
Approximate Neural Networks for Speech Applications in

Resource-Constrained Environments

by

Sairam Arunachalam

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2016 by the
Graduate Supervisory Committee:

Chaitali Chakrabarti, Co-Chair
Jae-sun Seo, Co-Chair

Yu Cao

ARIZONA STATE UNIVERSITY

August 2016

ABSTRACT

Speech recognition and keyword detection are becoming increasingly popular appli-

cations for mobile systems. While deep neural network (DNN) implementation of

these systems have very good performance, they have large memory and compute

resource requirements, making their implementation on a mobile device quite chal-

lenging. In this thesis, techniques to reduce the memory and computation cost of

keyword detection and speech recognition networks (or DNNs) are presented.

The first technique is based on representing all weights and biases by a small num-

ber of bits and mapping all nodal computations into fixed-point ones with minimal

degradation in the accuracy. Experiments conducted on the Resource Management

(RM) database show that for the keyword detection neural network, representing the

weights by 5 bits results in a 6 fold reduction in memory compared to a floating point

implementation with very little loss in performance. Similarly, for the speech recogni-

tion neural network, representing the weights by 6 bits results in a 5 fold reduction in

memory while maintaining an error rate similar to a floating point implementation.

Additional reduction in memory is achieved by a technique called weight pruning,

where the weights are classified as sensitive and insensitive and the sensitive weights

are represented with higher precision. A combination of these two techniques helps re-

duce the memory footprint by 81 - 84% for speech recognition and keyword detection

networks respectively.

Further reduction in memory size is achieved by judiciously dropping connec-

tions for large blocks of weights. The corresponding technique, termed coarse-grain

sparsification, introduces hardware-aware sparsity during DNN training, which leads

to efficient weight memory compression and significant reduction in the number of

computations during classification without loss of accuracy. Keyword detection and

speech recognition DNNs trained with 75% of the weights dropped and classified with

i

5-6 bit weight precision effectively reduced the weight memory requirement by ∼95%

compared to a fully-connected network with double precision, while showing similar

performance in keyword detection accuracy and word error rate.

ii

DEDICATION

To my family for their support

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Chaitali Charkrabarti and Dr.

Jae-sun Seo for their continuous guidance throughout my research work during the

past year. I’m also grateful to Dr. Yu Cao for taking the time to review my work.

I would like to thank Dr. Mohit Shah for his support throughout my research

work. He introduced me to speech recognition tools and helped me even after his

graduation. I’m grateful to Deepak Kadetotad for his insights into my research and

collaboration in the project.

I also thank my parents, brother, friends and roommates for supporting me though

the past two years.

I also gratefully acknowledge the financial support provided by Dr. Jae-sun Seo

and Dr. Chaitali Chakrabarti.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Speech Recognition, Keyword Detection . 1

1.2 Speech Recognition and Keyword Detection with Neural Networks . 2

1.3 Problem Definition. 3

1.4 Proposed Method . 4

1.5 Contributions . 4

1.6 Organization . 5

2 BACKGROUND . 6

2.1 Deep Neural Network Structure . 6

2.2 Training Strategy for DNNs . 8

2.3 Keyword Detection . 10

2.3.1 Input Features . 10

2.3.2 Data Preparation . 10

2.3.3 Neural Network Architecture . 11

2.3.4 Post Processing . 11

2.3.5 Evaluation . 12

2.4 Speech Recognition . 13

2.4.1 Input Features . 13

2.4.2 Neural Network Architecture . 13

2.4.3 Post Processing . 14

2.4.4 Evaluation . 15

v

CHAPTER Page

2.5 Simulation Setup . 15

3 FIXED POINT ARCHITECTURE AND WEIGHT PRUNING 17

3.1 Fixed-Point NN for Keyword Detection . 17

3.2 Fixed-Point NN for for Speech Recognition . 20

3.3 Weight Pruning. 22

3.3.1 Results . 23

3.4 Conclusions . 25

4 COARSE GRAIN SPARSIFICATION . 26

4.1 Overview. 26

4.2 Block Structure . 27

4.3 Training of Sparse Neural Networks . 28

4.4 Results . 29

4.4.1 Keyword Detection. 29

4.4.2 Speech Recognition . 33

4.5 Conclusions . 36

5 CONCLUSIONS. 37

5.1 Summary . 37

5.2 Future Work . 38

REFERENCES . 39

vi

LIST OF TABLES

Table Page

3.1 AUC and Memory Requirements of Floating and Fixed Point Imple-

mentations for Keyword Detection Network . 20

3.2 WER and Memory Requirements of Floating and Fixed-Point Imple-

mentations for Speech Recognition Network. 22

3.3 Memory Requirement of Networks with Pruned Weights 24

4.1 AUC and Memory Requirements of Floating and Fixed Point Imple-

mentations for Keyword Detection Network . 31

4.2 WER and Memory Requirements of Floating and Fixed-Point Imple-

mentations for Speech Recognition Network. 36

vii

LIST OF FIGURES

Figure Page

2.1 A Feed-Forward Neural Network with a Single Hidden Layer 7

2.2 A Model of a Neuron with ReLU Activation In a Feed-Forward Neural

Network Architecture . 8

2.3 Neural Network Architecture for Keyword Detection Consists of 2 Hid-

den Layers with 512 Neurons Per Layer. The Input Feature Dimension

Is 403 and the Output Dimension Is 12 (10 Keywords, 1 OOV and 1

Silence) . 12

2.4 Neural Network Architecture for the Speech Recognition System Con-

sists of Four Hidden Layers with 1024 Neurons Per Layer. The Input

Feature Dimension Is 440 and the Output Layer Consists of 1483 Nodes

Representing the Posterior Probability of the 1483 HMM States 14

3.1 A Comparison of the Average ROC Across All Keywords Between Net-

works with Different Number of Nodes Per Hidden Layer 18

3.2 Histogram of Weights and Biases for Keyword Detection Neural Network 19

3.3 Effect of Fractional Precision of Weights and Biases On the Average

AUC for Keyword Detection Network . 19

3.4 Histogram of Weights for Speech Recognition Neural Network 21

3.5 Effect of Fractional Precision of Weights On WER for Speech Recog-

nition Network . 22

3.6 Effect of Threshold On AUC for Keyword Detection Neural Network . . 24

3.7 Effect of Weight Pruning Threshold On WER for Speech Recognition

Network . 25

4.1 Weight Matrix Compression . 28

viii

Figure Page

4.2 Effect of Block Size and Percentage Dropout On WER of Speech Recog-

nition Network . 30

4.3 Histogram of Weights and Biases of CGS Architecture with 64×64 At

75% Drop for Keyword Detection . 32

4.4 Effect of Fractional Precision of Weights and Bias On Average AUC of

Keyword Detection Network for CGS Architecture 32

4.5 ROC Curve of Different Deep Neural Network Implementations for

Keyword Detection. 33

4.6 Effect of Block Size and Percentage Dropout On WER of Speech Recog-

nition Network . 34

4.7 Histogram of Weights and Biases of CGS Architecture with 64×64 At

75% Drop . 35

4.8 Effect of Fractional Precision of Weights and Bias On WER of Speech

Recognition System for CGS Architecture . 35

ix

Chapter 1

INTRODUCTION

1.1 Speech Recognition, Keyword Detection

Automatic Speech Recognition (ASR) refers to the task of converting speech/audio

input to text. Applications for speech recognition include speech-to-text systems

(for word processors), personal assistance systems (Apple Siri, Google Now, Amazon

Alexa, etc.). Keyword detection refers to the task of detecting specific keywords

embedded in speech. Keyword detection can be used to control the front-end in

personal assistant systems to trigger a speech recognition engine, or in performing

certain actions depending on keyword detected in speech (e.g. “call home”).

