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ABSTRACT 

Measurements of the geometrical magnetoresistance of a conventional 

semiconductor, gallium arsenide (GaAs), and a more recently developed 

semiconductor, iron pyrite (FeS2) were measured in the Corbino disc geometry as a 

function of magnetic field to determine the carrier mobility (μm). These results were 

compared with measurements of the Hall mobility (μH) made in the Van der Pauw 

configuration. The scattering coefficient ( 𝜉 ), defined as the ratio between 

magnetoresistance and Hall mobility (μm/μH), was determined experimentally for GaAs 

and natural pyrite from 300 K to 4.2 K. The effect of contact resistance and heating 

on the measurement accuracy is discussed.  
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INTRODUCTION 

Iron pyrite has recently received a lot of attention for use in photovoltaic cells 

because of its high abundance, 0.95 eV band gap [1, 2] non-toxicity and very high 

absorption coefficient ( 105 cm-1 for energies >1.4 eV). The high absorption coefficient 

results in a 0.1 μm thick layers being able to absorb over 90% of the sunlight light in 

that spectral region. This can be compared to >200 μm for silicon [3]. The many 

advantages of this material has inspired a number of studies aimed at synthesizing 

pyrite thin films and quantum dots using advanced growth techniques including Metal 

Organic Chemical Vapor Deposition (MOCVD)[4], Sputtering[5], Molecular Beam 

Epitaxy (MBE) Physical Vapor Evaporation (PVD),Sol-gel and nano ink deposition.[6] 

Despite the strong effort in producing thin films, pyrite photovoltaic cells have 

only been able to yield cell efficiencies <3% and open circuit voltages of only ~0.1 V 

[3], From this, we can conclude that efforts to develop practical applications using 

pyrite semiconductors have not been successful.[2-7] 

In a recent study conducted by our research group, Vahidi et al [7] were able 

to produce single phase thin films that were epitaxial on natural pyrite substrates and 

polycrystalline on Si and SiO2 surfaces.  

Carrier conduction and doping mechanism in pyrite thin films and bulk materials 

are not yet well understood. In the majority of cases, bulk crystals are n-type and thin 

films are p-type conduction. The root cause of these observations is not understood. 

The role of the surface in affecting the nature of transport has been in debate for many 

years [8, 9]. One factor that plays a role is that the films produced to date are mostly 

high defective with small mobilities (<3 cm2 \V.s) [2-9]. 
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MOBILITY 

In a solid, carriers drift at a velocity that is proportional to the applied electric 

field v=E, where the constant of proportionality is called the mobility. The unit for 

mobility is m2/(V.s) in the SI system and is cm2/(V.s) in the CGS system. They are 

related by 1 m2/(V.s) =104 cm2/(V.s) 

The main factors determining the mobility are effective mass of the carriers 

(m*) and the scattering time (τ), as expressed in the equation  

𝜇 =
𝑒𝜏

𝑚∗                                                                               (1.1) 

The scattering time is defined as the time from when the carriers are first 

ballistically accelerated by the electric field until they are scattered by a phonon or 

impurity. The microscopic scattering depends on the nature of the scatterer, the carrier 

trajectory in relation to the scatterer and the energy of the carrier. 

Conductivity is proportional to the product of mobility and the carrier 

concentration as given by the relation 

𝛔 = (𝐧𝐪𝛍𝐞 + 𝐩𝐪𝛍𝐡)                                                                (1.2) 

where ‘n’ is the electron concentration in cm-3, ‘p’ is the hole concentration in cm-3, ‘𝜇𝑒’ 

is the electron mobility in cm2/(V.s), ‘𝜇ℎ’ is the hole mobility in cm2/(V.s) and ‘q’ is the 

charge of an electron given 1.6 x 10-19 C. 

 

TRANSPORT IN SEMICONDUCTORS 

In equilibrium, semiconductor carriers are distributed among the energy levels 

given by Fermi-Dirac statistics 

𝑓(𝐸) =
1

1+𝑒

(𝐸−𝐸𝑓)

𝐾𝑇

                                                                         (1.3) 

where E is the energy of the energy level, Ef is the energy at the fermi level, K is the 

Boltzmann constant and T is the temperature. Under the equilibrium condition no net 

transport of charge or energy occurs. When an external force or temperature gradient 
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is applied, the carriers will not remain in equilibrium, as first explained by Ludwig 

Boltzmann in 1872 [10]. He proposed an equation now known as the Boltzmann 

transport equation 

𝑑𝑓

𝑑𝑡
=

1

ℏ
𝐹𝑡 . ∇𝑘𝑓 + 𝑣. ∇𝑟𝑓 +

𝜕𝑓

𝜕𝑡
                                                        (1.4) 

On the right side of equation (1.4) the first term takes into account changes in 

distribution due to forces on the carrier, the second term accounts for changes due to 

concentration gradients in the carrier distribution and the last term represents the local 

time dependent change in the distribution function. 

When the semiconductor material is subjected to a electric field ‘E’ and a 

magnetic field ‘B’, the charge carriers experience a force ‘qE+v x B’, this is called the 

Lorentz force. Retaining the temperature and concentration gradient, under the 

relaxation time assumption, the function ′𝑓′ is replaced by the term 
𝑓−𝑓0

𝜏𝑚
, where 𝑓0 is the 

equilibrium distribution given by Fermi Dirac function given in equation 1.3. Applying 

this condition in equation (1.4) we get 

𝑓−𝑓0

𝜏𝑚
=

𝑞

ℏ
(𝐸 + 𝑣 𝑋 𝐵). ∇𝑘𝑓 − 𝑣. ∇𝑟𝑓                                             (1.5) 

From the above equation, when we consider drift velocity Vd as the average 

velocity of the carriers over the distribution and when we introduce dimensionless 

variables we get 

𝑣𝑑 =
−𝑞𝐸

𝑚∗ < 𝜏𝑚 >                                                                 (1.6) 

where E is the Electric field applied. In the above equation, the proportionality constant 

between drift velocity and the electric field is the conductivity mobility, μc. Thus 

equation (1.6) can be expressed as 

𝑣𝑑 = 𝜇𝑐𝐸                                                                           (1.7) 

The momentum relaxation time has a simple power dependence on energy of 

the form 
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𝜏𝑚 = 𝜏0(
𝜀

𝐾𝐵𝑇
)𝑟                                                                     (1.8) 

In the above equation ‘r’ has different values depending on the type of scattering 

mechanism. 

