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ABSTRACT 

 

With the recent rise in solar energy projects around the world there is an utmost need 

of proper estimation of solar energy. Significant error lands in estimation of energy 

production from the solar collectors due to the inaccurate assessment of solar energy. 

Substantial amount of error arises when the diffuse and direct part is separated from the 

global radiation using mathematical models. Diffuse radiation plays an important part in 

energy estimation from solar thermal and solar photovoltaic and is difficult to measure and 

in some parts of the developed world and in most parts of the developing world there is a 

scarcity of instruments. Diffuse radiation is estimated from global radiation by 

mathematical correlations computation, neural network and fuzzy logic. Present study 

validates which existing model works best in different geographical and sky conditions and 

also suggest a new method for diffuse radiation estimation. While most of the studies are 

focused on developing piecewise models for a particular country or particular location this 

study comes up with a global model i.e. continuous in nature and has been developed using 

seven US location data and four Global location data. Moreover, site specific continuous 

models are developed for ten locations. Results for the global and site specific models are 

better than the existing models in literature and also indicates that the models perform 

better in different sky conditions e.g. clear or cloudy sky. Study also shows that the 

continuous models perform equivalent or better than the piecewise models implemented. 

There are some intervals in which the existing models perform better. In those intervals, a 

best performing model is implemented while the remaining intervals e.g. 0.80 – 1.00 can 

still keep the newly obtained fit which will improve the overall performance of modeling 

techniques used in diffuse radiation estimation. 
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Nomenclature Definition 

𝐺𝑜𝑛 Extraterrestrial radiation normal to the surface of the earth (
W

m2) 

𝐺𝑜 Extraterrestrial radiation on horizontal plane (
W

m2) 

𝐺𝑠𝑐  Solar constant (
W

m2)  

𝐼 Global Horizontal Irradiance on a horizontal plane (
W

m2) 

𝐼𝑑 Diffuse radiation on a horizontal plane (
W

m2) 

𝐼𝑑𝑛 Direct beam radiation on a horizontal plane (
W

m2) 

𝐼𝑑/𝐼 Diffuse fraction  

𝐼𝑑𝑐  Diffuse radiation calculated by models (
W

m2) 

𝐼𝑑𝑚 Diffuse radiation measured (
W

m2) 

𝑘𝑡 Clearness index 

𝑏, 𝐵 Constant to be used in equation of time (°) 

𝐸𝑡 Equation of time (hours) 

𝑡𝑠 Local solar time  (hours) 

𝑡𝑐 Local clock time (hours) 

𝑍𝑐 Time zone  

Λ Longitude (°) 

𝜙 Latitude (°) 

𝛿 Solar declination angle (°) 

𝜔, 𝜔1, 𝜔2  Solar hour angles (°) 

𝛳𝑧 Zenith angle (°) 

𝑁 Number of data points in model fit 

𝑅𝑀𝑆𝐸 Root mean square error 

𝑅𝐸 Relative error 

𝑅2 R-squared value 

𝑇 Ambient air temperature (°C) 

𝜌 Relative humidity (%) 

𝜌𝑎 Absolute humidity (
gram

m3 ) 
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Chapter 1. INTRODUCTION 

Energy generation in world is dominated by fossil fuels that resulted in a lot of research 

and development in the improvement of energy production methods from non – renewable 

energy sources. Improvement in conventional power generation methods does not stop the 

recent rise in pollution levels and global warming that makes renewable an alternative 

source of energy very attractive to most of the governments around the world e.g. Germany 

power generation from renewable stands around 26.2% of total power generation in 2014 

with a potential of reaching 100% by 2050 (Szarka, N.). The total installed capacity in 

world from solar photovoltaic stands at 180 GW as on 2014 (Wirth and Schneider 2015) 

and continues to grow in future with China leading the installed capacity in Solar 

photovoltaic (Solar Power Europe 2015). The renewables in China will be cost competitive 

with fossil based generation by 2040 and will further increase the penetration of renewables 

in electric grid (Deloitte Report 2015). This will further drive research and development in 

area spanning from producing grid reliable equipment to the computational modeling 

techniques required for better estimation of energy from renewables and will plummet 

negatives of renewable electricity on electric grid.  One of the major aspects in this domain 

is improvement in solar resource assessment to fully appreciate the use of solar power in 

off grid and on grid applications. 

Diffuse radiation data for much of the world is computed using mathematical models 

e.g. China has 726 long term meteorological stations of which 98 measures global radiation 

and 19 measures diffuse radiation in China (Li et al. 2012). Moreover, most of the ground 

based data measurement is limited to the developed world and very scarce in developing 

world as the technology is still fledgling (Khalil & Shaffie 2013). Liu and Jordan (Liu & 
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Jordan 1960) have laid the foundation in computational modeling for assessment of diffuse 

radiation. Their work is further extended by Orgill and Hollands, Erbs et al. and other 

scholars around the globe.  

Several statistical studies are conducted to explore different models in different world 

locations and various comparisons have been done to find best model that can be used for 

all location to improve the diffuse radiation estimation. This study is more complete in 

analyzing the models in different geographical conditions and different clearness index 

regions such as 0.30, 0.40 or 0.60 and regions such as 0.00 – 0.20, 0.40 – 0.60 etc. 

Moreover, annual comparison and daily comparisons are performed to look for the models’ 

behavior in intermonth and intraday which was not performed before by any other scholar. 

A unique approach is adopted to improve the performance of the models and statistical 

comparison is done to find the better performing technique between continuous regression 

and piecewise regression. A regression analysis is done on eleven years of dataset obtained 

from World Radiation Data Center (WRDC 2016) to come up with one global model. 

Moreover, ten site specific models are proposed for the better estimation of a diffuse 

radiation. Present work helps to find the best method to calculate the diffuse radiation 

which will in turn improve the solar resource assessment hence the bankability of the solar 

thermal and solar photovoltaic system. This makes renewable energy system more 

attractive to the governments around the world and will lead to increase in the penetration 

of the renewables in electric market.   
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Chapter 2. REVIEW OF EXISTING DIFFUSE RADIATION MODELING 

TECHNIQUES  

Pioneering work in the field of diffuse radiation calculation was done by the Liu and 

Jordan in 1960 when they explored different relations to estimate the diffuse radiation. A 

relationship was developed utilizing Hump Mountain, North Carolina data. 

𝐼�̅�

𝐸𝑡𝑟
̅̅ ̅̅

= 0.2710 − 0.2939 ×
𝐼𝑑𝑛
̅̅ ̅̅

𝐸𝑡𝑟
̅̅ ̅̅

 
    (2.1)         

Where: 𝐼�̅� is a daily diffuse radiation on a horizontal plane.  𝐼𝑑𝑛
̅̅ ̅̅  is a daily direct normal 

radiation on horizontal plane. 𝐸𝑡𝑟
̅̅ ̅̅  is a daily extraterrestrial radiation on horizontal plane. 

Work by Liu and Jordan was impressive and extensively used but the relation 

developed was based on a single site data and also did not give any hourly estimates. In 

addition, Ruth and chant (Ruth & Chant 1976) conducted their utilizing Canadian location 

and came up with a conclusion that the Liu and Jordan model significantly deviates from 

the measured values if location was changed.  

In 1976, Orgill and Hollands (Orgill and Hollands 1971) proposed a new model for 

hourly estimation of diffuse radiation for a latitude between 43°N and 54°N. They obtained 

Toronto, Canada data of four years from period of Sept. 1967 – August 1971 and came up 

with a linear model. Other notable difference from Liu and Jordan was binning the data 

according to the clearness index which represented cloudy and uncloudy condition. Four 

years of data was binned in to three different intervals in which 32.4% data lies in 0 ≤

𝑘𝑡 < 0.35, 62% data lies in 0.35 ≤ 𝑘𝑡 ≤ 0.75 and 5.6% lies in 0.75 < 𝑘𝑡. A linear model 

was fitted for the 32.4% and 62% data while the 5.6 % data was fitted with a constant. A 
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limited number of data points were available therefore it was not justified to use a complex 

model for this range at that time.  

In 1981, Erbs et al. (Erbs et al.  1981)  developed a new relationship between hourly 

diffuse fraction and the clearness index applying US data. Four US site was selected 

comprising of Fort Hood, Texas, Livermore, California, Raleigh, North Carolina, 

Maynard, Massachusetts and Albuquerque, New Mexico. The data for all the states were 

of different time period and interval e.g. some state data consisted of two year like 

Massachusetts and some of it was of 4 years like New Mexico. Erbs et al. also did the data 

binning according to the clearness index but implemented different clearness index bins 

for the regression modeling and also used a similar concept of fitting a constant in to a data 

in 0.8 < 𝑘𝑡 as used by Orgill and Hollands. Erbs et al. not only utilized the clearness index 

for binning but also binned the data according to sunset hour angle which depends on the 

season. Models were analyzed implementing Mean bias error and Standard deviation to 

know how models behaved w.r.t. the measure values.  

In 1982, Spencer (Spencer 1982) developed correlations for diffuse fraction which 

were dependent on the latitude of the place and the clearness index. The data constituted 

of five Australian sites of which the latitude varies from 20° S to 45° S. Absolute error was 

calculated and the correlation was compared with the Orgill and Hollands, Boes et al., Liu 

and Jordan and Bugler et al.  

𝐼𝑑

𝐼
= 0.94 + 0.0118 × 𝜙 − (1.185 + 0.0135 × 𝜙) × 𝑘𝑡,  

0.35 < 𝑘𝑡 < 0.75, 20° S ≤ 𝜙 ≤ 45° S  

              

(2.2) 
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In 1992, Reindl et al. (Reindl et al. 1992) further extended the work by taking data set 

from four European and two US locations, covering latitude from 28.4° N to 59.56° N. 

Some of the site data was of a single year and some was of two and three years. Twenty 

eight predictor variables were analyzed and stepwise regression was used to narrow it down 

to four. Those four predicator variables were temperature, relative humidity, solar altitude 

angle and clearness index. Different set of equations were developed using the same 

concept of binning the data according to the clearness index. Liu and Jordan and Orgill and 

Hollands developed linear relation while Erbs et al. and Reindl et al. developed the 

polynomial fits. Reindl et al. used composite residual sum square (CRSS). Reindl et al. 

correlation improved the fit by 14.4% over the Liu and Jordan fit.  

In 1992, Al Riahi et al. (Al Riahi et al. 1992) also came up with correlations and 

collected data of two and a half years of Fudhaliyah, Iraq. Clearness index bins were used 

as was in the other studies and results were compared with Spencer, Erbs et al. and Orgill 

and Hollands. RMSE and Mean bias error was utilized for the comparison with the other 

models. Most of the studies done by 1992 implemented a common polynomial regression 

method and came uppolynomial piecewise models rather than exploring methods like 

continuous fit, rational fit or exponential fit.  

In 1996, Janjai et al. (Janjai et al. 1996) developed a model for Bangkok, Thailand 

utilizing four locations: King Mongkut’s Institute of Technology Thonbmi (KMllT) in the 

south, Silpakom University Snamchan Campus (SU) in the west and the Department of 

Meteorology (MET) in the southeast of Bangkok with a collection period of four, eight and 

seven years. They utilized the clearness index, temperature and relative humidity as a 

predictor variable to estimate diffuse radiation from global radiation. Error calculation was 
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done by RMSE and Mean bias error (MBE). Their model utilizing clearness index, 

temperature and relative humidity observed the better performance when compared with 

Erbs et al. and Liu and Jordan which only utilized clearness index for the estimation of 

diffuse radiation. 

𝐼�̅�

𝐼 ̅
= 0.913 −  0.146 × 𝑘�̅� − 0.014 × �̅� + 0.0118 ×  �̅� 

          (2.3) 

Where: 𝐼�̅� is a monthly average daily diffuse radiation on a horizontal plane. 𝐼 ̅ is a 

monthly average global horizontal radiation on horizontal plane. 𝑘�̅� is a monthly average 

daily clearness index. �̅� is a monthly average daily relative humidity and �̅� is a monthly 

average daily temperature. 

In 2006, El-Sebbai et al. (El-Sebbai et al. 2006) came up with different regression 

models utilizing different predictor variables for estimation of diffuse radiation. Data of 

Jeddah, Saudi Arabia from 1996 – 2004 was analyzed and different fits were obtained 

utilizing different predictor variables such as clearness index, sunshine duration, 

temperature and relative humidity. El-Sebbai et al. also developed continuous models 

utilizing cloud coverage ratio as a predictor variable. The fits obtained were compared with 

each using MBE, RMSE and Mean percentage error (MPE). The models obtained were 

continuous and were linear.  

𝐼𝑑

𝐼
= −1.92 + 2.60 × (

𝑠

𝑠𝑜

) + 0.06 × 𝑇 
          (2.4) 

𝐼𝑑

𝐼
= −1.62 + 2.24 × (

𝑠

𝑠𝑜

) + 0.332 × 𝜌 
(2.5) 

𝐼𝑑

𝐼
= 0.139 − 0.003 × 𝑇 + 0.896 × 𝜌 

(2.6) 
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Where: s is monthly average of daily bright sunshine hours (h), 𝑠𝑜 is monthly average 

of maximum possible number of sunshine hours (h). 

The MBE and RMSE is increased when relative humidity (Eq. 2.5) was used in place 

of Temperature in Eq. 2.4.  Moreover, the RMSE and the MBE values were same for Eq. 

2.4 and Eq. 2.6 indicating that the sunshine data could be replaced by relative humidity.  

In 2008, Bolan et al. (Bolan et al. 2008) developed a rational model utilizing two 

Australian sites: Adelaide and Geelong, three European sites: Bracknell, Lisbon and Uccle 

and one Asian sites: Macau. A quadratic programming was also developed for removing 

the erroneous diffuse radiation values from data set. Absolute percentage error (APE) was 

implemented to check the model performance. Eq. 2.7 represents Bolan et al. model. 

𝐼𝑑

𝐼
=

1.0

1.0 +  𝑒−5.0+8.6×𝑘𝑡
 

         (2.7) 

In 2011, Li et al. (Li et al. 2011) developed continuous models utilizing thirty years of 

(1971 – 2000) monthly average daily Guangzhou data. They developed ten different 

models using clearness index, temperature, relative humidity, solar altitude angle and 

sunshine duration. Performance of the models was estimated by RMSE, MBE,R2, Mean 

Absolute Percentage Error (MAPE) and Nashe – Sutcliffe equation (NSE).  

