
Improving AI Planning by Using Extensible Components

by

Michael Jonas

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2016 by the
Graduate Supervisory Committee:

Ashraf Gaffar, Chair

Adam Doupe
Cormac Herley

Georgios Fainekos

ARIZONA STATE UNIVERSITY

May 2016

 i

ABSTRACT

Despite incremental improvements over decades, academic planning solutions see relatively little

use in many industrial domains despite the relevance of planning paradigms to those problems.

This work observes four shortfalls of existing academic solutions which contribute to this lack of

adoption.

To address these shortfalls this work defines model-independent semantics for planning

and introduces an extensible planning library. This library is shown to produce feasible results on

an existing benchmark domain, overcome the usual modeling limitations of traditional planners,

and accommodate domain-dependent knowledge about the problem structure within the planning

process.

 ii

TABLE OF CONTENTS

 Page

LIST OF TABLES …………………………………………………………………………………. iv

LIST OF FIGURES …………………………………………………………………………………. v

CHAPTER

1 INTRODUCTION .. 1

Introduction ... 1

Project Motivation ... 10

Background Literature .. 16

2 DATA CENTER DOMAIN .. 19

Data Center Thermal Model ... 20

Planning Considerations .. 25

PDDL Implementation .. 30

Evaluation ... 32

3 PDDL SEMANTIC LIMITATIONS .. 33

4 JPDL TRANSLATOR .. 37

Language Independent Semantics .. 39

World Model Advancement Algorithm ... 41

Translation .. 43

Conclusions .. 64

5 MODELING LIBRARY SPECIFICATION .. 68

Language Independent Semantics .. 70

Modeling Data Structures... 75

Conclusions .. 84

6 PLANNING LIBRARY SPECIFICATION ... 85

Language Independent Semantics .. 87

Planning Branch Algorithm .. 92

Planning Data Structures ... 93

 iii

CHAPTER Page

Conclusions .. 104

7 BLOCKS WORLD EXAMPLE DOMAIN ... 107

Planning Library Model .. 108

Blind Heuristic ... 119

Satisficing Heuristic .. 123

Evaluation ... 125

REFERENCES ... 131

APPENDIX

A TABLE OF ICAPS SURVEY .. 136

B DATA CENTER PDDL DOMAIN FILE .. 138

C DATA CENTER PDDL FACT FILE ... 145

D BLOCKS WORLD PDDL DOMAIN FILE .. 150

 iv

LIST OF TABLES

 Page

TABLE

1. Data Center Thermal Model Symbols ... 23

2. JPDL Semantic Symbols ... 39

3. Java Syntax Support Summary ... 43

4. Modeling Library Symbols ... 70

5. Planning Library Symbols .. 87

6. Overstack Problem Solution .. 126

7. Swapstack Initial Problem Mismatches ... 127

8. Swapstack Initial Problem Clear Height Dictionary .. 127

9. Swapstack Problem Solution ... 128

10. Heuristic Comparison on IPC Optimal Track Problems ... 129

11. Satisficing Heuristic vs. Track 1 IPC Results .. 130

12. Satisficing Heuristic vs. Track 2 IPC Results .. 130

 v

LIST OF FIGURES

 Page

FIGURE

1. Design Stack of Declarative Systems ... 3

2. Overview of CPS Interaction. .. 10

3. Overview of Semantic Mapping between System and Components. 11

4. Design Stack of CPS and Planner Component. ... 12

5. Survey Result of Application Papers in ICAPS Conference. ... 13

6. AC Coefficient of Performance. ... 20

7. Effects of Thermal-Aware Scheduling. .. 22

8. Discretization Method for Implementing Thermal Model in PDDL. .. 26

9. PDDL Translation Method of For Loops.. ... 56

10. Modeling Library UML Overview. .. 75

11. Shared Pointer Structure between State and Effects.. ... 79

12. Memory Waste Caused by Defensive Cloning.. ... 80

13. Alternative Partial Cloning Method. ... 82

14. Planning Library UML Overview. ... 93

15. DecisionEpochPattern UML Diagram. .. 93

16. Checkpoint UML Diagram. .. 94

17. CheckpointLink UML Diagram. ... 94

18. LinkTree UML Diagram. .. 95

19. LinkTree Conceptual Diagram. ... 96

20. LinkTree Structural Diagram. .. 97

21. World Lines Visualization. ... 98

22. PlanningBranch UML Diagram. ... 98

23. PlanningHeuristic UML Diagram. .. 99

24. PlanningController UML Diagram. .. 100

25. BlocksWorld StateVariable UML Diagram. ... 108

 vi

CHAPTER Page

26. BlocksWorld State UML Diagram.. 109

27. BlocksWorld Effect UML Diagram. .. 111

28. Example BlocksWorld Goal. .. 112

29. BlocksWorld Goal UML Diagram. ... 113

30. BlocksWorld Mismatch UML Diagram. ... 115

31. BlocksWorld Overstack Problem. .. 116

32. BlindHeuristic UML Diagram. .. 119

33. BlocksWorld BFS Problem. ... 120

34. BFS Problem Search Tree. ... 121

35. Overstack Problem Revisited. ... 125

36. BlocksWorld Swapstack Problem. .. 127

 1

CHAPTER 1

INTRODUCTION

Procedural code is primarily concerned with specifying an algorithm detailing how to do

something. Declarative code is instead primarily concerned with specifying facts about a system

and what is desired while omitting implementation details. For a declarative language to function

an algorithm which powers it must understand what changes are possible and be linked to a

means of actuation. The nature of this task varies from algorithm to algorithm, from domain to

domain. Declarative approaches are intended to make a solution easier to develop by removing

the burden of specifying ‘the how’ and instead limiting the burden of the developer to specifying

‘the what’. A simple example of this comes from the WiX toolset for making installers.

<Directory Id='Foo' Name='Foo'>

The syntax here uses XML which is generally understood by most developers. This line

roughly translates to: “After the installer runs there will be a directory named Foo”. By contrast, a

procedural definition roughly translates to “Create a directory named foo”.

Directory.CreateDirectory(path+"Foo”);

There are several important differences here.

1) For the former definition to have an effect there must be an algorithm that recognizes the

concept of a directory, recognizes or detects that a directory needs creating using logic,

and maps this need to a procedural definition of how to create a directory. The

algorithm’s domain is the set of concepts the algorithm contains logic and mappings for.

Declarative code cannot natively execute on a processor. A processor has no concept of

high-level languages; it only recognizes a limited set of low-level, immediate, instructions.

All declarative code eventually links to a procedural definition in order for it to have an

effect.

2) Consider the case where the directory could not be created because it already exists.

Refer to the rough translations above and try to predict what the system will look like

when the declarative and procedural implementations complete. In the declarative case,

with respect to this domain, there is only one sensible interpretation for a response. In the

 2

procedural case, the result of the statement is less predictable. The result may vary in

implementation between Java, C#, or Python.

3) The burden of responsibility for handling the minutia of possibilities is entirely in the

hands of the developer in the procedural case whereas in the declarative case the

algorithm may provide a commonly agreed-upon solution.