A speech signal can be modeled as a stationary process in a short time scale

(frame) of 25ms. It can also be thought of as a Markov process where the probability

of the future outputs depends not only on the current state but also on the previous

states. This makes Hidden Markov Models (HMM) (Baker et al., 2009) an appropriate

choice to model acoustic information.

There is a vast amount of literature for both speech recognition and keyword

detection systems. For speech recognition, the usual process involves using a Hidden

Markov Model (HMM) for modeling the sequence of words/phonemes and using a

Gaussian Mixture Model (GMM) for acoustic modeling (Su et al., 2010; Sha and Saul,

2006; Juang et al., 1986; Gales and Young, 2008). This modeling can be done using

the Expectation-Maximization method. The most likely sequence can be determined

from the HMMs by employing the Viterbi algorithm. The GMMs can be implemented

in a parallel fashion, but the Viterbi algorithm is inherently sequential.

1

Keyword detection falls under speech recognition umbrella and is relatively less

complex. There are different approaches for detecting a keyword. For instance, the

speech recognition system can be used to perform keyword detection. In this ap-

proach, first speech recognition is performed and then keywords are detected from

the decoded transcription (Miller et al., 2007; Parlak and Saraclar, 2008; Mamou

et al., 2007). The drawback for such a method is that it requires the entire phrase to

be decoded before the keywords can be detected. The second method involves train-

ing separate models for keywords and out-of-vocabulary (OOV) words and detecting

keywords based on the likelihood over each model. A separate GMM-HMM is trained

for each keyword and the out-of-vocabulary words are modeled using a garbage or

filler model (Rohlicek et al., 1989; Rose and Paul, 1990; Wilpon et al., 1991; Silaghi

and Bourlard, 1999; Silaghi, 2005). Such a system is suitable in environments where

the set of keywords is known beforehand.

1.2 Speech Recognition and Keyword Detection with Neural Networks

Recently, neural network (NN) based methods have shown tremendous success

in speech recognition tasks. This success has come after advances made in the field

of deep learning (Dahl et al., 2011; Chen et al., 2014). These networks are well-

suited to capture the complex and non-linear patterns from the acoustic properties of

speech. Detection is performed through feed-forward computation; a matrix-vector

multiplication step followed by a non-linear operation at each layer, making it highly

suitable for parallel implementations. One such implementation for keyword detection

was presented in (Chen et al., 2014), for keyword detection. This system was also

shown to outperform the traditional GMM-HMM based approach. While its detection

performance was very good, the network was quite large, requiring up to a few million

multiplications every few milliseconds as well as large memory banks for storing the

2

weights.

The neural network for a typical speech recognition system is even larger and a

straightforward implementation would require huge memory for storing the weights

and large number of compute resources. The DNNs in speech recognition are used to

predict the probabilities of the different HMM states. Traditionally the GMMs were

used to model the relationship between the HMM states (Juang et al., 1986). The

GMMs failed to model data that lie on a non-linear manifold in dataspace. Artificial

neural networks, trained through backpropagation, have the potential to learn such

data representations (Hinton et al., 2012). In our work, the traditional GMM-HMM

model is used to derive the target vectors for training the DNN-HMM hybrid system.

The DNN based speech model is also shown to outperform the traditional GMM

based model (Dahl et al., 2012).

1.3 Problem Definition

The neural networks for speech recognition and keyword detection have large mem-

ory and compute resource requirements, making their implementation on a mobile

device quite challenging. Keyword detection engine can run as a background service

to an ASR in a mobile environment. Since it is always ‘on’, its power consumption has

to be very small. Compared to the keyword detection engine, the automatic speech

recognition system has very high memory and compute resource requirements. Im-

plementing such a system in a mobile or resource constrained environment is even

more challenging. Thus there is a strong need to develop an architectural frame-

work for such applications with the goal of reducing memory footprint and lowering

power consumption. In this thesis, low cost neural network architectures for keyword

detection and speech recognition have been designed and their performance analyzed.

3

1.4 Proposed Method

Reduction in memory and power of a neural network can be achieved in many

ways such as reducing the number of hidden layers, reducing size of hidden layers,

pruning the precision of weights and dropping weights and biases. Methods to reduce

the size of the hidden layer and scaling down the precision of the weights and biases

have been researched in (Shah et al., 2015). In order to further reduce the memory

requirement of the neural network, we propose two approaches. In the first method

called weight pruning (detailed in Chapter 3), the connections (weights and biases) are

classified as sensitive and insensitive based on the error produced by the connections

and the insensitive connections are scaled to a lower precision. In the second approach

(detailed in Chapter 4) we drop/remove a large portion of connections within a neural

network in a block structure to form a coarse-grain sparse weight matrix. The dropped

connections are not stored in the memory, which leads in a reduced memory footprint

for the network. The proposed systems are shown to perform at par with a fully

connected neural network with floating point architecture while requiring only a small

fraction of the memory.

1.5 Contributions

Overall, this thesis makes the following contributions.

� Design of fixed point neural network architecture with 4 hidden layers and 1024

neurons per layer for speech recognition. The weights and biases are represented

by 6 bits resulting in memory requirement reducing from 19.53MB to 3.66MB,

while maintaining a word error rate of 1.77%.

� Development of an algorithm to classify weights based on their sensitivity and

represent insensitive weights with lower precision to reduce memory require-

4

ment. This method was applied to speech recognition and keyword detection

networks resulting in 0.82 -2.12% memory reduction with loss in accuracy by

0.03 AUC and 0.17% reduction in WER, respectively.

� Development of static coarse-grain sparsification technique that can substan-

tially reduce the memory footprint as well as computations when deep neural

networks are implemented in hardware with minimal degradation in accuracy.

� A combination of fixed point implementation along with the coarse-grain drop-

connect structure reduced the memory requirement of the speech recognition

network from 19.53MB to 0.85MB with word error rate of 1.64%.

� A combination of fixed point implementation along with the coarse-grain drop-

connect structure reduced the memory requirement of the keyword detection

network from 1.81M to 101.26KB with detection accuracy of 0.91 AUC.

1.6 Organization

The reminder of the thesis is organized as follows. In Chapter 2, we discuss the

background details of DNN training and its application in speech recognition and

keyword detection. A method to prune the weights and biases based on their relative

sensitivity is discussed in Chapter 3. In Chapter 4, a coarse-grain sparsification

methodology to compress weight memory is described. Finally, the conclusions and

future work are presented in Chapter 5.

5

Chapter 2

BACKGROUND

2.1 Deep Neural Network Structure

A Deep Neural Network (DNN) is an artificial neural network with multiple hidden

layers between the input layer and output layer. A simple neural network consisting

of a single hidden layer is shown in Figure 2.1. DNNs have shown to be capable of

learning complex non-linear relationship present in data. In recent years, DNNs have

been implemented for image recognition and speech recognition tasks, significantly

outperforming their predecessors performance.

At a high level, a DNN consists of multiple layers of non-linear information pro-

cessing, where each layer is trained using supervised/unsupervised method (Deng

and Yu, 2014). One aspect of DNNs is to learn representation of data from examples.