𝐼𝑑

𝐼
= 0.4461 + 0.4187 × 𝑘𝑡 − 0.8972 × 𝑇 + 0.0049 × 𝜌 + 0.3231 × sin (𝛼) 

          (2.8) 

𝐼𝑑

𝐼
= 0.5686 − 0.3724 × (

𝑠

𝑠𝑜

) − 0.2991 × 𝑙𝑜𝑔(
𝑠

𝑠𝑜

) + 0.0031 × 𝜌 + 0.2035

× 𝑇 

(2.9) 

Where: sin (𝛼) is a solar altitude angle. 
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Their study found that the usage of solar altitude angle did not improve the 

performance of the diffuse radiation calculation, though the temperature and the relative 

humidity improved performance of models.  

In 2016, Mohammadi et al. (Mohammadi et al. 2016) did an analysis to rank the 

usefulness of the predictor variables for the estimation of diffuse radiation. Ten parameters 

were selected e.g.  sunshine duration, temperature, relative humidity, solar declination 

angle, water vapor pressure and clearness index etc. The dataset was obtained from city of 

Kerman, located in south central part of Iran. Adaptive neuro fuzzy inference system was 

applied to select the most influential parameter for the predication of diffuse radiation. 

RMSE, MBE, R2, and Mean absolute bias error (MABE) were utilized for the performance 

measurement.  

The findings observed by Mohammadi et al. indicated that the relative humidity is a 

least significant factor for the estimation of diffuse solar radiation for Kerman, Iran 

whereas the sunshine duration was considered as a most significant parameter for diffuse 

radiation estimation. Elminir et al. (Elminir et al. 2006) conducted a study for comparing 

the models generating using regression method with the models generated using artificial 

neural network technique (ANN).  They found that the models generated by ANN 

technique for Egypt performed better than the models generated using regression 

techniques.  
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Chapter 3. DIFFUSE RADIATION CALCULATION METHODS 

A paper to be submitted to Applied Energy 

Uday P. Singh, Nathan G. Johnson 

3.1 Introduction 

In recent times renewable energy gained a lot of traction in different parts of the world. 

Most of the growth in renewables is driven by the government policies like providing 

subsidies for the renewable energy sources (Menanteau et al. 2003). Policies are structured 

to reduce the greenhouse gas emission (CO2 emission increased by 52% globally from 1990 

to 2012) (Deloitte 2015).  The other driving factor for renewables growth is reducing the 

dependence on fossil fuels because of their limited availability and increasing cost of fossil 

fuels. This lead to a phenomenal growth in the installation of small and large scale 

renewable energy systems e.g. solar, wind etc. Initially development in solar energy is 

driven by the European nations with Germany leading the solar installation and generation 

till 2012 afterwards China, USA and Japan captured the majority of the market and 

currently driving the solar photovoltaic and thermal installation (Solar Power Europe 

2015). On the other hand, growing economies like India set an ambitious target of 100 GW 

of solar installation by 2022 (Parkes 2016).  

The potential of solar power can be further realized by analyzing the amount of solar 

energy received by the Earth. The total amount of incident solar power on Earth is 166,000 

Terawatts (TW). Thirty percent is reflected back into space and approximately half (85,000 

TW) is available for terrestrial collectors like solar thermal or solar photovoltaic systems 

(Abbott 2012). The world consumes 19.10 TWh (2012) of electricity per year; therefore, 

the total solar energy available is far more than the current electric energy needs (US EIA 
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2016). If 1 percent of the earth surface is reserved for solar power generating systems, and 

given 10% efficiency, then there will be sufficient electricity production for a population 

of 10 billion people with each person demanding 10 kW (Goswami et al. 2000). Recent 

estimates suggest that renewable energy capacity will be 3,930 GW by 2035 representing 

31.2% of total power generation in which 690 GW will come from solar i.e. still a fraction 

of amount what Earth receives (Deloitte 2015). Still large-scale electricity generation from 

photovoltaic was limited because of high cost and long return on investment (Iyer 2015). 

Although, favorable conditions like easy to install, takes no time for start – up, no or very 

less moving part and machinery and its cost competitiveness to non–renewable sources of 

generation by 2040 in countries like China will further propel its deployment (Deloitte 

2015).   

Solar technology is new and developed lately compared to non – renewable generation 

e.g. terrestrial usage of solar arrays in US find its actual application in 1973/1974 after the 

oil shock (Goetzberger & Hoffmann 2005), therefore, many radiation collection 

laboratories are not equipped with instruments that measures all three component of 

radiation such as global horizontal radiation, diffuse horizontal radiation and direct normal 

radiation. Each component has its own usage like direct normal radiation finds its 

application in solar thermal (CSP) and concentrated photovoltaic technology (CPV) 

whereas solar photovoltaic relies on application of both. Majority of the countries relies on 

the mathematical models to compute the diffuse radiation values e.g. China has 726 long 

term meteorological stations of which 98 measures global radiation and 19 measures the 

diffuse radiation (Li et al. 2012). Moreover, the ground based data measurement is limited 

to the developed world and very scarce in developing world (Khalil & Shaffie 2013). Liu 
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and Jordan (Liu & Jordan 1960) has laid the foundation in computational modeling for an 

assessment of diffuse radiation. Their work is further extended by Orgill and Hollands 

(Orgill & Hollands 1976), Erbs et al. (Erbs et al. 1981), (Reindl et al. 1992) and other 

scholars around the globe.  

Several statistical studies are conducted to develop models for a particular country but 

none came up with a model that can fit to different continents in world. Also, various 

comparisons have been done to find the best model that can be used for all location but 

none of the studies analyzed the performance of continuous and non – continuous i.e. 

piecewise models. This study not only utilizes statistical techniques to find the best 

performing model in different geographical location but also emphasizes on the models’ 

behavior in different clearness index regions such as 0.00 – 0.20, 0.20 – 0.40, 0.40 – 0.60 

or 0.80 – 1.00. Regression analysis is done on 11 years of dataset obtained from World 

Radiation Data Center to come up with one global model and 10 site specific models for 

the calculation of diffuse radiation. Present study is most complete in terms of validation 

of existing model such as performance in different clearness index conditions, yearly and 

daily evaluation, analyzing effects of temperature and relative on diffuse fraction, 

providing a new global model and new site specific model. 

3.2 Background  

3.2.1 Classification of radiation and measurement techniques 

The radiations travelling through the space can be transmitted as it is or absorbed by 

the particles in the atmosphere or can be scattered by the particles like ozone, aerosol, water 

or dust in the atmosphere depending on wavelength. Based on the interaction of radiations 
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with the atmosphere it can be divided in to three components which are important to 

different technologies utilized for solar energy conversion.  

Direct Normal (DNI) & Circumsolar Irradiance – It is the irradiance on a surface 

perpendicular to the vector from the observer to the center of the sun caused by radiation 

that did not interact with the atmosphere. This definition useful in atmospheric physics and 

radiative transfer models but in solar energy it is understood as the radiation received from 

a small solid angle centered on the sun’s disk. The size of this “small solid angle” for DNI 

measurements is recommended to be  5 × 10−3 sr  (corresponding to and approximate 2.5 

degree half angle). Whereas circumsolar region closely surrounds solar disk and looks very 

bright, the radiation coming from this region is called circumsolar irradiance. DNI plays a 

vital role in concentrating solar power/photovoltaic. DNI is measured by a Pyrheliometer, 

the receiving surfaces of which is arranged to be normal to the solar direction (Sengupta et 

al. 2015).  

Diffuse Horizontal Irradiance (DHI) – This is the scattered or reflected part of the DNI 

by the particles present in the atmosphere or the light reflected by the earth surface also 

termed as albedo is a part of DHI. Rayleigh, Mie and Young explained scattering of light 

that explained why sky looks blue and why sun looks red or yellow during the different 

time of the day (Kerker 1993). DHI is measured by the Pyranometer shaded with a shade 

ring. 

Global Horizontal Irradiance (GHI) – Sum of DNI and DHI is termed as GHI. It is 

calculated using Eq. 3.1. 

𝐺𝐻𝐼 = 𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝛳𝑧) + 𝐷𝐻𝐼 (3.1) 
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Ground-based instruments widely used for collecting solar data like solar radiation 

intensity are Pyranometers and Pyrheliometers (Thekaekara 1976). World Radiation Data 

Center has a collection of solar data – e.g., global horizontal radiation, direct normal 

radiation, diffuse horizontal radiation – for most countries, while National Oceanic and 

Atmospheric Administration measures solar data for 7 sites in the United States at 1 minute 

resolution (NOAA 2016). Baseline Solar Radiation Network (WRMC–BSRN 2016), 

Fluxnet Network (ORNL DAAC 2015) and Swiss Institute of Meteorology also collects 

solar data. Moreover, there are models converting satellite images in to different radiation 

components and giving better estimation of radiation components compared to estimation 

done for a site using nearby ground station. A comparative study is done on Geomodel in 

Bratislava (SolarGis), Helioclim Soda (Heliostat 3v3), 3 Tier Company, University of 

Oldenburg (EnMetSol-Solis and EnMetSol-Dumortier) and IrSolAv by P. Ineichen in 2011 

and confirmed that SolarGis and EnMetSol holds the better results for radiation estimation 

(Inchien 2011). 

 

3.2.2 Uncertainty in radiation measurements  

Importance of good solar data is realized when economic feasibility and system sizing 

for photovoltaic and solar thermal is done. Solar resource assessment directly affects the 

project cost and quality (Gueymard & Wilcox 2009). Also, the project financers are 

interested in a renewable energy project if they see higher returns in a shorter period of 

time with less uncertainty. Therefore, reducing the sources of energy uncertainty form 
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photovoltaic and solar thermal is important. These sources of energy uncertainty are 

enumerated by Marie Schnitzer et al. (Schnitzer et al. 2012). 

 Annual Degradation (0.50 – 1.00%)  

 Transposition to Plane of Array (0.50 – 2.00%) 

 Energy Simulation & Plant Losses (3.00 – 5.00%)  

 Solar resource uncertainty (5.00 – 17.00%) 

Enormous emphasis is made on good data collection and can be seen in SOLRMAP 

(NREL Website) that consists of high quality solar data for particular locations which can 

be used by solar thermal projects. Furthermore, there are physical models that estimate 

radiation values based on atmospheric parameters like turbidity, and aerosol etc. and splits 

the diffuse and direct radiation value from the measured GHI. Models implemented for the 

separation of DHI and DNI from GHI are major sources of uncertainty (Gueymard 2009). 

3.2.3 Studies conducted for the calculation of DHI on horizontal plane 

Measuring DHI component of the radiation is a complex process. First methods 

requires Pyranometer with a small shading disc following the sun’s motion. The technique 

is costly and requires a lot of maintenance. The second method uses a shadow ring/band. 

The ring/band is parallel to the sun path and hence blocks the DNI. This method not only 

blocks the DNI but also blocks the part of DHI reaching the receiver hence poor estimation 

(Gueymard & Myers 2009). In addition, there is a non – uniform temperature response, 

cosine error and thermal imbalance. Consequently, there is a need of mathematical models 

proposed by Drummond (1956), Steven (1984), Lebaron et al. (1990), Batles et al. (1995) 

and Muneer and Zhang (2002) to correct the DHI values (Sánchez et al. 2012). Considering 
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the complexities associated with the measurement scholars proposed alternate methods of 

estimation of DHI from GHI. This study compares the model which are widely prevalent 

in solar resource assessment and currently utilized in the photovoltaic simulation software 

like Homer etc. Also, a new model is generated and compared with these established 

models. 

1) Orgill and Hollands, 

𝐼𝑑

𝐼
= 1.0 − 0.249 × 𝑘𝑡 𝑓𝑜𝑟 0 ≤ 𝑘𝑡 < 0.35 

(3.2) 

𝐼𝑑

𝐼
= 1.577 − 1.84 × 𝑘𝑡 𝑓𝑜𝑟 0.35 ≤ 𝑘𝑡 ≤ 0.75 

   (3.3) 

𝐼𝑑

𝐼
= 0.177 𝑓𝑜𝑟 0.75 < 𝑘𝑡 

(3.4) 

                                                                                                        

2) Erbs et al.  

𝐼𝑑

𝐼
=  1.0 − 0.09 × 𝑘𝑡  𝑓𝑜𝑟 𝑘𝑡 ≤ 0.22 

(3.5) 

𝐼𝑑

𝐼
= 0.9511 − 0.1604 × 𝑘𝑡 + 4.388 × 𝑘𝑡

2 − 16.638 × 𝑘𝑡
3 +  12.336 × 𝑘𝑡

4  

𝑓𝑜𝑟 0.22 < 𝑘𝑡 ≤ 0.80 

(3.6) 

𝐼𝑑

𝐼
=  0.165 × 𝑘𝑡 𝑓𝑜𝑟 0.80 < 𝑘𝑡 

(3.7) 

 

3) Reindl et al.  

Constraint: 𝐼𝑑/𝐼 ≤ 1 

𝐼𝑑

𝐼
= 1.020 − 0.248 × 𝑘𝑡  𝑓𝑜𝑟 0 ≤ 𝑘𝑡 ≤ 0.30 

                  

(3.8) 

𝐼𝑑

𝐼
= 1.45 − 1.67 × 𝑘𝑡𝑓𝑜𝑟 0.3 < 𝑘𝑡 < 0.78 

   (3.9) 
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𝐼𝑑

𝐼
= 0.147 𝑓𝑜𝑟 0.78 ≤ 𝑘𝑡 

 

 (3.10) 

4) Al-Riahi et al. 

𝐼𝑑

𝐼
= 0.932 𝑓𝑜𝑟 𝑘𝑡 < 0.25 

                                                                                                    

(3.11) 

𝐼𝑑

𝐼
= 1.293 − 0.249 × 𝑘𝑡 𝑓𝑜𝑟 0.25 ≤  𝑘𝑡 ≤ 0.70 

 

 (3.12) 

𝐼𝑑

𝐼
= 0.151 𝑓𝑜𝑟 0.7 < 𝑘𝑡 

                                                                                                         

 (3.13) 

These relations utilized regression analysis in which diffuse fraction (diffuse fraction 

is defined as a ratio of diffuse horizontal radiation to the global horizontal radiation) is a 

function of kt (kt is defined as the ratio of extraterrestrial radiation and global horizontal 

radiation). There are models proposed by Reindl et al., Li et al. (Lie et al. 2011) which 

considered parameter for example relative humidity and temperature for the estimation of 

diffuse component of light.  