These observations begin to demonstrate the value of declarative approaches as well as

some fundamental requirements of them. If common understanding exists about domain

concepts and logic the developer can be alleviated of the burden of minutia of a procedural

approach. However, this requires the declarative system and its user to agree upon a set of

semantics. This body of work is concerned with the nature of the algorithms which power

declarative approaches, the fundamental limits and requirements of such algorithms, and the

available alternatives which often go unconsidered.

To elaborate, we need to take a closer look at the fundamentals of a declarative approach. A

declarative system is usually a component of or framework used by a larger system as shown in

Figure 1.

 3

The language representation is the start of the interaction with the system from a user

perspective. This could be SQL, Prolog, ADL, WiX, etc. This representation is parsed or

interpreted into a structure which is acted upon by an algorithm which follows it. This structure

could take many forms, and can often vary from implementation to implementation. For example,

MySQL uses a different implementation from MSSQL and hence generate a different structure

despite mostly sharing the same language.

The algorithm encodes at least two things. First, it includes logic which recognizes certain

concepts and their specific expected behavior and breaks them down into specific, proper

responses. Second it contains a mapping of these responses to procedural code, directly or

indirectly.

For the directory example above an algorithm could simply create the nested directories from

the WiX description in a recursive way. This algorithm encodes two things:

Structure

Language

Algorithm

System

Figure 1: Design Stack of Declarative Systems.

 4

1) The knowledge of the middleware structure and the significance of its information with

respect to the purpose of the algorithm

2) A mapping to a procedural actuation to fulfill that purpose.

A reductive example suitable for discussion is shown below:

 public class WiXDirectory

 {

 public string Name;

 public string Path;

 public List<WiXDirectory> Children;

 }

 public static void CreateDirectories(WiXDirectory directory)

 {

 Directory.CreateDirectory(directory.Path + directory.Name);

 foreach (WiXDirectory child in directory.Children)

 {

 CreateDirectories(child);

 }

 }

A more realistic solution will include significantly more complex logic such as error

handling. WiXDirectory here, or a list of them, is the middleware structure corresponding to the

declarative language representation. A parser would build this structure from the WiX

representation and at runtime a controller algorithm will invoke CreateDirectories as part of the

installation process. If this structure were to change, the algorithm which uses it will fail to function

properly. Procedural code needs to address something to invoke it and the structures which are

being addressed need to be agreed upon before an algorithm can act on them. Regardless of

what the structure is an agreed upon structure is required. This structure is a necessary

constraint of the system which uses it. Incorrect behavior can result from an algorithm which uses

a structure while having an incorrect or incomplete understanding of it. On the other hand if the

purpose of the algorithm requires information which the structure is insufficient to express the

algorithm cannot fulfill its purpose.

These structures are not merely convention or a reflection of syntax of the language; the

structures used by the algorithm are efficient/convenient for the purpose of that algorithm. They

organize information for the algorithm and define with precision the forms that information can

 5

take. The meaning of this information is encoded by an author into an algorithm by logically

consistent usage with respect to a purpose.

The algorithm fulfills the purpose of an installer by recognizing the implicit assumption

that the WiXDirectory objects correspond to the need to create a directory and by coordinating

the creation of the directory. The recognition of a concept, the knowledge of its significance, and

the knowledge of what to do about it are generally what we refer to as the semantics of the

algorithm.

In addition to semantics an algorithm encodes a mapping to a procedural implementation.

In the example above the algorithm provides this by invoking CreateDirectory which actually does

the work. Its signature is below and can be linked to a procedural definition which if invoked

correctly fulfills the algorithms purpose.

public static DirectoryInfo CreateDirectory(string path)

The understanding of the procedural definition is encoded into the algorithm by intelligent

and consistent usage and in no way is the procedural definition interpreted or inferred by some

method of artificial intelligence. A programmer encodes his knowledge of the procedural definition

in sufficient detail that his knowledge and intelligence is no longer required at runtime. Artificial

intelligence has yet to approach replacing the role of a programmer or designer and it is dubious

whether such a thing can be solved using an extension of any known approach. Even if the

source code is available it is famously known according the Halting Problem that extracting

complete knowledge of a function from source code is impossible. If we cannot extract working

knowledge about code from its source the only alternative is by its documentation in the way that

a programmer does. However, this method requires a thorough knowledge of and intelligent

model of the world that the code is intended to model in order to understand the code and how to

apply it in a way consistent with that world.

Even having defined the role of language, structure, and algorithm this is still only part of

the system. These systems are intended to provide useful general functionality which is then

applied to an actual domain by a domain author who is the user of the declarative system. The

domain author which is using the system has a different set of semantics. A domain expert brings

 6

with him a ubiquitous language related to the domain with a distinct set of concepts, structures,

relationships, and intuitions about how his domain behaves. In order to use the declarative

system the domain author has to map the domain semantics to the algorithms semantics.

Semantics are in some ways like namespaces. Different namespaces may contain the same

identifiers to refer to the same real world concept but reason with and structure that concept in

completely different ways. The difference between namespaces is similar to the difference

between domain and declarative system semantics. These semantics are not always compatible

and even when they are the mapping itself is often awkward, clumsy, or suffers from some type of

resolution loss or conceptual reduction/generalization. Relationships between entities can be lost,

continuous values can be discretized, organization structures which are efficient for that domain

can be generalized, etc. Depending on the complexity of the domain and how cleanly a domain

maps to these assumptions of the declarative system these constraints can be extremely

problematic. However, some form of restriction is necessary and inherent in defining the

structure. The algorithm is code, and code has to refer to a mutually understood structure to

correctly address it and begin to act on it. There are generally two ways that algorithms achieve

these guarantees.

1) They restrict the language and structure entirely to a range and combination of values

which the algorithm is proven to work for.

2) They make assumptions about the behavior of any form of dependency injection and

build the algorithm around those assumptions.

We demonstrate each of these cases next before considering alternatives. Below is an

example of a closed system.

 7

 private enum KnownCaseEnum { a, b }

 private int Algorithm(KnownCaseEnum caseEnum)

 {

 if (caseEnum == KnownCaseEnum.a)

 return ProceduralMethodForA();

 else if (caseEnum == KnownCaseEnum.b)

 return ProceduralMethodForB();

 else throw new Exception();

 }

The algorithm can be proven to work for the restricted set of cases that the enum allows.

In the WiX directory example the BNF of the WiX language restricts the structure that directories

can be specified in. For example, a developer cannot specify one directory to reside within two

different parent directories. Neither can a directory be specified as a child element of a file.

Neither case will compile. When interpreted, the language is restricted to the extent that it never

produces a case for directories where the full behavior is not understood. There is no hook for

dependency injection anywhere as a child of the directory specification where a procedural

mapping can cause unknown behavior and in that sense the system is closed.

The following code demonstrates how to allow dependency injection.

 private interface MyStruct

 {

 int LeafMethod();

 }

 private int Algorithm(MyStruct myStruct)

 {

 int behaviorSwitch = myStruct.LeafMethod();

 return ProceduralMethod(behaviorSwitch);

 }

By defining itself in this way the algorithm cedes control to an object passed by the

invoker. If the myStruct reference can be provided by the domain author then the definition of

ProceduralMethod must either define behavior for every possible integer of its parameter or risk

failure. The algorithm treats each point of dependency injection as a black box leaf and assumes

it will be well-behaved. This is an inherent risk which can violate any guarantees the algorithm

hopes to provide. For example, if the implementation of LeafMethod is unstable and crashes then

ProceduralMethod will never even be invoked.

