.

98

• Geo-profiled users : The users whose personal profiles containing a location in

A.

• Retweeting users : The users who recently retweeted some geo-tagged or geo-

profiled users’ tweets in A.

Among them, we only use the geo-profiled users to build our datasets, because retweet-

ing users are likely not in A, and geo-tagged users may have just traveled to some

places within the geo-circle instead of living there. Moreover, since the result of each

geo-search API invoking corresponds to a random sampling of the active Twitter

users, we keep invoking the geo-search API until no significantly more geo-profiled

users can be discovered.

The self-reported locations have been found reliable (38), but the results from the

geo-search API are still noisy for two reasons. First, the location descriptions in many

users’ profiles are ambiguous and arbitrary. For example, people living in Los Angeles

may specify their locations as “South California”, or “Los Angeles”, or “LA”, or just

“CA.” Second, the geo-search API often needs to covert a location description into a

longitude-latitude pair for comparison with the specified geo-circle. Such conversions

are often problematic and thus lead to wrong results. For example, when we searched

the users in San Francisco Bay Area, the geo-search API returned some users in other

places or even nonsense descriptions such as “somewhere you’re not” and “wherever

you not.”

We thus refine the geo-profiled users as follows. For each user, we further verify

whether his/her location description indeed contains a city name in A. For this

purpose, we first obtain the list of city names in A from the latest U.S. gazetteer data

(5) and then compare the location description with the list. If there is an intersection,

the user is considered a ground-truth user in A.

99

4.3.2 Datasets

Using the above method, we collect user data in four metropolitan areas of Tuscon

(Arizona), Philadelphia, Chicago, and Los Angeles. Our data collection ran from

January to June 2014. Table 4.1 summarizes the four datasets. As we can see, the

four populations vary from one million in TS to 16 millions in LA, from the not-so-

popular areas (e.g., TS) to popular areas (e.g., LA). Note that all the metropolitan

population information is from the U.S. Census Bureau.

4.3.3 Conjecture Validation

To validate the first conjecture above, we estimate the number of Twitter users

for each area according to the eMarketer report claiming that 15.1% of U.S. people

are using Twitter as of Feb. 2014 (50). As we can see from Table 4.1, the seed users

range from 12.12% in LA to 22.21% in CI with the average ratio of 15.9%. This result

is consistent with the measurement in (88) and implies that we have almost crawled

all the users who have specified their city-level locations in these areas.

To validate the second conjecture above, we first define three locality metrics. In

particular, for the multigraph G = 〈V,E〉 defined in Section 4.2, let V ′ denote any

subset of V . We define follower locality lfollower(V
′), followee locality

lfollowee(V
′), and initiator locality linitiator(V

′) as

lfollower(V
′) =

|NFI (V ′) ∩ V ′|
|NFI (V ′)|

, lfollowee(V
′) =

|NFO (V ′) ∩ V ′|
|NFO (V ′)|

,

and linitiator(V
′) =

w(NIO(V ′) ∩ V ′)
w(NIO(V ′))

,

(4.1)

respectively, where NFI (V ′), NFO (V ′), and NIO(V ′) represent the followers, followees,

and initiators of V ′, respectively, and w(·) represents the total weight of the corre-

sponding interacting edges.

We let V ′ equal the seed users in each area and then compute the corresponding

100

Table 4.2: Locality in Each Area. Each Element is Composed of Three Values,

Representing the Locality for the Seed Users in Each Area, the First Type of Random

User Set, and The Second Type of Random User Set, Respectively.

A lfollower(U) (%) lfollowee(U) (%) linitiator(U) (%)

TS 8.1 | 0.08|0.04 9.2 | 0.3 | 0.1 12.8 | 0.5 | 0.2

PI 4.9 | 0.4 | 0.2 8.4 | 1.5 | 0.6 14.9 | 2.7 | 1.2

CI 6.9 | 1.0 | 0.5 10.3| 3.3 | 1.3 16.9 | 5.2 | 2.6

LA 1.5 | 0.9 | 0.5 8.4 | 3.1 | 1.2 17.0 | 5.0 | 2.5

Table 4.3: Breaking Down the Initiator Locality by Three Types of Interactions.

A Replying (%) Retweeting (%) Mentioning (%)

TS 14.41 10.61 13.37

PI 14.05 12.95 16.99

CI 17.46 14.23 18.50

LA 15.43 15.44 19.05

locality. To do so, we crawl all the followers and followees of each seed user, and we

also crawl the latest 600 tweets of each seed user to extract their initiators. For the

comparison purpose, we build two types of random user sets. First, we merge the four

seed sets into a single set from which we randomly select the same number of users

as the seeds in each area. Second, we randomly select from the whole Twitter system

the same number of users as the seeds in each area and compute their corresponding

locality. We build 10 different user sets for both random user sets.

Table 4.2 shows the results of the locality analysis. We can see that the three

locality values of the seed users in each area are always much higher than those of the

101

TS PI CI LA
0

10

20

30

40

50

60

70

 Location

 A
v
e
ra

g
e
 L

o
c
a
l
N

e
ig

h
b
o
rs

Followers

Followees

Initiators

Figure 4.1: The Average Local Neighbors of the Seed Users.

random user sets. This result confirms our conjecture that physical proximity plays a

big role in enabling online communications in Twitter. Moreover, Table 4.2 shows a

higher percentage of a user’s initiators in the same area than that of his/her followees.

It is not surprising because a user may follow many people in different areas but often

interact with only a few selected followees. In addition, we can see that the followee

locality is much higher than the follower locality except in TS. The reason can be

explained as follows. A celebrity user such as @rihanna can easily attract millions of

followers from around the world, but she may only follow relatively fewer people. So

we can expect a higher percentage of her followees in the same area (Los Angeles)

than that of her followers. Since each of the areas except Tuscon has a large number

of celebrity users, the followee locality is much higher than the follower locality. In

contrast, Tuscon is a much smaller area with relatively few celebrity users, so we

can expect similar followee and follower locality. Table 4.3 also shows that mentions,

replies, and retweets contribute similarly to the initiator locality of each seed set, so

we do not distinguish them in the LocInfer design.

Finally, although interacting communications (replies, mentions, and retweets)

show much stronger locality than following communications, Fig. 4.1 shows that the

102

corresponding interacting edges (i.e., initiators) are much fewer than the following

edges (i.e., followers and followees), meaning that people interact less than they follow

others. Moreover, we also observe that people usually interact with the ones who they

follow or follow them. In particular, let us define the overlap between NIO(V ′) and

NFI (V ′) ∪NFO (V ′) for each area as

|NIO(V ′) ∩ (NFI (V ′) ∪NFO (V ′))|
|NIO(V ′)|

.

Our analysis shows that the average overlap for the four areas is 96.2%.

4.4 LocInfer

As stated before, our goal is to uncover the majority of Twitter users in an area

A. A naive solution is to use existing location inference methods (65; 33; 96; 88; 97;

15; 100; 73; 149; 38) for estimating the location of every Twitter user and then select

the ones in A. However, these methods are impratical for our problem. In particular,

they would require crawling the followers, the followees, and many tweets for all the

255 million active Twitter users. Since Twitter has strict rate limits on data crawling

(13), the crawling process for these methods will be time-consuming. In addition, the

network-based methods (15; 100; 73; 149; 38) need to store and process the edges of

the whole Twitter graph, thus leading to prohibitive storage and processing costs.

Now we present LocInfer, an efficient and effective three-step system to identify

the majority of users in A. As mentioned earlier, LocInfer is built upon two conjec-

tures which have been experimentally validated in Section 4.3. First, we can find a

nontrivial number (15.9% from our datasets) of users who have explicitly indicated

a location in A through their personal profiles. These users are referred to as seed

users (or seeds) in A and denoted by S. Second, user communications in Twitter

exhibit strong geographic locality in the sense that users in the same area tend to

103

have more intensive communications with each other in Twitter than with those from

outside. Based on these two conjectures, LocInfer first builds a seed set S (step 1

in Section 4.4.1) and then checks the one-hop neighbors of the seed set S, which

constitute a candidate set denoted by C (step 2 in Section 4.4.2). Because of non-

trivial seed set S and the strong geographic locality, C will cover the majority of

the users in A, but also include many users outside. Hence LocInfer chooses the

candidate users who have tight connections with S as new seeds and add them to

S, and this process continues until some termination conditions are met (step 3 in

Section 4.4.3). The final seed set S contains the majority of Twitter users in A with

overwhelming probability. LocInfer is highly efficient because it only checks a much

smaller set of Twitter users in contrast to all the Twitter users if existing methods

(65; 33; 96; 88; 97; 15; 100; 73; 149; 38) are applied.

We notice that many community structures (e.g., a group of people in different

locations with common interests or past experience like classmates and colleagues)

rather than the geographic community may also yield strong inter-connect-

ions. Hence LocInfer may include some users outside A in the candidate set C.

However, the impact of such outside users is minimal because LocInfer only selects

the users in the target area A as the seeds S and only chooses the target users who

have strong communications with S later.

4.4.1 Step 1: Finding Seed Users

The first step in LocInfer is to extract the seed users who are most certainly in

A. To that end, we use the same method as in Section 4.3 by invoking the Twitter

geo-search API to obtain the geo-profiled users and then refine them by checking their

location descriptions to build the seed set S in A.

It is possible that some people may specify the fake home locations in their profiles,

104

and it is infeasible to completely pinpoint and exclude such users. Fortunately, such

self-reported locations have been verified to be very reliable (38) and have been used

as the ground truth in (65; 33; 96; 88; 97; 15; 100; 73; 149; 38). Meanwhile, we may

accidentally exclude some users indeed in A, which is quite acceptable given our focus

on obtaining a reliable seed set in this step. We admit that more advanced methods

can be used for the seed searching and refinement, which are left for the future work.

4.4.2 Step 2: Finding Candidate Users

Based on the nontrivial number of seed users, the second step then is to construct

a candidate-user set C from the one-hop neighbors of S that potentially covers the

majority of Twitter users in A but is also much smaller than the set of all Twitter

users. Below we first discuss how we decide the candidate users in C and then

theoretically analyze the coverage of C.

Choosing C

We first build the candidate set C from the one-hop neighbors of S. The underlying

intuition is based on the two conjectures validated in Section 4.3. Specifically, The

second conjecture indicates that the users in the same geographic area tend to com-

municate more densely among themselves than to those from outside. On the one

hand, if a user has very limited communications to all the seed users in S which occu-

pies about 15.9% of the total users in A, with high probability he/she is not in A; on

the other hand, a user that is indeed in A is very likely to have direct communication

with some seeds. We therefore choose to build the candidate set C from the one-hop

neighbors of S, denoted as N(S).

Two details need further consideration. As defined in Section 4.2, each Twitter

user has four kinds of neighbors in G = 〈V,E〉: followers, followees, initiators, and

105

responders. Which neighbors should we choose for each seed user? We observe from

Fig. 4.1 that many Twitter users may follow a large number of other users, but

they tend to subsequently interact with relatively few followees. Since people usually

interact with the ones who they follow or follow them (with averagely 96.2% of overlap

as stated in Section 4.3) and C should cover as many users as possible in A, we consider

all the followers and followees of each seed user in this step. Moreover, since each

user in Twitter can follow arbitrary users without prior consent, the unidirectional

following relationship is not a reliable indicator of geographic closeness. To deal

with this issue, we propose to only select the candidate users to be the followers and

followees of each seed user in S with each having at least t followees and t followers

in S, where t is a system threshold.

More formally speaking, for each user u ∈ NFO (S) ∪NFI (S), we compute nFi (u) =

|NFI (u) ∩ S| and nFo (u) = |NFO (u) ∩ S|. If both nFi (u) and nFo (u) are no less than t,

user u is added to the candidate set C and ignored otherwise.

Alg. 2 implements the overall process. Specifically, we first create a followee

counter and a follower counter for each user in NFO (S) ∪ NFI (S). Then we traverse

the followee and follower list of each seed and increase the corresponding followee and

follower counters. If both the followee and follower counters exceed t, we choose the

user u as a candidate.

Coverage of C

The number of candidate users (i.e., |C|) is determined by both the number of seed

users (i.e., |S|) and the system parameter t. A natural question is whether C can

cover the majority of users in target area A. It is important because the new seeds

(or equivalently the target users) will be found only from C.

To analyze the coverage of C, we first define the following terms and notation.

106

Algorithm 2: Obtain the candidate set C by only checking the followee and

follower lists of the seed set S.
input : S,NFO (S), NFI (S), t

output: the candidate set C

1 C ← ∅; co[u]← 0,∀u ∈ NFO (S); ci[v]← 0,∀v ∈ NFI (S);

2 for u ∈ S do

3 co[v] + +,∀v ∈ NFO (u); ci[v] + +,∀v ∈ NFI (u);

4 end

5 for u ∈ NFO (S) do

6 if co[u] ≥ t and u ∈ NFI (S) and ci[u] ≥ t then

7 C ← C + {u};

8 end

9 end

10 return C.

We call users i and j mutual followers if they follow each other. Let GA = 〈VA, EA〉

be a subgraph of the Twitter multigraph G = 〈V,E〉, where VA ⊆ V is the set of the

Twitter users in the target area A, and EA ⊆ E is the set of the directed following

edges among the users in VA. Consider a seed set S ⊆ VA with s = |S| = α|VA|

users, where α ∈ (0, 1]. Let N t(S) denote the set of the followers and followees of S,

each having at least t followers and t followees in S, where t is the system threshold

stated before. The coverage ratio of C is defined as r(t) = |Nt(S)∪S|
|VA|

. We then have

the following theoretical results about the coverage of C given |S| and t.

Theorem 4.4.1. Assume that each user in VA has on average dm mutual followers in

VA. When |VA| is large enough, the expected coverage ratio is r(t) ≥ 1− e−αdm(1−α)∑t−1
i=0

(
s
i

)
(p
1−p)i, where p = dm

|VA|−1
.

107

Proof. We first construct an undirected graph G′ = 〈VA, E ′〉, where an edge e′ij ∈ E ′

is formed if and only if users i and j are mutual followers. Let N
′t(S) be the set of

neighbors of S in G′, each having at least t neighbors in S. We proceed to define the

coverage of S in G′ as r′(t) = |N ′t(S) ∪ S|/|VA|.

We now compute r′(t). Since each user has on average dm edges in E ′, the prob-

ability of one user connecting to any other user is p = dm
|VA|−1

. Moreover, since there

are s = α|VA| seed users, the probability of any non-seed node u connecting to less

than t seed users in G′ is given by

ρ =
t−1∑
i=0

(
s

i

)
pi(1− p)s−i = (1− p)s

t−1∑
i=0

(
s

i

)
(

p

1− p
)i . (4.2)

When the number of users in VA is large, we have

lim|VA|→+∞(1− p)s = lim|VA|→+∞(1− dm/|VA|)α|VA|

= e−αdm .

Since there are |VA|−s non-seed users, the expected number of non-seed users connect-

ing to t or more seeds in S can be computed as (|VA|− s)(1− ρ) = |VA|(1−α)(1− ρ).

When |VA| is large, we have

r′(t) = |N ′t(S) ∪ S|/|VA|

= 1− (1− α)ρ

≈ 1− (1− α)e−αdm
t−1∑
i=0

(
s

i

)
(

p

1− p
)i.

Since each edge in E ′ corresponds to two directed edges in E, all the users in

N
′t(S) must belong to N t(S). On the other hand, a user in N t(S) may not appear

in N
′t(S). For example, consider a user who has exactly t followers and t followees in

S in graph G, where none of his followers and followees are the same. Then this user

is an isolated vertex in G′, and he is certainly in N t(S) but not in N
′t(S). Therefore,

we have N
′t(S) ⊆ N t(S) and r′(t) ≤ r(t), and the theorem is proved.

108

Corollary 4.4.1. r(t = 1) ≥ 1− e−αdm(1− α).

Corollary 4.4.2. r(t = 2) ≥ 1− e−αdm(1− α)(1 + αdm).

Since |VA| is often large in practice, Theorem 4.4.1 indicates that the coverage

ratio r(t) approaches 1 when αdm is large enough. Moreover, the choice of t involves

a tradeoff between the crawling cost and the coverage. Specifically, the larger the t,

the fewer the candidates in C, the smaller the crawling cost, the more likely to miss

some users in A (i.e., the lower coverage), and vice versa. The size of S also affects

the choice of t. On the one hand, if S constitutes a relatively large portion of the

users in A (say, α = 30%), it may be safe to use larger t because many users in A

are more likely to have more followees and followers in S. On the other hand, if S

constitutes a relatively small portion of the users in A (say, α = 10%), it may be safe

to use smaller t to avoid excluding too many users in A.

Here we illustrate how many seeds are needed to achieve a nearly 100% coverage.

Assume that each user in A has on average 15 mutual followers (i.e., dm = 15).

According to Corollaries 4.4.1 and 4.4.2, when t = 1, 20% of the users as seeds can

cover 96.02% of the target users in A, and when t = 2, 20% and 30% of the users

as seeds can cover 84.07% and 95.72% of the users in A, respectively. Similarly, if

dm = 30, only 10% and 15% of the users as seeds can cover 95.52% and 95.99% of the

users for t = 1 and t = 2, respectively. These results indicate that when each user

has sufficient mutual followers in A, the followers and followees of a small number of

seeds can cover the majority of the target users in A.

4.4.3 Step 3: Finding Target Users U

Although the candidate set C covers nearly all the users in A for proper t, it may

contain many users not in A who nevertheless have at least t followees and also t

109

followers in the seed set S. For example, social butterflies (151) or social capitalists

(59) have been reported to automatically follow back whoever follows them, and users

may also follow each other due to reciprocity (151; 59). We thus design the next step

to identify the target user set U in A from C using both the following and interacting

connections among the users.

Our key observation as stated is that each target user is very likely to demonstrate

significant locality with the seed user set S. In other words, we expect that the target

users form a strong local community with the seed users. From the initial seed set S,

we iteratively check the candidate users in C, and the candidate who has the highest

locality value with the seeds becomes a new seed and is added to S. The process

iterates until certain conditions are met.

How should we compute the locality of Twitter users with diverse communica-

tions? Inspired by the Eq. (4.1), we consider three types of locality for any candidate

user u ∈ C: follower locality lfollower(u), followee locality lfollowee(u), and initiator

locality linitiator(u), which are computed as

lfollower(u) =
|NFI (u) ∩ S|
|NFI (u)|

, lfollowee(u) =
|NFO (u) ∩ S|
|NFO (u)|

,

and linitiator(u) =
w(NIO(u) ∩ S)

w(NIO(u))
,

(4.3)

where NFI (u), NFO (u), and NIO(u) are u’s followers, followees, and initiators, respec-

tively, and w(·) denotes the total weight of the corresponding interacting edges.

We also consider two methods to integrate the three types of locality. First, we

choose the maximum one among them as u’s locality, i.e.,

l(u) = max{lfollower(u), lfollowee(u), linitiator(u)} . (4.4)

Second, their weighted combination is used as the locality of u, i.e.,

l(u) = ε1lfollower(u) + ε2lfollowee(u) + ε3linitiator(u) , (4.5)

110

where 0 ≤ ε1, ε2, ε3 ≤ 1 and ε1 + ε2 + ε3 = 1. In this report, we choose each of them

to be 1/3 for simplicity and leave other possible assignments as the future work.

Finally, we iteratively find the target users based on one of their five types of

locality with regard to the seed set S. In each iteration, we compute the locality for

each candidate u ∈ C according to Eq. (4.3), Eq. (4.4), or Eq. (4.5). The candidate

with the highest locality is removed from C and added to S as a new seed, as this

user contributes most to the tightness of the community around S. In addition, the

follower, followee, and/or initiator locality values of the remaining candidates in C

need be updated in every iteration. Here we just use the followee locality to illustrate

the updating operation. Let l
(m)
followee(u) denote the followee locality for candidate u

in iteration m ≥ 0, where l(0)(u) can be computed by using the initial seeds in S.

Assuming that u∗ has been chosen as a new seed in iteration m, we update the followee

locality for candidate u as

l(m+1)(u) =

 l(m)(u) + 1/|NFO (u)| if u∗ ∈ NFO (u),

l(m)(u) o.w.
(4.6)

Follower and initiator locality can be updated similarly, and we may need to update

the overall locality according to Eq. (4.4) or Eq. (4.5). The iteration terminates

when the seed set S contains a desired number of users in A, denoted by τA. Then

the sought target users correspond to all the users in A. The complete process is

summarized in Alg. 3, which is implemented using a max-priority queue (39).

