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ABSTRACT 

 The inherent intermittency in solar energy resources poses challenges to scheduling 

generation, transmission, and distribution systems. Energy storage devices are often used 

to mitigate variability in renewable asset generation and provide a mechanism to shift 

renewable power between periods of the day. In the absence of storage, however, time 

series forecasting techniques can be used to estimate future solar resource availability to 

improve the accuracy of solar generator scheduling. The knowledge of future solar 

availability helps scheduling solar generation at high-penetration levels, and assists with 

the selection and scheduling of spinning reserves. This study employs statistical techniques 

to improve the accuracy of solar resource forecasts that are in turn used to estimate solar 

photovoltaic (PV) power generation. The first part of the study involves time series 

forecasting of the global horizontal irradiation (GHI) in Phoenix, Arizona using Seasonal 

Autoregressive Integrated Moving Average (SARIMA) models. A comparative study is 

completed for time series forecasting models developed with different time step 

resolutions, forecasting start time, forecasting time horizons, training data, and 

transformations for data measured at Phoenix, Arizona. Approximately 3,000 models were 

generated and evaluated across the entire study. One major finding is that forecasted values 

one day ahead are near repeats of the preceding day—due to the 24-hour seasonal 

differencing—indicating that use of statistical forecasting over multiple days creates a 

repeating pattern. Logarithmic transform data were found to perform poorly in nearly all 

cases relative to untransformed or square-root transform data when forecasting out to four 

days. Forecasts using a logarithmic transform followed a similar profile as the immediate 
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day prior whereas forecasts using untransformed and square-root transform data had 

smoother daily solar profiles that better represented the average intraday profile. Error 

values were generally lower during mornings and evenings and higher during midday. 

Regarding one-day forecasting and shorter forecasting horizons, the logarithmic 

transformation performed better than untransformed data and square-root transformed data 

irrespective of forecast horizon for data resolutions of 1-hour, 30-minutes, and 15-minutes.  
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Chapter 1. Introduction  

 Renewable power generation capacity in the United States is expected to increase 

by 25% between 2013 and 2018 [EIA Annual Energy Outlook 2015]. Solar photovoltaic 

(PV) resources are among the fastest growing renewable source of energy. Currently, solar 

PV increases at an annual average rate of 6.8% [EIA Annual Energy Outlook 2015]. The 

installed capacity of solar photovoltaics (PV) has been steadily increasing across the United 

States with an increase of more than 54% in 2014 alone [NREL data book 2014]. Utility-

scale solar PV capacity is expected to increase by 123% between 2014 and 2016 and [EIA 

STEO report 2015]. Concentrating solar power (CSP) units are also becoming more 

prevalent, with the largest annual increase in capacity of 767 MWac recorded in 2014 

[SEIA report 2015]. The growth in solar energy utilization has been prompted by several 

factors including a decrease in solar PV module costs, improvements in solar-storage for 

CSP, greater investment in renewables, tax incentives, renewable energy mandates, and a 

shift in society’s viewpoint towards low-carbon energy [EIA Today in Energy 2015; 

Energy.gov solar 2015; NREL Renewable Portfolio Standards 2015; SEIA solar ITC 2015; 

Sunshot PV system pricing trends 2014; U.S. DOE CSP report 2014; U.S. DOE Investing 

in American Energy report 2015]. In 2016, the utility-scale solar generation is expected to 

average 89 GWh/day in the United States [EIA STEO report 2015].  

 Solar electricity is prone to intermittency arising from fluctuations in the solar 

resource due to cloud cover. Forecasting techniques employed to estimate future variability 

in solar resources can aid in planning and scheduling resources and spinning reserves to 

minutes or hours in advance. This helps to balance renewable energy supply and end-user 
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demand without use of excessive amounts of storage, demand response, or renewables 

curtailment. Power electronic technologies that can be deployed on a larger-scale are 

required to make the power grid more flexible and reliable to include more renewable 

energy generation in to the network [World Energy Outlook 2012].  
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Chapter 2: Time Series Forecasting of GHI using ARIMA models 

2.1 Introduction 

 Solar power generation has increased steadily over the past decade in the United 

States [EIA STEO report 2015]. In 2014 alone, solar photovoltaic (PV) generation capacity 

increased by 30% (6200 MW) and concentrating solar power (CSP) generation capacity 

increased by 54% (767 MW) [NREL 2014, SEIA report 2015]. This growth has been 

driven by several factors including lower solar PV module costs, advanced CSP technology 

such as thermal storage and dish-engine, greater investment in renewables, favorable tax 

incentives, renewable energy mandates, net metering requirements, and a gradual shift in 

public opinion towards low-carbon energy [EIA Today in Energy 2015; Energy.gov solar 

2015; SEIA Solar ITC 2015; Sunshot PV System Pricing Trends 2014; U.S. DOE CSP 

Report 2014; U.S. DOE Investing in American Energy Report 2015]. Recent extensions of 

renewable energy tax credits originally granted under the Energy Policy Act of 2005 are 

expected to continue and thus increase the rate of solar PV capacity expansion through 

2019 and beyond [Energy Policy Act 2005]. Estimates for 2016 indicate that utility-scale 

solar generation—PV and CSP—in the United States is expected to generate an average of 

89 GWh/day, or about 0.8% of total energy supply [EIA STEO Report 2015; SEIA Report 

2016].  

 The transition to higher penetration solar power in the United States energy 

portfolio faces several technical and economic challenges for existing infrastructure and 

business models. Ongoing technical concerns include voltage regulation, protection co-

ordination, distributed energy resource (DER) control, and power quality control [Perez 

and Fthenakis 2013; Thongpron et al. 2004; Brisette et al. 2013; Martin et al. 2010; Hanna 
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et al. 2014; U.S. DOE High Penetration Report 2009; SEIA RES Report 2015]. In power 

electronics and controls, new devices and modifications are needed to mitigate real-time 

line voltage variations resulting from higher penetration of renewables [Perera et al 2013]. 

Unit commitment, contingency analysis, and economic dispatch procedures are also being 

affected by increasing amounts of uncontrolled DER, thus requiring significant 

adjustments to existing practices. Thermal power plants, for example, will need to remain 

online and operate at part-load in order to provide on-demand power in the event of 

clouding or other disturbances [NREL Hawaii Study 2013]. This has resulted in short 

periods of excess power that cannot be used within a utility service region. Multiple 

instances of negative electricity pricing have occurred in Germany during periods of high 

solar PV and wind power output yet load electrical demand [Fraunhofer 2015]. Similar 

concerns are being voiced in the United States regarding the “duck curve” that estimates a 

13,000 MW increase in dispatchable generation of power over a three-hour period as solar 

PV drops off and consumer demand increases in the late afternoon [CalISO 2013]. 

Renewable intermittency also poses a challenge for transmission and distribution 

scheduling. The Federal Energy Regulatory Commission (FERC) requires that electric 

utilities provide 15-minute scheduling with a degree of certainty that is affected by 

uncontrollable DER [FERC scheduling report 2012]. Energy storage is one solution to 

improve power quality, provide operating reserve, and shift power between on-sun and off-

sun periods of the day [NREL Impacts of Solar Power report 2012]. Yet widespread 

adoption of storage technologies may be several years away following further price 

reductions [U.S. DOE Quadrennial Technology Review 2015].  
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Advanced knowledge of solar resource availability may help mitigate power quality 

disturbances, improve scheduling, avoid negative power pricing, and reduce the cost of 

delivered electricity. A study by Martin et al. demonstrated that forecasted global 

horizontal irradiance (GHI) data could be used to improve estimates of future solar PV 

power output [Martin et al. 2010]. Forecasted data can also be used for optimizing energy 

dispatch by the utility to improve demand side management and load balancing [Hanna et 

al 2014]. Similarly, weather and atmospheric modelling, sky cameras, radar and lidar, as 

well as statistical methods can be used to estimate near-term solar resources [Wang F. et 

al. 2012; Barrett A. et al. 2012; Graham et al. 1988; Kang and Tam 2015; Heinemann et 

al. 1999]. This study uses statistical techniques and time series data to forecast GHI values 

that are in turn used to estimate solar PV power output.  

2.2 Time Series Forecasting 

Time series statistical forecasting studies commonly use the clearness index, GHI, 

and direct normal irradiation (DNI) as operational data [Heinemann et al. 1999; Maimouna 

et al. 2013; Mellit et al. 2005; Reikard et al. 2009; Sozen et al. 2005; Wang F. et al. 2012]. 

