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ABSTRACT

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to

odour sensory stimuli with odour-specific response latencies, i.e., delays to first spike after odour

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile

of the activated uPNs are dynamic and changes as a result of associative conditioning, facilitating

odour-detection of learned odours. Moreover, odour-representation in the antennal lobe undergo

reward-mediated plasticity processes that increase response delay variations in the activated en-

semble of uniglomerular projection neurons. Octopamine is necessarily involved in these plasticity

processes. Yet, the cellular mechanisms are not well understood. I hypothesize that octopamine

modulates cholinergic transmission to uPNs by triggering translation and upregulation of nicotinic

receptors, which are more permeable to calcium. Consequently, this increased calcium-influx sig-

nals transcription factors that upregulate potassium channels in the dendritic cortex of glomeruli,

similar to synaptic plasticity mechanisms recently shown in various insect species. A biophysi-

cal model of the antennal lobe circuit is developed in order to test the hypothesis that increased

potassium channel expression in uPNs mediate response delays to first spike, dynamically tuning

odour-representations to facilitate odour-detection of learned odours.
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Chapter 1

INTRODUCTION

In the insect olfactory pathways, uniglomerular projection neurons (uPNs) transiently synchronize

their spiking activity upon odor stimulation. Recently, immunostaining studies with dye injection

into the antennal lobe (AL) reveal that some uPNs potentially share common excitatory presynaptic

input from olfactory receptor neurons (ORNs), i.e., a single ORN axon collateral branches to form

synaptic connections with multiple neurons. Each uPN is innervated by potentially hundreds of

both common and uncommon ORN axon collaterals. During odor processing, uPNs get recruited

to participate in the orquestration of the AL network activity to form neural representations of odor

information. How the AL neural network coordinates the activities of uPNs during odor process-

ing remains an area of intense research. The following paragraphs outline research aimed toward

creating a theoretical framework that allows translation of measures of synchronized spiking into

plausible renditions of synaptic connectivity.

In honey bee, the olfactory sensory network begins with olfactory receptor neurons (ORNs) pro-

jecting their axons onto antennal lobe glomeruli in a receptor-specific manner (Laissue and Vosshall,

2008). The ORNs are input neurons that relay odor information to uniglomerular projection neurons

(uPNs) and local interneurons (LNs) in the cortex area of glomerulus (Fonta et al., 1993; Hummel

and Zipursky, 2004; Tanaka et al., 2012a). The LNs form synaptic connections that are strictly

confined to the antennal lobe (Schafer and Bicker, 1986; Fonta et al., 1993; Olsen et al., 2007b;

Shang et al., 2007; Seki et al., 2010; Meyer and Galizia, 2012; Girardin et al., 2013). The uPNs are

output neurons that extend their axon collaterals outside the antennal lobe to the mushroom body

and lateral protocerebrum neuropils (Galizia and Rssler, 2010; Stocker et al., 1990; Fonta et al.,

1993; Abel et al., 2001; Kirschner et al., 2006; Tanaka et al., 2008, 2012a). The intrinsic neurons of

the mushroom bodies (Kenyon cells) decode olfactory sensory information by detecting coincident

or synchronized input from uPNs (Krofczik et al., 2008).

Previous studies have investigated the in vivo stimulus-response dynamics of individual uPN

spiking activity, where odor stimulation was typically applied in durations lasting a couple of sec-

onds (Nawrot, 2010). During the first 300-600 milliseconds (ms) of odor presentation, intracellular
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recordings show an initial increase in the spiking rate of activated uPNs, followed by a rate de-

crease. The spiking stabilizes, reaching a constant firing rate, and remains at this spiking frequency

despite odor being continuously applied (Nawrot, 2010). This so called phasic-tonic odor-response

characteristic of uPN spiking dynamics has been shown in both insect and mammalian olfactory

systems (Krofczik et al., 2008). Furthermore, a subset of the these uPN ensembles temporarily dis-

play significant spiking synchronization, i.e., only a fraction of the spikes from such neurons occur

within a few milliseconds of one another. Moreover, the number of synchronized spikes is more

than would be predicted if the neurons fired independently.

A minimal model is used with minimal number of equations of neuronal membrane potential

while using biophysical variables to describe membrane potential. In addition, the model considers

realistic excitatory synaptic input based on kinetics of synaptic transmission. To test the hypothesis,

the model considers two layers of neurons, where we assume ORNs form the input layer and uPNs

form the output layer. Here, the output layer consists of two uncoupled uPNs, whose membrane

potential dynamics were derived using dynamical systems theory. The input layer consists of hun-

dreds of ORNs, whose excitatory synaptic input are modeled as stochastic renewal processes. The

model uPNs should be uncoupled to control for the possibility of synchronized spiking resulting

from direct or indirect synaptic connections. Results from this research will be part of a dissertation

to obtain a doctoral degree in Applied Mathematics for the Life and Social Sciences.
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Chapter 2

LITERATURE REVIEW

2.1 Neuroanatomy of Olfactory Pathways in Honey Bee

Using honey bees as a model, the following paragraphs contain a brief overview of the organization

of the olfactory neural networks, all relative to the spiking activity of projection neurons (PNs) and

how it can be used to make inferences about the synaptic organization of excitatory inputs to PNs.

Odor processing involves the orchestration of multiple layers of neural networks that detect odor

molecules in the environment and rapidly encode and discriminate among distinct odors (Fonta et

al., 1993; Abel et al., 2001; Strausfeld, 2002; Sinakevitch et al., 2005, 2011; Kelber et al., 2006;

Kirschner et al., 2006; Schrter et al., 2007; Girardin et al., 2013). A recent study in honey bees has

demonstrated their ability to distinguish between different olfactory stimuli that are as short as 200

ms (Wright et al., 2009). Behavioral experiments show that honey bees can learn to discriminate

odors in less than 200 milliseconds (Wright et al., 2009; Fernandez et al., 2009). Additionally, mice

are able to discriminate dissimilar odors within < 250 ms (Abraham et al., 2004) Olfactory path-

Figure 2.1: Schematic of Olfactory Neural Networks in Honey Bee

ways begin with odor molecules triggering a signal transduction process, where receptor proteins

expressed in olfactory receptor neurons (ORNs) protrude through pore plate sensilla of the anten-
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nae and bind to odor molecules (Krofczik et al., 2008). ORNs detect and respond to odor molecules

from the environment and relay this information via four antennal nerve tracts (T1-T4) (Kirschner

et al., 2006).

These nerve tracts are comprised of an estimated 65,000 ORNs that input to the antennal lobe

(AL) neural network (Esslen and Kaissling, 1976). The AL is comprised of 160 neuropil structures

called glomeruli, shaped by the synaptic connectivity of different types of neurons, which were

revealed by detailed anatomical studies in tissue (Arnold et al., 1985; Flanagan and Mercer, 1989;

Kelber et al., 2006; Sachse, 2002). The neurons revealed in these studies include ORNs, uni- and

multi-glomerular projection neurons (uPNs, and mPNs), and local GABAergic inhibitory interneu-

rons (LNs) (Galizia et al., 1999; Robertson and Wanner, 2006; Sinakevitch and Smith et al., 2013)

(See Figure 2.2).

2.2 Projection Neurons and Associated Synaptic Inputs

Anatomically we distinguish two types of uPNs (Abel et al., 2001; Kelber et al., 2006; Kirschner

et al., 2006; Nishino et al., 2009). There are an estimated 920 total uPNs in the AL as reported by

Rybak (2012). The lateral PNs (l-PNs) receive input exclusively from T1 glomeruli and send their

axons along the lateral antennocerebralis tract to the higher order brain centers, the lateral horn (LH)

and the MB. The median PNs (m-PNs) exclusively originate in T2-4 glomeruli and project along

the median antennocerebralis tract, first to the MB and then to the LH (Abel et al., 2001; Bicker

et al., 1993; Kirschner et al., 2006; Mobbs, 1982; Mller et al., 2002). The LNs form inhibitory

interconnections between the glomeruli, with synaptic connections strictly confined to AL circuitry

(Schafer and Bicker, 1986; Fonta et al., 1993; Olsen et al., 2007b; Shang et al., 2007; Seki et

al., 2010; Meyer and Galizia, 2012; Girardin et al., 2013). In contrast, uPNs branch their axon

collaterals outside the AL to form presynaptic input to higher-order brain centers of the olfactory

pathways, which include areas of the brain that process and integrate multiple sensory modalites.