The termination threshold τA can be chosen in two ways. First, we can set τA as

the estimated number of Twitter users in A, e.g., about 15.1% of the population in A

if A is in U.S. (50). Second, τA can be chosen according to the level of confidence we

desire. In particular, our algorithm essentially ranks all the candidate users according

to our confidence about their locations in A. The later a candidate user is added to

U , the lower confidence we have that he is indeed in A. Therefore, if we want to

111

Algorithm 3: Identify target users in A from C.

input : S,C, τA

output: U , i.e., the users in A

1 U ← S;

2 Compute l(u),∀u ∈ C, according to Eq. (4.3), (4.4) or (4.5);

3 Q← ∅;

4 for u ∈ C do

5 INSERT(Q, u);

6 while |U | < τA do

7 u∗ ← EXTRAC–MAX(Q);

8 U ← U + {u∗}, S ← S + {u∗};

9 for u ∈ NFI (u∗) do

10 INCREASE–KEY(Q, u, l(u) + 1/|NFO (u)|);

11 return U .

obtain a set of target users in A with high confidence, a small τA should be used; if

we want to cover more users in A, a larger τA is suitable.

We now analyze the complexity of Alg. 3. In Lines 4-5, we build a max-priority

queueQ based on each candidate’s locality value, of which the complexity isO(|C| log |C|).

The loop beginning from Line 6 is used to find the target user one at a time. In each

iteration, we extract the maximum value from the priority queue Q in Line 7, set it

as a new seed in Line 8, and update the locality value of all its followers in Lines 9-10.

The complexity of Line 6-10 is O(τAd log(|C|)), where d is the average degree in A.

Hence the overall complexity of Alg. 3 is O((|C|+ τAd) log(|C|)).

One may wonder why we do not add more candidates to C once a candidate

is added as a new seed to S. We have shown in Section 4.4.2 that the candidate

112

users discovered through the initial seed set S cover the majority of users in A with

overwhelming probability. It is thus unlikely that we can identify more candidate

users from newly identified seeds, which has been validated by our simulations in

Section 4.5.3. We thus choose not to add more candidates in each iteration.

4.4.4 Cost Analysis

We now analyze the cost of LocInfer, which consists of the crawling cost and

computation cost, and briefly compare it with the existing methods.

We first analyze the crawling cost of LocInfer, which is important given the tight

rate limitations Twitter enforces on data crawling. First, Step 1 in LocInfer involves

invoking the Twitter geo-search API continuously to obtain the initial seed set S and

needs to crawl some geo-tagged users’ tweets. Second, Step 2 requires crawling the

followees and followers of each seed user in S. Finally, Step 3 needs to crawl the

followees, followers, and initiators of each candidate user in C. Recall that d denotes

the average number of followers and followees each seed user has. Our datasets in

Section 4.3 show that d is approximately 600. It has also been reported that 15.1%

U.S. people use Twitter (50) and that 15.9% of Twitter users report city-level locations

and become seeds in LocInfer. In LocInfer, a user is chosen as a candidate if he has

t followers and t followees in S. So we can expect that the candidate set size |C|

is much smaller than d|S|, i.e., 14.4 times the population in the target area A. In

contrast, all previous (potential) solutions (65; 33; 96; 88; 97; 15; 100; 73; 149; 38)

involve crawling all the Twitter users. Thus LocInfer has a much smaller crawling

cost, which makes it practical.

The computation cost of LocInfer is dominated by the third step with the com-

plexity of Alg. 3 being O((|C| + τAd) log(|C|)), where d is the average neighbors of

each user and τA is the number of target users in A.

113

4.4.5 Countermeasure

LocInfer aims to discover the majority of users in any target area even if many of

them do not disclose their locations explicitly in their personal profiles. We propose

a simple countermeasure here to alleviate the possible concerns of some sensitive

users about their location privacy. Since LocInfer discovers a user’s location based

on his tight connections with other users in the same area, the user can effectively

hide his home location by following, retweeting, mentioning, and replying Twitter

users outside his home area on a regular basis. This strategy is meaningful because

people can follow or interact with others who are in different areas but share the same

interests. For example, a user in New York City and the other in Los Angeles may

interact in Twitter because they were university classmates in Dallas or knew each

other in a concert. The efficacy of this countermeasure is evaluated in Section 4.5.5.

4.5 Performance Evaluation

In this section, we thoroughly evaluate LocInfer. As stated before, this chapter

targets a different problem with existing work (65; 33; 96; 88; 97; 15; 100; 73; 149; 38),

and hence we will not compare LocInfer with them head to head but could incorporate

with them in our future work.

4.5.1 Methodology

To evaluate LocInfer, we first need build a testing multigraph G = 〈V,E〉 formed

by both users known to be and not be in a target area A, where one challenge is that

we cannot directly determine all the Twitter users in A.

To tackle this challenge, we adopt the method used by existing work (65; 33; 96;

88; 97; 15; 100; 73; 149; 38). Specifically, since the self-reported locations have been

114

found reliable (38), for each area A in Table 4.1, we treat all the seed users in S

discovered in the first step as the positive ground truth (i.e., they are indeed in A)

and randomly partition S into a seed subset S of size α|S| and a testing subset T of

size (1− α)|S|.

For the negative ground truth, we check the followers and followees of S and

record the set of users who have specified a location outside A and randomly choose

β fraction of these users, where β is set as the ratio of seed users over the estimated

number of Twitter users in A, as shown in the fourth column of Table 4.1. We denote

by Θ the resulting user set and let V = S ∪ Θ. We finally compute edges among

all the users in V according to their followings and interactions by analyzing their

followers, followees, and the latest 600 tweets.

We then apply LocInfer to the testing multigraph G. Specifically, we first use S as

the seed set and apply Alg. 2 to generate the candidate set C. We then apply Alg. 3

to C to generate the target user set U by choosing a τA. Following the definitions in

Section 4.2, the coverage can be computed as |U ∩ S|/|S|, and the accuracy can be

computed as |U ∩ S|/|U | (|U | = τA).

Unless stated otherwise, we choose t = 2 when building the candidate set C with

Alg. 2 for LA and t = 1 for all other three datasets, and set α = 0.159, the average

ratio for the four datasets in Table 4.1. The testing multigraphs are summarized in

Table 4.4.

4.5.2 Accuracy

We first evaluate the accuracy of LocInfer. We compute five locality values for

each user, including follower locality, followee locality, initiator locality, and the two

locality values defined in Eq. (4.4) and Eq. (4.5), respectively.

Fig. 4.2 shows the accuracy of LocInfer for the four datasets, where α = |S|/|S| =

115

Table 4.4: The Testing Multigraphs for the Evaluation. (α = 0.159)

A |S| |S| |T | β |Θ|

TS 28,161 4,478 23,683 18.65% 162,446

PI 144,033 22,901 121,132 15.9% 630,321

CI 318,632 50,662 267,970 22.21% 1,529,431

LA 300,148 47,724 252,424 12.12% 710,085

LA PI TS CI
0

0.2

0.4

0.6

0.8

 Location

A
c
c
u
ra

c
y

Followers

Followees

Initiators

Combined 1

Combined 2

Figure 4.2: The Accuracy of LocInfer.

0.159 and τA = |S|. We can see that the five locality metrics all lead to high ac-

curacy in each area, and initiator locality has the worst performance among them.

Specifically, the average accuracy of four datasets for each locality are 73.2%, 72.6%,

62.3%, 72.4%, 71.9%, respectively. The reason is that initiator locality depends on

interacting edges (corresponding to replies, mentions, and retweets) which are much

sparser than following edges in the directed Twitter multigraph as shown in Fig. 4.1.

Therefore, if many users in A only follow many people but do not interact with them

subsequently, they may be reachable from seed users through following edges but not

from interacting edges. We will show the coverage for different locality metrics in

the following Section 4.5.3. Moreover, the locality defined in Eq. (4.4) and Eq. (4.5)

116

20 40 60 80 100
0

0.5

1

Bin index

A
c
c
u

ra
c
y
 i
n

 e
a

c
h

 b
in

Followers
Followees
Initiators
Combined 1
Combined 2

(a) LA

20 40 60 80 100
0

0.5

1

Bin index

A
c
c
u

ra
c
y
 i
n

 e
a

c
h

 b
in

Followers
Followees
Initiators
Combined 1
Combined 2

(b) PI

20 40 60 80 100
0

0.5

1

Bin index

A
c
c
u

ra
c
y
 i
n

 e
a

c
h

 b
in

Followers
Followees
Initiators
Combined 1
Combined 2

(c) TS

20 40 60 80 100
0

0.5

1

Bin index

A
c
c
u

ra
c
y
 i
n

 e
a

c
h

 b
in

Followers
Followees
Initiators
Combined 1
Combined 2

(d) CI

Figure 4.3: Detailed Accuracy Illustration.

have nearly the same accuracy with both the follower and followee locality. This

is expected because about 96.2% of the seed set’s initiator neighbors are from their

followers or followees, as indicated in Section 4.3.

To shed more light on the accuracy of LocInfer, we set τA = |C| so that U = C∪S

when Alg. 2 terminates, i.e., every candidate user is eventually added into S. Let U ′

denote the newly discovered users (may not in A), i.e., U ′ = C. We partition U ′ into

100 bins of equal size |U ′|/100 according to the order they are added, where the bins

of smaller indexes contain the users discovered earlier. Let xi denote the number of

positive ground-truth users in the i-th bin. Fig. 4.3 shows the accuracy of the i-th

117

0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

α

A
c
c
u
ra

c
y

Followers
Combined 1
Combined 2
Followees
Initiators

(a) TS

0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

0.2

0.4

0.6

0.8

1

α

A
c
c
u
ra

c
y

Followers
Combined 1
Combined 2
Followees
Initiators

(b) PI

Figure 4.4: The Impact of α.

bin, which is defined as the ratio of the number of positive ground-truth users in the

i-th bin and the number of users in each bin and is computed as 100xi/|U ′|. We

can see that the accuracy in each bin decreases as the bin index increases, which is

expected, as the later the users are added to U ′, the less likely they are indeed located

in A.

Fig. 4.4 shows the impact of α = |S|/|S| on the accuracy of LocInfer. As expected,

the accuracy under all locality metrics increases as α increases. The reason is that the

larger the α, the more seeds, and the easier the target users in A can be discovered.

The downside is that more seeds lead to a larger candidate set and thus higher crawling

and computational cost, as Alg. 2 needs to check all the neighbors of the seeds.

Fig. 4.5 shows the impact of t on the accuracy by varying t from one to six.

Specifically, Fig. 4.5a shows the accuracy for four areas using the followee locality,

while Fig. 4.5b shows the accuracy for different locality metrics by using the PI

dataset. Both figures show the accuracy decreases as t increases. This is expected

118

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

t

A
c
c
u
ra

c
y

PI
TS
LA
CI

(a) For different locations.

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

t

A
c
c
u
ra

c
y

Followers
Combined 1
Combined 2
Followees
Initiators

(b) For different localities.

Figure 4.5: The Impact of t.

because increasing t will result in the decrease in the size of candidate set and hence

miss more users in the target user list who have no chance to appear in the candidate

set. However, there is a tradeoff between the accuracy and cost because smaller

candidate set will also bring the lower crawling and computational cost.

4.5.3 Coverage

Fig. 4.6 shows the coverage of LocInfer when α = 0.159 with the desired number

of target users (i.e., τA = |U |), varying from zero to the whole candidate set size |C|.

We use both the followee and follower locality in this experiment. As expected, the

larger τA, the more users in T contained in U , the higher coverage, and vice versa.

When we set τA = |C|, the average coverage of these four locations by using followee,

follower, and initiator locality is equal to 86.3%, 86.6%, and 79.7%, respectively. As

stated, since the interacting edges (corresponding to replies, mentions, and retweets)

are much sparser than following edges in the directed Twitter multigraph as shown

in Fig. 4.1, the initiator locality has less coverage than the followee and follower

119

0 50 100
0

0.2

0.4

0.6

0.8

1

τ
A
/|C| (%)

C
o

v
e

ra
g

e
 &

 A
c
c
u

ra
c
y

(a) Followees

0 50 100
0

0.2

0.4

0.6

0.8

1

τ
A
/|C| (%)

C
o

v
e

ra
g

e
 &

 A
c
c
u

ra
c
y

(b) Initiators

Figure 4.6: The Tradeoff Between the Coverage and Accuracy. The Solid and Dash

Curves are the Coverage and Accuracy; the Marks �,4, ◦,× Represent TS, PI, CI,

and LA, Respectively.

locality. Moreover, the average coverage by using the follower or followee locality in

Fig. 4.6 is consistent with Corollary 4.4.1. Specifically, the average number of mutual

followers dm for four datasets is 7.8, 9.0, 11.6, and 11.6, respectively. According to

Corollary 4.4.1, when α = 0.159, r(t = 1) ≥ 82.3% which coincides with our results.

4.5.4 Accuracy and Coverage Tradeoff

Fig. 4.6 also shows the anticipated tradeoff between the coverage and accuracy.

As we can see, the larger τA, the more the positive ground-truth users will be added

to U , resulting in higher coverage. However, a larger τA will also introduce negative

ground-truth users into U , resulting in lower accuracy. This tradeoff could guide us

to choose the parameter τA. On the one hand, if one desires higher coverage, a large

termination threshold τA should be used, but it is possible that many users in U may

be not indeed in A. On the other hand, if one wants to be certain that the users

120

0 50 100
0

0.2

0.4

0.6

0.8

Camouflage edges per testing user

A
c
c
u

ra
c
y

TS
PI
LA
CI

(a) Followees

0 50 100
0

0.2

0.4

0.6

0.8

Camouflage edges per testing user

A
c
c
u

ra
c
y

TS
PI
LA
CI

(b) Followers

Figure 4.7: Countermeasure Efficacy.

discovered by LocInfer are most likely in A, a smaller τA should be used at the cost

of possibly missing some users indeed in A.

4.5.5 Effectiveness of Countermeasure

To evaluate the efficacy of this countermeasure, we let each user in the testing set

T in each area additionally follow or be followed by a certain number of users from Θ

who are not in A, and we refer to those following edges as camouflage edges. Fig. 4.7

shows the accuracy result under this countermeasure. As we can see, the accuracy

of LocInfer decreases as the number of camouflage edges increases, highlighting the

efficacy of the countermeasure. Besides adding random following edges, a user can

also retweet, mention, and reply to random users on a regular basis to counteract

LocInfer, which is expected to yield the similar results as these interactions can also

decrease the geographic locality.

121

4.6 Related Work

In this section, we briefly present the existing work mostly related to this chapter.

Inferring a Twitter user’s hidden location has been widely studied in the com-

munity, which can be categorized as contented-based and network-based methods.

Content-based methods (65; 33; 96; 97) try to infer the user’s location by his tweets.

For example, Cheng et al. (33) proposed a probabilistic framework to estimate a

Twitter user’s location based on his tweets, resulting in placing 51% of Twitter users

within 100 miles of their home locations. Mahmud et al. (97) further improved this

result to 64% for city-level location inference. Hecht et al. (65) thoroughly studied

the location profiles for the Twitter users and found that 34% of the users either left

them empty or just non-geographic information. They also inferred the user’s country

and state information by checking their tweets. Network-based methods try to esti-

mate a Twitter user’s locations by his neighbors (15; 100; 73; 149; 38). Jurgens (73)

aimed to infer all the users’ location by building a global networks and then propa-

gating location assignments from several seeds. Yamaguchi et al. (149) built several

distributed landmarks and then inferred a user’s location based on the connections

with them. Compton et al. (38) inferred the locations of all the users in Twitter by

minimizing their distances with the labelled users. Moreover, Li et al. (88) combined

the content and network information to obtain the more accurate estimation. All

these schemes seek to address the same question: how can we infer a user’s hidden

location from all his location-related tweets and/or neighbors’ locations? This report

targets a different problem: could we discover all or the majority of Twitter users in a

metropolitan area? Directly adopting these existing methods to address our problem

will result in scanning the whole Twitter network. Moreover, the accuracy of LocInfer

outperforms the state of the art in (97).

122

This chapter is also related to privacy disclosure and protection in OSNs in general.

Li et al. (87) used the neighbors’ locations to infer the location in the emerging

location-based social networks. Sun et al. (127) protected the location privacy on

the social crowdsourcing networks. Mao et al. (98) used the tweets to detect the

Twitter users’ situational leak such as vacation status, drunk status, and medical

conditions. Dey et al. (43) leveraged the information from neighbors to estimate the

age of Facebook users. Mislove et al. (102) also used the local connections around the

Facebook users to infer their hidden attributes such as major, college, and political

view. Our work is complementary to these work and also highlights that current

OSNs have emerged as an arguable threat to users’ privacy.

4.7 Summary

This chapter presented LocInfer, a novel system that is able to discover the major-

ity of Twitter users in any geographic area. Detailed experiments confirmed the high

efficacy and efficiency of LocInfer. We also proposed a countermeasure to hide the

locations of sensitive users from LocInfer and evaluated its efficacy with experiments

driven by real datasets.

123

Chapter 5

YOUR AGE IS NO SECRET: INFERRING MICROBLOGGERS’ AGES VIA

CONTENT AND INTERACTION ANALYSIS

5.1 Introduction

Age information is much scarcer in microblogging systems than in traditional

online social networks (OSNs). In a traditional OSN such as Facebook or LinkedIn,

the users aim to maintain their personal identities and social connections with friends,

so their personal profiles often contain true birthdate, school finishing/enrollment

time, and other sensitive information, which can be directly used to infer accurate user

ages (43). As more open social-networking platforms, however, microblogging systems

are more informal than traditional OSNs in terms of maintaining social identities such

that their user profiles often have no specific age-related information.

Age information in microblogging systems have important applications in both

positive and negative ways. As an example for the positive aspect, the ability to

select a group of users in the specific age range can enable numerous social and health

studies such as investigating the diet habits of the college students between 18 and 22

years old and monitoring the workout habit of elderly or middle-aged people. The age

information is also useful for cost-effective business marketing. For example, to launch

a viral marketing campaign for a new wearable device via Twitter, a known strategy

is for the marketer to seed the product with a few selected influential users from 30 to

50 years old who can potentially influence a disproportionately large number of others

and also quickly trigger a cascade of influence (160). As an example for the negative

aspect, being able to infer the age and other latent attributes based on the users’

124

public information such as tweets can help the adversary better profile the users for

planning more advanced attacks such as spam campaigns or phishing attacks aiming

at the elderly.

Accurate age inference is still an open challenge in microblogging systems due to

three reasons. First, as stated before, the age information in microblogging systems is

scarce. The microblogging service provider such as Twitter offers no explicit channel

for users to indicate their age information. Therefore, existing methods that inferring

a user’s personal attributes directly from his/her online social neighbors’ (102; 43; 90)

are inapplicable because the neighbors’ age information is also missing. Second,

the microblogging messages (microblogs for short) posted by the users are highly

unstructured, noisy, and massive. For example, each tweet in Twitter is composed

of at most 140 characters, and hence microbloggers have created various slang and

abbreviations to express their feelings and opinions, such as “wish4u a gr8 day”

meaning “wish for you a great day.” There are about 500M tweets per day, and each

user is allowed to send up to 1000 tweets per day. These constrains make traditional

text analysis for regular documents inapplicable in our context (67). Finally, the

content information of the microbloggers is connected by online interactions such as

following and retweeting. Traditional content analysis treating each user’s content

information independently fails to explore such rich online interactions.

In this chapter, we propose a new framework to infer microbloggers’ ages by seam-

lessly integrating the content and interaction information on microblogging systems.

Our key idea is driven by the presence of homophily, which has been discovered in

many social studies (156). In our context, homophily refers to the tendency of a

microblogger to associate and bond with similar others. For example, two colleague

alumni in the same age group would be more inclined to follow each other in mi-

croblogging systems. In addition, the microbloggers with more intensive online inter-

125

actions are very likely to have more similar content information in their microblogs.