3.3 Methodology  

3.3.1 Solar resource data  

Global horizontal and diffuse radiation for Argentina, Australia, Germany, Japan and 

US are taken from the World Radiation Data Center (WRDC 2016). Temperature and 

Relative Humidity data for Germany is gathered from Weather Underground (WU 2016).  

A short python script has been developed and implemented to access data from Weather 

Underground. A data access key has been issued by Weather Underground to make 

hundred calls in a minute and five thousand calls in a day. Each location has its unique id 

that is required to access the data. 
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All data set is of hourly resolution. The radiation data is further filtered by replacing 

non-existent values with null value and then ignoring null values in regression analysis. 

Data points with 0 < 𝐼𝑑/𝐼 ≤ 1 is considered. This study covers the behavior of diffuse 

radiation models in four different continents and tries building a new model which can fit 

in all locations. Table 1 gives detail indicating location variability with annual average kt. 

Year with most complete dataset has been selected. For example, the 2013 and 2014 data 

from Germany is incomplete resulting in a selection of 2012 for regression analysis. 

Negative sign on a latitude column indicates that latitude of location is in southern 

hemisphere whereas no sign is considered as a positive which indicates northern 

hemisphere. Similarly, the negative Longitude and the negative time zone indicates west 

of GMT while no sign considered as a positive that represents east of GMT. 

Table 1. Site details and data from World Radiation Data Centre. 

Location 𝛟 Λ 𝐙𝐜 𝐤𝐭 Year 

Hohenpeissenberg, Bavaria, Germany  47.80   11.00 1 0.44 2012 

Wagga Wagga, New South Wales, 

Australia 
-35.60 147.46 10 0.61 2014 

Sapparo, Hokkaido, Japan  43.07 141.35 9 0.44 2014 

Ushuaia, Tierra del Fuego, Argentina -54.82  -68.33 -3 0.37 2014 

Sioux Falls, South Dakota, USA  43.58  -96.75 -6 0.44 2014 

Fort Peck, Montana, USA  48.31 -105.10 -7 0.58 2014 

Bondville, Illinois, USA  40.72  -77.94 -5 0.60 2014 

Boulder, Colorado, USA  40.13 -105.24 -7 0.59 2014 

Desert Rock, Nevada, USA  36.62 -116.03 -8 0.68 2014 

Goodwin Creek, Mississippi, USA  34.23  -89.87 -6 0.55 2014 

Rock Spring, Pennsylvania, USA 40.72 -77.93 -5 0.49 2014 

 

https://en.wikipedia.org/wiki/Hokkaido
https://en.wikipedia.org/wiki/Tierra_del_Fuego
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3.3.2 Extraterrestrial radiation calculation  

Hourly extraterrestrial radiation data on horizontal plane is calculated for US sites and 

for other locations around the world utilized for the model development in this study. 

Mathematical procedures provided in Duffie and Beckman are employed for the 

calculations (Duffie & Beckman 1980).  

𝛿 = 23.45 ×
sin(360 × (284 + 𝑑𝑎𝑦))

365
 

(3.14)                                             

𝑏 = 2 × 3.14 ×
𝑑𝑎𝑦

365
 

(3.15) 

𝐵 = 360 ×
(𝑑𝑎𝑦 − 1)

365
 

(3.16) 

𝐺𝑜𝑛 = 𝐺𝑠𝑐 × (1.00011 +  0.034221 × cos(𝑏) +  0.001280 × sin(𝑏)

+  0.000719 × cos(2 × 𝑏) +  0.000077 × sin(2 × 𝑏)) 

(3.17) 

𝐸𝑡  =  3.82 × (0.000075 + 0.001868 × cos(𝐵) − 0.032077 × sin(𝐵)

− 0.014615 × cos(2 × 𝐵) − 0.04089 × sin(2 × 𝐵)) 

(3.18) 

𝑡𝑠 =  𝑡𝑐  + (
λ

15
) − 𝑍𝑐  +  𝐸𝑡 

(3.19) 

𝜔 =  (𝑡𝑠 − 12) × 15 (3.20) 

𝐸𝑡𝑟  =  ((12/3.14) × 𝐺 × ((cos(𝜙) × cos(𝛿) × (sin(𝜔1) − sin(𝜔2))

+  (0.0174 × (𝜔1 − 𝜔2) × sin(𝜙) × sin(𝛿)))))) 

(3.21) 

3.3.3 New model development 

Initially all the existing models are compared for identifying best among them and then 

a new model is generated doing a continuous and a piecewise regression. A global model 

is developed by doing a regression analysis on a data set of selected set of countries based 
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on their geographical locations. Data is divided in five regions based on kt values 0.0 – 

0.20, 0.20 – 0.40, 0.40 – 0.60, 0.60 – 0.80, 0.80 – 1.00 and a continuous fit is performed. 

This segmentation of data helped to determine where the existing and newly developed 

models are not performing well therefore a new fit can be applied in the regions of low 

R2 values and high root mean square values. 

𝐼𝑑𝑐 = 𝐼 × (𝑎 × 𝑘𝑡 + 𝑏)                                                                                                                                                                                        (3.22) 

𝐼𝑑𝑐 = 𝐼 × (𝑎 × 𝑘𝑡
2 + 𝑏 × 𝑘𝑡 + 𝑐)                                                                                                                   (3.23) 

𝐼𝑑𝑐 = 𝐼 × (𝑎 × 𝑘𝑡
3 + 𝑏 × 𝑘𝑡

2 + 𝑐 × 𝑘𝑡 + 𝑑)                                                                                   (3.24) 

𝐼𝑑𝑐 = 𝐼 × (𝑎 × 𝑘𝑡
4 + 𝑏 × 𝑘𝑡

3 + 𝑐 × 𝑘𝑡
2 + 𝑑 × 𝑘𝑡 + 𝑒)                                                                              (3.25) 

Also, the 𝑘𝑡 intervals existing in the studies of Erbs et al., Orgill and Hollande, Al Riahi 

et al and Reindl et al. are explored and new fits are applied in the existing intervals to 

determine which intervals are the best and why the these intervals are selected.  

3.3.4 Error calculation  

The measured value of the diffuse radiation is compared against the calculated value 

of the diffuse radiations using models. The error calculation is completed using RMSE, R2 

and RE values. 

𝑅𝑀𝑆𝐸 = (∑
(𝐼𝑑𝑚,𝑖 − 𝐼𝑑𝑐,𝑖)

2

𝑁𝑖

𝑁

𝑖=1

)

0.5

 

 

    

(3.26) 

𝑅2  = 1 −  (∑
(𝐼𝑑𝑚,𝑖 − 𝐼𝑑𝑐,𝑖)

2

(𝐼𝑑,𝑖 −  𝑚𝑒𝑎𝑛(𝐼𝑑𝑐)2

𝑁

𝑖=1

) 

 

 (3.27) 

𝑅𝐸 =
(𝐼𝑑𝑚 − 𝐼𝑑𝑐)2

𝐼𝑑𝑚
 

(3.28) 
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3.4 Results and Analysis 

3.4.1 Comparison of results from existing models for new locations 

An annual comparison is completed for the models to analyze which model fits best for 

all the locations or most of the locations and can be applied worldwide for diffuse radiation 

calculation on horizontal plane for solar photovoltaic and solar thermal power generation. 

RMSE and R2 values are calculated for nine different locations for four different models 

which are mentioned in Table 2.  

Table 2. Comparison of diffuse radiation models for different locations using RMSE 

(𝐑𝟐). 

 

Location Orgill and 

Hollands 

Erbs et al. Reindl et al. Al-Riahi et 

al. 

Hohenpeissenberg, Bavaria, 

Germany 
0.153 (0.793) 0.155 (0.775) 0.154 (0.785) 0.517 (0.563) 

Wagga Wagga, New South 

Wales, Australia 
0.175 (0.675) 0.173 (0.676) 0.169 (0.681) 0.360 (0.512) 

Sapparo, Hokkaido, Japan 0.125 (0.846) 0.127 (0.828) 0.129 (0.829) 0.467 (0.542) 

Ushuaia, Tierra Del Fuego, 

Argentina 
0.261 (0.619) 0.270 (0.622) 0.262 (0.666) 0.450 (0.518) 

Sioux Falls, South Dakota, 

USA 
0.158 (0.727) 0.160 (0.700) 0.159 (0.704) 0.236 (0.473) 

Fort Peck, Montana, USA 0.152 (0.768) 0.154 (0.746) 0.153 (0.754) 0.261 (0.512) 

Bondville, Illinois, USA 0.133 (0.784) 0.136 (0.761) 0.135 (0.774) 0.402 (0.492) 

Boulder, Colorado, USA 0.165 (0.659) 0.167 (0.640) 0.164 (0.653) 0.302 (0.442) 

Desert Rock, Nevada, USA 0.143 (0.652) 0.139 (0.655) 0.136 (0.671) 0.166 (0.464) 

 

Based on the values of RMSE and R2 given in Table 2 the best model is Orgill and 

Hollands model that fits best for six locations. Orgill and Hollands model not only captures 

the variability in weather by performing well in different annual average kt but also 

captures the geographical variability by better than others existing models in three 



21 

 

international locations: Germany, Japan, Argentina and three US locations: Illinois, 

Montana, South Dakota. Reindl et al. model is a second best that fits better than existing  

models for two US locations: Nevada, Colorado and one Australian location: New South 

Wales. Al Riahi model is least efficient compared to the other models. Results can be 

further confirmed by graphical analysis completed in MATLAB. 

 

Figure 1. Model comparison for Global locations. 
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Figure 1 evaluates the performance of models in different climatic conditions around 

the globe that rules out the implementation of Al Riahi et al. model by visual inspection. 

Al Riahi et al. model does not fit well to global locations in an interval between 0.00 – 0.20 

and can be seen in the graphs for all location, also, in the interval between 0.20 – 0.70, fit 

is not close to the other fits and lies far below from rest of the fit lines in that region. 

Calculated values of diffuse fraction by Al Riahi et al. model starts from 0.00 and then 

assumes a straight line at kt = 0.25 which does not follow the kt distribution with respect 

to diffuse fraction while the rest of the models follow the same pattern as diffuse measured 

values follows. Al Riahi et al. model has less R2 value and large RMSE value compared to 

rest of the models and deviates far more from original values. Orgill and Hollands, Erbs et 

al. and Reindl et al. performs almost similar on the annual scale and the variability in their 

performance can only be observed by the RMSE and R2 given in Table 2.  Orgill and 

Hollands work best in three out of four global locations while Reindl et al. only fits best to 

one global location. Moreover, Figure 1(b) (Argentina) indicates a low annual kt and 

values are scattered all over the plot which is difficult to capture by the models resulting in 

high RMSE and low R2 for all the models compared to the other locations for which 

comparison has been done. 
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Figure 2. Model comparison for US locations. 

Figure 2 also rules out the implementation of Al Riahi et al. model because it does not 

fit well to US locations in an interval between 0.0 – 0.20 and can be seen in the graphs for 

all location, also, in the interval between 0.20 – 0.70 fit is not close to the other fits and lies 

far below compared to the rest of the fits. The fit for US location repeats its behavior as 

observed in global locations. Performance by the models such as Orgill and Hollands, Erbs 

et al. and Reindl et al for US locations is similar to global locations. Orgill and Hollands 
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work best for three US locations while Reindl et al. work best for two US location. 

Significant deviation from measured diffuse fraction and the calculated diffuse fraction for 

all models lies in the region of kt (0.80 – 1.00). The deviation for high values of kt is 

further analyzed by doing a daily comparison for unique kt values in below section.  

3.4.2 Comparison of clearness index on model results 

 

 Figure 3. Model comparison for different locations with varying 𝒌𝒕 values. 

 

(c) Boulder, Colorado, USA      

𝑘𝑡= 0.53

Hour of dayHour of dayHour of day

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6-
7 

A
M

7
-8

 A
M

8-
9 

A
M

9
-1

0 
A

M
1

0-
11

 A
M

1
1-

12
 A

M
1

-2
 P

M
2

-3
 P

M
3

-4
 P

M
4

-5
 P

M
5

-6
 P

M
6

-7
 P

M

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6-
7 

A
M

7
-8

 A
M

8-
9 

A
M

9
-1

0 
A

M
10

-1
1 

A
M

1
1-

12
 A

M
1

-2
 P

M
2

-3
 P

M
3

-4
 P

M
4

-5
 P

M
5

-6
 P

M
6

-7
 P

M

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6
-7

 A
M

7-
8 

A
M

8-
9 

A
M

9
-1

0 
A

M
1

0-
11

 A
M

11
-1

2 
A

M
1

-2
 P

M
2

-3
 P

M
3

-4
 P

M
4

-5
 P

M
5

-6
 P

M
6

-7
 P

M

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6
-7

 A
M

7-
8 

A
M

8
-9

 A
M

9-
10

 A
M

1
0-

11
 A

M
1

1-
12

 A
M

1
-2

 P
M

2-
3 

PM
3

-4
 P

M
4-

5 
PM

5
-6

 P
M

6-
7 

PM

R
el

ta
iv

e 
Er

ro
r

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6-
7 

A
M

7-
8 

A
M

8-
9 

A
M

9
-1

0 
A

M
10

-1
1 

A
M

1
1-

12
 A

M
1

-2
 P

M
2

-3
 P

M
3

-4
 P

M
4

-5
 P

M
5

-6
 P

M
6

-7
 P

M

R
el

ta
iv

e 
Er

ro
r

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6-
7 

A
M

7
-8

 A
M

8
-9

 A
M

9-
10

 A
M

1
0-

11
 A

M
1

1-
12

 A
M

1
-2

 P
M

2-
3 

PM
3

-4
 P

M
4

-5
 P

M
5-

6 
PM

6-
7 

PM

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

6-
7 

A
M

7
-8

 A
M

8-
9 

A
M

9
-1

0 
A

M
10

-1
1 

A
M

1
1-

12
 A

M
1

-2
 P

M
2

-3
 P

M
3

-4
 P

M
4

-5
 P

M
5

-6
 P

M
6

-7
 P

M

(b)  Bondville, Illinois, USA

𝑘𝑡 = 0.45

(f) Sioux Falls, South Dakota, USA

𝑘𝑡= 0.55
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For this study, the region between 0.00 – 0.20 for kt is considered to be a low kt region, 

region between 0.20 – 0.50 considered to be a medium kt region and 0.50 – 1.00 is 

considered to be a high 𝑘𝑡  region. Selected days are based on kt values to understand how 

the behavior of models are affected by the magnitude of kt.  Figure 3 clearly indicates that 

for high kt values models are not performing well compared to medium and low kt values. 