Solving eq. (1.5) for current density ‘j’ we get 

𝐽 =
𝑞2𝑛

𝑚∗
〈

𝜏𝑚

1+(𝜔𝑐𝜏𝑚)2
〉 −

𝑞3𝑛

𝑚∗2
〈

𝜏 𝑚
2

1+(𝜔𝑐𝜏𝑚)2
〉 (𝐸 × 𝐵) +

𝑞4𝑛

𝑚∗3
〈

𝜏𝑚
3

1+(𝜔𝑐𝜏𝑚)2
〉 𝐵(𝐸. 𝐵)    (1.9) 

where ωc is the cyclotron frequency  

𝜔𝑐 =
𝑞|𝐵|

𝑚∗                                                                              (1.10) 

The first term in eq. (1.9) is the ohmic term. The factor 1 + (𝜔𝑐𝜏𝑚)2 in the 

denominator is responsible for the magnetoresistance term. The second term results 

in the Hall effect term, which also includes a magnetoresistance term associated with 

it. The third term is  an additional second order magnetoresistance factor [11]. 

 

HALL EFFECT 

In the year 1879 Edwin Hall discovered that when a solid is sourced with current 

‘Is’ and is kept in a magnetic field ‘B’ perpendicular to the applied electric field, the 

charge carriers experience a Lorentzian force (-qV X B) perpendicular to the direction 

of the sourced current and the applied magnetic field (see fig 1). In the steady state, 

there is an electric-field generated perpendicular to the current flow. The transverse 

voltage produced on the corresponding surfaces is called the Hall voltage (VH)[12]. 

𝑉𝐻 =
𝐼𝑠𝐵

𝑞𝑛𝑡
                                                                            (1.11) 

where ‘Is’ is the sourced current, ‘B’ is the magnetic field, ‘E’ is the electric field, ’t’ is 

the sample thickness, ‘V’ is the particle velocity, ‘n’ is the a charge carrier density and 

‘q’ is the charge of the electron (1.602 x 10-19 C). 
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 If the Hall voltage is negative then the majority charge carriers are electrons 

and the material is n-type, while if the Hall voltage is positive then the majority carriers 

are holes and the material is p-type. 

 

Figure 1: Hall effect on a semiconductor of thickness ’d’, I is the current sourced, B is 
the magnetic field acting perpendicular to the plane of the sample, VH is the Hall 
Voltage generated 

In the Hall measurements, the carrier concentration can be inferred from the 

following relationship 

𝑛 =
𝐼𝑠×𝐵

(𝑞×𝑉𝐻×𝑡)
                                                                 (1.12) 

By using the Van der Pauw configuration as described in the next section we 

can determine the sheet resistance (Rs) through which one can infer Hall mobility from:  

𝜇𝐻 =
|𝑉𝐻|

𝑅𝑠∗𝐼𝑠∗𝐵
                                                                 (1.13) 

The resistivity ′𝜌’ can be determined using the sheet resistance Rs by the relation 𝜌 =

𝑅𝑠𝑡, where ‘t’ is the material’s thickness. 
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RESISTIVITY MEASUREMENTS 

A four point Van der Pauw configuration was used to measure both Hall voltage 

and resistivity of the sample. With this method it is preferred to use one of following 

measurement configurations that are shown below. In our experiments, we use the 

configuration ‘b’ on a square sample 

 

Figure 2: Different Van der Pauw configurations, for our Hall and resistivity 
measurements, we have used the configuration (b) [13] 

The contacts on the semiconductor should be made such that the average 

diameter of the contacts, d and the thickness of the sample, t, should be smaller than 

the distance between the contacts, L. Relative errors caused by finite sized contacts is 

of the order of d/L  

To perform the Hall and magnetoresistance measurements, the following 

equipment is required: 

 An instrument that generates magnetic field. 

 Constant-current source. 

 High input impedance nano-voltmeter. 

 Sample temperature-measuring probe 

In our case we will use a commercial cryostat (Quantum Design, Model 

Physical Property Measurement System (PPMS)) for generating the required 

magnetic fields and controlling the temperature. 
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SAMPLE CONFIGURATION FOR MEASURING RESISTIVITY 

To perform resistivity measurements in the Van der Pauw configuration, four 

leads were connected to the four ohmic contacts on the sample. These are labeled 1, 

2, 3, and 4 as shown in fig.3. It is important to use the same type of contacts and 

wires for all four leads in order to minimize thermoelectric effects.  

We define the following parameters: 

ρ = sample resistivity (in Ω·cm) 

d= conducting layer thickness (in cm) 

I12= positive dc current I sourced into contact 1 and taken out of contact 2. 

Likewise for I23, I34, I41, I21,I14, I43, I32 (in amperes, A) 

V12 = dc voltage measured between contacts 1 and 2 (V1-V2) without applied 

magnetic field (B= 0). Likewise for V23, V34, V41, V21, V14, V43, V32 (in volts, V) 

 

Figure 3: Van der Pauw measurement schematic, (a) shows RA is the resistance in 
vertical direction (b) shows RB is the resistance in horizontal direction[14] 

  

(a) 

(b) 
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PROCEDURE TO MEASURE RESISTIVITY 

 A dc current ‘I’ is applied to the sample that is set to a value high enough to 

obtain a measureable low-noise signal, while being small enough to prevent 

significant heating. This current value and measurement sequence was 

controlled using the LABVIEW program 

 Apply current I21 and measure voltage V34 

 Polarity of the current was reversed (I12) and measure V43 

 This was repeated for the remaining six values (V41, V14, V12, V21, V23, V32) 

Eight measurements of voltage yield the following eight values of resistance 

R21,34 = V34/I21, R12,43 = V43/I12, 

R32,41 = V41/I32, R23,14 = V14/I23, 

R43,12 = V12/I43, R34,21 = V21/I34, 

R14,23 = V23/I14, R41,32 = V32/I41. 

(1.14) 

Important consistency checks on measurement repeatability, ohmic contact 

quality, and sample uniformity were done. If any of the above equality conditions were 

off by greater than 5 % (preferably 3 %), the measurements were considered invalid 

and the source of the error was investigated. 

 

R21,34 = R12,43 

R32,41 = R23,14 

R43,12 = R34,21 

R14,23 = R41,32 

 

(1.15) 

R21,34 + R12,43 = R43,12 + R34,21 and 

R32,41 + R23,14 = R14,23 + R41,32. 

(1.16) 
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RESISTIVITY CALCULATIONS 

The sheet resistance RS was determined from the two characteristic 

resistances, RA which is the resistance along the vertical direction and RB being the 

resistance along the horizontal direction. 

