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ABSTRACT

Combination therapy has shown to improve success for cancer treatment. On-

colytic virotherapy is cancer treatment that uses engineered viruses to specifically

infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the

body’s natural defenses towards cancer. The combination of oncolytic virotherapy

and immunotherapy is explored through deterministic systems of nonlinear differential

equations, constructed to match experimental data for murine melanoma. Mathemat-

ical analysis was done in order to gain insight on the relationship between cancer,

viruses and immune response. One extension of the model focuses on clinical needs,

with the underlying goal to seek optimal treatment regimens; for both frequency

and dose quantity. The models in this work were first used to estimate parameters

from preclinical experimental data, to identify biologically realistic parameter values.

Insight gained from the mathematical analysis in the first model, allowed for numerical

analysis to explore optimal treatment regimens of combination oncolytic virotherapy

and dendritic vaccinations. Permutations accounting for treatment scheduled were

done to find regimens that reduce tumor size. Observations from the produced data

lead to in silico exploration of immune-viral interactions. Results suggest under optimal

settings, combination treatment works better than monotherapy of either type. The

most optimal result suggests treatment over a longer period of time, with fractioned

doses, while reducing the total dendritic vaccination quantity, and maintaining the

maximum virotherapy used in the experimental work.
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Chapter 1

INTRODUCTION

1.1 Conventional Cancer Treatments

The basic principle which underlies cancer treatment is to specifically attack cancer

cells and spare normal cells. Since cancer cells are derived from normal cells, it is a

difficult challenge to select cancer cells, as it is unclear how to separate the differences

therapeutically, aside from many characters specific to cancer cells. Cancer is a com-

plex collection of diseases involving abnormal growth of cells, which tend to proliferate

in an uncontrolled way and in many cases, metastasize. The six main hallmarks of

cancer proposed by Hanahan and Weinberg, include sustained proliferation, evading

growth suppressors, resistance to cell death, enabling replicative immorality, inducing

angiogenesis, and activating invasion and metastasis (Hanahan and Weinberg (2011)).

Treatments have been developed towards disrupting these traits.

Conventional cancer treatments are often accompanied by side effects associated

with unsatisfactory quality of life near time of diagnosis that persists through treatment

and recovery. Many specific cancers are inoperable, and the three modalities: surgery,

chemo- and radiotherapy are given in a variety of combinations, depending on the

situation. In a more general setting, if operable most patients with solid tumors

primarily undergo surgery. Radiation therapy, which uses high energy wave particles

to kill cancer cells and shrink tumors by ionizing the target tissue, is generally

recommended after surgery. Side effects can occur because radiation can also damage

healthy cells and tissues near the treatment area. The effects depend on the form

1



of cancer, location doses, and general health of the patient. Effects commonly

include patient fatigue, a decrease in blood count, and skin problems amongst others.

Chemotherapy follows which uses drugs to destroy both cancer and healthy cells,

often resulting in harmful side effects to the patient. Some negative outcomes of

radiation and chemotherapy include toxicity to normal cells and resistance by cancer

cells (Mullen and Tanabe (2002)). Immunotherapy, also referred to as biotherapy,

is a cancer treatment that stimulates certain parts of the immune system to work

harder to attack cancer cells. This process, however, can be quite slow to target

cancer effectively. Targeted therapy is a type of medication that blocks the growth of

cancer cells by interfering with specific targeted molecules needed for carcinogenesis.

With this in mind, every case is unique and includes diverse orders and combinations

of treatments. Therefore, there is still a need to explore more creative anticancer

treatments, including those involving oncolytic virotherapy.

1.2 Oncolytic Virotherapy

Virotherapy is a treatment that uses biotechnology to convert viruses into ther-

apeutic agents by reprogramming viruses to treat diseases. Oncolytic virotherapy

(OVT) can be separated in terms of oncos, “cancer,” lytic, “lysing, bursting or killing,”

and virotherapy; i.e. a virus as a means of therapy that kills cancer. Oncolytic

viruses (OV) have attracted the attention of clinicians, oncologists, experimental-

ists: (Bell and McFadden (2014),Russell et al. (2012),Huang et al. (2010), Breitbach

et al. (2011),Chen et al. (2001),Power et al. (2007),Varghese and Rabkin (2002)])and

mathematical modelers: (Komarova and Wodarz (2014),Tian (2011), Dingli et al.

(2009),Bajzer et al. (2008),Wang et al. (2007),Wodarz (2001)).
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Viral life cycle

Living organisms are considered having the ability to reproduce, either asexually

or sexually. Viruses are not quite considered living organisms, as they are only able

to replicate themselves by hijacking the genome of their host. The life cycle of viruses

occurs with viral entry, replication, and shedding; respectively. In order to enter the

host cell, proteins found of the surface of the virus interact with proteins of the host

cell. A hole forms in the host cell membrane, which allows the viral particle or its

genetic content to be released into the host cell. This commences viral reproduction.

Assuming the virus has the ability to replicate, it will take control of the host cell’s

replication mechanisms, which allows the virus to make copies of itself. It is possible

the virus can lie dormant within a cell, which can be this lysogenic part of the viral

cycle. Once the virus is reactivated, it will use up the host cells resources and must find

a new host. The process by which viral copies are released to find new hosts is viral

shedding. Viral shedding allows the progeny of viruses to leave the cell by 3 common

ways: budding, exocytosis or apoptosis. For enveloped viruses, budding enables viruses

to it the host cell, which must acquire a host-derived membrane enriched in viral

proteins. Exocytosis is the orioles by which viruses leave the cell, but do not destroy

the host cell. Viral apoptosis is the self-destruction of the host cell while under viral

attack. This is considered the lysis effect from the OV.

Oncolytic virotherapy (OVT) is a targeted therapy that uses engineered viruses to

selectively infect and kill cancer cells. Oncolytic viruses(OVs) can be DNA or RNA,

and wild-type or engineered. Oncolytic viruses have the DNA region that controls

replication, deleted and then modified. Since the replication region is deleted, it is

not possible for the virus to replicate in normal cells, which is a novel feature of OVs.

Genetic or chemical modifications to OVs have been used to selectively target the
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tumor cell surface, de-target sensitive tissues, or can create dual target viruses to

enhance both vascular targeting and tumor infections (Russell et al. (2012)). In the

majority of pre-clinical and clinical trials, OVs not only “die,” but they are “lysed,”

broken down by the virus, producing viral cells that are equipped to attack more

cancer cells. An illustration of how oncolytic viruses encounter normal and cancer

cells is shown in Figure 1.2.

Oncoly'c(virus(
infects(cancer(cell(

Oncoly'c(virus(
infects(normal(cell( No(viral(

(replica'on((

Normal(Cells(

Cancer(Cells(

Healthy(cells((
remain(undamaged(
(

Virus(is(inac'vated((
or(unable(to(
replicate(

Oncoly'c(virus(
Is(able(to(replicate((
In(cancer(cells(

Cancer(cells(rupture(
to(release(progeny(
virus,(which(then(infect(
nearby(cancer(cells(to(
amplify(the(effect(

Figure 1.1: Generalized diagram of the cancer specificity of oncolytic viruses ( Donnelly

et al. (2013)).

OV can directly promote lysis or promote cell death via the immune response.

The next novel feature of OVs is its immunogenicity; the ability of a substance, an

antigen, or an epitope, to stimulate a host immune response. This may be mediated

via innate immune effectors, adaptive antiviral immune responses or adaptive anti

tumor immune responses. There is preclinical and clinical evidence supporting the

importance of immune interactions (Prestwich et al. (2008)). Upon an OV infection, a

change in the pre-existing immunosuppressive microenvironment occurs. After cancer
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cells are infected, they generate “therapeutic” immune responses. These responses,

are stimulated from the antigen message, to help cancer commit suicide (induce

apoptosis). Therefore, the presence of an OV within or near cancer cells, promotes

the immune system to start killing cancer cells. OVs can also be used as vectors to

carry immune-inducing proteins to the cancer site. Thus, the immune system will

start responding to the antigens nearby and attack the cancer. This process can also

assist with eliminating neoplastic cells prior to tumor development, since immune

cells are already at the site of infection where cancer is being produced (Shors (2011)).

These OVs include an inherent form of immunotherapy.

The immune system, plays both ally and enemy when externally or genetically

teamed up with oncolytic viruses. It was originally thought that oncolytic viruses

would just be impaired by the immune system, such that as the virus would spread,

the immune system would work towards liberating the body from the viral burden.

However, the second side to this coin is that the actions from the virus help trigger

a response within the tumor that signal the immune system to attack the effected

environment (Pol et al. (2012)).

Although the idea of oncolytic virotherapy has been around since the mid 1950s,

research was delayed due to inadequate technological availability (Russell et al. (2012)).

Viruses became more understood during the 1950s and 1960s, in parallel with the

advent of cell and tissue culture systems, allowing for ex vivo virus propagation( Kelly

and Russell (2007), Gey et al. (1952)). As technology advanced, the practice of using

viruses therapeutically has fallen hand in hand. In 1991, herpes simplex virus-1 (HSV-

1) with deletion of thymidine kinase UL23 gene, became the first genetically engineered

and replication specific oncolytic virus to be experimentally tested. Adenovirus, with
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E1B 55K gene deletion, named Oncorine, was approved as the worlds first oncolytic

viral therapy, used for head and neck cancer (Toth and Wold (2010)). Now, there

are extended genetic oncolytic viruses being developed as a new class of anti-tumoral

agents towards several solid tumors. Some of the best studied families of oncolytic

viruses are oncolytic herpes simplex virus (oHSV), adenovirus, Newcastle disease virus

(NDV), and vaccinia virus. Recent to this dissertation, oncolytic viruses have been

reinvigorated, as the first oncolytic virus approved for use in the United States by

the US Food and Drug Administration (FDA) occurred on October 27, 2015. This

genetically engineered herpes simplex virus type 1, Talimogene Laherparepvec (T-

VEC), will be used to treat advanced melanoma. T-VEC is designed to replicate within

tumors and produce an immunostimulatory protein called “granulocyte-macrophage

colony-stimulating factor” (GM-CSF) (Ledford (2015)). In short, OV’s are booming

within the evolution of cancer treatments.
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Figure 1.2: Timeline of recent milestones in oncolytic virotherapy. Image modified

from ( Russell et al. (2012))

Combination Therapy

Many cancer treatments use oncolytic virotherapy in combination with other treat-

ments Relph et al. (2016). Viral oncolysis combined with immunotherapy consists

of enhancing tumor killing through adoptive T cellular therapy (transfusion of lym-

phocytes). A common approach of adoptive T cellular therapy is to attach cytokines,

interleukins, and immune stimulatory proteins to the OV, using it as a vector, that

further stimulate the immune system with viral entry. Cytokines, derived from Greek

cyto,“cell” and “kines,” “movement,” are secreted proteins and signal molecules im-
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portant in cell signaling. The term interleukin, inter- “as a means of communication”

and leukin-“deriving from”, is a group of cytokines. Cytokines and interleukins are

commonly attached and expressed with oncolytic viruses to enhance the immune

system towards the cancer site. Immunostimulatory protein, Granulocyte-Macrophage

Colony-Stimulating Factor (GM-CSF) plays diverse roles in cancer therapy. It can

be used either as a monotherapy, or adjuvant to chemo-immunotherapy, adjuvant

with cancer vaccines, GM-CSF expressing oncolytic immunotherapy, and systematic

combination immunotherapy. Cytokines, interleukins, and immunostimulatory factors,

such as GM-CSF, are commonly attached to oncolytic viruses to enhance immune

efficacy.

Another approach is to combine OV with dendritic cell vaccines. Dendritic cell

(DC) based vaccines have potential for cancer immunotherapy, where their use in clini-

cal trials has been performed with patients diagnosed with prostate cancer, melanoma,

lymphoma, and renal cancer (Nesrua et al. (1998), Tjoa et al. (1997), Hsu et al.

(1996), Wierecky et al. (2006)). The main function of DCs are to process antigens and

present it to T lymphocytes in the adaptive immune system. DC’s are professional

antigen-presenting cells (APCs) that have a significant role in the initiation and

regulation of immune responses, as they act as messengers between the innate and the

adaptive immune response. DCs can induce anti-tumor immunity by activating innate

immune cells and tumor-specific lymphocytes that target cancer cells (Zhang et al.

(2011) Kim et al. (2015b)). However, clinical trials have shown an immunosuppressed

microenvironment under tumor influence thoroughly suppresses antitumor immunity

and inhibits vaccine efficacy. This tumor microenvironment (TME) carries several

immunosuppressive mechanisms that impair DC functions and block the development

of anti-tumor immunity, which can lead to decreases in efficacies of immunotherapies
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Rabinovich et al. (2007). There are many efforts towards improving immunother-

apy success via dendritic cells, one of the more promising is the use of oncolytic

virotherapies. Immunosuppression in the tumor microenvironment allows for an

infection-vulnerable environment that can allow viral replication. Subsequently, cancer

cells will be lysed by the viruses. DCs contribute to anti-viral innate immune responses

via activation of innate immune elements, such as NK cells and inflammatory cytokines.

Gene-Based Cancer therapy

Gene therapy is a technique used for the correcting defective genes responsible for

disease development. The two major classes of methods use recombinant viruses and

DNA complexes. Viral vectors are common tools used by molecular biologists to deliver

genetic material into cells. RNA is commonly used to encode a functional, therapeutic

gene to replace a mutated gene. A mutation, is by definition, a permanent change of

the nucleotide sequence of the genome of an organism, virus, extrachromosomal DNA,

or other genetic elements.

Gene-based Immunotherapy

Gene-based immunotherapy is an effective strategy for patients with cancer. The

main cell type that has emerged responsible for initiating and controlling cellular

immune responses are dendritic cells. They are the most powerful antigen-presenting

cell (APC) and potent stimulators of näıve T cells (Srinivasan et al. (2015)).

Adenoviruses are highly effective in gene based cancer therapy for its ability to

efficiently transduce (transfer genetic material from on organism to another) cells,

both dividing and non-dividing (Walsh et al. (2011)). Adenoviral vectors are used in

suicide gene therapy, gene-based immunotherapy, gene replacement strategies and in a
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variety of approaches that combine gene-based therapy with chemotherapy (Srinivasan

et al. (2015)). For the purpose of this dissertation, the oncolytic viruses used are

adenovirus. Oncolytic adenoviruses commonly have E1A deleted, a gene expressed

during adenovirus replication. Adenoviral proteins E1A and E1B inactive proteins,

pRB and p53 in normal cells, respectively. The binding site for the cell cycle related

transcription factor E2F, is an E1A response element. Since E2F is a protein critical

for normal cell cycle regulation and E1A is mutated, the altered adenovirus is unable

to replicate in normal cells (Vähä-Koskela and Hinkkanen (2014),Veal et al. (1998)).

Safety Considerations

Oncolytic virus do not perform as well as monotherapy. One primary reason is

that for as much engineering there is done to make OV cytotoxic, there is to keep

the OV safe. The treatment of oncolytic virotherapy is considered safe since they

are engineered to cause minimal stress or damage to the body. Adverse genes are

removed and genes that assist with oncolysis are kept or inserted (Patel and Kratzke

(2013)). Furthermore, it has been suggested that dose delivery could be safer when

administered intratumorally. For safety reasons, viral vectors based on vaccinia virus,

adenovirus, reovirus, newcastle-disease virus, coxsackievirus, and herpes simplex virus

have been administered via intramural injection in early phase clinical trials (Shah

et al. (2003), Kaufman et al. (2005), Chiocca et al. (2004), Harrow et al. (2004)).

The molecular basis of tumor selectivity is crucial prior to use in clinical human

studies. Oncolytic viruses must be assayed in vitro for cytotoxicity(lysis) and/or repli-

cation on tumor-permissive and non-permissive cell lines. In many cases, selectivity

is only demonstrated during in-vivo non-clinical studies. Tests are done to search

for altered replication of selective or oncolytic profiles, in order to demonstrate the
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genetic stability of the oncolytic virus.

Toxicity could depend on the route of administration of the oncolytic virus;

therefore, the route and dosing schedule should mimic the intended clinical scenario

as close as possible. Since oncolytic viruses are still incompletely understood, many

questions remain to be addressed in early phase clinical trials. A common strategy used

for oncolytic viral administration is to follow a stepwise approach with intratumoral

injection, then move on to the regional or local administration, and finishing at the

systematic administration.

1.3 Treatment Regimens

Oncolytic virotherapy is currently under investigation for phase I-III clinical

trials for approval for new cancer treatments. The dosing quantity, frequency and

administration could alter the effectiveness of treatments.

Drug Dosing

Cancer therapeutics are generally quite toxic, where the range between achieving

maximum benefit and severe side effects is diminutive. Dose concentrations can be

adjusted to the size of an individual by either drug dose per unit body mass or Body

Surface Area (BSA). Each dose measures the amount of medicine or treatment taken

at one time. Depending on the individual or protocol, doses and frequency vary.

Metronomic Therapy

The goal of most cancer treatments and studies, in vivo or in silico, seem to share

the commonality to eliminate all cancer cells. However, this goal has been proven to be

unrealistic and unnecessary to patient viability (Hahnfeldt et al. (2003)). Aside from
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the dose quantity, the administration regimen plays a large role in cancer treatment

success.

A metronome, used to indicate the exact tempo of music by producing sounds from

a pendulum with an adjustable period of swing, was first examined by Galileo Galilei

around 1602, for timekeeping; it was globally used as the most accurate timekeeping

technology until the 1930s. Perhaps this pendulum could represent a distance that

produces a beat on a homogeneous time distance for inducing cancer treatment.

“Metronomic” dosing allows for regularly spaced dosing. The idea was created to

“resensitize” heterogeneous cell populations to treatments, with intentions to minimize

total tumor burden, rather than complete eradication (Hahnfeldt et al. (2003)). If

feasible, this approach is more practical than complete eradication; maintain a lower

level of cancer instead of cancer elimination. This idea of metronomic therapy is

usually used as metronomic chemotherapy, but in this work, I will introduce the idea

of “Metronomic Oncolytic Viral-Immunotherapy (MOVIT).”

1.4 Motivation and Goals

There is much work to be done in understanding protocol treatments for cancer

patients. More specifically, as OVT is increasingly being used clinically, there are

many questions pertaining to this nature of dosing and scheduling for various OVs for

diverse cancer types. This work investigates dose size and administration scheduling

for oncolytic virotherapy combined with immunotherapy and dendritic cell vaccination.