 8

One need not look far in our WiX example to find an example of this. Within the first

several pages of every WiX tutorial Custom Actions are introduced. CustomActions are roughly

just domain injection to arbitrary methods during the installation process with extra attributes for

specifying timing.

<CustomAction Id=’Foo’ BinaryKey=’FooBinary’ DllEntry=’FooEntryPoint’/>

<Binary Id=’FooBinary’ SourceFile=’foo.dll’/>

<InstallExecuteSequence>

 <CustomAction=’FooAction’ After=’InstallFiles’/>

</InstallExecuteSequence>

In the example here, after files are installed, the installer will call the FooEntryPoint

method on the foo.dll file. The installer has no idea what this custom action will do, but it treats it

as a black box leaf and assumes that it will not destructively interfere with the installation process

by, for example, tempering with files or directories which are needed.

In neither of the cases above can the domain author augment or extend the

implementation of ProceduralMethod within Algorithm with additional structure and mappings.

Either the algorithm and its structure are sufficiently complete on delivery for their purpose or they

aren’t. In practice, declarative systems often provide numerous pieces of functionality. If most of

that functionality is still desirable but the domain semantics cannot be mapped for even a single

piece of the system the entire process can fail. This raises the question, how can an algorithm

use a structure beyond its understanding? Either the information the algorithm needs must be

provided by an alternate means or the functionality of the algorithm must be extensible. We can

demonstrate both in a single example.

private Dictionary<int, Delegate> BehaviorMappings;

 private Object Algorithm(int behaviorSwitch, Delegate domainAuthorDelegate)

 {

 if (domainAuthorDelegate != null)

 {

 return domainAuthorDelegate.DynamicInvoke(new object[0]);

 }

 else

 {

 object[] args = new object[1] { behaviorSwitch };

 return BehaviorMappings[behaviorSwitch].DynamicInvoke(args);

 }

 }

 9

Replacing the CaseEnum logic from the first example with an extensible mapping

structure allows extra behaviors that fit within a known structure but are unhandled by an

algorithm to be added to the system as needed by the domain author. The

domainAuthorDelegate parameter allows the functionality to be replaced entirely if the structure is

insufficiently expressive for some reason. This example may seem reductively simple but when

demonstrated in the context of more complex systems this change can dramatically improve the

usability of the system as a whole. In short techniques such as these enable a domain author to

extend the algorithm semantics in those cases where they would otherwise be insufficient for the

domain.

This work dives deep into the complex area of planning in artificial intelligence which is

historically dominated by declarative/code interpretive approaches. There we observe a limitation

of existing systems which raises the question just discussed. How can an algorithm use a

structure beyond its understanding? We show several examples of how domain semantics can

exceed the traditional assumptions of this field and propose an alternative system which

overcomes these limitations.

 10

CHAPTER 1 - INTRODUCTION

PROJECT MOTIVATION

Cyber-physical systems (CPSs) are unique in that they contain both a cyber and a physical

component. These systems not only exist in the physical world but affect the world as part of their

core functionality by means of actuation. The world in turn affects the computation of the cyber

domain via sensing. Between this sensing and actuation the cyber component of the CPS makes

sense of the world and via some algorithmic process decides on a course of action which fulfills

the system’s purpose. This general approach has been used by cognitive architectures since their

foundation [1-3].

The purpose and nature of the problem each cyber-physical system attempts to solve will

be different, resulting in different solutions. However, many of the solution subtasks are already

established in different fields. Many CPSs include foundational components such as statistical

libraries, planning libraries, and model checking tools [4-7]. These components are used because

they are well-established and CPS owners hope to lower development costs. However, before a

component can be used the semantics of the domain must be mapped to the semantics of the

component.

Sensing

Actuation

Cyber Physical

Modeling

Abstraction

Problem Solving

Sensors

Actuators

Figure 2: Overview of CPS Interaction.

 11

There are three broad categories of semantic mapping deficiencies which occur.

 Discretization – A resolution loss of data such as representing a double as an integer, or a

numeric as an enumerable can cause precision loss in the model which must be reserved

as slack or the system can become unstable, dangerous, or expensive.

 Generalization – A loss of relationships such as the loss of a primary key in databases.

Without being able to assume certain relationships hold many operations become more

difficult. This difficulty amounts to a less efficient system, including the possibility that

solution times are no longer feasible for the system.

 Simplification – A loss of functional complexity such as representing an integral as a

Riemann sum. Similar to discretization this can cause further precision loss and can

compound discretization errors.

In summary, CPSs necessarily deal with complex physical models. An accurate physical

model can be extremely complex. CPS domain experts often exploit abstractions and

relationships to make modeling costs manageable. When components don’t support sufficiently

Sensors

Actuators

Component Semantics

Abstraction

Map

Domain Semantics

Sensing

Actuation

Structure

Model

Structure Algorithm Result

Figure 3: Overview of Semantic Mapping between System and Components.

 12

rich semantics to capture this information important information is lost in translation and the

performance and safety of the system is compromised.

Academic planners were the components in my work and the CPS domains ranged from

fleet logistics in unmanned aerial vehicles to thermal-aware scheduling in data centers. The

planning problems were unable to be solved with or sometimes even expressed to academic

planners because of semantic mapping deficiencies. Each case was a different, apparently

unrelated, example of semantic mapping deficiency.

Surveying the field of computer science one can conclude that I am not alone in

experiencing difficulty using academic planners. There are many examples of what are

essentially planning problems which are solved without using academic planners. Some broad

examples include node traversal problems like internet routing and the traveling salesman

problem which can be modeled using a cost optimal SAS+ representation, pathfinding in video

games or fleet coordination which are typically solved by some form of A* or TBA* algorithm, and

PDDL

Cyber-Physical System

Planner Component

Language

Structure

Algorithm

System

Figure 4: Design Stack of CPS and Planner Component.

 13

robotic systems such as the DARPA grand challenge winner which solves numerous potential

planning problems [8-12]. The domain experts in each case chose to use a domain-specific

solution. It is possible in some cases this decision was motivated by ignorance of the planning

field. However, even within the narrow field of planning literature where that is highly unlikely

examples of domain-specific solutions are common. Figure 5 shows the results of a survey of the

ICAPS conference application and robotics papers for the last two years (2014-2015) which hosts

the international planning competition. This is the most fertile ground possible for domain-

independent planners and yet a considerable number of authors chose a domain-specific solution

for planning even in this environment.

Figure 5: Survey Result of Application Papers in ICAPS conference.

These authors either cannot or have chosen not to use academic planning solutions. This

remains true despite the intentions of the planning community to solve more complex and realistic

domains. These authors must have their reasons for these decisions. I have observed several

drawbacks to the approach the planning literature has taken as a whole which I feel contributed to

this lack of adoption:

Dependent, 10,

48%

Hybrid, 3, 14%

Independent, 8,

38%

 14

• The tools available for developing domains for an academic planner are far behind the

support of major programming languages both in labor investment and effectiveness.