Most published works complete a single case study of a particular location and use a single 

data input resolution with one-hour time steps [Sozen et al. 2005; Heinemann et al. 1999]. 

These studies have been expanded through the inclusion of environmental factors such as 

ambient temperature and relative humidity that improve the accuracy of model predictions 

[Li et al. 2011]. A comprehensive summary of forecasting methods provided by Reikard 

in 2009 compared the performance of time series methods, neural networks, and hybrid 

models using data from six locations. Statistical forecasting methods had the least amount 

of error in most tests. A logarithmic transformation of the initial data gave further 
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reductions in model error [Reikard 2009]. This performance of models after logarithmic 

transformation with 60-minute and 30-minute resolution, however, did not hold with 15-

minute or 5-minute data. Neural networks tended to perform better using higher-resolution 

data and a transfer function that incorporated causal inputs such as humidity or 

temperature. Hybrid models implementing a combination of methods also performed better 

than time series forecasting using 15-minute or 5-minute data. Reikard’s study forecasted 

values out four hours and the error for ARIMA models reduced by 6% for Phoenix. This 

study, however, did not seek to examine if statistical models and regression coefficients 

change for a single location using training data from different periods of the year. A parallel 

line of inquiry yet untouched is an investigation of forecast performance using models and 

regression coefficients developed from training data taken from another period of the year, 

e.g., how does a model developed using data from May perform when applied in 

December? Another area left for further study was how the forecasting start time (e.g., 6:00 

am, 12:00  pm) effected model error.  

This article presents a comparative study of time series forecasting models 

developed with different time step resolutions, forecasting start time, forecasting time 

horizons, training data, and transformations for data measured at Phoenix, Arizona. In this 

study, forecasting algorithms were applied to 5-minute, 15-minute, 30-minute, and 60-

minute solar resource data to examine how real-time solar resource data with various 

fidelities can be used to improve knowledge of the future solar resource over a 24-hour 

period. Similar analyses were completed with errors examined for one-step ahead across 

all hours of a one-day period. The effect of forecasting start time was explored by beginning 



7 
 

forecasts at 12:00 am, 6:00 am, 12:00 pm, and 6:00 pm. Data transformations included a 

square-root transformation and a log transform. Time series models were also generated 

using training data for each month of the year and applied to other months. The purpose of 

these models was to examine how fitting parameters and coefficients change over the year. 

Solar resource data was used from Phoenix, Arizona, in the United States with a 

measurement resolution of 1-minute [MIDC/NREL].  

2.2.1 Time Series Regression and Forecasting Methods 

Regression methods are applied to a set of training data to generate a model that 

describes how solar irradiance changes over time. This model is then used to forecast solar 

irradiance in future time steps.  

A stationary process is a process whose characteristics do not change with time. An 

auto-covariance function is used to identify the variation in a variable between two points 

in time. The two basic forms of time series models include an autoregressive model (AR) 

and a moving average model (MA). An AR model is suited to time series data that are 

linearly dependant on historical values, whereas an MA can be used to describe the 

behavior of time series data that is a function of the mean value from current and previous 

white noise error terms. The extent to which these models are dependent on the historical 

values are represented using their corresponding time step lags p and q.  

Time series data that exhibit stationarity and have a decreasing auto-covariance 

function are suitable for forecasting using Autoregressive Moving Average (ARMA) 

models [Brockwell 2006]. An ARMA(p,q) model can be represented as 
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 ������� = 	
����� (1) 

 ����� = 1 − ��� −⋯− ����  (2) 

 	
��� = 1 − 	�� −⋯− 	
�
 (3) 

where �(B) represents the autoregressive (AR) portion of the model, 	(B) represents the 

moving average (MA) portion of the model, and B stands for the backshift operator ���� =
����. The process Xt is the time series data on which the forecast is performed. Xt is defined 

here as an autoregressive process of order p and a moving average process of order q 

[Brockwell 2006; Wei 1990]. The term Zt represents a white noise process with {Zt} ~ 

WN(0,σ2).  

If either condition for an ARMA model is not satisfied then differencing can be 

applied to seek a process with stationarity and decreasing auto-covariance. Differencing 

methods are used in Autoregressive Integrated Moving Average (ARIMA) models. An 

ARIMA(p,d,q) model for the process Xt can be expressed as 

 ������1 − ����� = 	
�����  (4) 

where d is the order of differencing used to process input data and trending in the time 

series data [Brockwell book 2006; Wei 1990]. An ARIMA model with no differencing (d 

= 0) simplifies to an ARMA(p,q) model.  

 Different ARIMA models can be obtained by choosing different values of p, d, and 

q. Seasonal Autoregressive Integrated Moving Average (SARIMA) models can also be 

obtained using differencing methods across multiple time steps consistent with periodic 
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data. These periodic data repeat over a consistent interval such that differencing over that 

interval produces a consistent trend. For example, hourly outdoor ambient temperature data 

follows a fairly consistent pattern that repeats daily. Solar irradiation data follows the same 

pattern. A SARIMA model can be represented using the following equation 

 ������������� = ������	
�����  (5) 

where 

 �� = �1 − ����1 − ������  (6) 

and D is the seasonal order of differencing, P is the seasonal autoregressive factor, and Q 

is the seasonal moving average factor.  

Model goodness of fit in this study is evaluated using the Akaike Information 

Criterion (AIC). The AIC is generally used to compare models with varying numbers of 

explanatory variables [Brockwell 2006]. This is because the R2 value always increases with 

the addition of more explanatory data, even if the data is random and no physical 

significance. In contrast, the AIC is penalized by the number of parameters in the model  

 AIC = − ln� � + 2# (7) 

where, L is the maximized likelihood function of the particular model and m is the number 

of parameters in the model given by (p + q + 1). Lower values of AIC indicate models with 

better fit.  

Forecasting with a SARIMA process is completed using Eq. (8) with predictor Pn 

for h time steps into the future using coefficients from the regression analysis as follows:  
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 $%�%&' = $%�%&' +∑ )�$%�%&'���&���*�   (8)  

2.3 Study Parameters and Data 

2.3.1 Study Parameters 

A comparative study was completed of time series forecasting models developed 

using different time step resolutions, data transformations, forecasting start time, 

forecasting time horizons, and training data.  

• Time step resolutions—The 1-minute input data was averaged into 5-minute, 15-

minute, 30-minute, and 1-hour data.   

• Data transformations—Two data transformations were applied to the input data to 

improve model stationarity using a square-root transformation and a natural 

logarithmic transformation.  

• Forecasting start time—The simulation was run for solar irradiation data starting at 

different times of the day including 12:00 am, 6:00 am, 12:00 pm, and 6:00 pm. 

• Forecast time horizon—Forecasting was completed out to periods of 5 minutes, 15 

minutes, 30 minutes, 1 hour, and 24 hours. 

• Training data—Model parameters and coefficients developed using training data 

from one period of the year (e.g., May) were applied to other periods of the year 

(e.g., December). This was repeated allowing the coefficients to change but keeping 

the same model parameters.   
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2.3.2 Model Data 

High-resolution data available at 1-minute intervals were averaged to obtain 5-

minute data, 15-minute data, 30-minute data, and 1-hour data as shown in Fig. 1.  

 

Figure 1. Illustration of GHI averaging and smoothing for various time resolutions.   

2.3.3 Performance Metrics 

Performance metrics used in this study include the AIC and other standard values 

such as the root mean square error (RMSE) and the mean percentage error. The formula 

for calculating the RMSE is given below.  

 +,-. =	0∑ �123�13�45367
%   (9) 

where 

82 : measured data point 

y : forecasted data point 

n : number of data points 

2.4 Results and Analysis 

 Time series regression methods were completed with parameters including p = 2, d = 

1, q = 2, P = 1, D = 1, and Q = 1. This equates to 143 models tested for every time step 

resolution, data transformation, forecast start time, forecast horizon, and training data with 
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the single best fit model introduced in the results. A total number of approximately 3,000 

models were generated and evaluated across the entire study.  