Since oncolytic virotherapy is still developing, there is much room for mathemat-

ical growth to develop models of cancer treatment questions, synergistically using OVs.
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The research goals are as follows: 1) Develop a mathematical model that can

represent clinical variations for administering oncolytic viral therapy. 2) Parameterize

models using empirical data 3) Shed light on the complex dynamics of combined

oncolytic viral and immunotherapy and 4) Identify optimal treatment strategies (dose

sizes, treatment schedules) for a proposed personalized medicine model.

Chapter 2 presents a literature review of important models representing interactions

between cancer, viruses and the immune system. First, viral dynamic models of

uninfected, infected and free viral variables are discussed. The immune response is

then introduced into the models. The second section introduces models of oncolytic

viral therapy.

Chapter 3 opens the first model created for this work, constructed as an oncolytic

virotherapy model with immune response. Mathematical analysis was performed in

order to gain qualitative insight of the biological dynamics between viruses and cancer

in the presence of the immune system.

Chapter 4 presents the Oncolytic Viral-Immunotherapy (OVIT) model, that ques-

tions the optimal combination of viral and immunotherapy under varying treatment

regimens. This includes altering time of combination use, dose and frequency of

treatments.

Chapter 5 summarizes the results of the research goals of this work and describes

the overall impact from the results. Following the models used in this work, further

models are presented which could have unique mathematical and biological impacts.
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Chapter 2

LITERATURE REVIEW

Beyond clinical and experimental research; mathematical, computational and

in silico models can be quite useful towards the advancements of disease treatments.

In combination with data, carefully developed mathematical models could show subse-

quent stages of an experiment. Furthermore, mathematical models can present the

evolution of how systems interact under ideal, hypothetical and blemished conditions.

Hinged upon relevant biological assumptions and a priori information, mathematical

models provide insight, direction and make predictions that clinical, nor experimental

work would be able to achieve.

Creative approaches at the interface of interdisciplinary fields between mathe-

matics, biology, computational biology, bioengineering and other relevant disciplines,

are essential to improve our understanding of complex biological systems. These

approaches are specifically needed to unravel the oncological complexity involved from

the initiation, progression and metastatic phases of cancer. Mathematical models can

be challenging to develop, since the independent limits of mathematical methods and

biological information tend towards infinity. To start, making the biology a finite

subset from the mass amount of growing information will bring certain mathematical

methods to surface, in a fashion of functions that are not always injective nor surjective.

For science to grow, it is healthy to choose mathematical methods contingent upon

the biological question. Many biological systems can be represented with differential

equations(DEs). For dynamics considering large population sizes, ordinary differential

equations (ODEs) are a suitable tool. Delay differential equations (DDEs) can repre-
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sent the biological role where time delays are hypothesized to be crucial. For questions

pertaining to tumor growth, invasion and angiogenesis, partial differential equations

(PDEs) can be used to represent fluid flow. Stochastic Differential Equations (SDEs)

are used when the state of a variable is not predictable at a given moment in time.

Cellular automata and agent based models are used to represent spatial questions.

Clearly, there are many variants of scientific models representing the biological per-

plexity of cancer. The choice of methods used within these systems can depend on the

quantity of parameters needed, parameters known, biological complexity, interaction

between variables and/or what the question is.
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Basic Cancer Growth Models

Tumor growth models have roots within the works of Ludwig von Bertalanffy

and Benjamin Gompertz. Both produced models of growth, independent of can-

cer, but later applied to cancer. Gompertz published in 1825 his growth model for

“Gompertzian growth” and Von Bertalanffy’s contribution came in 1957. The von

Bertalanffy’s growth model:

M = kW
2
3

where M is the metabolic process, W is the organism’s mass and k is a constant.

Since von Bertalanffly noted that not all processes scale as a 2
3

power of the mass, this

was later replaced with λ and the general relation is:

M = kW λ

where 2
3
≤ λ ≤ 1

Modeling the von Bertalanffy starts with conservation equation: growth equals

“birth”=“death”. In the context of cancer, this equation parallels to “proliferation”-

“apoptosis”. Originally, this process was used for anabolism and catabolism. Then the

growth in mass (W(t)):

Ẇ = αW λ − βW µ

Letting α and β be per capita birth and death rates, where λ = µ = 1, yield the

exponential model:

Ẇ = (α− β)W
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where α > β leads to exponential growth and α < β leads to exponential decay.

For λ = 1 and µ = 2, this form evolves into the next simple case of modeling

cancer. As a population of cells with potential grow followed by saturation , it is

represented by the logistic ordinary differential equation (Verhulst (1838)):

Ẇ = αW − βW 2 = αW
(

1− W

K

)
, W (0)

where Ẇ is the time derivative, W = W (t) is the number of cancer cells at time

t, r is the growth rate and K is the carrying capacity, i.e. the maximal size the

population of cells can reach, given the proper nutrients, oxygen, spatial constraints,

etc. The solution of the logistic ODE is a “sigmoidal” curve, exponentially growing in

early stages and then saturating at its maximum.

Instead of a homogeneous population of cancer cells, suppose a population of

heterogeneous cancer cells, i.e., diverse clones, competing with each other and healthy

cells for nutrients, oxygen and space. The growth for cancer can be represented as

follows:

ẋi = rxi − φxi, 0 ≤ i ≤ n, xi(0) = x̂i

where x̂i is the number of cells of type i, with corresponding growth rate ri. With

n cell lines, the competition can be shown with term φ in a variety of ways, such as:

φ =

∑n
i=0 rixi
N

where, N =
∑n

i=0 x̂i in a general case, N representing the total number of cells in

the system, assumed to be constant in this model (Wodarz and Komarova (2005)).

17



This is modeled by

˙xi(t) = e(r−µ)xi(0)

Kareva et al. (2012) showed competition models of over-consumption. Interactions

between consumers and shared resources were modeled. This model introduced a

population of consumes xc as clones, competing for common resources ẑ, which

determines the carrying capacity of the popuation.

ẋc = rxc

(
c− b

∑
A xc

k̂z

)
˙̂z = γ +

e

ẑ +
∑

A xc

(∑
A

xc(1− c)
)
− dẑ

where each clones xc is characterized by the values of the parameter c, with contest

per capita birth rate r. The per capita death rate is proportional to
b
∑
A xc

k̂z
, where b

is the rate of resource consumption, and k is the efficacy of resource consumption by

each individual xc and A is the range of possible values of c.

Cancer cells are similar to Lotka-Volterra equations, also referred as predator-prey

systems, in ecology (Lotka (1910),Lotka et al. (1925)). Gatenby and Vincent (2003)

presented the competition model:

ẋ = rxx
(

1− x+ axyy

K

)
ẏ = ryy

(
1− y + ayxx

K

)
where x and y represent population of cancer and healthy cells, respectively, rx, ry,

maximum growth rates, axy, ayx the competition coefficients and carrying capacity, K,

including growth promotion and constraints within the tissue. Competition systems

alike have been a basis for variants of cancer models (Okamoto et al. (2014), Nagy
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(2005), Wodarz (2001), Michelson et al. (1987)).

The models listed above are general principles to illustrate basic phenomena, not

representative of an entire cancer system. These equations are tools to be modified

by incorporating particular properties of a biological system in question, in order to

establish conditions and gain insight of certain cancer dynamics.

2.1 Viral and Immune Models

Viral models are of the infectious disease models base. Infectious disease models

started in the 1766 by Daniel Bernoulli, a trained physician that created a mathematical

model to defend the practice of inoculating against smallpox. Ronald Ross than created

a modern structure for theoretical epidemiology. Kermack and McKendrick published

a simple deterministic model in 1927 (Kermack and McKendrick (1927)). Some

epidemic models were studied through (Hethcote (1976),Miller (1983), Anderson et al.

(1980),Brauer et al. (2001)).

A hearty quantity of mathematical modeling of the immune system were developed

in Los Alamos National Laboratory (Perelson et al. (1976), Perelson and Oster (1979),

Perelson (1989),Farmer et al. (1986), Bell (1970). Dibrov et al. (1977), De Boer et al.

(1990)). This work overlapped into the works of May et al. (1976) and Oster and

PERELSON (1987).

2.2 Viral Dynamic Models

Simple Viral Model

Viral replication in host, was modeled by many, and includes examples from Nowak

and Bangham (1996), who represented populations of uninfected cells, x; infected
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cells, y; and free virus particles, v. These population sizes can either denote the total

abundance in a host, or the abundance in a given volume of blood or tissue.

dx

dt
= λ− dx− βxv, (2.1)

dy

dt
= βxv − ay,

dv

dt
= κy − δv

The susceptible target cell population is produced at a constant rate λ, dies at rate

d and becomes infected by virus at rate β. Infected cells die at rate a and produce

free virus at rate k,with the viral decay rate of δ.

(a) (b)

Figure 2.1: Schematic illustrations of the basic viral dynamics 2.1a. The basic

reproductive number is presented in terms of the burst size, (k
a
) 2.1b. Let u = δ in

the above diagram. Nowak and May (2000)

This model assumes that the cell population is initially uninfected, and a small

amount of viral particles are added. The invading virions manage to infect a number
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of cells, producing new virions, and subsequently infect cells. Two outcomes can

occur when this chain reaction has started: the infesction dies out or it persists. The

outcome depends on the basic reproductive number, R0. Similar to the approach

one takes in epidemiology, this dimensionless ratio is fundamental in discussing the

demography of populations of living things: humans, plants, insects, animals, etc

(Brauer et al. (2001)). Viruses,are considered replicators, rather than forms of life,

which possess genes, evolve by natural selection and replicate by creating multiple

copies of themselves via self-assembly1 (Forterre (2010)). Viruses are not considered

life forms because 1) they are obligate parasites and cannot reproduce on their own,

and 2) have no independent metabolism. For a viral infection, R0, is representative of

the average number of infected cells produced from any one infected cell at the start

of an infection. Figure 2.1b shows a schematic representation of this ratio. The rate

at which one infected cell gives rise to new infected cells is given by βkx
δ
|x= γ

d
, when all

cells are uninfected. Since the lifetime of an infected cell is 1
a
,

R0 =
βγk

adδ

If every infected cell on average produces less than one newly infected cell, R0 < 1,

suggesting the infection will be inviable. With time, the virus will disappear. Other-

wise, for R0 > 1, the infection could expand throughout the population, but there is

no guarantee it will infect the entire population of cells. This model suggests that at

the endemic equilibria, (x∗, y∗, v∗), it is not necessary to evoke an immune response to

achieve a stable equilibrium level of virus in a persistent infection. This equilibria was

found to have limitations: 1) for cytopathic viruses. The Cytopathogenic Effect(CPE)

from virus-structural changes in the host cells that are cause by viral invasion. The

1Molecular self-assembly is the process by which molecules adopt a defined arrangement without

guidance or management from an outside source.
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infecting virus causes lysis of the host cell or when the cell dies without lysis due to an

inability to reproduce (Albrecht T (1996)). The total abundance of cells will be greatly

reduced, and 2)for non-cytopathic viruses, most cells will be infected. The more cyto-

pathic a virus is, i.e.,a >> 0, the smaller the steady state abundance of uninfected cells.

For further classification of the differences between the upcoming models, see

Notion Table 2.1.

Table 2.1: Notational Reference Table

Variable Description

x Uninfected Cells

y Infected Cells

v Free Virus particles

z CTL 2 Cells

Parameter Description

λ Constant production rate

r, d Uninfected cell growth/death rate

β Replication rate of virus

a Infected cell death rate from virus

κ Free virus production rate

δ Viral decay rate

c, b CTL production/decay rate

p death from immunity upon uninfected/infected
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Simple Viral Immune Models

The dynamics of immune responses can be studied to understand the interactions

between abundance of viral and magnitude of the anti-viral immune response. Apart

from functional immune response, which reduce viral load, the correlation between

viral load and immune abundance can be positive or negative. The simplest model

for the interaction between a virus and an immune response will be considered first.

Virions will replicate according to the basic model of viral dynamics (2.1). An immune

response is triggered by encountering a foreign antigen, the tapers off to a constant level

independent of the concentration of virions or infected cells. Cytotoxic T-Lymphocyte

(CTL) cells represent the immune response, for their clear importance of defending

against viral infections.

CTL response

Nowak and May (2000) shows a simple of example of the CTL response in the following

model:

dx

dt
= λ− dx− βxv

dy

dt
= βxv − ay − pyz (2.2)

dv

dt
= ky − δv

dz

dt
= c− bz

In this model, CTL cells are produced at rate c and die at rate bz. It is assumed

c > 0 when y > 0. Otherwise, c = 0. Infected cells are eliminated by the CTL response

a rate pyz. where dz
dt

= cyz − bz represents the nonlinear case, immune response

proportional to the abundance of CTL: and dz
dt

= cy − bz is linear:immune response

2Cytotoxic T-Lymphocyte
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induced at a rate proportional to the abundance of infected cells, but independent of

the CTL abundance

The basic reproductive number, R0 in the presence of CTL cells is:

R0 =
βγk

(a− a1)dδ
.

The rate at which infected cells are eliminated by the CTL response at its equilib-

rium level is denoted by, a1 = cp
b

. For models with self-regulating immune responses,

there is always a negative correlation between virus load and abundance of immune

mediators, immune cells, chemokines or antibodies. Patients with weak antiviral

responses have high virus load, as opposed to patients with strong anti-viral response

that have low viral load (Nowak and May (2000)).

2.3 Oncolytic Viral Models with Immune Response

Model Differences Description Citation

dx
dt

= rx
[
1 − (x+y)ε

Kε

]
− βxv − ρxy

dy
dt

= βxv − ay

dv
dt

= κy − δv − βxv

f(x, y) = rx
[
1 − (x+y)ε

Kε

]
; Assumes untreated tu-

mor growth term, from the Bertalanffy-Richards (BR)

model.

Bajzer et al.

(2008)

h(x, y) = ρxy, cell-to-cell fusion ; g(v, x) = βxv

dx
dt

= rx
(

1 − (x+y)
K

)
− βxv

dy
dt

= βxv − ay

dv
dt

= Nay − δv − βxv

f(x, y) = λx
(

1 − (x+y)
K

)
; Logistic growth; f(v, y) =

Nay ; g(v, x) = βxv
Tian (2011)

Table 2.2: Table of Model differences

The base oncolytic model with immune response was modeled by Wodarz (2001).
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dx
dt

= rx
(
1− x+y

K

)
− dx− β xy

dy
dt

= β xy + sy
(
1− x+y

K

)
− ay − pvyzv

dz
dt

= cvyzv − bzv

where infected cell proliferation rate sy(1− x+y
K

);Logistic growth of infected cells

Model 2.3 assumes a CTL response occurred at a constant rate, which is not

biologically realistic. The nonlinear CTL response is an immune response proportional

to the abundance of CTL and infected cells, cyz, represented in Table 2.3. Similar to

the previous model, the nonlinear model of the CTL response also leads to a negative

correlation between immune abundance and viral load, if patients differ in their CTL

responsiveness, c. The CTL abundance, z, declines for high values of c. When the

response rate is high, CTLs destroy viral cells, and thus, there are fewer viral cells

to stimulate the immune response, leading to a decrease in z. On the other hand,

for low values of c, the correlation is negative, such that patients with small immune

response have a low CTL response, leading to high viral loads. This model shows

the viral load is, in fact, a better indicator of immune responsiveness, rather the

abundance of immune cells. The linear CTL response in an immune response induced

at a rate proportional to the abundance of infected cells, but independent of the CTL

abundance which gives rise to model 2.3. The main difference in this model is that

the equilibrium viral load does not only depend on the immunological parameters,

which is more realistic (Nowak and May (2000)).

A model with general immune response was used in (Wang et al. (2007)), where

CTL proliferation describes the rate of immune response from virus activation and

p is the actual rate of immune response. Depending on the assumption, the growth

rate of CTL cells, z, from infected cells,y, can have several different representations

in model 2.3. This work explored routes to chaos with increase in time delay, when
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CTL proliferation is cy(t− τ). Periodic solutions were found. It is believed the larger

time delay of immune response and strength of the lytic term can give rise to viral

oscillation in the host (Wang et al. (2007)).

Wodarz (2001) represents a base model consisting of 3 variables uninfected tumor

cells (x), infected tumor cells (y) and virus-specific CTL cells (zv).The model assumes

a quasi steady state for the viral population, including it in the infected class. The

difference here is that logistic growth is assumed for both uninfected and infected

tumor cells. The model assumes upon division of infected cells, the virus is passed

onto both daughter cells.

As the interest of OVT has grown, mathematical models are gradually increasing.

Bajzer et al. (2008) introduced a model for a vaccine strain of measles virus to kill

tumors, shown in Table (2.2) using the Bertalanffy-Richards (BR) growth model

for the untreated tumor growth. The extended death in uninfected cells, ρxy, from

dx
dt

= rx
[
1− (x+y)ε

Kε

]
− κxv − ρxy, represents the cell-to-cell fusion with neighboring

cells to form syncytia, which ultimately die. The assumptions in this model were that

syncytia ultimately cause cell death, such that there is a one to one death of each

virus for every uninfected cell. Thus, an elimination term of free virus, βxv, represents

the assumed one-to-one cell death from virus to uninfected cancer cell. The growth

curve data for untreated tumor were fitted (Dingli et al. (2006)) by using Gompertz,

logistic (L) and BR models( Bajzer et al. (1996) ,Byrne (2003), Marušic et al. (1994)).

Parameters r, K and ε were fit to experimental data for multiple myeloma xenografts

grown in SCID mice (Dingli et al. (2004)) and parameters were estimated using Monte

Carlo simulations. These works suggest weakly cytopathic viruses, i.e. small a cause

more tumor cytoreduction than viruses that destroy cells rapidly.

Table (2.2) includes the model Tian (2011), presentes the replicability of an

oncolytic virus. This model includes the burst size of virions, N , viral compartment
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to compensate for infectious growth rate, and death of virus upon infection, −βxv.

The analysis of this model shows that there are two threshold values of the burst size.

Below the first threshold, the tumor will grow to its maximum carrying capacity, K.

Above this threshold, there is a locally stable positive equilibrium solution appearing

through a transcriptional bifurcation. At or above the second threshold, a family

of Hopf bifurcations arise, as there are one or three groups of periodic solutions.

The study suggests the tumor load can drop to a near undetectable level during the

oscillation or when the burst size is ample Tian (2011).