RA =(R21,34 + R12,43 + R43,12 + R34,21)/4 

RB = (R32,41 + R23,14 + R14,23 + R41,32)/4 

(1.17) 

The Van der Pauw equation for a square sample with ohmic contacts on the corners of 

the sample is given by the relation 

𝑒
(−

𝜋∗𝑅𝐴
𝑅𝑠

)
+ 𝑒

(−
𝜋∗𝑅𝐵

𝑅𝑠
)

= 1                                                         (1.18) 

By substituting RA and RB in the above equation, we can infer the sheet resistance Rs. 

If the conducting layer thickness 't’ is known, the bulk resistivity(𝜌 = 𝑅𝑠 ∗ 𝑡) can then 

be calculated from RS. 

 

HALL MEASUREMENTS 

Two sets of Hall measurements, one for positive and one for negative magnetic 

field direction were taken. The relevant definitions are as follows  

 I13 = dc current sourced into lead 1 and taken out of lead 3. Likewise for I31, I42, 

and I24. 

 B = constant and uniform magnetic field intensity (to within 3 %) applied 

perpendicular to the direction of the current source as shown in fig.4. B is positive 

when pointing out of plane of the sample, and negative when pointing into the 

plane of the sample  

 V24P = Hall voltage measured between leads 2 and 4 with magnetic field positive 

for I13. Likewise for V42P,V13P, and V31P. Similar definitions for V24N, V42N, V13N, 

and V31N apply when the magnetic field B is reversed. 
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PROCEDURE FOR MEASURING HALL EFFECT 

The procedure for the Hall measurement was: 

 Apply a positive magnetic field B 

 Apply a current I13 to leads 1 and 3 and measure V24P 

 Apply a current I31 to leads 3 and 1 and measure V42P 

 Likewise, measure V13P and V31P with I42 and I24, respectively 

 Reverse the magnetic field (negative B) 

 Likewise,measure V24N, V42N, V13Nand V31N with I13, I31, I42,and I24, respectively 

 

Table 1: 8-Hall voltages measured 

Magnetic Field direction Hall Voltage measured 

Positive field (B+) 

V24P 

V42P 

V13P 

V31P 

Negative field(B-) 

V24N 

V42N 

V13N 

V31N 

 

The above 8 measurements of Hall voltages V24P, V42P, V13P, V31P, V24N, V42N, 

V13N, and V31N determine the sample type (n or p) and the carrier concentration ‘n’. 

The Hall mobility can be determined from the carrier concentration ‘n’ and the sheet 

resistance 'RS' obtained in the resistivity measurement. See Eq. (1.18). 

The Hall voltage from each of the two diagonal sets of contacts can be averaged 

to obtain improved accuracy. 
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Figure 4: Schematic configuration used for measuring 8 Hall voltages, Red arrows 
indicate the direction of source current and the blue arrows indicate the corresponding 
Hall voltage measurement. 

 

HALL CALCULATIONS 

The following steps have been used to determine the carrier density and Hall 

mobility: 

 For a given current source, four Hall Voltages have been obtained by 

subtracting measured Hall voltages taken in the negative and positive magnetic 

field direction. 

VC = V24P - V24N, VD = V42P - V42N, 

VE = V13P - V13N, and VF = V31P - V31N. 

(1.19) 

 We average the obtained four Hall voltages to determine the mean value (VH) and 

standard deviation(σ) and check the validity by ensuring that the values fall within 

5%. 

 The sample type is determined from the polarity of the voltage VH. If the Hall 

voltages are positive (negative), the sample is p-type (n-type). 
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 The sheet carrier concentration (in units of cm-3) is calculated from 

P= 
 10−8∗𝐼𝐵

[𝑞𝑉𝐻t]
, if the voltage sum is positive, or 

n=
 10−8∗𝐼𝐵

[𝑞𝑉𝐻t]
, if the voltage sum is negative, 

(1.20) 

where B is the magnetic field in gauss (G) and I is the dc current in amperes (A). 

 The Hall mobility µ =
𝑉𝐻

𝑅𝑠𝐼𝐵
 (in units of cm2V-1s-1)  

 

DISADVANTAGES OF HALL MEASUREMENT TECHNIQUE 

As we have shown, by performing Hall and resistivity measurements we can 

determine the carrier type, carrier concentration and mobility. However, there are 

some disadvantages and limitations to this technique.  

 In a highly defective sample, the scattering times of the carrier is short, and this 

will result in a relatively small Hall voltages. This can make it difficult to obtain 

accurate results. 

 When the mobility is small, on the order or smaller than 10 cm2/V.s, the Hall voltage 

is typically small compared to the voltage offset from misaligned contacts and/or 

asymmetric samples. This makes accurate measurements challenging, particularly 

in the presence of typical noise levels.  

It would be advantageous to use an alternative method that is able to more 

accurately and reliably measure low-mobility materials. It would also be desirable to 

be able to perform these measurements using a 2-point measurement scheme.  
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MAGNETORESISTANCE 

Magnetoresistance refers to the change in resistance of the conductivity and 

resistivity as a result of the application of magnetic field.[15]. There are three main 

types of magnetoresistance, depending on the direction of the magnetic field. If the 

magnetic field is parallel to the direction of the current sourced it is called longitudinal 

magnetoresistance. Transverse magnetoresistance effect occurs when the direction of 

the magnetic field is perpendicular to the current sourced. This again is subdivided into 

physical magnetoresistance and geometrical magnetoresistance. If the magnetic field 

is applied at any other direction it is called as anisotropic magnetoresistance. There 

are other types of magnetoresistance depending on the type of material used like the 

giant magnetoresistance, colossal magnetoresistance and extraordinary 

magnetoresistance. In my current work I will be focusing on the geometrical 

magnetoresistance effect on GaAs and iron pyrite semiconductors. 

PRINCIPLE OF GEOMETRICAL MAGNETORESISTANCE 

The geometrical magnetoresistance dominates when the current is sourced 

from one end of a long and narrow sample to the other in a magnetic field applied 

perpendicular to the sample's long dimension. The equation for magnetoresistance can 

be derived from eq.1.9, when the magnetic field ‘B’ is perpendicular to the electric field 

‘E’ [11]: 

 

𝐽 =
𝑞2𝑛

𝑚∗
〈

𝜏𝑚

1 + (𝜔𝑐𝜏𝑚)2
〉 −

𝑞3𝑛

𝑚∗2
〈

𝜏 𝑚
2

1 + (𝜔𝑐𝜏𝑚)2
〉 (𝐸 × 𝐵) +

𝑞4𝑛

𝑚∗3
〈

𝜏𝑚
3

1 + (𝜔𝑐𝜏𝑚)2
〉 𝐵(𝐸. 𝐵) 