DNNs attempt to learn feature representation of data from supervised learning algo-

rithms and these models can substitute the traditional handcrafted features used in

learning algorithms (Song and Lee, 2013).

In a feed-forward DNN, the neurons in one layer of the network are connected

to neurons in the next layer. The neurons within a layer are not connected and no

cycles are allowed within the network. There are certain architectures where cycles

in connections are allowed, but in this thesis we only consider feed-forward networks.

The computations involved in a neuron are described by Eqn. (2.1).

nj =
N∑
i=0

wij ∗ xi + bj (2.1)

where wij is the weight of the connection between ith neuron in the previous layer

6

Figure 2.1: A feed-forward neural network with a single hidden layer.

and the jth neuron in the current layer, bj is the bias value for the current neuron

and N is the number of input neurons.

The weighted sum is processed using a non-linear transformation to obtain the

output. While any non-linear function can be used to model the neuron output,

typically sigmoid (Eqn. (2.2)), ReLU (Eqn. (2.3)) or tanh are used. The ReLU

activation best mimics the biological neuron model and is commonly used in recent

deep networks.

h1
j =

1

(1 + e−z1j)
(2.2)

h1
j = max(0, z1j) (2.3)

The networks with ReLU activation are easier to train and no pre-training is gen-

erally required for such networks (Zeiler et al., 2013). Moreover, the ReLU activation

requires a simple comparison operation compared to sigmoid or tahn functions. This

makes the hardware implementation simple and reduces energy costs associated with

7

Figure 2.2: A model of a neuron with ReLU activation in a feed-forward neural

network architecture.

the network. A sample neuron with the ReLU activation is shown in Figure 2.2.

The output layer of the neural network consists of No neurons, where each output

represents an output state. In the networks used in this thesis, the output of the

neural network represents the posterior probability of the corresponding state in the

output layer. To model this behavior of the network, the softmax activation (Eqn.

2.4) is used to model the last layer.

oi =
ezi∑No

n=1 e
zi

(2.4)

Here zi is the weighted sum of the inputs to the ith neuron in the last layer of the

network.

2.2 Training Strategy for DNNs

Typically DNNs are trained using the back-propagation algorithm (Gardner, 1984).

This approach is a supervised learning problem where the target outputs of the net-

work are known beforehand. The back-propagation algorithm calculates the error

produced by each of the individual weights and biases of the network layer by layer,

8

such that the errors are propagated backwards from the output layer to the input

layer.

Mathematically the neural network training aims to achieve the least value for

the cost-function associated with the network. Typical cost functions include squared

error, cross-entropy, etc. Previous works (Van Ooyen and Nienhuis, 1992) have sug-

gested that the cross-entropy error helps in reducing the training time and improves

the convergence of the network parameters. Accordingly we use cross-entropy de-

scribed in Eqn.(2.5), for the learning process.

E = −
N∑
i=1

ti ∗ ln(yi) (2.5)

Here N is the size of the output layer, yi is the ith output node and ti is the ith

target value or label. The mini-batch stochastic gradient method (Gardner, 1984) is

used to train the network. The weights are updated using Eqn. (2.6).

(wij)k+1 = (wij)k + lr ∗ (m ∗∆(wij)k−1 + ∆(wij)k) (2.6)

where (wij)k is the wijth weight during the kth iteration, lr is the learning rate and

m is the momentum. The learning rate is kept small. Since the ReLU activation is

used, a small learning rate leads to better convergence. A higher learning rate can

cause the algorithm not to reach a local minimum but overshoot and not converge at

all.

The change in weight is the error produced at the output due to the particular

weight. This value is the gradient of the cost of the network output with respect to

the weight described in Eqn. (2.7)

∆(wij)k =
∂E

∂(wij)k
(2.7)

9

Here (wij)k is an element of the weight matrix at layer k and E is the cost-function

associated with the neural network.

The momentum method is incorporated into the training procedure with the coef-

ficient m in the weight update equation described in Eqn (2.6) in order to accelerate

the convergence of the training algorithm (Sutskever et al., 2013). The key idea in

using this method is that the weight change can be stabilized by making non-radical

changes by incorporating the previous changes to the weights.

The above training approach is implemented using batches of training input for a

number of training iterations over the whole training data (epochs).

2.3 Keyword Detection

2.3.1 Input Features

The speech signal is divided into overlapping signals of short duration (typically

25ms) called frames. The frames from the speech signal are extracted every 10ms. The

Mel-Frequency Cepstral Coefficients (Huang et al., 2001) are used to represent mean-

ingful features of the speech frame. For every speech frame, a spectrum in obtained

using Fast Fourier Transform (FFT). This is then passed through Mel-filters. Cep-

tral analysis is performed on these mel-ceptrum to obtain the Mel-frequency Ceptral

Coefficient(MFCC) features. Typical ASR systems and keyword detection systems

use the first 13 MFCC coefficients.

2.3.2 Data Preparation

The first 13 MFCCs from a frame are augmented with MFCCs of the 15 previous

frames and 15 future frames to form a 403-dimension feature vector per frame. The

31 frames with 13 MFCCs/frame corresponds to 310ms of speech. Since the average

10

word duration for this database is 300ms, this choice was deemed to be appropriate

for modeling words or sub-word units. Ten keywords were chosen for this work:

ships, list, chart, display, fuel, show, track, submarine, latitude and longitude. Forced

alignment was done using the Kaldi-toolkit (Povey et al., 2011) to obtain the word

boundaries. Then each frame was labeled as one of the three categories: a particular

keyword, Out Of Vocabulary (OOV) in case the keyword was not in the list above, or

silence. The speaker-independent train and test partitions are already specified in the

database; there are 109 and 59 speakers in the training and test dataset, respectively.

The speech features are z-normalized to zero mean and unit variance for each speaker.

2.3.3 Neural Network Architecture

The DNN used in keyword detection is shown in Figure 2.3. The neural network

consists of 2 hidden layers, with 512 neurons per layer. While the number of neurons

per layer was 400 (Shah et al., 2015), here we choose 512 due to better performance,

and also because a block size that is a power of 2 helps make the coarse-grain sparsi-

fication structure efficient. The output layer of the network consists of 12 states, 10

for the 10 keywords, 1 for out-of-vocabulary words and 1 for silence. The neurons in

the output layer compute outputs using the softmax function.

The training of this neural network is performed for a fixed number of 6 epochs

with a constant learning rate of 0.001 and momentum of 0.8 using a batch size of 500.

Here the cost function optimized is the cross-entropy cost

2.3.4 Post Processing

The DNN for the keyword detection network returns the posterior probability that

a keyword is present in a given frame. Detecting a keyword on a single frame is not

good as the noise in the output signal is very high. As a frame is just a very small

11

Figure 2.3: Neural network architecture for keyword detection consists of 2 hidden

layers with 512 neurons per layer. The input feature dimension is 403 and the output

dimension is 12 (10 keywords, 1 OOV and 1 silence).

sample of the speech signal, a keyword is likely to span multiple frames and as such

the output signal consists of spikes. To reduce the noise in estimation, the estimates

are smoothed using a moving average window of W frames. Another sliding window

of size C is applied over the smoothed estimates, and if the average probability over

the window is greater than a certain threshold the keyword, is said to be present.

The values of W and C are varied to find the optimal value. The optimal values were

found to be W = 50 and C = 25(Shah et al., 2015).