The relative error is high for Germany (kt = 0.58), South Dakota (kt = 0.55), Colorado 

(kt = 0.53) and the lines are farther from x axis representing high magnitude in relative 

error. For low and medium kt, the lines are particularly flat and are close to the x axis. This 

is the case for Pennsylvania (kt = 0.26), Montana (kt = 0.40), Illinois (kt = 0.45) and 

Argentina (kt = 0.24). Therefore, this high error region resulted due to higher value of kt 

needs to be improved for the existing models. Findings are consolidated in Figure 4, where 

Bavaria, Germany is selected for a comparison and a particular time period is selected so 

that the position of the Sun in sky won’t affect the duration and magnitude of 

extraterrestrial radiation on a horizontal plane received by earth hence performance of the 

models. Day 11 is a sunny day with high kt and the performance of the models are worst 

compared to the Day 4 which has a low kt value and Day 13 which has a medium kt value. 
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Figure 4. Model comparison for Bavaria, Germany for different 𝒌𝒕 values. 

 

3.4.3 New models using continuous and piecewise fit 

Continuous fit 

A continuous fit is implied utilizing a year’s dataset of ten locations given in Table 1. 

A new model is obtained. 

𝐼𝑑𝑐 = 𝐼 × (8.307 × 𝑘𝑡
4 − 11.240 × 𝑘𝑡

3 + 2.729 × 𝑘𝑡
2 − 0.123 × 𝑘𝑡 + 0.8846) (3.29) 

 

 The newly developed model significantly improves the performance in high kt 

region (0.80 – 1.00) for all locations around the world. Moreover, it improves the 

assessment in low kt (0.00 – 0.02) region. This is illustrated in the below Figure 5.     
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Figure 5. Comparison of model with Singh’s US and Singh’s global model for global 

locations. 
      

In Figure 5(a), improvement in RMSE achieved by newly developed model (Singh 

Global) is 20.70% compared to the best model i.e. Orgill and Hollands in the region of 0.80 

– 1.00 with 44 data points corresponding to 44 sun hours in a year.  In Figure 5(b), for 

interval 0.80 – 1.00, improvement achieved by Singh’s model is 5.20% compared to the 

best model i.e. Orgill and Hollande model. In Figure 6(c), for interval 0.80 – 1.00, 

improvement attained is 81% over the best model i.e. Orgill and Hollande for 230 sun hours 

in year. In Figure 6 (d), for interval 0.80 – 1.00, the assessment is improved by over 45% 

for 117 hours in a year. This is a very strong indication of using newly developed model 
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for calculation of diffuse radiation on a horizontal plane in interval of 0.80 – 1.00 and 0.00 

– 0.20. Moreover, the new model improves fit for Germany in interval of 0.00 – 0.20 with 

improvement of 30.43% and for South Dakota with improvement of 9.78%. 

Furthermore, a new site specific model is generated for Montana using a year’s data 

(2014 

) from World Radiation Data Center of Montana, USA and existing models in literature 

are compared with this newly developed continuous model. Four different regression fit is 

utilized: linear, quadratic, cubic and quartic. Quartic fit has been selected because of better 

RMSE and R2 values. Figure 6 is a pictorial representation of comparison of the new model 

with the existing models. 

𝐼𝑑𝑐 = 𝐼 × (11.42 × 𝑘𝑡
4 − 16.84 × 𝑘𝑡

3 + 6.104 × 𝑘𝑡
2 − 1.006 × 𝑘𝑡 + 1.026) (3.30) 

 

 

 

Figure 6. Model comparison for Montana, US. 

An improvement of 3% in RMSE over the best performing model i.e. Orgill and 

Hollands is achieved giving an indication of developing site specific continuous model 

utilizing site specific data set rather than using a common piecewise model such as Erbs et 
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al. etc. This finding is consolidated by completing regression analysis for the ten locations 

that comprises of six US locations and four international locations. A continuous fit is 

generated for each site utilizing site specific data. The data is obtained from World 

Radiation Data Center. These site specific models are continuous in nature and performs 

better than established piecewise models. Table 3 and Table 4 gives the details about the 

RMSE and R2 value.  

Table 3. Fit results of diffuse radiation models for US locations using RMSE (𝐑𝟐). 

 

Fit type Boulder, 

Colorado, 

USA 

Bondville, 

Illinois, 

USA 

Fort 

Peck, 

Montana, 

USA 

Desert 

rock, 

Nevada, 

USA 

Rock Spring, 

Pennsylvania, 

USA 

Sioux 

Fall, 

South 

Dakota, 

USA 

Linear 
0.166 

(0.715) 

0.149 

(0.713) 

0.159 

(0.713) 

0.138 

(0.704) 

0.145 

(0.785) 

0.264 

(0.165) 

Quadrat

ic 

0.166 

(0.716) 

0.148 

(0.716) 

0.156 

(0.723) 

0.136 

(0.712) 

0.135 

(0.813) 

0.260 

(0.189) 

Cubic 
0.161 

(0.734) 

0.143 

(0.735) 

0.152 

(0.739) 

0.133 

(0.724) 

0.131 

(0.824) 

0.260 

(0.190) 

Quartic 
0.160 

(0.739) 

0.140 

(0.745) 

0.150 

(0.744) 

0.132 

(0.725) 

0.130 

(0.828) 

0.259 

(0.120) 

 

 

Table 3 provides the RMSE and R2 for continuous models developed for US locations. 

For Colorado the best performing piecewise fit gives a RMSE of 0.164 (Table 2) while the 

newly developed continuous quartic fit gives 0.16 an overall improvement of 2.40%. 

Similarly, for Nevada an improvement of 2.90% is noted. Comparison is run on five US 

locations in which newly developed models perform better on three locations and 

piecewise models still do better on rest two locations i.e. Illinois and South Dakota.   

Table 4. Fit results of diffuse radiation models for global locations using RMSE 

(𝐑𝟐). 
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Fit type Ushuaia, Tierra 

del Fuego, 

Argentina 

Wagga Wagga, 

New South 

Wales, 

Australia 

Sapparo, 

Hokkaido, 

Japan 

Hohenpeissenberg, 

Bavaria, 

Germany 

Linear 
0.212 

(0.349) 

0.162 

(0.680) 

0.142 

(0.783) 

0.163 

(0.769) 

Quadratic 
0.211 

(0.392) 

0.162 

(0.680) 

0.126 

(0.827) 

0.155 

(0.790) 

Cubic 
0.205 

(0.392) 

0.156 

(0.705) 

0.122 

(0.838) 

0.150 

(0.804) 

Quartic 
0.205 

(0.392) 

0.155 

(0.708) 

0.120 

(0.845) 

0.148 

(0.809) 

 

 Table 4 provides the RMSE and R2 for continuous models developed for global 

locations. Best performing piecewise model for Germany and Japan gives RMSE of 0.153 

and 0.125 (Table 2) while the RMSE obtained by newly developed continuous models are 

0.148 and 0.120, an improvement of 3.27% and 4.17%. Similarly, for Australia and 

Argentina, improvement of 8.28% and 21.45 % is noticed.  

Piecewise fit 

Furthermore, a comparative analysis is done between the piecewise models and 

continuous models. Three different locations are selected: Bavaria, Germany, South 

Dakota, USA and Illinois, USA. Intervals utilized are taken from the existing models but 

new fits such as constant, linear and quadratic are performed on the data set obtained from 

World Radiation Data Center. Table 5 tells that about gives the results of comparative 

analysis done between the piecewise and the continuous models for Bavaria, Germany. 

Table 5. Piecewise fits for Bavaria, Germany with model results shown using RMSE 

(𝐑𝟐). 

 

Model Interval Constant Linear Quadratic Hours 

Erbs et al. 

Model 

Discontinuity 

0.00 – 0.22 0.040 (-) 0.041 (0.010) 0.041 (0.013) 679 

0.22 – 0.80 0.323 (-) 0.157 (0.765) 0.153 (0.776) 1817 

0.80 – 1.00 0.168 (-) 0.155 (0.156) 0.154 (0.166) 229 

https://en.wikipedia.org/wiki/Tierra_del_Fuego
https://en.wikipedia.org/wiki/Tierra_del_Fuego
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Al Riahi et al.  

Model 

Discontinuity 

0.00 – 0.25 0.044 (-) 0.043 (0.019) 0.043 (0.023) 792 

0.25 – 0.70 0.264 (-) 0.168 (0.595) 0.166 (0.606) 1168 

0.70 – 1.00 0.152 (-) 0.151 (0.012) 0.142 (0.135) 765 

Orgill and 

Hollands Model 

Discontinuity 

0.00 – 0.35 0.078 (-) 0.074 (0.096) 0.073 (0.117) 1083 

0.35 – 0.75 0.271 (-) 0.170 (0.604) 0.171 (0.604) 1105 

0.75 – 1.00 0.149 (-) 0.147 (0.029) 0.242 (0.102) 537 

Reindl. et al. 

Model 

Discontinuity 

0.00 – 0.30 0.064 (-) 0.062 (0.065) 0.061 (0.091) 943 

0.30 – 0.78 0.296 (-) 0.164 (0.694) 0.163 (0.696) 1414 

0.78 – 1.00 0.156 (-) 0.147 (0.110) 0.145 (0.138) 368 

 

Table 5 indicates that the best value of RMSE and of R2 are in interval of 0.22 – 0.80 

for Erbs et al. model i.e. 0.153 and 0.776. Rest of the intervals such as 0.25 – 0.70, 0.35 – 

0.75 and 0.30 – 0.78 do not provide a low RMSE value or high R2 value compared to Erbs’s 

region. Though, other existing models perform better in different intervals like 0.00 – 0.35 

or 0.00 – 0.25. Orgill and Hollands model has a very low RMSE value in 0.00 – 0.25 

interval i.e. 0.073. Additionally, lowest RMSE obtained from piecewise modeling is 0.153 

for 1817 hours that lies in Erb’s region on the other hand the quartic continuous model 

gives a RMSE of 0.148 which indicates an overall improvement of 3.27%.  

Table 6 and Table 7 also confirms that continuous quartic models are comparable or 

even better than the piecewise linear or quadratic models and can be replaced by the 

continuous models. This is a very interesting finding and can be further looked upon by 

performing comparison in other locations like Illinois and South Dakota.  

Table 6. Piecewise fits for Illinois, USA with model results shown using RMSE (𝐑𝟐). 
 

Model Interval Constant Linear Quadratic Hours 

Erbs et al. 

Model 

Discontinuity 

0.00 – 0.22 0.065 (-) 0.064 (0.035) 0.065 (0.036)         43 

0.22 – 0.80 0.269 (-) 0.145 (0.712) 0.144 (0.715)     2726 
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0.80 – 1.00 0.115 (-) 0.111 (0.069) 0.110 (0.092)       167 

Al Riahi et al.  

Model 

Discontinuity 

0.00 – 0.25 0.071 (-) 0.070 (0.043) 0.071 (0.043)         58 

0.25 – 0.70 0.236 (-) 0.156 (0.566) 0.156 (0.567)     1948 

0.70 – 1.00 0.120 (-) 0.113 (0.104) 0.113 (0.148)       930 

Orgill and 

Hollands Model 

Discontinuity 

0.00 – 0.35 0.098 (-) 0.094 (0.089) 0.093 (0.100)       231 

0.35 – 0.75 0.239 (-) 0.154 (0.588) 0.154 (0.588)     2189 

0.75 – 1.00 0.099 (-) 0.049 (0.483) 0.096 (0.075)       516 

Reindl. et al. 

Model 

Discontinuity 

0.00 – 0.30 0.076 (-) 0.074 (0.064) 0.074 (0.073)       111 

0.30 – 0.78 0.258 (-) 0.148 (0.670) 0.148 (0.671)     2530 

0.78 – 1.00 0.098 (-) 0.073 (0.094) 0.093 (0.092)       297 

 

Table 6 also gives the similar results to Table 5. Quadratic fit in the Erbs’s region of 

0.22 – 0.80 has a minimum RMSE of 0.144 and maximum R2 value of 0.715. Whereas the 

continuous quartic model is applied, it gives a RMSE of 0.140 and the R2 value of 0.745. 

An improvement of 2.78% has been observed utilizing a continuous quadratic fit over 

piecewise quadratic fit. Improvement is further increased by using the quartic model. This 

signifies the importance of using a continuous quartic models rather than a piecewise 

quadratic or linear model as used in studies like Orgill and Hollands, Al Riahi et al. etc. 

Comparison is extended for one more location to confirm whether the findings are coherent 

or not. 

Table 7.  Piecewise fits for South Dakota, USA with model results shown using 

RMSE (𝐑𝟐). 

 

Model Interval Constant Linear Quadratic Hours 

Erbs et al. 

Model 

Discontinuity 

0.00 – 0.22 0.254 (-) 0.234 (0.154) 0.232 (0.167) 297 

0.22 – 0.80 0.276 (-) 0.268 (0.057) 0.268 (0.058) 884 

0.80 – 1.00 0.253 (-) 0.252 (0.011) 0.248 (0.057) 116 
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Al Riahi et al.  

Model 

Discontinuity 

0.00 – 0.25 0.259 (-) 0.241 (0.138) 0.238 (0.160) 339 

0.25 – 0.70 0.277 (-) 0.274 (0.024) 0.271 (0.022) 738 

0.70 – 1.00 0.240 (-) 0.239 (0.009) 0.237 (0.033) 219 

Orgill and 

Hollands Model 

Discontinuity 

0.00 – 0.35 0.273 (-) 0.251 (0.158) 0.250 (0.166) 492 

0.35 – 0.75 0.273 (-) 0.270 (0.023) 0.270 (0.023) 633 

0.75 – 1.00 0.247 (-) 0.245 (0.028) 0.245 (0.033) 172 

Reindl. et al. 