𝐽 =
𝑞2𝑛

𝑚∗
〈

𝜏𝑚

1+(𝜔𝑐𝜏𝑚)2
〉 −

𝑞3𝑛

𝑚∗2
〈

𝜏 𝑚
2

1+(𝜔𝑐𝜏𝑚)2
〉 (𝐸 × 𝐵)                                           (1.21) 

From eq. 1.13 

𝜔𝑐 =
𝑞|𝐵|

𝑚∗ , and 

=0 
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𝜏𝑚 =
𝜇𝑚∗

𝑞
 

Substituting the values of 𝜔𝑐 and 𝜏𝑚 in eq.1.21 and considering small magnetic 

fields such that 𝜇𝐵 < 1  we get 

𝑅(𝐵)−𝑅(0)

𝑅(0)
= 𝜉(𝜇𝐵)2 + 𝐶                                                                  (1.22) 

where R(B) is the resistance of the sample at magnetic field B, R(0) is the resistance 

of the sample at zero magnetic field, 𝜉 is the scattering coefficient of the sample which 

is given as the ratio of magnetoresistance and Hall mobility (μm/μH)[16] and ‘C’ is the 

constant arising due to the Hall term  

When a sample is used that is not long and narrow, the Hall Voltage is present 

and can dominate the results. In the following figure 5, we can see the equipotential 

lines in a bar shaped sample and how Hall effect arises in such samples 
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Figure 5: The current and the equipotential lines in a bar shaped sample in a magnetic 
field perpendicular to the plane of the drawing(a) is out of  the plane and (b) is into 
the plane, the red circles indicate the accumulation of hall voltages on the 
contacts.[17] 

 

In order to eliminate the errors associated with the Hall Effect on the 

magnetoresistance, Orso Mario Corbino in the year 1911 described an arrangement of 

using a cylindrical structure that can negate the effects of charge accumulation due to 

the Hall effect. In their proposed arrangement the contact consist of a conducting 

annulus with perfectly conducting rims as shown in fig.6. When the magnetic field is 

zero, radial current flows between the rims. When the magnetic field is applied 

perpendicular to the current, a circular current is generated. As the magnetic field is 

increased, the radial current decreases and the circular component of current 

increases, which results in an increase in the resistance of the sample [15].Since the 

change in resistance is observed due to the geometry, it is called the geometric 

magnetoresistance. 

Equipotential lines 

Current lines 
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Figure 6: Schematic of Corbino disk configuration for the magnetoresistance 
measurement with the field perpendicular to the current source 

In the case of Corbino disk, the l/w ratio of the contacts is equal to infinity 

therefore the Hall voltages are effectively shorted out. Under those conditions eq.1.22 

becomes 

𝑅(𝐵)−𝑅(0)

𝑅(0)
= 𝜉(𝜇𝐵)2                                                                     (1.23) 

where R(B) is the resistance of the sample at magnetic field B, R(0) is the resistance 

of the sample at zero magnetic field, ′𝜉′ is the scattering coefficient of the sample which 

is given as the ratio of magnetoresistance and hall mobility (μm/μH)[16]. 

MAGNETORESISTANCE MEASUREMENTS 

The 2-point magnetoresistance measurement was carried out in the presence 

of a magnetic field on the Corbino disk samples. Two measurements sets were taken, 

one for positive and one for negative magnetic field direction. The relevant definitions 

are as follows  

IS = dc current sourced into inner contact and taken out of outer contact. 

B = constant and uniform magnetic field intensity (to within 3 %) applied 

perpendicular to the direction of the current source as shown in fig. 6. B is positive 

B

+ 
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when pointing outside the plane of the sample, and negative when pointing into the 

plane of the sample  

VP = Hall voltage measured between inner and outer contact with magnetic 

field positive for IS 

Similar definitions for VN apply when the magnetic field B is reversed. 

Generally when the contacts are ohmic, the magnetoresistance measurements 

are symmetric with respect to magnetic field direction and the current source direction, 

in contrast what we observed in Van der Pauw configuration This illustrated an 

advantage of using magnetoresistance over Hall for determining mobilities, as the 

errors due to contact asymmetry are eliminated. 

PROCEDURE FOR MEASURING MAGNETORESISTANCE 

The procedure for the magnetoresistance measurement was: 

 Apply a current ‘IS’ to leads and measure ‘V’ 

 Apply a perpendicular magnetic field ‘B’ 

 Apply a current ‘IS’ to leads and measure ‘V’ 

 Change the applied magnetic field to desired magnetic with the current source 

turned on, measure the Voltage  

The above measurements Voltages V is used to determine the sample 

resistance at each and every magnetic field point and use the above equation to 

determine the mobility of the sample. 

MAGNETORESISTANCE CALCULATION 

The following steps have been followed to measure the mobility from 

magnetoresistance 

At zero field, R(0)= V(0)/IS 

At magnetic field ‘B’, R(B)= V(B)/IS 



18 

∆𝑅

𝑅
=

𝑅(𝐵)−𝑅(0)

𝑅(0)
                                                            (1.24) 

A graph is plotted with 
∆𝑅

𝑅
 on the abscissa (y axis) and magnetic field squared 

‘B2’ on the ordinate (x axis). Then the data is fit with a linear equation as 
∆𝑅

𝑅
= 𝑎𝐵2. The 

square root of the coefficient of the x term ‘a, represents the mobility of the sample. 

 

RESISTANCE OF THE SAMPLE BETWEEN THE CORBINO DISK 

To obtain an accurate measurement of the magnetoresistance mobility, it is 

crucial that a precise value of R, the zero voltage resistance, be determined. Since, 

the method of measuring magnetoresistance using Corbino Disk sample is a 2-point 

measurement technique, care must be taken to avoid the effect of contact resistance 

in the determination of R. 

In order to determine an accurate zero field resistance, I chose to use the 

resistivity of the sample determined by the 4-point van Der Pauw measurements. 

Then, to infer the resistance in the Corbino geometry, the resistance of the 2-

dimensional radial current flow needs to be taken into account. To do this, consider a 

Corbino disc of inner radius ‘r1’ and outer radius ‘r2’(see fig 7), with a small section 

subtending an angle of dθ with thickness ‘t’ at a point ‘dr’ from the center of the inner 

contact  
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Figure 7: Corbino disk geometry used in our discussion to calculate the resistance of 
the sample with the inner contact having an OD of R1 and the outer contact having an 
ID of R2. 