2.3.5 Evaluation

In keyword detection, there can be cases where the system predicts that a keyword

is present (True Positive) or predicts that a keyword is absent (False Alarm). A good

metric to measure the performance of such system is the area under the curve (AUC)

of the receiver operator characteristics (ROC) curve (Bradley, 1997). The ROC is

the plot between rate of true positive detection and rate of false alarms. The area

under this curve represent the probability that the detection system chooses a true

positive case over a false alarm.

12

2.4 Speech Recognition

2.4.1 Input Features

Feature space Maximum Likelihood Linear Regression (fMLLR) is widely used in

speech recognition technologies for speaker adaptation. The fMLLR features (Rath

et al., 2013) are extracted by applying certain transformations on the MFCC features

of the speech signal. Six frames from the neighbourhood of the current frame (3 past

frames and 3 future frames) are chosen and the MFCC features of these frames are

augmented to the MFCC features of the current frame totalling 13*7 =91 features.

These features are then reduced to 40 features by de-correlation and dimensionality

reduction using Linear Discriminant Analysis (LDA). These features are further de-

correlated using the Maximum Likelihood Linear Transform (MLLT). The fMMLR

features can further be spliced in time (5 future frames and 5 past frames) to obtain

the final feature vector for each frame in the speech signal. In this thesis, the features

are obtained by using Kaldi-toolkit (Povey et al., 2011) and the Kaldi and PDNN

scripts (Miao, 2014).

2.4.2 Neural Network Architecture

The DNN used for the speech recognition system is shown in Figure 2.4. This

system consists of 4 hidden layers with 1024 neurons per layer. The output of the

neural network consists of 1483 HMM states obtained from the baseline GMM-HMM

model for the speech recognition system. Similar to the DNN used for keyword

detection, the outputs of neurons in the hidden layers are computed using a ReLU

activation and the neurons in the output layer use the softmax function to compute

the outputs.

The training for this network is performed using a “newbob” approach (Ooi et al.,

13

Figure 2.4: Neural network architecture for the speech recognition system consists of

four hidden layers with 1024 neurons per layer. The input feature dimension is 440

and the output layer consists of 1483 nodes representing the posterior probability of

the 1483 HMM states.

2014). We first start with an initial learning rate of 0.08 and momentum of 0.5 . The

learning rate is scaled by a factor of 0.5 if the validation error is less than 0.2% between

two consecutive epochs. The scaling is repeated for rest of the epochs. The training is

stopped when the cross-validation error between two consecutive epochs is less than

0.2%. The batch size used is 256 inputs per iteration. In this learning strategy, the

number of epochs is not fixed and can vary for different starting conditions. This

results in better and faster convergence of the training algorithm. Essentially it

prevents the algorithm from overfitting as training stops if the validation error does

not change much.

2.4.3 Post Processing

The posterior probabilities of the frames are obtained from the output layer of the

neural network. These probability estimates are divided by the prior probabilities

14

that were obtained for each state from the baseline GMM-HMM model (Bourlard

and Morgan, 1994). The scaled estimates are then fed to the Viterbi algorithm to

determine the best sequence of phonemes. These phonemes are then used to transcribe

the words and sentences for the particular input sequence. The post processing of

the neural network output is done using the scripts for the database provided by the

Kaldi-toolkit.

2.4.4 Evaluation

To evaluate different speech recognition implementations, we use the Word Error

Rate (WER) (Morris et al., 2004) metric. WER is derived from Levenshtien distance,

which works at the word level instead of the phoneme level. It is measured as

WER = 100 ∗ (S + D + I)

N
(2.8)

where S is the number of substitutions, D is the number of deletions, I is the number

of insertions and N is the number of reference words. In the RM database, the

test portion contains 1460 sentences. While the error rates are for the whole system

(neural network + HMM), the analysis here focuses only on the neural network part.

2.5 Simulation Setup

For the purpose of developing the speech recognition and keyword detection neural

networks, the RM database (Price et al., 1988) is used. This database consists of

sentences recorded in a naval resource management task. It consists of 160 speakers

(70% male and 30% female evenly over four geographic locations NE-NY, Midland,

South, North-West) with varied dialects. The Kaldi toolkit (Povey et al., 2011) is used

to train the speech recognition models. The Kaldi-toolkit is an open source software to

train speech recognition models. This toolkit provides command line tools to perform

15

various operations including training, decoding and evaluating speech models. The

scripts for training the speech models on popular databases are also provided with

the toolkit.

16

Chapter 3

FIXED POINT ARCHITECTURE AND WEIGHT PRUNING

Previous research into reduction of memory for neural network for resource con-

strained hardware involved using a fixed-point architecture to represent values of

weights and biases (Shah et al., 2015). The precision of the weights and biases were

kept constant throughout the network for ease of implementation. To further reduce

the memory, this thesis proposes to use two sets of precision levels one higher pre-

cision and one lower precision level. In this chapter, first a fixed point architecture

with constant precision for keyword detection and speech recognition is presented,

and then the pruning algorithm that results in minimal degradation in performance

is described.

3.1 Fixed-Point NN for Keyword Detection

The neural network for keyword detection consists of two hidden layers with 512

neurons per layer and a output layer with 12 neurons. The input layer consists of 403-

D MFCC features. A floating point architecture of this network requires 1.81MB of

memory. To reduce this memory requirement, the weights, biases and neuron outputs

are represented in fixed-point with fewer bits while keeping the performance of the

system comparable to the floating point architecture. The technique to implement

the fixed-point architecture is as follows.

First, the precision of the weights and biases of the network are determined. In

this step, the neurons in all the layers are kept at 32-bit floating point precision.

The ROC curves for floating point implementations with different number of neu-

rons per hidden layer (256, 512 and 1024 neurons) are shown in Figure 3.1. We see

17

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Alarm Rate

 1024
 512
 256

Figure 3.1: A comparison of the average ROC across all keywords between networks

with different number of nodes per hidden layer.

that the network with 512 neurons outperforms the other architectures and we use

the 512 neurons per hidden layer architecture in this study.

In order to determine the fixed-point precision of the weights and biases, we first

derive their histograms. Figure 3.2 shows the histograms of the weights and biases

in different layers. It can be seen that all the weights and biases lie in the range

w ∈ (−4, 4). From this we infer that we need 2 integer bits to represent the weights

and biases. We also have a sign bit to distinguish between negative and positive values.

To find the fractional precision of weights and biases, we sweep the average AUC for

various precision levels in the range B ∈ {0, 1, 2, 3}. The results of this experiment

are shown in Figure 3.3. We see that a fractional precision of 2 bits provides a quality

of detection comparable to the floating point implementation. Increase in fractional

precision above 2 bits provides negligible gain in performance and decrease in the

precision to 1 bit has a drastic impact on the AUC metric. Therefore we choose 2

fractional bits and represent the weights and biases using Q2.2 format.