These base models all suggest the cytotoxic infected cell death rate, a, is of

importance to the abundance of uninfected cancer cells (Bajzer et al. (2008), Tian

(2011), Nowak and Bangham (1996)). Regardless of the changes in the model, they

suggest the burst size , k
a
, or N in (Tian (2011)), will be the contributing factor for

the reduction of uninfected tumor cells.

Modeling Dendritic Cells

There is much literature that captures the dynamics between tumor and immune

system (Kareva et al. (2010), Kareva and Hahnfeldt (2013), Kirschner and Panetta

(1998), de Pillis et al. (2006), de Pillis et al. (2005), Wodarz et al. (1998),Worgall et al.

(1997)).

Dendritic cells are professional antigen presenting cells. Dendritic cell vaccines

have been used with some success in clinical studies of immunotherapy for a variety of

cancers. Portz and Kuang (2013) modeled the efficiency of dendritic cell vaccines when

used in combination with continuous or intermittent androgen deprivation therapy

(Kuang et al. (2016)) .

Kareva and Hahnfeldt (2013) discussed how tumors escape recognition by the

adaptive immune systems. Dendritic cells have shown to switch to glycol’s in an
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activate state. In the tumor microenvironment, however, the DCs activation is often

suppressed, which produces an expansion of immature myeloid cells (MDSCs). The

activation of the adaptive immune response comes from the activity of the innate

immune response. was modeled for (Kareva et al. (2010)). Kareva et al. (2010)

modeled predator-prey dynamics between immune cells: antigen presenting cells,

mature myeloid cells and mature myeloid cells with the prey, as the cancer. Their

results suggest in the absence of treatment and having a weak immune system, cancer

cells grow unrestrained. If the number of cancer cells in the body is low enough,

however, there exists a region where the patient can recover without treatment for

a sufficiently stimulated immune system. This dissertation will investigate how the

immune response and immune system as a means of therapy effect tumor size.
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Chapter 3

MATHEMATICAL ASSESSMENT OF ONCOLYTIC VIROTHERAPY

Oncolytic virotherapy is a targeted therapy that uses engineered viruses to selec-

tively kill and infect cancer cells with the goal to have them eliminated. Deterministic

population models have been considered to represent these interactions (Wodarz

(2001),Wodarz (2003), Wu et al. (2001), Dingli et al. (2006) and Bajzer et al. (2008)).

Replicative adenoviruses have been tested in clinical trials for head and neck cancer

(Nemunaitis et al. (2001)), as well as metastatic colon carcinoma (Reid et al. (2002)).

This work represents the viral-tumor interaction with immune presence, with the goal

to minimize the uninfected cancer cell population, x.

3.1 Model

We have here an ODE system of four variables: the population sizes of uninfected

cancer cells,x; infected cancer cells,y; CTL abundance, z; and free viral particles, v.

The uninfected cancer cells grow logistically at intrinsic rate of increase r, representing

the rate of maximum uninfected tumor cell growth and dies at rate µ. The carrying

capacity of the tumor population, K, including both uninfected and infected tumor

cells, competing for space. Free virus particles infect uninfected cells at a rate

proportional to the product of their abundances, βxv. The rate constant β includes

the effectiveness of this action, which includes the contact rate and probability of

successful infection. Since the model is assuming the virus is passed onto both daughter

cells, the infected tumor cells grow logistically by term sy
(
1− x+y

K

)
, at rate s and are

lysed by the virus at rate, α. The free virions production rate is the burst size, N

times the infected cell mortality rate, αy, assuming cells die when they shed virus.
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The model is shown below:

dx

dt
= rx

(
1− x+ y

K

)
− µx− β xv

dy

dt
= β xv + sy

(
1− x+ y

K

)
− αy − ρyz (3.1)

dz

dt
= σyz − φz

dv

dt
= Nαy − ξv

The nonlinear term σyz is the proliferation of CTL cells in response to viral

antigens and the term ρyz represents the killing of infected cells by CTL cells. In

the absence of antigenic stimulation, CTL cells die at rate φ. The oncolytic virus is

produced at lysing rate α and dies at rate ξ. A description of variables and parameters

used is represented in Table 3.1.

30



Table 3.1: Model Description of Variables and Parameters

Variable Description

x Uninfected cancer cells

y Infected cancer cells

z CTL abundance

v Free Viral Particles

Parameter Description

r Maximum uninfected tumor cell growth rate

µ death rate for uninfected cells

K Carrying capacity of overall tumor population

β Viral infectious rate

s Growth rate of infected cancer cells.

ρ CTL response rate

φ immune cell decay rate

N Viral burst size

ξ viral decay rate
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3.2 Analysis

Proposition 3.2.1. (3.1) is positive invariant.

Let ∆ = {(x, y, z, v) : 0 ≤ x+ y ≤ K, 0 ≤ z(t), 0 ≤ v(t)}.

If
(
x0, y0, z0, v0

)
∈ ∆→ ∀t

(
x(t), y(t), z(t), v(t)

)
∈ ∆.

Stability and Existence

The stability of the fixed points can be studies with the eigenvalues in the linearized

system around the fixed points :equilibria with negative real parts are stable, positive

real parts are unstable (Strogatz (2014)).

The system (3.1) has six steady states:

E0 = (0, 0, 0, 0), E1 = (K(r−µ)
r

, 0, 0, 0), E2 = (0, K(s−α)
s

, 0, NKα(s−α)
sξ

),

E3 = (0, φ
σ
, σK(s−α)−sφ

σρK
, φNα
σξ

),

E4 = ( ξ(ξ(αr−µs)−βKNα(s−α))
βNα(βKNα+ξ(r−s)) , ξ(βKNα(r−µ)−ξ(αr−µs))

βNα(βKNα+ξ(r−s)) , 0, βKNα(r−µ)−ξ(αr−µs)
β(βKNα+ξ(r−s)) ),

E5 = ξ(r(σK−φ))−K(βNαφ+σξµ)
σrξ

, φ
σ
, βKNα[(ξ)(σ(µ−r))−βNαφ(1+ξ(s−r))]−ξ2[σ(µs−αr)]

σrρξ2
, φNα
σξ

)

For the stability and existence, please refer to Table(3.2)

Theorem 1. In the model (3.1) trivial equilibrium, E0 = (0, 0, 0, 0). E0 is L.A.S

whenever

r < µ, s < α,

otherwise E0 is unstable.

Proof: See Appendix.

Theorem 2. The model (3.1) has boundary equilibrium E1 if and only if r > µ, s < α.

In case of αr − µs > 0, the Viral Free Equilibria (VFE), E1, is locally-asymptotically

stable if and only if R0 < 1 and unstable R0 ≥ 1. In case of αr − µs < 0 E1 is

unstable.
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Proof: See Appendix.

Theorem 3. Let s > α, r < µ. Model (3.1) has complete viral prevalence at E2 is

locally asymptotically stable whenever σ < φs
K(s−α)

Proof:See Appendix.

Theorem 4. Let s > α, r < µ, σ > φs
K(s−α)

. Model (3.1) has a boundary equilibrium

point E3 and it is locally asymptotically stable whenever r < K

K−φ
σ

(µ+ βNαφ
σξ

), otherwise

it is unstable.

Proof: See Appendix.

Table 3.2: Existence Table in the Positive cone

Eq. Point Case I Case II Case III Case IV Case V Case VI

s< α, r < µ s < α, r > µ s > α, r < µ,

σ < φs
K(s−α)

s > α, r < µ,

σ > φs
K(s−α)

s > α, r > µ,

σ > φs
K(s−α)

s > α, r > µ, σ <

φs
K(s−α)

E0

(0,0,0,0)

Exist, Stable Exist, Unsta-

ble

Exist, Unsta-

ble

Exist, Unstable Exist, Unsta-

ble

Exist, Unstable

E1

(x∗,0,0,0)

Not Exist Exist, Stable Not Exist Not Exist Exist, Unsta-

ble

Exist, Unstable

E2

(0,y∗,0,v∗)

Not Exist Not Exist Exist, Stable Exist, Unstable Not Exist Not Exist

E3

(0,y∗,z∗,v∗)

Not Exist Not Exist Not Exist Exist, Unstable Exist, Unsta-

ble

Not Exist

Table 3.2 represents the conditions for any one of the 6 equilibria to exists. Case

descriptions:

When s < α, this represents the growth of the infected cancer cells is less than that of

it’s cytotoxic cell death, also referred as the lysing rate. Therefore, when s < α, E0

and E1 could exist, depending on other conditions. Else, for s > α E2, E3, E4 and E5

could exist.

When r < µ, this represents the growth of the uninfected cancer cells is less than that
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of it’s death rate. Therefore, when r < µ, E0, E2 and E3 could exist. Else, for r > µ,

E1, E4 and E5 could exist

When σ < φs
K(s−α)

, the cell response rate is not high enough for the existence of the

CTL population at equilibria. Therefore, when σ < φs
K(s−α)

, E0, E1, E2and E4 can

exist. Else, E3 and E5 exist.

The Trivial Equilibrium, E0, exist for all values of the parameters. Biologically, this

condition has little relevance as it is unrealistic all populations will tend to zero.

Further, it we are investigating the growth of cancer, which must allow for r > µ.

Else, for r < µ, the cancer cells would have been dying faster than they would be

growing, which would have prevented the birth of a tumor.

The Virus Free Equilibrium (VFE), E1 has at least one non-zero entity.

E1 = (K(r−µ)
r

, 0, 0, 0) exist only if and only if r > µ, s < α. Let

R0 =
βNαK

(
1− µ

r

)
ξ
(
α− µ

r
s
)

Further, R0 is L.A.S when β < rξ
NK(1−µ

r
)

R0, the basic reproductive number, represents the average number of newly infected

cancer cells produced from one viral cell during the treatment period (Brauer et al.

(2001)).

The condition for stability of E2 depends on σ staying below a given threshold.

Biologically, this could represents the suppression, inactivity or delayed immune

response to the viral infection. The first conditions found are where anti-viral CTL

response is established. The condition of this response varies depending if the virus

has obtained 100% prevalence or not.

34



3.3 Model Fitting

Experimental design

The majority of clinical trials performing OV have been administered via intratu-

moral injection. Few studies have examined regional or intravenous delivery (Prestwich

et al. (2008)). The data used for this work is from (Huang et al. (2010)). The goal

of the experiment was to use gene-based cytokine treatment as a means of therapy.

There were 8-9 mice in each group, where each subject with B16-F10 subcutaneous

murine melanoma were intratumorally injected with various treatments. First, PBS,

which is a saline, resents the control group with no treatment. The second treatment

was Ad-∆B7, which is a modified adenovirus. The third treatment was Ad-∆B7/IL-12

, the modified adenovirus with the interleukin, IL-12 attached. The fourth was the ade-

novirus expressing IL-12 and a cytokine molecule, 41BBL,Ad-∆B7/4-1BBL. The fifth

treatment was adenovirus expressing both Il-12 and 41BBl, Ad-∆B7/IL-12/4-1BBL.

Mice injected with phosphate-buffered saline (PBS) rapidly formed large tumors, over

3,000 mm3. On day 12, the tumors were large enough that the mice were killed. The

mice with oncolytic Ad treatment were associated with growth inhibition. Twelve

days post treatment, the mean tumor volume for tumors treated with Ad-∆B7, Ad-

∆B7/IL-12 , Ad-∆B7/4-1BBL or Ad-∆B7/IL-12/4-1BBL were 1, 265± 155, 383± 71,

and 136± 22 mm3, respectively showing 60, 88, 89 and 96% tumor growth inhibition

compared to the PBS group.

Parameter Fitting

The model was fit to experimental data from (Huang et al. (2010)) and (Kim et al.

(2015a)) under particular assumptions. The fitting was done in MATLAB using the

nonlinear least squares solver, lsqnonlin. Parameters N, ξ, α,K and φ were estimated
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from prior sources. The oncolytic adenovirus burst size of virions, N = 3500, was used

from an experiment of a prostate specific adenovirus variant (Chen et al. (2001),Kim

et al. (2015a)). The viral decay rate, ξ = 2.3 is used from (Kim et al. (2015a)),

estimated from (Li et al. (2008),Wang et al. (2006)). The lysing rate α = 1, represents

the time for infected cells to undergo lysis on average of once per day, as 90 percent of

viruses exit the tumor site in one day (Worgall et al. (1997)). The carrying capacity,

K = 4000× 106, is estimated as the data is rounded up to the nearest thousandth,

i.e the ceiling of the size of death for mice. CTL death rate, φ = 0.35 was shown in

(De Boer et al. (2001)).

Parameters r, µ, β, s, σ and ρ were fit to experimental data that measured the

overall tumor growth (X+Y) over time during treatment of oncolytic adenovirus. The

data was fit to the following three conditions: i) Phosphate buffered saline (PBS), or

the control group, ii) Ad-∆B7, and iii)Ad-∆B7/IL-12 [Fig 2a, (Huang et al. (2010))].

Two additional experiments were done for the combination of Ad-∆B7/4-1BBL and Ad-

∆B7/IL-12/4-1BBL, but were not fit to (3.1), as its co-stimulatory properties expressed

on antigen presenting cells are not a variable in this model. The initial conditions for

the three data sets were used from the experiment as: (73.7, 0, 0, 0), (59.2, 0, 0, 1010)

and (74.6, 0, 0, 5 ∗ 109). Note, the experiment for Ad-∆B7/IL-12 will display immune

stimulatory effects from IL-12, thus, where T cells are not initially present, their

production is further stimulated.
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Parameter Description PBS Ad-∆B7 Ad-∆B7/IL-

12

r Uninfected tumor cell growth rate 0.43 0.33 0.17

µ uninfected tumor cell death rate 0.0008 0.0008 0.0008

β Viral infectious rate - 1 ∗ 10−13 1 ∗ 10−12

s Infected tumor cell growth rate - [1, 1 ∗ 103] [1, 1 ∗ 102]

σ CTL response rate - - [0.1, 4]

ρ death from CTL cells - - [0.01, 1]

K Carrying capacity 4000 ∗ 106 4000 ∗ 106 4000 ∗ 106

N Burst size of virions - 3500 3500

ξ viral decay rate - 2.3 2.3

α lyse rate - 1 1

φ CTL death rate - - 0.35

Table 3.3: Parameter estimates for model (3.1). The top 6 parameters were fit to data.

The bottom 5 were fixed from previous sources.
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Figure 3.1: Parameter fit to a)PBS data, for r = 0.43, µ = 0.0008. b)Parameter fit to

adenovirus data, r = 0.33, β = 1 ∗ 10−13, s = 1. c) Parameter fit for adenovirus with

immune response; r = 0.17, β = 1 ∗ 10−12, σ = 3.7, ρ = 0.82
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Figure (3.1) represents the parameter fits from experimental data using oncolytic

virotherapy (Huang et al. (2010)). First, the model fit for parameters r and µ compared

from the control group. Those values, were then used as the base to estimate the

values to fit for treatment, r, µ, β, s. The estimates for the treatment fit were used as

the base to estimate the parameters used for treatment in the presence of immune

response, fitting for r, µ, β, s, σ, and ρ. There are three key insensitive parameters:

s, σ and ρ that carry similar numerical dynamics for a range of values. The values

listed in Figure (3.1) were true to the values used in the figure, however, the same

results exist for Fig. (3.1 b) for s = [1, 103] and Fig. (3.1 c) for s = [1, 102], σ = [0.1, 4]

and ρ = [0.01, 1].

Simulations

Substituting parameter values fit to data for initial conditions (74.6∗106, 0, 0, 5∗109).

These values are experimental initial conditions (Huang et al. (2010)).

(a) (b) (c)

Figure 3.2: Sustained oscillations for E4 : β > βc a) Plots all population over the data,

showing sustained oscillation for uninfected and infected cancer cells, as the viral

population oscillates. b) Shows oscillations persist later in time. c) Phase portrait of

sustained oscillations
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(a) (b)

Figure 3.3: a) Viral free equilibria at E1 : β < βc. b) For Z0 = 1, E1 is reached.
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Figure 3.4: Hopf bifurcation diagram of, shown stable to unstable as β increases

We can see in Figure (3.2) that the natural equilibria for these values are E4 =

X∗, Y ∗, 0, V ∗. There are sustained oscillations that appear as β changed threshold

values, which numerically verify the Hopf bifurcation. Extending time to 27 years,4

months and 6 days; or 10,000 days, we can see oscillations continue to occur. At this

point, R0 > 1 since β > βc ; R0 = 6.09, β = 1e− 12, βc = 1.65e− 13. In Figure(3.3),

β < βc, =⇒ R0 < 1. β = 1e − 13, βc = 1.65e − 13 and R0 = 0.6. Note: Figure 3.4
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represents the qualitative behavior of the Hopf bifurcation, however, the quantitative

parameter values were not used here.

Viral reproducibility: Viral reproducibility is the duplication or process of making

a copy of viral cells. We can look at the dynamics of viral reproducibly, by chang-

ing s. In the absence of immune system, at E4 and t = 1000, we can change

s to be on or off, (1,0). The populations to the solutions for the total tumor

size (X+Y)=TumorTot, with Xtot, Ytot, Vtot as the total sizes for uninfected,

infected and viral populations. The total population sizes from s=(1,0) are Tumor-

Tot=(5.42E+08,5.45E+08); Xtot=(4.34E+08,4.35E+08); Ytot=(1.08E+08,1.1E+08)

and Vtot=(1.85E+11,1.87E+11); respectively. Based on the values from model (3.1),

there is little to no change in the overall populations from including the viral replica-

tion. This could suggest that upon viral engineering or viral selecting, under immune

suppression, there is little to no effect whether the virus can self replicate or not. This

is due to the initial viral load being able to be replicated upon the lysing of infected

cells.

3.4 Discussion

This chapter was able to highlight the third goal of this dissertation, to shed

light on the dynamics of continuous oncolytic viraltherapy with immune response.

There are many improvements model (3.1) can benefit from. A major modification

of this model was to incorporate sY
(

1 − (X+Y )
K

)
with viral production term Nαy.

It is not practical that infected growth rate s, can fluctuate with little quantitative

nor qualitative change in overall tumor population. Thus, the condition representing,

sY
(

1− (X+Y )
K

)
must change according to a more detailed understanding of the positive

feedback upon infected cancer cells.
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Absence of immune response could happen for some period of time for oncolytic

viruses that are polymer coated (Cattaneo et al. (2008)). Coating viruses with non-

antigenic polymers is a method of blocking antibody recognition (Green et al. (2004).)

