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ABSTRACT

Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but

the key to prevention is to identify at-risk individuals before adverse events. For predict-

ing individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound

method, has proven to be valuable, offering several advantages over CT coronary artery

calcium score. However, each CIMT examination includes several ultrasound videos, and

interpreting each of these CIMT videos involves three operations: (1) select three end-

diastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in

each selected frame, and (3) trace the lumen-intima interface and the media-adventitia in-

terface in each ROI to measure CIMT. These operations are tedious, laborious, and time

consuming, a serious limitation that hinders the widespread utilization of CIMT in clin-

ical practice. To overcome this limitation, this paper presents a new system to automate

CIMT video interpretation. Our extensive experiments demonstrate that the suggested sys-

tem significantly outperforms the state-of-the-art methods. The superior performance is

attributable to our unified framework based on convolutional neural networks (CNNs) cou-

pled with our informative image representation and effective post-processing of the CNN

outputs, which are uniquely designed for each of the above three operations.
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Chapter 1

INTRODUCTION

1.1 Background

Carotid intima-media thickness (CIMT) is considered as an early and reliable non-

invasive indicator of cardiovascular risk (Stein et al., 2008) and this thesis aims to intro-

duce new methodology that significantly improves CIMT performance using convolutional

neural networks (CNNs).

1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are neural networks with multiple layers that

can learn complex hierarchy from the images that recently attracted lots of researches along

with advancement with the parallel computing power of graphics processing unit (GPU).

CNNs were originally proposed by LeCun in 1989, however, due to slow computing power

at that time, CNNs did not gain popularity. However, with the powerful GPUs in scientific

computing together with effective regularization techniques (Goodfellow et al., 2013; Hin-

ton et al., 2012; Krizhevsky et al., 2012; Wan et al., 2013; LeCun et al., 2015) has re-ignited

research and applications that break records in many computer vision and image analysis

tasks. The major power of CNNs is that they learn hierarchical set of image features and

that it learns features automatically. This eliminates the need for hand-crafted features

which often is suboptimal. Recent image classification challenges such as ImageNet have

shown that deep learning machines are now outperforming human and therefore it was a

natural choice to use CNNs for medical image analysis, especially for CIMT challenge in

this thesis.
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CNNs are an extension of multi-layer percentptrons (MLPS) where multiple convo-

lutional layers are placed as hidden layers. Each convolutional layer is connected to a

small subset of spatially connected units in the previous layer. The weights in the layer are

shared between all the units in convolutional layer and weights are updated during train-

ing phase. Weight sharing dramatically reduces the network’s width which enable deeper

architectures. The pooling layers usually follow the convolutional layers which produce

a single output from a neighborhood of units by either taking the average, the maximum

or some combinational with learnable weights which mimicks the primary visual cortex

(Hubel and Wiesel, 1959). The layers toward the end are made of series of consecutive 1x1

convolutional layer which are also known as fully connected layers. Finally, a softmax or

a regression layer generates the outputs.

Convolutional neural networks are trained using the back-progating algorithm like a

multi-layer perceptron. If D denotes a set of training images, W denotes a matrix con-

taining the weights of the convolutional layers, and fW (D(i)) denotes the loss for the ith

training image, the loss over the entire training set is then computed as

L(W ) =
1

|D|

|D|∑
i

fW (X(i)) (1.1)

To minimize the loss function with respect to the unknown weights W , the popular

choice is gradient descent, however, due to limited GPU memory, evaluating loss function

based on entire training set D is not feasible. Therefore, the loss function is approximated

with loss over the mini-batches of training dataset size N << |D|. Given the size of mini-

batches, ranging from 128 to 1024, one can approximate the loss function as L(W ) ≈
1
N

∑N
i=1 fW (X(i)), and iteratively update the weights of the network with the following

equations:

γt = γ∗
tN
|D|
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Vt+1 = µVt − γtα∆L(Wt)

Wt+1 = Wt + Vt+1 (1.2)

where α is the learning rate, µ is the momentum that indicates the contribution of the

previous weight update in the current iteration, and γ is the scheduling rate that decreases

learning rate α at the end of each epoch.

1.3 Carotid Intima-Media

CIMT is the distance between lumen-intima interface (LI) and the media-adventitia in-

terface (MAI) (Figure 1.1). The CIMT is defined as the distance between the lumen-intima

and media-adventitia interfaces at the far wall of the carotid artery (Figure 1.2). There-

fore, the lumen-intima and the media-adventitia interfaces must be identified accurately to

measure CIMT.