 

2.4.1 Comparison of GHI Forecasts Out Multiple Days in a Single Month 

Forecast simulations were first completed using different time step resolutions of 

input data as graphed in Fig. 3. The simulations were run for seven days of data (1st April 

– 07th April 2012) forecasted out to four days in the future (forecast horizon). The 

coarseness in historical and forecasted data decreases is smoothed with the averaging 

process, as expected. One interesting finding is that the 5-minute and 15-minute forecasted 

data gave higher peak GHI values for the selected data. This occurs because the 

intermittency during the seventh-day is smoothed during the averaging process and thus 

decreases the higher peak values observed. Yet the most influential finding is that 

forecasted values out past one day are near repeats of the preceding day, indicating that 

any forecast beyond the seasonal difference (24 hours) simply resolves into a static or near-

static average value for that time of day and is repeated for each day into the future. Table 

1 provides the RMSE for these models with the SARIMA parameters listed in Table 2.  

 
Figure 2a. Four-day GHI forecast using 5-minute data (untransformed). 
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Figure 2b. Four-day GHI forecast using 15-minute data (untransformed). 

 

 
Figure 2c. Four-day GHI forecast using 30-minute data (untransformed). 

 
Figure 2d. Four-day GHI forecast using 1-hour data (untransformed). 

Data transformations were then applied as discussed in section 3.1. Forecasting 

results obtained after square-root and logarithmic transformations are shown in Fig. 4a and 

Fig. 4b, respectively. The square-root transform (Fig. 4a) followed the same behavior as 



14 
 

the untransformed data (Fig. 3d) and smoothed-out the intermittency noticed in the last day 

before the forecasting horizon began. In contrast, the log transform forecasts (Fig. 4b) 

preserved the variability measured in the last day and replicated this variability across each 

day of the forecasting time horizon. Table 1 provides the RMSE for these models with the 

SARIMA parameters listed in Table 2. 

 
Figure 3a. Four-day GHI forecast using 1-hour data (square-root transform). 

 

 
Figure 3b. Four-day GHI forecast using 1-hour data (log transform). 

Simulations were also performed with the forecast beginning at different start 

times. Figure 5 shows these forecasts for different start times of 6:00 am, 12:00 pm, and 

6:00 pm to compare with Fig. 3b starting at 12:00 am. It is clear that the seasonal behavior 

of the dataset is preserved regardless of the forecasting start time. One item of note is that 
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forecasts starting at 12:00 pm and 6:00 pm create small and continuing decreases in the 

shape of the forecasted daily profiles. This provides more evidence that longer-term 

forecasting outside of a single-day is unwise, particularly if transformations have not been 

applied to create a stationary process. Therefore the analyses of SARIMA models in future 

sections are completed with a maximum forecast horizon of one day. Table 1 provides the 

RMSE for these models with the SARIMA parameters listed in Table 2.  

 
Figure 4a. Four-day GHI forecast using 1-hour data at 6:00 am start 

(untransformed). 

 
Figure 4b. Four-day GHI forecast using 1-hour data at 12:00 pm start 

(untransformed). 
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Figure 4c. Four-day GHI forecast using 1-hour data at 6:00 pm start 

(untransformed). 

Table 1 summarizes the root mean square errors (RMSE) for time series data of 

different resolutions, start times, and data transformations. The RMSE tends to reduce with 

when using coarser data such as 1-hour time steps. This helps to explain the usage of hourly 

data for time series analysis. Transformations were observed to have a greater effect on the 

variability of RMSE between models created with higher-resolution data relative to models 

created from lower-resolution data. In general, models created from untransformed data 

gave smaller errors on a four-day forecast horizon when compared to transformed data, 

suggesting that the smoothed profile of untransformed data provides a better representation 

of the average daily solar profile across multiple days. This finding may not always hold, 

however, if a consistent intraday pattern is observed such as afternoon showers or morning 

fog that goes on for days, weeks, or months and that pattern would be lost if the entire day 

is smoothed into a consistent “ideal” profile as shown in Fig. 3d.  

Table 2 lists the SARIMA model with the lowest AIC value from the 216 models 

evaluated for each study case. One observation is that for each data resolution, SARIMA 
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models generated using untransformed and square-root transformed data have the same 

number and type of fit parameters across all possible start times. However, models 

generated from log transform data do not yield a single model that is universally optimal 

across the start times tested. A deeper look at the fit parameters in Table 2 illustrates that 

the one-hour fits have a reduced incidence of a differencing term, suggesting that the time 

series data with shorter intervals is non-stationary or has increasing auto-covariance that 

can be resolved through single-lag or seasonal differencing. One clear finding is that no 

single model is optimal across all case studies evaluated, even though several similarities 

exist to form common subsets within the larger study. 
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Table 1. Comparison of four-day GHI forecast results using RMSE (W/m2).  

Start 

Time 

Time Step Resolution 

5-minute 15-minute 30-minute 1-hour 

Untransf

ormed 

Square-

root 
Log 

Untransf

ormed 

Square-

root 
Log 

Untransf

ormed 

Square-

root 
Log 

Untransf

ormed 

Square-

root 
Log 

12:00 
AM 

128.97 125.93 386.50 116.87 116.62 145.11   79.96 110.88 130.48 85.84 88.06 125.51 

6:00  
AM 

122.44 144.77 221.37 117.49 140.21 133.21   79.89   88.52 123.99 85.87 88.00 108.80 

12:00 
PM 

116.69 105.41 149.95 136.07 134.22 122.48 123.77 103.31 114.71 78.28 78.61 110.07 

6:00  
PM 

  90.24 100.70 231.40 74.21 91.88 279.33 104.93 126.21 107.92 77.70 79.04 109.22 
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Table 2a. Parameters of the best fit SARIMA regression model evaluated using 5-minute and 15-minute data. 

 

Start 

Time 

Time Step Resolution 

5-minute 15-minute 

Untransformed Square-root Log Untransformed Square-root Log 

12:00 
AM 

(2,1,1)(1,1,1)[288] (2,1,1)(1,1,1)[288] (0,1,1)(1,0,1)[288] (2,1,1)(1,1,1)[96] (2,1,1)(1,1,1)[96] (1,0,0)(1,0,0)[96] 

6:00 
AM 

(2,1,1)(1,1,1)[288] (2,1,1)(1,1,1)[288] (0,1,1)(1,0,1)[288] (2,1,1)(1,1,1)[96] (2,1,1)(1,1,1)[96] (0,0,1)(1,1,1)[96] 

12:00 
PM 

(2,1,1)(1,1,1)[288] (2,1,1)(1,1,1)[288] (0,1,1)(1,0,1)[288] (2,1,1)(1,1,1)[96] (2,1,1)(1,1,1)[96] (0,0,1)(1,1,1)[96] 

6:00 
PM 

(2,1,1)(1,1,1)[288] (2,1,1)(1,1,1)[288] (0,1,1)(1,0,1)[288] (2,1,1)(1,1,1)[96] (2,1,1)(1,1,1)[96] (2,1,1)(1,1,1)[96] 

 
Table 2b. Parameters of the best fit SARIMA regression model evaluated using 30-minute and 1-hour data. 

 

Start 

Time 

Time Step Resolution 

30-minute 1-hour 

Untransformed Square-root Log Untransformed Square-root Log 

12:00 
AM 

(0,1,1)(1,0,1)[48] (0,1,1)(1,0,1)[48] (2,0,1)(0,1,0)[48] (0,0,1)(1,0,1)[24] (0,0,1)(1,0,1)[24] (0,0,1)(1,1,1)[24] 

6:00 
AM 

(0,1,1)(1,0,1)[48] (0,1,1)(1,0,1)[48] (0,0,1)(1,1,1)[48] (0,0,1)(1,0,1)[24] (0,0,1)(1,0,1)[24] (0,0,1)(1,1,1)[24] 

12:00 
PM 

(0,1,1)(1,0,1)[48] (0,1,1)(1,0,1)[48] (0,0,1)(1,1,1)[48] (0,0,1)(1,0,1)[24] (0,0,1)(1,0,1)[24] (2,0,1)(0,1,0)[24] 

6:00 
PM 

(0,1,1)(1,0,1)[48] (0,1,1)(1,0,1)[48] (0,0,1)(1,1,1)[48] (0,0,1)(1,0,1)[24] (0,0,1)(1,0,1)[24] (1,0,0)(1,0,0)[24] 
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2.4.2 Comparison of GHI Forecasts Out a Single Day in Multiple Months  

The best SARIMA models developed for January, April, July, and October (one 

month in each quarter of the year) were applied across those same months to explore how 

a fit developed for one month—model parameters and coefficients—may fit the data 

observed in another month. Table 3 provides coefficients for 1-lag moving average, 24-lag 

seasonal autoregressive, and 24-lag seasonal moving average terms. The constant terms are 

clearly not statistically significant when noting that a single standard deviation will cross 

zero. The regression terms are significant and all models have the same parameters, except 

for the July regression that includes a single-lag differencing term. Table 4 takes another 

look shows how to use these models by applying the same model—parameters and 

coefficients—from one month to another. This exploration can help describe how well a 

model constructed using limited data from one time of the year might be applied to another 

time of the year in which data is unavailable. This was replicated in Table 5 but the model 

efficiencies were allowed to change. It was clear that allowing the model coefficients to 

change with the training data provided better results, as expected, and while it may be 

permissible to use the same model parameters across an entire year it is not permissible to 

use a single set of model coefficients across an entire year. The model the best fit July 

provided a higher RMSE compared to other models. This abnormality could have risen due 

to any inherent errors present in the data and is independent of the model itself.  
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Table 3. SARIMA model coefficients based on minimum AIC. 