 

The area ‘A’ of the 2D plane between the inner and outer contact is given as 

𝐴 = 2𝜋𝑟𝑡  

The resistance is given as 

∫ 𝑑𝑅
𝑅

0
= 𝜌𝐻 ∫

𝑑𝑟

𝐴

𝑟2

𝑟1
= 𝜌𝐻 ∫

𝑑𝑟

2𝜋𝑟𝑡

𝑟2

𝑟1
                                                      (1.25) 

𝑅 = 𝜌𝐻 (
ln (𝑟2)−ln (𝑟1)

2𝜋𝑡
)  

where, ′𝜌𝐻′ is the resistivity obtained from our Van der Pauw measurements. 

 

ADVANTAGES OF MAGNETORESISTANCE OVER HALL MEASUREMENT 

For magnetoresistance measurements, the change in resistance increases 

quadratically with respect to field, whereas for Hall measurements the Hall voltage 

scales linearly. Thus, in strongly scattered samples with small Hall mobilities, we can 

go to high fields to obtain larger signals and improved accuracy. When the 

magnetoresistance measurement is performed. In such strongly-scattered materials 

with low mobilities, high field effects, such as cyclotron resonance, will not become 

significant or affect the results.  
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ENERGY DEPENDENCE ON SCATTERING TIME AND ITS EFFECT ON MOBILITY 

I have described how the mobility depends on the scattering time and the 

effective mass earlier in the transport chapter. In n-type GaAs, electrons at or near 

the bottom of the conduction band occupy a single band and have an isotropic effective 

mass.  

When the semiconductor has an isotropic and parabolic energy band, the 

expression for the scattering time, in the absence of phonon scattering, is given by 

the relation  

𝜏𝑚 = 𝜏0(
𝑥

𝐾𝐵𝑇
)𝑟                                                                     (1.7) 

where x is the electron kinetic energy given by 

𝑥 = 𝐸 − 𝐸𝑐                                                                         (1.26) 

where E is carrier energy, EC is the energy of conduction band edge. 

 𝜏0 is the carrier lifetime and the exponent ‘r’ is independent of energy and 

depends on the type of scattering[11].  

The Boltzmann transport equation can be expressed using three fundamental 

parameters: the Hall mobility, the MR mobility and the effective drift mobility[18].  

𝜇𝑒𝑓𝑓 =
𝑒

𝑚∗

∫ 𝐸𝑁(𝐸)𝜏𝑚(𝐸) (−
𝜕𝑓
𝜕𝐸

) 𝑑𝐸
∞

0

∫ 𝑁(𝐸)𝑓(𝐸)𝑑𝐸
∞

0

 

 

𝜇𝐻𝑎𝑙𝑙 =
𝑒

𝑚∗

∫ 𝐸𝑁(𝐸)𝜏𝑚(𝐸)2 (−
𝜕𝑓
𝜕𝐸

) 𝑑𝐸
∞

0

∫ 𝑁(𝐸)𝑓(𝐸)𝜏𝑚(𝐸) (−
𝜕𝑓
𝜕𝐸

) 𝑑𝐸
∞

0

 

and 

𝜇𝑀𝑅 =
𝑒

𝑚∗
√

∫ 𝐸𝑁(𝐸)𝜏𝑚(𝐸)3 (−
𝜕𝑓
𝜕𝐸

) 𝑑𝐸
∞

0

∫ 𝑁(𝐸)𝑓(𝐸)𝜏𝑚(𝐸) (−
𝜕𝑓
𝜕𝐸

) 𝑑𝐸
∞

0

 

(1.27) 
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where f(E) is the Fermi–Dirac distribution function, N(E) the density of states, τm(E) 

the energy-dependent momentum relaxation time, e the electron charge, and m* the 

electron effective mass. 

From the above equation we can see that  

𝜇𝑀𝑅>𝜇𝐻𝑎𝑙𝑙 > 𝜇𝑒𝑓𝑓 

𝜇𝐻𝑎𝑙𝑙 is related to the drift velocity given by the relation [19] 

𝜇𝐻𝑎𝑙𝑙 = 𝑟𝐻𝜇𝑒𝑓𝑓 

𝑟𝐻  is the Hall Factor 

And 𝜇𝑀𝑅  is related to the drift mobility 𝜇𝑒𝑓𝑓 by the relation 

𝜇𝑀𝑅 = 𝑟𝑀𝑅 𝜇𝑒𝑓𝑓 

𝑟𝑀𝑅 is the magnetoresistance factor 

The scattering coefficient ′𝜉′ is given as 

𝜉 =
𝑟𝑀𝑅

𝑟𝐻

 

The values of the Hall and Magnetoresistance mobilities depends on film 

thickness, doping densities, impurities, strain and effective dimensions in the case of 

devices[20]. 

Considering, 𝜇𝑒𝑓𝑓 to be constant for a particular material the scattering factor 

can also be determined using the Hall and the magnetoresistance mobility and it is 

given as 

𝜉 =
𝜇𝑀𝑅

𝜇𝐻𝑎𝑙𝑙

 

  

(1.28) 

(1.29) 

(1.30) 

(1.31) 
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EXPERIMENTAL METHODS 

SAMPLE PREPERATION 

n-type GALLIUM ARSENIDE (GaAs, n-type) 

Hall and magnetoresistance studies were performed on n-type GaAs samples 

with three different doping concentrations. The measured transport parameters as well 

as those provided by the manufacturers are summarized in the Table 1 below. The 

reason n-type Gallium Arsenide was chosen to test the validity and reliability of our 

measurements is that it can be obtained with near-perfect structural quality and has 

a single isotropic conduction band at ‘Γ’. This will simplify the analysis. We also note 

that pyrite also has a single isotropic conduction band at ‘Γ’. (Fig 8) 

 

Table 2: properties as specified by the manufacturer MTI Corporation. Of GaAs samples 

used for our research 

n-type GaAs 
Sample properties 

7.7x1016 cm-3 2.7x1017 cm-3 1.49X1018 cm-3 

Type n n n 

Dimensions 
1 cm X 1 cm X 

0.05 cm 

1 cm X 1 cm X 

0.045 cm 

1 cm X 1 cm X 

0.035 cm 

Doping(cm-3) (3.8-6.2)x1016 (3.04-5.98)x1017 (1.07-1.9)x1018 

Resistivity(ohm-cm) (2.74-4.24) 10-2    (3.14-5.34) 10-3  (1.70-2.37) 10-3 

Hall 

mobility(RT)(Cm2/V.s) 
(3450-3890) (3330-3850)  (1930-2470) 
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Figure 8: Energy Band diagram of (a) GaAs and (b) pyrite with its density of states[7] 
, note that the conduction band minima for both of these material is at ‘Γ’  

For this study, all the samples were obtained from 2”- diameter (100) oriented 

tellurium doped wafers. The doping concentration were chosen to be well above the 

metal insulator transition of GaAs (ND-5.2 x 1015cm-3) so that the carriers don’t freeze 

out at low temperatures. These samples were diced into 1 cm x 1 cm pieces and 

(a) 

(b) 
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degreased with acetone and D.I. water, then etched in a H2SO4 (1.5%)+ H2O2 (1.5%) 

solution for 5 min. After that, they were cleaned with acetone and D.I. water. 