2.3 Olfactory Receptor Neurons

Each individual glomerulus receives input only from ORNs that express the same chemical re-

ceptor protein (Laissue and Vosshall, 2008). Even though these ORNs may originate from different

regions distributed over the entire antennae, their axon collaterals eventually converge and terminate
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Figure 2.2: Neuroanatomy and Synaptic Structure of the Antennal Lobe

in one specific glomerulus (Vosshall et al., 2000). Thus, activation of a single glomerulus reflects

the chemoprofile of the respective receptor type, and the glomerular activation pattern reflects the

combination of activated receptor types.

Individual glomerulus have layers of synaptic connections that form a characteristic outer cortex

and inner core area (Fonta et al., 1993; Hummel and Zipursky, 2004; Tanaka et al., 2012a). Each

glomeruli contains 5-6 uniglomerular projection neurons (uPNs) that have dendritic branching in

both the cortex and core areas of only one glomerulus, hence the term uniglomerular. The uPNs

have thicker branchings in the core and very thin dendritic ramifications in the cortex of glomeruli.

Indirect evidence suggests these thin uPN dendrites receive excitatory presynaptic input from ORNs

in the glomerular cortex, where these experimental studies show that ORN synapses are virtually

absent in the core area of glomeruli. In the glomerular core layer, uPNs mainly receive GABAergic

inhibitory synapses from LNs. Next, the uPNs extend their axon collaterals outside the AL, forming

presynaptic input to higher-order neuropils such as the mushroom bodies and the lateral protocere-

bral lobes (Esslen and Kaissling, 1976).

Within each glomeruli, the uPNs integrate synaptic input received from thousands of input neu-

rons in the AL circuitry, which drive both excitation and inhibition processes mediated by fast

ligand-gated ion channels. The uPNs process and transform this bombardment of synaptic signals

and not just passively relaying odor information received from AL network.
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2.4 Synaptic Plasticity Processes Via Octopamine and Tyramine

In the honey bee antennal lobe (AL), uniglomerular projection neurons (uPNs) transiently spike to

odour sensory stimuli with odour-specific response latencies, i.e. delay to first spike after odour

stimulation onset (Krofczik, Menzel et al, 2009). Recent Ca2+ imaging studies show that the spatio-

temporal response profile of the activated uPN ensemble is dynamic and changes as a result of asso-

ciative conditioning, facilitating odour detection of learned odours (Fernandez et al, 2009). There-

fore, we propose odour-representation in the AL undergo reward-mediated plasticity processes that

increase response delay variations in the activated uPN ensemble. Octopamine (OA) is necessarily

involved in these plasticity processes, yet the cellular mechanisms are not well understood. We

propose that OA modulates cholinergic transmission to uPNs by triggering translation and upregu-

lation of α7 nicotinic receptors, which are more permeable to Ca2+. Consequently, this increased

Ca2+-influx from α7 signals transcription factors that upregulate Shal-type K+ channels in the den-

dritic cortex of glomeruli, similar to synaptic plasticity mechanisms recently shown in Drosophila

(Ping and Tsunoda, 2012). We develop a biophysical model of the AL circuit to test the hypothesis

that increased Shal expression in uPNs mediate response delays to first spike, dynamically tuning

odour-representations to facilitate odour detection of learned odours.

2.5 Functional Properties of Cholinergic Receptors

Reference numbers are from (Saragoza 2003):

• α-bungarotoxin-sensitive. Have high affinity with α715,53,54

• highly permeable to calcium15,53,54

• mammalian α7 nAChRs are homo-oligomers; most abundantly expressed in the hippocampus10,19

• found in presyanptic, postsynaptic, and nonsynaptic processes22,56

• mediate GABAergic transmission2,24,36

• modulate glutamate release37,43,51

• modulate dopamine secretion from nucleus accumbens25
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• influence spatial and working memory23,39

• activation can enhance LTP and LTD in hippocampus40

• induces LTP in ventral tegmental area40

• involved in developmental processes, e.g. neurite outgrowth8,13,47

Alternative RNA Processing of Cholinergic Receptor Subunits

Recent studies of Drosophila uPNs show that α7 is upregulated 3-5 minutes after recovery from

a 24 hour treatment with curare, which bind to and inactivate nAChRs (Ping and Tsunoda, 2012).

Therefore, prolonged receptor inactivity triggered a homeostatic plasticity response to replace dis-

functional receptors. We propose that OA serves as a functional analog to curare, inducing pro-

longed nAChR-inactivation, via post-transcriptional modifications to α7 subunits that diable recep-

tor function. splice variants, resulting from β -adrenergic-like OA receptor activation. OA mediates

fast α7 desensitization by triggering production of truncated α7 splice variants.

Main finding from (Saragoza, 2003):

• Splice variant of α7 subunit functions as a dominant-negative effecter of normal α7 subunit

function

• Splice variants assemble with normal α7 subunits, acting as a negative regulator

Main finding from (Cassaenaer and Laurent, 2012):

• OA appilcation to the MBs modulate specifically the KC-β -LN synapses that previously un-

derwent STDP LTP processes during odour presentation.

• OA modification resulted in depressed synaptic input, reversing LTP to LTD

This recent study provides evidence to support our prosal for that a major role of octopaminergic

synaptic modulation is to induce a homeostatic synaptic plasticity response to prolonged receptor

inactivity by mediating a fast synaptic receptor desensitization process. Octopamine (OA) induces a

cAMP-dependent plasticity process in uPNs via β -adrenergic-like receptors. These receptors signal

cAMP production that trigger post-transcriptional modifications amounting to a negative allosteric
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effect on α7 subunit function. Moreover, this dominant-negative effecter of normal α7 subunit

function triggers a homeostatic synaptic plasticity process that leads to upregulation of normal α7

RNA transcripts. A similar case has been documented in Drosophila (Ping and Tsunoda, 2012).

Specific plasticity process: β -adrenergic-like OA receptor activation leads to post-transcriptional

modifications that truncate normal α7 protein synthesis. These truncated splice variants assemble

with normal α7 subunits and desensitize receptor function, leading to a depressed Ca2+ influx.

Studies of the mammalian neuromuscular junction show a neuropeptide mediating fast desensi-

tization of nAChRs. Although the physiological significance of this fast receptor desensitization

is unknown, prolonged receptor inactivity could trigger a general homeostatic response to replace

disfunctional receptors. For example, receptors rendered disfunctional from natural “wear-and-

tear” expected after prolonged use. Moreover, they show that α7 expression is necessary to induce

transcription of a gene encoding a specific A-type (transient) K+ channel, namely Shal/Kv4. This

transient voltage-gated channel is kinetically distinct from other transient K+ channels due to lower

voltage-dependency for inactivation.
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Chapter 3

DYNAMICAL NEURAL PLASTICITY IN HONEY BEE

3.1 Octopamine and Tyramine Metabolic Synthesis

Octopamine and tyramine are biogenic monoamines endogenous to invertebrates, implicated in im-

portant regulatory and modulatory roles of behavior (Roeder, 1999; Scheiner, 2006). Octopamine

(OA), β ,4-dihydroxyphenethylamine, is synthesized from tyramine (TA), 4-hydroxy- phenethylamine,

by tyramine β -hydroxylase. TA and the catecolamines (norepinephrine, epinephrine and dopamine)

are all synthesized from the amino acid tyrosine. OA shares similar molecular structure with nore-

pinephrine, a vertebrate biogenic amine that has not been found in invertebrate physiology. The

table below displays two different OA and TA metabolic synthesis pathways.

OA and TA trigger intracellular signaling pathways by binding with different affinities to oc-

Figure 3.1: Octopamine and Tyramine Metabolic Synthesis

topamine receptors (OARs) or tyramine receptors (TYRs), which are known to be G-protein coupled

receptors (GPCRs). GPRCs are referred to as seven-transmembrane proteins with an extracellular

N-terminus and intracellular C-terminus. The N-terminus domain binds the ligand, e.g. OA or TA,

whereas the C-terminus binds secondary messengers at the intracellular c-loop domain. (Blenau

2000; Grohmann 2003). In addition, the intracellular signaling pathways triggered by OARs and

TARs follow classic second messenger cascades during signal transduction.