The inputs (MFCC coefficients) are represented by Q2.13 (16 bits including sign

18

-5 0 5
0

2000

4000
Layer #1 Weights

-0.5 0 0.5
0

50

100
Layer #1 Bias

-5 0 5
0

2000

4000
Layer #2 Weights

-0.025 -0.02 -0.015 -0.01 -0.005 0
0

50

100
Layer #2 Bias

-4 -3 -2 -1 0 1 2 3
0

200

400
Layer #3 Weights

-0.04 -0.02 0 0.02 0.04 0.06
0

5

10
Layer #3 Bias

Figure 3.2: Histogram of weights and biases for keyword detection neural network

0 1 2 3 4
0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

A
ve

ra
ge

 A
U

C

Fractional Precision

Figure 3.3: Effect of fractional precision of weights and biases on the average AUC

for keyword detection network

19

Table 3.1: AUC and memory requirements of floating and fixed point implementations

for keyword detection network

Architecture AUC Memory

Floating Point 0.945 1.81MB

Fixed Point Q.2.2 0.939 290.32KB

bit) and the hidden node outputs are represented by Q10.5 (15 bits without a sign

bit). The dynamic range of the outputs of the hidden nodes is used to determine the

number of integer bits, which is 10. Since the activation function is ReLU, the output

is always positive and there is no sign bit. To obtain the number of fractional bits,

we choose the fractional precision that results in an AUC comparable to that of the

floating point system. Also, to simplify the hardware, the precision (excluding the

sign bit) of all the nodes (hidden, input and output) are kept the same. Based on

the above criteria, the number of integer bits is 10 and the number of fractional bits

is fixed at 5.

3.2 Fixed-Point NN for for Speech Recognition

The neural network for keyword detection consists of four hidden layers with 1024

neurons per layer and an output layer with 1483 neurons. The input layer consists

of 440-D fMMLR features. A floating point architecture of this network requires

19.53MB of memory. To reduce this memory requirement, the weights, biases and

neuron outputs are represented by a fixed-point architecture with small number of

bits provided that the performance of the system is comparable to the floating point

architecture.

To determine the precision of the weights, biases and neurons, a methodology

20

similar to that used for the keyword detection algorithm is used here. In order to

determine the precision of the weights and biases, we first derive the distribution of

weights and biases of each layer of the speech recognition neural network. Figure

3.4 shows the distributions in each of the 5 layers. The weights and biases form a

normal distribution centered at 0. The values of the weights and biases are in the

range w ∈ (−1, 1) and so no integer bits are required to represent these values.

The histograms of the weights and biases in Figure 3.4 show that most of the

values are near 0. Hence the fractional part of the weights is what determines the

recognition performance. Figure 3.5 shows the effect of the precision. The WER

drops substantially when changing the precision from 7 bits to 4 bits. This confirms

that a 4-bit fractional part is required for the system to perform as well as the baseline

floating point implementation. Thus we choose to represent the weights by Q0.5 (6

bits). This results in the weight memory to be of size 3.66MB compared to 19.53MB

that is required if the weights are represented in 32-bit floating point.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

5000
10000

Layer #1 Weights

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

5000
10000

Layer #2 Weights

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

5000
10000

Layer #3 Weights

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

5000
10000

Layer #4 Weights

-0.2 -0.1 0 0.1 0.2

×104

0
5

10
Layer #5 Weights

-0.05 0 0.05 0.1 0.15
0

100
200

Layer #1 Bias

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

100
200

Layer #2 Bias

-0.04 -0.02 0 0.02 0.04
0

100
200

Layer #3 Bias

-0.02 -0.01 0 0.01 0.02
0

200
400

Layer #4 Bias

-0.04 -0.02 0 0.02 0.04 0.06 0.08
0

200
400

Layer #5 Bias

Figure 3.4: Histogram of weights for speech recognition neural network

The inputs (fMLLR features) are represented by Q4.11 (16 bits) and the hidden

21

4 5 6 7

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W
ER

 (%
)

Fractional Precision

Figure 3.5: Effect of fractional precision of weights on WER for speech recognition

network.

nodes are represented by Q10.5 (15 bits).

Table 3.2: WER and memory requirements of floating and fixed-point implementa-

tions for speech recognition network.

Architecture WER(%) Memory

Floating Point 1.65% 19.53 MB

Fixed Point (Q0.5) 1.77% 3.66 MB

3.3 Weight Pruning

In order to further reduce the required memory, we classify the weights as either

sensitive or insensitive. This enables us to represent weights that have a larger effect

on the outcome of the network, namely the sensitive ones, with more bits. This

method is derived from the work done in (Venkataramani et al., 2014), where each

node in a particular layer was approximated based on energy considerations. Instead

of approximating each node as done in (Venkataramani et al., 2014), we propose to

22

approximate the weights that aids in reducing the memory footprint.

To derive such an architecture, we need to first identify which connections are

sensitive. We achieve weight approximation by piggy-backing on the well known back

propagation algorithm that calculates the gradients at different levels of the network

by back tracking from the output. We train the network by minimizing the cross-

entropy error as described in Section 2.2. Once the trained network is obtained, we

once again use the back propagation algorithm on a sample of M inputs to reduce the

bias and compensate for bad predictions during classification. In our experiments, we

choose the value of M to be 100,000. The errors are used to determine the sensitivity

of the connection. In a specific layer, if the error for a particular weight/bias is greater

than the threshold, we classify the weight as sensitive and use more bits to represent

the value; if the error is below a threshold we deem the weight to be insensitive and

we use fewer bits to represent its value. We sweep the threshold values and determine

the value that results in minimal loss in quality. No retraining is necessary here as

the error produced by incremental retraining will not be high enough to update the

already approximated weights.

3.3.1 Results

The above mentioned pruning algorithm is implemented on both the keyword

detection and speech recognition neural networks.

In the keyword detection neural network, described in Section 3.1, the weights and

biases were represented using Q2.2 format. In order to further reduce the memory

requirement, the sensitive weights and biases are represented using Q2.2 and the

insensitive weights and biases are represented using Q2.1. Figure 4.2 shows the effect

of threshold on the average AUC of such an implementation. For a threshold of 0.4,

52,611 weights and biases are represented using Q2.1 out of a total of 475,660 format

23

resulting in a total memory of 283.89KB.

0.0 0.2 0.4 0.6 0.8 1.0
0.910

0.915

0.920

0.925

0.930

0.935

0.940

0.945

A
ve

ra
ge

 A
U

C

Threshold

Figure 3.6: Effect of threshold on AUC for keyword detection neural network

In the speech recognition neural network, described in Section 3.2, the weights and

biases were represented using Q0.5 format. In order to further reduce the memory

requirement, the sensitive weights and biases are represented using Q0.5 and the

insensitive weights and biases are represented using Q0.4. Figure 3.7 shows the effect

of threshold on the average AUC of such an implementation. For a threshold of 0.4,

226,791 weights and biases are represented using Q0.4 out of a total of 5,120,459

resulting in memory size of 3.63MB.

Table 3.3: Memory Requirement of Networks with Pruned Weights.

Network Memory Performance

Keyword Detection 283.89KB 0.91 (AUC)

Speech Recognition 3.63MB 1.82%(WER)

The results for the weight pruning algorithm are tabulated in Table 3.3. We see

that the keyword detection and speech recognition networks perform with minimal

24

0.0 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W
ER

Threshold

Figure 3.7: Effect of weight pruning threshold on WER for speech recognition net-

work.

degradation of performance with a memory reduction of 0.82% and 2.12%, respec-

tively.

3.4 Conclusions

In this chapter a fully-connected feed-forward fixed point neural network architec-

ture was presented for two key speech applications, namely, keyword detection and

speech recognition. Techniques were developed to represent the weights and biases

with minimum number of bits to reduce the memory footprint while minimally af-

fecting the detection/recognition performance. With a fixed point architecture the

memory requirement of the network was reduced by 83% compared to a naive floating

point architecture. This was achieved by using a fixed point implementation using 5

-7 bits. A weight pruning technique was also presented.