To fully leverage the presence of homophily in microblogging systems, this chapter

aims to answer two critical questions. First, how can we model both the content

and interaction information in microblogging systems? Second, how can we effec-

tively combine the content and interaction information together to accurately infer a

microblogger’s age?

Our contributions are summarized as follows.

• We motivate and formally define the age inference problem in microblogging

systems with both content and interaction information.

• We propose MAIF, a unified framework to model and seamlessly integrate both

the content and interaction information by considering the homophily of the

content information among connected microbloggers.

• We thoroughly evaluate the proposed framework on a real-world dataset with

54,879 Twitter users, the largest in the community. Our results show that MAIF

can achieve up to 81.38% inference accuracy and outperforms the state of the

art by 9.15%.

• We outline some countermeasures for those wishing to preserve age privacy if

our system were in place.

The rest of this chapter is organized as follows. Section 5.2 introduces the back-

ground and defines the problem. Section 5.3 details the age inference framework.

Section 6.4 evaluates the proposed framework. Section 6.5 surveys the related work.

Section 6.6 summarizes this chapter and future work.

126

5.2 Background and Problem Statement

In this chapter, we use Twitter as a representative microblogging system to il-

lustrate our proposed framework. In what follows, we briefly introduce Twitter and

then formally define the age inference problem.

After registering an account in Twitter, a user can post text-based microblogging

messages of up to 140 characters, known as tweets. S/he can also retweet, reply to,

mark favorite any other public Twitter user’s tweets. The user can also mention

anyone else in the tweet by @someone. Unlike Facebook-like OSNs, the social rela-

tionships in Twitter are unidirectional by users following others. If user A follows

user B, A is B’s follower, and B is A’s followee. In this chapter, we call A and B are

friends if and only if A and B follow each other.

In this chapter, we are interested in classifying a user into one of c predefined

age groups, which are further defined according to a widely-used adult development

model (86) in Section 5.4.1. We do not want to infer the user’s exact age for two

main reasons. First, we observed that the majority of commercial advertisements and

online surveys focus on the users of a specific age group. Hence our framework can

well satisfy the requirements of such important applications. Second, there are no

enough labeled users to infer exact ages. Nevertheless, our framework is flexible and

extensible to infer the exact age by having one group per age as long as there are

sufficient labeled users.

We assume that there is a set of labeled users in Twitter with explicit age infor-

mation specified through tweets or other sources. As stated before, labeled users in

microblogging systems are scarce. To tackle this challenge, we design a novel method

to collect sufficient labeled users for building and evaluating our proposed framework.

The details for labeled user collection are postponed to Section 5.3.1.

127

Problem Formulation. We formally model the microblogger’s age inference

problem as follows. Let U denote a set of n labeled users, UF ⊆ U denote the union

of each labeled user’s friends in U , Xu represent the microblogging messages of each

user u ∈ U in the past year from the same given date, and Y ∈ Rn×c be an age-label

matrix in which c is the number of classes, and Yi,j is equal to 1 if user i is in age

group j and 0 otherwise. We aim to build a classifier W to automatically assign the

age labels for unknown users according to their microblogging messages. Here we

leverage online interaction information (if there is) to train the classifier but do not

need it for labeling unknown users, which is critical for the usability of the framework

because the labeled users are scarce and so for the interactions between the unknown

and labeled users.

5.3 Microbloggers’ Age Inference Framework

As mentioned before, it is very challenging to infer the age information of Twitter

users because of the tweets’ unstructured, noisy, and massive nature as well as the

scarcity of labeled users in Twitter. In this section, we first conduct an analysis of a

dataset which is crawled via a novel method, and the analysis motivates the design

of our microblogger’s age inference framework (MAIF for short). Then we present a

content metric to model each user u’s tweet set Xu in Section 5.3.2. Next, we adopt

a sparse representation method to model the content information for age inference in

Section 5.3.3 and then use community structure to model the interaction information

in Section 5.3.4. Finally, we integrate the content and interaction information to

formulate the age inference problem as a convex optimization problem in Section 5.3.5

and then present our solution in Section 5.3.6.

128

5.3.1 Data Crawling and Analysis

We design a method to crawl the ground-truth labeled users. Inspired by (156; 90),

we found that many users like to send their birthday greetings to their friends by

posting a tweet containing two parts: a phrase of “happy yth birthday” where y is

the age of the friend, and a mentioned user who is likely to be the friend’s Twitter

name. For example, user A has posted a tweet “Happy 24th Birthday to my best

friend @B.” It is clear that user B is 24 years old now. We then use Twitter’s

Streaming API to record all the tweets which contain one of the keywords “happy

yth birthday” with y ranging from 14 to 70. Since the tweets are noisy, we use the

following tricks to refine the collected tweets. First, we only select the tweets which

mention only one person because it is very difficult to determine which user has the

age information if more than one user have been mentioned. Moreover, if the tweet

sender and the mentioned user are not friends, the tweet is excluded. This trick is to

deal with the cases that the sender may just mention and require a celebrity to greet

the sender’s friend (e.g., an ordinary person, not mentioned). Since our framework

relies on credible interactions among the users, such tweets and the corresponding

users should not be considered. Finally, each user mentioned in the remaining tweets

is assigned an age label y from the tweet, and we check the labeled users manually

to exclude the users who are obviously not at the labeled age. The readers can check

(77) for more details on how to crawl and analyze the Twitter system.

Based on the above method, we crawled the largest age-based ground-truth Twit-

ter dataset in the community which is composed of 54,879 labeled users, each user’s la-

beled friends, and each user’s tweets from June 1, 2014 to May 30, 2015. Fig. 5.1 shows

the age distribution of our dataset, which is consistent with the result in (156; 90).

As we can see, 88.06% of labeled users are aged below 24, which is expected because

129

Age

0 20 40 60 80

U
s
e

rs

×10
4

0

0.5

1

1.5

2

2.5

Figure 5.1: The Age Distribution in the Ground-truth Dataset.

young people are more likely to explicitly express their greetings using the social me-

dia. We notice that the dataset is biased toward young people, as Pew shows that

47% of Twitter users are older than 30 years old (46). However, the datasets with

the similar distribution have been used in many previous work (156; 90), and it is

still valuable and reliable for motivating our system design. We will also evaluate the

impact of the biased dataset on system performance in Section 6.4.

Fig. 5.2 shows the generation gap (61) in terms of the word usage. Specifically,

we selected six keywords, “home”, “hate”, “support”, “look forward”, “high school”,

“hard work”, and check how many users at each specific age have used them in their

tweet corpus. We can see that people with different ages have different keyword usage

patterns. For example, users aged from 18 to 21 increase the usage of “home” because

they might leave home for colleges; older people are less likely to use “hate” because

they are more mature, but they are more likely to use “hard work” because they are

highly engaged in the professional work; etc.

Fig. 5.3 and Fig. 5.4 demonstrate the social homophily in Twitter. Specifically, we

first investigate the similarity in the ages of the users who have online interactions.

130

Age

0 20 40 60

U
s
e

rs
 R

a
ti
o

0

0.5

1

"home"

"hate"

"support"

(a) Example 1

Age

0 20 40 60

U
s
e

rs
 R

a
ti
o

0

0.5

1

"look forward"

"high school"

"hard work"

(b) Example 2

Figure 5.2: The Age-keyword Usage Pattern.

Age Difference

0 20 40 60

P
e

rc
e

n
ta

g
e

0

0.5

1

CDF

Expected CDF

Expected PDF

PDF

Figure 5.3: The Distribution of the Age

Gap on Friend Pairs.

Age Difference

0 20 40

J
a

c
c
a

rd
 S

im
ila

ri
ty

0.1

0.15

0.2

0.25

Figure 5.4: The Jaccard Content Simi-

larity on Friend Pairs.

131

For this purpose, we measure the age difference of each friend pair in the dataset and

draw the distribution in Fig. 5.3. To evaluate the impact of dataset bias, we also

calculate the expected distribution of the age difference. To that end, we let each

user befriend with each of other 54,878 users, and then measure the number of user

pairs with a specific age difference. As we can see, in the original dataset, 40.84% of

friend pairs have the same age, and 93.64% of the pairs have the age difference within

5 years while only 14.21% and 63.32% of the pairs in the fully-connected network

have the same age and the age difference within 5 years, respectively. To measure

the corpus similarity of each friend pair, we treat each user’s tweets as a set of words

and compute a Jaccard metric as |A∩B||A∪B| , where A and B denote the word sets for the

two users involved, respectively. For all the friend pairs with the same age difference,

we average their Jaccard similarities. As shown in Fig. 5.4, the corpus similarity

decreases as the age difference of a friend pair increases.

We can draw two observations from the above analysis. First, the users at different

ages have different topics in their tweets due to the age gap. Second, because of the

social homophily (156), a user is more likely to befriend with thoses of the similar

age, and their tweet topics tend to have higher similarity than the friend pairs with

large age difference. These two observations drive us to design a framework to well

integrate the content and interaction information to infer a Twitter user’s age.

5.3.2 Model Tweets by τ -gram

Given the Xi of tweets of any labeled user i ∈ {1, · · · , n} in the past year, we

first need to construct a mathematical model to represent it. Here we use a feature

matrix X ∈ Rn×m to model labeled users’ tweets, where m refers to the dimension of

a feature space F in the whole message space. In what follows, we describe how to

construct the feature space F and then the feature matrix X.

132

We first remove stop words in a stop-word list, 1 in which the words such as

“the” and “those” are considered more general and meaningless. Then we conduct

stemming (116) to reduce inflected words to their stem forms such that the words with

different forms can be related to the same word. For example, “watch”, “watching”,

and “watched” are all reduced to “watch”.

Next, we represent the feature space for the cleansed tweets using a τ -gram tech-

nique, which is widely used for statistical text analysis. The τ -gram technique splits a

give message into sequences of τ contiguous words, each referred to as a τ -gram with τ

ranging from 1 to the message length. For example, consider a tweet {“Playing basket-

ball against those guys was a bad idea”}. After removing stop words and performing

stemming, we have {“play basketball against guy bad idea”}. The corresponding

1-grams are {“play”, “basketball”, “against”, “guy”, “bad”, “idea”}, and the corre-

sponding 2-grams are {“play basketball”, “basketball against”, “against guy”, “guy

bad”, “bad idea”}. We let Ni denote the τ -grams of Xi for each user i ∈ U for all

possible values of τ . Then we choose the top m most frequent τ -grams in
⋃

1≤i≤nNi

as the feature space F .

Finally, we use the Term Frequency Inverse Document Frequency (TF-IDF) tech-

nique (85) to derive each element Xi,j in X. Specifically, let Γ(j) be the number of

times a τ -gram j appears in the τ -gram list Ni of user i, Γ∗i = maxj∈Ni
Γ(j), and

Γ′(j) denote the number of users in U whose τ -gram lists contain j. We define

Xi,j = (0.5 + 0.5 ∗ Γ(j)

Γ∗i
) ∗ log(

n

Γ′(j)
) . (5.1)

The above normalization based on Γ∗i is necessary because the users normally have

very different tweet sets and thus different τ -gram lists. We refer interested readers

to (85) for the details of the TF-IDF technique.

1http://www.lextek.com/manuals/onix/

133

It is a common practice to use 1-grams and 2-grams only for high computational

efficiency without significantly sacrificing the analysis accuracy. So the feature space

and matrix can be constructed very quickly in practice.

5.3.3 Modeling Content Information

Given the feature matrix X ∈ Rn×m and the age-label matrix Y ∈ Rn×c, a

traditional method to build the classifier W is Least Square optimization(81), which

learns a weighted model to minimize the estimation and the labeled data by solving

min
W

1

2
‖XW −Y‖2F , (5.2)

where ‖A‖F represent the Frobenius norm of matrix A which is defined as ‖A‖F =√∑n
i=1

∑m
j=1 A2

i,j.

The traditional Least Square method for a large feature set can lead to overfitting

(134) in that the learned model may be too specific due to the limited training data

and thus be inaccurate for inferring the ages of unknown users. Moreover, it has been

observed in many domains that the underlying representations of many objects are

sparse. For example, a signal could be efficiently reconstructed by far fewer samples in

compressive sensing (17); when people speed-read documents, they may seek a sparse

representation with key phrases or words instead of fully understanding every single

word (99). These sparse features represent the given object more accurately and

efficiently by capturing its underlying essence. In addition, by selecting a sparse and

meaningful group of τ -grams rather than non-intuitive ones for each user, it could help

sociologists, market planners and even the public to understand the behavior of the

people in different age groups. To find and explore these sparse features in our feature

space, we can improve the model defined in Eq. (5.2) by assigning higher weight to

the most representative τ -grams. One widely-used method(134) is to introduce the

134

`1-norm regularization for the weight matrix W as follows,

min
W

1

2
‖XW −Y‖2F + λ1‖W‖1, (5.3)

where ‖W‖1 =
∑n

i=1

∑m
j=1 |Wi,j|, and λ1 is the parameter to control the sparse

regularization. By adding this `1-norm constraint to the minimization problem, it

enforces the coefficients of many non-representative features in W to be zero, thus

making these features have no effect on the prediction model. With this strategy, we

select relatively more “important” features (equivalently, τ -grams) to represent each

age group.

5.3.4 Modelling Online Interaction Information

The content information in Twitter is networked. As shown in Section 5.3.1, peo-

ple within the same age group have higher probability to share content similarity

and also befriend with each other. For example, two college classmates follow each

other on Twitter, often discuss final exam preparations for the same course, and/or

cheer for the wins of their college sports teams. Given such observations, the content

model in Eq. (5.3) should assign higher weights to similar τ -grams, such as “final”

and “exam”, so that the two users can be classified into the same age group with high

probability. How to achieve this, however, is challenging because the two users very

likely also tweet on different topics. Below we present how to model the online in-

teractions among labeled users and then how to integrate the interaction information

into the content model in Eq. (5.3).

We use the community concept to model the online interactions among the labeled

users. For this purpose, it is worth noting that we can construct an undirected

social graph from the labeled dataset, where each vertex corresponds to a labeled

user, and an edge exists between two users if and only if they are friends (i.e., each

135

other’s follower and followee). It has been widely reported that the users with the

similar attributes such as ages would connect with each other more than the users

with different attributes, hence forming a local community (102). The community

structure can be inferred by maximizing the modularity (109), which is defined as

follows.

Definition 5.3.1 (Modularity). Given an undirected graph G = 〈U , E〉, where |U| =

n is the user set, and eij ∈ E equals 1 if users i and j are friends and equals 0

otherwise. Assume that G has been partitioned into k communities, and that each

user belongs to one and only one community. The modularity of this partition is

defined as

Q =
1

2t

∑
i,j

(eij −
didj
2t

)δ(Ci, Cj), (5.4)

where t = 1
2

∑
i,j eij is the number of edges in G, di =

∑
j eij is the degree of user i,

Ci is the community containing user i, and the δ−function δ(Ci, Cj) is 1 if Ci = Cj

and 0 otherwise.

The intuition behind the modularity is as follows.
didj
2m

represents the expectation

that any two users with degree di and dj could form an edge in the graph. If they

are connected (i.e., eij = 1) and are in the same community (i.e., Ci = Cj), they will

contribute to the whole modularity Q. If they are not connected (i.e., eij = 0) but are

in the same community (i.e., Ci = Cj), they will reduce the modularity Q. Finally, if

they are in different communities (i.e., Ci 6= Cj), they have no impact on Q. Hence,

the more edges in the same community, the higher its modularity.

Next, we present how to infer the community structure by maximizing the mod-

ularity. Let matrix G ∈ Rn×n represent the adjacent matrix for graph G where Gi,j

equals 1 if eij = 1 and 0 otherwise. Let matrix C ∈ Rn×k represent a community

partition for G where Ci,j is 1 if user i is in community j, and 0 otherwise. Note that

136

∑
j Ci,j = 1 since any user belongs to one and only one community. Then we could

formulate the community partition problem as

max
C

Tr(CMCT), s.t. CCT = I (5.5)

where

M = G− ddT

2t
(5.6)

where d is the degree vector for G, and Tr(A) =
∑

i Ai,i represents the sum of the

diagonal elements of A. Since this problem is NP-hard (109), we resort to the widely

used Louvain method (24) to obtain the approximation result.

After the community structure C is obtained, we expect that the users from the

same community are in the same age group. Therefore we can use the community

structure to improve our model in Eq. (5.3). To that end, inspired by (130), given Ŷ

as the estimated age group labels for all the users in U , we first compute the scatter

of user pairs who are in the same community but have been estimated in either the

same age group or two different age groups as:

S =ŶTFFT Ŷ (5.7)

where F is the weighted community indicator matrix, which can be obtained from C

as

F = C(CCT)−
1
2 , (5.8)

where Fij equals 1√
fj

if user i is in community Cj with fj users and equals 0 otherwise.

It can be easily found that in Eq. (5.7), since ŶT Ŷ is a diagonal matrix with

the (i, i)-th element equal to the number of users in the i-th age group, the (i, i)-th

element of S measures how many user pairs in the i-th age group are in the same

community, and the (i, j)-th (i 6= j) element of S measures how many user pairs in

the i-th age group and j-th age group are in the same community. Therefore, in order

137

to classify the users in the same community into the same age range, we just need to

maximize the sum of (i, i)-th element in S, i.e.,

max
W

Tr(S). (5.9)

Note that we ignore the user pairs who are in the same community but in different

age groups because they violate the community structure.

5.3.5 Integrating Content and Interaction Information

Many existing methods on age estimation use either content or interaction infor-

mation independently by assuming that these two pieces of information are unrelated.

This assumption is not valid according to the intuition and also our data analysis in

Section 5.3.1. So we propose to integrate both the content and interaction information

into a unified model.

Particularly, since Ŷ = XW, Eq. (5.9) can be re-written as

max
W

Tr(WTXTFTFXW). (5.10)

By considering both the content information and interaction information, the age

estimation problem defined in Eq. (5.3) could be reformulated as follows,

min
W

1

2
‖XW −Y‖2F + λ1‖W‖1 −

λ2
2
Tr(WTXTFTFXW), (5.11)

where λ1 and λ2 are the parameters for sparse regularization (for content information)

and integration of interaction information, respectively. By varying these two param-

eters, we could set the importance of sparse regularization and interaction integration

on the original Least Square model.

5.3.6 An Optimization Algorithm

The problem defined in Eq. (5.11) is non-smooth because the `1 regularization

‖W‖1 is not differentiable. Hence we transform it into its differentiable Lagrange

138

dual function as:

min
W

1

2
‖XW −Y‖2F −

λ2
2
Tr(WTXTFTFXW),

s.t. ‖W‖1 ≤ z,

(5.12)

where z ≥ 0 is the radius of the `1-ball and has a one-to-one correspondence with λ1.

Let

f(W) =
1

2
‖XW −Y‖2F −

λ2
2
Tr(WTXTFTFXW), (5.13)

we can see that f(W) is a smooth objective function, and the optimization problem

is convex which can be solved by gradient descending methods. It is known (22) that

the gradient step

W(k) = W(k−1) − 1

t(k)
5 f(W(k−1)) (5.14)

for solving the smooth optimization problem in Eq. (5.12) can be treated as finding the

minimum Euclidean projection (28) of W(k) defined above on the `1-ball ‖W‖1 ≤ z,

which is

W(k) = arg minWMt(k)(W,W(k−1)), (5.15)

Mt(k)(W,W(k−1)) =f(W) + 〈W −W(k−1),5f(W(k−1))〉

+
t(k)

2
‖W −W(k−1)‖2F ,

(5.16)

where t(k) is the step size, 〈A,B〉 = Tr(ATB) denotes the matrix inner product, and

5f(W(k−1)) = XTXW(k−1) −XTY − λ2XTFTFXW(k−1). (5.17)

Let U(k−1) = W(k−1) − 1
t(k)
5 f(W(k−1)). The Euclidean projection in Eq. (5.15)

has a closed-form solution (93) as follows,

w
(k)
j =

(1− λ1

t(k)‖u(k−1)
j ‖

)u
(k−1)
j if ‖u(k−1)

j ‖ ≥ λ1
t(k)

0 o.w.

(5.18)

where w
(k)
j and u

(k−1)
j are the j-th rows of W(k) and U(k−1), respectively.