The coated viruses deflect the immune system by being coated with polyethylene

glycol (PEG), which physically blocks the adhesion of proteins that carry foreign

antigens, that are attacked by macrophages. These coats delay the onset of the

immune response, but do not prevent it Phys.org (2013). The nonlinear term σyz

will not have any immune population whenever infected cells are not present. This

is biologically unrealistic; thus, the model needs to include σy to represent immune

response term. This model does not capture the immune stimulation by the OV, and

ought to include an immune response to the uninfected cancer cells, such as ρTxz.

Regarding the burst size, N , previous models suggest the birth size is a contributing

factor to the reduction of uninfected tumor cells (Bajzer et al. (2008), Tian (2011),

Nowak and Bangham (1996)). Based off these works, one could propose that an

increase in N would decrease the uninfected cells. It is important to find biologically

realistic values that support types of replicating viruses with higher burst sizes, and

then incorporate into an extended model. It is suggested that immune response

may affect the parameters determining viral reproduction. CTL mediated lysis may

increase the death rate of infected cells, α. Cytokines released by CD8 or CD4 positive

T cells could reduce the infectivity parameter β and/or the viral production rate, in

this model is α as well (Nowak and May (2000)).

Death rate of uninfected cells, µ can be eliminated, as its value is least sensitive,

small and could be clumped into a maximal growth rate r; r=(growth-death) rate.

Lastly, the impulses of the virotherapy must be introduced via a delta function of the

type u(t) = u0δ(t) + δ(t − 2) + δ(t − 4), for improved parameter fit accuracy. The
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model needs to investigate treatment regimes, with regards to frequency and dosage

quantity.
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Chapter 4

OPTIMIZING COMBINATION ONCOLYTIC VIRAL AND IMMUNO-

THERAPY TREATMENT STRATEGIES WITH A PREDICTIVE MODEL

4.1 Introduction

This chapter investigates dosage regimes for oncolytic virotherapy, combined with

dendritic cell vaccine, in order to address which is the most beneficial to reduce tumor

size, with minimal relapse. After developing these regimes, the most optimal was

implementing into an intermittent schedule regimen. The general goal is to investigate

how sensitive tumor reduction is to combination intermittent oncolytic viral therapy

and immunotherapy. First, this chapter will develop a mathematical model that

can represent clinical variations for administering oncolytic viral therapy. Then the

model will be parameterized using empirical data. The results then identify optimal

treatment strategies for varying dose sizes and treatment schedules, that could be

used towards a proposed model for personalized medicine.

Dendritic cell therapy stimulates anti-tumor responses by causing dendritic cells to

present tumor antigens, such as Tumor-Specific Antigens(TSA) or Tumor-Associated

Antigens (TAA). The immune system is adept at pathogen recognition and provides

receptors specific to pathogen-associated molecular patterns, which included toll-like

receptors (TLR) (Prestwich et al. (2008), Pichlmair and e Sousa (2007)). The innate

immune response can provide an important link to the generation of adaptive immune

responses. Dendritic cells play a critical role in the early immune response. Dendritic

cells are professional antigen presenting cells and are key in innate immune responses,

as they transfer information to the T cells, regarding the identity of foreign antigens.
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A deterministic mathematical model consisting of of 5 differential equations was

developed to predict changes in tumor size in response to virotherapy, immunotherapy

and combinations of both. Various types of oncolytic adenoviruses expressing various

immunostimulatory molecules represent the virotherapy. Mathematical models using

dendritic cell treatments been done by (Kareva et al. (2010), Kuang et al. (2016),

Portz and Kuang (2013)).

To better understand which regimen would be best, a clinical trial table was

produced in order to gain clinical insight to use in the model. The type of cancer is

foremost in order to find which cancers are being treated with oncolytic viraltherapy

on people. The name of the drug and company who owns the name, in order to see

which drugs are beings used on cancers with a name specific to a certain virus. The

phase of the trial can give information pertaining to the quantity of people involved.

The route of administration can have an effect on the viral infectivity rate or maximum

uptake rate of drug. The key focus lies in the quantity of drug, schedule and whither

there is and immune combination. It is important to see the quantities for its count

and order of magnitude of OVs. The schedule of the OV could differ per cancer and/or

virus, thus, ideas for intermittent treatment types could be gathered. Since this work

considers immunotherapy, an option for whither or not immune combination of any

sort was used, is included without bias.
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Cancer

/Stage

O-

Virus

Drug

Name

Company Phase

Trial

R.O.AV
1

R.O.AI
2

QuantityV

(pfu/ml)

Schedule Immune-

Combo

Cite

Melanoma

IIIB-IV

HSV-1 T-

VEC

AMGen III I-LES3

Sub-

CI

4

106

108

108

D1-WK1;

D2-WK4;

DN+/2WKS;

≤ 24 wks; ≤ 48

wks(1 yr/ D1)

≤ 72wks

(18mos from

D1)

Option(OR)

GM-CSF

125µg/m2

14

Days(daily)

Andtbacka

et al.

(2015)

Varied:NSCLC,

Col,Mel,Thy,

Pan,Ova,Gas,

Lei, Mes

Vaccinia

Poxvirus

JX-594

(Pexa-

Vec)

Jennerex I I-VEN 1 ×

105,1 ×

106, 3×

106,1 ×

107,

1.5 ×

107,

3 × 107

*(pfu/kg)

Singe infusion Express:

GM-CSF,

β-gal

Breitbach

et al.

(2011)

Ova, Mes AdenovirusAd5-

D24-

GMCSF

I I-VEN

I-CAV

D1;

8 × 109.

Doses

esca-

late to:

1×1010,

3.6 ×

1010,

1×1011,

2×1011,

2.5 ×

1011,

3 ×

1011,and

4×1011

Single infu-

sion

GM-CSF Cerullo

et al.

(2010)

Liver Can-

cer

Vaccinia

Poxvirus

Pexa-

Vec

Jennerex II I-VEN Low

108;

High

109

Infused low

and high dose

on D1, D15 &

D29

No. In-

serted

GM-CSF

and β Gal

Heo

et al.

(2013)

Gastrointestinal

Carcinoma

AdenovirusOnyx-

015

Onyx

Phar-

maceu-

ticals

II HAI 2×1012 D1,D8 .

Chemother-

apy admin-

istered on

D22

- Reid

et al.

(2002)

Table 4.1: Various clinical trials using OVs to seek treatment types

Table 4.1 was created to gain insight on some key components of using OVTs

clinically. The main focus of this table is expressed in columns Quantity, Schedule
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and Immune-Combo. The clinical variability within these columns could imply there

in not enough suggested OV dose quantity pertaining to a particular schedule, with

or without a source of immunotherapy. Therefore, there are opportunities to explore

the these variations which will be a key motivation within the construction of model

in this work.

4.2 Materials and Methods

4.2.1 Experimental Design

The experiment done by (Zhang et al. (2011)) varied the anti tumor effect of an IL-

12 and GM-CSF co-expressing oncolytic Ad, Ad-∆ B7/IL-12/GMCSF, with dendritic

cells. Ad- ∆ B7 is an oncolytic adenovirus, with mutations in the retinoblastoma

binding sites of E1A and has the E1B binding region deleted, shown in Figure 4.2.

The E1A region has a paradoxical functionality such that they act as oncoproteins

and tumor suppressor proteins, i.e; both stimulating cancer growth and suppressing it

(Frisch and Mymryk (2002)). The creation of Ad-∆ B7/IL-12/GMCSF was generated

by inserting shuttle vectors expressing murine IL-12 and GM-CSF genes into the E1

and E3 regions of the Ad- ∆ B7 viral vector, respectively. Shuttle vectors are vectors

constructed to propagate into two different host species. Thus, DNA inserted into a

shuttle vector can be tested or manipulated in two different cell types (Lodish et al.

(2000)). It has been previously confirmed that Ad-∆B7/IL-12/GMCSF expresses

cancer-specific viral replication and cytotoxicity (Kim et al. (2007)).
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Figure 4.1: The anti tumor activity of IL12 shown. Cytotoxic lymphocytes, CD8+T

cells, natural killer (NK) and NKT cells, are often involved in the mechanism of action

of IL-12 (Trinchieri (2003)).

Dendritic cells were derived from bone marrow cells harvested from cavities of

femurs and tibias of C57BL/6 mice (Zhang et al. (2011)). The dendritic cells were

isolated and grown. Male mice of 6-7 weeks of age, of type C57BL/6, a common

inbred strain of laboratory mice, were injected subcutaneously into the right abdomen

with 5× 105 cultured murine melanoma B16-F10 cells.

When the tumor volumes reached around 120-130 mm3, mice were sorted into

groups with similar tumor volumes. The five treatment groups included phosphate-

buffered saline (PBS) only, as the control, 5 × 109 viral particles/injection of Ad-

∆B7/IL-12/GMCSF only, 1×106 particles/injection of DCs only, combination of 5×109

viral particles/injection of Ad-∆B7/IL-12/GMCSF and 1× 106 particles/injection of

DCs and combination treatment of 5× 1010 viral particles/injection of Ad-∆B7/IL-

12/GMCSF and 1× 106 particles/injection of DCs. The last combination was referred

as the high dose combination therapy. The mice were injected with three doses of

Ad-∆B7/IL-12/GMCSF on days 0-2. For the combination treatment, the mice were
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then injected with three doses of DC’s on days 3-5. The minimum number of mice

per experiment was seven. Tumor growth was monitored every other day. The tumor

volume was calculated with a caliper with the formula volume= 0.523 LW2. Mice

with tumor size > 3,000 mm3 were sacrificed for ethical purposes. Empirical data is

presented in Figure ??.

IL-12 and GM-CSF expression were determined using an ELISA in accordance with

the manufacturers’s instructions. ELISA stands for “enzyme-linked immunosorbent

assay”, a rapid immunochemical test that involves an antibody or antigen (immunologic

molecule). A schematic representation of the genomic stitchers of adenovirus Ad-∆B7

and Ad-∆B7/IL-12/GMCSF is displayed in Figure 4.2. The open star represents the

mutation at the retinoblastoma protein binding site, lacking E1B 19 and ∆E1B; and

∆E3. Murine IL-12 and GM-CSF were inserted into E1 and E3 regions of the Ad-∆B7

genome, respectively (Zhang et al. (2011)). DCs were labeled with CellTracker Red

CMTPX on day 6 of DC culture and harvested on day 8. The tumor-bearing mice

were intramurally injected with 1×106 DCs alone for 3 days or intratumorally injected

with Ad-∆B7/IL-12/GMCSF at 5× 109VP/injection or 5× 1010VP/injection three

time prior to DC injection.

Figure 4.2: Characterization of the oncolytic adenovirus co-expressing interleukin 12

(IL-12) and (GM-CSF)
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Figure 4.3: Data from Figure 2 Zhang et al. (2011) represents the anti tumor effect of

Ad-∆ B7/IL-12/GMCSF in combination with dendritic cells (DCs)

4.2.2 Model Development

With the base model constructed in Chapter 3 and the pre-clinical approaches

used for combination oncolytic and immunotherapy, Model 4.1 is constructed to find

tumor volume changes over different doses, schedules and immune combination.

γ y +κ y( ) yzK
αy

uv (t)

rx

uD (t)

σ yy

βxv
K

(κ y)xz
K

δzz

Dz
x

yv

δvv

δDD

ρD

N

Figure 4.4: Model schematic. Solid lines depict model flow between compartments.

Dashed lines depict interactions between compartments.
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Uninfected cells grow exponentially at intrinsic growth r, and are destroyed by T

killer (CTL) cells at rate κ. The term κy is dependent on infected cells, as oncolytic

viruses facilitate immune response, here via the T killer cells towards the tumor.

Uninfected cancer cells are infected at rate β, as standard incidence, where carrying

capacity K = x+ y + z +D. Free viral particles are grown from lysing rate α with

burst size N, and decays at rate δv. Viruses have several ways of shedding. The model

assumes viral shedding is done through apoptosis. The mechanisms by which this

happens in the model is via an abundance of viral particles that cause the cell to

explode, releasing viral progeny at rate Nαy and by stimulating the immune to attack

by OV facilitation rates: κy yz
K

and κxyz
K

. T killer cells are activated by dendritic cells

at rate ρ and are deactivated at rate δz. Furthermore, ρ is representing the enhanced

activation/maturation of the dendritic cells via cytokine and interleukin attachments:

GM-CSF and IL-12. Since the model assumes the immune system functions only

in the presence of oncolytic virus, the dendritic population,D, depends on σy, the

infected population. The infected population only exists when there is an oncolytic

virus. Thus, the assumption is the immune response depends on the oncolytic virus.

This is due to the understanding that a tumor microenvironment inhibits the cancer

cells from interacting with immune activation and response signals. The oncolytic viral

immunogenicity trait further enhances the immune response to infected cells, at rate γy.

In Appendix 2, a model constructed in this dissertation included an immune response

term for uninfected cancer cells, γx, which resulted to be insensitive in the model

based off the parameter fit results. Therefore, only γy is included in this simplified, full

model. Dendritic cells decay at rate δD. Therapies are introduced as delta functions for

uv(t) and ud(t) for virotherapy and immunotherapy. The model has fit to experiment

time injections via the delta functions: uv(t) = u0δ(0) + δ(2) + δ(4), and ud(t) =

u0δ(1)+δ(3)+δ(5). This work will alter ui(t) = u0δ(t−ai)+δ(t−bi)+δ(t−ci), i ∈ {v, d},
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corresponding to the schedule of oncolytic viral and dendritic therapy, to investigate

the sensitivity changes on the dynamics.

The equations are as follows:

dx

dt
= rx− βxv

K
− (κy)

xz

K
(4.1a)

dy

dt
= β

xv

K
− αy − (γy + κy)

yz

K
(4.1b)

dv

dt
= Nαy − δvv + uv(t) (4.1c)

dD

dt
= σyy − δdD + ud(t) (4.1d)

dz

dt
= ρD − δzz (4.1e)

This models variables include x, y, v, z and D representing uninfected cancer cells,

infected cancer cells, virus free particles, T killer cells, and dendritic cells, respectively.

This model was reduced from (Kim et al. (2015a) and Wares et al. (2015)). Model 4.1

has fewer variables and parameters, with intensions to gain pre-clinical and clinical

insights from a simpler approach. The model in Wares et al. (2015) includes an

additional variable, with an equation to represent the antigen buffer between infection

and dendritic cell. The CTL cells from Wares et al. (2015) grow based off antigen

presenting cells, dendritic cells and infected cells. Model 4.1 includes only the den-

dritic cell population for the vaccine count, and CTL cells for the immune attack

onto uninfected and infected cancer cells. Further, Model 4.1 keeps CTL population

only dependent on dendritic cells, which depends on the infected cell population.

Additionally, Model 4.1 accounts for additional immune attack on the infected cell

populations due to the nature of the oncolytic virus enhanced immune stimulation

trait, −γyy. The delta functions used here in Model 4.1, uv(t) and ud(t), are not

limited to 6 days, as in Wares et al. (2015). Also,Wares et al. (2015) used only 3

quantities of each treatment, but Model 4.1 accommodates for extended time functions,

depending upon dose limiting conditions.
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4.2.3 Parameterization

Model (4.1) was fit to experimental data from Zhang et al. (2011). The fitting was

done in MATLAB 2014b using the Levenberg-Marquardt algorithm with nonlinear

least squares solver, lsqnonlin. The solver was ode23.
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Parameter Description PBS Ad-∆B7/

IL12/ GMCSF

Ad-∆B7/IL12/

GMCSF +DC

Ad-∆B7/IL12/

GMCSFH +DC

r Uninfected tumor

cell growth rate

0.385 0.385 0.385 0.385

γy T cell contact rate

via IL-12, infected

- 0.5 1 1

σy innate dendritic ac-

tivation response

from infected cells

- 1.2 1.5 0.9

β Viral infectious

rate

- 2.588× 10−4 7.5703× 10−4 3.12× 10−5

κ T cell killing rate

facilitated by OV

- 5× 10−5 7× 10−5 1.5× 10−3

ρ adaptive T cell acti-

vation rate by den-

dritic cells via GM-

CSF

- 10 0.8 1

δz T cell decay rate - 0.35 0.35 0.35

δD Dendritic cell

death rate

- 0.35 0.35 0.35

u0V Adenovirus concen-

tration

- 5× 109 5× 109 5× 1010

u0D Dendritic concen-

tration

- - 1× 106 1× 106

N adenovirus burst

size

- - 3500 3500

α Infected lysis - - 1 1

δV Viral decay rate - - 2.3 2.3

Table 4.2: Parameter estimates for Model (4.1). Values obtained using nonlinear least

squares, lsqnonlin, to fit the model to empirical data from Zhang et al. (2011).
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Parameter estimates were obtained for six parameters, as seven were estimated

from previous literature, described from (4.1). The exception is ρ, as we allow ρ to

be fit here. ρ represents the T cell activation rate by dendritic cells; therefore, it will

represent the effect of GMCSF and IL-12. The experiment done in Zhang et al. (2011)

varied the anti tumor effect of an IL-12 and GM-CSF co-expressing oncolytic Ad,

Ad-∆ B7/IL-12/GMCSF, with dendritic cells.

One is required to sacrifice a mouse with tumor size greater than 3,000 mm3. The

data points represent the mean ± standard error for the combined tumor sizes of the

mice shown in Figure??. The control group of PBS only allowed for aggressive growth

of melanoma, rapidly forming large tumors by the 8th day of treatment, reaching

over 2,500 mm3. Mice treated with DC’s or Ad-∆ B7/IL-12/GMCSF alone, showed

substantial inhibition of tumor growth. More specifically, the treatment optional that

demonstrated the maximum tumor reduction was the combination of dendritic cell

vaccine with high concentration oncolytic virotherapy.

As the model assumes the immune system reacts to the presence of the oncolytic

virus, all data sets were used to parameter fit except the data for Dendritic cells (ii),

as there is no viral therapy involved nor parameter to fit. The top six parameters

estimated in Table 4.2 were fit to the data sets. To start, the growth term r, was fit

to the PBS data set, setting all other parameter values to 0. Since there was virus

and immune response in the remaining sets, all of the parameters were fit to the data.

The values fit for data Ad-∆ B7/IL-12/GMCSF were used as a base to estimate the

subsequent experimental data in a hierarchical fashion.
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Figure 4.5: Model (4.1) fits to data sets of Zhang et al. (2011)

4.3 Results

The Levenberg-Marquardt algorithm was used since the problem is undetermined,

since the model was constructed with fewer equations than dimensions. The limitations

of the Levenberg-Marquardt algorithm is that is does not handle bound constraints.