Workshops such as KEPS encourage improvements in this area but the gulf remains.

• The solution space is often inscrutable. While the methodology which led to a solution is

explained in great detail in the literature, it is often tedious to answer specific questions

about the decision process of the planner for a given problem. For example, as a matter

of quality assurance (QA) domain authors are understandably asked to answer questions

about why the planner did not yield a plan of an expected form. This information is often

not available after the planning process has completed and extracting it mid-execution

can require working with planner source code. This is exacerbated by the fact that the

middle-ware structures that planners parse problems into and which their heuristics

understand are non-standard even if they are similar. These non-standard structures

complicate the task of evaluating and selecting between multiple planners for a domain.

• The expressive capabilities of common languages such as PDDL 3.1, RDDL, ANML,

and SAS+ are each limited to a complexity which the supporting planner can parse and

understand [12-16]. This is a problem with all code interpretive planning approaches. If

the domain intrinsically requires more complexity than the language supports the problem

is unsolvable by any planner using that language.

• Planning languages such as PDDL lack heuristic guidance mechanisms as a matter of

philosophy [17].

The PDDL language was designed to be a neutral specification of planning problems. Neutral

means that it doesn’t favor any particular planning system. The slogan we used to summarize this

goal was “physics, not advice.” That is, every piece of a representation would be a necessary part

of the specification of what actions were possible and what their effects are. All traces of “hints”

to a planning system would be eliminated.

Contrast this with successful declarative industrial languages like SQL which include

query hints that enable algorithmic variations in the underlying implementations. A planning

equivalent would be flagging a specific predicate list as friendly for relaxation. Excluding them

from the language only makes sense from an academic evaluation perspective. It does not make

sense from the perspective of a language for serious problem solving.

 15

These four drawbacks can be summarized as a lack of support, transparency,

expressiveness, and control. These drawbacks are not intentional. They likely exist due to some

combination of higher priority, competing needs of academic planners. These include low barrier

to entry for planner authors, freedom of implementation enabling various middle-ware structures

to be attempted, and strong delegation of responsibility between the domain author and planner.

Support and transparency are largely conveniences. While still important a solution is still feasible

using technologies with poor support and transparency. Expressiveness and control shortfalls on

the other hand can render a solution impossible.

This work proposes an alternative to address these shortfalls; a planning library that

facilitates domain expert knowledge injection by a variety dependency injection design patterns to

overcome the usual structural and algorithmic limitations of declarative systems described in the

introduction. This work fundamentally reconsiders the relationship between a planner and domain

author. This paradigm shift arises from a philosophical difference and divergent design goals

between academic solutions and industry solutions.

 16

CHAPTER 1 - INTRODUCTION

BACKGROUND LITERATURE

Several of these shortfalls are already widely recognized and have some existing work attempting

to address them.

A plethora of work exists from the KEPS workshop devoted to improving

support/transparency. Shah et al. provide an excellent survey of knowledge engineering (KE)

tools in planning [18]. They group existing tools by methodology and rate each methodology

according to these metrics (quoted from citation):

Operationality. How efficient are the models produced? Is the method able to improve

the performances of planners on generated models and problems?

Collaboration. Does the method/tool help in team efforts? Is the method/tool suitable for

being exploited in teams or is it focused on supporting the work of a single user?

Maintenance. How easy is it to come back and change a model? Is there any type of

documentation that is automatically generated? Does the tool induce users to produce

documentation?

Experience. Is the method/tool indicated for inexperienced planning users? Do users

need to have a good knowledge of PDDL? Is it able to support users and to hide low level

details?

Efficiency. How quickly are acceptable models produced?

Debugging. Does the method/tool support debugging? Does it cut down the time needed

to debug? Is there any mechanism for promoting the overall quality of the model?

Support. Are there manuals available for using the method/tools? Is it easy to receive

support? Is there an active community using the tool?

The survey concludes that the KE tools available are particularly poor at the experience,

collaboration, maintenance, debugging and, support metrics and that this is a significant deterrent

to adoption of planning technologies. This directly supports my view.

 17

Given the hardness of generating domain models for planning, many users are not
exploiting automated planning but use easier approaches, even if they are less efficient
[18].

Another recent survey has provided a review of nine approaches which learn a domain

description from observation rather than relying on humans to encode the domain with similar

conclusions that further work is necessary [19]. Other publications indirectly help the support

shortfall, such as by improving visualization [20-21].

The expressiveness shortfall in particular has been recognized for decades and there

have been significant semantic enrichments to PDDL since its inception as a purely propositional

language to extend its scope to include time and numbers [22]. There exists a frontier in

knowledge representation in planning languages which is gradually expanding. At the moment it

lies in probabilistic planning with PPDDL and RDDL2 and planners like PROST and in continuous

linear models with PDDL+ and planners like COLIN [23-26]. These works expand the

expressiveness limitation of the language and expand the capacity of planners to handle new

language features respectively.

There is evidence that this frontier will continue to expand. For example, recent work is

attempting to extend PDDL beyond even these limits. Work on Satisfiability Modulo Theories

(SMT) allows functions to be specified in external theory modules. Planning Modulo Theories

attempt to apply SMT reading to planning domains [27]. More recently attempts are being made

to apply this work using hybrid planning techniques to combine specialized solvers with general

purpose planners [28].

Regardless of how far this frontier progresses there will always be domains which exist

on the frontier or quite beyond it until the problem of hard AI is solved. Beyond this frontier lie

problems of representational complexity which, while neither unfathomable nor unsolvable,

remain decades out of reach if the frontier of knowledge representation progresses as it has.

Surrounding this frontier are various works on applications papers which the previous

section showed the survey results for. The detailed breakdown of this survey is shown in the

Table in Appendix A.

 18

Domain-dependent results use custom languages or representations, or extend existing

declarative languages or write a custom heuristic/planner specifically for their application. Hybrid

results combine an off-the-shelf planner with a pre/post processor algorithm which abstracts out

considerable portions of the domain from the planning problem and recombines the planner result

with these domain elements to produce a different plan before actuating. Domain-independent

results use an off-the-shelf planner or technology such as Partially Observable Markov Decision

Processes (POMDPs).

The control shortfall is a topic that has fallen out of fashion despite its early success over

10 years ago [5]. Over a decade ago, work which capitalized on domain-specific knowledge was

more common. In the 2000 and 2002 International Planning Competitions domain-configurable

planners dominated the performance with planners like TLPlan, TALPlanner, and SHOP2 [54-56].

Authors of this early work believed that this direction was not only beneficial but

indispensable.

… can often convert an intractable planning problem to a tractable one; i.e., it can often
be the only way in which automatic planning is possible. [54]

The approach appears to be the key to the next order of magnitude scaling of state-
space planning algorithms. Problems that could not be solved in days could be solved in
seconds with additional axiomatic knowledge. [57]

Since then no domain-configurable heuristic languages have been officially developed.

Rather, domain-configurable planners exist with no unifying representation. The lack of progress

and apparent regression of domain-configurable work gives the general appearance of a cultural

bias in the planning community against domain-configurable work.