Model 

Discontinuity 

0.00 – 0.30 0.265 (-) 0.248 (0.130) 0.245 (0.152) 409 

0.30 – 0.78 0.273 (-) 0.268 (0.038) 0.267 (0.041) 749 

0.78 – 1.00 0.253 (-) 0.253 (0.007) 0.249 (0.041) 139 

 

In Table 7 for South Dakota, Reindl discontinuity of 0.25 – 0.70 works best and gives 

a low error of 0.267 and 𝑅2 value of 0.041. While the same continuous model i.e. quadratic 

when applied gives an error of 0.260 and R2 value of 0.189 (Table 3). The continuo

 us model not only performs better than the piecewise model but also reduces the 

complexity associated with the piece wise models. An improvement of 2.62% in estimation 

of diffuse radiation is achieved using continuous quartic model over piecewise quadratic 

models. Continuous quartic models perform better than the piecewise quadratic models in 

all three locations which justifies usage of continuous quartic models and can implemented 

for the estimation of diffuse radiation calculation. 

3.4.4 Regressions using Relative Humidity, Absolute humidity and Ambient Air 

Temperature 

For improving diffuse fraction assessment in Germany some more parameters are 

explored. Same parameters are also explored in other studies such as Reindl et al. explored 

the elevation angle, temperature and relative humidity, Iqbal (Iqbal 1979) explored the 
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sunshine duration and Al Riahi et al. explored the sunshine duration and clearness index 

for improving diffuse radiation estimation. In this study, temperature, absolute humidity, 

relative humidity and clearness index have been explored and plotted with respect to 

diffuse fraction. Figure 7 is a distribution of relative humidity and temperature with diffuse 

fraction. A regression analysis was performed utilizing clearness index data only, clearness 

index, temperature and relative humidity data only and using clearness index and 

temperature only. 

 

Figure 7. Effect of relative humidity and temperature on diffuse fraction. 

It is observed in Table 8 that the RMSE has been improved by 6.10 % and R2 value has 

been improved by 5.80 %. The RMSE and R2 values remains same in linear fit even when 

relative humidity is not included in the regression analysis while RMSE and R2 observe a 

fractional change in quadratic fit. A slight increase of 0.002 in R2 that can be justified by 

the increase in number of variables and a slight decrease of 0.004 in 𝑅𝑀𝑆𝐸 which can be 

justified by eliminating the parameter that is not required therefore reducing the RMSE. 
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Table 8. Bavaria, Germany continuous fit, RMSE on left and 𝐑𝟐on right. 

 

Predictor Variable Linear Quadratic 

𝑘𝑡 0.163 (0.769) 0.155 (0.790) 

𝑘𝑡  , 𝑇 , 𝜌 0.154 (0.803) 0.140 (0.836) 

𝑘𝑡  , 𝑇 0.154 (0.803) 0.142 (0.832) 

 

1) Using 𝑇, 𝜌 and 𝑘𝑡 as a predictor variable in linear model (Eq. 3.31) and quadratic 

model (Eq. 3.32). 

 

𝐼𝑑 = 𝐼 × (1.391 − 1.1224 × 𝑘𝑡 + 0.00085 × 𝜌 − 0.00023629 × 𝑇
+ 0.8846) 

 

(3.31) 

 

𝐼𝑑 = 𝐼 × (1.2761 − 0.61573 × 𝑘𝑡 − 0.00327 × 𝜌 − 0.010083 × 𝑇 +
0.0045948 × 𝑘𝑡 × 𝜌 − 0.000103 × 𝑘𝑡 × 𝑇 − 0.89936 × 𝑘𝑡  

2 + 7.36 ×
10−6 × 𝑇2 + 0.00011302 × 𝜌2)                   

(3.32) 

 

2) Using 𝑇 and 𝑘𝑡 as a predictor variable in linear model (Eq. 3.33) and quadratic 

model (Eq. 3.34). 

 

𝐼𝑑 = 𝐼 × (1.2201 − 1.1538 × 𝑘𝑡 − 0.0029763 × 𝑇 (3.33) 

 

𝐼𝑑 = 𝐼 × (1.0342 − 1.0371 × 𝑘𝑡 + 0.0006621 × 𝑇 − 0.0097391 × 𝑘𝑡 × 𝑇 −
1.041 × 𝑘𝑡  

2 + 5.317 × 10−6 × 𝑇2)                                                                                                                     

(3.34) 

 

3) Using 𝑘𝑡 as a predictor variable in linear model (Eq. 3.35) and quadratic model 

(Eq. 3.36) 

 

𝐼𝑑 = 𝐼 × (1.174 − 1.155 × 𝑘𝑡) (3.35) 

 

𝐼𝑑 = 𝐼 × (1.045 − 0.2863 × 𝑘𝑡 − 0.9749 × 𝑘𝑡  
2 ) (3.36) 
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Figure 8. Effect of absolute humidity on diffuse fraction. 

After analyzing three different parameters a fourth parameter that is absolute humidity 

is also studied and all possible combinations are analyzed. Table 9 is summary of the 

RMSE and R2.  The absolute humidity and temperature has the same values of RMSE and 

R2 which can be explained by the fact that the absolute humidity is a function of 

temperature while the there is a slight improvement in RMSE and R2 values when relative 

humidity is used. It is also observed that the either the relative humidity or temperature 

when used with the clearness index improves the fit. The clearness index is the most 

important variable after that relative humidity and temperature both produces the same 

RMSE and R2 and ranked at the second place. Using relative humidity, temperature and 

clearness index together increases the complexity without improving the RMSE and R2 

values.  

Table 9. Continuous fit with different predictor variables, RMSE on left and 𝐑𝟐on 

right. 
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Predictor Variable Linear Quadratic 

𝜌𝑎 0.310 (0.200) 0.310 (0.200) 

𝜌 0.266 (0.408) 0.265 (0.413) 

𝑇 0.314 (0.180) 0.310 (0.200) 

𝑘𝑡  , 𝑇 0.154 (0.803) 0.142 (0.832) 

𝑘𝑡  , 𝜌𝑎 0.154 (0.802) 0.142 (0.831) 

𝑘𝑡  , 𝜌 0.154 (0.801) 0.141 (0.833) 

𝑘𝑡  , 𝑇 , 𝜌 0.154 (0.803) 0.140 (0.836) 

𝑘𝑡  , 𝑇 , 𝜌𝑎 0.154 (0.803) 0.141 (0.834) 

 

3.5 Conclusion and Future Work  

Present study is conducted for four continents i.e. North America, South America, 

Australia and Asia Pacific all possessing different climatic conditions. The three most 

important conclusions obtained from the study are explained as: First, gives a best 

performing model based on the values of RMSE and R2 values. An annual comparison is 

done among existing models and it has been found that Orgill and Hollands model worked 

best for six locations out of nine locations for which comparison has been run. The findings 

are in parallel with the findings in studies conducted by Dervishi and Mahadavi (Dervishi 

and Mahadavi 2012), Wong and Chow (Wong & Chow 2001), Eliminir (Eliminir 2007) 

and Jacovide et al. (Jacovide et al. 2006).  

Second, exploits the models’ vulnerability in low, medium and high kt regions. It is 

observed that the existing models are prone to high relative error in regions of 0.50 – 1.00. 

New global model is developed to improve the fit in this region and the improvement is 

also realized in other regions like 0.00 – 0.20. The new global model performs better in 

low kt region for 2 different sites when comparison is run for four different locations.  
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In third part a comparative analysis between the piecewise fittings and continuous 

fittings resulted in a conclusion that the continuous models work as good as or better than 

the piecewise models and can be implemented for the diffuse radiation estimation. 

Moreover, site specific models that are continuous in nature perform better than the global 

models such as Orgill and Hollands etc. If there is no data available for a particular site and 

hence no model can be generated for that site in that case a model which works best for 

most of the locations should be implemented with the improvements suggested. For 

example Orgill and Hollands model should be used where fit cannot be obtained because 

of data unavailability. Orgill and Hollands model must be complemented with the newly 

developed model in the region of 0.80 – 1.00 which will overall improves diffuse radiation 

estimation. For better estimation of diffuse radiation, site specific models generated in this 

study should be used compared to the existing models in literature. Also, study finds out 

the best working discontinuity region for the piecewise models. For Erbs et al. a high 

R2 value and low RMSE is noted for discontinuity of 0.22 – 0.80 which is better than the 

rest of the discontinuities utilized in other models e.g.  025 – 0.70 etc. Therefore, if a 

piecewise fit is obtained then Erbs’s region should be considered for better estimation of 

diffuse radiation. 

Study is further narrowed down to Germany in which different predictor variables are 

explored. The effect of clearness index, relative humidity, absolute humidity and 

temperature is analyzed in improving the diffuse radiation calculation for Bavaria, 

Germany. The clearness index plays a major role in improving the diffuse radiation 

calculation after that temperature, relative humidity and absolute humidity all plays a 

similar role. A combination of clearness index and temperature is as significant as the 
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combination of clearness index and relative humidity in improving the calculation of 

diffuse radiation. Models are developed utilizing three, two and one predictor variable and 

a model with two predictor variable will be sufficient to calculate diffuse radiation for 

Bavaria, Germany. 

The present work can be extended to build models for all locations and implementing 

those in the software utilized for the solar power estimation like HOMER, PVSYST, SAM, 

PVWATTS and PV SOL etc. This will be a cumbersome work but there are several studies 

already conducted in the world for the estimation of diffuse radiation for example 

Choudhary (Choudhary 1963) for India, Bolan et al (Bolan et al. 2008) for Australia, 

Srinivasan et al. (Srinivasan et al. 1986) for Saudi Arabia, Lam and Li (Lam & Li 1996) 

for Hong Kong, Muneer et al. (Muneer et al. 2007) for UK and Spain. These models can 

be gathered and can be implemented in the softwares as per the location. Moreover, present 

studies are concentrated on linear and nonlinear regression models for the estimation of 

diffuse radiations. This can be replaced by the rational models, exponential models or 

logarithmic models. For example Bolan et al. used the rational model for the estimation of 

diffuse radiation. Furthermore, Piri and kisi (Piri & Kisi 2015) used neural network for the 

estimation of diffuse radiation. Improvement in these methods will further result in better 

estimation of energy from solar photovoltaic or thermal. 
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Sioux Falls, South Dakota, USA Discontinuous Models 

Erbs Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.6931 

 

𝐼𝑑

𝐼
= 0.45987 

 

𝐼𝑑

𝐼
= 0.37488 

 

𝐼𝑑

𝐼
= 0.88905 − 1.629 × 𝑘𝑡  

 

𝐼𝑑

𝐼
= 0.6668 − 0.4208 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −0.057515 + 0.48069 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.96535 − 3.6802 × 𝑘𝑡 + 8.9358 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 0.63382 − 0.27515 × 𝑘𝑡 − 0.14404 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 14.924 − 33.104 × 𝑘𝑡  + 18.756 × 𝑘𝑡

2 
 

Reindl Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.66501 

 

𝐼𝑑

𝐼
= 0.44611 

 

𝐼𝑑

𝐼
= 0.37258 

 



46 

 

𝐼𝑑

𝐼
= 0.83711 − 1.1447 × 𝑘𝑡  

 

𝐼𝑑

𝐼
= 0.65342 − 0.4007 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.07055 + 0.34601 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.94183 − 3.0801 × 𝑘𝑡 + 6.3025 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 0.40787 + 0.58705 × 𝑘𝑡 − 0.92966 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 9.7926 − 21.848 × 𝑘𝑡  + 12.602 × 𝑘𝑡

2 
 

Orgill and Hollands Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.63324 

 

𝐼𝑑

𝐼
= 0.44968 

 

𝐼𝑑

𝐼
= 0.35115 

 

𝐼𝑑

𝐼
= 0.83107 − 1.085 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.64663 − 0.37137 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −0.14934 + 0.58698 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.89723 − 2.1237 × 𝑘𝑡 + 2.8508 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 0.57471 − 0.92048 × 𝑘𝑡 − 0.25941 × 𝑘𝑡

2 
 



47 

 

𝐼𝑑

𝐼
= 2.8344 − 6.3546 × 𝑘𝑡  + 4.009 × 𝑘𝑡

2 
 

Al Riahi Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.68709 

 

𝐼𝑑

𝐼
= 0.47106 

 

𝐼𝑑

𝐼
= 0.35301 

 

𝐼𝑑

𝐼
= 0.85938 − 1.3761 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.6324 − 0.34308 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −0.12014 + 0.2841 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.96581 − 3.6828 × 𝑘𝑡 + 8.891 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 0.7642 − 0.76962 × 𝑘𝑡 − 0.44994 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 4.2173 − 9.563 × 𝑘𝑡  + 5.857 × 𝑘𝑡

2 
 

Bondville, Illinois, USA Piecewise model 

Erbs Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.97382 

 

𝐼𝑑

𝐼
= 0.50283 

 

𝐼𝑑

𝐼
= 0.18382 
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𝐼𝑑

𝐼
= 1.0041 − 0.1978 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.4501 − 1.6072 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −1.0388 + 1.4853 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.0104 − 0.32941 × 𝑘𝑡 + 0.51106 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 1.2422 − 0.80449 × 𝑘𝑡 − 0.7217 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 22.927 − 56.023 × 𝑘𝑡  + 34.472 × 𝑘𝑡

2 
 

Reindl Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.9555 

 

𝐼𝑑

𝐼
= 0.50867 

 

𝐼𝑑

𝐼
= 0.17039 

 

𝐼𝑑

𝐼
= 1.0172 − 0.27616 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.4668 − 1.6292 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −0.76088 + 1.1517 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.98553 + 0.16387 × 𝑘𝑡 − 1.217 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 1.3276 − 1.1053 × 𝑘𝑡 − 0.46647 × 𝑘𝑡

2 
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𝐼𝑑

𝐼
= 12.715 − 31.703 × 𝑘𝑡  + 20.005 × 𝑘𝑡

2 
 

Orgill and Hollands Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.92819 

 

𝐼𝑑

𝐼
= 0.51759 

 

𝐼𝑑

𝐼
= 0.18578 

 

𝐼𝑑

𝐼
= 1.0415 − 0.40948 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.4806 − 1.6479 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.24706 − 0.077577 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.97984 + 0.25969 × 𝑘𝑡 − 1.5133 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 1.4383 − 1.4923 × 𝑘𝑡 − 0.1373 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 17.285 − 42.627 × 𝑘𝑡  + 26.526 × 𝑘𝑡

2 
 

Al Riahi Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.9681 

 

𝐼𝑑

𝐼
= 0.60467 

 

𝐼𝑑

𝐼
= 0.22499 
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𝐼𝑑

𝐼
= 1.008 − 0.22807 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.42 − 1.5387 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.97682 − 0.987 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.0029 − 0.13608 × 𝑘𝑡 − 0.31944 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 1.2839 − 0.96905 × 𝑘𝑡 − 0.56353 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 9.1906 − 22.327 × 𝑘𝑡  + 13.823 × 𝑘𝑡