139

Algorithm 4 details the algorithm which comprises an outer loop and an inner

loop. The inter loop from Line 4 to 9 searches the step size t(k) to solve the gradi-

ent step defined in Eq. (5.15) according to Eq. (5.18). The outer loop then updates

the W(k). To accelerate the gradient descent in Eq. (5.15), we build a linear combi-

nation of W(k) and W(k−1) as H(k) in line 3 (70). The algorithm terminates when

|f(W(k))− f(W(k−1))| ≤ ε|f(W(k−1))|. Similar to the proof in (93), given the termi-

nation parameter ε, it is easy to verify that the convergence rate of our algorithm is

O(1√
ε
).

Algorithm 4: Classier Training for Age Inference

input : X,Y,F, λ1, λ2, ε

output: W, i.e., the feature-to-label matrix.

1 Initialize W(k) ← 0, η(0) ← 0, η(1) ← 1, k ← 1;

2 while |f(W(k))− f(W(k−1))| > ε|f(W(k−1))| do

3 Set H(k) ←W(k) + η(k−1)−1
η(k)

(W(k) −W(k−1)) ;

4 while True do

5 Set U(k−1) ← H(k−1) − 1
t(k)
5 f(W(k−1)) ;

6 Compute w
(k)
j according to Eq. (5.18) ;

7 if f(W(k)) ≤Mt(k)(H
(k−1),W(k)) then

8 break;

9 t(k) ← 2× t(k−1) ;

10 W←W(k), η(k) ← 1+
√

1+4(η(k−1))2

2
, k ← k + 1 ;

11 return W.

140

5.3.7 Inferring Age Group of an Unknown User

After we build a classifier W, we can estimate the age range of any unknown user

u as follows. We crawl the tweets from u as Xu in the past year and then build the

τ -gram list Nu. Based on the feature space F , we then construct the feature vector

xu ∈ R1×m by calculating the TF-IDF of each τ -gram in F according to Eq. (6.1).

The final step is to estimate the age group with the maximum likelihood as follows,

arg max
i={1,2,...,c}

xuwi, (5.19)

where c is the number of age groups, and wi ∈ Rm×1 is the i-th column of the classifier

matrix W. Note that this step needs no interaction information from user u. This

feature can be very useful because it makes our algorithm above directly applicable

to an arbitrary unknown user with or without interactions with labeled users in the

classifier W.

Note that MAIF needs the labelled users and their content/network information to

build the classifier W, which can be crawled by the method presented in Section 5.3.1.

Due to the scarcity of the age information, the network information between the

labelled users might be limited. However, MAIF could work even with zero network

information, and as shown in the evaluation below, the richer the network information,

the better the performance.

5.4 Evaluation

In this section, we thoroughly evaluate the proposed framework. Specifically, we

want to answer these four questions:

1. How accurate is the proposed framework in comparison with other age inference

schemes?

141

2. What is the impact of dataset bias on the performance?

3. What is the benefit of integrating both the content and social interaction infor-

mation?

4. What is the impact of key parameters in the framework?

In what follows, we first introduce the dataset as well as the evaluation methodology

and metrics. Then we seek to answer the above questions. Finally, we briefly dis-

cuss possible countermeasures for sensitive users to preserve their age privacy if our

framework were deployed.

5.4.1 Dataset, Methodology and Metrics

We first partition the Twitter users into five groups according to Levinson’s adult

development model (86):

• Group 1: 14-18. This group is for juvenile and adolescence users. Since Twitter

only allows the users older than 13 years to access the service, we start this

group from 14 years old.

• Group 2: 19-22. According to Levinson’s model, this group is a transition phase

from the pre-adulthood to the early adulthood. People in this age group are

usually enrolled in the college.

• Group 3: 23-33. This group is the “time for building and maintaining an

initial mode of adult living.” People within this age group are beginning their

professional career, building the family, or getting prepared for their career by

further graduate study.

• Group 4: 34-45. This is the phase of early adulthood to define a new era which

belongs to them.

142

• Group 5: > 46. This group include people from 46 to 65 who are in their middle

adulthood and people who are older than 65 in the phase of the late adulthood.

We use two datasets to evaluate the proposed framework, as shown in Table 5.1.

First, the original dataset crawled in Section 5.3.1 is partitioned to five age groups

as described above. Fig. 5.1 shows that the age distribution is highly biased toward

Group 1 and 2, which occupy 88.06% of all the users. This is because the young

people are more active in posting their birthday greetings to their friends. We first

evaluate MAIF on this original dataset. Moreover, to evaluate the impact of the

dataset bias, we build a comparable and balanced dataset as follows. We keep all the

users in Group 3, which have 2,986 users, and then randomly sample the same number

of users from both Group 1 and 2. After sampling, the network is less connected.

Specifically, in the original dataset, each user has on average 1.06 friends within the

dataset in contrast to 0.141 friends in the sampled dataset.

We use cross validation to evaluate the proposed framework. Specifically, given

a ground-truth dataset composed of users who have indicated their ages, we split it

into five subsets and conducted the experiment by five rounds. In each round, we

choose four different subsets to build the classifier W, then apply it to the remaining

subset to estimate the users’ ages, and finally compare them with the ground truth.

Since we aim to classify a user into c(c > 2) groups, we derive both the separate

accuracy for each group and the overall accuracy for all the groups from the confusion

matrix 2 . For each age group i, we denote the number of true positives, false positives,

true negatives, and false negatives by #TPi,#FPi,#TNi, and #FNi, respectively. Then

we define the Precisioni, Recalli, F− scorei as the separate accuracy for age group

2Here we didn’t use the confusion matrix directly because it is not efficient to compare the MAIF
with several baseline methods. However, the derived separate and overall accuracy can represent
well the confusion matrix.

143

T
ab

le
5.

1:
T

h
e

S
u
m

m
ar

y
of

th
e

D
at

as
et

s.

D
at

as
et

s
#

U
se

rs
#

A
ge

G
ro

u
p
s

A
ge

G
ro

u
p

D
is

t.
#

T
w

ee
ts

#
E

d
ge

s
(A

v
g.

)
k

O
ri

gi
n
al

54
,8

79
G

ro
u
p

1-
5

[0
.5

05
,

0.
37

6,
0.

07
6,

0.
02

2,
0.

02
1]

51
,7

56
,6

52
58

,2
67

(1
.0

6)
19

,9
78

S
am

p
le

d
8,

95
8

G
ro

u
p

1-
3

[0
.3

33
,

0.
33

3,
0.

33
3]

8,
56

7,
08

5
1,

26
3

(0
.1

41
)

7,
74

3

144

i as follows:

Precisioni =
#TPi

#TPi + #FPi
; Recalli =

#TPi
#TPi + #TNi

;

F− Scorei =
2× Precisioni × Recalli

Precisioni + Recalli
.

(5.20)

We then define the overall accuracy as X =
∑c

i=1 riXi, where X represents Precision, Recall,

or F− score, and ri is the ratio of users in age group i over the whole dataset, which

is listed as the age distribution in Table 5.1.

5.4.2 Assessing Accuracy

We first evaluate the accuracy of the proposed framework and compare it with

both the state-of-the-art methods and the baseline methods summarized as follows.

• Content-based methods I. The state-of-the-art content-based method is pro-

posed by (110) to use the linear regression model with the `2 regularization,

which is equivalent to adding ‖W‖F to the least square method defined in

Eq. (5.2). We use the top-10000 1-gram and 2-gram as the features to infer the

age information.

• Content-based methods II with sparse representation. We use the least square

method with the `1 regularization in Eq. (5.3) to evaluate the inference perfor-

mance by including the sparse representation for the content information.

• Neighbor-based method I. We infer the age information from neighbors’ con-

tent information as used in (156; 31). Specifically, for each user i, we use the

least square method with the `1 regularization in Eq. (5.3) to estimate the age

information of i’s f friends who are not in the labeled user set, and then set the

average value as i’s age information. In the experiment, we set f be 10 and 20.

145

• Neighbor-based method II. We infer the age information from labeled neigh-

bors’ age information as used in (43; 90). Specifically, we implement the more

advanced method in (90) which assigns a weight between every friend pair in the

labeled user set and then uses the label propagation to estimate the unknown

users’ ages. We use 80% of the users as the training set and the remaining as

the testing set.

• The proposed framework. We set both λ1 and λ2 in the Eq. (5.11) to be 1

for the general experiment, and we will explore the effects of parameters later.

Moreover, we set the size of the feature space m = 10, 000 with 5,000 of 1-grams

and 2-grams each and the termination condition ε = 10−4 in Alg. 4.

For each method, we compare the separate accuracy of each group and the overall

accuracy, as shown in Table 5.2. We could draw three conclusions from the overall

accuracy. First, the proposed MAIF is better than all other four methods, verifying

that our framework can accurately integrate the content information and the interac-

tion information, which are the essential behavior pattern of twitterers, to infer the

age information. Second, the sparse representation in Content-II method outperforms

the least square in Content-I, meaning that the content information in microblogging

services is indeed sparse, and that the sparse features could represent age groups more

accurately. Third, directly inferring the age information from labeled neighbors’ age

information as in Neighbor-II method is not effective for the dataset. The reason is

that the age information in Twitter is so scarce that many users lack the neighbors

who have specified their ages. As we can see from Table 5.1, the average friends in the

original dataset is 1.06, meaning that every labeled user only has average one friend in

the dataset. To overcome this issue, MAIF leverages the community structure which

contains more users and integrates it with the content information.

146

T
ab

le
5.

2:
T

h
e

P
er

fo
rm

an
ce

on
th

e
O

ri
gi

n
al

D
at

as
et

.

A
ve

ra
ge

A
cc

u
ra

cy
F

-s
co

re
fo

r
ea

ch
gr

ou
p

P
re

ci
si

on
R

ec
al

l
F

-s
co

re
G

ro
u
p

1
2

3
4

5

C
on

te
n
t-

I
0.

73
97

0.
75

38
0.

74
56

0.
82

46
0.

73
00

0.
24

51
0.

10
22

0.
03

01

C
on

te
n
t-

II
0.

74
35

0.
75

85
0.

74
95

0.
82

84
0.

73
49

0.
24

81
0.

06
70

0.
04

65

N
ei

gh
b

or
-I

(f
=

10
)

0.
66

77
0.

68
16

0.
65

57
0.

77
37

0.
58

83
0.

06
94

0.
32

81
0.

14
29

N
ei

gh
b

or
-I

(f
=

20
)

0.
68

86
0.

70
38

0.
68

09
0.

78
79

0.
63

18
0.

09
52

0.
26

42
0

N
ei

gh
b

or
-I

I
0.

48
61

0.
50

21
0.

48
99

0.
55

89
0.

47
29

0
0

0

M
A

IF
0
.8

0
6
9

0
.8

3
4
9

0
.8

1
3
8

0
.9

0
2
2

0
.8

1
9
6

0.
17

95
0.

01
22

0.
04

41

147

T
ab

le
5.

3:
T

h
e

P
er

fo
rm

an
ce

on
th

e
S
am

p
le

d
D

at
as

et
.

A
ve

ra
ge

A
cc

u
ra

cy
F

-s
co

re
fo

r
ea

ch
gr

ou
p

P
re

ci
si

on
R

ec
al

l
F

-s
co

re
G

ro
u
p

1
G

ro
u
p

2
G

ro
u
p

3

C
on

te
n
t-

I
0.

58
28

0.
58

29
0.

58
23

0.
56

61
0.

52
53

0.
65

57

C
on

te
n
t-

II
0.

69
30

0.
69

46
0.

69
35

0.
68

57
0.

62
21

0.
77

26

N
ei

gh
b

or
-I

(f
=

10
)

0.
56

06
0.

56
26

0.
50

73
0.

65
47

0.
21

25
0.

65
48

N
ei

gh
b

or
-I

(f
=

20
)

0.
57

21
0.

56
63

0.
50

78
0.

68
24

0.
19

30
0.

64
81

N
ei

gh
b

or
-I

I
0.

23
92

0.
34

60
0.

25
06

0.
28

08
0.

47
87

0

M
A

IF
0
.7

5
8
7

0
.7

6
1
1

0
.7

5
8
2

0
.7

5
7
2

0
.6

8
2
8

0
.8

3
4
7

148

As for the separate accuracy, we could see that although MAIF outperforms other

methods in Group 1 and 2, all methods have low accuracy for the remaining groups.

We conjectured that the low accuracy for Group 3 to 5 is caused by the bias of the

dataset. To verify this conjecture, we applied these five methods on the sampled

dataset described in Table 5.1 and obtained the results in Table 5.3. The results

show that MAIF outperforms all other four methods in both average and separate

accuracy. Moreover, the accuracy of MAIF for each age group on this dataset is

significantly balanced than on the original dataset, which justifies our conjecture and

also answers the second question stated in the beginning of this section.

5.4.3 Performance of the Content and Interaction information

Since the proposed MAIF framework explores content and also interaction infor-

mation, we aim to investigate the contribution of each type and the benefit of the

integration. Specifically, we consider the following methods.

• Content-only methods. We use both the widely-used Support Vector Machine

(SVM) (128) and the least square with the `1 regularization in Eq. (5.3) to

evaluate the performance on the content feature matrix X.

• Network-only methods. We use the adjacent matrix G as the feature matrix

and then apply both SVM and the least square with the `1 regularization in

Eq. (5.3) on them.

Fig. 5.5 shows the overall accuracy of content-only methods, network-only meth-

ods, and the proposed framework. As we can see, MAIF outperforms both content-

only and network-only methods, meaning that the accuracy will increase if we inte-

grate both content and interaction information instead of considering only one type

of information. Moreover, content-only methods perform better than network-only

149

 Metrics

PrecisionRecall F-score

A
c
c
u

ra
c
y

0.6

0.8

1

SVM_Content

L1_Content

SVM_Interaction

L1_Interaction

MAIF

Figure 5.5: The Performance of Separate

Information.

10
2

10
0

λ
2

10
-2

10
0

λ
1

0

0.5

1

F
-s

c
o
re

Figure 5.6: The Impact of the Parame-

ters λ1 and λ2.

n ×10
4

1 2 3 4 5

A
c
c
u
ra

c
y

0.6

0.7

0.8

0.9

Recall

F-score

Precision

Figure 5.7: The Accuracy Under Differ-

ent Dataset Sizes.

Training set size

50% 60% 70% 80% 90% 100%

A
c
c
u
ra

c
y

0.6

0.7

0.8

0.9

Recall

F-score

Precision

Figure 5.8: The Accuracy Under Differ-

ent Training Set Sizes.

methods, indicating that content information is more reliable and contributes more

than the network information to infer the age information. Again, we conjecture that

this is caused by the scarcity of the age information in Twitter and hence the scarcity

of the network information between the labeled users.

150

5.4.4 Exploiting the Parameters

We show the impact of λ1 and λ2 in Fig. 5.6. As stated before, the parameter

λ1 indicates the weight of the sparse representation of the content information, and

the parameter λ2 indicates the weight of interaction information. As we can see,

both parameters lead to smooth and meaningful results when they are between 0.01

and 100. Moreover, when λ2 increases from 0.01 to 100, the overall accuracy first

increases and then decreases; similar trend holds for λ2. Hence we expect a local

optimal parameter pair for λ1 and λ2 to be both 1. Moreover, the accuracy in this

range is smooth and has limited variance, suggesting that in practice we could choose

these two parameters from 0.01 to 100.

Fig. 5.7 show the impact of the dataset size. Given the original dataset with

54,879 users, we randomly sample 5000, 10000, 20000, 30000, 40000, and 50000 users,

respectively, and use five-fold cross validation to yield the results. As we can see,

increasing the dataset size improves the accuracy because of the richer content and

network information. Specifically, the more users, the richer content and network

information which could better represent the users in a specific age group, and hence

the higher accuracy.

Our algorithm is stable in terms of other parameters. Fig. 5.8 demonstrate the

impact of the training set size. 50% of the training set means that only 50% of the

80%, which equals 40%, of the users in the whole dataset are used as the training set

to predict the remaining 20% of users. The training set size varies from 50% to 100%

(corresponds to 40% to 80% of all users). As expected, increasing the training set

can slightly improve the accuracy. However, the improvement is less significant than

increasing the dataset size, as shown in Fig. 5.7. The reason is that the training set,

which has 40% of the 54,879 users, is still large enough to obtain the good results

151

even if we only use 50% of the training set. Moreover, we have evaluated the impact

of feature space size m (from 5000 to 20000), the different combinations of 1-gram

and 2-gram in the feature space, and the variant definitions of TF-IDF in Eq. (6.1),

and obtained similar results, which are omitted here due to space constraints.

5.4.5 Countermeasures

The above experiments demonstrate the efficacy of using the public content and

interaction information to infer the age information, one type of highly-private per-

sonal attributes. Since the social homophily and generation gap always exist, it is

very challenging for twitterers to evade the inference demonstrated in this chapter. In

order to preserve their privacy, one way is to set “protected”—a function provided by

Twitter—the critical information such as followers, followees, and even all the tweets,

such that only authorized users could visit while the unauthorized third party will fail

to infer due to the absence of content and interaction information. Another way is to

diversify the content and/or interaction information by posting with the style from

other age groups and/or following people with different ages. As shown in Fig. 5.5,

the absence of one type of information will lower the inference performance, so the

age privacy can be protected to some extent. Nevertheless, this chapter mainly aims

to demonstrate a more effective method to infer the hidden age information from

public content and interaction information in Twitter. More privacy implications of

our framework and the thorough investigation of countermeasures are beyond the

scope of this chapter.

5.5 Related Work

In this section, we briefly present the existing work mostly related to this chapter.

There has been some effort to infer hidden age information in microblogging sys-

152

tems. Nguyen et al. tried to classify the user ages from different angles such as age

range, exact age, and life stage with the 1-grams constructed from the tweets (110).

Oktay et al. proposed a method to infer users’ age range by investigating their names.

The idea is that different generations have different preferences on the baby naming

(112). Liao et al. use the ages of online neighbors to infer the age of a given user

(90). Dey et al. also used the similar method to infer the user age in Facebook (43).

However, this method requires that some neighbors have specified their ages, which

cannot be satisfied in microblogging systems where age information is scarce.

Other hidden attributes such as location (88; 97; 38; 159), gender (118), political

preference (156), and ethnicity (31) have also been inferred by either the content

information and/or the interaction information. Mislove et al. used the local con-

nections around the Facebook users to infer their major, college, and political view

(102). Location information has attracted many attentions recently. The content

with geographical hints could be used to infer users’ locations (97). Since about 16%

of Twitter users have specified their locations, inferring users’ locations from their

neighbors’ locations can be more effective (88; 38) than inferring their ages from their

neighbors’ ages. Besides the privacy threats by inferring these sensitive attributes,

there have been growing security issues against social network users (26; 161; 162).

5.6 Summary

In this chapter, we propose MAIF, a novel framework which explores public con-

tent and interaction information in microblogging systems to infer the hidden ages of

microbloggers. We thoroughly evaluate MAIF using a real-world dataset with 54,879

Twitter users. Our results show that MAIF can achieve up to 81.38% inference ac-

curacy and outperforms the state of the art by 9.15%.

153

Chapter 6

PRIVACY PRESERVING SOCIAL MEDIA PUBLISHING

6.1 Introduction

User-generated social media data are exploding. Twitter, the most popular mi-

croblogging service, generates 500 million tweets per day by 320 million monthly active

users as of December 2015. Facebook, the largest online social network with about

1 billion daily active users as of June 2015, generates 4 new petabytes of data per

day. People use social media platforms to communicate with their friends, share their

daily life experiences, express their opinions on political/social events and commercial

products, etc.

Closely tied to human beings in the physical world, large-scale social media data

have tremendous usages by various data consumers and have become one of the most

profitable resources for social media service providers (55). For example, companies

use the data to learn the behavior of their customers, monitor the public responses

to their products, deliver online advertisements more cost-effectively, and uncover

the trends that may impact their businesses; public policy makers explore the data

to obtain the demographic information for making strategic decisions; public health

agencies analyze the data to identify and predict disease outbreaks; and sociologists

leverage the data to study the social behavior and establish new social network theo-

ries. In a typical social media mining application, the data consumer demands a set

of users and their social media data (such as profiles, recent posts, and friends), which

satisfy some desirable criterion. For example, company A may request the data of all

the users who mentioned the company in the past week after a public relation crisis.