Most recent work in this direction has appeared immediately outside the planning

community in areas like logical programming and answer set programming [58-59]. All existing

domain-configurable work imposes modeling limitations so that a heuristic may act. This is an

unfortunate state of affairs for CPS owners and leads many applications to use simpler, less

efficient technologies as demonstrated by the survey.

 19

CHAPTER 2

DATA CENTER DOMAIN

The thermal modeling problem described in this chapter was the first thing I did with the Impact

lab. The problem began with a machine learning task but became much bigger when it was

proved that the underlying physical model was too complex to represent using a machine learning

library. However, once we had the refined model to a more accurate one it was not clear how to

use that model to solve the problem because it could no longer be input to a planner.

This chapter will outline the importance and basic function of the domain itself, cover the

mathematical foundation of the transient thermal model, discuss why this model is problematic to

represent in PDDL, show what an implementation in PDDL would look like, and then evaluate

planner performance on intuitive examples of this domain compared to a library-based alternative

approach.

 20

CHAPTER 2 – DATA CENTER DOMAIN

DATA CENTER THERMAL MODEL

Due to their $7.4 billion in annual electricity use, data centers are an important area in green

computing. Researchers have developed numerous energy-aware approaches to reduce support

infrastructure costs. Many of these improvements rely on a thermal model to predict the

temperature at places of interest throughout data center facilities. These predictions are useful in

evaluating potential changes in equipment utilization (e.g., which server to assign an incoming

workload). However, the majority of this field of work only predicts steady state temperatures,

ignoring critical temporal aspects of thermal behavior. This not only diminishes effectiveness but

also can cause service-level agreement (SLA) violations and equipment damage through

unforeseen temperature spikes.

To address these problems we developed and published a transient thermal model at

IGCC12 that captures the transient behavior. This transient thermal model captures the behavior

necessary to predict thermal hot spots before they arise [60].

The basis of the energy savings in our scheduling problem comes from creating a

balanced thermal profile across the data center. Consider the efficiency of an AC unit as a

function of its output temperature.

Figure 6: AC Coefficient of Performance

 21

AC efficiency is defined in terms of coefficient of performance (COP).The COP of the AC

is the amount of heat removed per energy consumed by the AC.

COP =
Heat Removed

Work Consumed By AC
.

With a COP of 1, fifty percent of the energy expended by the data center will be the cost

of cooling. Simply note that the lower the return temperature and the bigger the delta, the more

energy is spent per Joule to remove it. In our data center example if the set of jobs produce an

invariant total Joules of energy the cost of removing that energy from the system is higher if the

air is being cooled more. When a chassis in the data center is significantly below its

manufacturer-specified red-line temperature energy is allocated inefficiently in the room. In a

perfect allocation all equipment is running at its redline temperature and the COP and data center

efficiency is thus maximized.

If the temperature of a data center can be predicted with respect to a given schedule of

jobs, a planner could provide temperature aware task schedules for the equipment and a

temperature schedule for the AC to prevent wasteful overcooling of the data center. As long as

the inlet of all equipment is kept below its manufacturer-specified red-line temperature and

system performance is not overly affected, this efficiency gain causes no SLA violations. An

example of the effect that load distribution can have on temperature is shown in the figure below.

For this summary, it is sufficient to say that cooling efficiency of a data center is maximized when

the inlet temperatures of all machines are equal to their redline temperatures. The more accurate

a thermal model, the less slack that needs to be left when performing thermal-aware scheduling.

This can lower the total cost of ownership of very large data centers by millions of dollars

annually.

 22

Figure 7: Effects of Thermal-Aware Scheduling [75].

 23

Symbol Definition

n Number of points of interests: Chassis, AC inlets, etc.

t Time

Tj+(t) Inlet (sink) temperature of point j at time t.

Tj-(t) Outlet (source) temperature of point j at time t.

Tj(∞) Starting steady state temperature of point j.

cij(t) Temporal influence curve of point i’s temperature upon point j.

wij Weighting matrix of point i upon point j.

f Transfer function of point j

Table 1: Data Center Thermal Model Symbols.

Our model uses the symbols of Table 1, where source temperatures are initialized as

steady state temperatures. The full equations for the model are below.

𝑇𝑗+(𝑡) =∑𝑤𝑖𝑗 ∫𝑐𝑖𝑗(𝜏)𝑇𝑖−(𝑡 + 𝜏)𝜕𝜏

𝑡

−∞

𝑛

𝑖=1

𝑇𝑗−(𝑡) = 𝑓𝑗(𝑇𝑗+(𝑡))

This model accounts for air spreading out over time as it travels from location to location

within the model using the integral of the temporal influence curves. Further, it accounts for air

from multiple locations using a weighting matrix.

To calculate the temperature predictions of the model for a location at a time t:

1) A contribution temperature is calculated using an integral of a cij(t) curve for each source

in the model upon the desired location.

2) The contribution temperatures are averaged together using a weighting matrix to derive

the predicted sink temperature for each location.

3) The sink temperature is modified by a transfer function to produce the source

temperature to be used at future times.

The transfer function for chassis is a simple constant load value based on the utilization

of the chassis. The AC has a step-wise linear cooling function which motivated the model to begin

with.

 24

The publication discusses further aspects of the problem such as assumptions, a proof

that equilibriums are impossible for most configurations, how to learn the various model

parameters, and comparisons against previous work but for the purpose of this work all that is

needed is a basic understanding of the operators of the model and what they mean.

As will be shown this model is problematic to represent in PDDL and even much simpler

variants of this domain suffer significantly from semantic mapping deficiencies to planning

semantics.

 25

CHAPTER 2 – DATA CENTER DOMAIN

PLANNING CONSIDERATIONS

On trying to implement this model in any planning language the first problem encountered is that

the calculus required for the temperature calculation of is not supported in a continuous manner.

Some languages like PDDL+ allow a description of continuous change of the form ∂V/ ∂t = f. An

example in PDDL+ is shown below

(:process charging

:parameters (?r - rover)

:precondition (and (<= (charge ?r) (capacity ?r))

 (in-sun ?r)

 (charging ?r))

:effect (increase (charge ?r)

 (* #t (charge-rate ?r))))

This process is modeling battery charging in the rover domain. This is a standard domain

used in the international planning competition (IPC) based on the challenges of the Mars rover.

The Mars rover CPS uses a planner component as part of its solution which needs to account for

the charge of its batteries. The process above states that while the rover, ?r, has remaining

capacity that could be charged, is in the sun, and is charging, the amount of charge is

continuously increased by the charge rate.

This looks promising but the formula for f cannot refer to values at any time other than the

present and the operators it can include are limited to the arithmetic set (+,−, ×, ÷). Two

approximations are necessary because of this.

 The current state must contain all values necessary for the calculation. This requires

discretizing all temperature values (Ti+, Ti-) by sampling their values distinct time points

rather than modeling it continuously. This is an example of Discretization in semantic

mapping.

 The calculation of Ti+ must be approximated using a Riemann sum. This is an example of

Simplification in semantic mapping.

 26

To demonstrate this, consider the simplified model below which removes recirculation

(the weighting matrix) and the complexity of the temporal influence curves entirely. If we have a

continuous model:

 isie

t

t
AC

ii
tt

T
tLtT

ie

is

)(

)()(

where TAC is the AC temperature and Li(t) is a continuous load function, mapping to planning

semantics requires discretizing TAC and Ti. as shown below.