In Honey bee, 19 GPCR genes have been identified including receptor genes for octopamine, tyra-

mine, dopamine, seratonin, and acetylcholine (Hauser, 2006). Among these, 4 OAR receptor genes

have been identified, but only one gene has been cloned and functionally characterized, AmOA1

(Grohmann, 2003). This receptor is categorized into the α-adrendergic-like receptors (αOARs),

homologous to vertabrate α1-adrenergic receptor subtype, (Grohmann, 2003). Similarly, AmTYR1,

is the only tyramine receptor characterized in honey bee, belonging to the tyramine receptor subtype
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TYR1 (Blenau, 2001, 2003; Mustard, 2005). Table 1 displays octopamine and tyramine receptors

identified in honey bee. Also, octopamine-like and tyramine-like receptors yet to be characterized

in honey bee.

Figure 3.2: Octopamine and Tyramine Receptor Genes

3.2 Subcellular Signaling Pathways of Octopamine and Tyramine

OARs and TYRs are members of the GPCR superfamily which activate G-proteins (guanine nucleotide-

binding proteins) of the heterotrimeric type, consisting of three subunits Gα (alpha), Gβ (beta) and

Gγ (gamma). During signal transduction, OARs and TYRs are activated by binding OA or TA with

different affinities. These receptors undergo a conformational change and catalyze a reaction caus-

ing G-proteins to release a bound GDP molecule in exchange for GTP. This enzymatic activation of

the G-protein by GPCRs yields two active subunits, Gα-GTP and a Gβγ dimer complex, which fur-

ther transduce intracellular metabolic signaling pathways, such as the activation of protein kinases,

release of intracellular [Ca2+], and effecting various other lipid metabolites (Hille, 2001). With the

variety of resulting intracellular signals produced from GPCR/G-protein couplings, cellular effects

of OA and TA become amplified and/or diversified within the cytoplasm, even distant from the

plasma membrane.
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Octopamine Receptor Couples to G-Protein

With OA as the agonist, α-adrenergic receptors (αOAR) couple to Gq leading to [Ca2+] increases

(Grohmann, 2003; Beggs, 2011). Additionally, these αOARs have a higher affinity for OA com-

pared to TA.

. In the classic G-protein pathway, the Gq subunit activates phospholipase C (PLC), which hy-

drolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and

diacylglycerol (DAG). The PLC→ PIP2 → IP3 pathway leads to IP3 receptor activation and intra-

cellular [Ca2+] release from the endoplasmic reticulum (ER). DAG and [Ca2+]i together activate

protein kinase C (PKC) which phosphorlates various proteins and ion channels. In addition when

expressed in the HEK293 cells, AmOA1 couples to cAMP signaling via a PLC-independent path-

way (Beggs, 2011).

To date, β -adrenergic-like octopamine receptors (βOARs) have not been characterized in honey

bee. In Drosophila, βOARs have been shown to increase levels of cAMP and do not give rise to

an intracellular calcium release (Evans, 2005). In the classical cAMP pathway, Gs stimulates a

membrane-bound enzyme adenylyl cyclase producing cyclic-adenosine monophosphate (cAMP),

which stimulates protein kinase A (PKA).

Tyramine Receptor Couples to G-Protein

The first reported TYR, AmTYR1, is pharmacologically related to α2-adrenergic receptors found in

vertebrates and show affinity for both octopamine and tyramine (Blenau, 2003). In a study by Ble-

nau et al, AmTYR1-transfected human embryonic kidney 293 cells decreased cAMP by inhibiting

adenylyl cyclase (AC) via a G-protein, Gi, with TA application.

3.3 Octopamine Induced Calcium Dynamics

Studies of AmOA1-transfected HEK cells, show octopamine (OA) triggering intracellular calcium,

[Ca2+]i, osciallations when OA concentration exceeds 50 nanomolars (nM). Micromolar concentra-

tions (µM) of tyramine (TA) induced delayed calcium spikes with reduced amplitudes, compared

to OA (Blenau, 2003). Increasing OA to 100 (nM) increased oscillatory frequency, with spike tran-

sients ranging from 40-60 seconds. Further increases of OA concentration to µM levels triggered
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a single Ca2+ transient with very slow decay to rest (> 10 mins). We assume the primary effect

of OA acting through AmOA1 is to trigger IP3-dependent [Ca2+]i release from the ER, with sub-

cellular pathways as proposed in Table 1. The kinetic reaction of IP3-induced increase of [Ca2+]i

is formulated as in (Tang, 1995). The model description is outlined below with details given in the

appendix: 

Ẋ = (gleak +g)(Cavg−X)− vr p1
X2

X2 + p2
2

Ṙ1 =−k1[IP3]R1 + k−1R2

Ṙ2 =−(k−1 + k2X)R2 + k1[IP3]R1 + k−2R3

Ṙ3 =−(k−2 + k3X)R3 + k2XR2 + k−3R4

Ṙ4 = k3XR3− k−3R4

(3.1)

Variable X represents Ca2+ concentration in µM. Variables R1−4 represent fractions of IP3

receptors in four possible states, thus are dimensionaless. OA-induced Ca2+ release begins with

OA activating AmOA1, triggering IP3 production (See Table 1). This kinetic reaction is formulated

as a 2-state metabotropic response as in (Destechxe, 1994). The concentration of IP3 is a function

of activated AmOA1 receptors at steady-state given by:

[IP3] =
r1[OA]

r2[OA]+ r3
(µM) (3.2)

For our model analysis, [OA] is systematically varied to characterize how [OA] influences intracel-

lular Ca2+ dynamics. The parameters r1, r2, and r3 are tuned such that [IP3] is within a physiological

range. IP3 is a soluable signal that can diffuse away from the membrane to bind IP3-sensitive recep-

tors (IP3Rs) expressed on the ER. The total number of IP3Rs is assumed constant, given by RTotal ,

and equals the sum of all four possible states: unbound (R1), bound to IP3 (R2), bound to a single

Ca2+ ion (R3), and bound to two Ca2+ ions (R4- the inactived state). With this approximation, the

system is reduced by rewriting R3 in terms of RTotal and the other states:

R3 = RTotal−R1−R2−R4 (µM) (3.3)

The system is further reduced to 2-dimensions by using quasi-steady-state approximations of R1

and R2, given by R∗1 and R∗2, respectively (See appendix). Therefore, R3 is approximated by R∗:

R∗ = RTotal−R∗1−R∗2−R4 (3.4)
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[Ca2+]i dynamics after non-dimensionalizing: ε ẋ = (α1 +α2R∗)(Cavg− x)− Je f f lux(x)

ẏ = β2R∗x2− y
(3.5)

After non-dimensionalizing x = X/Cavg and y = R4, where time, t, is rescaled by τ = tk−3. The

slower recovery variable, y represents IP3 receptors (IP3Rs) in the inactivated state. Inactivation

occurs when IP3Rs bind a second Ca2+ ion after an initial binding. Therefore, Ca2+ ions inhibit

their own rate of infux into the cytosol at high concentrations, given by the last term of ẋ, namely

Je f f lux(x):

Je f f lux(x) =
x2

(x2 +κ)
(3.6)

where,

κ = (p2/Cavg)
2 (3.7)

Cavg is the volumetric average Ca2+ concentration in ER and p2 the Michaelis constant in units of

(µM). The rate of calcium influx is given by the first term of ẋ:

(α1 +α2R∗)(1− x/Cavg) (3.8)

α1 = g0Cavg(1+ vr)/vr p1 (3.9)

α2 = g1Cavg(1+ vr)/vr p1 (3.10)

The leakage coefficient and channel conductance are given by g0 and g1, respectively. vr is a ratio

of ER to cytosol volume. p1 is the maximum pump rate in units (µM/sec).
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Chapter 4

MATHEMATICAL MODELS OF NEURAL SPIKING ACTIVITY

4.1 Overview of Models of Cellular Excitability and Dynamical Systems Theory

The physiolgical state of an excitable cell can be modeled with a minimal dynamical system ex-

pressed in generic form as:

v̇ = f (v,w;~p),

ẇ = g(v,w;~p),
(4.1)

A minimal biophysical model of a single neuron is given by the following system, derived from first

principles of electrodiffusion (Endersen, 2000): Cv̇ = −(INa + IK ++IShal + Ileak + Isynapses),

ẇ = (w∞−w)/τw, w ∈ {b,s}
(4.2)

where INa, IK , IShal, and Ileak are components of the transmembrane current carried by sodium,

persistent K+, an inactivating Shal-type K+, and a general leak current, respectively. The general

form of the ionic currents is given by:

Ix = Axsinh[
qzx

2kT
(v− vx)] (nA) (4.3)

where Ax is the amplitude of the current (in nA), q is the elementary charge (in C), zx is the valence

of ion x, k is the Boltzmann’s constant (in mJ
K ), T is absolute temperature (in Kelvin) and vx is the