Previous work include hand crafted algorithms as well as machine learning based meth-

ods for CIMT image interpretation. Some of the earlier approaches focused on intensity

profile analysis and distribution, gradient computation (Pignoli and Longo, 1987; Touboul

et al., 1992; Faita et al., 2008), or use of various edge properties through dynamic program-

ming (Liang et al., 2000; Cheng and Jiang, 2008; Rossi et al., 2010). Recent approaches

(Loizou et al., 2007; Delsanto et al., 2007; Petroudi et al., 2012; Xu et al., 2012; Ilea et al.,

2013; Bastida-Jumilla et al., 2013) are mostly based on active contours (aka, snakes) or

their variations (Kass et al., 1988). Some methods require user interaction to adjust the

position of the snake control points while other approaches tried to achieve complete au-

tomation using special image processing algorithms, such as Hough transform (Molinari

et al., 2012) and dynamic programming (Rossi et al., 2010). More recently, Menchn-Lara

et al. employed a committee of standard multilayer perceptrons in (Menchón-Lara et al.,

2013) and a single standard multilayer perceptron with an auto-encoder in (Menchón-Lara

3



Figure 1.1: Intima-Media Thickness Diagram

and Sancho-Gómez, 2015) for CIMT image interpretation, but both methods did not outper-

form the snake-based methods from the same research group (Bastida-Jumilla et al., 2013,

2015). More complete survey of various methods for automatic CIMT measurements are

found in the review studies conducted by Molinari et al.(Molinari et al., 2010) and (Loizou,

2014).

However, most of above methods are focused on the final operation which is CIMT

measurement, which ignores two preceding operations; correct frame selection and ROI

localization. To my knowledge, the prior work by Sharma et al. (2014), an extension of

work by Zhu et al. (2011), automatically selects the EUF frame, localizes the ROI in each

selected EUF frame, and provides the CIMT measurement in the selected ROI. However,

as with other works, this method is also based on hand-crafted algorithms, which often

lack the desired robustness for routine clinical use, a weakness that our new proposed

method aims to overcome through use of CNNs. As demonstrated in Sections 4 and 5, this

new system outperforms the existing methods in all aspects including frame selection, ROI

4



Figure 1.2: Longitudinal view of the carotid artery in an ultrasound B-scan image. CIMT

is defined as the distance between the lumen-intima interface and the media-adventitia

interface, measured approximately 1 cm distal from the carotid bulb on the far wall of the

common carotid artery at the end of the diastole; therefore, interpreting a CIMT video

involves three operations: (1) select three end-diastolic ultrasound frames (EUFs) in each

video (the cardiac cycle indicator, a black line, shows to where in the cardiac cycle the

current frame corresponds); (2) localize a region of interest (ROI) approximately 1 cm

distal from the carotid bulb in the selected EUF; (3) measure the CIMT within the localized

ROI. This thesis aims to automate these three operations simultaneously through a unified

framework based on convolutional neural networks.
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localization, and CIMT measurements.

A key contribution of this thesis is to automate CIMT by combining all three opera-

tions in unified framework using convolutional neural networks (CNNs). By combining

pre-processing and post-processing, this new proposed CNN-based method significantly

outperforms all the existing methods which includes frame selection, ROI localization and

CIMT measurements.

First, the proposed frame selection method uses ECG signals at the bottom of ultra-

sound frames. Then, the pre-processing of patches and post processing of CNN outputs

enabled significant increase in the performance of the frame selection compared to the pre-

vious hand-crafted approach (Sharma et al., 2014). Second, a novel method for localizing

the ROI for CIMT interpretation is proposed. This method introduces the discriminative

power of a CNN with a contextual constraint to accurately localize the ROIs and with the

contextual constraint which is also found by CNNs. Third, a framework is proposed that

combines active contour models and CNNs for sub-pixel accuracy boundary segmentation.

Given a frame and an ROI, two open snakes are initialized with CNNs output which further

deforms to the actual intima-media boundary. Lastly, thorough evaluation of leave-one-

patient-out cross-validation1 using the training data only to adjust the parameters of the

system, and then thoroughly evaluated performance using a large number of test data set of

CIMT videos. This cross validation provides robust confirmation of experimental results.

1Leaving all the videos from one patient out for validation, 12-fold cross validation.
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Chapter 2

CIMT PROTOCOL

The CIMT exams utilized in this thesis were performed with B-Mode ultrasound us-

ing an 8-14MHz linear array transducer utilizing fundamental frequency only (Acuson

SequoiaTM, Mountain View, CA, USA) (Hurst et al., 2010). The carotid screening protocol

begins with scanning bilateral carotid arteries in a transverse manner from the proximal

aspect to the proximal internal and external carotid arteries. The probe is then turned to ob-

tain the longitudinal view of the distal common carotid artery. The sonographer optimizes

the 2D images of the lumen-intima and media-adventitia interfaces at the level of the com-

mon carotid artery by adjusting overall gain, time gain, compensation and focus position.