1

)(
0

n

T

LT

n

i

iAC

ii

These approximations require some complex mechanics shown in the figure below.

An ordered set of sample variables,)(iACT , are created to hold historical AC

temperature values that are sampled at a regular discretization period, , by an artificial

T
AC

(∆
n
) T

AC
(∆

...
) T

AC
(∆

1
) T

AC
(∆

0
)

1 2 3 4
t

0.5

1.0

1.5

2.0

TAC

Sampling
Push Chain

𝑇𝑖 = 𝐿𝑖 +
 TAC(∆𝑖)
𝑛
𝑖=0

𝑛 + 1

1 2 3 4 5 6 7
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T

Figure 8: Discretization method for implementing thermal model in PDDL.

 27

modeling action. To maintain semantic consistency, past temperature values are pushed from

one variable to the next, 𝑇𝐴𝐶(∆𝑚+1) = 𝑇𝐴𝐶(∆𝑚) ∀0 ≤ 𝑚 ≤ 𝑛 , resulting in 𝑛 + 1 variable

modifications per ∆ as time progresses. These sample variables can then be used to calculate Ti.

These approximations come with several unwanted consequences.

First, since no optimal solutions exist for which TAC is discretized, no optimal solutions

can be found with these planning semantics. The optimal solution cannot even be expressed as a

plan using state of the art planning semantics for basically the same reason a polynomial function

can only be approximated by line segments.

Furthermore, discretizing TAC leads to modeling precision loss which carries over into Ti.

The Ti calculation simplification compounds this problem. Underestimating Ti can cause

overheating which can cause equipment damage and SLA violations from equipment shutdowns

if the inaccurate model is acted upon. Even if an acceptable level of precision loss can be found,

this is an undesirable outcome of nothing more than semantic mapping. It is impossible to

represent this domain accurately or produce an optimal solution using state-of-the-art planning

semantics.

Second, the net result of the process shown in Figure 5 is an explosion in the number of

variables which model TAC from 1 to n +1. Since the correlation between these variables is lost in

translation, they seem independent to proof-based heuristics and such approaches become

quickly overrun. Planners which consider combinations of AC temperatures independently are

effectively faced with a more complex version of the NP-Complete knapsack problem.

This observation reveals two opposing forces. First, if the discretization period is too large

unacceptable precision loss renders the system dangerous or unusable. If the discretization

period is too small the variable count explosion renders the system unusable.

For a sense of scale consider several real values from our measured data center. If the

heat exceeds the maximum temperature for more than about a second the hardware safety will

kick in and the equipment will shut down. When this happens, data integrity can be compromised.

At best, restarting the machine and recovering the work takes several minutes during which the

performance of the system has suffered. This can cause punitively expensive SLA violations if

 28

there was insufficient slack in the schedule to recover from the sudden loss of a machine. This

implies the system requires a of less than 1 second.

The number of discretization windows, n, is on the order of minutes. In the measured

data center air could take about 10 minutes to cycle which yields n≈600. Solving a problem of this

scale is already difficult. The full problem is even worse though. In the full domain model the

calculation for Ti considers air recirculation between chassis as well as the AC which would

increase this value to j(n + 1) where j is the number of thermal points of interest. Large data

centers can have tens of thousands of chassis, yielding millions of independent variables.

Polynomial time solutions are quickly overrun.

Furthermore, heuristically there are several more problems. First and foremost, the

branching factor of possible job schedules is at worst N machines by J jobs per time step. Modern

planners rely on sophisticated heuristics to prune this tree based on an action’s ‘usefulness’ in

order to reduce the search space to a manageable set. However, ‘usefulness’ is determined by

how an action affects some part of the state. This is problematic because the action that is

causing the thermal constraint violations (the heat modeling action) is distantly removed from the

action that actually caused the problem (the job assignment action). Therefore, to prune the

space at all, a heuristic must consider indirect effects. The further removed those effects are from

the action considered, the more costly such heuristics become. In this domain, the important

consequences of scheduling a job can be thousands of state transitions deep depending on the

discretization interval size and time span of the c curve. Furthermore, each job assignment action

indirectly affects the entire temperature model of the data center, so heuristics cannot safely

ignore any of the temperature changes anywhere in the model. This becomes extremely

problematic as server count and time resolution increase and the sheer number of effects to

consider multiplies.

Second, as already mentioned, PDDL does not support planner guidance syntax. This

makes the above problem inescapable but also independently wastes many resources. For

example, take the simple statement: ‘the heat modeling action must be executed at each time

step’. To capture this behavior in PDDL we are limited to describing constraints or goals on the

 29

domain that the planner can use to infer that it must apply the heat model action. This is

understandably inefficient. After an action is selected, the planner returns to the action selection

process. This action selection process can be time consuming and pointless when, by design,

there is only one useful action that could potentially be taken, such as the heat modeling action.

Unrelated to the planning heuristic the representation of this domain is awkward in PDDL

because the domain file is dependent on the number of chassis which is something that is usually

associated with a problem rather than a domain file. Maintaining a solution therefore requires a

problem generator to also create domain files as well. This adds programmatic complexity to the

domain which feels unwarranted.

 30

CHAPTER 2 – DATA CENTER DOMAIN

PDDL IMPLEMENTATION

Despite the concerns of the previous section a formal basis for a PDDL implementation is

provided here.

To calculate Ti+(t) with maximum cij duration of 5 (𝑐𝑖𝑗(𝑡) > 0 ∀𝑡 𝑡𝑖 < 𝑡 < 𝑡𝑒 & 𝑡𝑒 − 𝑡𝑖 ≤ 5),

with a discretization window of 1 second, the contribution temperature of location 1 on itself looks

something like this:

(+
 (* (cCurveDt5 ?server1 ?server1) (temperatureOut ?server1 ?dt5))
 (* (cCurveDt4 ?server1 ?server1) (temperatureOut ?server1 ?dt4))
 (* (cCurveDt3 ?server1 ?server1) (temperatureOut ?server1 ?dt3))
 (* (cCurveDt2 ?server1 ?server1) (temperatureOut ?server1 ?dt2))
 (* (cCurveDt1 ?server1 ?server1) (temperatureOut ?server1 ?dt1))
)

Note that if the discretization window changes or cij changes this function needs to be

rewritten accordingly. This complexity of this computation increases as the simulation time step

approaches zero, the span of the temporal influence curve expands, or the number of servers

increases. Alternatively, we could have one cij list that uses a new type of object to facilitate the

same logic.

(+
 (* (cCurve ?server1 ?server1 ?cCurveOffset5) (temperatureOut ?server1 ?dt5))
 …

All this really does is to reduce the list count but increase the cost of each predicate

lookup and add new parameter objects to the action. It further complicates search, which will hurt

planner performance slightly. ?dt5 could not be reused because it refers to an offset of 5 from

current time rather than a constant offset of 5.

Next the weighting matrix is used to average the contribution temperatures calculated

above.The above contribution temperature would replace T11 here. An equally long calculation

replaces each other Txx value.