154

The disclosure of complete and intact social media data exacerbates the threats to

user privacy. For example, many users mention their vacation plans in publicly visi-

ble tweets without knowing that criminals can exploit such information for targeted

break-ins and thefts (98). Criminals may identify potential victims nearby by directly

browsing/searching social media platforms, and smarter ones can exploring the search

APIs offered by social media platforms. The data acquired in this traditional way

are only small and random samples of all the qualifying data. For example, Twitter

claims that their Search API only “searches against a sampling of recent tweets pub-

lished in the past 7 days” (137). If the criminals could access the complete and intact

social media data in the target area, they can identify all potential victims to plan

large-scale break-ins. In addition, social media mining applications are increasingly

sophisticated and powerful. If complete and intact social media data are available,

lots of sensitive information the users do not explicitly disclose could still be inferred,

such as age (156; 158), location (88; 159), language (110), and political preferences

(31).

There is a natural conflict between data utility and user privacy in social media

data publishing. On the one hand, data consumers want complete and intact social

media data to maximize the data utility, which is also the most profitable case to social

media service providers. The maximum data utility is achieved unfortunately at the

biggest sacrifice of user privacy. On the other hand, social media service providers

are also motivated to protect user privacy due to legal concerns, public relations, and

many other reasons. For example, they may intentionally add random noise to the

data before releasing them to data consumers. User privacy is thus better protected

but at the loss of data utility.

A growing body of work studies privacy-preserving publishing of social graphs

and falls into two directions. The first line of research (64; 94; 129) aims at vertex

155

privacy by publishing social graphs with anonymous user IDs, and the research effort

is to prevent the adversary from linking anonymous IDs to corresponding users in

the real social network. The other line of research targets link privacy (103; 92), and

the main effort is to publish social graphs with real user IDs but perturbed links by

deleting some real edges and adding some fake ones. Neither line of work considers

the privacy of user data and thus cannot be directly applied in our context.

In this chapter, we propose a framework for privacy-preserving social media data

publishing. The framework consists of a data service provider (DSP), numerous social

media users, and a lot of data consumers. The DSP can be either a social media service

provider itself such as Twitter or Facebook, or a third-party data company such as

Gnip and DataSift which resells the data obtained from social media service providers.

Data consumers can be an arbitrary individual or entity in public or private sectors.

They are interested in statistical information that can be mined from social media

data, rather than real user IDs. A data consumer submits a data request to the DSP,

which specifies the query conditions. The DSP responds with a data set satisfying

the query conditions, in which each user ID is anonymized.

Although there can be various attacks on social media data publishing, we consider

a user-linkage attack as the first effort along this line. In this attack, a malicious data

consumer attempts to link random or selected anonymous IDs in the received data set

to real IDs on the social media platform, so he can obtain the latest social media data

about the victims or other sensitive information not covered by his previous query.

We assume that existing sophisticated techniques such as (64; 94; 129; 103; 92) are

adopted to preserve both link privacy and vertex privacy in the anonymized data

set, so the attacker cannot uncover real IDs based on either vertexes or edges. Our

focus is to perturb user-generated data such that they cannot be exploited for the

user-linkage attack.

156

It is very challenging to design effective defenses against the user-linkage attack

while achieving high data utility. First, social media data are highly unstructured

and noisy. Specifically, unlike traditional documental content, social media data are

composed of a large mount of short and informal posts. For example, each tweet allows

at most 140 characters. So users tend to use slang and abbreviations to express their

feelings and opinions, such as “u have a gr8 day” meaning “you have a great day.” This

phenomenon makes traditional privacy-preserving techniques on structured databases

inefficient (54). Second, social media data are extremely large in quantity and contain

a lot of redundancy. For example, many users have intensive interactions with their

friends in the forms or replies and retweets, or they may post many tweets on a

single topic. Finally, different data consumers may have diverse social media mining

applications with totally different utility functions, so the data they request from the

DSP may differ significantly in variety and/or quantity. So it is almost impossible for

the DSP to adopt a universal mechanism to preserve the same level of user privacy

while satisfying the utility requirements of various data consumers.

Our defense against the user-linkage attack in this chapter consists of three steps.

First, we map the complete and intact data of all the users into a high-dimensional

user-keyword matrix. Second, we add controlled noise to the user-keyword matrix to

satisfy differential privacy (47), the most popular privacy model lately. Finally, the

perturbed user-keyword matrix is disclosed to the data consumer, where each user

ID is anonymized. If the social graph corresponding to the data set is also needed,

existing defenses such as (64; 94; 129; 103; 92) should be adopted to preserve both

link privacy and vertex privacy. Our defense applies to a wide range of social media

applications. For example, the data consumer can infer demographic information

about the target population from the perturbed data set.

157

Our contributions can be summarized as follows.

• We are the first to coin the problem of privacy-preserving social media data

publishing to the best of our knowledge, for which a system model is also pro-

posed.

• We propose a novel mechanism to guarantee differential user privacy while main-

taining high data utility in social media data publishing. The popular Laplacian

mechanism to achieve differential privacy suffers from the curse of dimension-

ality (19) and can bring huge noise to the original dataset which significantly

reduces data utility. We define a new metric called ε-text indistinguishabil-

ity whereby to design a mechanism to break the constraint of the Laplacian

mechanism.

• We thoroughly evaluate the proposed defense on a real-world dataset with re-

gard to user privacy and data utility. Our results show that high-level privacy

protection can be achieved without significantly sacrificing data utility. For ex-

ample, we show that our mechnism can reduce the privacy leakage by as much

as 64.1% by reducing only 1.61% of utility in terms of classification accuracy.

The rest of this chapter is organized as follows. Section 6.2 presents the prob-

lem statement. Section 6.3 illustrates our design for differentially privacy-preserving

social media publishing. Section 6.4 evaluates the utility and privacy aspects of our

mechanism by detailed experiments. Section 6.5 surveys the related work. Section 6.6

concludes the chapter.

6.2 Problem Statement

In this section, we first describe the system model for social media data publishing,

followed by the adversary model. Next, we briefly argue that current publishing

158

Social Media Data

Social Media Data

Social Media Data

Social Media Data
Service Provider

Social Media User Data Consumer

Query: all

users posted

 SuperSunsc

reen

Data: Pseudo

user ID list +

recent 1,000

posts

Figure 6.1: Social Media Data Publishing. The Data Consumer Submits a Query to

Request the Data of Everyone Who Tweeted the Keyword “SuperSunscreen” in the

Past 48 Hours. The Data Service Provider Then Return All the Qualifying Users

with Anonymous IDs and Their Recent 1,000 Posts.

policies of major social media service providers are vulnerable under our adversary

model. Finally, we state the design objectives.

6.2.1 Social Media Data Publishing

We consider a system with three parties: social media users, social media data

service providers, and social media data consumers, as shown in Fig. 6.1.

• Social media users use the social media to connect with their friends and/or

ones they have followed and generate the original texts which could be set either

private or public. Public users are searchable either directly via the social media

service provider’s website or APIs or from the external tool such as Google. By

setting his/her profile private, a private user only allows the authenticated users

to access the profile and is not searchable from other users. However, the social

media service provider still has full access to all the private and public data per

user agreements.

159

• The social media data service provider (or DSP for short) hosts and provides

most likely paid access to social media data. A DSP can be a social media

service provider such as Twitter or Facebook itself. It can also be an emerging

third-party data company such as Gnip or DataSift, which partners with social

media service providers to provide social media data services. For example, Gnip

and DataSift both have authorized access to Twitter’s Firehost engine whereby

to have access to complete, intact, and realtime Twitter data. The DSP can

publish the data according to the privacy policies and agreements (detailed in

Section 6.2.3) which users consent to when signing up for using social media

services. Generally, the DSP has full rights to use all the hosted data for their

businesses and also share the data with data consumers. For example, the DSP

can sample the whole user space according to data consumers’ requests, assign

an anonymous ID to each sampled user, process the original data from each

user according to data requests, and finally deliver the processed data to data

consumers.

• Data consumers purchase social media data from the DSP whereby to run var-

ious social media mining algorithms to extract useful information. A data

consumer can be an individual, a business, a government agency, a research

institution, or any other entity in public and private sectors who is aware of

the growing importance of social media data. A data consumer typically sends

to the DSP a request specifying its query conditions, pays for the request, and

then receives the data. For example, company A may request the data of all

the users in the west coast who have tweeted the keyword “company A” in the

past week. After receiving the data from the DSP, it can explore advanced so-

cial media mining algorithms to identify critical market trends and analyze the

160

users’ demographic information such as age, location, education level, income

level, marital status, occupation, religion, and family size.

We emphasize that a data consumer currently cannot obtain complete and intact

social media data without the DSP’s support. For example, social media service

providers publish public APIs which allow a data consumer to crawl their platforms,

but data crawling via public APIs has critical limitations that hinder the retrieval of

complete data in need. First, each API call only returns a random and small sample

of the whole data satisfying the query conditions. Second, such public APIs often

have a rate limit on how many queries a data consumer can run in a particular time

period. For example, Twitter users can make 180 requests/queries per 15 minutes to

get others’ timelines (136). Finally, a nontrivial set of users (e.g., 11.84% for Twitter

(12) and 52.8% for Facebook (44)) set their data private such that unauthorized data

consumers have no way to search for and obtain these private data. As a result, the

data consumer needs to request the complete data in need from the DSP who has the

complete dataset.

6.2.2 Adversary Model (User-Linkage Attack)

The DSP is assumed to be fully trusted by both social media users and data

consumers. On the one hand, social media data are increasingly important profit

venues of social media service providers. For example, it is reported that data licensing

has already account for more than 10% of Twitter’s total revenue. So the DSP is

motivated to provide high-utility data services to data consumers. On the other

hand, the DSP is obligated to protect the privacy of social media users due to legal

concerns, public relations, and many other reasons. The framework we propose allow

the DSP to strike a good balance between data utility and user privacy.

Some advanced social media users may be privacy-aware and have taken some

161

actions to protect their privacy. For example, the statistics in (12) and (44) show

that 11.84% of Twitter users and 52.8% of Facebook users set their accounts private,

respectively. As said, the DSP still has access to the complete data despite the users’

privacy settings. In addition, the users’ effort to protect their privacy fails in the

presence of the attack outlined below.

Our focus is to defend against the user-linkage attack, which can be launched by a

curious or even malicious data consumer. Assume that the DSP has anonymized every

user ID in the dataset and also taken existing defenses such as (64; 94; 129; 103; 92)

to guarantee link and vertex privacy. There are two possible versions of the user-

linkage attack. In the first version, the attacker locates some target users by random

browsing or searching via public APIs on the social media platform. It knows that

these users must be in the received dataset under anonymous IDs. Existing defenses

only consider link and vertex privacy via various obfuscation mechanisms, and no

attention has been paid to text data. Armed with the text data of the target users

with real IDs, the attacker can easily locate the corresponding anonymous IDs in the

dataset. In the same way, the attacker can link the real IDs of the initial target users’s

friends to the corresponding anonymized IDs, and so on. The attacker eventually can

uncover all the mappings between real and anonymous IDs in the dataset, despite the

DSP’s anonymization effort even based on existing advanced defenses (64; 94; 129). In

the second version, the attacker tries to learn more information beyond the received

dataset. It starts by finding some interesting posts/tweets in the anonymized dataset

and then easily locating the real users by performing simple text matching on the

social network platform. Once the real users are located, the attacker can learn their

latest information and even other information the attacker’s original query does cover.

To highlight the danger posed by such user-linkage attacks, assume that the at-

tacker is an intelligent criminal. He first sends a query for all the users in a target

162

physical region who tweeted “vacation” in the past month. Then he locates valuable

targets in the anonymized dataset by running sophisticated social media mining algo-

rithms. Next, he uses the user-linkage attack to find out the real IDs of these valuable

targets and track their realtime statuses on the social media platform. Finally, the

attacker can well plan break-ins and thefts aiming the victims who mentioned future

vacation plans. To the best of our knowledge, we are the first to notice and study the

defense against such text-based user-linkage attacks which can be extremely danger-

ous.

6.2.3 Vulnerability of Current Social Media Data Publishing Policies

Social media data and their sharing policies are critical for the business of social

media service providers. The typical business model is that users can use social media

services for free, but in return they have to allow social media service providers to

fully access, record, use, and profit from their public/private data. In this section,

we review the current data publishing policies of Facebook and Twitter, two repre-

sentative social media service providers and further highlight the need for privacy-

preserving social media data publishing. Note that we have absolutely no intention

to compare/critize/judge these data publishing policies which are in effect for various

technical and non-technical reasons.

In particular, Facebook 1 claims that “We want our advertising to be as relevant

and interesting as the other information you find on our Services. With this in

mind, we use all of the information we have about you to show you relevant ads,”

and “We transfer information to vendors, service providers, and other partners who

globally support our business, such as providing technical infrastructure services,

analyzing how our Services are used, measuring the effectiveness of ads and services,

1https://www.facebook.com/policy.php

163

providing customer service, facilitating payments, or conducting academic research

and surveys.” Similarly, Twitter 2 allows third-party data consumers to access both

the private and public user data, as they claimed “We engage service providers to

perform functions and provide services to us in the United States, Ireland, and other

countries. We may share your private personal information with such service providers

subject to obligations consistent with this Privacy Policy and any other appropriate

confidentiality and security measures, and on the condition that the third parties

use your private personal data only on our behalf and pursuant to our instructions.”

These publishing policies are obviously subject to the aforementioned user-linkage

attack, regardless of whether advanced defenses such as (103; 92) are incorporated to

protect link and vertex privacy.

6.2.4 Design Objectives

We consider the following problem within the aforementioned social media data

publishing framework. After receiving a data query from the data consumer, the DSP

searches the entire social media database to generate a dataset D, which contains all

the users satisfying the query and their published texts (e.g., tweets, retweets, and

replies) during the period specified in the query. Each user in D is assigned an

anonymous ID to provide baseline user privacy. The data consumer may also request

the social graph associated with D, in which case we assume that existing defenses

such as (64; 94; 129; 103; 92) are adopted to preserve link and vertex privacy such

that it is infeasible to link an anonymous ID to the real user based on his/her vertex’s

graphical property in the social graph. Our focus is to let the DSP transform the raw

dataset D into a new one D′ by perturbing the user texts according to the following

three requirements.

2https://twitter.com/privacy?lang=en

164

• Completeness : each data item in D can be mapped to a unique item in D′, and

vice versa. In other words, no user is added to or deleted from D to create D′.

• Privacy Preservation: The user texts in D′ can be used to link any anonymous

ID in D′ to the corresponding real user ID with negligible probability. This

means that text-based user-linkage attacks can be thwarted with overwhelming

probability.

• High Utility : D′ and D should lead to comparable data utility at the data

consumer when conducting common data mining tasks such as statistical ag-

gregation, clustering, and classification.

6.3 Differentially Privacy-Preserving Social Media Data Publishing

In this section, we present a novel technique to achieve differentially privacy-

preserving social media data publishing with the aforementioned design goals in mind.

Inspired by geo-indistinguishability from (14), which is proposed to protect location

privacy, we propose a novel notion of text-indistinguishability as the foundation of

our technique. In what follows, we introduce the background on text modelling

Section 6.3.1 and differential privacy in Section 6.3.2. We then present the concept of

text-indistinguishability in Section 6.3.3, followed by our technique in Section 6.3.4. A

working example is subsequently given in Fig. 6.3.5. Finally, we theoretically analyze

our technique in Section 6.3.6 and make some remarks in Section 6.3.7.

6.3.1 Text Modeling

As stated before, social media service providers such as Facebook and Twitter

currently publish the original data set D to the data consumer, which contains the

complete and intact user texts. We assume that there are n users in D, each assigned

165

an anonymous ID. There are two obvious drawbacks for this publishing method. First,

although this method can enable the maximum data utility, it is vulnerable to the

text-based user-linkage attack. Second, the data consumer cannot directly use the

original texts which are highly unstructured and noisy, as mentioned in Section 6.1.

For example, common machine learning algorithms such as SVM and K-means require

the input for each user to be a vector. Therefore, from the perspectives of both privacy

protection and data usability, the DSP needs to transform each user’s texts into a

numerical vector. Here we introduce text modeling, a standard process to achieve

this goal.

We first remove stop words in a stop-word list, 3 in which the words such as

“the” and “those” are considered more general and meaningless. Then we conduct

stemming (116) to reduce inflected words to their stem forms such that the words

with different forms can be related to the same word. For example, “play”, “playing”,

and “played” are all reduced to “play”.

Next, we represent the keyword space for the cleansed texts using a τ -gram

technique, which is widely used for statistical text analysis. The τ -gram technique

splits a give message into sequences of τ contiguous words, each referred to as a τ -

gram with τ ranging from 1 to the message length. For example, consider a tweet

{“#SuperSunscreen is really useful, and I like its smell”}. After removing stop words

and performing stemming, we have {“supersunscreen really useful like smell”}. The

corresponding 1-grams are {“supersunscreen”, “really”, “useful”, “like”, “smell”},

and the corresponding 2-grams are {“supersunscreen really”, “really useful”, “ useful

like”, “like smell”}. We let Ni denote the τ -grams of Xi for each user i ∈ [1, n] for all

possible values of τ . Then we choose the top m most frequent τ -grams in
⋃

1≤i≤nNi,

each of which is referred to as a keyword hereafter.

3http://www.lextek.com/manuals/onix/

166

Finally, we use Term Frequency Inverse Document Frequency (TF-IDF) (85) to

derive each element Di,j in the eventual dataset. Specifically, let Γ(j) be the number

of times a τ -gram j appears in the τ -gram list Ni of user i, Γ∗i = maxj∈Ni
Γ(j), and

Γ′(j) denote the number of users whose τ -gram lists contain j. We define

Di,j = (0.5 + 0.5 ∗ Γ(j)

Γ∗i
) ∗ log(

n

Γ′(j)
) . (6.1)

The above normalization is necessary because the users normally have very different

tweet sets and thus different τ -gram lists. Interested readers are referred to (85) for

more details about TF-IDF. We abuse the notation by letting D = [Di,j] ∈ Rn×m

denote the dataset after text modeling as well, which is essentially an n × m user-

keyword matrix. We also let Ui := 〈Di,1, . . . , Di,m〉 denote the text vector of user i

(i ∈ [1, n]), i.e., the ith row in D.

It is a common practice to use 1-grams and 2-grams only for high computational

efficiency without significantly sacrificing the analysis accuracy. So the keyword space

and user-keyword matrix can be constructed very quickly in practice. Also note that

the DSP needs to publish the τ−gram name of each column. Otherwise, the data

consumer has no idea about the physical meaning of the released data.

6.3.2 Why Differential Privacy?

The text model above has two important implications. First, it makes the un-

structured social media data structured by reducing the keyword dimension from

unlimited to m. Second, since the keyword space is composed of the top m most

frequent τ -grams, the users’ privacy has been largely improved in contrast to the

original intact text data. For example, when a user has a tweet saying “The last class

with students at CSE561, #MIT”, the word “CSE561” or even “MIT” has very low

probability to be selected in the keyword space. Therefore, this critical information

167

has been hidden by the text modeling process. The privacy threat, however, cannot

be completely eliminated. For instance, the 1-grams such as “last”, “class”, and “stu-

dent” may still be released. These pieces of information can at least tell that the user

is a professor or teacher. By combining other text information such as “computer”

and “software,” the attacker can further link the target user to a college professor

teaching computer science. Such inferences can be continued until the target is linked

to one or a few real IDs on the social media platform.

Differential privacy is a powerful technique to protect such linkage attacks. Pro-

posed by Dwork et al.(47; 48), differential privacy protects the individual user’s pri-

vacy during the statistical query over a database. If each user in the database is

independent, 4 with any side information except the target him/herself, the attacker

cannot infer whether the target user is in the database or which record is associated

with him/her (74). Providing arguably the strongest analytical protection for user

privacy, the differential privacy model can be more formally defined as follows, which

is tailored for our social media data publishing framework.

Definition 6.3.1 (ε-Differential Privacy (47)). Given a query function f(D) with an

input dataset D ∈ Rn×m and a desirable output range, a mechanism K(·) with an

output range R satisfies ε-differential privacy iff

Pr[K(f(D1)) = R ∈ R]

Pr[K(f(D2)) = R ∈ R]
≤ eε (6.2)

for any datasets D1, D2 ∈ Rn×m that differ on only one row.