 
Month Trained 

SARIMA Model 

MA1 

(std) 

SAR24 

(std) 

SMA24 

(std) 

Constant 

(std) 

Variance 

(std) 

January 
(0,0,1)(1,0,1)[24] 

0.750 
(0.164) 

0.997 
(0.006) 

-0.999 
(0.099) 

0.076 
(2.328) 

388.139 
(19.248) 

April 
(0,0,1)(1,0,1)[24] 

0.560 
(0.039) 

0.994 
(0.005) 

-0.999 
(0.051) 

0.794 
(3.644) 

1820.020 
(78.341) 

July 
(0,1,1)(1,0,1)[24] 

0.444 
(0.055) 

0.790 
(0.027) 

-0.412 
(0.067) 

0.005 
(6.513) 

5814.910 
(431.779) 

October 
(0,0,1)(1,0,1)[24] 

0.587 
(0.037) 

0.987 
(0.003) 

-0.845 
(0.035) 

-0.894 
(2.094) 

472.724 
(21.372) 

 
Table 4. Comparison of SARIMA model RMSE for selected months with model 

coefficients fixed by the originating month of training data. 

 

Month Trained 

SARIMA Model 

Month Applied 

Jan Apr Jul Oct 

January  
(0,0,1)(1,0,1)[24] 

 33.54  92.97 147.24   83.86 

April 
(0,0,1)(1,0,1)[24] 

 33.55  87.89 152.51   77.86 

July  
(0,1,1)(1,0,1)[24] 

198.11 295.78 341.95 255.39 

October 
(0,0,1)(1,0,1)[24] 

 42.18   88.40 138.38   55.91 

 
Table 5. Comparison of SARIMA model RMSE for selected months with model 

coefficients changing with training data from each month. 

 

Month Trained 

SARIMA Model 

Month Applied 

Jan Apr Jul Oct 

January  
(0,0,1)(1,0,1)[24] 

33.55 87.86 124.99 55.90 

April 
(0,0,1)(1,0,1)[24] 

33.55 87.86 124.99 55.90 

July  
(0,1,1)(1,0,1)[24] 

33.32 85.39 341.90 57.13 
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October  
(0,0,1)(1,0,1)[24] 

33.55 87.86 124.99 55.90 

 

 

2.4.3 Comparison of GHI Forecasts of SARIMA Models across All Months 

The series of SARIMA models displayed in Table 6 are a subset of those evaluated 

for each case study application. The AIC and RMSE values corresponding to each model 

are given in Table 6 and Table 7, respectively. The lowest AIC and RMSE values are 

indicated in bold. It is interesting that while Model 7 provides the lowest AIC in most 

cases—best explanatory power for data used. Model 2 provides the least RMSE error for 

most of the models and hence greater accuracy. This rises a conflict between using AIC 

and RMSE for choosing the best fit model. Some of the months had models other than 7 

and 2 that provided lesser AIC and RMSE respectively but it was also noted that those 

values were relatively closer to that of models 7 and 2. Hence, models 7 and 2 were chosen 

as best fit models based on AIC and RMSE respectively. 

A scatter plot of the RMSE values for all 12 months of a year is plotted against the 

various SARIMA models in Fig. 6. January and December have the lowest RMSE for most 

of the models while September has the highest RMSE errors. This helps in analyzing the 

consistency in seasonality of the time series data and the effect of monthly data variations 

on model fitting. An important observation that can be made from this graph is that for all 

the 12 months, all the 11 SARIMA models have resulted in RMSE errors that are very 

close to each other. This justifies the usage of AIC factor to choose the best fit model 

instead of the RMSE thus ensuring higher accuracy. Also, it can be seen that the RMSE 
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errors for different months fall under one of the two ranges of values (0-50 and 70-120 

W/m2). This can be used to validate the performance of a model for any particular month 

based on the RMSE value it returns. 

Figure 7 gives a box blot of the data in Fig. 6 but with the September data removed 

as an outlier. Model 11 is clearly not worth considering. An interesting finding from Figure 

7 is that Models 1-10 have nearly the same minimum and maximum values for RMSE 

across remaining months of the year (September excluded). However, the average RSME 

changes significantly and easily shows that Model 2 provides the lowest RMSE with Model 

1 and Model 10 as close seconds.  
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  Table 6. AIC values – all forecast models (lowest value in bold for each month). 

 
Mode

l No. 

SARIMA 

Model 
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

Aver

age 

1 
(1,0,0)(1,0,0) 

[24] 
1628.

60 
1572.

05 
1721.

82 
1848.

70 
2222.

66 
2230.

02 
1979.

60 
1935.

05 
1861.

26 
1598.

80 
1521.

38 
1431.

42 
1795.

95 

2 
(2,0,1)(0,1,0) 

[24] 
1605.

40 
1571.

40 
1723.

97 
1860.

50 
2227.

08 
2237.

66 
1995.

40 
1914.

88 
1874.

34 
1598.

90 
1514.

14 
1428.

37 
1796.

00 

3 
(2,1,1)(1,1,1) 

[24] 
1517.

20 
1549.

44 

1615.

27 

1789.
90 

2125.
72 

2116.
93 

1951.
20 

1812.
76 

1829.
12 

1528.
90 

1406.
56 

1400.
36 

1720.

28 

4 
(0,1,1)(1,1,1) 

[24] 
1553.

80 
1572.

12 
1626.

91 
1798.

50 
2123.

93 
2115.

15 
1950.

20 
1850.

86 
1827.

12 

1541.
40 

1414.
04 

1398.
55 

1731.
05 

5 
(0,0,1)(1,1,1) 

[24] 
1489.

60 
1566.

46 
1629.

61 
1752.

90 
2123.

39 
2115.

02 
2161.

50 
1803.

13 
1928.

94 
1525.

90 
1394.

19 

1388.
72 

1739.
95 

6 
(0,1,1)(1,0,1) 

[24] 
1553.

30 
1592.

22 
1626.

76 
1796.

60 
2123.

11 
2115.

43 
1943.

00 

1846.
23 

1843.
00 

1544.
30 

1430.
01 

1397.
12 

1734.
26 

7 
(0,0,1)(1,0,1) 

[24] 
1488.

30 

1589.
48 

1632.
23 

1747.

90 

2122.

93 

2115.
29 

2055.
90 

1797.

41 

1947.
74 

1521.

40 

1397.
21 

1381.

54 

1733.
11 

8 
(0,0,2)(1,0,1) 

[24] 
1576.

10 
1640.

23 
1683.

17 
1799.

20 
2123.

64 
2115.

20 
2139.

70 
1869.

36 
2005.

73 
1574.

50 
1456.

63 
1405.

53 
1782.

42 

9 
(0,0,2)(1,1,1) 

[24] 
1578.

10 
1624.

42 
1681.

47 
1805.

50 
2124.

02 
2114.

93 

2138.
00 

1878.
47 

1998.
96 

1584.
70 

1443.
17 

1411.
81 

1781.
96 

10 
(0,0,2)(1,0,0) 

[24] 
1602.

70 
1568.

67 
1719.

82 
1840.

60 
2222.

24 
2229.

71 
1978.

40 
1906.

56 
1861.

26 
1597.

20 
1512.

66 
1426.

36 
1788.

85 

11 
(0,0,2)(0,0,1) 

[24] 
2028.