Once the parameters are optimized, the sonographer captures two CIMT videos focused on

the common carotid artery from two optimal angles of incidence. The same procedure is

repeated for the other side of neck, resulting in a total of 4 CIMT videos for each subject.

7



Chapter 3

METHOD

The goal is to automate the three operations in CIMT video interpretation. First, given

a CIMT video, the system automatically identifies three EUFs (Section 3.1), localizes an

ROI in each EUF (Section 3.2), and segments the lumen-intima and media-adventitia inter-

faces within each ROI (Section 3.3). Figure 3.1 shows an schematic overview of the new

proposed system.

3.1 Frame Selection

First, EUFs are selected based on the ECG signal embedded at the bottom part of a

CIMT video. The cardiac cycle indicator is represented by a moving-to-the-right black line

in each frame. Since the ECG signal is overlaid on the ultrasound image, there is quite bit

of noise around the indicator. The challenge is to reconstruct the original ECG signal from

Figure 3.1: Video frames are passed to the system, and three frames are selected by CNNs,

and passed to ROI localization which in turn passed to intima-media boundary segmenta-

tion system to give final thickness result.
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Figure 3.2: An accumulated difference image is generated by adding up three neighboring

difference images.

noisy frames and to detect the R peaks from the ECG signal, as the R-peaks correspond

to the EUFs. To do so, rather than using a single frame to train or test, the concept of

accumulated difference images is proposed. This method combines multiple difference

frames, more specifically four frames that carry sufficient information for CNN to learn

and distinguish R-peaks from non-R-peaks. Figure 3.3 shows when the difference frames

are combined into a single frame that demonstrates the high noise level in many cases that

make challenging to extract clean signals.

Training Phase: Let I t denote an image sub-region selected from the lower part of an

ultrasound frame so that it contains the ECG signal. First, construct a set of difference

images dt by subtracting every consecutive pairs of images, dt = |I t− I t+1|, and then form

accumulated difference images by adding up every three neighboring difference images,

Dt =
∑2

i=0 d
t−i. Accumulated difference image Dt can capture the cardiac cycle indicator

at frame t. Figure 3.2 illustrates how an accumulated difference image is generated.

Next, the location of the restored wavelet is determined in each accumulated difference

image. For this purpose, the weighted centroid c = [cx, cy] of each accumulated difference

9



Figure 3.3: 8 cases where the difference images combined into a single image to show

clean images vs high noise images.

image Dt is as follows:

c =
1

Zt

∑
p∈Dt

Dt(px, py)× p

where p = [px, py] is a pixel in the accumulated difference image andZt =
∑

p∈Dt Dt(px, py)

is a normalization factor that ensures the weighted centroid stays within the image bound-

ary. Once centroids are identified, patches of size 32× 32 are extracted around the centroid

locations. Specifically, patches with up to 2 pixel translations from each centroid are ex-

tracted. However, the patches are not scaled in data augmentation, because doing so would

inject label noise in the training set. For instance, a small restored wavelet may take the

appearance of an R-peak after expanding or an R-peak wavelet may look like a non-R-peak

wavelet after shrinking. Nor do we perform rotation-based patch augmentation, because

the restored wavelets do not appear with rotation in the test image patches. Once collected,

patches are binarized using Otsu’s method. In Section 4, the choice of binarization method

10



Figure 3.4: The patch extraction for training stage of automatic frame selection scheme

(blue is labeled as positives and purple as negatives).

through an extensive set of experiments is presented. Each binary patch is then labeled as

positive if it corresponds to an EUF (i.e., an R-peak); otherwise negative. Basically, given

a patch, the accumulated difference image is determined from which the patch is extracted.

Then it is possible to trace back to the underlying difference images and check whether

they are related to the EUF or not. Once the patches are labeled as in Figure 3.4, a stratified

set is formed with 96,000 patches to train a 2-way CNN for frame selection.

Testing Phase: Figure 3.5 shows our frame selection system given a test video. First,

an accumulated difference image for each frame in the video is computed. Then, image

patches are extracted from the weighted centroids of the accumulated difference images.