These strength of this algorithm is it is the algorithm that suits the number and

equations and dimensions of the model, due to the complexity. The weakness of not

having bound limits on the parameters values is that the range base selection is based

off literature, or previous fits from simpler models.

Using the parameter fits from Section 4.2, relevant modeling questions are now

considered. 1) Are there better treatment regimens that reduce overall tumor size

by day 30? Since the fits include up to day 30, end tumor volume at day 30 can be

compared for a variety of regimens. 2) Can metronomic treatment further reduce

overall tumor size? Once regimens are considered over the initial 6 days, the model can

extend the time to compare end tumor volume. 3) How do the effects of intermittent
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combination oncolytic viraltherapy and immunotherapy reduce overall tumor size?

Once optimal regimens are found for short and longer treatments, these treatments

can be considered one sequence, administered intermittently over extended period of

time.

When administering combination treatment, order does matter; therefore, this

section will cover a variety of permutations for combining oncolytic virotherapy and

dendritic therapy. Included are data generated from permutations of possible treat-

ment regimens under varying administration conditions to show the overall tumor size.

All data and figures were generated in Matlab2014.

4.3.1 Dose Regimen

A dosage regimen is the schedule of doses of a therapeutic agent over time. This

includes the time between doses, the time when the doses are to be administered, and

the quantity of treatment to be given at each specific time.

It will be assumed that any treatment is a permutation of OV, DC and/or days

off. Note: For Sections 4.3.1-4.3.2, all permutation calculations were simulated over

30 days; the Tumor Volume presented is on day 30. This was to match the overall

treatment done experimentally. Section 4.3.3 allows for further time and will be

discussed then.
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Regimen End Tumor Volume mm3

DVVVDD 49

DDDVVV 50.3

DDVDVV 53.1

DDVVVD 55.9

DDVVDV 56.7

DVDDVV 58.4

DVDVDV 62.3

DVDVVD 62.7

DVVDDV 64.6

DVVDVD 65.9

VDDDVV 77.4

VDDVDV 86.7

VDDVVD 94.2

VDVVDD 98.6

VDVDDV 101.2

VDVDVD 113.6

VVDDDV 146.3

VVDDVD 181.9

VVDVDD 209.3

VVVDDD 630.7

Table 4.3: Exactly 3 oncolytic viruses and 3 dendritic cell vaccines as treatment

strategy. The above table represents all 20 permutations that predict the tumor size

at day 30. Each injection included V=5× 1010, D=1× 106.

This work will assumes the maximum viral and dendritic dosage is parallel to the
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optimal experimental dosages used in Zhang et al. (2011), for the experiment regimen.

Since there are three doses for each treatment of V at 5× 1010 and D at 1× 106, the

maximum dose per treatment is Vmax = 1.5× 1011 and Dmax = 3× 106. In Sections

(4.3.1-4.3.4), maximum dosage will vary and will be represented by VTot and DTot.

Figure 4.6: Represents the top 3 in each group starting with Dendritic Vaccination

and Oncolytic Virotherapy corresponding to Table 4.3

Figure(4.6) shows the top best treatment’s for altering the administration of OV

and DC treatments, maintaining a maximum of 3 and 3 for each treatment type.
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Permutations of V and D with Flexible Frequency

Permutation Day End Tumor Volume Oncolytic Virus Dendritic Cells

Rank 1 2 3 4 5 6 (mm3) dose number dose number

1 V V V V V V 4.3 6 0

2 D V V V V V 6.4 5 1

3 V D V V V V 13.6 5 1

4 V V V V V D 14 5 1

5 D V V V V D 17.9 4 2

6 D D V V V V 22 4 2

7 V V D V V V 22.1 5 1

8 V V V V D V 22.8 5 1

9 D V V V D V 24 4 2

10 D V D V V V 25.2 4 2

11 D V V D V V 27.3 4 2

12 V V V D V V 29.2 5 1

13 V D V V V D 35 4 2

14 V D D V V V 35.7 4 2

15 V D V V D V 40 4 2

16 V D V D V V 40.9 4 2

17 D V V V D D 49 3 3

18 V V V V D D 49.6 4 2

19 D D D V V V 50.3 3 3

20 D D V D V V 53.1 3 3

Table 4.4: Permutation table representing flexible count for oncolytic viruses and

dendritic cell vaccines, over 6 days. 20 permutations of the 64 are displayed, that

predict the tumor size at day 30. Each injection included V=5× 1010, D=1× 106.

Table (4.4) represents all possible 64 permutations of six treatments for the first

six days of therapy. The data is sorted from treatment permutations predicting the

lowest tumor size through highest tumor size over 30 days. Since each dose of V is

5× 1010 (VP) and D is 1× 106 (DC), these permutations allow for [0 ≤ V ≤ 3× 1011]

and [0 ≤ D ≤ 6× 1010]. The regimen leading to the lowest tumor volume over the
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experimental time frame predicts to administer oncolytic virotherapy for six days in

a row at 5× 1010 (VP), i.e Vmax = 3× 1011, with a total tumor volume of 4.3 mm3.

The worst scenario was administering dendritic vaccine daily for six days, predicting

tumor size of 1.1861 × 107 mm3. Based on these permutations from the model, a

large tumor, such as results from D-D-D-D-D-D-D, is not optimal, but the scenario of

V-V-V-V-V-V-V with a drastic tumor reduction may also have unfeasible implications.

Although this could represent tumor remission, we take into account that this may

also include high cytotoxicity of VPs in the subject.

Figure 4.7: Represents the top 2 regimens of non-restricted therapy for Dendritic

Vaccination and Oncolytic Virotherapy corresponding to Table 4.4

Assuming the initial maximum dose administered for the experiment done in Zhang

et al. (2011), we can look into the permutations of altering dendritic cell injections at

1× 106 and oncolytic virotherapy at 5× 1010 as will be shown in Section 4.3.2

4.3.2 Maximum Tolerated Dose

The goal of the maximum tolerated dose (MTD) applied to cancer is to generate

the highest level of cancer cell mortality without causing unacceptable side effects.
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Assuming there is a maximum tolerated dose for the patient, it is important to search

for an altered schedule that keeps the total dose bounded, but allows frequency and

order to vary.

Permutation Day End Tumor Volume Oncolytic Virus Dendritic Cells

Rank 1 2 3 4 5 6 (mm3) dose number dose number

1 D V V V V D 42.9 4 2

2 V V V V V V 44.1 6 0

3 D V V V D D 49 3 3

4 D D D V V V 50.3 3 3

5 D D V V V V 50.3 4 2

6 D V V V V V 51.9 5 1

7 D D V D V V 53.1 3 3

8 D V V V D V 54.2 4 2

9 D D V V V D 55.9 3 3

10 D D D D V V 56.2 2 4

11 D V D V V V 56.5 4 2

12 D D V V D V 56.7 3 3

13 D D D V D V 57.6 2 4

14 D V D D V V 58.4 3 3

15 D V V D V V 59.7 4 2

16 D D V D D V 61 2 4

17 D V D V D V 62.3 3 3

18 D V D V V D 62.7 3 3

19 D V V D D V 64.6 3 3

20 D V V D V D 65.9 3 3

Table 4.5: Permutation table of limited maximum doses for oncolytic viruses and

dendritic cell vaccines. 20 permutations of the 64 are displayed, that predict the tumor

size at day 30. Vmax = 1.5× 1011, Dmax = 3× 106, where the dosages were fractioned

over 6 days.

Table (4.5) shows the options for administering combination treatment without

limitations on frequency per treatment; however the maximum dosage concentration

is limited to the amount used in the experiment from (Zhang et al. (2011)). This
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modeling approach allows for a varied number of base values for a given order of

magnitude. The theory behind optimal control, however, would suggest a specific

optimal value for a dose and frequency, which could be infeasible. It could be useful in

future work for a very specific dose or frequency condition, without as many constraints

on the model.

(a) (b)

Figure 4.8: 6 days of altered treatment, limited to maximum OV and DC dose

corresponding to Table 4.5

In Figure(4.8), the top 4 are plotted from the 64 permutations listed in Table

(4.5) in an ascending order in the legend. Figure(4.8a) compares the most optimal

of all 6 limited doses at DVVVVD and VVVVVVV. Although the total tumor size

is 42.9 mm3 and 44.1 mm3, respectively, we can see slight peak differences early

on. It seems that having some dendritic build up before oncolytic treatment, can

prime the immune system. Furthermore, the presence of the oncolytic virus redirects

the immune response to the tumor site and/or through the potentially restricted

tumor microenvironment. This could justify why the peak is lower for simulations of

initial administration of dendritic vaccine followed by oncolytic virotherapy. Fig4.8b
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compares the third and fourth optimal regimen of the 64 permutations, from top to

bottom. Continuing the idea of optimal treatment of dendritic vaccination followed

by oncolytic virus, DVVVVDD has a lower peak and slightly smaller tumor size than

DDDVVV.

Rest Days

Having rest days during treatment is commonly done to allow the body to recover. This

also may entail increased doses of treatment on one particular day, rather than what

would be administered on a more dense dosing scheduled. This section investigates

the inclusion of rest days during treatment.
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Permutation Day Tumor Volume Oncolytic Virus Dendritic Cells Rest Day

Rank 1 2 3 4 5 6 (mm3) dose number dose number count

1 V - V - - V 26.6 3 0 3

2 V V - V - V 27.7 4 0 2

3 V V V - - V 29.7 4 0 2

4 V V V - V V 33.8 5 0 1

5 V V - - - V 34.1 3 0 3

6 V V V V - V 37 5 0 1

7 V - V V - V 37.8 4 0 2

8 D V - V V D 37.9 3 2 1

9 D - V - V V 39.5 3 1 2

10 D - - V - V 39.6 2 1 3

11 D V - - V V 39.9 3 1 2

12 D - V - - V 40.1 2 1 3

13 D - - V V V 40.3 3 1 2

14 V V - - V V 40.5 4 0 2

15 D - V V V D 40.9 3 2 1

16 D V - - - V 41.3 2 1 3

17 D - V - V D 41.5 2 2 2

18 V V - V V V 41.5 5 0 1

19 D - - - V V 41.8 2 1 3

20 D V - - V D 41.8 2 2 2

Table 4.6: Permutation table representing flexible count for oncolytic viruses and

dendritic cell vaccines, allowing for rest days. 20 permutations of the 729 are displayed,

that predict the tumor size at day 30. Injection quantities: Vmax = 1.5 × 1011,

Dmax = 3× 106, where the dosages were fractioned over 6 days

Table(4.6) represents keeping the schedule of six days fixed, but allowing for off

days of treatments. The maximum dosage for OV and DC are the same over 6 days as

used in Zhang et al. (2011), but divided out accordingly. This also could suggest that

some days may have higher doses per day than the initial dose per original treatment

quantity, but would be administered less frequently of the treatment time frame.
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Figure 4.9: Top simulations from Table 4.6

These results have caused some question in the use of combination treatment. It

appears that the optimal outcome of including treatment over rest days shown in

Table 4.6 is V-V- -V at tumor volume at 26.6 mm3. Interestingly enough, the 39th

permutation rank from Table 4.5 is VDVDDV at tumor volume at 101.2 mm3. It

seems that the same sequence of V at dose 5× 1010 with rest days did better than

that of substituting dendritic treatment within those rest days.
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Table, Permutation Day Tumor

Volume

Oncolytic

Virus

Dendritic

Cells

Total

Rank Rank 1 2 3 4 5 6 (mm3) dose number dose number OV dose

[4.6], 1 1 V - V - - V 26.6 3 0 1.5 × 1011

[4.5], 39 2 V D V D D V 101.2 3 3 1.5 × 1011

Table 4.7: OV in the same sequence as off days as of dendritic vaccination does better alone.

Tumor volume predicted at day 30. Vmax = 1.5× 1011, Dmax = 3× 106

We can see here that oncolytic monotherapy performs better than combination of

viral and immunotherapy. In fact, the top 7 of the top 20 of the 64 permutations of

V and D with rest days at limited maximum dose listed in Table (4.6), only include

oncolytic virus. As mentioned earlier, the model makes the assumption that the cancer

is in an aggressive stage where the tumor microenvironment does not allow for the

immune system to naturally attack the uninflected cancer cells. Only infected cancer

cells are subject to immune attack due to the oncolytic viral immunogenic traits

induced in the cancer cells. Thus, under excessive dendritic vaccination, the immune

system annihilates the infected cancer cells quickly. A majority of the infected cancer

cells undergo cell lyses, releasing virions which can reinfect cancer cells and re-stimulate

the immune system to attack both uninfected and infected cancer populations at rate

κy. If the infected cells,y, are removed too quickly, the immune system cannot kill

the uninfected cancer cells and thus, the cancer will continue to grow. Due to the

inhibition of the infected cells from the dendritic cells, Table (4.7) includes the regimen

in rank 2, represent the dendritic vaccination attack and kill infected cells rapidly; the

effect from the oncolytic virus will be reduced since its progeny cells are not present,

allowing for cancer to grow further. In Section (4.3.2), we look into optimal regimens

lowering the total dendritic concentration from 3× 106 to 3× 105.
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Maximum Tolerated Dose with Rest Days with limited DC

“Less is more”, as the saying goes, applies to the models results, as excessive dendritic

vaccination in several regimens is not only less effective, but can increase tumor

growth. In Section 4.3.1, we’ve assumed the optimal dose for oncolytic virotherapy is

5×1010(VP)/dose and 3×106 (DC)/dose based off the concentration values used in the

experimental work of Zhang et al. (2011) for Ad-∆B7/IL12/ GMCSFH +DC in Table

[4.2]. The dose ranges have been [0 ≤ V ≤ 1.5× 1011] and [0 ≤ D ≤ 3× 106]. Suppose

DmaxL < Dmax. We can conjecture that there will be enough dendritic vaccination

to boost the immune response to kill uninfected and infected cancer cells, but not

so excessive that it will kill off the infected cells. Table [4.8] represents therapy with

Vmax = 1.5× 1011 and DmaxL = 3× 105.
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Permutation Day End Tumor

Volume

Oncolytic

Virus

Dendritic Cells Rest Day

Rank 1 2 3 4 5 6 (mm3) dose number dose number count

1 D V - - - V 12.9 2 1 3

2 D V - V - V 14.5 3 1 2

3 D V V - V V 14.6 4 1 1

4 D V V - - V 15.1 3 1 2

5 D V - - V V 15.4 3 1 2

6 D V V V V V 18 5 1 0

7 D V - V V V 18.2 4 1 1

8 D V V V - V 19.3 4 1 1

9 V D V - V V 20 4 1 1

10 V D V - - V 20.6 3 1 2

11 V D - V - V 21 3 1 2

12 D V - - V - 23 2 1 3

13 D V D V - V 23.2 3 2 1

14 V D D V - V 24 3 2 1

15 V D V V V V 24.1 5 1 0

16 D V - V V - 24.8 3 1 2

17 V D V V - V 25.3 4 1 1

18 V D V D - V 25.6 3 2 1

19 V D V - D V 26.1 3 2 1

20 D V V - V - 26.5 3 1 2

Table 4.8: Permutation table representing flexible count, limited dose, lower dose

dendritic cell vaccines, while allowing for rest days. 20 permutations of the 729 are

displayed, that predict the tumor size at day 30. Injection quantities: Vmax = 1.5×1011,

Dmax = 3× 105, where the dosages were fractioned over 6 days.

Table [4.8] includes 729 permutations of OV and DC with maximum total dosage

of Vmax = 1.5× 1011 and DmaxL = 3× 105, including rest days. Evidently, lowering

DmaxL in combination with OV actually reduces overall tumor size. In contrast with

Table [4.6], the top 8 out of the top 20 of the 729 permutations start with DC and end

with OV. These results could suggest that starting with dendritic vaccination keeps
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these cells at bay, and await for the signal from the OV to deploy. At one order of

magnitude lower than used in the experimental work by Zhang et al. (2011), dendritic

cells allow the immune population to attack, but not wipe out all infected cells needed

for viral reproduction. We can also see that as the order of magnitude decreased by 1,

it also seems optimal to use the entire DmaxL all in one go, as opposed to dispersing

fractioned out dendritic treatments.

In Table [4.8], Dmax has at least one rest day. This could allow the system to

replenish the overall health of the subject via time for cell growth from cytotoxicity.

The (OV Count)total >(DC Count)total. Consistent with the limited maximum dose

function in Table [4.6], the OV seems to be carrying the weight of the combination

treatment, where the top 7 of 20 were only OV. With lower dosed dendritic treatment,

the OV combines with at least one DC for the top 12 of 20 in Table [4.8].

As we approach smaller tumor size, Table 4.7 compared regimens that made the

top 20 in Table [4.6] and Table [4.8].

Table Day Tumor Volume Oncolytic Virus Dendritic Cells Rest

4.6, 4.8 1 2 3 4 5 6 (mm3) dose number dose number Days

Permutation

Rank

Dmax, DmaxL

11,5 D V - - V V 39.9, 15.4 3,3 1,1 2,2

Table 4.9: Same sequence; Dmax compared to DmaxL . Total tumor size at day 30

Table 4.9 compared the same 6 day sequence with bounded maximum dose,

rest days allowed. Reducing the order of magnitude by one, during this sequence,

subsequently reduced the tumor size from 39.9 mm3 to 15.4 mm3, shown in Figure

4.11.
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Figure 4.11: Top results from Table 4.8
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Figure 4.12: Effects from changes of dendritic cell concentration on infected cancer cells,

directly and indirectly, over a 30 period. Dmax = [3×104, 3×105, 3×106]. a) Adaptive

immune response from dendritic cells to T cells for varying maximum tolerated dose.

b) T cell population change on Infected cells. c) Dendritic cell population change on

Infected cells.

According to regimen D V- - V V, Figure 4.12 represents phase plane diagrams

showing the effects from changes the dendritic cell concentration makes on infected cell

populations. DCs have no direct lytic activity on infected caner cells, since dendritic

cells have to activate T cells, which then respond to infected cells. Figure4.12a shows

the adaptive immune response from dendritic cells to T cells for varying maximum
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tolerated dose values overall 30 period. Figure 4.12b shows the effect of T cells on the

infected cancer population at varying maximum tolerated dose values, which occur at

a 30 day simulation. The end time in this figure is 6 days, in order to clearly show

the trajectories without overlapping lines. We can then see that for high populations

of dendritic cells, most of the infected cancer cells have a small population, in green,

a peak population at approximately 1.5 × 105 infected cancer cells. The reduced

dendritic vaccine count, shows higher infected cancer populations. Figure4.12c shows

a similar correlation, only from dendritic to infected cancer cells.