Nernst equilibrium of x. Ax can be approximated by aNam, where aNa is a constant representing

the whole-membrane maximum current. m is a variable representing the proportion of open sodium

channels, taking on values between 0 and 1. As mentioned previously, we are considering voltage-

gated ionic channels. This means ionic channels open or close due to changes in the membrane

potential,i.e. they may activate or inactivate. If we let (1−b) be the proportion of sodium channels

in the inactive state, then INa becomes:

INa = aNam3
∞(v)(1−b)sinh[

qzNa

2kT
(v− vNa)] (4.4)

The potassium channel is persistent and doesn’t inactivate:

IK = aKb4(v)sinh[
qzK

2kT
(v− vK)] (4.5)
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Similarly the K+ gate has probability n of being in the open state. ṅ describes the rate at which

the potassium gates open. The sodium gate activates instantaneously, i.e. m instantly reaches its

asymptotic value for a given membrane potential, and therefore ṁ=0. τ(V) is the time constant

which controls how fast the potassium gate opens, i.e. a higher τ(V) value results in slower potas-

sium gate activation. The K+ gating variables are of the form:

ẇ = (w∞−w)/τw (4.6)

where

w∞ = (1+ exp[
qzw

2kT
(v− vw)])

−1 (4.7)

The time constant, τw is constant measured in (msec). zw is the gating charge (in Coloumbs) and vw

is the half activation potential of voltage-gated K+ channels. The general leak current, IL, accounts

for voltage-independent channels and electrogenic pumps. It takes the form:

IL = aLsinh[
qzL

2kT
(v− vL)] (4.8)

• Shal-type K+ channels are functionally distinguished from other A-type channels by their

inactivation properties, exerting a delay to first spike control mechanism after odor onset, i.e.

response latency

The Shal-type K+ channel is transient with fast inactivation: IS = aSSsinh[
qzK

2kT
(v− vK)],

Ṡ = (S∞−S)/τS

(4.9)

Phase Plane Analysis

Neurons are considered the fundamental unit of information processing in the central nervous sys-

tem (Kandel, 1985). Receiving thousands of excitatory and inhibitory synaptic input, neurons must

compute and process this input into a specific patterned output. The patterned output of the neuron

is determined by how the neuron computes and processes the synaptic input, i.e. the patterened out-

put is determined by the neuron’s neurocomputational properties. Neurocomputational properties
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of these excitable cells are deteremined, in part, by spike-initiating mechanisms, i.e. the transi-

tion from resting state to spiking. How different spike-initiating mechanisms relate to the specific

patterned outputs of the neuron is still not completely understood. Therefore, the purpose of this

research is to constuct a theoretical framework that characterizes the response properties of neu-

rons to realistic excitatory and inhibitory synaptic input given qualitatively different spike-initiating

mechanisms.

Based on their spike-initiating mechanisms, neurons are classified as either aggregators or res-

Figure 4.1: Ramp Stimulations with Externally Applied Current Source

onators. Aggregators have no preference to the frequency of synaptic input and have well defined

thresholds. Resonators exhibit subthreshold oscillations and prefer synaptic input within a certain

frequency band. The existence of subthreshold oscialltion is an important neurocomputational prop-

erty of a neuron which confers many other processing capabilities, such as post-inhibitory rebound

spiking (Eugene, 1997).

4.2 Neurons as Dynamical Systems

From a dynamical systems point of view, a neuron may be characterized mathematically as an

excitable system. Solutions of these mathematical systems may asymptotically approach stable

attractors. These attractor states may be single equilibrium states or limit cycle attractors. The
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latter means the excitable system is an oscillator regime and the system exhibits periodic solutions.

Bistable excitable systems have coexisting attractor states, i.e. coexistence of resting and spiking,

otherwise the systems are monostable. Transitioning from resting to spiking is uniquely determined

by the bifurcation of the resting state. The existence of subthreshold oscillations divide excitable

systems into aggregators and resonators. Resonators exhibit subthreshold oscillations and are near

Hopf bifurcation. The steady state current-voltage relationship is monotonic. Aggregators are near

saddle-node bifurcation gives a non-monotonic steady-state current-voltage relationship.

The generic expression used for all the currents in the model can be derived from the first

principles of electrodiffusion (Enderson, 2001), taking into account not only the electric field, but

also diffusion to describe of ionic flux across the membrane. Channels are assumed to be permeable

to only one ion. The whole membrane current carried by a channel permeable to ion x has the

functional form:

Ix = Ax · sinh[zxγ(v− vx)] (4.10)

where γ = q
2kT , Ax is the amplitude of the current (in nA) carried by ion x, q is the elementary

charge (in C), zx is the valence of ion x, k is the Boltzmann’s constant (in mJ
K ), T is absolute tem-

perature (in Kelvin) and vx is the reversal potential of x. In general, the current amplitude has the

form:

Ax(v,w) = āx · px (4.11)

where āx is a constant that represents the whole-membrane maximum current (in nA) carried by the

x channels. āx is an approximation for a more complicated expression that depends on the number

of proteins in the membrane, ionic mobility, and other factors[40,42]. The variable px represents the

proportion of open x channels, and it is typically written as a product of gating variables, each taking

values between zero and one. Ax may also include quasi-steady state or constant approximations

for some of the gating variables depending on the dynamics of the system.

The dynamics of each gating variable w are determined by an equation of the form

ẇ = (w∞−w)/τw (4.12)

where

w∞(v) = B(v;rw,zw,vw) = (w∞−w)/τw (4.13)
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and τw are, respectively, the time constant and steady state functions for the gating variable w .

Each gating variable has three parameters: rw, zw, and vw, representing the basal rate of the gating

reaction (in 1/ms ), the gating charge of the closed→ open reaction (in Coulombs), and the potential

at which the rates of opening and closing are equal (in mV ), respectively. The parameter values used

for the gating kinetics used here are summarized in Table 1.

A model of the form in Eqs. (4.1) is said to be biophysical if the variables and parameters of

the system have biophysical meaning and can be measured experimentally. For the uPN models

presented in this article, f is the sum of all the currents across the membrane, normalized by the

membrane capacitance. The dynamics of the uPN model can then be written as

v̇ = (I− INa− IK− IL)/Cm (4.14)

where Cm is the membrane capacitance, and I, INa, IK , and IL represent, respectively, an externally

applied current, Na+, K+, and leak currents.

Mathematical Formulation of Ion Channels

The K+ channels were constructed based on previously reported macroscopic biophysical properties

of Shaker, Shal, Shab, and Shaw channels[17,22,37,43]. Channel recordings were only taken into

consideration if the results were consistent between oocyte and neuronal expression systems, and if

temperature was reported for each of the experiments. The model includes a transient Na+ current,

INa, with kinetics similar to those of Nav1 and Nav29 channels[23,44] with fast activation and slow

inactivation. K+ currents include a persistent K+ current carried by Shab channels[17] and two

A-type K+ currents carried by Shal and Shaker channels[22,37,43]. The model also includes a leak

current IL that represents the contributions of currents carried by electrogenic pumps and other

voltage-independent channels[41,45].

The rate of activation of Na+ channels is fast and is assumed to be at steady state, so that the

gating variable for Na+ activation, m ≈ m∞(v). The kinetics for the inactivation of Na+ channels

are similar to those for the activation of Shab channels, represented by the gating variable b. As

a consequence, the inactivation of Na+ channels is approximated using the expression (1− b)[46].

The slow inactivation variable for Shab, and the activations of Shal, and Shaker were assumed to

be equal to one[29,47]. The inactivation variables of Shal and Shaker channels are respectively l
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and h. Note that the steady state inactivation variable of Shal channels is less than or equal to the

inactivation of Shaker for any value of v. As a consequence, Shal channels have different effects on

membrane depolarizations compared to Shaker channels. The resulting currrents in the model are:

INa = āNa ·m3
∞(v)(1−b) · sinh[

q
2kT

(v− vNa)] (4.15)

IK = Ib + Ih + Il = (ābb4 + āhh+ āll) · sinh[
q

2kT
(v− vK)] (4.16)

IL = āL · sinh[
q

2kT
(v− vL)] (4.17)

where m, b, h, and l represent, respectively, gating variables for Na+ channel activation, Shab

activation, inactivation of Shaker, and inactivation of Shal. The terms āNa, āb, āl , āh, and a āL

represent, respectively, the maximal whole-membrane amplitudes of the Na+, delayed rectifier,

Shal and Shaker A-type, and leak currents. These amplitudes can be thought of as multiples of the

numbers of channels mediating each current[40,42]. That is, the maximal current amplitudes in the

model can be thought of in terms of channel expression.