The probability of each frame being the EUF is measured as the average probabilities as-

signed by the CNN to the corresponding patches. By concatenating the resulting proba-

bilities for all the frames in the video, we obtain a probability signal whose local maxima

indicate the locations of the EUFs. However, the generated probability signals often exhibit

abrupt changes, which can cause too many local maxima along the signal. We therefore

first smooth the probability signal using a Gaussian function, and then find the EUFs by

11



Figure 3.5: The test stage of our automatic frame selection scheme.

locating the local maxima of the smoothed signals. In Figure 3.5, for illustration purposes,

the reconstructed ECG signal is shown which is computed as the average of the accumu-

lated difference images, 1
N

∑N
t=1D

t with N being the number of frames in the video. As

seen, the probability of being the EUF reaches its maximum around the R peaks of the QRS

complexes (as desired) and then smoothly decays as it distances from the R peaks. By map-

ping the locations of the local maxima to the frame numbers, the EUFs can be identified in

the test video.
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3.2 ROI Localization

Accurate localization of the ROI is challenging, because, as seen in Figure 1.2, there are

no significant differences that can be observed in image appearance among the ROIs on the

far wall of the carotid artery. To overcome this challenge, the location of the carotid bulb as

a contextual constraint is utilized. This constraint is chosen for two reasons: 1) the carotid

bulb appears as a distinct dark area in the ultrasound frame and thus can be uniquely iden-

tified; 2) according to the consensus statement of American society of Electrocardiography

for cardiovascular risk assessment, the ROI should be placed approximately 1 cm from the

carotid bulb on the far wall of the common carotid artery. While the former motivates the

use of the carotid bulb location as a constraint from a technical point of view, the latter

justifies this constraint from a clinical standpoint.

Figure 3.6: For constrained ROI localization, we use a 3-way CNN whose training image

patches are extracted from a grid of points on the background and around the ROI and the

carotid bulb locations.

Training Phase: We incorporate this constraint in the suggested system by training a 3-

13



Figure 3.7: Patch extraction boundary rectangle. Green rectangle represents bulb and red

for the ROI. Blue represents background or negative patches

way CNNs that simultaneously localizes both ROI and carotid bulb, and then refines the

estimated location of the ROI given the location of the carotid bulb (Figure 3.6) illustrates

how the image patches are extracted from a training frame. Figure 3.7 shows patch extrac-

tion boundary for all 3 classes for easier visualization. We perform data augmentation by

extracting the training patches within a circle around the locations of the carotid bulbs and

the ROIs. The negative patches are extracted from a grid of points sufficiently far from

the locations of the carotid bulbs and the ROIs. Note that the above translation-based data

augmentation is sufficient for this application, because our database provides a relatively

large number of training EUFs, from which a large set of training patches can be collected.

Once the patches are collected, we form a stratified training set with approximately 410,000

patches to train a 3-way CNN for constrained ROI localization.

Testing Phase: Referring to Figure 3.8, during the test stage, the trained CNN is applied

14



Figure 3.8: The test stage of our ROI localization method. In the unconstrained scenario,

we only use the ROI confidence map, which results in relatively large localization error. In

the constrained mode, given the estimated location of the carotid bulb, we localize the ROI

more accurately.

to all the pixels in the EUF, generating two confidence maps with the same size as the

EUF. The first confidence map shows the probability of a pixel being the carotid bulb and

the second confidence map shows the probability of a pixel being the ROI. One way to

localize the ROI is to find the center of the largest connected component within the ROI

confidence map without considering the detected location of the carotid bulb. However, this

naive approach may fail to accurately localize the ROI. For instance, a long-tale connected

component along the far wall of the carotid artery may cause substantial ROI localization

error as seen in Figure 3.9. To compound the problem, the largest connected component

of the ROI confidence map may appear far from the actual location of the ROI, resulting

in a complete detection failure. To overcome these limitations, we constraint the ROI

location lroi by the location of the carotid bulb lcb. For this purpose, we first determine the

location of the carotid bulb as the centroid of the largest connected component within the

first confidence map. ROI localization can be obtained using the following formula,

lroi =

∑
p∈C∗M(p) · p · I(p)∑
p∈C∗M(p) · I(p)

(3.1)

15



Figure 3.9: The step by step test case for ROI localization process. (a) Original image. (b)

ground truth by expert. (c) 3-way CNN confidence map. (d) carotid bulb confidence map.

(e) ROI confidence map. (f) final ROI location is determined.

where lroi denotes the ROI location, lcb denotes the center of the carotid bulb, M denotes

the confidence map of being the ROI, C∗ is the largest connected component in M that is

the nearest to the carotid bulb, and I(p) is an indicator function for pixel p = [px, py] that is

defined as

I(p) =

1, if ‖p− lcb‖ < 1 cm

0, otherwise

(3.2)

(3.3)

The indicator function I(p) is binary function that simply includes pixel when the value

is 1 as in Eq. 3.2, otherwise excludes pixel when the value is 0 as in Eq. 3.3. In simple

term, this function excludes confidence map of being the ROI that is farther than 1 cm from

the center of carotid bulb location.

16



3.3 Intima-Media Thickness Measurement

Measuring intima-media thickness require a continuous and one-pixel precise boundary

for lumen-intima and media-adventitia. Lumen-intima is relatively easier to detect because

of strong gradient change at the border (large dark region above lumen-intima interface),

however, detecting media-adventitia interface is quite challenging due to its subtle image

gradients and noise around its border. The proposed 3-way classification used is: 1) lumen-

intima interface, 2) media-adventitia interface, and 3) background.