Higher peaks of infected cells occurred from lowering the dendritic vaccine dose,

seen in Figures 4.12b. More infected cells, could become viral which then reinfects

uninfected cancer cells. Therefore, it is best to monitor the intensity of the dendritic

vaccine dose. Similarly, this can be shown through the variation of the dendritic

activation rate, ρ, in Figure 4.13.
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Figure 4.13: Changes in ρ: Effects from changes of dendritic cell concentration on

infected cancer cells from altering adaptive immune response rate, ρ = [0.1, 1, 10]. a)

Adaptive immune response from dendritic cells to T cells for varying ρ values. b)

T cell population change on Infected cells. c) Dendritic cell population change on

Infected cells.
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4.3.3 Metronomic Therapy

The model assumes that cancer cells do not develop a resistance to OV, such that

all cells are sensitive to treatment. It could be the case that maintaining a certain

quantity of cancer cells may keep the tumor from reaching a noticeable low threshold,

which could produce more cancer cells quickly. Or depending on age, high toxic dose

may not be the best option. Hahnfeldt et al. (2003) found that treatment administered

over long term at lower low doses, could be optimal to maintain tumor growth in the

long term, instead of eradicating nearly all cells in the short term. This strategy is

defined as metronomic treatment,as the administration of lower dose treatment over

extended period of time (Hahnfeldt et al. (2003) , Kuang et al. (2016)).

Table 4.10: Permutation table representing for flexible dosing. 20 permutations of

the 4096 are displayed, that predict the tumor size at day 30. Injection quantities:

Vmax = 1.5× 1011, Dmax = 3× 106, where the dosages were fractioned over 12 days
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Figure 4.14: Top results from Table 4.10. Tumor Volume size is listed at day 30.
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Table 4.11: Permutation table representing flexible dosing and low DC vaccine dose.

20 permutations of the 4096 are displayed, that predict the tumor size at day 30.

Injection quantities: Vmax = 1.5 × 1011, Dmax = 3 × 105, where the dosages were

fractioned over 12 days

According to Table 4.15, all low dose treatments should end with virotherapy on

the last day. In 19 of the 20 of the 4096 permutations, treatments started with V and

ended with a sequence of at least 3 DDDV.This could suggest building a dendritic

army that will be activated once the oncolytic virotherapy is administered last.

74



Figure 4.15: Top results from Table 4.15

The most optimal treatment within a 30 day time frame would be V V D V D

D D D D D D V at Vmax = 1.5 × 1011 and Dmax = 3 × 105. Each viral treatment

would administer 3.75 ×1010(VP)/dose and dendritic treatment would administer 3.75

×104(VP)/dose .
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Figure 4.16: Optimal dose used in Zhang et al. (2011) compared to OVIT model (4.1)
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Figure 4.16 compared the optimal dose and frequency used experimentally in

Zhang et al. (2011) against the optimal result of the OVIT model. We can conclude

that administering a fraction of the treatment over double the amount of time, leaves

the tumor burden low and size smaller.

4.3.4 Intermittent Therapy

Intermittent therapy consists of altering periods of on- and off- treatments, in

order to keep tumor size below a given threshold. As this therapy was implementing

in the metronomic case, once per day over twelve days, this section will look at each

regimen; 6 days or 12 a single treatment, intermittently distributed over months.

While monitoring the growth of a tumor, a period of on-treatment can be initiated

once the tumor reaches a defined size (Tmax). On-treatment periods correspond with a

six to twelve day treatment regime. A period of off-treatment follows a given treatment

regime, during which cancer growth is monitored. Once a tumor reaches Tmax, the

patient is put back on-treatment and receives another full treatment regime (Figure

4.17).

On-Treatment

Give patient 
treatment regime

Off-Treatment

Monitor cancer
growth

If tumor size > Tmax

Figure 4.17: Proposed Optimal Intermittent Therapy strategy
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Here, model (4.1) is applied to a scenario of intermittent therapy over a six month

period with Tmax = 700mm3. Figure 4.18 and Table 4.12 shows results of sample

treatment regimes under intermittent therapy. The optimal treatment regimen is used

for a six day treatment allowing days off: (D V - - - V) with D dose size of 3× 105 on

the first day of the on-treatment period and V dose size of 7.5× 1010 on the second

and sixth days of the on-treatment period (Figure 4.18 a). This regime was found to

be optimal in Table 4.8. These results were compared to the optimal metronomics

strategy found in Table 4.15, a twelve day treatment of: (V V D V D D D D D D

D V) with D dose size of 7.5× 103 and V dose size of 1.875× 1010 on the respective

days of the on-treatment period (Figure 4.18 b). These two intermittent strategies are

summarized in Table 4.12.
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Figure 4.18: Intermittent therapy over six month period: Model (4.1) predictions

with Tmax = 700 mm3 for treatment regimes a.) Six day treatment regime of (D V -

- - V)with D dose size of 3 × 105 and V dose size of 7.5 × 1010 and b.) Twelve day

metronomics treatment regime of (V V D V D D D D D D D V) with D dose size of

7.5× 103 and V dose size of 1.875× 1010.
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Table 4.12: Intermittent therapy over six month period, model (4.1) predictions with

Tmax = 700 mm3

Using a metronomics treatment strategy for intermittent therapy has some clear

advantages over traditional approaches. The total number of on-treatment periods

of the metronomic 12 day-low dose regime is lower than the number of on-treatment

periods of the traditional 6 day-high dose regime. Therefore the total amount of

viral and dendritic injections over a six month period is reduced using a metronomic

strategy (see Table 4.12).

4.4 Discussion

Oncolytic viruses enhance the production of antigens that signal immune responses.

There is also the understanding that OVs disrupt the microenvironment, which can

allow opportunities for the immune system to penetrate the cancer cell barrier. More

specifically, it is becoming fashionable to compliment dendritic cell vaccines with

oncolytic viruses.

For a variety of cancer types, oncologists have repertoires of treatment options.

However, for nearly all cancers, the optimal dose quantity, frequency and synergy

with potentially combining treatments, seems to invariably be of concern. Recent

pre-clinical and clinical studies suggest using oncolytic virotherapy as a means of

cancer treatment. Oncolytic virotherapy alone are not as effective as a monotherapy,
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as there is much focus on the safety components as there is to the cytotoxic traits.

Recent work showed combination therapy of OV and dendrites cell vaccines is better

than one or more alone (Zhang et al. (2011)). The work in this dissertation also has

shown the outcomes with smallest tumor volume are due to combination oncolytic viral

and immunotherapy. Summary table 4.13 includes a chart showing all the treatment

strategies for scheduling, dosing and timing against the end tumor volume for 30 days.

Table 4.13: Summary of all optimal treatment strategies
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4.4.1 Results Summary

Section 4.3.1 Altered experiments optimal with maintaining 3 doses of each, as

was done in previous experimental work for combination OV and DCs (Huang et al.

(2010), Zhang et al. (2011)).

Assuming that combination treatment using exactly half DCs and OVs, results

show from permutations of 20 results, altering treatments starting with dendritic cells

did the best Note, the optimal treatment used in experimental work of Zhang et al.

(2011), (VVVDDD), ranked 20 out of 20.

Section 4.3.1 allowed 6 treatments, with flexible frequency on the quantity of each

treatment, with a maximum of one treatment type per day. The treatment regimen

that reduced the tumor size over 30 days 6 full days of OV. This option, however, may

not be optimal since its total dose was doubled of that used in experimental work over

this time frame. Potential cytotoxic effects are a concern. Note, the optimal treatment

used in experimental work of Zhang et al. (2011), (VVVDDD), ranked 55 of 64.

Section 4.3.1 used exactly 3 and 3 of each type of therapy, which innately limited

the maximum permitted dose, given each OV dose was 5×1010 and DC 1×106. Section

4.3.1 allowed for a flexible count of each therapy over 6 days, which leads to altered

total dose ranges per treatment. Although the best was 6 days of OV, this result could

be a disservice to an individual who has a toxic reaction over a short amount of time.

Introducing the maximum tolerated dose (MTD) can provide an upper cytotoxic bound.

Section 4.3.2 allows for flexibility in the timing and count per treatment, but
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assume a limitation for the maximum tolerated dose. Results show combination

therapy is best, specifically when starting with DC. Nineteen of the top 20 of the 64

permutations started with DCs. The best treatment was DVVVVD. Note, the optimal

treatment used in experimental work of Zhang et al. (2011), (VVVDDD), ranked 61

of 64.

Many cancer treatments allow for rest days for the body to recover. The incor-

poration of rest days, in Section 4.3.2, showed the top 7 of the top 20 of the 729

permutations included only virus. There was a minimum of 3 treatments of V for

these top 7. Comparing the best treatment of V-V- - V with rest days to V D V D D

V without rest days, the observation was made that the treatment regimen without

DC did better than with. After various hypotheses, the conclusion came that DC

were too high. If the DC is too high, they will kill off the infected population, needed

to lyse into OV to kill uninfected cancer. The next hypothesis was lowering DC would

improve the reduction of tumor volume.

Section 4.3.2 explored rest days with DmaxL . Permutations of DC from (3× 100 −

3× 106) were made to find the most optimal DC count, fixing Vmax = 1.5× 1011. We

found 1× 105 was the optimal order of magnitude for DCs. Similar to the results for

6 days with rest days, in Table 4.8, OV count was greater than every DC count per

treatment. This observation is similar but not exact because 4.6 included OV greater

than or equal to the DC count. Simulations show that for one order of magnitude

of reduced DC treatment, there is enough infected cancer cells not attacked from

the immune system, via T cells, to re-infect more cancer cells. Following the same

immune trajectory, altered values were checked for the dendritic activation T cell rate,

ρ, shown in Figure 4.13. For ρ high, DmaxL , there are more T cells, which allow more
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infected cancer cells to be annihilated. With less infected cancer cells, there are less viri-

ons to infect uninfected cancer cells, which leads to an increase in overall tumor volume.

Section 4.3.2 allowed for a flexible schedule and maximum tolerated dose. Under

conditions where less dose per day is favorable to a patient, for purposes such as

species, age, health conditions, etc, the metronomic treatment idea was implemented

in Section 4.3.3 as part of the regimen schedule for model (4.1), to use less dose per day

over a longer period of time. Table 4.10 showed the top 20 of the 4096 permutations

calculated for tumor size at day 30. The range for the top 20 was [1.9-3.4] mm3;

x̄ = 2.93 mm3,thus, it seems they all produce significantly smaller tumors than of

the previous treatment experimented throughout Sections (4.3.1-4.3.2). 85% of the

top 20 regimens in Table 4.10 started with DCs followed mostly by OVs, where the

ratio of DCs:OVs is 1:3.21. These regimens, however, allowed for Dmax = 3 × 106.

As learned from Section 4.3.2 tumor size was smaller when the dendritic maximum

tolerated dose decreased, therefore this idea was also applied into lower dose over a

longer time frame for treatment, with metronomic. Table 4.11 shows the top 20 of

the 4096 permutations for lower dose DCs. The range for tumor size over 30 days

was [1.6-2.45];x̄ = 2.1 mm3. This range is the most optimal from all of this works

findings. The difference is there are more DCs on average than of OVs, contrary

to metronomic with Dmax = 3 × 106, with a ratio of OVs:DCs is 1:1.5, where 95%

of the regimens start with OV and 20 out of 20 end with OV, as well. The model

is built such that infected population declines quickly due to the high magnitude

of κy yz
K

. There is an interface competitive effect, allowing for κxyz
K

to represent a

stronger benefit from the immune system to the uninfected cancer population. The

metronomic treatment allows for at least a constant population of infected cells, y,

which reduces both uninfected and infected cancer cells. The non-metronomic case,
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under higher dosages in short amount of time, allowed for the reduction of infected

cells, without having the ability to be regrown. Thus, this interference competition

can allow the higher portion of uninfected cancer cells to take advantage of the

CTL cells more than the infected cancer cells. Moreso, the infected cancer cells are

not being depleted by the facilitation rate as much as the uninfected population, al-

lowing for further regeneration of free viral particles to reinfects the unfitted cancer cells

These results could support sigmoidal growth models that suggest treatments

administered closer in time results in higher cell kill, which deprives the regrowth

of cancer cells between treatment (Kuang et al. (2016)). More specifically, keeping

compact treatment schedules over a longer period of time, as in the case of using

metronomic treatment strategies used in Section 4.3.3.

4.4.2 Overall impact

To summarize, the initial research questions and results for this chapter were:

1)Are there better treatment regimens that reduce overall tumor size by day 30? Yes,

with MTD with Rest days and limited DC. 2)Can metronomic treatment further

reduce overall tumor size by day 30? Yes, with Metronomic therapy with limited

DC. 3)How do the effects of intermittent combination oncolytic viraltherapy and

immunotherapy reduce overall tumor size over time? Options for six day treatment or

twelve day treatment can be used as one single treatment option, intermittently over

time. Depending on the personal scenario, either could be used accordingly to reduce

overall tumor size, depending on a maximum tolerated tumor volume and cytotoxicity.

This model has expressed that timing, order and dose is sensitive to overall tumor

volume, over 30 days and up to 6 months. The timing at which either immunotherapy

or viraltherapy could be of clinical relevance. The time at which dendritic cells are
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injected seems to have relevance to the effectiveness of the combination, once OVT

is administered. It seems that DC prior to OV allows the DC’s to prime the area

of infection and can attack once OVT is administered. If DC are inject for the first

few days of treatment, they have no where to go, as their population is building up

and waits for the OV. During this time, the tumor can grow exponentially. This

could be an issue under circumstances where the tumor must be depressed within the

initial stages. Otherwise, it could be beneficial as a synergistic approach to prime the

OV effectiveness. Furthermore, reducing the order of magnitude for the DCs allowed

for improved effectiveness of OV, as 3× 106, was ultimately killing off the infected

cancer cells too quickly, inhibiting the re-infectivity of the OV genome. This result can

suggest that under combination treatment, it is important to monitor the quantity of

immunotherapy, such that too much can interfere the the benefits of the viraltherapy

if these infected cells are destroy by the immune system too quickly. According to

the model, maximum infectivity of oncolytic virotherapy is needed in order for OVT

treatment to be successful, which can be obtain with a light boost of DC’s prior or

in between treatments. The results of this work to find optimal treatment schedule,

supports that of Metronomic Therapy (Hahnfeldt et al. (2003)). The key reason the

metronomic treatment is ch the best in this work, is due to the constant influx of OV to

the infected cell population. In shorter days, such as the cases of 6 day treatment, the

infected cell populations would die off rather quickly, which dampens the potential for

further growth of the OV, independent of external injection. Including less dose over

a longer time frame, even at a lower dose, allows for a constant population of infected

cells to maintain the free viral population, which can persist to infect more cancer

cells. Model (4.1) under metronomic treatment, will be considered the “Metronomic

Oncolytic Viral-Immunotherapy”, or “MOVIT” model.
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Chapter 5

CONCLUSION

The research goals for this work were: 1) Develop a mathematical model that can

represent clinical variations for administering oncolytic viral therapy. 2) Parameterize

models using empirical data 3) Shed light on the complex dynamics of combined

oncolytic viral and immunotherapy and 4) Identify optimal treatment strategies (dose

sizes, treatment schedules) for a proposed personalized medicine model.

Modeling biology through in silico experimentation can provide great insight on

deep dynamical, relevant concerns. Chapter 3 presented a framework model of dy-

namical interactions between oncolytic viruses, cancer and the immune response. The

mathematical analysis provided insight on understanding which type of biological

conditions are necessary for drastic changes to occur in the system. It is important

to have mathematical analysis, but it may be difficult to plausibly apply the details

biologically. An important condition found for the threshold of oncolytic infection on

cancer, was the sensitivity of viral replication rate, β, shown with the occurrence of

a Hopf bifurcation. Biologically, changes in the viral replication value could depend

on the route of administration or efficacy of the drug. Most OVs are administered

intratumorally to enhance viral efficacy, and decrease chance of viral spread outside the

target region. In other cases, many OVs are coated with temporal protection against

the immune response in order to allow for viral replication. Mathematically, the viral

replication value could change depending on mass action or standard incidence, both

used in this work. In general, the mathematical analysis provides great insight on

conditions that occur clinically, and on which parameters play key roles on improving

questions of biological dynamics.
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The idea of curing cancer seems optimistic, yet perhaps, slightly unrealistic. Treat-

ing cancer to maintain a lower, tolerable level may be a more practical goal for

clinicians and could ameliorate effects and responses for patient viability. Chapter 4

explored optimal regimens that reduce tumor size, while attempting to account for

qualify of life conditions for a patient. Numerical analysis was a great tool enriching

the application of the model in various clinical dimensions. My foremost goal was

to fit the model to pre-clinical data. Although it is hoped that this work will be

applied clinically, the advantage of pre-clinical, non-human, data is its abundance. A

table of clinical trial regimens, Table 4.1 using oncolytic virotherapy, was constructed

to maintain a clinical-like direction for the model using pre-clinical data. Various

treatment strategies were then adapted into Model (4.1), accounting for dose quantity,

frequency and order of combination treatment administration. The key approach for

cancer treatment used in Chapter 4, was to reduce tumor growth and alleviate the

cancer burden of the patient, rather than indirectly kill them from drug toxicity. For

this, various permutations for schedule regimens of strategic concern were investigated.

Under assumptions made for Model (4.1), key results showed that keeping two

treatments at high concentrations while combined together, may not allow for their

maximal, synergistic benefits to reduce tumor size. Moreover, administering treat-

ments at fractionated doses over a longer time period, showed maximal reduction

in overall tumor size for a given time-span. Stronger doses in shorter time frames

did reduce tumor size quickly, but soon relapsed. Thus, metronomic oncolytic viral-

immunotherapy (MOVIT) could have clinical significance, whether in one treatment

as a sequence of doses, or intermittently as sequences of doses administered multiple

times. Overall, this work was able to show that timing and order of combination
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treatment is important for reducing overall tumor size, evaluate the synergistic effects

of combining treatments and develop a proposed scheme for personalize treatment

using intermittent therapy.

The following models are altered forms of Model (4.1).