 31

(assign (temperatureIn ?server1 ?currentTime)

 (+

 (* (w ?server1 ?server1) T11)

 (* (w ?server2 ?server1) T21)

 (* (w ?server3 ?server1) T31)

 (* (w ?server4 ?server1) T41)

)

)

Lastly the outlet temperatures are calculated from the inlet temperatures and the transfer

function.

(assign (temperatureOut ?server1 ?t) (+ (temperatureIn ?server1 ?t) (temperatureIncrease

?server1))

This assumes that temperatureIncrease is maintained by whatever action schedules the

job on a server.

A major concern with the above implementation is that it is relatively rigid to a specific

data center and time resolution. For instance, if more locations are added, the above

computations are not general enough to use without being recoded. The same is true for longer

spanning temporal influence curves.

Doing this at scale required a file generator to produce the PDDL files from a concise

XML problem description. Appendix B and C contain an example PDDL domain and fact file for

this implementation generated using T4 templates.

 32

CHAPTER 2 – DATA CENTER DOMAIN

EVALUATION

There are several factors that would be useful to measure to determine the relative advantage of

an alternative approach to PDDL with respect to the issues raised above.

1. The cost of increasing time resolution and location count for a given domain.

2. The overhead cost of just the actions and their coordination.

3. Upper bound complexity limits.

The first two points above correspond to the concerns raised in the planning

considerations section. The third point is to justify whether an alternative approach is necessary.

For all of the above evaluations, one or more planners would need to be deployed and fed the

PDDL files.

To separate the cost of job scheduling from the cost of the heat modeling itself, we can

evaluate this domain with various location counts and time resolutions but absent jobs and

compare the performance against the JPDL implementation.

To facilitate comparison, the XML problem description used to generate the example

PDDL files in the appendix is actually loaded into the planning modeling semantics object web

before being used by the template engine. This enables the XML problem description to be used

both for outputting to a PDDL planner and directly by the planning library for comparison.

However, no planning heuristic exists at present for the data center domain.

 33

CHAPTER 3

PDDL SEMANTIC LIMITATIONS

Several semantic mapping deficiencies for PDDL have already been defined in the data center

domain in Chapter 2. Here I reflect on several more specific limitations and the reasons these

limitations exist.

PDDL actions cannot represent numeric variables as part of the action header. Instead,

the header can only support objects. This has the minor and obvious effect of inconveniencing

developers by forcing them to invent container predicate lists if they wish to refer to a numeric in

the action description, but it also has the more important but subtle effect of limiting the actions

that can be described. For example, we can express an action to move a vehicle to a location:

(:action Move :parameters (?Vehicle – Vehicle ?CurrentLocation ?TargetLocation – Location)

:precondition (at ?CurrentLocation ?Vehicle)

:effect (and (not (at ?CurrentLocation ?Vehicle)

 (at ?TargetLocation ?Vehicle))

)

However, attempting to support an action to move a vehicle east by a numeric unit is

clumsy.

(action Move-East :parameters (?Vehicle – Vehicle ?VehicleLocation – Location ?Distance – Value)

 :precondition (at ?VehicleLocation ?Vehicle)

 :effect (increase (LocationX ?VehicleLocation) (Value ?Distance))

)

The limitation of only using objects in the header has forced the designer to create an

entire predicate list to contain values for numeric access (Value). This is obviously inconvenient.

The more important but subtle effect is the limit this has placed on expressiveness. The domain is

only as complete as the value predicate list is. If this predicate list only holds a single object, any

plan produced can only contain actions that move a vehicle east by that value. It would require

infinite objects in the Value predicate list to completely capture the logical concept of moving a

vehicle east. To the degree that this list is incomplete, the expressiveness of the domain is

incomplete. This particular implementation also has the additional unintuitive characteristic and

 34

potential bug where multiple vehicles would be moved if they were to share the same location

object in the (at) list.

This expressive limitation exists by design to limit the branching factor in search. The

number of different objects may be numerous, but for any given problem there are a countable,

finite number of plans that are possible up to any arbitrary plan depth N. This is a very useful

characteristic for a planner author who wishes to do proofs for a paper. It is a necessary condition

for the property of completeness. Consider an alternative representation where the header could

contain a continuous value rather than what is effectively an enumerable type. By definition, there

are as many possible actions as there are possible numbers. The number of actions becomes

uncountable unless you limit the parameter to a set of numbers by some other means.

Another problem becomes evident if we try to expand on a domain that uses the location

to location approach above. Consider a travel action where one or more effects are dependent

upon the Euclidian distance between location objects. In PDDL, there is no mechanism for

calculating a Euclidian distance. Instead, all calculations more complicated than the BNF of PDDL

must be evaluated in advance and the results must be written to a fact file in a predicate list

containing object parameters.

(= (EuclidianDistance ?Location1 ?Location2) 1)

In our travel action, this can add up to n2 predicate list values rows of overhead, where n

is the number of locations. However, most of these rows will probably never be needed.

Other complex functions can be impossible to represent in this way because important

properties of the object may change during the planning process. For example, if a location object

ever needs to move, it would invalidate the entire EuclidianDistance predicate list cached in the

fact file. There is no mechanism by which the planner can update these rows accurately as they

needed to be evaluated in advance. Eventually, a developer is either forced to utilize tabling with

these limitations or utilize PDDL as a Turing complete system so far removed from the intent of

actions that a planner will fail when it attempts to use the domain. Examples of this are provided

in Section 4 under multi-part actions.

 35

All PDDL primitive expressions are predicate based. Objects in PDDL are essentially just

identifiers. Object oriented programming can’t be supported in a straightforward way. Predicates

are essentially just multi-key, single-value tables. Having these structures as the only form of data

representation other than constants will inevitably slow down a planner and cost extra memory.

To understand this, contrast object oriented field access, which is constant time, to a predicate

table lookup, which is, at best, hash table lookup time. In the first travel action above, the only

reason for the precondition, (at ?CurrentLocation ?Vehicle), was to bind the ?CurrentLocation

object to the location associated with that object in the (at) predicate list. Juxtapose this to the

object oriented description of Vehicle.CurrentLocation. The difference in time is unavoidable

because predicate tables can support reverse lookup in a way that field access cannot. One

cannot use a pointer to CurrentLocation to get all Vehicles that have a CurrentLocation pointing to

the same object. In PDDL, accomplishing this is trivial, but computational cost occurs regardless

of whether this functionality is required. This does not at all affect the expressiveness of JPDL. In

fact, it is in fact possible to do a translation of any object oriented structure to a predicate list

structure in a straightforward way. The difference is only the speed of using these structures.

PDDL offers the domain author no choice.

The reason for this limitation is likely design simplicity. A predicate list is the most general

structure and is very well suited to both forward and backward chaining planners. The more

complex the underlying BNF the higher the barrier to entry is. Because PDDL has an origin based

in an academic planning competition the barrier to entry for planner authors needed to be low

enough that multiple teams would compete. Adding representational diversity may increase

usability but it is academically uninteresting and would only increase the barrier to entry for

planner authors.

In general expressiveness limitations exist because the focus of PDDL is on the planner

authors instead of domain authors.