25

Chapter 4

COARSE GRAIN SPARSIFICATION

In this chapter, a hardware-centric methodology to develop neural network with a

small memory footprint and computational requirement is described. Such a design

is achieved by judiciously dropping large blocks of weights. This method, termed

coarse-grain sparsification, resulted in 20x memory compression when tested on neural

network architectures for both keyword detection and speech recognition.

4.1 Overview

The large memory requirement of the neural network is due to the large weight

matrices, which have very large dimensions. For instance, the speech recognition

system uses three weight matrices of size 1024× 1024, and two matrices each of size

1024 × 440 and 1024 × 1483. To reduce memory requirement of a neural network,

some of the weights/connections between the layers can be dropped. The challenge is

to drop a select set that will not affect the performance of the network adversely. The

removal of connections reduces the memory requirement significantly when compared

to the weight pruning algorithm. This is because here we are able to remove all the

bits for the weights instead of removing only 1 or 2 bits from the weights as in the

weight pruning algorithm.

In the rest of this chapter, the coarse-grain sparsification(CGS) technique, that

efficiently compresses the memory, is presented. The key idea here is to drop the

connections in large blocks (e.g., 64× 64, 128× 128), and enforce such a constraint in

a static manner throughout the training phase of the algorithm. The remaining con-

nections of the network can be efficiently mapped onto SRAM arrays with minimal

26

address information for classification. The blocks of connections are removed with a

certain probability (e.g. 75%) during the initialization of the network and this struc-

ture is kept constant throughout training and classification phases. This structure

is different from the Dropout (Srivastava et al., 2014) and Dropconnect (Wan et al.,

2013) architecture that are commonly used in deep learning algorithms to prevent

overfitting. Dropout and Dropconnect drop nodes or weights in a dynamic manner

in every training iteration. Since the removal of the weights/nodes is dynamic, these

approaches do not aid in reducing the memory footprint of the network and the fully

connected network is required during classification.

4.2 Block Structure

There exists prior work on partially connected neural networks where some con-

nections between layers have been dropped. Previous approaches drop the weights

based on a specific criteria (e.g. if the value is lower than a threshold). Such an

approach prevents efficient mapping onto hardware since the weights, as well as the

indices of the non-zero weights, have to be stored. To overcome this inefficiency, in our

technique, the connections are dropped in large blocks and the weights are dropped

on a block-by-block basis. A fully-connected neural network is first initialized and

then a certain percentage of the connections are removed block-by-block keeping the

number of remaining blocks (e.g. 50%, 75%) constant along either the row or col-

umn dimension. Throughout training and classification, the weights in the dropped

blocks remain zero. This ensures that there is no memory allocated for these dropped

connections, resulting in reduced memory footprint.

Figure 4.1a shows a sample connection matrix with size of 512× 512. The matrix

is divided into 64 blocks each of size 64×64. The white blocks indicate the absence of

connections and the colored blocks indicate the presence of connections. The number

27

(a) Sample connection matrix of size

512x512 with block size of 64.

(b) Matrix compressed along the column.

The martix dimension is 512x128

Figure 4.1: Weight matrix compression

of blocks removed along each row is kept constant so as to obtain efficient compression

of memory as shown in Figure 4.1b.

The challenge is to find the appropriate block size and percentage of weight drop

that results in the network performing at par with a fully-connected floating point

neural network. As the drop percentage of the connections increase, memory re-

quirements reduce. Also, as the size of the block increases, the hardware complexity

reduces. The maximum possible block size is related to the percentage of connections

removed. For instance, if 50% of the connections are dropped for a connection matrix

of size 512 × 512, the maximum possible block size is 256 × 256. Ideally we want

higher drop rate and larger block sizes since this would result in larger reduction in

memory. Experiments are performed to find the best combination of block size and

weight drop percentage that reduces the memory size with minimal degradation in

the performance.

4.3 Training of Sparse Neural Networks

The training of the neural network with sparse connections is similar to the train-

ing algorithm mentioned in Chapter 2. Here we need to account for the dropped

28

connections when performing the forward propagation and the back-propagation in

the training algorithm. A connection matrix C is introduced, where the element Cij

is a binary variable that represents a connection between ith neuron in one layer and

jth neuron in another layer. The connection matrix can take values of either one or

zero depending on whether a connection between the neurons across adjacent layers

is present or absent.

The training mechanism of the neural network is modified as follows. Eqn. (4.1)

describes the modified back-propagation algorithm.

(wij)k+1 = (wij)k + Cij ∗ (m ∗∆(wij)k−1 − lr ∗∆(wij)k) (4.1)

where (wij)k is the weight during the kth iteration, Cij is the binary connection

coefficient, m is the momentum coefficient and lr is the learning rate. By this method

we ensure that only the weights (wij) present in the network corresponding to (Cij =

1) are updated. The parameters of the training algorithm for both the keyword

detection and speech recognition neural network are kept the same as described in

Chapter 2.

4.4 Results

In this section, the experimental results are described in detail and the archi-

tectural parameters (block size, percentage dropout, precision of neurons, weights

and biases) are derived for both keyword detection and speech recognition neural

networks.

4.4.1 Keyword Detection

Figure 4.2 shows the effect of block size and percentage drop of the connections on

the AUC performance of the floating point keyword detection neural network. The

29

1x1 2x2 4x4 8x8 16x1632x3264x64128x128
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

A
ve

ra
ge

 A
U

C

Block Size

 25% weight drop
 50% weight drop
 75% weight drop
 88% weight drop

Figure 4.2: Effect of block size and percentage dropout on WER of speech recognition

network

percentage drop of the connections are with respect to the two middle layers. We

do not drop connections in the last layer since it consists of only 12 nodes and is

relatively sensitive. Also since the last layer contributes to 1% of the total weights

in the system, any reduction in this layer does not result in substantial reduction in

memory requirement. From Figure 4.2, we see that for the same block size, increasing

the percentage of dropped connections adversely affects the AUC performance, as

expected. When the drop in connections is less than 50%, there is little change in the

AUC performance even when the block size is large. However, for larger drops, the

AUC performance becomes sensitive to the block size. For instance, the performance

of a system with 75% of its weights dropped has an AUC performance loss of up to

0.029 when the block size is 128×128. The AUC performance loss is only 0.015 when

the block size is 64× 64, and so we use this configuration in our sparse network.

To determine the fixed point precision of the CGS architecture for keyword de-

30

Table 4.1: AUC and memory requirements of floating and fixed point implementations

for keyword detection network

Architecture AUC Memory

Floating Point 0.945 1.81MB

Fixed Point Q.2.2 0.940 290.32KB

Proposed CGS (64 block size at 75% dropout) 0.910 101.26KB

tection, the procedure similar to the one mentioned in Chapter 3 is followed. The

histogram of the weights and biases is shown in Figure 4.3 and the effect of fractional

precision on average AUC is shown in Figure 4.4. From the histogram, the major-

ity of weights and bias values lie in (-4,4) and so 2 integer bits are required. Also

the gain in performance for a fractional precision greater than 3 bits is negligible.

Therefore we represent the weights and biases using Q2.3 (5 bits including sign bits)

representation. The input and hidden layers are represented using the Q2.13 (16 bits

including sign bit) and Q10.5 (15 bits without sign bit) respectively.