Dynamics of Free Virus and Immune Response

We have seen in previous models (3.1)- (4.1) interactions between free viral popu-

lations lysed from oncolytic virus, infect cancer cells. The antigens presented from

the infection induce dendritic cells, that ultimately activated T killer cells that attack

uninfected and infected cells, respectively. As mention in the development of Model

(4.1), the tumor-microenvironment inhibits the immune system to attack cancer cells.

A trait of OVs is the ability to disrupt the tumor-microenvironment, which allows

access for the immune system to function near the tumor site. However,as the OV is

within the tumor during this time, and it is foreign, the immune system will unbiasedly

attack those free virions. With an decrease in OV population resulting from attacks

from the immune response , there will be a decline in free virions that can disrupt the

tumor micro-environment. This will subsequently close the time gap for the immune

system to attack the cancer cells, leading to an increase in tumor volume. Thus, it

is crucial to explore the dynamics between the interactions of OV and immune cells.

The below model is altered from (4.1).
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dx

dt
= rx− βxv

K
− f(y)

xz

K
(5.1a)

dy

dt
= β

xv

K
− αy − f(y)

yz

K
(5.1b)

dv

dt
= Nαy − δvv + uv(t)− g(x, v, z) (5.1c)

dD

dt
= σyy − δdD + ud(t) (5.1d)

dz

dt
= ρD − δzz (5.1e)

where term g(x, v, z) represents the immune attack on OVs free virions near the

site of the tumor microenvironment disruption. Also, f(y) denotes a function to

represent the mechanism of T killer cell facilitation depending on infected cancer cells.

OVIT model with Cancer-Immune Response

Model (4.1) assumed the tumor microenvironment was inhibiting the immune

system from attacking cancer cells. In the event the tumor microenvironent is disrupted

by the virus, or another factor, it would be useful to compare previous regimens from

Chapter 4 with allowing for a small, ε, immune response term. Thus, the uninflected

caner cell loss term -κy xz
K
− εxz

K
, would not be completely dependent on the presence

of the infected cell, once initiated by the virus.

dx

dt
= rx− βxv

K
− (f(y)− ε)xz

K
(5.2a)

dy

dt
= β

xv

K
− αy − f(y)

yz

K
(5.2b)

dv

dt
= Nαy − δvv + uv(t) (5.2c)

dD

dt
= σyy − δdD + ud(t) (5.2d)

dz

dt
= ρD − δzz (5.2e)
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OVIT model with Delayed Dendritic Cell Response

Dendritic cells function rather slowly in the immune system. Model (4.1) allows

for an immediate response from dendritic activation to T cells. Since the dendritic cell

vaccine was combined with oncolytic virotherapy, it would be of biological interest to

compare the regimens found in Chapter 4 with a delayed dendritic response. Allowing

a delay in this response time could permit the virus to persist and conquer some cancer

cells, reducing the uninfected cancer cell population. If the delay is too long, it could

be possible the response is out of clinical time for sufficient therapeutic conditions.

dx

dt
= rx− βxv

K
− f(y)

xz

K
(5.3a)

dy

dt
= β

xv

K
− αy − f(y)

yz

K
(5.3b)

dv

dt
= Nαy − δvv + uv(t) (5.3c)

dD

dt
= σyy − δdD + ud(t) (5.3d)

dz

dt
= ρD(t− τ)− δzz (5.3e)

ρD(t− τ) incorporated to represent the slow response from dendritic cells to T

killer cells where, the delay τ can be considered a discrete delay.

Future Direction

It is vital to understand how cancer interacts with non-conventional treatments,

in order to minimize tumor growth and maximize life. I feel in silico mathematical

model experimentation will play a crucial role in the clinical setting and can help gain

insight into clinical trials to pursue.

The era of using oncolytic viruses as a means of cancer treatment has just begun its
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horizon, clinically. Hopefully, an increase in pre-clinical and clinical experimentation

using oncolytic virotherapy will linearly produce abundant data sets. Certainly, the

data is irrelevant without good questions. Luckily, there are so many opportunities

of investigation within the unconventional usage of oncolytic viruses to treat cancer,

and unbounded permutations to unite the tools of mathematical modeling towards

improving cancer burden.
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Pol, J. G., J. Rességuier and B. Lichty, “Oncolytic viruses: a step into cancer
immunotherapy”, Virus Adapt Treat 4, 1–21 (2012).

Portz, T. and Y. Kuang, “A mathematical model for the immunotherapy of advanced
prostate cancer”, in “BIOMAT 2012”, pp. 70–85 (World Scientific, 2013).

Power, A. T., J. Wang, T. J. Falls, J. M. Paterson, K. A. Parato, B. D. Lichty, D. F.
Stojdl, P. A. J. Forsyth, H. Atkins and J. C. Bell, “Carrier cell-based delivery of an
oncolytic virus circumvents antiviral immunity”, Mol Ther 15, 1, 123–30 (2007).

Prestwich, R. J., K. J. Harrington, H. S. Pandha, R. G. Vile, A. A. Melcher and
F. Errington, “Oncolytic viruses: a novel form of immunotherapy”, (2008).

Rabinovich, G. A., D. Gabrilovich and E. M. Sotomayor, “Immunosuppressive strate-
gies that are mediated by tumor cells”, Annual review of immunology 25, 267
(2007).

Reid, T., E. Galanis, J. Abbruzzese, D. Sze, L. M. Wein, J. Andrews, B. Randlev,
C. Heise, M. Uprichard, M. Hatfield et al., “Hepatic arterial infusion of a replication-
selective oncolytic adenovirus (dl1520) phase ii viral, immunologic, and clinical
endpoints”, Cancer research 62, 21, 6070–6079 (2002).

Relph, K., H. Pandha, G. Simpson, A. Melcher and K. Harrington, “Cancer im-
munotherapy via combining oncolytic virotherapy with chemotherapy: recent ad-
vances”, Oncolytic Virotherapy 2016, 5, 1–13 (2016).

Russell, S. J., K.-W. Peng and J. C. Bell, “Oncolytic virotherapy”, Nature biotechnol-
ogy 30, 7, 658–670 (2012).

Shah, A. C., D. Benos, G. Y. Gillespie and J. M. Markert, “Oncolytic viruses: clinical
applications as vectors for the treatment of malignant gliomas”, Journal of neuro-
oncology 65, 3, 203–226 (2003).

Shors, T., Understanding viruses (Jones & Bartlett Publishers, 2011).

Srinivasan, P. et al., “Adenoviruses in gene therapy-a review”, Bioengineering and
Bioscience 3, 1, 1–5 (2015).

Strogatz, S. H., Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering (Westview press, 2014).

96



Tian, J. P., “The replicability of oncolytic virus: defining conditions in tumor virother-
apy”, Math Biosci Eng 8, 3, 841–60 (2011).

Tjoa, B., S. Erickson, V. Bowes, H. Ragde, G. Kenny, O. Cobb, R. Ireton, M. Troychak,
A. Boynton and G. Murphy, “Follow-up evaluation of prostate cancer patients infused
with autologous dendritic cells pulsed with psma peptides”, The Prostate 32, 4,
272–278 (1997).

Toth, K. and W. S. Wold, “Increasing the efficacy of oncolytic adenovirus vectors”,
Viruses 2, 9, 1844–1866 (2010).

Trinchieri, G., “Interleukin-12 and the regulation of innate resistance and adaptive
immunity”, Nature Reviews Immunology 3, 2, 133–146 (2003).
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Positive Invariance proof from 3.2.1

Proof. Suppose x+y = K → d(x+y)
dt

= rx
(
1− x+y

K

)
−µx−β xv+β xv+sy

(
1− x+y

K

)
−

αy − ρyz < 0. Logistic growth terms rx
(
1− x+y

K

)
→ 0 and sy

(
1− x+y

K

)
→ 0,

β xv − βxv = 0,

=⇒ d(x+y)
dt

= −µx− αy − ρyz < 0. It is trivial to show that dx
dt
, dy
dt
, dz
dt

&dv
dt
≥ 0.

∴ the system is positively invariant.

Proof for Theorem 1

The Generalized Jacobian matrix is:

J(E∗) =


r
(

1− x∗+y∗

K

)
− rx∗

K − µ− β v
∗ − rx∗

K 0 −β x∗

β v∗ − sy∗

K s
(

1− x∗+y∗

K

)
− sy∗

K − α− ρz
∗ −ρy∗ β x∗

0 z∗σ 0 0

0 Nα 0 −ξ


Proof. To prove that E0 is stable, it is sufficient to show that the system linearized at
this equilibrium has eigenvalues with real parts negative. This is represented in the
following Jacobian :

We look at the Jacobian to assess the stability of E0, represented as:

J(E0) =


r − µ 0 0 0

0 s− α 0 0

0 0 −φ 0

0 Nα 0 −ξ


From the diagonal matrix, the eigenvalues λ1 = −ξ, λ2 = −(µ − r), λ3 = −φ and
λ4 = −(α − s) are deduced. Whenever, λ1, λ2, λ3, λ4 < 0, the equilibria is locally
asymptotically stable. Thus, whenever r < µ, and s < α, E0 is L.A.S. Otherwise E0

is unstable.

Proof for Theorem 2

Proof. The Jacobian to asses the stability of E1, represented as:

J(E1) =


−(r − µ) −(r − µ) 0 −βK(r−µ)

r

0 −αr−µs
r

0 βK(r−µ)
r

0 0 −φ 0

0 Nα 0 −ξ
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From the matrix, the eigenvalues λ1 = −(r − µ), λ2 = −φ, and the other eigenvalues
can be funded by the solution of the next quadratic form

λ2 + a1λ+ a0

with a1 = [ξ + αr−µs
r

] and a0 = [ξ αr−µs
r
− βNαK(r−µ)

r
] = ξ αr−µs

r
(1−R0), for all r > µ.

In case of αr− µs > 0 the roots of the quadratic equation are negative if and only
if R0 < 1 and also it is easy to see that if R0 ≥ 1 E1 is unstable.

In case of in case of αr − µs < 0 it is clear to see that a0 < 0; then E1 is
unstable. Moreover, it is easy to prove that a2

1 − 4a0 > 0 in both cases. Thus E1, is
locally-asymptotically stable if and only if R0 < 1 and α > s for all r > µ.

Note that R0 < 1 if and only if µ < r <
NβKα− sξ
NβKα− αξ

µ

Proof for Theorem 3

Proof. The Jacobian to assess the stability of E1, represented as:

J(E2) =


rα
s
− µ− (s− α)βNαK

sξ
0 0 0

βNKα(s−α)
sξ

− (s− α) −(s− α) −pK(s−α)
s

0

0 0 σK(s−α)
s
− φ 0

0 Nα 0 −ξ


From the matrix, the eigenvalues λ1 = −(s− α), λ2 = −ξ, λ3 = −( φs

K(s−α)
− σ) and

λ4 = rα
s
− µ− (s− α)βNα

sξ
. Thus, λ3 < 0 if and only if σ < φs

K(s−α)
also λ4 < 0 if and

only if r < µ.

Proof for Theorem 4

Proof. The Jacobian to asses the stability of E3, represented as:

J(E3) =


r(1− y

K
)− µ− β v 0 0 0

β v − sy
K

s
(
1− y

K

)
− sy

K
− α− pz −py 0

0 zσ 0 0

0 Nα 0 −ξ


From the matrix, the eigenvalues are λ1 = −{ K

K−φ
σ

(µ+ βNαφ
σξ

)− r}, λ2 = −ξ, and the

other eigenvalues can be funded by the solutions of the next quadratic form

λ2 + b1λ+ b0
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with b1 = sφ
σK

and b0 = φ(s
K−φ

σ

K
− α). Since b1 > 0 and b0 > 0 for all σ > φs

K(s−α)
Thus,

E3 is stable if and only if σ > φs
K(s−α)

and σ > βNKαb+rbξ
Kξ(r−µ)

, otherwise E3 is unstable.
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APPENDIX B

PRE-OVIT MODEL
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Experimental Design

Mice with B16-F10 subcutaneous tumors were intratumorally infected with PBS,Ad−
∆B7, Ad−∆B7/IL− 12, Ad−∆B7/4− 1BBL and Ad−∆B7/IL− 12/4− 1BBL.
Each experiment contained n=8-9 mice.

This data set developed the following model that can capture the dual oncolytic
and immunotherapy aspects.

Model Formulation

dx

dt
= rx− βxv

K
− (γx + κy)

xt

K
(B.1a)

dy

dt
= β

xv

K
− αyy − (γy + κy)

yz

K
(B.1b)

dv

dt
= uv(t) +Nαy − δvv (B.1c)

dz

dt
= ρD − δzz (B.1d)

dD

dt
= σxx+ σyy − δdD + ud(t) (B.1e)

The model consists of x, y, v, z and D representing uninfected cancer cells, infected
cancer cells, virus free particles, T killer cells, and dendritic cells, respectively. This
model is an extension from Wares et al. (2015). Uninfected cells grow exponentially
at growth r, and are killed off by T killer cells at facilitation rate κy . The term
κy is dependent on infected cells, therefore, the assumption is that oncolytic viruses
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facilitate an immune response via the T killer cells towards the tumor. Uninfected
cancer cells are infected at rate β, as standard incidence, where K = x+ y + z +D.
Infected cells die at lysing rate α, T killer cells have an enhanced immune response at
rate γx and γy, for uninfected and infected cancer cells, respectively. This is due to the
OV immunogenicity trait. Viruses are grown from lysing rate α with burst size N , and
decay at δv. T killer cells are activated by dendritic cells at rate ρ and have a half life
at rate δz. Dendritic cells are recruited from the presence of tumor and infected tumor
populations at rates, σx and σy, respectively and decay at rate δD. Therapies are
introduced as delta functions for uv(t) and ud(t) for virotherapy and immunotherapy.
The model has fit to uv(t) = u0δ(0) + δ(2) + δ(4), and ud(t) = u0δ(1) + δ(3) + δ(5).

Parameter Fitting

Model (B.1) was fit to experimental data from Huang et al. (2010)

Parameter Description PBS DC Ad-∆B7
/4-1BBL

Ad-∆B7
/4-1BBL +DC

r Uninfected tumor cell growth rate 0.34484 0.34484 0.34484 0.34484
γx T cell contact rate, uninfected - 0.17206 0.17206 0.17206
γy T cell contact rate, infected - 0.17206 0.17206 0.17206
σx dendrite activation from unin-

fected cells
- 0.15113 0.15113 0.15113

σy dendrite activation from infected
cells

- - σx ∗ 1.1 σx ∗ 1.1

β Viral infectious rate - - 0.0053884 0.0058385
κ T cell killing rate - - 8.5× 10−7 8.5× 10−7

δz T cell decay rate - 0.35 0.35 0.35
δD Dendritic cell death rate - 0.35 0.35 0.35
ρ T cell activation rate by dendritic

cells
- 1 1 1

u0D Dendritic concentration - 106 - 106

u0V Adenovirus concentration - - 2.5 x 109 2.5 x 109

N adenovirus burst size - - 3500 3500
α Infected lysis - - 1 1
δV Viral decay rate - - 2.3 2.3

Table B.1: Parameter estimates for model (B.1)

105



Days
0 5 10 15 20 25 30

T
u
m

o
r 

S
iz

e
 (

m
m

3
)

0

500

1000

1500

2000

2500

3000

Ad-B7/IL-12/4-1BBLPBS

Ad-B7/IL-12/4-1BBL+DC

DC

From the fits, one could confer that since there is no difference between γx and γy,
the model may not convey the T cell immune response independently. Furthermore,
it is suggested that OV activate immune response near the infected cells, such that
γx << γy, which does not seem to be captured in these fittings.
Additionally, σx is removed as the dendritic cell activation from the uninfected cells is
considered relatively small compared to infected cells, under common immune sup-
pressed conditions. Therefore, σy=σx ∗ 1.1 to attempt to account for a more abundant
immune response from the infected cell.

The model may could be improved to capture suggested dynamics of the immune
response by further simplifying it, by removing parameters that carry less weight
within the biology. Parameters γx and σx are removed in the model in Chapter 4, as
they seem to be considered biologically not as significant as the interactions from the
infected populations to the immune components.
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APPENDIX C

PERMUTATION TABLES
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All tables presented in Chapter 4 included up to 20 permutations. This appendix
includes more data. However, data sets that include 729 - 4096 permutations were
capped at 60 permutations in this appendix.

Tables C.1-C.2 shows all 64 permutations for altering regimes, with flexible fre-
quencies.
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Table (C.1) represents all possible 64 permutations of six treatments for the first
six days of therapy.

Permutation Day Tumor Volume Oncolytic Virus Dendritic Cells

Rank 1 2 3 4 5 6 (mm3) dose number dose number
1 V V V V V V 4.3 6 0
2 D V V V V V 6.4 5 1
3 V D V V V V 13.6 5 1
4 V V V V V D 14 5 1
5 D V V V V D 17.9 4 2
6 D D V V V V 22 4 2
7 V V D V V V 22.1 5 1
8 V V V V D V 22.8 5 1
9 D V V V D V 24 4 2
10 D V D V V V 25.2 4 2
11 D V V D V V 27.3 4 2
12 V V V D V V 29.2 5 1
13 V D V V V D 35 4 2
14 V D D V V V 35.7 4 2
15 V D V V D V 40 4 2
16 V D V D V V 40.9 4 2
17 D V V V D D 49 3 3
18 V V V V D D 49.6 4 2
19 D D D V V V 50.3 3 3
20 D D V D V V 53.1 3 3
21 V V D D V V 55.5 4 2
22 D D V V V D 55.9 3 3
23 D D V V D V 56.7 3 3
24 D V D D V V 58.4 3 3
25 V V D V V D 58.5 4 2
26 V V D V D V 61.3 4 2
27 D V D V D V 62.3 3 3
28 D V D V V D 62.7 3 3
29 D V V D D V 64.6 3 3
30 D V V D V D 65.9 3 3
31 V D D D V V 77.4 3 3
32 V V V D D V 86.1 4 2
33 V D D V D V 86.7 3 3
34 V V V D V D 87 4 2
35 V D D V V D 94.2 3 3
36 V D V V D D 98.6 3 3
37 V D V D D V 101.2 3 3
38 V D V D V D 113.6 3 3
39 D D D V D V 123.6 2 4
40 D D D D V V 124 2 4
41 D D V D D V 130.5 2 4
42 D V D D D V 143.7 2 4
43 V V D D D V 146.3 3 3
44 D D D V V D 153 2 4
45 D D V D V D 159.5 2 4
46 D D V V D D 167.7 2 4
47 D V D D V D 179.1 2 4
48 V V D D V D 181.9 3 3
49 D V V D D D 188.8 2 4
50 D V D V D D 189 2 4
51 V V D V D D 209.3 3 3
52 V D D D D V 224.1 2 4
53 V D D D V D 301.1 2 4
54 V D D V D D 385.9 2 4
55 V V V D D D 630.7 3 3
56 V D V D D D 640 2 4
57 D D D D D V 1594.3 1 5
58 D D D D V D 1639.7 1 5
59 D D D V D D 1755.6 1 5
60 D D V D D D 2203.7 1 5
61 D V D D D D 5171.3 1 5
62 V V D D D D 29485 2 4
63 V D D D D D 715180 1 5
64 D D D D D D 11861000 0 6

Table C.1: Permutation table representing flexible count for oncolytic viruses and
dendritic cell vaccines, over 6 days. All 64 are displayed, predicting the tumor size at
day 30. Each injection included V=5× 1010, D=1× 106.
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Table (4.5) shows the 64 permutations for administering combination treatment
without limitations on frequency per treatment, however the max dosage concentration
is limited to the amount used in the experiment from Zhang et al. (2011).