Figure 3.10: For lumen-intima and media-adventitia interface segmentation, we use a 3-

way CNN whose training image patches are extracted from the background and around the

lumen-intima and media-adventitia interfaces.

Training Phase: To train 3-way CNN, collecting pixel-by-pixel patches were inefficient

and un-necessary. Instead, sparse background patches and then pixel-by-pixel image patches

around lumen-intima interface and media-adventitia interface with additional patches ±3

17



Figure 3.11: The patch extraction for training stage of IMT. Each color dot represents

the center of 32x32 patches being extracted. Green represents the lumen, red for intima

interface and blue for background patches.

pixels from the ground truth provided showed very similar performance in experimental

results. Using ±3 pixels for additional patches around intima-media boundary was nec-

essary to balance number of patches with background patches and so that the confidence

map could produce thicker scores along the two interfaces which could then used to se-

lect the center since there are odd number (exactly three in this case) per interface. In the

images given, lumen-intima interface and media-adventitia interface had about six to eight

pixels apart so going more than ±3 pixels for patches may cause overlapping and poorer

performance. Figure 3.10 illustrates how the training patches are collected from an ROI.

Testing Phase: Figure 3.12 illustrates the testing process. The 3-way trained CNN is

18



Figure 3.12: The test stage of lumen-intima and media-adventitia interface detection. (a)

a test ROI. (b) The trained CNN generates a confidence map where the green and red

colors indicate the likelihood of lumen-intima interface and media-adventitia interface, re-

spectively. (c) The thick probability band around each interface is thinned by selecting

the largest probability for each interface in each column. (d) The step-like boundaries are

refined through two open snakes.

applied in a sliding-window fashion for a given test ROI and generates two confidence maps

(Figure 3.12(b)) with the same size as the ROI. Since confidence map is thicker than a pixel,

we choose the maximum response column-by-column and generate a new binary image as

shown in Figure 3.12(c). Finally, we use two active contour models (a.k.a, snakes) (Liang

et al., 2006) for segmenting lumen-intima and media-adventitia interfaces. The input image

to the snakes is the binary image only, not the original image. Figure 3.12(d) shows two

final converged snakes and measurements are taken as the average vertical distance between

the two snakes.

For illustration purpose, one of the best test case is shown in Figure 3.13 as well as

worst test case in Figure 3.14 which represent step-by-step processes how the proposed

system work for a given ROI. In Figure 3.14, even with the missing pixel boundary infor-

mation, sub-optimal CNN prediction output is nicely augmented by use of snakes and CNN

prediction output helps with the initial snake position.
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Figure 3.13: One of the best test case of lumen-intima and media-adventitia interface de-

tection. (a) Original image. (b) Expert’s ground truth. (c) CNN raw predictions output.

(d) CNN raw outputs overlaid with original image. (e) Maxima for each column for initial

snake position. (d) Snake after 500 iterations.

Figure 3.14: One of the ”worst” test case of lumen-intima and media-adventitia interface

detection. (a) Original image. (b) Expert’s ground truth. (c) CNN raw predictions output.

(d) CNN raw outputs overlaid with original image. (e) Maxima for each column for initial

snake position. (d) Snake after 500 iterations.
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Chapter 4

EXPERIMENTS

A database of 92 CIMT videos captured from 23 subjects with 2 CIMT videos from the

left and 2 CIMT videos from the right carotid artery of each subject are used in this experi-

ments. The ground truth for each video contains the EUF number, the locations of ROI, and

the segmentation of lumen-intima and media-adventitia interfaces. For consistency, we use

the same training set and the same test set (no overlap with training) for all three tasks. The

training set contains 48 CIMT videos of 12 subjects with a total of 4,456 frames and our

test set contains 44 CIMT videos of 11 subjects with a total of 3,565 frames. For each task,

leave-one-patient-out cross-validation (12-fold cross validation) is performed based on the

training subjects to tune the parameters, and then the performance of the tuned system

using the test subjects is evaluated.

Architecture: As shown in Table 4.1, a CNN architecture with 2 convolutional layers, 2

sub-sampling layers, and 2 fully connected layers (see Section 5 for our justifications) is

used. In addition, a softmax layer to the last fully connected layer is appended so as to

generate probabilistic confidence values for each class. This CNN architecture has input

patches of size 32x32, and the collected patches are re-sized to 32x32 prior to the training

process. For the CNNs used in our experiments, an initial learning rate of α = 0.001, a

momentum of µ = 0.9, and a constant scheduling rate of γ = 0.95 (the rate of learning rate

decrease at each epoch) is used.