Table 4.1 compares the memory requirements and the performance of the system

for different neural network architectures. We see that there is a small drop in the per-

formance of the proposed architecture compared to both the fixed point and floating

point architectures. The proposed CGS architecture requires only 101KB of mem-

ory compared to the floating point architecture that requires 1.81MB. This scheme

achieves a 18× memory compression with minimal impact to the performance of the

system. The ROC curves for the three different architectures shown in Fig. 4.5 are

similar. From these results, we conclude that our sparsified architecture performs at

a level similar to the floating point architecture, while requiring only a small fraction

of the memory required by the fully connected floating point architecture. Moreover

31

-5 0 5
0

2000

4000
Layer #1 weights

-6 -4 -2 0 2 4
0

2000

4000
Layer #2 weights

-4 -2 0 2 4
0

500

1000
Layer #3 weights

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

100

200
Layer #1 bias

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04
0

50

100
Layer #2 bias

-0.01 0 0.01 0.02 0.03
0

5

10
Layer #3 bias

Figure 4.3: Histogram of weights and biases of CGS architecture with 64×64 at 75%

drop for keyword detection

0 1 2 3 4 5
0.70

0.75

0.80

0.85

0.90

0.95

A
ve

ra
ge

 A
U

C

Fractional Precision

Figure 4.4: Effect of fractional precision of weights and bias on average AUC of

keyword detection network for CGS architecture

32

0.0 0.5 1.0
0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Alarm Rate

 Proposed CGS with Fixed Point
 Fully Connected Floating Point
 Fully Connected Fixed Point

Figure 4.5: ROC Curve of different deep neural network implementations for keyword

detection.

with 75% of the weights dropped, we also achieve a 4× reduction in the number of

computations, which further reduces the power consumption of the network.

4.4.2 Speech Recognition

Figure 4.6 shows the effect of percentage drop of connections on the WER of the

floating point system as a function of the block size. At up to 75% weight drop at

all layers of the network, the performance of the system is comparable to the fully

connected floating point DNN. Increasing the drop rate to 88% for block sizes larger

than 64× 64, increases the error rate. Based on this analysis, we choose a drop rate

of 75% across all layers with block size of 64× 64.

To determine the fixed point precision of the CGS architecture, the procedure

similar to the one mentioned in Chapter 3 is followed. The histogram of the weights

and biases is shown in Figure 4.7 and the effect of fractional precision on WER is

33

4x4 8x8 16x16 32x32 64x64 128x128256x256

1.6

1.7

1.8

1.9

2.0

2.1

2.2

W
ER

 (%
)

Block Size

 75% Drop
 50% Drop
 88% Drop

Figure 4.6: Effect of block size and percentage dropout on WER of speech recognition

network

shown in Figure 4.8. From the histogram, we see that the majority of weights and bias

values lie in (-1,1) and so 0 integer bits are required. Also the gain in performance

for a fractional precision greater than 4 bits is negligible. Therefore we represent the

weights and biases using Q0.4 (5 bits including sign bits) representation. The input

and hidden layers are represented using Q4.11 (16 bits including sign bit) and Q10.5

(15 bits without sign bit) respectively.

Table 4.2 compares the performance of our system with the fully connected floating

point and fixed point architectures. The sparse fixed-point DNN using the proposed

technique with up to 75% of its connections dropped, has an WER close to that of

the floating point fully-connected DNN. The proposed architecture requires memory

size of only 0.85MB compared to 19.53MB of a fully connected floating point archi-

tecture. Thus, the sparsified fixed point network is able to drop ∼95% of the memory

requirement with a small drop in performance. Moreover, with 75% of the weights

34

-1.5 -1 -0.5 0 0.5 1 1.5
0

2000
4000

Layer #1 Weights

-1 -0.5 0 0.5 1
0

5000
10000

Layer #2 Weights

-0.6 -0.4 -0.2 0 0.2 0.4
0

5000
Layer #3 Weights

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

5000
10000

Layer #4 Weights

-1 -0.5 0 0.5 1

×104

0
1
2

Layer #5 Weights

-2 -1 0 1 2
0

100
200

Layer #1 Bias

-0.5 0 0.5 1
0

200
400

Layer #2 Bias

-0.4 -0.2 0 0.2 0.4 0.6
0

200
400

Layer #3 Bias

-0.2 -0.1 0 0.1 0.2 0.3
0

200
400

Layer #4 Bias

-0.5 0 0.5 1 1.5
0

200
400

Layer #5 Bias

Figure 4.7: Histogram of weights and biases of CGS architecture with 64×64 at 75%

drop

2 3 4 5 6 7

0

10

20

30

40

50

60

W
ER

Fractional Precision

Figure 4.8: Effect of fractional precision of weights and bias on WER of speech

recognition system for CGS architecture

35

Table 4.2: WER and memory requirements of floating and fixed-point implementa-

tions for speech recognition network.

Architecture WER(%) Memory

Floating Point 1.65% 19.53 MB

Fixed Point (Q0.5) 1.77% 3.66 MB

Proposed CGS (64 block at 75% dropout) 1.64% 0.85MB

dropped, we also achieve a 4× reduction in the number of computations that further

reduces the power consumption of the network.

4.5 Conclusions

In this chapter, a block structure was described to efficiently compress weights

in a neural network with minimal degradation in the performance. The proposed

methodology combined with the fixed point architecture helped achieve a compression

rate of 18 × −23× for keyword detection and speech recognition respectively along

with 4× reduction in the number of computations.

36

Chapter 5

CONCLUSIONS

5.1 Summary

This thesis focused on developing techniques to reduce the memory size in deep

networks, specifically in feed-forward neural networks for keyword detection and

speech recognition. The neural network for keyword detection consists of 2 hidden

layers, with 512 neurons per layer, while the network for speech recognition is much

larger with 4 hidden layers and 1024 neurons per layer.

First, techniques were developed to represent the weights and biases with mini-

mum number of bits to reduce the memory footprint while minimally affecting the

detection/recognition performance. For keyword detection, where 10 keywords were

selected from the RM corpus, experimental results show that there is only a marginal

loss in performance when the weights are stored in Q2.2 (5 bits) format. The to-

tal memory required in this case is approximately 290KB (compared to 1.81MB if

the weights were represented by 32 bit floating point), making it highly suitable for

resource constrained hardware devices. On the larger speech recognition network,

the memory reduction is even more significant. Here the memory size dropped from

19.53MB to 3.66MB when the weights are represented in Q0.5 (6 bits) format. An

additional 0.82%-2.12% reduction (compared to fixed point implementation) can be

obtained by representing insensitive weights by lower precision.

Even larger reduction in memory was achieved by dropping connections in blocks.

Instead of reducing the precision levels of the individual weights, here the weight

connections are removed from the network. We show that the keyword detection

37

and speech recognition networks with 75% of its connections removed performs at

a level similar to that of fully connected networks. Application of this technique on

fixed point reduced precision implementation, helped reduce the memory requirement

by ∼95% compared to a fully connected double precision floating point architecture.

Such an architecture also reduces the number of computations by 4×. Therefore, these

proposed techniques can substantially reduce the memory and power requirement

of resource-constrained devices. As speech recognition becomes more mainstream,

the proposed techniques will enable implementation of these networks in mobile and

wearable devices.

5.2 Future Work

Future work in this area can be directed towards finding an optimal block selection

that maximizes the accuracy of the system. Other approaches include implementing

Convolutional Neural Networks (Abdel-Hamid et al., 2014) to analyze the input fea-

tures. Recently Recurrent Neural Networks (Graves and Jaitly, 2014) have been

shown to perform comparable to DNN-HMM systems. These networks have greatly

simplified the speech recognition pipeline. Implementing the proposed memory re-

duction schemes on RNNs can simplify their hardware implementations significantly.