For the Hall measurements in the Van der Pauw configuration, indium (In) 

contacts were pressed on GaAs substrates and then annealed at 450 ̊C in a forming 

gas atmosphere. This method proved to be most consistent way to make ohmic 

contacts on GaAs[21]. Deposition of Corbino Disk contacts on GaAs is explained in the 

vacuum deposition section. 

 

NATURAL PYRITE 

Bulk pieces of natural pyrite were diced into 1 cm x 1 cm x 1 mm and then 

polished into mirror-smooth wafers  

 a low speed diamond wheel saw (South Bay Tech Inc., Model 650 saw) with a  4” 

x .012” (10.15 cm x 0.3048 mm) diamond wheel disc (South Bay Tech Inc., Model 

DWL4121), 

 variable speed grinder polisher (Ecomet 3, Buehler),  

 30 µm, 15 µm, 6 µm, 3 µm, 1 µm, 0.25 µm and 0.1 µm lapping paper successively. 

Samples were subsequently cleaned with acetone and D.I.-water in an 

ultrasonic cleaner (Branson Model 2510) for 5 min each, and then blown dry with 

nitrogen gas. 

 

VACUUM DEPOSITION OF OHMIC CONTACTS 

The metal/pyrite contacts and metal/GaAs contacts were formed by thermal 

evaporation of elemental metals onto natural pyrite and GaAs. These contacts were 

then used in the Hall, I-V (current-voltage) and magnetoresistance measurements. 

For these depositions, a substrate holder that can house four 1cm X 1 cm sample was 
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made using aluminum. For the Van der Pauw configuration and Corbino disk contacts, 

stainless steel shadow masks were specially made as shown in figure 9. Four holes 

were drilled on the mask to produce a 1 mm diameter contact in the corner position 

of a square sample for Hall measurements. The Corbino disk mask produced a 0.254 

cm diameter contact in the center and a ring with an inner diameter of 0.635 cm 

diameter. 

 

 

Figure 9: (a) Mask for four point Van der Pauw configuration, (b) mask for depositing 
Corbino disk configuration, (c) substrate holder with substrates and samples with 
deposited metal in Corbino disk configuration. (d) Vacuum thermal evaporator system 
used to deposit metals 

In order to form metal ohmic contacts, vacuum thermal deposition was 

performed using a cryopumped Denton Vacuum (DV-502A) evaporator with a pressure 

of 10-7 Torr. Metals were placed in alumina coated tungsten crucible (R.D. Mathis, 

b 

C 

Substrate 
holder 

d 
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model WBAQ-2 (reaches 1475oC at 40 Amps)). The time duration for evaporations 

were estimated using the manufacturer’s information for the temperature-current 

relation for the crucible filament and vapor pressure charts. For cobalt contacts, (RD 

Mathis, Model WBAQ-2) was used, 40 amps current was sourced, and the length of 

deposition was 2 min. As for indium contacts, which is very easy to evaporate, the 

same type of crucible was used, the current was ramped to 30 amps and then held for 

1 min. Several hundred angstroms or more were typically deposited. During the 

evaporation of the Corbino disk contacts, two heating filaments were used to eliminate 

shadowing from the wires onto the mask. 

After the metal contacts were made, samples were glued using Duco-Cement to 

44-pin chip carriers (PB-F87049, Evergreen Semiconductor Materials Inc.). Gold wires 

(99.99% purity) were wire affixed to the metal contacts on the pyrite and to the chip 

carrier bond pads using conducting silver paste with specified resistivity of 3 X 10-5 

ohm-cm(SPI supplies).  
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RESULTS AND DISCUSSIONS 

GALLIUM ARSENIDE 

HALL RESULTS 

Hall measurements were performed on all three doping levels of GaAs samples 

at temperature ranging from  4.2 K to 300 K [see figure 10-13] and at fields ranging 

from 0.3 T to 1 T. The current sourced for all our measurement was 1.5 mA. Hall 

measurements are performed, in conjunction with the magnetoresistance 

determinations, in order to determine the scattering factor, H/MR. For all the samples 

measured, the resistivity increased as the temperature decreased  

The Hall voltage in all our samples scales linearly with magnetic field which 

follows the expected Hall theory, thereby validating our measurements. 
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Figure 10: Hall measurement results on the GaAs sample with a room-temperature 
carrier concentration of ~7.7 X 1016 cm-3 (a) Temperature versus carrier concentration, 
(b) Temperature versus Hall mobility (c) Temperature versus resistivity. 
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Figure 11: Hall measurement results on GaAs sample with a room temperature carrier 
concentration of ~2.7 X 1017 cm-3 (a) Temperature versus carrier concentration, (b) 
Temperature versus Hall mobility (c) Temperature versus resistivity 
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Figure 12: Hall measurement results on GaAs sample with a room-temperature carrier 
concentration of ~1.47 X 1018 cm-3 (a) Temperature versus carrier concentration, (b) 
Temperature versus Hall mobility (c) Temperature versus resistivity 
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Figure 13: Field versus Hall voltage measurement results in GaAs samples with room-

temperature carrier concentrations of (a) 7.7 x 1016 cm-3, (b) 2.7 x 1017 cm-3, (c) 1.47 
x 1018 cm-3. Note that the Hall voltages scale linearly with field, validating our 
measurement results  

 

Our Hall mobilities at 300 K were slightly lower than the reported Hall mobilities 

by Sze S. M [16]. This suggests that the samples could be slightly compensated 
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Figure 14: Literature values of experimentally measured mobilities in GaAs as a 
function of doping concentrations, as summarized by Sze [16] 
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Table 3: comparing our experimentally measured mobilities with manufacturer 
specification and those reported by Sze [16] 

Measured Carrier 
Concentration 
(cm-3) 

Measured Hall 
Mobility @                
300 K (cm2/V.s) 

Hall mobility 
Manufacturer’s 
Specification 
(cm2/V.s) 

Hall 
mobility from 
Sze @ 300 K 
(cm2/V.s) 

7.7x1016 3600 3450-3890 4900 

2.7x1017 3680 3330-3850 4000 

1.49x1018 1800 1930-2470 2700 

 