Pre- and post-processing for frame selection: Interestingly, use of binarized image patches

for training CNNs improved the quality of convergence and accuracy of frame selection

which was found out experimentally. Furthermore, the parameter of standard deviation of
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Table 4.1: The CNN architecture used in the experiments. Note that C is the number of

classes, which is 2 for frame selection and 3 for both ROI localization and intima-media

thickness measurements.

layer type input kernel stride pad output

0 input 32x32 N/A N/A N/A 32x32

1 convolution 32x32 5x5 1 0 64x28x28

2 max pooling 64x28x28 3x3 2 0 64x14x14

1 convolution 64x14x14 5x5 1 0 64x10x10

2 max pooling 64x10x10 3x3 2 0 64x5x5

2 fully connected 64x5x5 5x5 1 0 250x1

2 fully connected 250x1 1x1 1 0 Cx1

the Gaussian function used for smoothing the probability signals, can also substantially

influence frame selection accuracy. Therefore, leave-one-patient-out cross-validation was

conducted based on the training subjects to find the best binarization method and the opti-

mal standard deviation of the Gaussian function. For binarization, a fixed set of thresholds

and adaptive thresholding using Otsu’s method(Otsu, 1975) was used. For smoothing the

output scores, a Gaussian function with different standard deviation (σg) as well as the

scenario where no smoothing is applied were performed. For each configuration of param-

eters, a free-response ROC (FROC) analysis was done. For labeling, if the frame is found

within one frame from the expert-annotated EUF, then that frame is considered as a true

positive, otherwise, a false positive.

The leave-one-patient-out cross-validation study, summarized in Figure 4.2, indicates

that the use of a Gaussian function with σg = 1.5 for smoothing the probability signals and
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Figure 4.1: Histogram of Otsu’s binarization thresholds in frame patches. Y-axis is fre-

quency and x-axis is threshold ranging from 0 to 1.

adaptive thresholding using Otsu’s method achieve the highest performance. For com-

pleteness, Figure 4.1 shows histogram of Otsu’s binarization thresholds for all the ex-

tracted patches. Figure 4.3 shows the FROC curve of our system for the test subjects

using the above parameters. For comparison, the operating point of the hand-crafted ap-

proach (Sharma et al., 2014) is shown, which is significantly outperformed by the suggested

system.

Constrained ROI Localization: A leave-one-patient-out cross-validation study was con-

ducted based on the training subjects to find the optimal size of the training patches. The

size of patch is important because the 32x32 pixel patch, equivalent to 0.35×0.35 cm patch

only captures small part of the overall image and therefore does not have enough contextual

information. Figure 4.4 shows the various sizes of patches that were used as well as ROI

size for comparison. The cross-validation analysis, summarized in Figure 4.5, indicates

that the use of 1.8 × 1.8 cm patches achieves the most stable performance, yielding low

ROI localization error with only a few outliers. Figure 4.6 shows the ROI localization error
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Figure 4.2: FROC curves of our system for automatic frame selection. Each plot shows

FROC curves for different binarization thresholds and different levels of Gaussian smooth-

ing.

of the proposed system for the test subjects using the optimal size of training patches. To

demonstrate the effectiveness of our constrained ROI localization method, the performance

of the unconstrained system is also included. In the constrained mode, The Eq. 3.1 for ROI

localization is used whereas in the unconstrained mode, only the ROI is localized as the

center of the largest connected component in the corresponding confidence map without

considering the location of the carotid bulb. The constrained method achieves an average

localization error of 0.19 mm and 0.35 mm in the constrained and unconstrained modes,

respectively. The decrease in localization error is statistically significant (p < 0.01). Also

as seen in Figure 4.6, the unconstrained method has resulted in 3 complete localization fail-

ures (outliers), which have been corrected in the constrained mode. Furthermore, compared

with the hand-crafted approach (Sharma et al., 2014), the proposed system using the con-
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Figure 4.3: FROC curve of our frame selection system for the test subjects using the tuned

parameters. For comparison, we have also shown the operating point of the prior hand-

crafted approach (Sharma et al., 2014), which is significantly outperformed by the sug-

gested system.

strained mode shows a decrease of 0.1 mm in ROI localization error, which is statistically

significant (p < .00001).