Biophysical Model of Neuron Membrane Potential

The equation for v can be factored to allow regrouping of the maximum current parameters so that

the maximum rate of change of v in the model can be fit to data, and so that the contributions of the

different currents are now written as proportions of the different channels relative to the number of

Na+ channels. The resulting system takes the form:

v̇ = k · [J− JNa− JK− JL],

ẇ = (w∞−w)/τw, w ∈ {b,h, l}
(4.18)

The ionic currents are rewritten as

JNa = m3
∞(v)(1−b) · sinh[

q
2kT

(v− vNa)] (4.19)

JK = (abb4 +ahh+all) · sinh[
q

2kT
(v− vK)] (4.20)

JL = aL · sinh[
q

2kT
(v− vL)], (4.21)
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with

k =
āNa

Cm
, J =

I
āNa

, ax =
āx

āNa
(4.22)

The constant k can be used to obtain maximum amplitudes of the time-dependent rate of change of

membrane potential δv/δt , comparable to experimentally measured rates of change, usually between

50 and 250 mV /ms[48]. The factorization of aNa in Eq. (4.18) is convenient because it allows an easy

adjustment to the rate of change in membrane potential to fit physiological data. The factorization

is that simulations and results can be interpreted in terms of the relative presence of channels in the

membrane with respect to the Na+ channel population.

Modeling Different Membrane Channel Expression

Balance rules between the different proportions of channels in the membrane were designed with

the idea of grouping parameters and study the influence of changes in channel expression on the

excitability of system. This approach could also be used to model possible homeostatic mecha-

nisms in which the relative presence of Na+ and K+ channels is conserved to maintain excitability

levels[11,38,49,50]. For example, the ratio of K+ to Na+ currents

rKNa =
ab +ah +al

aNa
(4.23)

can be set to a constant so that only the ratios of Shab, Shaker, and Shal are systematically changed.

To do so, the population of K+ channels is partitioned into two groups, the persistent and the tran-

sient (A-type) channels. A subsequent partition of the population of A-type channels was obtained

by considering the quantities

rbK =
ab

ab +ah +al
, (4.24)

rhA =
ah

ah +al
, (4.25)

which can be thought of as, the proportion of persistent K+ current relative to the total K+ current

(4.24), and the proportion of Shaker current relative to the total A-type current (4.25), respectively.

Note that the proportion of A-type current relative to the total K-current is then rAK = 1 - rbK .

Similarly, the proportion of Shal relative to the total A-current is rlA = 1 - rhA. Assuming no

changes in the leak current, the ratios rbK and rhA may be systematically varied to represent different
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combinations of K+ channel populations in the membrane. To do so, the ratio of rKN a is set to a

constant, and values for a pair (rbK , rhA) are selected. For example, (rbK , rhA) = (0.9,0.3) represents

the case in which nine of every ten K+ channels are persistent, and for every ten A-type channels,

three are Shaker and seven are Shal type.

The amplitude ratios of the model can then be calculated as follows:

ab = rKNa · rbK , (4.26)

ah = rKNa · (1− rbK) · rhA, (4.27)

al = rKNa · (1− rbK)(1− rhA), (4.28)

Note that the maximal whole-membrane amplitudes āb, āh, and āl , can then be calculated if rKNa,

rbK , and rhA are known.

Steady States and Bifurcations

One way to determine the computational properties of a model neuron based on Eqs. (4.19)-(4.21)

is to examine the following function of v and its concavity

J∞ = J(Na,∞)+ J(K,∞)+ J(L,∞) (4.29)

where J(Na,∞), J(K,∞), J(L,∞) are the channel currents with gating variables b, h, and l in (14)-(16)

replaced by their steady states b∞, h∞, and l∞. J∞ has shape equivalent to a cubic function of v. Note

that the system is at a steady state if the total current (J - J∞) is zero. The number of fixed points

equals the number of zeros in (J - J∞). Let the injected current J be the bifurcation parameter. If

J∞ is monotonic, the number of fixed points is always one because (J - J∞) has only one zero for

each J. The neuron in this case can be near an AH bifurcation. If J∞ is not monotonic, (J - J∞)

may have one, two, or three zeros depending on the value of J. The transitions from one to two,

or two to three fixed points are saddle-node bifurcations. As a consequence, the monotonicity, or

lack thereof, in the curve J∞ determines whether the neuron functions as an integrator or a resonator.

The minimal current amplitude necessary to trigger a sustained spiking response is called rheobase.

For neurons near a SN bifurcation, the rheobase is the current for which J∞ has a local maximum.

A quick way to determine the rheobase of a neuron is to plot the total current at steady state using
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voltage clamp and determine if, and when, the curve is concave up or concave down. If the curve is

monotonic, it may still show a bend that continues toward negative values for increasing v. If the (J

- J∞) curve is not monotonic, it is likely to take positive values for small v and negative values for

large v. Such curves can be thought of as having three branches: (J - J∞) decreases as a function of

v along the beginning and ending branches, and increases on the middle branch. As a general rule,

fixed points that lie on either the beginning or ending branches ( J = J∞ and -dJ∞/dv < 0) are stable,

and fixed points on the middle branch are unstable (J = J∞ and -dJ∞/dv > 0). For this reason, if the

J∞ curve has a cubic shape, the middle branch will be called the unstable branch.

Here, the bifurcation type of neurons assumed to have different expressions of K+ channels are

assessed by calculating the steady state current of the system for different combinations of the ratios

(rbK , rhA) with fixed rKNa and fixed aL.

Single spike trains are modeled as a renewal process, i.e. a stochastic point process. The

realizations of this process are sinlge points in time (Perkel, 1967). These single points in time are

presynaptic neuronal spiking events, such that these realizations result in EPSP in the postsynaptic

neuron no larger than 0.1 mV. The renewal process is parameterized by a rate parameter r and a

refractory period k measured in milliseconds. The refractory period is a period of time in which the

neuron can’t fire, i.e. the interspike intervals can’t be arbitrarily small. At each time step, the prob-

ability of a presynaptic neuronal firing event is p = r ∗ k/T , where T is the maximum time course

of the renewal process measured in milliseconds. At each time step, assumed to be 1 millisecond, a

random number is generated between 0 and 1. If this random number is less than r ∗k/T then there

is a spiking event. To account for k msec refractory period, only keep every kth of such spiking

events. Specifically for this modeling effort, synaptic input to each neuron ranged from 5-100 spike

trains. The sampling time step δ = 1 msec, with rate parameter set at 40 Hz. The refractory period

was assumed to be 2 msec.

The excitatory synaptic input is a time dependent process. Spiking events from the presynaptic

neuron are determined by realizations from a renewal process. Let the synaptic current be given by:

Is = κAsyn(s)sinh(
qzx

2kT
(v− vs)) (4.30)

22



Table 4.1: Physical Constants and Parameters

Physical constants Description Value Units

T Absolute temperature 296.15 Kelvin
k Boltzman’s constant 1.38065812*10−20 mJ/Kelvin
q Elementary charge 1.60217733*10−19 Columbs

zNa valence of Na+ ion 1 -
zK valence of K+ ion 1 -

Parameters

CM Membrane capacitance 0.13 µF
vNa Reversal potential for Na+ 55 mV
vK Reversal potential for K+ -72 mV
vL Reversal potential for leak current -75 mV

vm half-activation potential for Na+ -32 mV
vb half-activation potential for K+ -40 mV
zm Gating charge for Na+ channel 1.65 Columbs
zb Gating charge for K+ channel 1.8 Columbs

aNa maximum Na+ whole-cell current 16 nA
aK maximum K+ whole-cell current 80 nA
aL maximum leak whole-cell current 4.5 nA
I external source of current [0,2] nA

κ is an expected value of the number of recruited synapses that equals p times κ . The number

of synaptic contacts from one axon collateral of the presynaptic neuron is many, i.e. the single axon

process branches into many processes (Boron, 2003; Kandel, 1985). The probability of activating

one of these many processes is given by p and K is the number of branching processes from the

axon collateral, so that κ is an expected value.

The Nernst equilibrium, vs for excitatory synaptic input is assumed to be zero. The term

Asyn(s) is the current amplitude of excitatory synaptic input measured in nA. It is given by an alpha

function:

Asyn(s) = an
s
τn

exp(1− (
s
τn
))H(s) (4.31)

s is the time of activated synapse, determined by the renewal process. The peak synaptic current

amplitude is an. Time to peak is given by τn. H(s) is a heavyside function (equal to 1 if s>0 and 0
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Figure 4.2: Sample of Input Spike Trains Forming a Composite Excitatory Postsynaptic Potential

otherwise). If there is a spiking event at time t0, there will be a conduction delay δsyn of 0.58 msec.