2 
 

 

Bavaria, Hohenpeissenberg, Germany 

Erbs Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.98746 

 

𝐼𝑑

𝐼
= 0.57986 

 

𝐼𝑑

𝐼
= 0.21597 

 

𝐼𝑑

𝐼
= 0.91807 − 0.080938 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 1.4073 − 1.5219 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= −1.5049 + 2.0712 × 𝑘𝑡 

 

𝐼𝑑

𝐼
= 0.98769 − 0.11174 × 𝑘𝑡 − 0.75098 × 𝑘𝑡

2 
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𝐼𝑑

𝐼
= 1.1125 − 0.22283 × 𝑘𝑡 − 1.2469 × 𝑘𝑡

2 
 

𝐼𝑑

𝐼
= 6.6391 − 16.826 × 𝑘𝑡  + 10.931 × 𝑘𝑡

2 
 

Reindl Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.97783 

𝐼𝑑

𝐼
= 0.55019 

𝐼𝑑

𝐼
= 0.1997 

𝐼𝑑

𝐼
= 1.015 − 0.223 × 𝑘𝑡 

𝐼𝑑

𝐼
= 1.5023 − 1.6619 × 𝑘𝑡 

𝐼𝑑

𝐼
= −1.111 + 1.6071 × 𝑘𝑡 

𝐼𝑑

𝐼
= 0.96959 − 0.49426 × 𝑘𝑡 − 1.9943 × 𝑘𝑡

2 

𝐼𝑑

𝐼
= 1.3065 − 0.89427 × 𝑘𝑡 − 0.69675 × 𝑘𝑡

2 

𝐼𝑑

𝐼
= 9.0989 − 22.536 × 𝑘𝑡  + 14.231 × 𝑘𝑡

2 

Orgill and Hollande Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.97304 

𝐼𝑑

𝐼
= 0.55354 
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𝐼𝑑

𝐼
= 0.20674 

𝐼𝑑

𝐼
= 1.0226 − 0.28012 × 𝑘𝑡  

𝐼𝑑

𝐼
= 1.5588 − 1.7482 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.3583 + 0.70638 × 𝑘𝑡 

𝐼𝑑

𝐼
= 0.97693 + 0.31991 × 𝑘𝑡 − 1.5708 × 𝑘𝑡

2 

𝐼𝑑

𝐼
= 1.5283 − 1.6335 × 𝑘𝑡 − 0.10251 × 𝑘𝑡

2 

𝐼𝑑

𝐼
= 11.371 − 27.767 × 𝑘𝑡  + 17.23 × 𝑘𝑡

2 

Al Riahi Model Discontinuity (Constant, Linear, Quadratic) 

𝐼𝑑

𝐼
= 0.98542 

𝐼𝑑

𝐼
= 0.69587 

𝐼𝑑

𝐼
= 0.23161 

𝐼𝑑

𝐼
= 1.0004 − 0.10248 × 𝑘𝑡  

𝐼𝑑

𝐼
= 1.4024 − 1.4756 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.51441 − 0.36384 × 𝑘𝑡 

𝐼𝑑

𝐼
= 0.98812 + 0.10291 × 𝑘𝑡 − 0.71436 × 𝑘𝑡

2 
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𝐼𝑑

𝐼
= 1.0288 + 0.23374 × 𝑘𝑡 − 1.17916 × 𝑘𝑡

2 

𝐼𝑑

𝐼
= 10.197 − 24.932 × 𝑘𝑡  + 15.525 × 𝑘𝑡

2 

Colorado, Boulder, USA Continuous Models  

𝐼𝑑

𝐼
= 1.239 − 1.286 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.01706 × 𝑘𝑡

2 − 0.2711 × 𝑘𝑡 + 0.4901 

𝐼𝑑

𝐼
= 0.03535 × 𝑘𝑡

3 + 0.03825 × 𝑘𝑡
2 − 0.3281 × 𝑘𝑡 + 0.4649 

𝐼𝑑

𝐼
= 0.0162 × 𝑘𝑡

4 + 0.06682 × 𝑘𝑡
3 + 0.002466 × 𝑘𝑡 − 0.3674 × 𝑘𝑡 + 0.4796 

Bondville, Illinois, USA Continuous Models  

𝐼𝑑

𝐼
= 1.388 − 1.498 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.4506 × 𝑘𝑡

2 − 𝑘𝑡 + 1.263 

𝐼𝑑

𝐼
= 5.478 × 𝑘𝑡

3 − 8.933 × 𝑘𝑡
2 + 3.014 × 𝑘𝑡 + 0.7036 

𝐼𝑑

𝐼
= 14.06 × 𝑘𝑡

4 −  22.8 × 𝑘𝑡
3 + 10.64 × 𝑘𝑡 − 2.298 × 𝑘𝑡 + 1.143 

Desert Rock, Nevada, USA Continuous Models 

𝐼𝑑

𝐼
= 0.3068 − 0.212 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.4506 × 𝑘𝑡

2 − 𝑘𝑡 + 1.263 

𝐼𝑑

𝐼
= 0.01687 × 𝑘𝑡

3 + 0.05804 × 𝑘𝑡
2 − 0.2103 × 𝑘𝑡 + 0.2653 
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𝐼𝑑

𝐼
= 0.002444 × 𝑘𝑡

4 + 0.002595 × 𝑘𝑡
3 + 0.05842 × 𝑘𝑡 − 0.2222 × 𝑘𝑡

+ 0.2658 

Rock spring, Pennsylvania USA Continuous Models 

𝐼𝑑

𝐼
= −0.6232 − 0.2766 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.05388 × 𝑘𝑡

2 − 0.2941 × 𝑘𝑡 + 0.6771 

𝐼𝑑

𝐼
= 0.03657 × 𝑘𝑡

3 − 0.03162 × 𝑘𝑡
2 − 0.3616 × 𝑘𝑡 + 0.6667 

𝐼𝑑

𝐼
= 0.01837 × 𝑘𝑡

4 + 0.0511 × 𝑘𝑡
3 − 0.08011 × 𝑘𝑡 − 0.3784 × 𝑘𝑡 + 0.6823 

Sioux Falls, South Dakota, USA Continuous Models 

𝐼𝑑

𝐼
= 0.5059 − 0.1174 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.04175 × 𝑘𝑡

2 − 0.1245 × 𝑘𝑡 + 0.4642 

𝐼𝑑

𝐼
= −0.01034 × 𝑘𝑡

3 + 0.04641 × 𝑘𝑡
2 − 0.1032 × 𝑘𝑡 + 0.4613 

𝐼𝑑

𝐼
= 0.0271 × 𝑘𝑡

4 − 0.02998 × 𝑘𝑡
3 − 0.03389 × 𝑘𝑡 − 0.07659 × 𝑘𝑡 + 0.4867 

Fort Peck, Montana, USA Continuous Models 

𝐼𝑑

𝐼
= 0.4956 + 0.2506 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.02458 × 𝑘𝑡

2 − 0.267 × 𝑘𝑡 + 0.5202 

𝐼𝑑

𝐼
= 0.02406 × 𝑘𝑡

3 + 0.01709 × 𝑘𝑡
2 − 0.3087 × 𝑘𝑡 + 0.4946 



55 

 

𝐼𝑑

𝐼
= 0.009809 × 𝑘𝑡

4 + 0.04836 × 𝑘𝑡
3 − 0.004578 × 𝑘𝑡 − 0.3434 × 𝑘𝑡

+ 0.5042 

Ushusaia, Tierra Del Fuego, Argentina Continuous Models 

𝐼𝑑

𝐼
= 0.8976 − 0.6738 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.3633 × 𝑘𝑡

2 − 0.3508 × 𝑘𝑡 + 0.847 

𝐼𝑑

𝐼
= 3.647 × 𝑘𝑡

3 − 5.458 × 𝑘𝑡
2 + 1.588 × 𝑘𝑡 + 0.6695 

𝐼𝑑

𝐼
= −1.042 × 𝑘𝑡

4 + 5.637 × 𝑘𝑡
3 − 6.695 × 𝑘𝑡 + 1.867 × 𝑘𝑡 + 0.6523 

Wagga Wagga, New South Wales, Australia Continuous Models 

𝐼𝑑

𝐼
= 1.145 − 1.269 × 𝑘𝑡 

𝐼𝑑

𝐼
= 0.4874 × 𝑘𝑡

2 − 1.321 × 𝑘𝑡 + 1.157 

𝐼𝑑

𝐼
= 5.656 × 𝑘𝑡

3 − 0.8657 × 𝑘𝑡
2 + 2.713 × 𝑘𝑡 + 0.2654 

𝐼𝑑

𝐼
= 7.789 × 𝑘𝑡

4 − 10.47 × 𝑘𝑡
3 + 2.851 × 𝑘𝑡 − 0.5285 × 𝑘𝑡 + 0.914 

Sapparo, Hokkaido, Japan Continuous Models 

𝐼𝑑

𝐼
= 1.145 − 1.269 × 𝑘𝑡 

𝐼𝑑

𝐼
= 0.4874 × 𝑘𝑡

2 − 1.321 × 𝑘𝑡 + 1.157 

𝐼𝑑

𝐼
= 5.656 × 𝑘𝑡

3 − 0.8657 × 𝑘𝑡
2 + 2.713 × 𝑘𝑡 + 0.2654 
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𝐼𝑑

𝐼
= 7.789 × 𝑘𝑡

4 − 10.47 × 𝑘𝑡
3 + 2.851 × 𝑘𝑡 − 0.5285 × 𝑘𝑡 + 0.914 

Hohenpeissenberg, Bavaria, Germany 

𝐼𝑑

𝐼
= 1.174 − 1.155 × 𝑘𝑡 

𝐼𝑑

𝐼
= −0.9749 × 𝑘𝑡

2 − 0.2863 × 𝑘𝑡 + 1.045 

𝐼𝑑

𝐼
= 3.522 × 𝑘𝑡

3 − 5.696 × 𝑘𝑡
2 + 1.451 × 𝑘𝑡 + 0.8975 

𝐼𝑑

𝐼
= 8.125 × 𝑘𝑡

4 − 11.37 × 𝑘𝑡
3 + 3.269 × 𝑘𝑡 − 0.5006 × 𝑘𝑡 + 1.012 
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APPENDIX B  

MATLAB PROGRAM - MODEL COMPARISON ON ANNUAL BASIS 
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1 function diffusedradiation (name,r_fname,lati,longi,Zc) 

2 % Extraterrestrial radiation calculation 

3 for day= 1:366 

4 decA = 23.45*sind((360*(284+day))/366); % declination angle for a particular day. 

5 Tc1= [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]; 

6 Tc2= [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0]; 

7 b(day) = 2*3.14*day/366; 

8 G = 1367*(1.00011 + 0.034221 * cos(b(day)) + 0.001280 * sin(b(day)) + 0.000719 * 

cos(2*b(day)) + 0.000077 * sin(2*b(day))); 

9 B(day) = 360*(day-1)/366; 

10 E(day) = 3.82*(0.000075+0.001868*cosd(B(day))-0.032077*sind(B(day))-

0.014615*cosd(2*B(day))-0.04089*sind(2*B(day))); 

11 for x= 1:24    

12 Ts1(day,x)= Tc1(x) + (longi/15)-Zc + E(day); % Solar time corresponding to the local 

time tc1 

13 Ts2(day,x)= Tc2(x) + (longi/15)-Zc + E(day); % Solar time corresponding to the local 

time tc2 

14 w3(day,x) = (Ts1(day,x)-12)*15; % Hour angle corresponding to Ts1 

15 w4(day,x) = (Ts2(day,x)-12)*15; % Hour angle corresponding to Ts2 

16 Etr1(day,x) = ((12/(3.14*2.77))*G*((cosd(lati)*cosd(decA)*(sind(w4(day,x))-

sind(w3(day,x)))+ (0.0174*(w4(day,x)-w3(day,x))*sind(lati)*sind(decA)))));% 

Extraterrestrial radiation 

17 end 

18 end 

19 ETR = transpose(Etr1); 

20 xlswrite(r_fname,ETR,'Sheet4'); 

21 m1 =  xlsread(r_fname,'Sheet4'); 

22 an = m1(:); 

23 xlswrite(r_fname,an,'Sheet3','B1'); 

24 m11 =  xlsread(r_fname,'Sheet1'); 

25 m22 =  xlsread(r_fname,'Sheet2'); 

26 an1 = m11(:); 

27 am = m22(:); 

28 xlswrite(r_fname,an1,'Sheet3','C1'); 

29 xlswrite(r_fname,am,'Sheet3','I1'); 

30 for x1= 1:numel(an1) 

31 akt(x1,1) = an1(x1) / an(x1); 

32 end 

33 xlswrite(r_fname,akt,'Sheet3','D1'); 

34 m = xlsread(r_fname,'Sheet3'); 

35 I = m(:,2);  

36 kt = m(:,3); 

37 Id = m(:,8); 

38 for i = 1:numel(I) 

39 min = kt(i); 



59 

 

40 for j= i+1:numel(I) 

41 if(min>kt(j)) 

a. min = kt(j); 

b. idx = j; 

c. temp = kt(i);     

d. kt(i)= kt(idx); 

e. kt(idx) = temp; 

f. temp = I(i); 

g. I(i) = I(idx); 

h. I(idx) = temp; 

i. temp = Id(i); 

j. Id(i) = Id(idx); 

k. Id(idx) = temp; 

42 end 

43 end 

44 end 

45 z = 1; 

46 for i = 1:numel(kt) 

47 if kt(i)>0 && kt(i)<= 1 

48 x(z,1) = kt(i,1); 

49 y(z,1) = I(i,1); 

50 w(z,1) = Id(i,1); 

51 z= z+1; 

52 end 

53 end 

54 disp(z); 

55 xlswrite(r_fname,y,'sheet5','B1') 

56 xlswrite(r_fname,x,'sheet5','C1') 

57 xlswrite(r_fname,w,'sheet5','I1') 

58 N = xlsread(r_fname,'sheet5'); 

59 I = N(:,1); 

60 kt = N(:,2); 

61 Id = N(:,8); 

62 Idf = zeros(z-2,1); 

63 for i= 1:z-1 

64 Idf(i,1) = Id(i,1)/I(i,1); 

65 end 

66 xlswrite(r_fname,Idf,'sheet5','H1'); 

67 % For taking values out of bound for Id/I form the data  set  

68 o=1; 

69 for i = 1:numel(kt) 