Intima-Media Thickness Measurement: The optimal image patch size by leave-one-

patient-out cross-validation using various image patch sizes was 360 × 360 µm which

achieved slightly lower localization error and fewer outliers in Figure 4.5-4.7. Figure 4.9

shows the interface localization error of our system on the test subjects, where we break

down the overall localization error for lumen-intima and that of the media-adventitia in-

terface as well as the hand-crafted approach (Sharma et al., 2014) for each interface. We

further analyzed agreement between our system and the expert with the Bland-Altman plot

in Figure 4.8.
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Figure 4.4: Various patches size from 1.2 × 1.2 cm to 2.4 × 2.4 cm shown in blue, and

expert’s ROI (1.0× 0.75 cm) shown in red
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Figure 4.5: ROI localization error for different sizes of patches.
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Figure 4.6: ROI localization error for the test subjects. Our method in the constrained

mode outperforms both the unconstrained counterpart and the prior hand-crafted ap-

proach (Sharma et al., 2014).
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Figure 4.7: Combined interface localization error for different sizes of patches. The results

are produced through a leave-one-patient-out cross-validation study based on the training

subjects. Each box plots show the combined localization error of lumen-intima and media-

adventitia interfaces for a different size of patches. In our analyses, we determine the

localization error as the average of absolute vertical distances between our detected bound-

aries and the expert-annotated boundaries for the interfaces. As can be seen, while our

system shows a high degree of robustness against different sizes of input patches, the use

of patches of size 360 × 360 µm achieves slightly lower localization error and fewer out-

liers. Furthermore, this choice of patches yields higher computational efficiency compared

to the larger counterpart patches.
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Figure 4.8: The Bland-Altman plot shows high agreement between our system and the

expert for the assessment of intima-media thickness. Each circle in this plot represents a

pair of thickness measurements from our method and the expert for a test ROI. In this plot,

we have a total of 126 circles corresponding to 44 test videos.
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Figure 4.9: Localization error of the lumen-intima and media-adventitia interfaces for the

suggested system and the prior hand-crafted approach (Sharma et al., 2014). The results

are obtained for the test subjects.
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Chapter 5

DISCUSSIONS

5.1 Frame Selection

In Section 4, the choice of patch binarization and degree of Gaussian smoothing af-

fected the accuracy of frame selection. Here, these findings provide important insights

about the hyperparameters that were chosen. The binarization of the patches were chosen,

because it reduces appearance variability and suppress the low-magnitude noise content in

the patches. Without patch binarization, one can expect a large amount of variability in

the appearance of wavelets can deteriorate the performance of the subsequent CNN (see

Figure 4.2). The choice of binarization threshold is another important factor. The use of

a high threshold results in the partial appearance of the wavelets in the resulting binary

patches, reducing the discriminatory appearance features of the patches. A low threshold,

on the other hand, can intensify noise content in the images, which decreases the quality

of training samples and consequently a drop in classification performance. According to

our analyses, it is difficult to find a fixed threshold that can both suppress the noise con-

tent and keep the shapes of the restored wavelets intact in all the collected patches. Otsu’s

method seems to overcome this limitation by adaptively selecting a binarization threshold

according to the intensity distribution of each individual patch. For patches with intensity

values between 0 and 1, the adaptive thresholds have a mean of 0.15 and standard deviation

of 0.05. The wide range of adaptive thresholds explains why a constant threshold may not

perform as desirably.

Gaussian smoothing of the probability signals is also essential for accurate frame se-

lection. This is because the probability signals prior to smoothing exhibit high frequency
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fluctuations, which may complicate the localization of the local maxima in the signals. The

first cause of such high frequency changes is patch misplacement in the accumulated dif-

ference images. Recall that we extract the patches around the weighted centroids of the

accumulated difference images. However, a large amount of noise content in the difference

images may cause the weighted centroid to deviate from the center of the restored wavelet.

In this case, the extracted patch may partially or completely miss the restored wavelet.

This can manifest itself as a sudden change in the CNN output and as a result in the corre-

sponding probability signal. The second cause of high frequency changes is the inherited

high variance of CNNs. Use of ensemble of CNNs and data augmentation can alleviate

this problem at a significant computation cost. Alternatively, we choose to mitigate these

undesirable fluctuations using Gaussian smoothing for computational efficiency.

5.2 ROI

As described in Section 3.2, ROI localization constrained by the location of the carotid

bulb method was chosen. This is because the bulb area appears as a relatively distinct dark

area in the ultrasound frame. The distinct appearance of the carotid bulb is also confirmed

by our experiments, where the average bulb localization error of 0.26 mm is obtained for

the test subjects with only one failure case, which is more favorable than the average uncon-

strained ROI localization error of 0.38 mm with 3 failure cases. Therefore, the localization

of the bulb area can be done more reliably than the localization of the ROI, which mo-

tivates the use of the bulb location as a guide for more accurate ROI localization. This

constraint is integrated into the localization system through a post-processing mechanism

(see Eq. 3.1). Alternatively, a regression CNN could be used where each pixel in the image

directly votes for the location of the ROI. However, this approach may be hindered by lack

of stable anatomical structures in noisy ultrasound images. A regression-based CNN for

ROI localization is left as future work.
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5.3 IMT

In Section 4, a high level of agreement between the proposed system and the expert for

the assessment of intima-media thickness is shown. The suggested system achieves a mean

absolute error of 28 µm with a standard deviation of 2.1 µm for intimia-media thickness

measurements. However, this level of measurement error cannot hurt the interpretation of

the vascular age, because there exists a minimum difference of 400 µm between the average

intima-media thickness of healthy and high-risk population (600 µm for healthy and≥ 1000

µm for high-risk population) (Jacoby et al., 2004).