Therefore, the current amplitude of a synaptic event at time t is Asyn(t-t0-δsyn).

The synaptic input is considered to be excitatory. A synaptic event of the presynaptic neuron

will depolarize the membrane of the postsynaptic neuron, i.e. the synaptic event triggers an EPSP.

The membrane depolarization from a single synaptic event results in an EPSP of 0.1 mV. It generally

takes many EPSPs to generate an action potential from the postsynaptic neuron.

4.3 Integrator and Resonator Dynamics

In dynamical systems terms, neurons are excitable because the resting membrane potential is near a

bifurcation. The spike-intiating mechanism or the transition from resting to spiking confers specific

neuro-compuatational properties. The spike-initiating mechanism is uniquely determined by the

bifurcation structure. In the seminal report by Rinzel and Ermentrout, they summarize that general

models of the form above display qualitatively different threshold behavior when the steady state

current-voltage relation is monotonic or non-monotonic (Rinzel & Ermentrout, 1989). The response

properties from integrators are qualitatively and quantitatively different than resonators. Fig. 4.5
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Figure 4.3: Integrator and Resonator Dynamics

displays the integrator’s spiking output to excitatory spike trains. The spike trains increase from 1 to

200. As the number of spike trains increase, the firing frequency of the integrator increases. Hence,

the relationship between the number of excitatory synaptic input and firing frequency is monotonic.

Fig. 4.4 displays the spiking output of the resonator to excitatory spike trains. Here we notice

a fundamental difference in response properties as compared to integrators as in Fig. 4.5. The

resonator firing frequency at first increases and then decreases to excitatory synaptic input, therefore

the relationship is non-monotonic.

These preliminary findings confirm the hypothesis that integrators and resonators respond

differently to excitatory synaptic input. These results illustrate the importance of modeling the

nonlinear dynamics of neural memebrane potential. Neurons that merely integrate synptic input is

only capturing part of the story. As fundamental units of information processing, neurons transform

and process synaptic input in qualitatively different ways.

4.4 Analysis of Spike Trains

The following section outlines the methods used to quatify the spike trains. Beginning with de-

scriptions and definitions of spiking rates, interspike intervals, the section then describes ways to

quantify correlated spiking among two neurons. This includes correlation functions and their asso-

ciated measures. In order to assess significant flucuations in the correlation functions, the correction
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Figure 4.4: Resonator Neuron Driven by Excitatory Synaptic Input

Figure 4.5: Integrator Neuron Driven by Excitatory Synaptic Input

for independence method is described and implemented. Finally, the last section describes two in-

dices of spiking synchronization, namely k and CIS.

Spike Trains: Definitions and Basic Quantification

Assume the membrane potential is a function of time with time steps of δt in the interval [0,T ].

Also, assume also time is in units of milliseconds (ms). By setting a threshold value for the mem-

brane potential, a spike time can be defined as the time when the membrane potential passes such

threshold. A spike train is then defined as a sequence of spike times.

Counting Spikes Using Pulsed Functions. It is convenient to describe spike trains by means of
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time-dependent delta-functions defined as

δ (t) = 1i f t = 0,0otherwise (4.32)

Using the delta function in combination with the spike times, the spike train can be written as a

function of time

st =
N

∑
i=1

δ (t− ti) (4.33)

The notation used in Eq. (3.2) is very useful because it provides with a framework for quantification

of spike trains. For example, it is now possible to write a formula for the number of spikes in the

train within a time interval [a,b]:

C([a,b]) =
N

∑
t∈[a,b]

st (4.34)

The probability of observing a spike in the interval [a,b] can be approximated by dividing the

spike count from Eq. (3.3) by the length of the time interval:

R([a,b]) =
C([a,b])

b−a
(4.35)

Notice that to obtain R in units of pulses per second (pps) it would be necessary to multiply by 1000.

A spike train is called stationary if the probability of finding a spike in an interval of length T is

the same regardless of the location in the recording and of the size of the interval T . In other words,

the train is stationary if the neuron from which the train was recorded can be expected to fire, on

average, the same number of action potentials within any two time-intervals of the same length. A

consequence of stationarity is that if N is the average number of spikes in T ms, then R(0,T ) =

N/T will converge to the true probability of spiking as T increases. Consequently, if a spike train is

stationary, the count in (3.3) only depends on the length of the interval and R(0,T ) can be regarded

as the average spike frequency in an interval of length T , provided T is long enough(see Fig. 3.2).

Now let τ be a random variable representing the waiting times between spikes, or interspike

intervals from a spike train. Then, for the spike train t0,..., tN , τ takes values τi = ti - ti−1 for i = 1,...,

N. A count of the interspike intervals can be calculated using delta functions:

D(t) =
N

∑
i=1

δ{τi = τ} (4.36)
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A plot of D for each value of τ is the histogram of interspike intervals. The variability of interspike

intervals is usually assessed by calculating the coefficient of variation of the interspike intervals, τ ,

defined as the quotient between the mean and the standard deviation of the interspike intervals, sτ /τ̄ .

The multiplicative inverses of the interspike intervals form a sequence f1 = 1/τ1,..., fN = 1/τN

called the instantaneous firing rates. To express the rates in units of pulses per second (pps), the

instantaneous firing rate of the train can be obtained by multiplying each of the elements of the

sequence f1,..., fN by 1000.

The average firing frequency of the neuron can be approximated by calculating the multiplica-

tive inverse of the average interspike interval, 1/τ̄ . It can be demonstrated assuming that spike trains

are stochastic point processes that the inverse of the average interspike interval 1/τ̄ converges to

the true spiking rate for large enough T . Another approximation that is accurate only in a limited

number of cases can be obtained by calculating the average of the instantaneous firing rates, f̄ .

Quantification of Joint Spiking Activity

Let two spike trains be represented by the sequences q(1)i and q(2)j , where i = 1,..., N1 and j =

1,..., N2. Assume train 1 has less than or equal spikes than train 2. Train 1 will be referred to

as the reference train and train 2 will be referred to as the response train. Following the notation

introduced above, let the spike trains from two different neurons be represented by pulse functions,

this time indexed s1(t) and s2(t) for n = 1, 2. One way to assess if the two spike trains s1 and s2 are

independent is to calculate their correlation function. In a continuous setting, correlation functions

are just convolutions of two time dependent functions. In a discrete space like the time sample

described here, the correlation function between two spike trains is written as

C2,1(h)

where h is a time difference or delay between a spike in the response train and a spike in the

reference train. The values for h are typically chosen to be within a relevant time scale for the phe-

nomenon under study. For example, in situations where synchronous spiking is studied, the typical

interval for h is [-100, 100] ms. The count is then repeated for different values of h, thus obtaining a

function that depends on the time-delays between spikes from the two trains. This function is often

called cross-correlation function if the two trains are different and auto-correlation function if the
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same train is used as response and as reference. Note that C1,2(h) = C2,1(−h), so it is not necessary

to do another calculation to obtain C2,1(h).

The correlation function (3.6) counts the number of spikes from neuron 2 that occur h units

of time apart from a spike from neuron 1. In other words, the function C1,2 counts the number of

joint spikes between neurons 1 and 2 at different time delays (Fig. 1.1 and 3.3). The graph of a

correlation function (3.6) as a function of the time-delay h is called is a correlogram. Such a graph

is often called cross-correlogram if the two spike trains are different. Similarly, if the reference and

response trains are the same then the graph is also called auto-correlogram.
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Chapter 5

BIOPHYSICAL MECHANISM FOR NEURAL SPIKING DYNAMICS

5.1 Spiking Dynamics of Neurons with Realistic Excitatory Synaptic Input

In honey bee studies, uPNs initially fire at rates within the 30-45 Hz range in response to constant

odor stimulation (Nawrot, 2010). The number of inpt axons Na was determined to be between 300–

400 in order that the uPNs spike at a rate between 30–45 Hz. Here, the ORNs which form the

presynaptic input each fire at a rate of 25 Hz.

Once the simulations have the uPNs firing within physiological rates, the coefficient of variation

Figure 5.1: Spiking Dynamics of Projection Neurons to Increasing Number of Input Trains

CVisi was calculated of the uPN interspike intervals ranging between 0.2 and 0.42. The simulations

were implemented with ps (the probability of synaptic activation) within the following ranges: [0-

0.85]. Keeping all other parameters constant resulted in larger EPSPs with larger values of ps.