Here ε is called the privacy budget. Large ε (e.g. 10) results in large eε and

indicates that the DSP can tolerate large output difference and hence large privacy

loss (because the adversary can infer the change of the database according to the large

4The dependence among the users will hurt the privacy guarantee as indicated in (74; 91).

168

change of the query function f(·). By comparison, small ε (e.g., 0.1, e0.1 = 1.1052)

indicates that the DSP can tolerate small privacy loss.

Differential privacy models can be interactive and non-interactive. Assume that

the data consumer intends to execute a number of statistical queries on the same

dataset. In the interactive model, the data consumer submits to the DSP the con-

ditions for constructing the dataset D and also a desirable statistical query function

f . Instead of returning D to the user, the DSP only responds with K(f(D)), where

K(·) perturbs the query result. In contrast, the DSP in the non-interactive model

designs a mechanism K(·) to transform the original dataset D into a new dataset

D′ = K(f(D)). Finally, D′ is returned to the data consumer which can execute

arbitrary statistical queries locally.

6.3.3 ε-Text Indistinguishability: a New Notion

Our problem can be formulated according to a non-interactive differential privacy

model as follows. Let us use an identity query fI(·) as the query function such that

f(D) = D. Our goal is to find a mechanism K(·) to transform the original user-

keyword matrix (or dataset) D into a new one D′ = K(D) such that ε-differential

privacy can be achieved. Instead of transforming the entire dataset D as a whole, a

more straightforward approach is to perform the transformation for each row individ-

ually, i.e., adding noise to each row Ui ∈ D to produce a new row U ′i ∈ D′.

The Curse of Dimensionality. The Laplacian mechanism (47) is a popular tech-

nique for providing ε-differential privacy, but it suffers from the curse of dimension-

ality. To see it more clearly, recall that ε-differential privacy is defined over the

query function f and unrelated to the dataset because Eq. (6.2) holds for all pos-

sible datasets. What matters is the maximum difference between f(D1) and f(D2)

(∀D1, D2 ∈ Rn×m), which is called the sensitivity of the query function f defined as

169

follows,

S(f) = max ‖f(D1)− f(D2)‖1 . (6.3)

For the identity query fI(·) which transforms each text vector (row) in D to a new

vector in D′, the sensitivity can be furthered defined as

S(fI) = max ‖Ui − Uj‖1 (6.4)

where Ui ∈ Rm and Uj ∈ Rm are any two arbitrary vectors based on TF-IDF (see

Eq. 6.1).

The Laplacian mechanism can achieve ε-differential privacy by adding the Lapla-

cian noise to the query result (47), i.e.,

KLp(fI(Ui)) = Ui + (Yi1, · · · , Yim), i = 1, . . . , n , (6.5)

where Yij are drawn i.i.d. from Lap(S(fI)/ε) ∝ e−ε|x|/S(fI).

The Laplacian mechanism unfortunately decreases the utility of the transformed

dataset. Specifically, the larger the dimension m from the output of the identity query

function fI(·), the larger the sensitivity S(fI), the larger deviation of the Laplacian

noise. Moreover, the large noise accumulated from the high dimension will be added

to each single element of KLp(fI(U)), leading to the so-called curse of dimensionality.

Specifically, from the definition of the text vector Ui in Eq. (6.1), the norm of each

element in Ui should be less than log(n)(≈ 11.5 when n = 100000). When the

dimension m (e.g., 10000) is large enough, the added Laplacian noise has deviation

O(m), which can easily exceed the norm of original text element (≈ 11.5).

ε-Text Indistinguishability. The root cause of the curse of dimensionality is that

the noise added to a single element in every text vector Ui (∀i ∈ [1, n]) is proportional

with the L1-sensitivity of Ui. To tackle this problem, we need to limit the sensitivity

of the whole text vector to the norm of the vector, instead of the individual element.

170

To begin with, we need to generalize the concept of differential privacy defined

in Definition 6.3.1. The generalization of differential privacy was first proposed by

Andrés et al. for location privacy (14), where the privacy budget is proportional to

the physical distance between any two users. They also propose the concept of geo-

indistinguishability such that the service provider reports similar distribution with

the difference bounded by eεd(loc1,loc2) for any two users at locations loc1 and loc2,

respectively. Inspired by this work, we let d(Ui, Uj) denote the Euclidean distance

between Ui and Uj, which are any pair of text vectors in the user-keyword matrix D.

We further redefine the privacy budget as εd(Ui, Uj) and propose the notion of ε-text

indistinguishability as follows.

Definition 6.3.2 (ε-Text Indistinguishability). Given the user-keyword matrix D =

[Di,j] ∈ Rn×m, a mechanism Kt(·) satisfies ε-Text Indistinguishability iff

Pr[Kt(Ui) = U∗ ∈ Rm|Ui]
Pr[Kt(Uj) = U∗ ∈ Rm|Uj]

≤ eεd(Ui,Uj) , (6.6)

where Ui and Uj are any user text vector pair in D, and U∗ is a text vector in perturbed

user-keyword matrix D′.

The above definition means that any two vectors Ui and Uj in D can be trans-

formed (or perturbed) by the mechanism Kt(·) into the same vector in D′ with proba-

bility ≥ 1− eεd(Ui,Uj). In other words, the more similar two text vectors are, the more

non-distinguishable they are after transformation, and vice versa. The maximum pri-

vacy budget is given by εrmax, where rmax denotes the maximum Euclidean distance

between two text vectors in D. As in the original ε-differential privacy mechanism,

the larger the privacy budget, the larger the privacy loss the DSP can tolerate, and

vice versa. The following theorem gives the upper bound of εrmax, based on which

the DSP can select ε to ensure an acceptable privacy budget.

171

Theorem 6.3.1. Given the user-keyword matrix D ∈ Rn×m built according to Eq. (6.1),

the maximum Euclidean distance between two text vectors is rmax ≤
√
m log(n).

Proof. According to the definition in Eq. (6.1), a text vector U has the maximum

norm
√
m log(n) when each of its element is equal to the maximum value log(n). It

follows that rmax ≤ ‖U1 − U2‖ ≤ ‖U‖ ≤
√
m log(n).

The upper bound above is almost unreachable in practice, as it requires that all

the m keywords be used by only one user. So rmax in practical scenarios is far less

than
√
m log(n). But if the DSP chooses ε according to

√
m log(n), the effective

privacy budget for many text-vector pairs is actually very small, implying that these

text-vector pairs are very likely to be indistinguishable after perturbation.

6.3.4 Achieving ε-Text Indistinguishability

In this section, we propose a mechanism to achieve the ε-text indistinguishability.

To this end, we first assume rmax to be infinite and then finite.

Mechanism for Infinite rmax

The mechanism Kt(fI(·)), designed for the identity query fI(·), maps each text vector

U ∈ Rm of the dataset D to a new U ′ with the same dimension m. To that end, we

write the perturbed U ′ as:

U ′ = U + dΘ

where d is a random variable indicating the Euclidean distance between U and U ′,

and Θ is an m-dimensional random vector drawn from the m-dimensional unit hy-

persphere. The mechanism is then composed of two steps: the generation of the

magnitude and the direction. Since the drawing of Θ is straightforward, we focus on

generating d. Similar to the Laplacian mechanism (47), we let d deviate from the

172

center U according to the Laplacian distribution,

g(d) = εe−εd (6.7)

where d ranges from zero to infinity. It is easy to check that
∫ +∞
0

g(d) = 1.

The CDF of d is given by

Cε(d = r) =

∫ r

0

εe−εxdx = 1− e−εr. (6.8)

The CDF above tells us how to generate a random d. Specifically, given a user

text vector U , we want to generate a perturbed vector which has at most d Euclidean

distance from U . Since d follows the PDF defined in Eq. (6.8), given a random

probability p ∈ [0, 1], we can obtain

d = C−1ε (p) = − log(1− p)
ε

. (6.9)

We now show that the proposed mechanism satisfies ε-text indistinguishability.

Theorem 6.3.2. The mechanism Kt(fI(·)) defined above achieves the ε-text indis-

tinguishability.

Proof. Given two user text vectors Ui and Uj, the probability quotient of being per-

turbed the same vector U∗ can be computed as

Pr[U = U∗|Ui]
Pr[U = U∗|Uj]

=
Pr[d(U∗, Ui)]Θ1

Pr[d(U∗, Uj)]Θ2

= eε(d(U
∗,Ui)−d(U∗,Uj)) ≤ eε(d(Ui,Uj)).

(6.10)

Here Θ1 and Θ2 can be canceled because both are drawn from the m-dimensional

unit hypersphere with the same probability, and the inequity holds because of the

triangle inequity. Therefore, the conclusion holds.

173

Mechanism for Limited rmax

The mechanism Kt(fI(·)) in last section maps the user text vector U to U ′ with

potentially infinite distance. However, we have demonstrated in Theorem 6.3.3 that

any text vector pair have the Euclidean distance bounded by rmax. Here we present

how to truncate the mapping into a specific rmax. We denote the corresponding

mechanism as Kr(fI(·)).

As we can see from Fig. 6.2, Cε(d = r) will approach to one quickly as r increases.

0 20 40 60 80 100

r

0

0.2

0.4

0.6

0.8

1

C
D

F

0 = 0.8
0 = 0.1
0 = 0.08

Figure 6.2: The CDF of d with Different εs.

Therefore, we define a tolerance parameter γ to indicate how much of CDF will

be outside rmax. In other words,

1− γ = Cε(d = rmax) = 1− e−εrmax

⇒ ε = − log(γ)

rmax

. (6.11)

The algorithm of Kr(fI(·)) is listed in Alg. 5. Given the tolerance parameter γ

and rmax, we compute the ε according to Eq. 6.11 in Line 1. Then for each Ui in

the dataset D, we draw the noise vector dΘ by two steps: (1) obtain the magnitude

randomly in Line 3 by using r = C−1ε (p) where p is the random CDF, and (2) compute

174

the direction Θ in Line 4 by drawing a random vector from the unit m-dimensional

hypersphere. Line 5 adds the noise to U to get U ′.

Algorithm 5: Perturbation algorithm for mechanism Kr(fI(·))
input : rmax, γ,D = {U1, . . . , Un}

output: Perturbed dataset D′ = {U ′1, . . . , U ′n}

1 Compute ε according to Eq. (6.11);

2 For each Ui, i = 1, . . . , n ;

3 Select a random number p ∈ [0, 1], and compute the radius d according to

Eq. (6.9) ;

4 Select a random vector N ∈ Rm, and normalized it to have unit L2 norm, i.e.,

Θ = N/‖N‖2 ;

5 U ′i = Ui + dΘ ;

We also show that the mechanismKr(fI(·)) achieves the ε-text indistinguishability.

Theorem 6.3.3. The mechanism Kr(fI(·)) defined above achieves the ε-text indis-

tinguishability within rmax.

Proof. For each text vector U , with the probability of 1−γ, the perturbed text vector

U ′ has the Euclidean distance less or equal to rmax from U . The rest steps follow the

proof of Theorem 6.3.2, and the conclusion holds.

6.3.5 A Working Example

Fig. 6.3 gives a simple example for our system operations. Here the data consumer

wants to find the users who have posted about a sunscreen product “SuperSunscreen”.

The DSP finds three qualified users with tweets as “Use #SuperSunscreen with mom,

175

Use #SuperSunscreen
with mom, very

useful

Cheated after using
#SuperSunscree

Great
#SuperSunscree!

Intact dataset TFIDF Matrix

Text

Modeling Perturbation

Published Matrix

use supersunscreen mom cheat great use supersunscreen mom cheat great

Figure 6.3: The Illustration of Differentially Privacy-preserving Social Media Data

Publishing. Given Three Users with Intact Dataset, We First Use the Text Model to

Build a Matrix D, Then Add the Controlled Noise, and Finally Release the Perturbed

Matrix D′ and the Keywords in Each Column.

very useful”, “Cheated after using #SuperSunscree ”, and “Great #SuperSunscree!”,

respectively.

The first step is to remove the stop words, conduct the stemming, and then com-

pute the TF-IDF matrix defined by Eq. 6.1. We obtain the 1-gram lists for these

three users as “use(2), SuperSunscreen, mom”, “cheat, use, SuperSunscreen”, and

“great SuperSunscreen”, respectively. Consider the 1-grams keyword space as “use,

SuperSunscreen, mom, cheat, great”, we can build the TF-IDF matrix D as follows.

D =

U1

U2

U3

 =

0.4055 0 0.8240 0 0

0.4055 0 0 1.0986 0

1.0986 0 0 0 0

 .

Then we apply the perturbation algorithm in Alg. 5 to generate a perturbed matrix

D′ as follows:

D′ =

0.5151 0.0302 0.9210 0.2012 0.0321

0.7121 0.0139 0.1023 1.3453 0.0245

1.3214 0.0218 0.3084 0.0021 0.0083

 .

176

0
104

0.5

100

10

1.5

r
max

102

.

2

10-10

100
10-20

Figure 6.4: Determine ε by γ and rmax.

The DSP then release D′ and the keyword space to the data consumer for machine

learning tasks. As we can see, the perturbed matrix largely reduce the distance

between each user text vector by sacrificing little utility. We will evaluate the tradeoff

between the privacy and utility later.

6.3.6 Performance Analysis

Privacy budget

As shown in Eq. (6.11), ε, which is the constant scale of the privacy budget εd,

can be determined by γ and rmax, as shown in Fig. 6.4. As we can see, for rmax

from 1 to 104 and γ from 1 to 10−16, ε is always less than 2. Moreover, since ε

is reversely proportional to rmax, the whole privacy budget εd is less than − log(γ)

(because d ≤ rmax), which is relatively small. The small privacy budget is critical for

differential privacy mechanisms because a large budget result in a large privacy loss.

177

Break the Curse of Dimensionality

As stated in Section 6.3.3, the original ε-differential privacy notion and the corre-

sponding Laplacian mechanism suffer the curse of dimensionality for perturbing the

text vector. The reason is that the noise strength added to each element in the text

vector has a scale of S(fI)/ε, where S(fI) is the L1 sensitivity of the text vector and

proportional to the dimension m. We now estimate the scale of the noise strength for

the mechanism Kr(fI(·)).

Theorem 6.3.4. Given a text vector U ∈ Rm, by applying the mechanism Kr(fI(·)),

the expected noise strength for each element in U is unrelated to the dimension m.

Proof. According to Eq. (6.9), we can obtain

E(d) =

∫ 1

0

−1− p
ε

dp =
1

2ε
.

Combining Eq. (6.11) and the upper bound of rmax in Theorem 6.3.3, we can obtain

E(d) =
2rmax

log(γ)
< −2

√
m log(n)

log(γ)
.

Here E(d) is the expected noise strength for the whole vector U . Therefore, the

expected strength for each element in U is

E(d)√
m

< −2 log(n)

log(γ)

which is unrelated to the dimension m.

Moreover, by setting the γ to extremely small (e.g., 10−16), the upper bound

approaches 1. Note that according to Theorem 6.3.3, this upper bound is rather

loose. Therefore, the expected noise strength for each element is far less.

178

(α, δ)-usefulness

The mechanism Kr(fI(·)) also satisfies (α, δ)-usefulness defined by (25).

Definition 6.3.3 ((α, δ)-usefulness). A ε-text indistinguishability mechanism K sat-

isfies (α, δ)-usefulness iff for every user text vector U , with the probability at least δ,

the perturbed text vector U ′ satisfies d ≤ α.

Theorem 6.3.5. The mechanism Kr(fI(·)) defined above achieves the (α, δ)-usefulness.

Proof. It can be easily seen according to the CDF of the random variable d in

Eq. (6.8).

6.3.7 Remarks

We have three remarks to make on our design.

First, the proposed ε-text indistinguishability and Kr(fI(·)) mechanism can be

used to protect the privacy in other contexts as long as the dataset D is homogeneous,

meaning that each column should have a similar numerical range. The reason is that

the model generalizes and represents the whole vector by its L2 norm, while ignoring

the difference for each element in the vector. If the element in each row vector is

different, the generalization could become meaningless. Nevertheless, the proposed

mechanism break the curse of dimensionality, and it is an interesting topic to extend

the proposed model to heterogenous datasets.

Second, the mechanism in Alg. 5 could generate a perturbed vector with very

large norm (> rmax). However, the attacker cannot obtain any external information

from this abnormality. The reason is that the probability for any user who has this

abnormality is random. Moreover, the probability is negligible. For example, when

179

rmax = 100 nd γ = 10−8, the probability of abnormality is 10−8. In general, the less

γ, the less the abnormality, and vice versa.

Third, rmax is important for our mechanism, and we can further reduce rmax by

clustering to define the (k, ε)-text indistinguishability. Specifically, we can partition

the dataset into k clusters by grouping the close vectors in a cluster, and then conduct

the ε-text indistinguishability independently within each cluster. Since each local

group has a smaller rmax, less noise is added to the original dataset, leading to higher

data usability. Obviously, the larger the K, the less the privacy and the higher the

usefulness, and vise versa. We leave this extension as future work.

6.4 Evaluation

In this section, we use both a real-world dataset and simulations to evaluate the

proposed ε-text indistinguishability mechanism Kr(fI(·)) in three aspects: the privacy

and usefulness, the utility on a typical machine learning task, and the defense against

the user-linkage attacks.

6.4.1 Dataset

As stated before, the data consumer aims to use the social media data to do

the demographics analysis. Here we use a ground truth Twitter user dataset with

known age information similar to (158). Specifically, a user A has age x if one of

his friends has posted a tweet with the format “Happy x-birthday to A”. We used

Twitter Streaming API to monitor these tweets and the ground-truth users. We then

manually check the consistency between the claimed age information and the tweets

they have posted to. Finally, we found 5,710 users, which consist of 2,855 users who

are at least and less than 25 years old, respectively. We crawled one year of their

recent tweets and obtained 3,363,706 tweets. We then removed the stopping words

180

and conducted the stemming as stated in Section 6.3.1, and built the TF-IDF matrix

according to Eq. (6.1) for the following experiments. Because of the randomness

during the noise generation, we run each of the experiment 100 times and report the

average results.

0 5000 10000
m

200

300

400

500

600

700

800

900

r m
ax

 lo
os

e
bo

un
d

Figure 6.5: The Loose Upper Bound of

rmax.

0 5000 10000
m

10

20

30

40

50

60

r m
ax

0

0.005

0.01

0.015

0.02

0.025

0.03

N
oi

se
 s

tr
en

gt
h

Figure 6.6: The Real rmax and the Noise

Strength for Each Element.

0 50 100 150
,

0

0.2

0.4

0.6

0.8

1

/

r
max

 = 50

r
max

 = 100

r
max

 = 150

(a) γ = 10−8

0 20 40 60 80 100
,

0

0.2

0.4

0.6

0.8

1

/

. = 10-16

. = 10-8

. = 10-4

(b) rmax = 100

Figure 6.7: The Usefulness of the Mechanism.

181

6.4.2 Privacy and Usefulness

We first check rmax in the real-world dataset above. To start with, Fig. 6.5 shows

the loose upper bound with different dimension m stated in Theorem 6.3.3. We set

the number of users n = 5710. The upper bound is a sublinear function with m, and

increases from 200 to 1000 when m ranges from 1000 to 10000.

We also measure rmax in the dataset as shown in Fig. 6.6. Specifically, we compute

rmax as the maximum L2 norm of each row vector from the dataset D. As we can see,

although the rmax increases sublinearly with m, the magnitude is much less than the

upper bound in Fig. 6.5. The reason is twofold. First, because we built the TF-IDF

dataset by choosing the most m frequent grams, the IDF term in Eq.(6.1) is much

less than log(n). Second, the TF part is less than
√
m because the text vector is

sparse (each user has only used limited grams when m is large).

Given rmax, Fig. 6.6 demonstrates the expected noise strength added for each single

element in the text vector. As we can see, the noise strength is fairly stable with the

dimension m, which is consistent with Theorem 6.3.4. Moreover, the expected noise

strength ranges from 0.02 to 0.03, and is comparable to the original data. Therefore,

the proposed mechanism can tolerate an arbitrary dimension, i.e., breaking the curse

of dimensionality.