Permutation Day Tumor Volume Oncolytic Virus Dendritic Cells

Rank 1 2 3 4 5 6 (mm3) dose number dose number
1 D V V V V D 42.9 4 2
2 V V V V V V 44.1 6 0
3 D V V V D D 49 3 3
4 D D D V V V 50.3 3 3
5 D D V V V V 50.3 4 2
6 D V V V V V 51.9 5 1
7 D D V D V V 53.1 3 3
8 D V V V D V 54.2 4 2
9 D D V V V D 55.9 3 3
10 D D D D V V 56.2 2 4
11 D V D V V V 56.5 4 2
12 D D V V D V 56.7 3 3
13 D D D V D V 57.6 2 4
14 D V D D V V 58.4 3 3
15 D V V D V V 59.7 4 2
16 D D V D D V 61 2 4
17 D V D V D V 62.3 3 3
18 D V D V V D 62.7 3 3
19 D V V D D V 64.6 3 3
20 D V V D V D 65.9 3 3
21 D V D D D V 67.9 2 4
22 D D D V V D 68.8 2 4
23 V D V V V D 70.7 4 2
24 V D V V V V 73 5 1
25 D D V V D D 73.3 2 4
26 D D V D V D 73.3 2 4
27 V D D V V V 73.4 4 2
28 D V V D D D 75.2 2 4
29 V D D D V V 77.4 3 3
30 V D V V D V 81.3 4 2
31 V D V D V V 83.5 4 2
32 D V D D V D 83.8 2 4
33 D V D V D D 86.5 2 4
34 V D D V D V 86.7 3 3
35 V D D D D V 92.3 2 4
36 V D D V V D 94.2 3 3
37 V V V V V D 97.9 5 1
38 V D V V D D 98.6 3 3
39 V D V D D V 101.2 3 3
40 V V D V V V 106.6 5 1
41 V D V D V D 113.6 3 3
42 V V D D V V 114.7 4 2
43 D D D D D V 121.9 1 5
44 V D D D V D 123 2 4
45 V V D V V D 123.8 4 2
46 V V D V D V 132.2 4 2
47 V V D D D V 146.3 3 3
48 D D D D V D 148.5 1 5
49 V D D V D D 151.8 2 4
50 V V V D V V 156.3 5 1
51 D D D V D D 168.1 1 5
52 V V D D V D 181.9 3 3
53 D D V D D D 196.5 1 5
54 V V V D D V 201 4 2
55 V V V D V D 208.4 4 2
56 V V D V D D 209.3 3 3
57 V D V D D D 212.3 2 4
58 V V V V D D 216 4 2
59 V V V V D V 245.5 5 1
60 D V D D D D 315.5 1 5
61 V V V D D D 630.7 3 3
62 V V D D D D 2063.2 2 4
63 V D D D D D 4154.4 1 5
64 D D D D D D 11900000 0 6

Table C.2: Permutation table of limited maximum doses for oncolytic viruses and
dendritic cell vaccines. All permutations of the 64 are displayed, that predict the
tumor size at day 30. Vmax = 1.5 × 1011, Dmax = 3 × 106, where the dosages were
fractioned over 6 days.
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Tables C.3-C.4 show 60 of the 729 permutations for altering regimes with flexible
frequencies, rest days included.

Permutation Day Tumor Volume Oncolytic Virus Dendritic Cells Rest Day

Rank 1 2 3 4 5 6 (mm3) dose number dose number count
1 V - V - - V 26.6 3 0 3
2 V V - V - V 27.7 4 0 2
3 V V V - - V 29.7 4 0 2
4 V V V - V V 33.8 5 0 1
5 V V - - - V 34.1 3 0 3
6 V V V V - V 37 5 0 1
7 V - V V - V 37.8 4 0 2
8 D V - V V D 37.9 3 2 1
9 D - V - V V 39.5 3 1 2
10 D - - V - V 39.6 2 1 3
11 D V - - V V 39.9 3 1 2
12 D - V - - V 40.1 2 1 3
13 D - - V V V 40.3 3 1 2
14 V V - - V V 40.5 4 0 2
15 D - V V V D 40.9 3 2 1
16 D V - - - V 41.3 2 1 3
17 D - V - V D 41.5 2 2 2
18 V V - V V V 41.5 5 0 1
19 D - - - V V 41.8 2 1 3
20 D V - - V D 41.8 2 2 2
21 D V V V V D 42.9 4 2 0
22 V V V V V V 44.1 6 0 0
23 D D - V - V 44.4 2 2 2
24 D D V - V V 44.5 3 2 1
25 V - - V - V 44.6 3 0 3
26 D V - V V V 44.8 4 1 1
27 D - V V V V 44.9 4 1 1
28 D D - V V V 45.1 3 2 1
29 D D V - - V 45.4 2 2 2
30 D D - - V V 45.9 2 2 2
31 D V V - V D 46.7 3 2 1
32 D - V V - V 47.6 3 1 2
33 D V - V - V 48.1 3 1 2
34 D V - V D D 48.7 2 3 1
35 D V V - V V 48.8 4 1 1
36 D V V V D D 49 3 3 0
37 - D - V - V 49.2 2 1 3
38 V - V - V V 49.4 4 0 2
39 - D V - V V 49.7 3 1 2
40 D D D V - V 49.8 2 3 1
41 - D - V V V 49.8 3 1 2
42 D - D V - V 50 2 2 2
43 - D - - V V 50.1 2 1 3
44 D D D V V V 50.3 3 3 0
45 D D V V V V 50.3 4 2 0
46 D V - V D V 50.3 3 2 1
47 D - D V V V 50.5 3 2 1
48 D D D - V V 50.7 2 3 1
49 D - - V V D 50.8 2 2 2
50 - D V - - V 50.8 2 1 3
51 D V D - V V 51 3 2 1
52 D - D - V V 51 2 2 2
53 - D V - V D 51.9 2 2 2
54 D V V V V V 51.9 5 1 0
55 V - V - V - 52.4 3 0 3
56 - D V V V D 52.5 3 2 1
57 D V D - - V 52.6 2 2 2
58 D D V D V V 53.1 3 3 0
59 D D V V - V 53.3 3 2 1
60 D V - D V V 53.9 3 2 1

Table C.3: Limited Dose with Rest days at Dmax = 3×106. Top 60 of 729 Permutations.
Tumor size predicted at day 30. Vmax = 1.5× 1011, Dmax = 3× 106, where the dosages
were fractioned over 6 days.
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Permutation Day Tumor Volume Oncolytic Virus Dendritic Cells Rest Day

Rank 1 2 3 4 5 6 (mm3) dose number dose number count
1 D V - - - V 12.9 2 1 3
2 D V - V - V 14.5 3 1 2
3 D V V - V V 14.6 4 1 1
4 D V V - - V 15.1 3 1 2
5 D V - - V V 15.4 3 1 2
6 D V V V V V 18 5 1 0
7 D V - V V V 18.2 4 1 1
8 D V V V - V 19.3 4 1 1
9 V D V - V V 20 4 1 1
10 V D V - - V 20.6 3 1 2
11 V D - V - V 21 3 1 2
12 D V - - V - 23 2 1 3
13 D V D V - V 23.2 3 2 1
14 V D D V - V 24 3 2 1
15 V D V V V V 24.1 5 1 0
16 D V - V V - 24.8 3 1 2
17 V D V V - V 25.3 4 1 1
18 V D V D - V 25.6 3 2 1
19 V D V - D V 26.1 3 2 1
20 D V V - V - 26.5 3 1 2
21 V - V - - V 26.6 3 0 3
22 V D - V V V 27 4 1 1
23 V V - V - V 27.7 4 0 2
24 V - D V - V 27.9 3 1 2
25 V D V D D V 28.4 3 3 0
26 V D D V D V 28.5 3 3 0
27 V D V D V V 28.8 4 2 0
28 V D - V D V 29 3 2 1
29 V V V - - V 29.7 4 0 2
30 D V V V V - 30.2 4 1 1
31 D V D V V V 30.5 4 2 0
32 D V V D - V 30.5 3 2 1
33 D V V D V V 32 4 2 0
34 V D D V V V 32.2 4 2 0
35 D V - V D V 32.6 3 2 1
36 D V V - D V 32.9 3 2 1
37 V V D - V V 33.4 4 1 1
38 V V V - V V 33.8 5 0 1
39 V V - - - V 34.1 3 0 3
40 V D - - V V 34.1 3 1 2
41 D - V V - V 34.2 3 1 2
42 V D V V D V 34.9 4 2 0
43 V V D V - V 35.1 4 1 1
44 D V D - V V 35.6 3 2 1
45 V V D V V V 35.7 5 1 0
46 D V D - - V 35.9 2 2 2
47 D V D V D V 35.9 3 3 0
48 V D V - V - 36 3 1 2
49 V D - - - V 36.1 2 1 3
50 V - V D - V 36.4 3 1 2
51 V - D V D V 36.8 3 2 1
52 V V D D V V 36.9 4 2 0
53 V V D - - V 37 3 1 2
54 V V V V - V 37 5 0 1
55 D D V V - V 37.4 3 2 1
56 V D V - V D 37.6 3 2 1
57 V - V V - V 37.8 4 0 2
58 D V V V D V 38.5 4 2 0
59 V - V D D V 38.6 3 2 1
60 V V D V D V 39.2 4 2 0

Table C.4: Limited Dose with Rest days at Dmax = 3×105. Top 60 of 729 Permutations.
Tumor size predicted at day 30. Vmax = 1.5× 1011, Dmax = 3× 105, where the dosages
were fractioned over 6 days.

Tables C.5-C.6 show the top 60 of the 4096 permutations for altering regimes, with
flexible frequencies under the metronomic treatment strategy.
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Permutation Day End Tumor
Volume

Oncolytic
Virus

Dendritic
Cells

Rank 1 2 3 4 5 6 7 8 9 10 11 12 (mm3) dose number dose number
1 D V V V V V V V V V V D 1.9 10 2
2 D V V V V V V V V V V V 2.2 11 1
3 D V V V V V V V V V D D 2.2 9 3
4 D D V V V V V V V V V V 2.3 10 2
5 D D D V V V V V V V V V 2.6 9 3
6 D V D V V V V V V V V V 2.8 10 2
7 D D V D V V V V V V V V 2.9 9 3
8 D D D D V V V V V V V V 2.9 8 4
9 D D V V V V V V V V V D 2.9 9 3
10 D D D V D V V V V V V V 3.1 8 4
11 V D V V V V V V V V V D 3.1 10 2
12 V D V V V V V V V V V V 3.2 11 1
13 D V D D V V V V V V V V 3.2 9 3
14 D D V D D V V V V V V V 3.2 8 4
15 D V V V V V V V V D D D 3.3 8 4
16 D V V V V V V V V V D V 3.3 10 2
17 D D V V D V V V V V V V 3.3 9 3
18 D D D V V D V V V V V V 3.4 8 4
19 V D D V V V V V V V V V 3.4 10 2
20 D D D V D D V V V V V V 3.4 7 5
21 D V V D V V V V V V V V 3.5 10 2
22 D D D D V D V V V V V V 3.5 7 5
23 D V D D D V V V V V V V 3.5 8 4
24 D D V D D D V V V V V V 3.5 7 5
25 D V D V V V V V V V V D 3.5 9 3
26 D D V D V D V V V V V V 3.6 8 4
27 D V D V D V V V V V V V 3.6 9 3
28 D D D D D V V V V V V V 3.7 7 5
29 D D D D V V D V V V V V 3.7 7 5
30 D D D V D V D V V V V V 3.7 7 5
31 D D D V V V V V V V V D 3.7 8 4
32 V D D D V V V V V V V V 3.7 9 3
33 D V V V V V V V V D V D 3.7 9 3
34 D D V D D V D V V V V V 3.8 7 5
35 D V D D D D V V V V V V 3.8 7 5
36 D D D V V V D V V V V V 3.8 8 4
37 D V D D V D V V V V V V 3.8 8 4
38 D D V V V V V V V V D D 3.8 8 4
39 D D D V D D D V V V V V 3.8 6 6
40 D D V V V D V V V V V V 3.8 9 3
41 D D V D D D D V V V V V 3.8 6 6
42 V D V V V V V V V V D D 3.9 9 3
43 D D V V D D V V V V V V 3.9 8 4
44 D D D V D D V D V V V V 3.9 6 6
45 D D D V V D D V V V V V 3.9 7 5
46 D V V V V V V V V D D V 3.9 9 3
47 D D V D D D V D V V V V 3.9 6 6
48 D D V D V V D V V V V V 4 8 4
49 D V D D D V D V V V V V 4 7 5
50 D D V D V D D V V V V V 4 7 5
51 D D D D V D V D V V V V 4 6 6
52 D D D V D V V D V V V V 4 7 5
53 D D V D V V V V V V V D 4 8 4
54 D D D D V V V D V V V V 4 7 5
55 D V V D D V V V V V V V 4 9 3
56 D D D D V D D V V V V V 4 6 6
57 V D V D V V V V V V V V 4.1 10 2
58 V D D D D V V V V V V V 4.1 8 4
59 D D D V D V D D V V V V 4.1 6 6
60 V D D V D V V V V V V V 4.1 9 3

Table C.5: Permutation table representing for flexible dosing. 60 permutations of
the 4096 are displayed, that predict the tumor size at day 30. Injection quantities:
Vmax = 1.5× 1011, Dmax = 3× 106, where the dosages were fractioned over 12 days
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Permutation Day Tumor Vol-
ume

Oncolytic
Virus

Dendritic
Cells

Rank 1 2 3 4 5 6 7 8 9 10 11 12 (mm3) dose number dose number
1 V V D V D D D D D D D V 1.59 4 8
2 V V D D V D D D D D D V 1.61 4 8
3 V D V D V D D D D D D V 1.64 4 8
4 V D V D D V D D D D D V 1.74 4 8
5 V D V V D D D D D D D V 1.8 4 8
6 V V D D D V D D D D D V 1.97 4 8
7 D V V V V V V V V V V V 2.06 11 1
8 V V D V D D V D D D D V 2.17 5 7
9 V V V D D D D D D D D V 2.2 4 8
10 V V V D D V D D D D D V 2.19 5 7
11 V D V D D D D D D D D V 2.2 3 9
12 V V D V D V D D D D D V 2.2 5 7
13 V V V D V D D D D D D V 2.21 5 7
14 V V D V D D D V D D D V 2.23 5 7
15 V V V D D D V D D D D V 2.27 5 7
16 V V D V V D D D D D D V 2.3 5 7
17 V V V V D D D D D D D V 2.4 5 7
18 V D V V D V D D D D D V 2.41 5 7
19 V D V V D D V D D D D V 2.44 5 7
20 V D V D D D V D D D D V 2.5 4 8
21 V V D V D D D D V D D V 2.45 5 7
22 V D D V D V D D D D D V 2.5 4 8
23 V V V D V D D D D V D V 2.5 6 6
24 V V V D V D D D D D V V 2.5 6 6
25 V D V V V D D D D D D V 2.5 5 7
26 V V D D V D V D D D D V 2.56 5 7
27 V V V D V D D D V D D V 2.59 6 6
28 V V V D D D D V D D D V 2.59 5 7
29 V D D V D D D D D D D V 2.61 3 9
30 V V D D V V D D D D D V 2.61 5 7
31 V D V D V D V D D D D V 2.62 5 7
32 V V D V D D D D D D V D 2.62 4 8
33 V V V V D V D D D D V V 2.63 7 5
34 V D V V D D D V D D D V 2.64 5 7
35 V V D D V D D D D D V D 2.69 4 8
36 V D V D V V D D D D D V 2.69 5 7
37 V V D D V D D V D D D V 2.7 5 7
38 V D V D V D D V D D D V 2.73 5 7
39 V V V D V D D V D D D V 2.73 6 6
40 V D V D V D D D D D V D 2.75 4 8
41 V V V V D D D V D D D V 2.79 6 6
42 V V V V D D D D V D D V 2.79 6 6
43 V V V V D D V D D D D V 2.86 6 6
44 V V D V V D D D V D D V 2.88 6 6
45 V V V D V D V D D D D V 2.9 6 6
46 V V D V V D D D D V D V 2.92 6 6
47 V D V V D D D D D D V D 2.94 4 8
48 V D V D D V D D D D V D 2.94 4 8
49 V D V D D D D D D D V D 2.94 3 9
50 V D D V V D D D D D D V 2.94 4 8
51 V V D V V D D V D D D V 2.95 6 6
52 V V V V D D D D D V D V 2.97 6 6
53 V V V V D V D D D V D V 2.98 7 5
54 V V V V D V D D D D D V 2.98 6 6
55 V V D V D V D D D V D V 2.99 6 6
56 V V V V V D D D D D V V 2.99 7 5
57 V V D V D V D D V D D V 3.03 6 6
58 V V D V V D V D D D D V 3.08 6 6
59 V V V D V V D D D D D V 3.09 6 6
60 V V V D D V D D V D D V 3.13 6 6

Table C.6: Permutation table representing for flexible dosing. 60 permutations of
the 4096 are displayed, that predict the tumor size at day 30. Injection quantities:
Vmax = 1.5× 1011, Dmax = 3× 106, where the dosages were fractioned over 12 days
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