As shown in Fig. 5.1, increasing the number of ORN axon collaterals from 100 to 400 results

in a uPN to increase its firing rate. The bottom panel in the previously mentioned figure shows an

example of the total presynaptic current from 100 ORN axons as an illustrative example.

The results from 200 simulations with the proportion of common presynaptic input increasing
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Figure 5.2: Spiking Dynamics of Projection Neuron Near Andronov-Hopf Bifurcation

from 0 to 1. Here, the duration of each trial input condition was help constant, i.e., P(CEI) was

held constant for a total simulation time of 100 seconds. In order to detect the central peaks, the

previously described method is implemented to delimit the central peak. Recall, the theoretical

prediction for the number of joint spikes that occur given both neurons are independent is used to

delimit the central peak. If P(CEI) < 0.1 there was no significant flucuation around time-delay

zero, i.e., the central peak could not be detected. Furthermore, a central peak could be detected if

P(CEI) > 0.1 and becomes more prominent as P(CEI) approaches 1.

Differential Contribution of Potassium Currents to Neuronal Excitability

The current section includes model simulations and predictions obtained from the system of Eqs.

(4.18)-(4.22) with different combinations of K+ channels. The predictions made in the current sec-

tion are then discussed in consideration of data from experiments focusing on knock-out/down of

K+ channel genes. Possible applications of the model are also discussed, followed by a general

commentary about biophysical modeling, protein expression and physiology.
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Figure 5.3: Spiking Dynamics of Neuron Near Saddle-Node Bifurcation

Membrane excitability without A-type K+ channels. The gating parameters for the Na+ and

K+ channels cause this model with only two currents to display resonator characteristics. That is,

if the stimulus amplitude is large enough, the transition from rest to spiking occurs through a AH

bifurcation. Both the data and the model display a delay to first spike that decreases with stimulus

amplitude. Initially, with low stimulus amplitudes, no spiking responses are triggered (not shown).

Then, if the stimulus is large enough, a single spike may be triggered, followed by a dampened oscil-

lation. Repetitive spiking emerges as stimulus amplitude increases, and it is eventually replaced by

a dampened oscillation around a new resting value that depends on the stimulus amplitude. These

three different regimes, i.e. depolarization without spiking or with possibly only one spike after

some delay, repetitive spiking, and depolarization possibly including a single spike followed by a

dampened oscillation, have been described in uPNs and in other neurons as outlined above. These

three different kinds of response are generalizations of classifications of experimental data proposed

previously (see [3] and [5]). The first and last cases in which the membrane potential tends toward

a specific level (either the resting potential or a depolarized potential) correspond to cases in which
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the model neuron has a stable fixed point and it is near an AH bifurcation. In the first case the

neuron is excitable; in the later case the neuron is block-depolarized. The case in which repetitive

spiking occurs is one in which the model neuron has an unstable fixed point, and the membrane

evolves toward a limit cycle attractor. Repetitive spiking occurs because the increase in injected

current causes the system to undergo a bifurcation of the steady state in which an attracting fixed

point becomes unstable as it gives rise to a limit cycle (rest to spiking) that increases in amplitude,

and eventually shrinks to a small amplitude oscillation in which v eventually converges to some de-

polarized value. If the stimulus is further increased, the system undergoes another AH bifurcation,

in which the fixed point becomes stable again.

To explore additional properties that A-type K+ channels may confer to a neuron, we add the

two voltage-dependent, A-type K+ channels Shal and Shaker to the model. To do so, we assume

that the total contributions of both the leak and the K+ currents are constant relative to the contribu-

tion of the Na+ channels. As described in the Methods section, these assumptions allow systematic

study of the differential contribution of K+ channels in the model to the membrane dynamics. Then

only Shal, only Shaker, and both Shaker and Shal are included among the K+ channels in the

model. The different properties displayed in the presence and absence of A-type channels are dis-

cussed in terms of bifurcations of the steady state.

Contribution of Shal channels to membrane excitability. Simulations in which only Shal, and

no Shaker A-type K+ channels are added to the reference model are shown. Recall that Shal chan-

nels are the first to inactivate. The thick gray lines illustrate, for reference, the responses obtained

with the two dimensional model without A-type channels. The black and blue lines correspond to

models in which more Shal channels were subsequently added to the membrane. The ratios and

parameters used for for these simulations were rKNa = 5 , rbK ∈ {1, 0.8, 0.6}, and rhA = 0. Panels

A-C show simulations of different voltage responses corresponding, respectively, to stimulus am-

plitudes of 0.25, 0.5, and 0.75 nA . The insets show the voltage traces around the stimulus time

(tstim = 50 msecs). The responses in all traces show how that the delay to first spike is shorter as the

stimulus increases, but the delay to first spike is always more prominent with more Shal channels.

Importantly, the spike frequency becomes very similar to that of the model with no A-type channels

as the stimulus amplitude increases.
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Figure 5.4: Coefficient of Variation of Spiking Rate of Neuron with Resonator Dynamics

A and B show examples in which the stimulus amplitudes are large enough to trigger repetitive

spiking responses. Importantly, the spiking frequency is faster than the frequency in the model with

no A-type channels. The stimulus amplitude may be large enough to push the system beyond the

the repetitive spiking regime. This happens when the fixed point of the system associated with the

resting potential is not the same before and during the stimulation, but in both cases it is stable. In

this case, the stimulus bypasses the regime in which the neuron displays repetitive spiking as shown

in panel C.

The total steady state current I - I∞ (gray, black and blue curves) is shown for different stimula-

tion levels (vertical lines). The fixed points of the system in panels A, B, and C are at the crossing

between the vertical lines indicating the input current and the I - I∞ curves. As pointed out pre-

viously, the reference curve (thick gray) from the model without A-type channels is monotonic,

indicating that in this case, the model neuron is a resonator with resting state near an AH bifurca-

tion. As a consequence, there is only one zero crossing for I - I∞ for the reference model, illustrating

that the transition to repetitive spiking is not manifested as a change in the number of fixed points,
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Figure 5.5: Coefficient of Variation of Spiking Rate of Neuron with Integrator Dynamics

but only as a change in the stability of the fixed point.

Adding more Shal channels causes the I - I∞ curve to lose its monotonicity, causing the transi-

tion between rest and spiking states to occur via a SN bifurcation. For illustration purposes, think of

the line at I = 0 moving slowly toward the left. At first, the intersection of the vertical line with any

of the curves would be only one point, but as the line continues to move to the left, there are be two,

three, two and then one intersection points for the blue and black curves, indicating that the system

undergoes a SN bifurcation of the steady state as current injection increases. Taken together, these

simulations support the hypotheses advanced by Choi et al. and others[3,25] implicating the Shal

channels as responsible for the delay to spiking in neurons. In terms of the computational proper-

ties of the cell, Shal channels confer integration capabilities to neurons by changing the bifurcation

structure in such a way that the steady state bifurcates via a SN bifurcation[1].

Contribution of Shaker channels to membrane excitability. To investigate the contribution of

Shaker channels to the membrane excitability, the proportions of K+ channels are changed so that

only Shab and Shaker, but no Shal channels are present in the membrane, again, maintaining a
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constant maximum whole-membrane K+ current. hows simulated voltage responses for a proce-

dure similar to that used in the case of Shal, with the thick gray curve showing the reference model

without A-type currents, and the black and blue curves illustrating cases with increasing amounts

of Shaker channels. In this case, the proportion of Shal channels al is set to zero, and increasing

amounts of Shaker channels are considered corresponding to rAK ∈ {0, 0.1, 0.3}. As before, A-C

show voltage traces corresponding to different current stimulus amplitudes, and panel D illustrates

the bifurcation structure of the model when the only K+ channels are Shab and Shaker type. Im-

portantly, the A-type current relative to all K+ current for Shaker only was to be very small in

comparison to the case when only Shal channels were present (rbK ∈ {0.997, 0.9975, 1}). Re-

call that inactivation of Shaker channels is incomplete for membrane potentials close to rest and

the likelihood that Shaker channels are open is larger than that of Shal channels as a function of

v. The hypothesis that Shaker channels have a larger, dampening effect on membrane excitability

was tested, and confirmed by adding a very small fraction of Shaker channels, which resulted in no

spiking for current stimulation up to about 0.25 nA. As the stimulus amplitude increases, the neuron

eventually exhibits single spikes, and in some cases, repetitive spiking, if the stimulus amplitude is

large enough.