Fig. 6.7a and Fig. 6.7b show the (α, δ)usefulness of the mechanism at different

rmax and γ, respectively. As we can see, with probability δ, the distance between the

original text vector and the perturbed vector is within α, which verifies Theorem 6.3.5.

6.4.3 Performance on Classification

We evaluate the mechanism on classification, one of the typical applications from

the machine learning community. As stated before, each user has the ground-truth

182

10-10

.

0.65

0.7

0.75

0.8

0.85
A

cc
ur

ac
y

Original
r
max

 = 50

r
max

 = 100

r
max

 = 150

(a) m = 1000

102 103 104

r
max

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Original

. = 10-16

. = 10-8

. = 10-4

(b) m = 1000

10-10

.

0.78

0.8

0.82

0.84

0.86

A
cc

ur
ac

y

Original
r
max

 = 50

r
max

 = 100

r
max

 = 150

(c) m = 5000

102 103 104

r
max

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y

Original

. = 10-16

. = 10-8

. = 10-4

(d) m = 5000

Figure 6.8: The Performance of Classification.

age information. We can then build a binary classifier to determine whether a user

is younger than 25 years old or not. We use the Support Vector Machine (SVM)

(128) algorithm to evaluate the classification performance on both the original and

the perturbed datasets by ten-fold cross validation.

Fig. 6.8a demonstrate the accuracy with a changing γ. The straight and crooked

lines represent the original and perturbed datasets, respectively. As we can see, the

183

smaller γ, the higher the performance for the perturbation mechanism. This result

is not surprising. Specifically, Theorem 6.3.4 indicates that the smaller γ, the less

the noise added to the original dataset. However, small γ will increase the privacy

budget scale ε and hence the privacy loss.

Fig. 6.8b demonstrates the accuracy of the original dataset (straight line) and the

perturbed datasets with different rmax (crooked curves). As we can see, the smaller

rmax, the better the accuracy because smaller rmax will incur less noise. However, less

noise will cause a high privacy loss because the attacker can infer the victim given

the huge difference between two perturbed vectors.

Fig. 6.8c and Fig. 6.8d show the classification performance on m = 5000. As

we can see, both figures show the similar trend for m = 1000, meaning that the

mechanism works well at various dimensions. Moreover, the performance when m =

5000 is slightly better than that when m = 1000. The reason is that more keywords

lead to better classification.

6.4.4 Defense Against User-Linkage Attacks

Our mechanism is designed to defend against the user-linkage attack. The defini-

tion of ε-text indistinguishability in Definition 6.3.2 and the corresponding mechanism

in Alg. 5 show that any user can be perturbed to other text vector with certain prob-

ability. Therefore, the perturbation can make the user-linkage attack more difficult

to conduct. To evaluate the effectiveness of our mechanism, we need to model the

strength of the attacker in terms of user inference. We consider two attack models

here.

In inference attack I, we assume that the attack knows t elements of the victim’s

text vector, and t vary from 0 to m. We then build an estimated vector U ′ by keeping

these t elements and setting other unknown elements to zero, and check whether the

184

estimated vector U ′ is in the K-nearest vector set in both the original D and the

perturbed D′. It is expected that the larger the t, the stronger the attack, the higher

the inference rate. We set m = 1000 and γ = 10−8. We conduct the experiment by

1000 times and report the average results.

0 200 400 600 800 1000
The number of disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(a) K = 1, rmax = 100

0 200 400 600 800 1000
The number of disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(b) K = 10, rmax = 100

0 200 400 600 800 1000
The number of disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(c) K = 1, rmax = 200

0 200 400 600 800 1000
The number of disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(d) K = 10, rmax = 200

Figure 6.9: The Performance of Inference Attack I.

Fig. 6.9 shows the inference rate among the 1-nearest and 10-nearest vectors for

rmax = 100 and 200. We can make two observations. First, all the four curves show

185

that the perturbation algorithm makes the user linkage attack much more difficult.

Specifically, when the t increase from 300 to 600, the inference rate increase quickly

from 0 to 100% for the original dataset. The inference rate then stay at approximate

100% when t is larger than 600. By comparison, the inference rate for the perturbed

dataset is at most 68.8% for rmax = 100 (K = 10) and 44.6% for rmax = 200 (K = 10),

respectively. Second, Fig. 6.9 demonstrate the tradeoff between the privacy and

usefulness in terms of rmax. Specifically, on the one hand, the mechanism’s inference

rate for rmax = 200 is less than the rate for rmax = 100. The reason is that larger

rmax results in larger noise and hence higher-level privacy protection. On the other

hand, larger rmax results in lower classification performance as indicated in Fig. 6.8.

The tradeoff also holds in terms of γ.

In inference attack II, we assume that the attack knows the noisy but the whole

text vector of the victim. To that end, we randomly select a victim vector U∗ from D,

add a noise vector N with the magnitude s where 1/s is the attack strength, and then

check whether the noisy vector Ũ = U∗ + N is in the K-nearest vector set in both

the original D and the perturbed D′. We use the Euclidean distance to represent

the difference between any vector pair. Obviously, it is expected that the weaker the

attack strength, the higher the inference rate.

Fig. 6.10 show the inference rate among the 1-nearest and 10-nearest vectors for

rmax = 100 and 200. We can make the similar observations as in the inference attack

I. First, the perturbation algorithm makes the user linkage attack much more difficult.

Specifically, when the reverse attack strength s increases, the inference rate for the

perturbed dataset decreases to about 30% for K = 1 and 40% for K = 10, meaning

that the attacker has limited power to infer the victim. By comparison, the inference

rate for the original dataset is always 100% when s is less than 17. The reason is each

user text vector is very distinguishable. When s > 17, the inference for the original

186

0 5 10 15 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1
In

fe
re

nc
e

ra
te

Original
Perturbed

(a) K = 1, rmax = 100

0 5 10 15 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(b) K = 10, rmax = 100

5 10 15 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(c) K = 1, rmax = 200

5 10 15 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1
In

fe
re

nc
e

ra
te

Original
Perturbed

(d) K = 10, rmax = 200

Figure 6.10: The Performance of Inference Attack II.

dataset decreases dramatically because the measured rmax for this dataset is 15.1 for

m = 1000, as indicated in Fig. 6.6. Second, Fig. 6.9 demonstrate the tradeoff between

the privacy and usefulness in terms of rmax.

Moreover, users’ privacy has not largely sacrifice the utility. For example, as a

typical setting, when rmax = 100 and γ = 10−8, the inference rate with s = 15 and

K = 10 is 47.7%, and the classification accuracy is reduced by only 1.61%. Therefore,

187

the proposed mechanism can achieve high privacy guarantee with little utility loss.

Note that there is a peak point for the inference rate on the perturbed dataset

in Fig. 6.10. This is because that the perturbation also adds the noise vector in the

similar way as in the inference attack II. For different rmax, the perturbed vectors

have different Euclidean distance from the original vectors. Recall that U ′ and Ũ

are the perturbed vector and the estimated vector from the attacker for the victim

U∗, respectively. When the difference between d(U∗, Ũ) and d(U∗, U ′) is small, the

inference rate will increase. However, in reality, the attacker has little knowledge on

the whole text vector for the victim. Therefore, it is difficult for them to conduct this

type of inference.

6.5 Related Work

This section reviews the most relevant work.

6.5.1 Privacy on Social Media Platforms

Social media platforms host the network and also text information. The privacy

threat of both pieces of information has been studied widely. For the privacy threat

from the network information, existing results show that an anonymous social graph

can be de-anonymized by seed information (107; 69) and community structures in

the social graph (111). As for the privacy threat from text information, sophisticated

machine learning algorithms can be used to infer a lot of sensitive information, such

as age (156; 158), location (88; 159), language (110), and political preference (31).

On the defense side, the research community only attempts to protect user pri-

vacy from the perspective of network information. The research efforts fall into two

directions. The first line of research (64; 94; 129) aims at protecting vertex privacy by

publishing social graphs with anonymized user IDs, and the research effort is to pre-

188

vent the adversary from linking anonymized IDs to corresponding real IDs in the real

social network. The other line of research targets link/edge privacy, and the research

effort is to publish social graphs with real user IDs but perturbed edges by publishing

an obfuscated social network to protect users’ privacy (103; 92). Our paper is the

first to protect the privacy from the text information and is complementary to these

efforts.

Some other work protects the social media users’ privacy from the architectural

aspect. For example, Cristofaro et al. proposed the Hammingbird (40) to replace

the Twitter system, and Papadopoulos et al. proposed a K-subscription system to

protect the user’s privacy in Twitter (115). However, although these systems have

strong privacy guarantee, they might be difficult to be widely adopted in practice.

6.5.2 Differential Privacy

Privacy-preserving data publishing has been thoroughly studied and surveyed in

(54). The majority of work surveyed in (54) focuses on the traditional database

instead of the unstructured social media data.

In this paper, we adopt the non-interactive differential privacy model with com-

pleteness, which has been studied in (72) for differentially-private PCA and in (89)

for differentially private compressive sensing. However, the first work cannot be used

for the nonnegative text analysis or the same-dimension perturbation, and the second

cannot defend against the user-linkage attack. There are other non-interactive differ-

ential privacy mechanisms such as (106) and (146). However, they cannot guaranteed

the completeness of the one-on-one mapping. Differential privacy has also been ap-

plied in many other applications, such as location (14; 91), compressive sensing (89),

and health data (42).

189

6.5.3 Privacy-Preserving Machine Learning

Also related is privacy-preserving machine learning (27; 148). These schemes use

a different system model where the users are distributed entities and have the control

on how to share their data. We use a different system model where all the end users

share their social media data with the trusted data service provider. Moreover, these

schemes are designed for specific machine learning algorithms, while our framework

targets more general data mining applications.

6.6 Summary

In this chapter, we investigated the vulnerability of the existing social media data

publishing model and also designed the first privacy-preserving publishing framework.

We pointed out that the existing ε-differential privacy and the popular Laplacian

mechanism suffers from the curse of dimensionality and makes the perturbed data

useless. We then proposed the ε-text indistinguishability and designed a mechanism

to achieve it. We evaluated the mechanism’s privacy and usefulness guarantees, as

well as its high effectiveness on classification and strong defense against the user-

linkage attack.

190

Chapter 7

CONCLUSION AND FUTURE WORK

The architectural openness and people’s growing engagement continuously make

the microblogging services the easy targets for the various targets. In this disserta-

tion we uncover a number of challenging security and privacy issues in microblogging

services and also propose corresponding defenses. As for the security side, we demon-

strate that the social botnet, a group of collaborative social bots under the control

of a single botmaster, can facilitate the spam distribution and digital-influence ma-

nipulation. We also propose the corresponding countermeasures and evaluate their

effectiveness. Moreover, in the context of finding top-K influential microbloggers, we

propose the first sybil-resilient system TrueTop to find the top-K influential users

in microblogging services with very accurate results and strong resilience to sybil at-

tacks. We thoroughly evaluated its performance on real-world datasets. As for the

privacy side, we demonstrate that microblogging systems’ structural openness and

users’ carelessness could disclose the later’s sensitive information such as home city.

We propose and evaluate LocInfer, a novel and lightweight system to uncover the

majority of the users in any metropolitan area by exploring the geographic locality

that the users in the same area have more interactions than the ones from different

areas. We demonstrate one more privacy issue by proposing a novel machine learn-

ing framework MAIF that leverages public content and interaction information in

microblogging services to infer users’ hidden ages. To defend against these privacy

threats, we propose the first privacy-preserving social media publishing framework to

let the microblogging service providers publish their data to any third-party without

disclosing users’ privacy and meanwhile meeting the data’s commercial utilities.

191

This dissertation is far from perfectness. For the future work, we can extend our

dissertation in following directions.

First, Chapter 2 lists two representative attacks by social botnets and their coun-

termeasures. Additional attacks and corresponding defenses can also be investigated.

For example, the social botnets might be used to manipulate the public opinion in

the crisis or significant events.

Second, Chapter 3 assumes that the sybil users have difficulty to obtain the trust

from the legitimate users. Recently measurement show that the sybils have become

more and more intelligent to break this constraint. How to deal with sybil’s evolving

intelligence is one of our future work for the TrueTop system.

Third, the LocInfer system in Chapter 4 only uses the network information to infer

the location of Twitter users. As demonstrated in Chapter 5, the content information

can also be combined to infer the attributes. Therefore we can exploit how to integrate

the content information with the network information to infer the location of Twitter

users. One possible direction is we can further refine the users in the candidate set

by checking their content information.

Fourth , we can do many additional work for MAIF in Chapter 5. We seek to

incorporate more interaction information such as retweets, replies, and mentions into

MAIF. In addition, we will evaluate the performance of MAIF for other microblogging

systems such as Tumblr. We also plan to thoroughly investigate the privacy implica-

tions of MAIF and possible countermeasures for the microbloggers particularly wary

of their age privacy.

Fifth, in the privacy-preserving social media data publishing framework in Chap-

ter 6, we will evaluate the mechanism on more applications, various attack models,

extend the framework to heterogenous datasets, and investigate the (K, ε)-text indis-

tinguishability mentioned in Section 6.3.7.

192

BIBLIOGRAPHY

[1] Klout. http://www.klout.com.

[2] Kred. http://www.kred.com/.

[3] Retweet Rank. http://www.retweetrank.com/.

[4] Jason Ding The Twitter Underground Economy: A
Blooming Business. https://barracudalabs.com/2012/08/
the-twitter-underground-economy-a-blooming-business/. Aug. 2012.

[5] 2013 U.S. gazetteer files. https://www.census.gov/geo/maps-data/data/
gazetteer2013.html.

[6] Klout perks: A healthy two years. http://corp.klout.com/blog/2012/06/
klout-perks-a-healthy-two-years/.

[7] Oauth open authentication system. http://oauth.net/.

[8] Peerindex. http://www.peerindex.com/.

[9] Twitalyzer. http://twitalyzer.com/.

[10] Twitter grader. http://twitter.grader.com/.

[11] The twitter rules. https://support.twitter.com/articles/
18311-the-twitter-rules.

[12] An exhaustive study of twitter users across the world, Oct. 2012. http://www.
beevolve.com/twitter-statistics/.

[13] REST API v1.1 resources. https://dev.twitter.com/docs/api/1.1/, 2013.
Twitter.

[14] Miguel Andrés, Nicolás Bordenabe, Konstantinos Chatzikokolakis, and Catus-
cia Palamidessi. Geo-indistinguishability: Differential privacy for location-based
systems. In CCS ’13, pages 901–914, Berlin, Germany, Nov. 2013.

[15] Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: Improving
geographical prediction with social and spatial proximity. In WWW’10, pages
61–70, Raleigh, NC, Apr. 2010.

[16] Eytan Bakshy, Jake Hofman, Winter Mason, and Duncan Watts. Everyone’s an
influencer: quantifying influence on Twitter. In WSDM’11, pages 65–74, Hong
Kong, China, Feb. 2011.

[17] Richard Baraniuk. Compressive sensing. IEEE signal processing magazine,
24(4), 2007.

193

[18] Ehrhard Behrends. Introduction to Markov Chains With Special Emphasis on
Rapid Mixing, pages 72, 97–102. Friedrick Vieweg & Son, Oct. 2002.

[19] Richard Bellman. Dynamic Programming. Dover Publications, Incorporated,
2003.

[20] Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgilio Almeida.
Detecting spammers on twitter. In CEAS’10, Redmond, WA, July 2010.

[21] Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio Almeida.
Characterizing user behavior in online social networks. In IMC’09, pages 49–62,
Chicago, IL, Nov. 2009.

[22] Dimitri Bertsekas. Nonlinear programming. Athena scientific, 1999.

[23] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All your
contacts are belong to us: automated identity theft attacks on social networks.
In WWW’09, pages 551–560, Madrid, Spain, 2009.

[24] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[25] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to
non-interactive database privacy. In STOC ’08, pages 609–618, Victoria, British
Columbia, Canada, May 2008.

[26] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu.
The socialbot network: when bots socialize for fame and money. In ACSAC’11,
pages 93–102, Orlando, FL, Dec. 2011.

[27] Raphael Bost, Raluca Popa, Stephen Tu, and Shafi Goldwasser. Machine learn-
ing classification over encrypted data. In NDSS’15, San Diego, CA, Feb. 2015.

[28] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[29] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the
detection of fake accounts in large scale social online services. In NSDI’12, San
Jose, CA, Apr. 2012.

[30] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gummadi.
Measuring user influence in twitter: The million follower fallacy. In ICWSM’10,
pages 10–17, Washington, DC, May 2010.

[31] Xin Chen, Yu Wang, Eugene Agichtein, and Fusheng Wang. A comparative
study of demographic attribute inference in twitter. In ICWSM’15, pages 590–
593, Oxford, England, May 2015.

[32] Alice Cheng and Friedman Eric. Manipulability of PageRank under sybil strate-
gies. In NetEcon’06, Ann Arbor, MI, June 2006.

194

[33] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet:
a content-based approach to geo-locating twitter users. In CIKM’10, pages
759–768, Toronto, Canada, Oct. 2010.

[34] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-
reduce. In WWW’10, pages 231–240, Raleigh, NC, Apr. 2010.

[35] Zi Chu, Indra Widjaja, and Haining Wang. Detecting social spam campaigns
on twitter. In ACNS’12, pages 455–475, Singapore, Jun. 2012.

[36] Hyunwoo Chun, Haewoon Kwak, Young-Ho Eom, Yong-Yeol Ahn, Sue Moon,
and Hawoong Jeong. Comparison of online social relations in volume vs inter-
action: a case study of cyworld. In IMC’08, pages 57–70, Vouliagmeni, Greece,
Oct. 2008.

[37] Zack Coburn and Greg Marra. Realboy: Believable twitter bots. http://ca.
olin.edu/2008/realboy/index.html, 2008.

[38] Ryan Compton, David Jurgens, and David Allen. Geotagging one hundred
million twitter accounts with total variation minimization. In Big Data (Big
Data), 2014 IEEE International Conference on, pages 393–401, Oct. 2014.

[39] T. Cormen, C. Stein, R. Rivest, and C. Leiserson. Introduction to Algorithms,
Third Edition. Cambridge MA: MIT Press, 2009.

[40] E. Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Hummingbird: Privacy
at the time of twitter. In 2012 IEEE S&P, pages 285–299, Oakland, CA, May
2012.

[41] George Danezis and Prateek Mittal. SybilInfer: Detecting sybil nodes using
social networks. In NDSS’09, San Diego, CA, Feb. 2009.

[42] Kamal Dankar and Khaled Emam. The application of differential privacy to
health data. In EDBT-ICDT ’12, pages 158–166, Berlin, Germany, Mar. 2012.

[43] R. Dey, Tang Cong, K. Ross, and N. Saxena. Estimating age privacy leakage in
online social networks. In INFOCOM’12, pages 2836–2840, Orlando, FL, Mar.
2012.

[44] R. Dey, Z. Jelveh, and K. Ross. Facebook users have become much more private:
A large-scale study. In IEEE PERCOM Workshops’12, pages 346–352, Lugano,
Switzerland, March 2012.

[45] J. R. Douceur. The sybil attack. In IPTPS ’02, Cambridge, MA, Mar. 2002.

[46] Maeve Duggan, Nicole Ellison, Cliff Lampe, Amanda Lenhart, and Mary Mad-
den. Demographics of key social networking platforms, Jan. 2015.

[47] Cynthia Dwork. Differential privacy. In Automata, languages and programming,
pages 1–12. Springer, 2006.

195

[48] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of the Third Confer-
ence on Theory of Cryptography, TCC’06, pages 265–284, New York, NY, Mar.
2006.

[49] Manuel Egele, Gianluca Stringhini, Christopher Krgel, and Giovanni Vigna.
Compa: Detecting compromised accounts on social networks. In NDSS’13, San
Diego, CA, Feb 2013.

[50] eMarketer. Us twitter user base begins to mature. http://www.emarketer.
com/Article/US-Twitter-User-Base-Begins-Mature/1010641, Feb. 2014.

[51] Emilio Ferrara. Manipulation and abuse on social media. SIGWEB Newsl.,
(Spring):4:1–4:9, Apr. 2015.