MAGNETORESISTANCE RESULTS 

In the results described in this section, all the magnetoresistance 

measurements were performed at a constant DC current of 1.5 mA. The results are 

summarized in Figure 15-16. The change in 
∆𝑅

𝑅
 were plotted at various different fields 

ranging from 0 T to 1 T and these were fitted with a linear fit to determine the 

coefficient of x. 
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Figure 15: Measurement of results of field versus ΔR/R measurements for the 7.7 x 
1016 cm-3 doped GaAs sample over the temperature ranges (a) 300 K- 220 K and (b) 
140 K- 50 K 
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Figure 16: Measurement results of ΔR/R versus B2 for a GaAs sample with a carrier 
concentration 7.7 X 1016 cm-3 
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Figure 17: Measurement results of the field versus ΔR/R for the 2.47 x 1017 cm-3 doped 

GaAs sample over different temperature ranges (a) 300 K- 220 K and (b) 200 K- 77 
K. 
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Figure 18: Measurement results of ΔR/R versus B2 for the GaAs sample with carrier 
concentration 2.47 X 1017 cm-3 
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At temperatures below 50 K these samples showed negative 

magnetoresistance. Negative magnetoresistance in heavily doped GaAs has been 

reported by Arisato Kawabata et.al[22] and Kawaguchi et.al [23-25] and attributed to 

interference effects during hopping. This is most often observed at low temperatures 

in highly doped samples 

 

 

Figure 19: Negative magnetoresistance observed at low temperatures in GaAs samples 
with carrier concentrations of (a) 7.7 X 1016 cm-3 and (b) 2.47 X 1017 cm-3 
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COMPARISON OF HALL AND MAGNETORESISTANCE MOBILITY 

The mobility was calculated using a linear fit of to the 
∆𝑅

𝑅
  versus magnetic field 

‘B2’ graphs. From the fit equation, the magnetoresistance mobility (𝜇𝑚 ) can be 

determined using 

𝜇𝑚 = √𝑠𝑙𝑜𝑝𝑒                                                                      (1.30) 

The calculated mobility was compared with the measured Hall mobility  

 

 

Figure 20: comparison of measured Hall and Magnetoresistance mobility in GaAs with 

carrier concentrations of (a) 7.7 X 1016 cm-3 and (b) 2.47 X 1017 cm-3 
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The scattering factor ′𝜉′ is given by the ratio 𝜇𝑚/𝜇𝐻 [26] and the GaAs results 

are summarized in fig. 21 a and fig. 21 b. The figure shows that 𝜉 is close to 2.1 at 

300 K and decreases to 1.21 at 50 K. Jervis T R et al[16] reports that in GaAs with an 

electron carrier concentration of 6 x 1014 cm-3 the transport is dominated by ionized 

impurity scattering and the scattering factor is close to 1.2. This too might have been 

expected in our highly doped semiconductors.  

 

  

Figure 21: Measured scattering coefficient for GaAs samples with carrier 
concentrations of (a) 7.7 X 1016 cm-3 and (b) 2.47 X 1017 cm-3 
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NATURAL PYRITE 

In this section, we selected the n-type pyrite sample NP#12 with a measured 

hall mobility of ~25 cm2/V s with an electron concentration of ~ 1019 cm-3  

 

HALL RESULTS 

For the sample studied, the resistivities inferred from our van Der Pauw 

voltages measurements exhibited a decrease in resistivity from room temperature to 

100 K and then they remained relatively constant to 4K. Hall measurement showed 

that the Hall voltages scale linearly with magnetic field except for temperatures below 

50 K. At these low temperatures, the contacts were determined to be non-ohmic. The 

carrier concentration was measured to be ~1019 cm-3(see figure 21-22). Altermatt et 

al has plotted experimental values of mobility for bulk synthetic and natural pyrite. 

From that graph, we would expect the mobilities of natural pyrite with carrier 

concentrations of ~1019 cm-3 to have mobilities on the order of ~30 cm2/V.s or less(Fig 

20)[27]. Lower than expected mobilities result from the presence of additional 

scattering, which presumably arises from compensation by native and/or impurity 

point defects.  
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Figure 22: Calculated and experimentally measured mobilities in pyrite thin films as a 
function of dopant concentration[27] 
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Figure 23: Measurements results of (a) temperature versus resistivity and (b) field 
versus Hall voltage on pyrite sample NP#12 
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Figure 24: Hall measurement results on pyrite sample NP#12, (a) Temperature versus 
measured Hall mobility, (b) Temperature versus measured carrier concentration 
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MAGNETORESISTANCE RESULTS 

For this study, I have measured two samples from the NP#12 sample. Cobalt 

Ohmic contacts in Corbino disk fashion were deposited on the samples in the Corbino 

disk configuration using thermal deposition. In NP#12_sample 1, IV scans showed 

Ohmic current-voltage curves at above 100 K and non-rectifying behavior below that, 

see figure 23. Whereas, in NP#12_sample 2 the IV scans showed the contacts were 

ohmic and non-rectifying at all temperatures. The MR results on the sample showed a 

quadratic fit with respect to field, as expected from the theory of magnetoresistance. 

We will not report results when the contacts are not Ohmic 

Cobalt was used for the Ohmic contacts, as it was found to offer the most ideal 

electrical behavior over other contact metals that we tried. Indium, silver and platinum 

exhibited Ohmic behavior at room temperature, but not at low temperatures. 

Aluminum, chromium and iron exhibited Schottky behavior at all measured 

temperatures. 

Since cobalt is ferromagnetic, we made the contacts relatively thin and then 

only used the high field magnetoresistance results in the analysis to minimize the field 

generated by the contacts on the mobility determinations 



46 

NP#12 sample 1 (NP#12-1) 

 

Figure 25: I-V curves of the cobalt contacts deposited on NP#12-1 taken at different 
temperatures. Note that non-ohmic rectifying behavior observed at temperature below 
160 K 
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Figure 26: Measurement results of field versus ΔR/R on pyrite sample NP#12-1 over 
temperature ranges (a) 300 K- 240 K and (b) 200 K- 140 K 

 

y = 0.0036x2

R² = 0.9583

y = 0.0076x2

R² = 0.9993

y = 0.0079x2

R² = 0.9967

y = 0.0103x2

R² = 0.9989

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-1 0 1 2 3 4 5 6

Δ
R

/R

Field (T)

300 K

280 K

260 K

240 K

300 K

280 K

240 K

260 K

y = 0.0124x2

R² = 0.9959

y = 0.0152x2

R² = 0.9974

y = 0.0154x2

R² = 0.9621

y = 0.0391x2

R² = 0.9616

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 0 1 2 3 4 5 6

Δ
R

/R

Field (T)

220 K

200 K

160 K

140 K

160 K
140 K

200 K

220 K

(b) 

(a) 



48 

 