5.4 CNN Architectures

The proposed system uses LeNet-like CNN architecture, but it does not limit the sug-

gested framework to this architecture. In fact, deeper CNN architectures such as AlexNet

(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2014) and GoogleNet (Szegedy

et al., 2015) were explored in both training and fine-tuning modes; however, there was not

any significant performance gain. This was probably because the higher level semantic

features detected by the deeper networks are not very relevant to the tasks in our CIMT

applications. Meanwhile, the concomitant computational cost of deep architectures may

hinder the applicability of the proposed system, because it lowers the speed—a key usabil-

ity factor of the system. A shallower architecture may not offer the performance required

for clinical practice. This is because a network shallower than the LeNet has only one

convolutional layer and thus limited to learning primitive edge-like features. Detecting the

carotid bulb and the ROI, and segmenting intima-media boundaries are relatively challeng-

ing tasks, requiring more than primitive edge-like features. Similarly, for frame selection,

classifying the restored wavelets into R-peak and non-R-peak categories is similar to digit

recognition, for which LeNet is a common choice of architecture. Therefore, LeNet-like
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CNN architecture seems to represent an optimal balance between efficiency and accuracy

for CIMT video analysis.

5.5 Performance

On a desktop computer with a 3.6 Ghz quad core Intel with an Nvidia GTX 970 GPU,

the proposed system detects each EUF in 2.9 seconds, localizes each ROI in 12.1 seconds,

and measures intima-media thickness in 8.2 seconds. While the current speed is suitable

for off-line processing of the CIMT videos, further performance speedup is required for

an interactive use in the clinical practice. However, the use of CNNs does not hinder the

interactive use of the proposed system in terms of time, rather, extracting a large number of

patches from a dense set of locations in the ultrasound images causes a computational bot-

tleneck. Therefore, significant performance speedup can be achieved by using fully convo-

lutional networks (Long et al., 2014) for patch extraction within GPU, which eliminates the

need for computationally expensive image patch extraction in CPU. Further performance

speedup can also be obtained using faster and/or more dedicated graphics cards.

One of the significant achievement is that all performance evaluations were performed

without involving any user interactions. However, the goal of the proposed system is not

to exclude the user (for example, sonographer) from the loop rather to relieve him from

the three tedious, laborious, and time consuming operations by automating them while

still offering the user a highly, user-friendly interface to bring his indispensable expertise

onto CIMT interpretation through refining the automatic results easily at the end of each of

the automated operations. For instance, the proposed system is expected to automatically

locate a EUF within one frame, which is clinically acceptable, but in case the automatic

selected EUF is not the one the user wants, the user can simply move one frame forward

or backward in the interactive system. The automatically localized ROI by the proposed

system is usually acceptable as long as there is a small distance from the ground truth
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location, but the user still can easily drag the ROI and move it around as desired. Finally,

in refining the automatically identified lumen-intima and media-adventitia interfaces, the

original snake formulation comes with spring forces for user interaction (Kass et al., 1988),

but given the small distance between the lumen-intima and media-adventitia interfaces, the

“movable” hard constraints as proposed in (Liang et al., 2006) are far more effective than

the spring forces in measuring CIMT.
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Chapter 6

CONCLUSION

In this thesis, a unified framework to fully automate and accelerate CIMT video interpre-

tation is presented. Specifically, a computer-aided CIMT measurement system with three

components which are: (1) automatic frame selection in CIMT videos, (2) automatic ROI

localization within the selected frames, (3) automatic intima-media boundary segmentation

within the localized ROIs. Each of the above components on a CNN with a LeNet-like ar-

chitecture is used and then boosted the performance of the employed CNNs with effective

pre- and post-processing techniques. For frame selection, how patch binarization as a pre-

processing step and smoothing the probability signals as a post-processing step improve

the results generated by the CNN are analyzed. For ROI localization, the location of the

carotid bulb, as a constraint in a post-processing setting, significantly improves ROI lo-

calization accuracy by proving experimentally. For intima-media boundary segmentation,

open snakes were employed as a post processing step to further improve the segmentation

accuracy. Then, the results produced by the suggested system were compared with those of

the major prior works, demonstrating more accurate frame selection, ROI localization, and

CIMT measurements. This superior performance is attributed to the effective use of CNNs

coupled with pre- and post- processing steps, uniquely designed for the three CIMT tasks.
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