26 
2044.

34 
2142.

52 
2203.

60 
2351.

91 
2350.

43 
2276.

70 
2244.

48 
2182.

91 
2121.

30 
2055.

59 
1977.

95 
2165.

00 
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Table 7. Root mean square error – all forecast models (lowest value in bold for each month). 

 
M

od

el 

N

o. 

SARIMA 

Model 
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

Averag

e 

1 
(1,0,0)(1,0,0) 

[24] 
11.39 104.20 31.88 111.63   98.88  33.62 118.82  34.63 287.94   23.88   72.08  15.27 78.69 

2 
(2,0,1)(0,1,0) 

[24] 
  7.51 105.66 25.77 117.86   98.09   4.08   86.02   9.79 302.10   22.71   73.59  12.74 72.16 

3 
(2,1,1)(1,1,1) 

[24] 
12.53   94.84 30.56 104.10 115.73 44.54   93.86  9.84 170.59   58.94   89.04  15.66 70.02 

4 
(0,1,1)(1,1,1) 

[24] 
12.48   97.65 30.61 104.56 115.74 

  
44.37 

  94.12   8.86 170.58   49.28   88.97  15.63 69.41 

5 
(0,0,1)(1,1,1) 

[24] 
13.45 102.43 31.07   98.78 115.23 37.02   88.98  23.17 325.53   66.36   82.04  21.01 83.76 

6 
(0,1,1)(1,0,1) 

[24] 
19.01   99.90 39.18   78.69 116.89 42.06 235.67  34.91 175.43   18.48   76.79  23.13 80.02 

7 
(0,0,1)(1,0,1) 

[24]  
17.33 102.21 31.82   85.83 116.96 36.05 118.24  44.50 158.34   23.84   73.09  26.36 69.55 

8 
(0,0,2)(1,0,1) 

[24] 
17.31 105.52 32.11   85.77 117.01 36.04 115.15  44.10 181.06   23.46   73.20  25.90 71.39 

9 
(0,0,2)(1,1,1) 

[24] 
13.52 107.07 30.77   99.84 115.18 37.04 100.85  23.73 329.11   63.30   82.61  20.36 85.29 

10 
(0,0,2)(1,0,0) 

[24] 
10.07 104.09 31.45 112.44   99.43 36.32 113.15  28.91 287.89   23.79   72.18  15.42 77.93 

11 
(0,0,2)(0,0,1) 

[24] 
172.7

5 
118.69 

264.9
6 

248.37 301.32 
281.2

9 
296.28 

275.4
2 

344.84 171.05 157.26 143.71 231.33 
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Figure 5. Selected SARIMA Models with RMSE (all months).  

 
Figure 6. Selected SARIMA Models with RMSE (September removed). 

2.4.4 Comparison of GHI Forecasts to Peer Studies 

 Time series results from Sections 2.4.1-2.4.3 are summarized here and compared 

against peer studies. Inferences can be made across studies though this is not a direct 

quantitative comparison because the peer studies are based on a different location and time 

series dataset that the regression models generated here. Table 8 contains models and 

RMSE errors from the Reikard et al. 2009 study that uses various regression and 
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forecasting methods such as log regression, ARIMA models, and neural networks [Reikard 

et al. 2009].  

Table 8. Forecast models and errors from reference study [Reikard et al. 2009]. 

 
Model 

No. 
Resolution 

Forecast 

Horizon 
Model Transformation 

RMSE 

Error 

a 1-hour 1-hour Log regression Log 29.96 

b 1-hour 1-hour 
Unobserved Components 

Model 
None 29.92 

c 1-hour 1-hour 
ARIMA (1,0,0)(1,1,0) 

[24] 
None 23.60 

d 1-hour 1-hour NN None 29.38 

e 1-hour 1-hour Hybrid - ARIMA & NN None 23.67 

  

Table 9 includes the best fit models obtained in this study for forecast horizons out 

to 1-hour at different time step resolutions. Table 10 provides similar information yet 

focuses on shorter forecast horizons including 5 minutes, 15 minutes, and 30 minutes. The 

comparison study in Table 8 includes only 1-hour resolution data. Models developed and 

shown in Table 9 provide similar results for 1-hour resolution data with a potential outlier 

in 15-minute resolution log transform data. The trend for no transformation as 

improvement over log transformation does hold between the comparison study and this 

study when looking at 1-hour resolution data. Although the RMSE errors change between 

Table 9 and Table 10, the model ranks as defined by RMSE error maintains the same order 

when the forecast horizon is reduced. Regarding transformations, the logarithmic 

transformation performed better as compared to untransformed and square-root 

transformed data irrespective of forecast horizon for data resolutions of 1-hour, 30-minutes, 

and 15-minutes. For data resolution of 5-minutes, square-root transformation provided 

lower RMSE values for all forecast horizons.  
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Table 9. Forecast models and errors for 1-hour forecast horizon. 

 
Model 

No. 
Resolution 

Forecast 

Horizon 

SARIMA 

Model 
Transformation 

RMSE 

Error 

7 1-hour 1-hour (0,0,1)(1,0,1)[24] None 25.72 

7 1-hour 1-hour (0,0,1)(1,0,1)[24] Square-root 35.81 

5 1-hour 1-hour (0,0,1)(1,1,1)[24] Log 29.12 

6 30-min 1-hour (0,1,1)(1,0,1)[48] None 70.17 

6 30-min 1-hour (0,1,1)(1,0,1)[48] Square-root 65.18 

2 30-min 1-hour (2,0,1)(0,1,0)[48] Log 34.46 

3 15-min 1-hour (2,1,1)(1,1,1)[96] None 35.89 

3 15-min 1-hour (2,1,1)(1,1,1)[96] Square-root 36.45 

1 15-min 1-hour (1,0,0)(1,0,0)[96] Log 72.51 

3 5-min 1-hour (2,1,1)(1,1,1)[288] None 37.52 

3 5-min 1-hour (2,1,1)(1,1,1)[288] Square-root 34.61 

6 5-min 1-hour (0,1,1)(1,0,1)[288] Log 82.14 

 
Table 10. Forecast models and errors for 5-minute, 15-minute, and 30-minute 

forecast horizons. 

 
Model 

No. 
Resolution 

Forecast 

Horizon 

SARIMA 

Model 
Transformation 

RMSE 

Error 

6 30-min 30-min (0,1,1)(1,0,1)[48] None 38.65 

6 30-min 30-min (0,1,1)(1,0,1)[48] Square-root 31.71 

2 30-min 30-min (2,0,1)(0,1,0)[48] Log 24.53 

3 15-min 15-min (2,1,1)(1,1,1)[96] None 26.41 

3 15-min 15-min (2,1,1)(1,1,1)[96] Square-root 26.38 

1 15-min 15-min (1,0,0)(1,0,0)[96] Log 9.59 

3 5-min 5-min (2,1,1)(1,1,1)[288] None 50.71 

3 5-min 5-min (2,1,1)(1,1,1)[288] Square-root 49.10 

6 5-min 5-min (0,1,1)(1,0,1)[288] Log 91.21 
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These findings, however, need to be validated against more case study applications 

and examples in order to develop generalizable findings. An important shortcoming of the 

peer time series studies is its focus on forecasting to only one data point in the future that 

is unchanging across all comparisons completed. This study mitigates that issue by running 

forecasting algorithms out to one-hour ahead during all hours of the day when the sun is 

shining. Table 11 provides these data for a selected SARIMA model (0,0,1)(1,0,1)[24]. 

This is 6:00 am to 6:00 pm with each forecast moving one hour into the future for 

simulation. This helps explore if a single model or method can be universally applied to 

achieve optimal or near-optimal performance for an entire day that also represents the 

entire month and that quarter of the year. Table 12 shows that no data transformation or 

square-root transformation continue to perform better than log transformation in nearly all 

cases (except October). This further corroborates earlier findings that the log transform 

should not be used in these case study data based on evidence from forecasting applications 

out four days, one day, or one hour. One could otherwise change the type of transformation 

based on the time of year, using either untransformed or square-root transformed data for 

the first three quarters of the year logarithmic transformation in the last quarter of the year. 