 

 

Figure 27: Measurement results of field versus ΔR/R for pyrite NP#12 over the 
temperature ranges of (a) 100 K- 50 K and (b) 10 K- 4.2 K. Note that the the ΔR/R is 
> 1 at low temperatures. 
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Measurement results of ΔR/R versus B2 curves were plotted for the temperature 

range of 300 K-140 K, the region in which the contacts were ohmic 

 

 

Figure 28: Measurement results of ΔR/R vs B2  for the pyrite NP#12-1 in the 
temperature ranges of (a) 300-240 K and (b) 220 K- 140 K. The solid trend lines 
represent fits at the high field region only and the mobilities are calculated using the 
coefficient of x. 
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NP#12 sample 2 (NP#12-2) 

 

 

Figure 29: (a) I-V measurement results for the cobalt Corbino contacts deposited on 
NP#12-2, (b) Field versus ΔR/R results for the NP#12-2 at temperatures of 300 K-240 
K. The contacts were found to exhibit ohmic behavior over the entire temperature 
range, including down to 4.2 K 
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Figure 30:  Measurement results for field versus ΔR/R in pyrite sample NP#12-2 over 

different temperature ranges (a) 220 K- 100 K and (b) 77 K- 4.2 K, observe the ΔR/R 
is > 1 at low temperatures. 
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Figure 31: Measurement results of ΔR/R Vs B2 for NP#12-2 in the temperature range 

(a)300 K- 220 K, (b)  160 K – 77 K, solid trend indicate the mobilities at those 

temperature was calculated at higher fields the mobilities are calculated using the 
coefficient of x. 
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Figure 32: Measurements results of ΔR/R versus B2 for pyrite sample NP#12-2 over 
the temperature range 50 K-4.2 K. 
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Since we are using the resistance from the 4-point Van der Pauw configuration 

measurement, we have essentially eliminated the error from contact resistances. In 

order to determine the effect of heating on our magnetoresistance measurements, I 

carried out experiments on my NP#12 sample 2 at a number of different current values 

and magnetic fields as a function of time. The magnetic field was ramped up and then 

ramped down slowly and no significant systematic errors were found with time, 

confirming that the effect of heating on the results are negligible. This experiments 

also confirmed that the measurements values for a given field are repeatable.  
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Figure 33: Measurements on NP#12 sample 2 (a) Field versus voltage, (b) Field versus 
ΔR/R, indicating that heating effects do not dominate the measurement results. 
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VSM MEASUREMENTS ON COBALT CONTACTS 

Since we used cobalt thin films for our ohmic contacts in our magnetoresistance 

and Hall measurements, we need to consider whether their ferromagnetic properties 

significantly affect the measurement results. To evaluate the magnitude of the 

resulting inhomogeneous magnetic field, we performed VSM measurements (Newport, 

M406) on pyrite Np#12_1 sample with Co contacts in the Corbino disc configuration.  

 

 

Figure 34: VSM Measurements on NP#12_1 (a) an in plane Moment versus 
Field (G) (b) an out of plane Moment versus field 
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The VSM measurements indicate that the in plane coercive field is ~100 Oe, 

indicating that there will be some stray fields present between the contacts even 

without an applied field. It also indicates that the hard magnetic axis is out of plane 

and large. At small fields of say less than 2,500 Gauss, we would expect the contact’s 

contribution to the field to decay with a 1/r dependence from the edge of the contact 

and contribute a significant field only within a distance of a few times the film 

thickness. This distance is roughly 2 orders of magnitude smaller than that between 

contacts. Thus, we would not expect this to cause a significant error in our 

measurements. However, at high fields, the dipolar field of the contacts could influence 

the measurements over that entire region between contacts and could have introduced 

an error of as much as a factor of ~50% in the mobility determinations.  
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COMPARISION OF HALL AND MAGNETORESISTANCE MOBILITY 

The measured mobilities for samples Np#12 sample 1 and Np#12 sample 2 

using the magnetoresistance technique were measured to be ~600 cm2/V.S at 300 K. 

As the temperature decreased, the mobilities increased to slightly above 1000 cm2/V.s 

at low temperatures. 

 

Figure 35: Temperature versus measured Hall mobility for pyrite sample NP#12 
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Figure 36: Temperature versus calculated magnetoresistance mobility in NP#12-1 and 
Np#12-2 

 

 

Figure 37: The experimentally determined Scattering coefficient in for the Natural 
pyrite samples NP#12-1 and NP#12-2. 
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CONCLUSIONS 

I have carried out a systematic study to determine mobilities of GaAs and 

natural pyrite using the method of geometrical magnetoresistance and compare them 

to Hall effect determination. The effect of contact resistance on the magnetoresistance 

measurements were minimized by using the zero-field resistance values from Van der 

Pauw measurements. The scattering factor, as defined to be the ratio of the 

magnetoresistance and Hall mobilities, of GaAs was determined to be ~ 2.1 at 300 K 

and ~1.2 at lower temperatures. This indicates that the sample transport is dominated 

by impurity scattering. Negative magnetoresistance was observed at lower 

temperatures in lightly-doped GaAs, at higher temperatures in highly-doped GaAs. In 

the case of natural pyrite, the scattering factor was found to be around 20 at 300 K 

and decreased as the temperature decreased. The negative magnetoresistance is 

enhanced at lower temperatures with 
∆𝑅

𝑅
 found to exceed unity at lower temperatures.  
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FUTURE WORK 

As we were able to measure mobilities using the Corbino configuration in 

samples with Hall mobilities as low as 24 cm2/V.s, we can use this technique to 

measure the carrier mobilities in pyrite thin films and other highly resistive materials.  

This technique can be used to obtain an improved understanding of transport 

properties of pyrite produced by our group’s recently developed sequential evaporation 

technique and by other methods.  

We also hope this work inspires additional work in the negative 

magnetoresistance, as a detailed understanding of the mechanisms involved has not 

been firmly established. 

Co contacts were used in the pyrite magnetoresistance measurements because 

they exhibited the lowest resistance Ohmic contacts down to cryogenic temperatures. 

As the magnetic nature of our Co contacts can influence the field at small applied 

magnetic fields, we plan to confirm our results using non-magnetic metal contacts 

such as indium (In) or Silver (Ag).   
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APPENDIX A 

NEGATIVE MAGNETORESISTANCE OBSERVED IN HIGHER DOPED GaAs SAMPLE

 

Figure 38: Magnetoresistance results Field versus ΔR/R in GaAs with carrier 
concentration of  2.1 x 1018 cm-3 sample over temperature ranges (a) 300 K- 220 K, 
(b) 140 K- 77 K 
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