The delay to first spike exhibited previously is still present but to a lesser extent. Importantly,

the bifurcation structure does not change type; in this case, the I - I∞ curves do not loose their

monotonicity, indicating that the neurons never switch from resonator to integrator, in contrast to

the results obtained when adding only Shal channels.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Summary

I have provided theoretical arguments supporting previously advanced hypotheses about the differ-

ential contribution of A-type voltage-gated K+ channels to the behavior of neuronal membranes. To

do so, a biophysical model of membrane potential is used, which provides with a controlled setting

where every factor influencing the membrane dynamics is known. This way, factors like the nutrient

concentration in bath solutions, light, temperature, etcetera do not influence the results. Interpre-

tations can thus be made solely in terms of voltage-dependent properties and relative numbers of

the channels in the membrane. This approach requires macroscopic parameters describing channel

kinetics and whole membrane currents. These choices allowed us to be consistent in our formu-

lations. Biophysical formulation of membrane potential also capture behaviors displayed by other

Drosophila neurons (other adult, larva or embryonic motor neurons, or even giant cultured neurons

or some Kenyon cells). This can be accomplished by choosing different proportions of channels in

the membrane (not shown).

The types of A-channels were restricted to only include Shal and Shaker for the following rea-

sons. First, the reported voltage dependencies of Drosophila A-type channels Shal, Shaker, and Slo

can be classified into two groups defined by their voltage-dependent inactivation. The two groups

are formed, respectively, by Shal, and by Shaker. Second, the voltage-dependence of calcium de-

pendent A-type channels, overlaps with the voltage- dependence of Shaker. For these reasons, the

results presented are only in terms of Shaker and Shal are adequate to generally describe the role of

A-type channels in shaping rest to spiking transitions.

Choi et al and many others have hypothesized that expression of the A-type K+ channel gene

Shal (analog of the vertebrate Kv4) is responsible for delayed spiking responses in different kinds

of Drosophila neurons (Choi, 2004). Choi et al. characterized the electrophysiological activity of

Drosophila larval motor neurons in recordings made using voltage and current clamps in combina-

tion with pharmacological and genetic manipulations (Choi, 2004). Choi et al. described qualitative

and quantitative differences in the delay to first spike in response to square pulses of stimulation.
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After different experiments that included recordings from Shaker mutant neurons and pharmaco-

logical manipulations, Choi et al. demonstrated that spike delay is sensitive to prepulse-sensitive

K+ currents. Further, they showed that Shaker channels do not play a significant role in determin-

ing delay to the first spike or the spike rate in Drosophila larval neurons. As a consequence, Choi

and his coworkers postulated the hypothesis that Shal channels, not Shaker, are responsible for the

delay to first spike under square pulse stimulation. Saito and Wu had similar hypotheses but their

studies did not focus specifically on this issue (Satio & Wu, 1991). The role of Shal channels in

producing spiking delays in response to excitatory input was adressed only indirectly because Shal

mutants or RNA-interference (RNAi) lines were not available. Importantly, a consequence is that

Shaker and Shal channels (or their analogs from the Kv1 and Kv4 respectively) confer different

computational properties to neurons. More specifically, these two channels allow neurons to switch

between integration and resonation modes (respectively, depolarization only- vs input-frequency

induced spiking).

I have shown that different qualitative behaviors experimentally observed in a variety of Drosophila

neurons can be reproduced for a minimal complement of currents (fast Na+ and delayed rectifier

K+) with fixed gating kinetics, and where the only free parameter allowed was the ratio between

K+ and Na+ channels. The voltage traces illustrate the sequence of behaviors one should expect for

responses to current injection. Roughly speaking, for small enough current amplitudes, the mem-

brane depolarizes but tends toward a higher membrane potential without any spiking (no change in

the stability of the fixed point of the system). Large enough stimulus amplitudes should cause the

membrane to loose its stability and transition into a repetitive spiking mode, and if the stimulus is

large enough, depolarization block should occur. Experimentally, the window for which the stimu-

lus amplitude causes repetitive spiking may be very small, which explains why some neurons never

show repetitive spiking but spike once for large enough amplitudes.

Without A-type channels the neuron has a monotonic I - I∞ curve, which indicates that the mem-

brane may exhibit post-inhibitory rebound and resonant repetitive spiking with an interval of input

frequencies. In other words, the Shab-Na neuron is a resonator for a wide range of ratios between

K and Na channels (not shown). To address the differential contribution of the voltage-dependent

A-type K+ channels Shal and Shaker, a computational knock in experiment was performed in which
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either Shal, Shaker, or both channels were inserted in the membrane in different proportions. Recall

that these two channels differ mainly in their voltage-dependent inactivation. Note the approach

taken here is incremental in the sense that channels are added one at a time to a simpler membrane.

In contrast, experimental protocols usually involve pharmacological or genetic targeting of single

channels with the intention of functionally blocking, knocking-out, or knocking-down specific pro-

teins of interest.

The presence of A-type channels has the following general effects on the membrane dynamics:

first, the rheobase increased as the contribution from the A-type channels increased. Also, the firing

frequency decreased as more A-type channels were present in the membrane. Similar increases in

frequency were reported by Choi et al. for larval motor neurons, by Tierney and Harris-Warrick for

different cell types in the pyloric circuit, and theoretically using a generic Hodgkin-Huxley model

by Neher, Connor et al., and others (Neher, 1971;Connor et al, 1977; choi, 2004). Our simulations

agree with previous modeling results predicting that, in general, A-type channels change the shape

I - I∞ curve from monotonic to N-shaped (Rush, 1995). However, I also found that In addtion, I

found that rest-spiking transitions in the cell change in qualitatively different ways depending on

the relative presence of the different A-type channels. More specifically, increasing numbers of

A-type channels with higher half inactivation potentials (Shaker, Kv1 ) exert a weak effect on the

shape of the I - I∞ curve such that the change in the I - I∞ curve may not be noticeable at first. That

is, membranes with Shaker and Shal can have non-monotonic I - I∞ relationships and display long

delays to first spike, and further, the long component delay to first spike is caused by Shal.

Insertion of Shal channels into the Shab-Na membrane without Shaker changed the shape of

the I - I∞ curve to non-monotonic, indicating that the membrane at rest was moved closer to a SN

bifurcation. In this case, the membrane can be thought of as an integrator of input, and would nor-

mally not show post- inhibitory rebounds or resonator properties. Delays to first spike in response

to square pulses of current injection increased with the number of Shal channels in the membrane.

These results are in agreement with the hypothesis that Shal channels underlie the delay to first

spike observed in many Drosophila neurons, including giant cultured neurons, larvae and adult mo-

tor neurons, as well as neurons from Tritonia, Aplysia, and lobster (Tsunoda, 1995).

In contrast, the monotonicity of the I - I∞ curve remained unchanged for a wide range of Shaker
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channel densities in the absence of Shal. However, larger proportions of Shaker channels result in

non-monotonic I - I∞. The traces in illustrate that the delays to first spike in response to square

pulses of current injection are shorter (less than 5 milliseconds). These shorter delays decreased

further as the amplitude of the pulses increased. More exhaustive analysis of the monotonicity of

I - I∞ suggests that larger proportions of Shaker are needed to push the membrane away from the

resonator regime in comparison to Shal. Taken together, the results from our knock-in simulations

suggest that A-type channels can confer different computational properties to a cell as a function of

their voltage-dependent inactivation.

To summarize, I have presented sound theoretical arguments supporting the hypothesis that Shal

channels underlie the delay to first spike displayed by many types of neurons in insect systems. The

model is based on insect data of channel kinetics, whole membrane currents, and whole cell be-

havior. These results can be interpreted as a consequence of cellular biophysics without external

influences such as modulation, bath application, etc. The model highlights the theoretical strength

of the results obtained experimentally by Choi et al. and others (Choi, 2004). Taken together, the

simulations shown here for the case of honey bee in combination with the current knowledge about

A-type channels, indicate that Shal (Kv4), can be theoretically regarded as mediating excitation de-

lay mechanisms in cells. Moreover, the mixture of different K+ channels potentially allows cells

to operate in different modes, namely, integrating or resonating with synaptic input. The results

presented here were produced using a reduced complement of channels and explain a number or

experimental observations from neurons which certainly have many more channels. These obser-

vations highlight the fact that the wide variety of ion channels expressed in a cell confers different

degrees of specialization and contributes to very specific cellular functions, but only a few different

channels will are necessary to determine the cells excitability profile.
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