70 if Idf(i)>0 && Idf(i) <= 1 

71 p(o,1) = kt(i,1); 

72 q(o,1) = Idf(i,1); 

73 r(o,1) = I(i,1); 
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74 s(o,1) = Id(i,1); 

75 o= o+1; 

76 end 

77 end 

78 xlswrite(r_fname,p,'sheet5','J1'); 

xlswrite(r_fname,q,'sheet5','K1');xlswrite(r_fname,r,'sheet5','u1');xlswrite(r_fname

,s,'sheet5','v1'); 

79 disp(numel(p));disp(numel(q));disp(numel(r));disp(numel(s)); 

80 %Orgills model diffuse radiation calculation 

81 c1 =0 ; d1 =0; e1 =0;  

82 z1 = 0; 

83 z1 = numel(p); 

84 for j = 1:z1 

85 if(0 <p(j)) && (p(j) < 0.35) 

86 c1 = c1+1; 

87 elseif (0.35 <= p(j)) && (p(j) <= 0.75) 

88 d1= d1+1; 

89 elseif(0.75< p(j) && p(j) <1) 

90 e1= e1+1; 

91 else 

92 end 

93 end 

94 for i=1:c1; 

95 Idc(i,1) = r(i)*(1-0.249*p(i)); 

96 Idc1(i,1) = Idc(i,1)/r(i); 

97 end 

98 for i=c1+1:c1+d1 

99 Idc(i,1) = r(i)*(1.577-1.84*p(i)); 

100 Idc1(i,1) = Idc(i,1)/r(i); 

101 end   

102 for i= c1+d1+1:c1+d1+e1; 

103 Idc(i,1)= 0.177*(r(i)*p(i)); 

104 Idc1(i,1) = Idc(i,1)/r(i); 

105 end 

106 xlswrite(r_fname,Idc,'sheet5','E1'); 

107 Rsq1 = 1 - sum((s - Idc).^2)/sum((s - mean(Idc)).^2); 

108 disp(Rsq1); 

109 RMSE1 = sqrt(sum((q(:)- Idc1(:)).^2)/numel(q)); 

110 Idf1 = zeros(z1-1,1); 

111 for i= 1:z1 

112 Idf1(i,1) = Idc(i,1)/r(i,1); 

113 end 

114 % For taking values out of bound for Id/I form the data  set  

115 o1=1; 

116 for i = 1:numel(p) 
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117 if Idf1(i)>0 && Idf1(i) <= 1 

118 p1(o1,1) = p(i,1); 

119 q1(o1,1) = Idf1(i,1); 

120 o1= o1+1; 

121 end 

122 end 

123 xlswrite(r_fname,p1,'sheet5','M1');xlswrite(r_fname,q1,'sheet5','N1') 

124 %Erbs Model model diffuse radiation calculation  

125 c2 =0 ; d2 = 0; e2 =0;  

126 for j = 1:z1 

127 if(0 <p(j)) && (p(j) <= 0.22) 

128 c2 = c2+1; 

129 elseif (0.22 < p(j)) && (p(j) <= 0.80) 

130 d2= d2+1; 

131 elseif(0.80 < p(j) && p(j) <1) 

132 e2= e2+1; 

133 else 

134 end 

135 end 

136 for i=1:c2; 

137 Idc(i,1) = r(i)*(1-0.09*p(i)); 

138 Idc1(i,1) = Idc(i,1)/r(i); 

139 end 

140 for i=c2+1:c2+d2 

141 Idc(i,1) = r(i)*(0.9511-0.1604*p(i)+4.388*(p(i)^2)-

16.638*(p(i)^3)+12.336*(p(i)^4)); 

142 Idc1(i,1) = Idc(i,1)/r(i); 

143 end   

144 for i= c2+d2+1:c2+d2+e2; 

145 Idc(i,1)= 0.165*(r(i)*p(i)); 

146 Idc1(i,1) = Idc(i,1)/r(i); 

147 end 

148 Rsq2 = 1 - sum((s(:) - Idc(:)).^2)/sum((s(:) - mean(Idc(:))).^2); 

149 disp(Rsq2); 

150 RMSE2 = sqrt(sum((q(:)- Idc1(:)).^2)/numel(q)); 

151 xlswrite(r_fname,Idc,'sheet5','D1'); 

152 Idf2 = zeros(z1-1,1); 

153 for i= 1:z1 

154 Idf2(i,1) = Idc(i,1)/r(i,1); 

155 end 

156 % For taking values out of bound for Id/I form the data  set  Reindl Model 

157 o2=1; 

158 for i = 1:numel(p) 

159 if Idf2(i)>0 && Idf2(i) <= 1 

160 p2(o2,1) = p(i,1); 
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161 q2(o2,1) = Idf2(i,1); 

162 o2= o2+1; 

163 end 

164 end 

165 xlswrite(r_fname,p2,'sheet5','O1');xlswrite(r_fname,q2,'sheet5','P1') 

166 hold on; 

167 c3 =0 ; d3 = 0; e3 =0;  

168 for j = 1:z1 

169 if(0<= p(j)) && (p(j) <=0.3) 

170 c3 = c3+1; 

171 elseif (0.3 < p(j)) && (p(j) < 0.78) 

172 d3= d3+1; 

173 elseif(0.78<= p(j) && p(j) <1) 

174 e3= e3+1; 

175 else 

176 end 

177 end 

178 for i=1:c3; 

179 Idc(i,1) = r(i)*(1.020-0.248*p(i)); 

180 Idc1(i,1) = Idc(i,1)/r(i); 

181 end 

182 for i=c3+1:c3+d3 

183 Idc(i,1) = r(i)*(1.45-1.67*p(i)); 

184 Idc1(i,1) = Idc(i,1)/r(i); 

185 end   

186 for i= c3+d3+1:c3+d3+e3; 

187 Idc(i,1)= 0.147*(r(i)*p(i)); 

188 Idc1(i,1) = Idc(i,1)/r(i); 

189 end 

190 Rsq3 = 1 - sum((s - Idc).^2)/sum((s - mean(Idc)).^2); 

191 disp(Rsq3); 

192 RMSE3 = sqrt(sum((q(:)- Idc1(:)).^2)/numel(q)); 

193 xlswrite(r_fname,Idc,'sheet5','F1'); 

194 for i= 1:z1 

195 Idf3(i,1) = Idc(i,1)/r(i,1); 

196 end 

197 % For taking values out of bound for Id/I form the data  set  

198 o3=1; 

199 for i = 1:numel(p) 

200 if Idf3(i)>0 && Idf3(i) <= 1 

201 p3(o3,1) = p(i,1); 

202 q3(o3,1) = Idf3(i,1); 

203 o3= o3+1; 

204 end 

205 end 



63 

 

206 xlswrite(r_fname,p3,'sheet5','Q1');xlswrite(r_fname,q3,'sheet5','R1') 

207 hold on; 

208 %AL Riahi Model diffuse radiation calculation 

209 c4 =0 ; d4 = 0; e4 =0;  

210 for j = 1:z1 

211 if(0 <= p(j)) && (p(j) < 0.25) 

212 c4 = c4+1; 

213 elseif (0.25 <= p(j)) && (p(j) <= 0.70) 

214 d4= d4+1; 

215 elseif(0.70 < p(j) && p(j) <1) 

216 e4= e4+1; 

217 else 

218 end 

219 end 

220 for i=1:c4; 

221 Idc(i,1) = r(i)*(0.932*p(i)); 

222 Idc1(i,1) = Idc(i,1)/r(i); 

223 end 

224 for i=c4+1:c4+d4 

225 Idc(i,1) = r(i)*(1.293-1.631*p(i)); 

226 Idc1(i,1) = Idc(i,1)/r(i); 

227 end   

228 for i= c4+d4+1:c4+d4+e4; 

229 Idc(i,1)= 0.151*(r(i)*p(i)); 

230 Idc1(i,1) = Idc(i,1)/r(i); 

231 end 

232 Rsq4 = 1 - sum((s - Idc).^2)/sum((s - mean(Idc)).^2); 

233 disp(Rsq4); 

234 RMSE4 = sqrt(sum((q(:)- Idc1(:)).^2)/numel(q)); 

235 xlswrite(r_fname,Idc,'sheet5','G1'); 

236 for i= 1:z1 

237 Idf4(i,1) = Idc(i,1)/r(i,1); 

238 end 

239 % For taking values out of bound for Id/I form the data set 

240 o4=1; 

241 for i = 1:numel(p) 

242 if Idf4(i)>0 && Idf4(i) <= 1 

243 p4(o4,1) = p(i,1); 

244 q4(o4,1) = Idf4(i,1); 

245 o4= o4+1; 

246 end 

247 end 

248 %New Model calculation 

249 c5 =0 ; d5 = 0; e5 =0;  

250 for j = 1:z1 
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251 if(0 <= p(j)) && (p(j) < 0.25) 

252 c5 = c5+1; 

253 elseif (0.25 <= p(j)) && (p(j) <= 0.70) 

254 d5= d5+1; 

255 elseif(0.70 < p(j) && p(j) <1) 

256 e5= e5+1; 

257 else 

258 end 

259 end 

260 for i=1:c5; 

261 Idc(i,1) = r(i)*(11.42*p(i)^4-16.84*p(i)^3+6.104*p(i)^2-1.006*p(i)+1.026); 

262 Idc1(i,1) = Idc(i,1)/r(i); 

263 end 

264 for i=c5+1:c5+d5 

265 Idc(i,1) = r(i)*(11.42*p(i)^4-16.84*p(i)^3+6.104*p(i)^2-1.006*p(i)+1.026); 

266 Idc1(i,1) = Idc(i,1)/r(i); 

267 end   

268 for i= c4+d4+1:c4+d4+e4; 

269 Idc(i,1) = r(i)*(11.42*p(i)^4-16.84*p(i)^3+6.104*p(i)^2-1.006*p(i)+1.026); 

270 Idc1(i,1) = Idc(i,1)/r(i); 

271 end 

272 Rsq5 = 1 - sum((s - Idc).^2)/sum((s - mean(Idc)).^2); 

273 disp(Rsq5); 

274 RMSE5 = sqrt(sum((q(:)- Idc1(:)).^2)/numel(q)); 

275 for i= 1:z1 

276 Idf5(i,1) = Idc(i,1)/r(i,1); 

277 end 

278 % For taking values out of bound for Id/I form the data  set 

279 o5=1; 

280 for i = 1:numel(p) 

281 if Idf5(i)>0 && Idf5(i) <= 1 

282 p5(o5,1) = p(i,1); 

283 q5(o5,1) = Idf5(i,1); 

284 o5= o5+1; 

285 end 

286 end 

287 fprintf(1,'Rmse1 %5.3f\n Rmse2 %5.3f\n Rmse3 %5.3f\n Rmse4 %5.3f\n Rmse5 

%5.3f\n',RMSE1, RMSE2, RMSE3, RMSE4, RMSE5) 

288 %fprintf(1,'Rmse1 %5.3f\n Rmse2 %5.3f\n Rmse3 %5.3f\n Rmse4 %5.3f\n',RMSE1, 

RMSE2, RMSE3, RMSE4); 

289 xlswrite(r_fname,p4,'sheet5','S1');xlswrite(r_fname,q4,'sheet5','T1')  

290 plot(p,q,'.','color',[0.5,0.5,0.5]); 

291 hold on; 

292 plot(p1,q1,'g',p2,q2,'k',p3,q3,'r',p4,q4,'y',p5,q5,'m','LineWidth',2,'LineWidth',2,'Line

Width',2,'LineWidth',2,'LineWidth',2); 
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293 %plot(p1,q1,'g',p2,q2,'k',p3,q3,'r',p4,q4,'y','LineWidth',2,'LineWidth',2,'LineWidth',2,

'LineWidth',2); 

294 title(name); 

295 xlabel('Clearness Index'); 

296 ylabel('Diffuse Fraction'); 

297 legend('kt - Grey','Orgills - Green','Erbs - Black','Reindl - Red','Al riahi - yellow'); 

298 end 
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APPENDIX C  

MATLAB PROGRAM - MODEL PERFORMANCE ASSESSMENT IN 

DIFFERENT CLEARNESS INDEX REGIONS 
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1 Function piecewisef1() 

2 m = xlsread('Germany TH data.xlsx','Sheet7'); 

3 I =  m(:,1); 

4 Id = m(:,2); 

5 kt=  m(:,3); 

6 Idf = m(:,6); 

7 p = 1; q1 =1; q2 =1; q3 =1; q4 =1; r =1 ; s = 1; t = 1; a= 1; w = 1 ; y = 1; 

8 s1 = 1; s2 = 1 ; 

9 for x1 = 1 : numel(Idf)  

10 if 0 <= Idf(x1) && Idf(x1) <= 1  

11 Idfn(a) =  Idf(x1); 

12 kt(a) =  kt(x1); 

13 I(a) =  I(x1); 

14 Id(a) = Id(x1); 

15 a =  a +1 ; 

16 end 

17 end 

18 for x = 1 : a-1 

19 if  kt(x) <= 0.2 

20 Idc1(p,1) = I(x)*(1-0.249*kt(x)); % Orgills Model 

21 Idc2(p,1) = I(x)*(1-0.09*kt(x));  % Erbs Model 

22 Idc3(p,1) = I(x)*(1.020-0.248*kt(x)); % Reidnl Model 

23 Idc4(p,1) = I(x)*(0.932*kt(x)); % Al Riahi Model 

24 Idcn(p,1) = I(x)*(10.64*kt(x)^4-16.23*kt(x)^3+6.318*kt(x)^2 - 1.116*kt(x)+0.98); % 

Uday US model 

25 Idcnn(p,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 0.5146*kt(x)^2 - 

0.3875*kt(x)+0.8481); % Uday International Model 

26 Idcng(p,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 2.729*kt(x)^2 - 

0.1227*kt(x)+0.8846); % Uday Global Model 

27 Id1(p) = Id(x); 

28 p= p+1; 

29 elseif 0.2 < kt(x) && kt(x) <= 0.4 

a. q1  = q1 + 1; 

b. if 0.2 < kt(x) && kt(x) <0.35              % Orgills Model 

c. Idc5(q1,1) = I(x)*(1-0.249*kt(x));  

d. Id2(q1,1) = Id(x);   

e. elseif 0.35 <= kt(x) && kt(x) <=0.4 

f. Idc5(q1,1) = I(x)*(1.577-1.84*kt(x)); 

g. Id2(q1,1) = Id(x); 

h. end 

i. q2 = q2+1; 

j. if 0.2 < kt(x) && kt(x) <= 0.22            % Erbs Model 

k. Idc6(q2,1) = I(x)*(1-0.09*kt(x)); 

l. Id3(q2,1) = Id(x); 

m. elseif 0.22 < kt(x) && kt(x) <=0.4 
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n. Idc6(q2,1) = I(x)*(0.9511-0.1604*kt(x)+4.388*(kt(x)^2)-