38

REFERENCES

Abdel-Hamid, O., A.-R. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu, “Con-
volutional neural networks for speech recognition,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing 22, 10, 1533–1545 (2014).

Baker, J. M., L. Deng, J. Glass, S. Khudanpur, C.-H. Lee, N. Morgan and D. O.
Shaughnessy, “Developments and directions in speech recognition and understand-
ing, Part 1 [dsp education],” Signal Processing Magazine, IEEE 26, 3, 75–80 (2009).

Bourlard, H. A. and N. Morgan, Connectionist speech recognition: a hybrid approach,
vol. 247 (Springer Science & Business Media, 1994).

Bradley, A. P., “The use of the area under the roc curve in the evaluation of machine
learning algorithms,” Pattern recognition 30, 7, 1145–1159 (1997).

Chen, G., C. Parada and G. Heigold, “Small-footprint keyword spotting using deep
neural networks,” in IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 4087–4091 (2014).

Dahl, G. E., D. Yu, L. Deng and A. Acero, “Large vocabulary continuous speech
recognition with context-dependent DBN-HMMs,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 4688–4691, (2011).

Dahl, G. E., D. Yu, L. Deng and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Transactions on
Audio, Speech, and Language Processing 20, 1, 30–42 (2012).

Deng, L. and D. Yu, “Deep learning: Methods and applications,” Foundations and
Trends in Signal Processing 7, 3–4, 197–387 (2014).

Gales, M. and S. Young, “The application of hidden Markov models in speech recog-
nition,” Foundations and trends in signal processing 1, 3, 195–304 (2008).

Gardner, W. A., “Learning characteristics of stochastic-gradient-descent algorithms:
A general study, analysis, and critique,” Signal Processing 6, 2, 113–133 (1984).

Graves, A. and N. Jaitly, “Towards end-to-end speech recognition with recurrent
neural networks,” in Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pp. 1764–1772 (2014).

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups”, Signal
Processing Magazine, IEEE 29, 6, 82–97 (2012).

Huang, X., A. Acero, H.-W. Hon and R. Foreword By-Reddy, Spoken language pro-
cessing: A guide to theory, algorithm, and system development (Prentice Hall PTR,
2001).

39

Juang, B.-H., S. E. Levinson and M. M. Sondhi, “Maximum likelihood estimation
for multivariate mixture observations of Markov chains,” IEEE Transactions on
Information Theory 32, 2, 307–309 (1986).

Mamou, J., B. Ramabhadran and O. Siohan, “Vocabulary independent spoken term
detection,” in Proceedings of the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 615–622 (ACM,
2007).

Miao, Y., “Kaldi+ pdnn: building DNN-based ASR systems with Kaldi and PDNN,”
arXiv preprint arXiv:1401.6984 (2014).

Miller, D. R., M. Kleber, C.-L. Kao, O. Kimball, T. Colthurst, S. A. Lowe, R. M.
Schwartz and H. Gish, “Rapid and accurate spoken term detection,” in INTER-
SPEECh, pp. 314-317 (2007).

Morris, A. C., V. Maier and P. D. Green, “From WER and RIL to MER and WIL: im-
proved evaluation measures for connected speech recognition,” in INTERSPEECH,
pp. 2765-2768 (2004).

Ooi, W. T., C. G. Snoek, H. K. Tan, C. K. Ho, B. Huet and C.-W. Ngo, 15th Pacific
Rim Conference on Advances in Multimedia Information Processing-PCM , vol.
8879 (Springer, 2014).

Parlak, S. and M. Saraclar, “Spoken term detection for Turkish broadcast news,”
in IEEE International Conference on Acoustics, Speech and Signal Processing,
(ICASSP), pp. 5244–5247, (2008).

Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech recognition
toolkit,” in IEEE 2011 workshop on automatic speech recognition and understand-
ing, No. EPFL-CONF-192584 (IEEE Signal Processing Society, 2011).

Price, P., W. M. Fisher, J. Bernstein and D. S. Pallett, “The Darpa 1000-word re-
source management database for continuous speech recognition,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 651–654
(1988).

Rath, S. P., D. Povey, K. Veselỳ and J. Cernockỳ, “Improved feature processing for
deep neural networks,” in INTERSPEECH, pp. 109–113 (2013).

Rohlicek, J. R., W. Russell, S. Roukos and H. Gish, “Continuous hidden Markov
modeling for speaker-independent word spotting,” in 1989 International Conference
on Acoustics, Speech, and Signal Processing, , pp. 627–630, (1989).

Rose, R. C. and D. B. Paul, “A hidden markov model based keyword recognition sys-
tem,” in 1990 International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 129–132, (1990).

40

Sha, F. and L. K. Saul, “Large margin Gaussian Mixture Modeling for phonetic
classification and recognition,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 1, pp. I–I (2006).

Shah, M., J. Wang, D. Blaauw, D. Sylvester, H.-S. Kim and C. Chakrabarti, “A fixed-
point neural network for keyword detection on resource constrained hardware,” in
2015 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6 (2015).

Silaghi, M.-C., “Spotting subsequences matching an HMM using the average obser-
vation probability criteria with application to keyword spotting,” in Proceedings of
the American Association on Artificial Intelligence, vol. 20, pp. 1118-1123 (Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 2005).

Silaghi, M.-C. and H. Bourlard, “Iterative posterior-based keyword spotting with-
out filler models,” in Proceedings of the IEEE Automatic Speech Recognition and
Understanding Workshop, pp. 213–216 (1999).

Song, H. A. and S.-Y. Lee, “Hierarchical representation using NMF,” in Neural In-
formation Processing, pp. 466–473 (Springer, 2013).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research 15, 1, 1929–1958 (2014).

Su, D., X. Wu and L. Xu, “GMM-HMM acoustic model training by a two level
procedure with Gaussian components determined by automatic model selection,”
in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4890–4893 (2010).

Sutskever, I., J. Martens, G. Dahl and G. Hinton, “On the importance of initial-
ization and momentum in deep learning,” in Proceedings of the 30th international
conference on machine learning (ICML-13), pp. 1139–1147 (2013).

Tomás, J., J. À. Mas and F. Casacuberta, “A quantitative method for machine trans-
lation evaluation,” in Proceedings of the EACL 2003 Workshop on Evaluation Ini-
tiatives in Natural Language Processing: Are evaluation methods, metrics and re-
sources reusable?, pp. 27–34 (Association for Computational Linguistics, 2003).

Van Ooyen, A. and B. Nienhuis, “Improving the convergence of the back-propagation
algorithm”, Neural Networks 5, 3, 465–471 (1992).

Venkataramani, S., A. Ranjan, K. Roy and A. Raghunathan, “Axnn: energy-efficient
neuromorphic systems using approximate computing,” in Proceedings of the 2014
International Symposium on Low Power Electronics and Design, pp. 27–32 (2014).

Wan, L., M. Zeiler, S. Zhang, Y. L. Cun and R. Fergus, “Regularization of neural
networks using dropconnect,” in Proceedings of the 30th International Conference
on Machine Learning (ICML-13), pp. 1058–1066 (2013).

41

Wilpon, J., L. Miller and P. Modi, “Improvements and applications for key word
recognition using hidden Markov modeling techniques,” in 1991 International Con-
ference on Acoustics, Speech, and Signal Processing,, pp. 309–312, (1991).

Zeiler, M. D., M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, G. Hinton, “On rectified linear units for speech
processing,” in 2013 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 3517–3521, (2013).

42