Another interesting finding from Tables 11a – 11d is that in most cases, irrespective of the 

data transformation used, RMSE values are lower during mornings and evenings and 

higher during midday. This can directly be related to the magnitude of solar irradiation and 

safely assumed that forecast models perform better when the solar irradiation is relatively 

low. Hence, it can be inferred that forecasting should be performed during mornings and 

evenings. From table 12, it can be seen that on comparing these results with that of tables 
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10 and 11, it can be seen that untransformed and square-root data perform better than 

logarithmic data 
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Table 11a. SARIMA model RMSE error for one-hour ahead forecasting applied to a single day in January. 

 

Data 

transformation 

Forecast Time of Day 

6:00 

am 

7:00 

am 

8:00 

am 

9:00 

am 

10:00 

am 

11:00 

am 

12:00 

pm 

1:00 

pm 

2:00 

pm 

3:00 

pm 

4:00 

pm 

5:00 

pm 

6:00  

pm 

None 0.01 2.29 22.29 20.70   2.25     6.49 215.22 260.75   38.55   13.84 20.28 74.66 14.77 

Square-root 0.00 4.10 20.06 27.73 10.98   29.49 276.86 217.75   47.92   15.67 14.63 15.44   1.67 

Log 1.05 8.45 41.72 98.94 97.25 186.62 508.02 135.36 276.36 136.02 92.77   5.84   1.01 

 

 

 

 

Table 11b. SARIMA model RMSE error for one-hour ahead forecasting applied to a single day in April. 

 

Data 

transformation 

Forecast Time of Day 

6:00 

am 

7:00 

am 

8:00 

am 

9:00 

am 

10:00 

am 

11:00 

am 

12:00 

pm 

1:00 

pm 

2:00 

pm 

3:00 

pm 

4:00 

pm 

5:00 

pm 

6:00  

pm 

None 16.25 34.06 33.45   49.15 34.19   8.94 125.96 52.52 40.04 132.19   98.69 15.33   7.93 

Square-root 17.06 22.97 33.15   57.17 32.34   2.04 129.93 63.99 43.85 139.79 110.80 20.97 17.06 

Log   0.45 62.99 66.07 149.60 42.75 65.51   65.28 38.77 39.98 264.74 223.41 86.93 17.95 
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Table 11c. SARIMA model RMSE error for one-hour ahead forecasting applied to a single day in July. 

 

Data 

transformat

ion 

Forecast Time of Day 

6:00 

am 

7:00 

am 

8:00 

am 

9:00  

am 

10:00 

am 

11:00 

am 

12:00 

pm 

1:00 

pm 

2:00 

pm 

3:00 

pm 

4:00 

pm 

5:00 

pm 

6:00  

pm 

None 23.78 12.91 14.94 293.42 89.92 202.62 129.18 37.51 44.60 23.93 52.89 38.48 63.58 

Square-root 10.36 14.95   5.19 323.10 290.15 373.00 116.40 33.06 17.67 36.83 25.27   3.19 24.60 

Log 32.71 27.02 67.49 283.58   65.11 238.41   83.14 24.98 34.24 25.04   5.59   1.40   0.42 

 
 

 

 

Table 11d. SARIMA model RMSE error for one-hour ahead forecasting applied to a single day in October. 

 

Data 

transformat

ion 

Forecast Time of Day 

6:00 

am 

7:00 

am 

8:00 

am 

9:00  

am 

10:00 

am 

11:00 

am 

12:00 

pm 

1:00 

pm 

2:00 

pm 

3:00 

pm 

4:00 

pm 

5:00 

pm 

6:00  

pm 

None 5.10 11.91   5.06 19.94 14.73 14.17 13.49 44.42 4.00 11.85 1.83 7.05 8.46 

Square-root 2.97 38.70 32.77 27.72 17.24   8.04 12.80   8.33 2.63   0.91 2.92 3.26 0.05 

Log 6.45 24.57   0.06 28.72 14.71 19.76 18.10 59.62 9.14 18.88 7.10 7.02 0.29 
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Table 12. SARIMA model RMSE error comparison across forecast months in Table 11.  

 

Data 

transformat

ion 

Forecast Month 

January April July October 

Min Max Average Min Max Average Min Max Average Min Max Average 

None 0.01 260.75   53.24 7.93 132.19 49.90 12.92 293.43 79.06 1.83 44.43 12.47 

Square-root 0.00 276.86   52.49 2.04 139.79 53.16   0.42 283.58 68.39 0.06 59.63 16.49 

Log 1.01 508.02 122.27 0.45 264.74 86.49   3.19 373.01 97.99 0.06 38.71 12.18 



 

34 
 

2.5 Application of GHI forecasting to incident radiation forecasting 

 Forecasts GHI data can be used to estimate future solar PV power output by 

translating the GHI data into solar radiation incident on the PV array using a series of 

equations introduced in Duffie and Beckman (Duffie a Beckman 2013). The total incident 

solar radiation GT can then be used to calculate solar PV power output using the panel’s 

rated efficiency or productivity data. The equation set 10-15 offers improved accuracy by 

accounting for the circumsolar diffuse radiation using the anisotropy index, 
 
A

i
, and a 

horizontal brightening factor,  f , that better describes the diffuse radiation when the sun is 

near the horizon.  

  (10)  

    (11) 

   (12)  

 

  (13) 

 9:; = 9� + 9< ∗ cos	�	A�  (14) 

 B� = CDE
CF   (15) 

where,  

GT : total incident solar radiation (W/m2) 

Gb : beam radiation or Direct Normal Irradiation (W/m2) 
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Gd : diffuse sky radiation or Diffuse Horizontal Irradiation (W/m2) 

GHI : Global Horizontal Irradiation (W/m2) 

Go : extraterrestrial horizontal irradiation (W/m2) 

kt  : clearness index (-) 

Ai : anisotropy index (-) 

f  : horizontal brightening factor (-) 

β  : slope of the surface (o) 

ρ : reflection coefficient (-) 

θi : angle of incidence (o) 

θz  :  zenith angle (o) 

The total incident solar radiation was calculated for one day using hourly resolution 

data and SARIMA model (0,0,1)(1,0,1)[24]. Figure 8 shows a comparison between the 

measured and forecasted GHI that is then translated into Fig. 9 using Equations 10-15. It 

is clear that the incident radiation closely follows the global horizontal irradiation and the 

error between the measured and the forecasted values are reasonable in the absence of 

perfect information. This can be taken one step further to simulate the solar PV power 

output as a function of the incident radiation.  
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Figure 7. Measured GHI data and forecasted GHI data.  

 
 

 

Figure 8. Calculated incident radiation using measured GHI data and forecasted 

GHI data.  
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Chapter 3: Discussion 

 Time series forecasting techniques were applied to GHI data to estimate future solar 

resource availability. The forecasted solar resource data can be used to calculate solar PV 

power output to aid in scheduling generation, planning capacity reserve, and dispatching 

backup energy storage in case of shortage or supply-demand mismatch. These techniques 

can be applied to distributed or centralized solar generation assets. This work can be 

extended to forecast solar PV power output in real-time with comparisons completed 

between different field site locations.  

 Incident solar radiation closely follows the GHI, as mentioned earlier. Hence, any 

fluctuations in GHI will also be reflected in incident solar radiation and solar PV output. 

Existing control techniques like ramp rate control and active power curtailment can be used 

to reduce the intermittency in the output power. The most common technique is the use of 

an external battery storage system with solar PV. Based on set threshold values of PV 

output power, the storage system supplies the deficit power to the grid or charges from the 

solar PV system during that time of the day when solar power is excess. Forecasting 

techniques introduced here can be used to create probability density functions of future 

renewables availability for a more accurate picture of future energy storage availability. 