[52] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro
Flammini. The rise of social bots. arXiv preprint arXiv:1407.5225, pages 1–11,
Jul. 2014.

[53] Carlos Freitas, Fabŕıcio Benevenuto, Saptarshi Ghosh, and Adriano Veloso.
Reverse engineering socialbot infiltration strategies in twitter. arXiv preprint
arXiv:1405.4927, pages 1–13, May 2014.

[54] Benjamin Fung, Ke Wang, Rui Chen, and Philip Yu. Privacy-preserving
data publishing: A survey of recent developments. ACM Computing Surveys
(CSUR), 42(4):14:1–14:52, 2010.

[55] Pia Gadkari. How does twitter make money?, Nov. 2013. http://www.bbc.
com/news/business-24397472.

[56] Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok Choudhary.
Towards online spam filtering in social networks. In NDSS’12, San Diego, CA,
Feb. 2012.

[57] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Zhao.
Detecting and characterizing social spam campaigns. In IMC’10, pages 35–47,
Melbourne, Australia, Nov. 2010.

[58] Saptarshi Ghosh, Gautam Korlam, and Niloy Ganguly. Spammers’ networks
within online social networks: a case-study on twitter. In WWW’11, pages
41–42, Bangalore, India, Mar. 2011.

[59] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma,
Korlam Gautam, Fabricio Benevenuto, Niloy Ganguly, and Krishna Gummadi.
Understanding and combating link farming in the twitter social network. In
WWW’12, pages 61–70, Lyon, France, Apr. 2012.

[60] G. Ghoshal and A. Barabasi. Ranking stability and super-stable nodes in com-
plex networks. Nature Communications, 2(394), 2011.

196

[61] Frank Giancola. The generation gap: More myth than reality. People and
strategy, 29(4):32, 2006.

[62] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @spam: the
underground on 140 characters or less. In CCS’10, pages 27–37, Chicago, IL,
Oct. 2010.

[63] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web
spam with trustrank. In VLDB’04, pages 576–587, Toronto, Canada, 2004.

[64] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Sri-
vastava. Anonymizing social networks. Technical report, University of Mas-
sachusetts, Amherst, page 180, 2007.

[65] Brent Hecht, Lichan Hong, Bongwon Suh, and Ed Chi. Tweets from justin
bieber’s heart: the dynamics of the location field in user profiles. In CHI’11,
pages 237–246, Vancouver, Canada, May 2011.

[66] Victor Hernandez. Measuring influence online: A q&a with klout’s ceo. http:
//www.cnn.com/2012/02/23/tech/social-media/klout-joe-fernandez/
index.html?hpt=hp_bn6, Feb. 2012.

[67] X. Hu, N. Sun, C. Zhang, and T. Chua. Exploiting internal and external
semantics for the clustering of short texts using world knowledge. In ACM
CIKM’09, pages 919–928, Hong Kong, China, Nov. 2009.

[68] Xia Hu, Jiliang Tang, Yanchao Zhang, and Huan Liu. Social spammer detection
in microblogging. In IJCAI 2013, pages 2633–2639, Beijing, China, Aug. 2013.

[69] Shouling Ji, Weiqing Li, Neil Zhenqiang Gong, Prateek Mittal, and Raheem
Beyah. On your social network de-anonymizablity: Quantification and large
scale evaluation with seed knowledge. In NDSS’15, San Diago, CA, Feb. 2015.

[70] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm
minimization. In ICML’09, pages 457–464, Montreal, Canada, June 2009.

[71] Jing Jiang, Christo Wilson, Xiao Wang, Peng Huang, Wenpeng Sha, Yafei Dai,
and Ben Zhao. Understanding latent interactions in online social networks.
ACM Transactions on the Web (TWEB), 7(4):18:1–18:39, 2013.

[72] Xiaoqian Jiang, Zhanglong Ji, Shuang Wang, Noman Mohammed, Samuel
Cheng, and Lucila Ohno-Machado. Differential-private data publishing through
component analysis. Transactions on data privacy, 6(1):19, 2013.

[73] David Jurgens. That’s what friends are for: Inferring location in online social
media platforms based on social relationships. In ICWSM’13, pages 273– 282,
Boston, MA, July 2013.

[74] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In
SIGMOD’11, pages 193–204, Athens, Greece, June 2011.

197

[75] Alex Knapp. A high klout score can lead to better customer
service. http://www.forbes.com/sites/alexknapp/2012/06/12/
a-high-klout-score-can-lead-to-better-customer-service/, Jun.
2012.

[76] D. Koll, Jun Li, J. Stein, and Xiaoming Fu. On the state of osn-based sybil
defenses. In 2014 IFIP, Trondheim, Norway, June 2014.

[77] Shamanth Kumar, Fred Morstatter, and Huan Liu. Twitter Data Analytics.
Springer, New York, NY, USA, 2013.

[78] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,
a social network or a news media? In WWW’10, pages 591–600, Raleigh, NC,
May 2010.

[79] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph
computation on just a pc. In OSDI’12, Hollywood, CA, Oct. 2012.

[80] Amy Langville and Carl Meyer. Deeper inside pagerank. Internet Mathematics,
1(3):335–380, 2004.

[81] Charles Lawson and Richard Hanson. Solving least squares problems, volume
161. SIAM, 1974.

[82] Kyumin Lee, James Caverlee, and Steve Webb. Uncovering social spammers:
social honeypots + machine learning. In SIGIR’10, pages 435–442, Geneva,
Switzerland, July 2010.

[83] Sangho Lee and Jong Kim. WARNINGBIRD: Detecting suspicious urls in
twitter stream. In NDSS’12, San Diego, CA, Feb. 2012.

[84] Kalev Leetaru, Shaowen Wang, Guofeng Cao, Anand Padmanabhan, and Eric
Shook. Mapping the global twitter heartbeat: The geography of twitter. First
Monday, 18(5), 2013.

[85] Jure Leskovec, Anand Rajaraman, and Jeffrey Ullman. Mining Massive
Datasets, chapter Data Mining, pages 7–9. Cambridge University Press, 2014.

[86] Daniel Levinson. A conception of adult development. American psychologist,
41(1):3–13, 1986.

[87] Muyuan Li, Haojin Zhu, Zhaoyu Gao, Si Chen, Le Yu, Shangqian Hu, and Kui
Ren. All your location are belong to us: Breaking mobile social networks for
automated user location tracking. In MobiHoc ’14, pages 43–52, Philadelphia,
PA, Aug. 2014.

[88] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chang. Towards
social user profiling: Unified and discriminative influence model for inferring
home locations. In KDD’12, pages 1023–1031, Beijing, China, Aug. 2012.

198

[89] Yang Li, Zhenjie Zhang, Marianne Winslett, and Yin Yang. Compressive mech-
anism: utilizing sparse representation in differential privacy. In Proceedings of
the 10th annual ACM workshop on Privacy in the electronic society, pages 177–
182, Chicago, IL, Oct. 2011.

[90] Lizi Liao, Jing Jiang, Ee-Peng Lim, and Heyan Huang. A study of age gaps
between online friends. In HT’14, pages 98–106, Santiago, Chile, 2014.

[91] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. Dependence makes
you vulnerable: Differential privacy under dependent tuples. In NDSS’16, San
Diego, CA, Feb. 2016.

[92] Changhchang Liu and Prateek Mittal. Linkmirage: How to anonymize links in
dynamic social systems. In NDSS’16, San Diago, CA, Feb. 2016.

[93] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l2,1-norm
minimization. In UAI’09, June 2009.

[94] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In
SIGMOD’08, pages 93–106, Vancouver, Canada, June 2008.

[95] Ryan Mac. Twitter acquires web security firm
dasient. http://www.forbes.com/sites/ryanmac/2012/01/24/
twitter-acquires-web-security-firm-dasient/, Jan. 2012.

[96] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews. Where is this tweet from?
inferring home locations of twitter users. In International AAAI Conference on
Weblogs and Social Media, 2012.

[97] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews. Home location identifica-
tion of Twitter users. ACM Trans. Intell. Syst. Technol., 5(3):47:1–47:21, Jul.
2014.

[98] Huina Mao, Xin Shuai, and Apu Kapadia. Loose tweets: An analysis of privacy
leaks on Twitter. In WPES’11, Oct. 2011.

[99] Theodore Marinis. Psycholinguistic techniques in second language acquisition
research. Second Language Research, 19(2):144–161, 2003.

[100] Jeffrey McGee, James Caverlee, and Zhiyuan Cheng. Location prediction in
social media based on tie strength. In CIKM ’13, pages 459–468, Burlingame,
CA, Oct. 2013.

[101] Johnnatan Messias, Lucas Schmidt, Ricardo Oliveira, and Fabricio Benevenuto.
You followed my bot! transforming robots into influential users in twitter. First
Monday, 18(7), Nov. 2013.

[102] Alan Mislove, Bimal Viswanath, Krishna Gummadi, and Peter Druschel. You
are who you know: inferring user profiles in online social networks. In WSDM
’10, pages 251–260, New York city, NY, Feb. 2010.

199

[103] Prateek Mittal, Charalampos Papamanthou, and Dawn Song. Preserving link
privacy in social network based systems. In NDSS’13, San Diago, CA, Feb.
2013.

[104] A. Mohaisen, H. Ttran, N. Hopeer, and Y. Kim. On the mixing time of directed
social graphs and security implications. In AsiaCCS’12, pages 36–45, Seoul,
Korea, May 2012.

[105] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. Measuring the mixing
time of social graphs. In IMC’10, pages 383–389, Melbourne, Australia, Nov.
2010.

[106] Noman Mohammed, Rui Chen, Benjamin Fung, and Philip Yu. Differentially
private data release for data mining. In KDD’11, pages 493–501, San Diego,
CA, Aug. 2011.

[107] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In
SP’09, pages 173–187, Oakland, CA, May 2009.

[108] M. Newman and M. Girvan. Analysis of weighted networks. Physical review E,
70(5), 2004.

[109] M. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2), 2004.

[110] Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and Theo Meder. ”how old do
you think i am?”; a study of language and age in twitter. In ICWSM’13, pages
439–448, Boston, IL, Jul. 2013.

[111] Shirin Nilizadeh, Apu Kapadia, and Yong-Yeol Ahn. Community-enhanced de-
anonymization of online social networks. In CCS ’14, pages 537–548, Scottsdale,
AZ, Oct. 2014.

[112] Huseyin Oktay, Aykut Firat, and Zeynep Ertem. Demographic break-
down of twitter users: An analysis based on names. In ASE BIG-
DATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University,
CA, May 2014.

[113] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-
ing: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
Nov. 1999.

[114] A. Pal and S. Counts. Identifying topical authorities in microblogs. In
WSDM’11, pages 45-54, Hong Kong, China, Feb. 2011.

[115] Panagiotis Papadopoulos, Antonis Papadogiannakis, Michalis Polychronakis,
Apostolis Zarras, Thorsten Holz, and Evangelos P. Markatos. K-subscription:
Privacy-preserving microblogging browsing through obfuscation. In ACSAC
’13, pages 49–58, New Orleans, LA, Dec. 2013.

200

[116] M. Porter. Readings in information retrieval, chapter An algorithm for suffix
stripping, pages 313–316. Morgan Kaufmann Publishers Inc., 1997.

[117] Daniele Quercia, Licia Capra, and Jon Crowcroft. The social world of Twit-
ter: Topics, geography, and emotions. In ICWSM’12, pages 298–305, Dublin,
Ireland, June 2012.

[118] Delip Rao, David Yarowsky, Abhishek Shreevats, and Manaswi Gupta. Classi-
fying latent user attributes in twitter. In SMUC’10, Toronto, Canada, 2010.

[119] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Alessandro
Flammini, and Filippo Menczer. Detecting and tracking political abuse in social
media. In ICWSM’11, pages 297–304, Barcelona, Spain, July 2011.

[120] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Snehal
Patil, Alessandro Flammini, and Filippo Menczer. Truthy: mapping the spread
of astroturf in microblog streams. In WWW’11, pages 249–252, Hyderabad,
India, Apr. 2011.

[121] Florian Schmitt and Franz Rothlauf. On the importance of the second largest
eigenvalue on the convergence rate of genetic algorithms. In GECCO’01, San
Francisco, CA, July 2001.

[122] Brian Solis. The rise of digital influence. Research report, Altimeter Group,
Mar. 2012.

[123] Jonghyuk Song, Sangho Lee, and Jong Kim. Spam filtering in twitter using
sender-receiver relationship. In RAID’11, pages 301-317, Menlo Park, CA, Sep.
2011.

[124] Vasumathi Sridharan, Vaibhav Shankar, and Minaxi Gupta. Twitter games:
How successful spammers pick targets. In ACSAC’12, pages 389–398, Los An-
geles, CA, Dec. 2012.

[125] G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social net-
works. In ACSAC’10, pages 1–9, Austin, TX, Dec. 2010.

[126] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and B. Zhao.
Follow the green: Growth and dynamics in twitter follower markets. In IMC’13,
pages 163–176, Barcelona, Spain, Oct. 2013.

[127] Jingchao Sun, Rui Zhang, Xiaocong Jin, and Yanchao Zhang. Securefind: Se-
cure and privacy-preserving object finding via mobile crowdsourcing. CoRR,
abs/1503.07932, 2015.

[128] J. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural processing letters, 9(3):293–300, 1999.

[129] Chih-Hua Tai, Peng-Jui Tseng, Philip Yu, and Ming-Syan Chen. Identities
anonymization in dynamic social networks. In ICDM’11, pages 1224–1229,
Vancouver, Canada, Dec. 2011.

201

[130] Jiliang Tang and Huan Liu. Unsupervised feature selection for linked social
media data. In KDD’12, pages 904–912, Beijing, China, Aug. 2012.

[131] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. Design
and evaluation of a real-time url spam filtering service. In IEEE S&P’11, pages
447–462, Oakland, CA, May 2011.

[132] Kurt Thomas, Chris Grier, Vern Paxson, and Dawn Song. Suspended accounts
in retrospect: An analysis of twitter spam. In IMC’11, pages 243–258, Berlin,
Germany, Nov. 2011.

[133] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz, and Vern Paxson. Traf-
ficking fraudulent accounts: The role of the underground market in twitter spam
and abuse. In USENIX Security Symposium, Washington, DC, Aug. 2013.

[134] Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospec-
tive. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(3):273–282, 2011.

[135] Nguyen Tran, Min Bonan, Jinyang Li, and Lakshminarayanan Subramanian.
Sybil-resilient online content voting. In NSDI’09, Boston, MA, Apr. 2009.

[136] Twitter. The get user timeline api. https://dev.twitter.com/rest/
reference/get/statuses/user_timeline.

[137] Twitter. The search api. https://dev.twitter.com/rest/public/search.

[138] Bimal Viswanath, Mainack Mondal, Allen Clement, Peter Druschel, Krishna
Gummadi, Alan Mislove, and Ansley Post. Exploring the design space of social
network-based sybil defenses. In COMSNETS’12, Bangalore, India, Jan. 2012.

[139] Bimal Viswanath, Ansley Post, Krishna Gummadi, and Alan Mislove. An
analysis of social network-based sybil defenses. In SIGCOMM’10, pages 363–
374, New Delhi, India, Aug. 2010.

[140] Bimal Viswanath, Ansley Post, Krishna Gummadi, and Alan Mislove. An anal-
ysis of social network-based sybil defenses. ACM SIGCOMM CCR, 41(4):363–
374, 2011.

[141] Alex Wang. Don’t follow me - spam detection in twitter. In SECRYPT’10,
pages 142–151, Jul. 2010.

[142] Wei Wei, Fengyuan Xu, Chiu Tan, and Qun Li. SybilDefender: Defend against
sybil attacks in large social networks. In INFOCOM’12, pages 2492–2502, Or-
lando, FL, Mar. 2012.

[143] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. TwitterRank: finding
topic-sensitive influential twitterers. In WSDM’10, pages 261–270, New York,
NY, Feb. 2010.

202

[144] Stephen Williams. Chevy gives 3-day sonic drives to those with big klout. http:
//adage.com/article/news/chevy-tests-sonics-high-klout-scores/
231220/, Nov. 2011.

[145] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna Puttaswamy, and Ben
Zhao. User interactions in social networks and their implications. In EuroSys’09,
pages 205–218, Nuremberg, Germany, Apr. 2009.

[146] Xiaokui Xiao, Guozhang Wang, and Johanne Gehrke. Differential privacy via
wavelet transforms. IEEE Transactions on Knowledge and Data Engineering,
23(8):1200–1214, 2011.

[147] Yinglian Xie, Fang Yu, Qifa Ke, Martin Abadi, Eliot Gillum, Krish Vitaldevaria,
Jason Walter, Junxian Huang, and Zhuoqing Mao. Innocent by association:
early recognition of legitimate users. In CCS’12, pages 353–364, Raleigh, NC,
Oct. 2012.

[148] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang. Privacy-preserving machine learn-
ing algorithms for big data systems. In ICDCS’2015, pages 318–327, Columbus,
OH, June 2015.

[149] Yuto Yamaguchi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Landmark-
based user location inference in social media. In COSN’13, pages 223–234,
Boston, MA, Oct. 2013.

[150] Chao Yang, Robert Harkreader, and Guofei Gu. Die free or live hard? empirical
evaluation and new design for fighting evolving twitter spammers. In RAID’11,
pages 318-337, Menlo Park, CA, Sep. 2011.

[151] Chao Yang, Robert Harkreader, Jialong Zhang, Suengwon Shin, and Guofei
Gu. Analyzing spammers’ social networks for fun and profit – a case study of
cyber criminal ecosystem on twitter. In WWW’12, pages 71–80, Lyon, France,
Apr. 2012.

[152] Chao Yang, Jialong Zhang, and Guofei Gu. A taste of tweets: Reverse engi-
neering twitter spammers. In ACSAC’14, pages 86–95, New Orleans, LA, Dec.
2014.

[153] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Zhao, and Yafei Dai.
Uncovering social network sybils in the wild. ACM Transactions on Knowledge
Discovery from Data (TKDD), 8(1):2, 2014.

[154] Haifeng Yu, Phillip Gibbons, Michael Kaminsky, and Feng Xiao. SybilLimit: a
near-optimal social network defense against sybil attacks. IEEE/ACM Trans-
actions on Networking, 18:885–898, June 2010.

[155] Haifeng Yu, Michael Kaminsky, Phillip Gibbons, and Abraham Flaxman. Sybil-
Guard: defending against sybil attacks via social networks. In SIGCOMM’06,
pages 267–278, Pisa, Italy, Sep. 2006.

203

[156] Faiyaz Zamal, Wendy Liu, and Derek Ruths. Homophily and latent at-
tribute inference: Inferring latent attributes of twitter users from neighbors.
In ICWSM’12, pages 287–290, Dublin, Ireland, June 2012.

[157] Chao Zhang and Vern Paxson. Detecting and analyzing automated activity on
twitter. In PAM’11, pages 102–111, Atlanta, GA, Mar. 2011.

[158] Jinxue Zhang, Xia Hu, Yanchao Zhang, and Huan Liu. Your age is no se-
cret: Inferring microbloggers’ ages via content and interaction analysis. In
ICWSM’2016, pages 476–485, Cologne, Germany, May 2016.

[159] Jinxue Zhang, Jingchao Sun, Rui Zhang, and Yanchao Zhang. Your actions tell
where you are: Uncovering twitter users in a metropolitan area. In CNS’15,
pages 424–432, Florence, Italy, Sep. 2015.

[160] Jinxue Zhang, Rui Zhang, Jingchao Sun, Yanchao Zhang, and Chi Zhang.
Truetop: A sybil-resilient system for user influence measurement on twitter.
IEEE/ACM Trasactions on Networking, 99(1)1–15, Octo. 2015.

[161] Jinxue Zhang, Rui Zhang, Yanchao Zhang, and Guanhua Yan. On the impact
of social botnets for spam distribution and digital-influence manipulation. In
IEEE CNS’13, pages 46–54, Washington DC, Oct. 2013.

[162] Jinxue Zhang, Rui Zhang, Yanchao Zhang, and Guanhua Yan. The rise of social
botnets: Attacks and countermeasures. IEEE Transactions on Dependable and
Secure Computing, 99(1):1–14, Apr. 2016.

204