16.638*(kt(x)^3)+12.336*(kt(x)^4)); 

o. Id3(q2,1) = Id(x); 

p. end 

q. q3 = q3+1; 

r. if 0.2 < kt(x) && kt(x) <= 0.3              % Reidnl Model 

s. Idc7(q3,1) = I(x)*(1.020-0.248*kt(x)); 

t. Id4(q3,1) = Id(x); 

u. elseif 0.3 < kt(x) && kt(x) <= 0.4 

v. Idc7(q3,1) = I(x)*(1.45-1.67*kt(x)); 

w. Id4(q3,1) = Id(x); 

x. end 

y. q4 = q4+1; 

z. if 0.2 < kt(x) && kt(x) < 0.25               % Al Riahi Model 

aa. Idc8(q4,1) = I(x)*(0.932*kt(x)); 

bb. Idcn1(q4,1) = I(x)*(10.64*kt(x)^4-16.23*kt(x)^3+6.318*kt(x)^2 - 

1.116*kt(x)+0.98); % Uday US model 

cc. Idcnn1(q4,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 0.5146*kt(x)^2 - 

0.3875*kt(x)+0.8481); % Uday International Model 

dd. Idcng1(q4,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 2.729*kt(x)^2 - 

0.1227*kt(x)+0.8846); % Uday Global Model 

ee. Id5(q4,1) = Id(x); 

ff. elseif 0.25 <= kt(x) && kt(x) <=0.4 

gg. Idc8(q4,1) = I(x)*(1.293-1.631*kt(x)); 

hh. Idcn1(q4,1) = I(x)*(10.64*kt(x)^4-16.23*kt(x)^3+6.318*kt(x)^2 - 

1.116*kt(x)+0.98); % Uday US model 

ii. Idcnn1(q4,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 0.5146*kt(x)^2 - 

0.3875*kt(x)+0.8481); % Uday International Model 

jj. Idcng1(q4,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 2.729*kt(x)^2 - 

0.1227*kt(x)+0.8846); % Uday Global Model 

kk. Id5(q4,1) = Id(x); 

ll. end         

mm. w = w +1;         

30 elseif 0.4 < kt(x) && kt(x) <= 0.6 

a. Idc9(r,1) = I(x)*(1.577-1.84*kt(x)); 

b. Idc10(r,1) = I(x)*(0.9511-0.1604*kt(x)+4.388*(kt(x)^2)-

16.638*(kt(x)^3)+12.336*(kt(x)^4)); 

c. Idc11(r,1) = I(x)*(1.45-1.67*kt(x)); 

d. Idc12(r,1) = I(x)*(1.293-1.631*kt(x)); 

e. Idcn2(r,1) = I(x)*(10.64*kt(x)^4-16.23*kt(x)^3+6.318*kt(x)^2 - 

1.116*kt(x)+0.98); % Uday US model 

f. Idcnn2(r,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 0.5146*kt(x)^2 - 

0.3875*kt(x)+0.8481); % Uday International Model 

g. Idcng2(r,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 2.729*kt(x)^2 - 

0.1227*kt(x)+0.8846); % Uday Global Model 



69 

 

h. Id6(r) = Id(x); 

i. r = r +1;          

31 elseif 0.6 < kt(x) && kt(x) <= 0.8     

i. s = s +1 ; 

b. if 0.6 <= kt(x) && kt(x) <= 0.75    % Orgills Model 

i. Idc13(s,1) = I(x)*(1.577-1.84*kt(x)); 

ii. Idc14(s,1) = I(x)*(0.9511-0.1604*kt(x)+4.388*(kt(x)^2)-

16.638*(kt(x)^3)+12.336*(kt(x)^4)); % Erbs Model 

iii. Id7(s,1) = Id(x); 

c. elseif 0.75 < kt(x) && kt(x) <= 0.8 

i. Idc13(s,1)= 0.177*(I(x)*kt(x)); 

ii. Idc14(s,1) = I(x)*(0.9511-0.1604*kt(x)+4.388*(kt(x)^2)-

16.638*(kt(x)^3)+12.336*(kt(x)^4)); % Erbs Model 

iii. Id7(s,1) = Id(x); 

d. end 

i. s1 = s1+1; 

e. if 0.6 <= kt(x) && kt(x) < 0.78            % Reidnl Model 

i. Idc15(s1,1) = I(x)*(1.45-1.67*kt(x)); 

ii. Id9(s1,1) = Id(x); 

f. elseif 0.78 <= kt(x) && kt(x) <= 0.8    

i. Idc15(s1,1)= 0.147*(I(x)*kt(x)); 

ii. Id9(s1,1) = Id(x); 

g. end 

i. s2 = s2 +1; 

h. if 0.6 <= kt(x) && kt(x) <= 0.70            % Al Riahi Model 

i. Idc16(s2,1) = I(x)*(1.293-1.631*kt(x)); 

ii. Idcn3(s2,1) = I(x)*(10.64*kt(x)^4-

16.23*kt(x)^3+6.318*kt(x)^2 - 1.116*kt(x)+0.98); % Uday US 

model 

iii. Idcnn3(s2,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 

0.5146*kt(x)^2 - 0.3875*kt(x)+0.8481); % Uday International 

Model 

iv. Idcng3(s2,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 

2.729*kt(x)^2 - 0.1227*kt(x)+0.8846); % Uday Global Model 

v. Idcngl3(s2,1) = I(x)*(143.9*kt(x)^4-

358*kt(x)^3+329.1*kt(x)^2-133.9*kt(x)+20.94); % Uday 

Global cubic Model 

vi. Id10(s2,1) = Id(x); 

i. elseif  0.7 < kt(x) && kt(x) <= 0.80 

i. Idc16(s2,1)= 0.151*(I(x)*kt(x));  

ii. Idcn3(s2,1) = I(x)*(10.64*kt(x)^4-

16.23*kt(x)^3+6.318*kt(x)^2 - 1.116*kt(x)+0.98); % Uday US 

model 
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iii. Idcnn3(s2,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 

0.5146*kt(x)^2 - 0.3875*kt(x)+0.8481); % Uday International 

Model 

iv. Idcng3(s2,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 

2.729*kt(x)^2 - 0.1227*kt(x)+0.8846); % Uday Global Model 

v. Idcngl3(s2,1) = I(x)*(143.9*kt(x)^4-

358*kt(x)^3+329.1*kt(x)^2-133.9*kt(x)+20.94); % Uday 

Global cubic Model 

vi. Id10(s2,1) = Id(x); 

j. end 

 

i. y = y +1;          

32 else 

a. Idc17(t,1)= 0.177*(I(x)*kt(x)); 

b. Idc18(t,1)= 0.165*(I(x)*kt(x)); 

c. Idc19(t,1)= 0.147*(I(x)*kt(x)); 

d. Idc20(t,1)= 0.151*(I(x)*kt(x)); 

e. Idcn4(t,1) = I(x)*(10.64*kt(x)^4-16.23*kt(x)^3+6.318*kt(x)^2 - 

1.116*kt(x)+0.98); % Uday US model 

f. Idcnn4(t,1) = I(x)*(6.732*kt(x)^4-7.929*kt(x)^3+ 0.5146*kt(x)^2 - 

0.3875*kt(x)+0.8481); % Uday International Model 

g. Idcng4(t,1) = I(x)*(8.307*kt(x)^4-11.24*kt(x)^3+ 2.729*kt(x)^2 - 

0.1227*kt(x)+0.8846); % Uday Global Model 

h. Id11(t) = Id(x); 

i. t = t+1; 

33 end 

34 end 

35 for x2 = 1 : p-1 

36 RMSE1 = sqrt(sum((Id1(x2)- Idc1(x2,1)).^2)/p); 

37 RMSE2 = sqrt(sum((Id1(x2)- Idc2(x2,1)).^2)/p); 

38 RMSE3 = sqrt(sum((Id1(x2)- Idc3(x2,1)).^2)/p); 

39 RMSE4 = sqrt(sum((Id1(x2)- Idc4(x2,1)).^2)/p); 

40 RMSEn = sqrt(sum((Id1(x2)- Idcn(x2,1)).^2)/p); 

41 RMSEnn = sqrt(sum((Id1(x2)- Idcnn(x2,1)).^2)/p); 

42 RMSEng = sqrt(sum((Id1(x2)- Idcng(x2,1)).^2)/p); 

43 end 

44 for x3 = 1 : w-1 

45 RMSE5 = sqrt(sum((Id2(x3)- Idc5(x3,1)).^2)/w); 

46 RMSE6 = sqrt(sum((Id3(x3)- Idc6(x3,1)).^2)/w); 

47 RMSE7 = sqrt(sum((Id4(x3)- Idc7(x3,1)).^2)/w); 

48 RMSE8 = sqrt(sum((Id5(x3)- Idc8(x3,1)).^2)/w); 

49 RMSEn1 = sqrt(sum((Id5(x3)- Idcn1(x3,1)).^2)/w); 

50 RMSEnn1 = sqrt(sum((Id5(x3)- Idcnn1(x3,1)).^2)/w); 
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51 RMSEng1 = sqrt(sum((Id5(x3)- Idcng1(x3,1)).^2)/w); 

52 end 

53 for x4 = 1 : r-1 

54 RMSE9 = sqrt(sum((Id6(x4)- Idc9(x4,1)).^2)/r); 

55 RMSE10 = sqrt(sum((Id6(x4)- Idc10(x4,1)).^2)/r); 

56 RMSE11 = sqrt(sum((Id6(x4)- Idc11(x4,1)).^2)/r); 

57 RMSE12 = sqrt(sum((Id6(x4)- Idc12(x4,1)).^2)/r); 

58 RMSEn2 = sqrt(sum((Id6(x4)- Idcn2(x4,1)).^2)/r); 

59 RMSEnn2 = sqrt(sum((Id6(x4)- Idcnn2(x4,1)).^2)/r); 

60 RMSEng2 = sqrt(sum((Id6(x4)- Idcng2(x4,1)).^2)/r); 

61 end 

62 for x5 = 1 :y-2 

63 RMSE13 = sqrt(sum((Id7(x5)- Idc13(x5,1)).^2)/y); 

64 RMSE14 = sqrt(sum((Id7(x5)- Idc14(x5,1)).^2)/y); 

65 RMSE15 = sqrt(sum((Id9(x5)- Idc15(x5,1)).^2)/y); 

66 RMSE16= sqrt(sum((Id10(x5)- Idc16(x5,1)).^2)/y); 

67 RMSEn3 = sqrt(sum((Id10(x5)- Idcn3(x5,1)).^2)/y); 

68 RMSEnn3 = sqrt(sum((Id10(x5)- Idcnn3(x5,1)).^2)/y); 

69 RMSEng3 = sqrt(sum((Id10(x5)- Idcng3(x5,1)).^2)/y); 

70 RMSEngl3 = sqrt(sum((Id10(x5)- Idcngl3(x5,1)).^2)/y); 

71 end 

72 for x6 = 1 : t-1 

73 RMSE17 = sqrt(sum((Id11(x6)- Idc17(x6,1)).^2)/t); 

74 RMSE18 = sqrt(sum((Id11(x6)- Idc18(x6,1)).^2)/t); 

75 RMSE19 = sqrt(sum((Id11(x6)- Idc19(x6,1)).^2)/t); 

76 RMSE20 = sqrt(sum((Id11(x6)- Idc20(x6,1)).^2)/t); 

77 RMSEn4 = sqrt(sum((Id11(x6)- Idcn4(x6,1)).^2)/t); 

78 RMSEnn4 = sqrt(sum((Id11(x6)- Idcnn4(x6,1)).^2)/t); 

79 RMSEng4 = sqrt(sum((Id11(x6)- Idcng4(x6,1)).^2)/t); 

80 end   

81 fprintf(1,'Interval1 %5.0f\n Interval2 %5.0f\n Interval3 %5.0f\n Interval4 %5.0f\n 

Interval5 %5.0f\n ',p,w,r,y,t); 

82 fprintf(1,'Rmse1 %5.3f\n Rmse2 %5.3f\n Rmse3 %5.3f\n Rmse4 %5.3f\n ',RMSE1, 

RMSE2, RMSE3, RMSE4); 

83 fprintf(1,'Rmse5 %5.3f\n Rmse6 %5.3f\n Rmse7 %5.3f\n Rmse8 %5.3f\n ',RMSE5, 

RMSE6, RMSE7, RMSE8); 

84 fprintf(1,'Rmse9 %5.3f\n Rmse10 %5.3f\n Rmse11 %5.3f\n Rmse12 %5.3f\n 

',RMSE9, RMSE10, RMSE11, RMSE12); 

85 fprintf(1,'Rmse13 %5.3f\n Rmse14 %5.3f\n Rmse15 %5.3f\n Rmse16 %5.3f\n 

',RMSE13, RMSE14, RMSE15, RMSE16); 

86 fprintf(1,'Rmse17 %5.3f\n Rmse18 %5.3f\n Rmse19 %5.3f\n Rmse20 %5.3f\n 

',RMSE17, RMSE18, RMSE19, RMSE20); 

87 fprintf(1,'Rmse21 %5.3f\n Rmse22 %5.3f\n Rmse23 %5.3f\n Rmse24 %5.3f\n 

Rmse25 %5.3f\n ',RMSEn, RMSEn1, RMSEn2,RMSEn3,RMSEn4); 
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88 fprintf(1,'Rmse26 %5.3f\n Rmse27 %5.3f\n Rmse28 %5.3f\n Rmse29 %5.3f\n 

Rmse30 %5.3f\n ',RMSEnn, RMSEnn1, RMSEnn2,RMSEnn3,RMSEnn4); 

89 fprintf(1,'Rmseng31 %5.3f\n Rmse32 %5.3f\n Rmse33 %5.3f\n Rmse34 %5.3f\n 

Rmse35 %5.3f\n Rmse36 %5.3f\n',RMSEng, RMSEng1, 

RMSEng2,RMSEng3,RMSEng4,RMSEngl3); 

90 end 