The combination of forecasted solar, forecasted load, and forecasted storage can yield data 

to control power output in the near term to maintain sufficient energy reserves for the 

future. This form of forecasting with adaptive control techniques may provide improved 

autonomy in micro-grids through curtailing non-critical loads.   
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APPENDIX A 

MATLAB PROGRAM - TIME SERIES FORECASTING OF GHI  
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clc; 1 
clear all 2 
hours = [1:1:168]; % hours in one week 3 
pow = importdata('Phoenix_solar_hourly_Jan_0000.txt'); 4 
pow = pow'; 5 
 6 
measured = importdata('Phoenix_solar_hourly_Jan_measured.txt'); 7 
meas=zeros(24,1); 8 
for i=1:1:24 9 
    meas(i)=measured(i); 10 
end 11 
 12 
  13 
%-------------------------------------------------------------------------- 14 
 15 
%% Plot original data 16 
  17 
figure(1) 18 
Subplot(3,1,1) 19 
plot(hours,pow) 20 
title('Phoenix hourly global irradiance data for one week_January_0000') 21 
  22 
% examine time-series regression models 23 
des = [ones(168,1)', hours]; % Design matrix 24 
beta = des\hours; 25 
u = pow - des*beta; % Residuals 26 
  27 
subplot(3,1,2) 28 
autocorr(u) 29 
subplot(3,1,3) 30 
parcorr(u) 31 
  32 
  33 
%-------------------------------------------------------------------------- 34 
 35 
%% Plot first difference 36 
 37 
hoursDiff = 1:1:167; %remove one hour to do differencing 38 
  39 
diffPow = diff(pow); 40 
diffDes = [ones(167,1)', hoursDiff]; % Design matrix 41 
beta = diffDes\hoursDiff; 42 
u = diffPow - diffDes*beta; % Residuals 43 
  44 
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figure(2) 45 
subplot(3,1,1) 46 
plot(hoursDiff,diffPow) 47 
title('Difference of per minute global irradiance data for one 48 
week_January_Phoenix') 49 
  50 
% examine time-series regression models 51 
des = [ones(167,1)', hoursDiff]; % Design matrix 52 
beta = des\hoursDiff; 53 
u = diffPow - des*beta; % Residuals 54 
  55 
subplot(3,1,2) 56 
autocorr(u) 57 
subplot(3,1,3) 58 
parcorr(u) 59 
  60 
%-------------------------------------------------------------------------- 61 
 62 
%% Identify estimates with ARMA model (no seasonality) 63 
% AR and MA models out to 3 lags with AR and 2 with MA, with no integrated 64 
term 65 
  66 
pMax = 3; % AR lag 67 
qMax = 2; % MA lag 68 
pSize = pMax+1; % for the results matrices 69 
qSize = qMax+1; 70 
LogL = zeros(pSize,qSize); 71 
SumPQ = LogL; 72 
  73 
for p = 0:pMax 74 
    for q = 0:qMax 75 
        Mdl = arima(p,0,q); 76 
        [~,~,LogL(p+1,q+1)] = estimate(Mdl,pow','Display','params'); 77 
        SumPQ(p+1,q+1) = p+q; 78 
    end 79 
end 80 
  81 
logL = reshape(LogL,pSize*qSize,1); 82 
numParams = reshape(SumPQ,pSize*qSize,1) + 2; 83 
aic = aicbic(logL,numParams); 84 
AIC = reshape(aic,pSize,qSize) 85 
  86 
a(1) = min(aic)  87 
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[bestP,bestQ] = find(AIC == a(1)); % this returns the matrix location with the 88 
lowest AIC, but since we started with 0, we need to subtract 1 89 
bestP = bestP - 1 % returns 2 90 
bestQ = bestQ - 1 % returns 0 91 
  92 
% re-output the best model 93 
Mdl1 = arima(bestP,0,bestQ);   94 
BestMdl = estimate(Mdl1,pow','Display','params'); 95 
  96 
%-------------------------------------------------------------------------- 97 
%% Identify estimates with ARIMA model (no seasonality) 98 
  99 
% AR and MA models out to 3 lags with AR and 2 100 
% with MA, with 1 integrated term 101 
  102 
pMax = 3; % AR lag 103 
qMax = 2; % MA lag 104 
pSize = pMax+1; % for the results matrices 105 
qSize = qMax+1; 106 
LogL = zeros(pSize,qSize); 107 
SumPQ = LogL; 108 
  109 
for p = 0:pMax  110 
    for q = 0:qMax 111 
        Mdl = arima(p,1,q); 112 
        [~,~,LogL(p+1,q+1)] = estimate(Mdl,pow','Display','params'); 113 
        SumPQ(p+1,q+1) = p+q; 114 
    end 115 
end 116 
  117 
logL = reshape(LogL,pSize*qSize,1); 118 
numParams = reshape(SumPQ,pSize*qSize,1) + 2; 119 
aic = aicbic(logL,numParams); 120 
AIC = reshape(aic,pSize,qSize) 121 
  122 
a(2) = min(aic)  123 
 124 
[bestP,bestQ] = find(AIC == a(2)); %returns the matrix location with the lowest 125 

%AIC, but since we started with 0, we need to 126 
subtract 1 127 

bestP = bestP - 1 % returns 2 128 
bestQ = bestQ - 1 % returns 1 129 
% re-output the best model 130 
Mdl2= arima(bestP,1,bestQ);  131 
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BestMdl = estimate(Mdl2,pow','Display','params'); 132 
  133 
%% Identify estimates with ARIMA model (seasonality) 134 
 135 
%---------------------------------------------------------------------------------------------------136 
------ 137 
 138 
% ARIMA(1,0,0)(1,0,0)[24] 139 
 140 
Mdl3 = arima('ARLags',1,'SARLags',24); 141 
[EstMdl,~,LogL] = estimate(Mdl3,pow','Display','params'); 142 
EstMdl 143 
numParams = 2 + 2; 144 
a(3) = aicbic(LogL,numParams)  145 
 146 
%---------------------------------------------------------------------------------------------------147 
------ 148 
 149 
% ARIMA(2,0,1)(0,1,0)[24] 150 
 151 
Mdl4= arima('ARLags',2,'MALags',1','Seasonality',24); 152 
[EstMdl,~,LogL] = estimate(Mdl4,pow','Display','params'); 153 
EstMdl 154 
numParams = 2 + 2; 155 
a(4) = aicbic(LogL,numParams)  156 
 157 
%---------------------------------------------------------------------------------------------------158 
------ 159 
  160 
% ARIMA(2,1,1)(1,1,1)[24] 161 
 162 
Mdl5 163 
=arima('ARLags',2,'D',1,'MALags',1,'SARLags',24,'Seasonality',24,'SMALags',24); 164 
[EstMdl,~,LogL] = estimate(Mdl5,pow','Display','params'); 165 
EstMdl 166 
numParams = 4 + 2; 167 
a(5) = aicbic(LogL,numParams)  168 
 169 
%---------------------------------------------------------------------------------------------------170 
------ 171 
  172 
% ARIMA(0,1,1)(1,1,1)[24] 173 
 174 
Mdl6 = arima('D',1,'MALags',1,'SARLags',24,'Seasonality',24,'SMALags',24); 175 
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[EstMdl,~,LogL] = estimate(Mdl6,pow','Display','params'); 176 
EstMdl 177 
numParams = 3 + 2; 178 
a(6) = aicbic(LogL,numParams)  179 
 180 
%---------------------------------------------------------------------------------------------------181 
------ 182 
  183 
% ARIMA(0,0,1)(1,1,1)[24] 184 
 185 
Mdl7 = arima('MALags',1,'SARLags',24,'Seasonality',24,'SMALags',24); 186 
[EstMdl,~,LogL] = estimate(Mdl7,pow','Display','params'); 187 
EstMdl 188 
numParams = 3 + 2; 189 
a(7) = aicbic(LogL,numParams)  190 
 191 
%---------------------------------------------------------------------------------------------------192 
------ 193 
  194 
% ARIMA(0,1,1)(1,0,1)[24] 195 
 196 
Mdl8 = arima('D',1,'MALags',1,'SARLags',24,'SMALags',24) 197 
[EstMdl,~,LogL] = estimate(Mdl8,pow','Display','params'); 198 
EstMdl 199 
numParams = 3 + 2; 200 
a(8) = aicbic(LogL,numParams) 201 
 202 
%---------------------------------------------------------------------------------------------------203 
------ 204 
 205 
% ARIMA(0,0,1)(1,0,1)[24] 206 
 207 
Mdl9 = arima('MALags',1,'SARLags',24,'SMALags',24); 208 
[EstMdl,~,LogL] = estimate(Mdl9,pow','Display','params'); 209 
EstMdl 210 
numParams = 3 + 2; 211 
a(9) = aicbic(LogL,numParams)  212 
 213 
%---------------------------------------------------------------------------------------------------214 
------ 215 
 216 
% ARIMA(0,0,2)(1,0,1)[1440] 217 
 218 
Mdl10 = arima('MALags',2,'SARLags',24,'SMALags',24); 219 
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[EstMdl,~,LogL] = estimate(Mdl10,pow','Display','params'); 220 
EstMdl 221 
numParams = 3 + 2; 222 
a(10) = aicbic(LogL,numParams)  223 
 224 
%---------------------------------------------------------------------------------------------------225 
------ 226 
 227 
% ARIMA(0,0,2)(1,1,1)[24] 228 
 229 
Mdl11 = arima('MALags',2,'SARLags',24,'Seasonality',24,'SMALags',24); 230 
[EstMdl,~,LogL] = estimate(Mdl11,pow','Display','params'); 231 
EstMdl 232 
numParams = 3 + 2; 233 
a(11) = aicbic(LogL,numParams)  234 
 235 
%---------------------------------------------------------------------------------------------------236 
------ 237 
 238 
 239 
 240 
% ARIMA(0,0,2)(1,0,0)[24] 241 
 242 
Mdl12 = arima('MALags',2,'ARLags',1,'SARLags',24); 243 
[EstMdl,~,LogL] = estimate(Mdl12,pow','Display','params'); 244 
EstMdl 245 
numParams = 2 + 2; 246 
a(12) = aicbic(LogL,numParams) 247 
 248 
%---------------------------------------------------------------------------------------------------249 
------ 250 
 251 
 252 
% ARIMA(0,0,2)(0,0,1)[24] 253 
 254 
Mdl13 = arima('MALags',2,'SMALags',24); 255 
[EstMdl,~,LogL] = estimate(Mdl13,pow','Display','params'); 256 
EstMdl 257 
numParams = 2 + 2; 258 
a(13) = aicbic(LogL,numParams)  259 
  260 
  261 
%-------------------------------------------------------------------------- 262 
%   Simulates and forecasts timeseries data 263 
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%-------------------------------------------------------------------------- 264 
 265 
%a=reshape(a,[2,1]) 266 
bestaic=min(a) 267 
for n=1:1:13 268 
    if bestaic==a(n)    % Find minimum AIC value 269 
        newmdl=eval(['Mdl' num2str(n)]); % Find model with minimum AIC 270 
value 271 
        break; 272 
    else 273 
        continue; 274 
    end 275 
end 276 
%newmdl=Mdl2; 277 
EstMdl = estimate(newmdl,pow'); 278 
  279 
%forecast 280 
[Y,YMSE] = forecast(EstMdl,96,'Y0',pow'); 281 
 282 
result=[Y YMSE]; 283 
  284 
dlmwrite('Phoenix_results_hourly_January_0000.csv',result) 285 
  286 
%---------------------------------------------------------------------------------------------------287 
------ 288 
 289 
[x,y,v]=find(meas); 290 
meas=meas(x); 291 
F=Y(x);    %Obtain non-zero values of forecasted result 292 
diff=meas-F; 293 
rmse= sqrt(sum(diff.^2)/length(diff)); % Calculate rmse 294 
rmse=vpa(rmse,6) 295 
 296 
%---------------------------------------------------------------------------------------------------297 
------ 298 
 299 
%Plot the forecast results 300 
  301 
figure(3) 302 
plot(pow,'Color',[.7,.7,.7]); 303 
hold on 304 
 305 
h1 = plot(169:264,Y,'k','LineWidth',2); 306 
legend(h1,'Forecast','Location','NorthWest') 307 
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title('Phoenix Global irradiance forecast_January_0000') 308 
 309 
hold off   310 
 311 
%---------------------------------------------------------------------------------------------------312 
------313 
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APPENDIX B 

MATLAB PROGRAM – CALCULATION OF INCIDENT SOLAR RADIATION 

FROM GHI  
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clc; 1 
clear all; 2 
GHI_meas=xlsread('Incident.xlsx','G2:G25'); 3 
GHI_forecast=xlsread('Incident.xlsx','H2:H25'); 4 
zenith=xlsread('Incident.xlsx','I2:I25'); 5 
ETR=xlsread('Incident.xlsx','J2:J25'); 6 
incidence=xlsread('Incident.xlsx','K2:K25'); 7 
beta=33; 8 
ref=0.6; 9 
 10 
%---------------------------------------------------------------------------------------------------11 
------ 12 
%Calculation of kt 13 
 14 
for n=1:1:24 15 
if GHI_meas(n)==0 || ETR(n)==0 16 
    kt(n)=0; 17 
else 18 
    kt(n)=GHI_meas(n)/ETR(n); 19 
end 20 
end 21 
 22 
%---------------------------------------------------------------------------------------------------23 
------ 24 
% Caluculation of Gd_measured 25 
 26 
for t=1:1:24 27 
    if kt(t)<=0.22 28 
        Gd_meas(t)=GHI_meas(t)*(1-0.09*kt(t)); 29 
    elseif kt(t)>0.22 && kt(t)<=0.8 30 
            Gd_meas(t)=GHI_meas(t)*(0.9511-0.1604*kt(t)+4.388*((kt(t))^2)-31 
16.638*((kt(t))^3)+12.336*((kt(t))^4)); 32 
    else 33 
         Gd_meas(t)=GHI_meas(t)*0.165; 34 
    end 35 
end 36 
Gd_meas=Gd_meas'; 37 
 38 
%---------------------------------------------------------------------------------------------------39 
------ 40 
% Calculation of Gb_measured 41 
 42 
Gb_meas=(GHI_meas-Gd_meas)./cosd(zenith); 43 
for t=1:1:24 44 
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    if Gb_meas(t)>=0 45 
        Gb_meas(t)=Gb_meas(t); 46 
    else 47 
      Gb_meas(t)=0; 48 
    end 49 
end 50 
 51 
%---------------------------------------------------------------------------------------------------52 
------ 53 
% Calculation of Incident solar radiation for measured GHI 54 
 55 
Rb=cosd(incidence)./cosd(zenith); 56 
Rd=(1+cosd(beta))/2; 57 
Ra=(1-cosd(beta))/2; 58 
Ai=Gb_meas./1367; 59 
f=sqrt((Gb_meas)./(Gb_meas+Gd_meas)); 60 
for t=1:1:24 61 
    if f>=0 62 
        f; 63 
    else 64 
        f=0; 65 
    end 66 
end 67 
G_incidence_meas=(Gb_meas+Gd_meas.*Ai).*Rb+Gd_meas.*Rd.*(1-68 
Ai).*[1+f.*(sind(beta/2))^3]+ref.*Ra.*(Gb_meas+Gd_meas) 69 
  70 
%-------------------------------------------------------------------------- 71 
 %Calculation of Gd_forecast 72 
 73 
for t=1:1:24 74 
    if kt(t)<=0.22 75 
        Gd_forecast(t)=GHI_forecast(t)*(1-0.09*kt(t)); 76 
    elseif kt(t)>0.22 && kt(t)<=0.8 77 
            Gd_forecast(t)=GHI_forecast(t)*(0.9511-0.1604*kt(t)+4.388*((kt(t))^2)-78 
16.638*((kt(t))^3)+12.336*((kt(t))^4)); 79 
    else 80 
         Gd_forecast(t)=GHI_forecast(t)*0.165; 81 
    end 82 
end 83 
Gd_forecast=Gd_forecast'; 84 
 85 
%---------------------------------------------------------------------------------------------------86 
------ 87 
% Calculation of Gb_forecast 88 
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 89 
Gb_forecast=(GHI_forecast-Gd_forecast)./cosd(zenith); 90 
for t=1:1:24 91 
    if Gb_forecast(t)>=0 92 
        Gb_forecast(t)=Gb_forecast(t); 93 
    else 94 
      Gb_forecast(t)=0; 95 
    end 96 
end 97 
 98 
%---------------------------------------------------------------------------------------------------99 
------ 100 
% Calculation of incident solar radiation for forecasted GHI 101 
 102 
Rb=cosd(incidence)./cosd(zenith); 103 
Rd=(1+cosd(beta))/2; 104 
Ra=(1-cosd(beta))/2; 105 
Ai=Gb_forecast./1367; 106 
f=sqrt((Gb_forecast)./(Gb_forecast+Gd_forecast)); 107 
for t=1:1:24 108 
    if f>=0 109 
        f; 110 
    else 111 
        f=0; 112 
    end 113 
end 114 
G_incidence_forecast=(Gb_forecast+Gd_forecast.*Ai).*Rb+Gd_forecast.*Rd.*(1-115 
Ai).*[1+f.*(sind(beta/2))^3]+ref.*Ra.*(Gb_forecast+Gd_forecast) 116 
 117 
%--------------------------------------------------------------------------------------------------- 118 