The second shortfall of PDDL is a variety of software development concerns ranging from

the single file requirement, to a lack of software reuse, missing IDE’s, a lack of support for

modern concepts like inheritance, and the unintuitive and unfamiliar structure of PDDL to an

 36

average software developer. In the following chapters, I explore two approaches that address

these concerns.

First, I demonstrate an attempt to utilize a subset of a modern language (Java) and

translate/compile that representation into PDDL. This allowed developers to use modern tools

such as Eclipse to develop a domain. However, this compilation also destroys many potentially

useful elements that higher level languages have and PDDL does not such as classes and loops.

Alternatively, a planner could try to use JPDL directly. It is unclear how a domain-independent

planner would be able to utilize some of the above elements. If a way could be found to utilize

some or all of these elements, it would be of interest to the knowledge representation and

planning communities. Even if it were proven that these elements could not be utilized efficiently

by a domain-independent planner, it would only raise the question of whether domain-

independent planners are the end-all be-all, or whether rapidly configurable domain-dependent

planners would be a preferable tool to solving many problems.

The planning community is already showing that domain-dependent planners have a

future. In the 2011 international planning competition the portfolio planning approach was a clear

winner. Portfolio planning is an approach to planning that takes advantage of the relative

strengths of different planners at solving different domains. A meta-planner analyzes a domain for

computationally important characteristics, and chooses the planner that has been shown to

perform best for similar domains. This approach makes each planner domain-dependent in the

sense that it is only appropriate to use it on certain domains.

Second, I address the possibility of implementing a planning library in a modern

language. In such an environment, actions are executed rather than interpreted. This offers

expressiveness equal to the underlying language, but will require extra effort from domain authors

to specify not only the action, but also how a planner should use it. This challenges the

breakdown of responsibility between planner and domain authors, but it offers a glimpse of

industrial grade solutions to planning domains which would previously have been

inexpressible/unsolvable by academic planners.

 37

CHAPTER 4

JPDL TRANSLATOR

This section focuses on work published in the ICAPS 11 conference KEPS workshop [61]. Since

this publication several changes have been made to the language independent semantics relating

to how State Variable sets and primitives are used and what information an Effect has access to

but the temporal semantics and basic terms remain largely unchanged.

JPDL (Java Planning Description Language) uses a subset of the existing Java syntax,

borrows the semantic meaning from Sun’s JVM for this subset, and integrates the semantic

meaning of PDDL with this subset. This enables translation software to transform a Java compile-

friendly syntax into a PDDL representation. Such a system can theoretically be significantly easier

to use than writing PDDL directly and just the exercise helps to identify the relative advantages

and disadvantages of PDDL’s chosen format by juxtaposing the underlying semantics.

The fact that JPDL syntax is a subset of Java allows JPDL to benefit from a number of

trends and improvements in software languages of the last decades. The first such trend is the

rise of development environments such as Eclipse and Visual Studio. Many developers prefer

IDE’s because of the benefits they provide, such as real time feedback in code correctness.

Languages such as PDDL, which are so entirely different from what IDE’s today support, lose

access to these benefits. Additionally, developers lose access to the rich feedback compilers

provide for well-supported languages at compilation time. Given the difference in human

resources devoted to industrial grade compilers compared to planners like FF, LAMA, and

SGPlan, it is only natural that the feedback provided by existing planners on syntactic errors is

more sparse and less informative than those provided by Visual Studio or JVC [62-64]. Another

trend is the decline of Lisp-like syntax which PDDL is still based on for legacy reasons. This

legacy structure fundamentally prevents compilers from being able to diagnose certain syntactic

errors that are possible to diagnose in more modern syntaxes such as Java or C. One last trend

is the advancement of newer programming paradigms such as object-oriented code which

provides certain types of information not available in PDDL. Utilizing this information properly

 38

could increase the efficiency of planners. Taken together, the benefits of these trends increase

the usability of JPDL compared to a number of other planning description languages.

 39

CHAPTER 4 – JPDL TRANSLATOR

LANGUAGE INDEPENDENT SEMANTICS

The following table contains the common symbol list of the language independent modeling

semantics JPDL defines. These symbols are each formally defined below.

Symbol Meaning

W World Model

SL State list

EL pending Effect list

CL Constraint list

GL Goal list

S State

V State Variable set

Pv Paired Identity and Primitive Set

E Effect

t time

Table 2: JPDL Semantic Symbols.

A State Variable v consists of a string identity i, a paired Identity and Primitive Set Pv

of value types, and a State Variable set V which allow for recursive hierarchies.

A State S consists of a paired Identity and Primitive set Pv, a State Variable set V, and

time bounds [ti, te) for which these mappings hold.

A State List SL consists of a time ordered set of states with continuous time bounds

ranging from a beginning time ti to an eventual time t∞. This provides a timeline of how values

change over time. The current State of the State List is the state with te = t∞ and ti = current time.

States before the current time are considered final and immutable.

An Effect E is a function f(t, Pv, V, W) that uses a paired Identity and Primitive set Pv, a

set of State Variables V, and a World Model W with a State List with current time t, to produce a

new World Model Ẇ with modified State Variables on the current State, pending Effects,

constraints, and goals. A pending Effect is an Effect of a World Model where the time t of the

Effect is greater than the current time of the State List of the World Model.

A Constraint C is a function f(ti, te, Pv, V, W), that uses a paired Identity and Primitive set

Pv, a set of State Variables V, and a World Model W, to evaluate a whether a pattern contained

 40

within f is matched by W within the range [ti, te]. If the pattern contained within f is not matched the

WorldModel is inconsistent and the constraint has violated.

A Goal G is a function f(ti, te,, Pv, V, W), that uses a paired Identity and Primitive set Pv,

and a World Model W, to evaluate a whether a pattern contained within f is matched by W within

the range [ti, te]. When the pattern contained within f is first matched by a State of W the goal is

considered to be satisfied.

A World Model W consists of a paired Identity and Primitive set Pv, a State list, a

pending Effect list, a Constraint list, and a Goal list. It contains all information required to apply

pending Effects until the current time of the State list matches the eventual time or all goals have

been satisfied and no constraints have been violated.

A Problem P is an initialization function that returns a World Model that initially violates

no Constraints and has unsatisfied Goals.

A Plan is a list of Effects which can be added to pending Effect list of a WorldModel provided by a

Problem and validated by Advancing a WorldModel to an eventual time using the algorithm

below.

 41

CHAPTER 4 – JPDL TRANSLATOR

WORLD MODEL ADVANCEMENT ALGORITHM

JPDL defines language independent semantics for modeling. This algorithm is used to simulate a

model, advance the current time past the time of all Effects, and check the evolving World Model

for consistency and validate a plan if one exists.

1) A World Model W is initialized by a Problem P.

2) Initialize and add all plan Effects to EL.

3) Select all pending Effects with min time t<te to yield a next Effect set En. If En = {} Go to

step 7.

4) Select the current State from SL. If the current State does not have ti=t advance the State

List:

a. Split the current State by creating 2 states S1 and S2 with identical P and V to S.

S1 has ti equal to S, te=t, and becomes the new current State. S2 has ti=t and te

equal to S.

b. Finalize S1.

5) Apply all Effects in En to produce a new World Model Ẇ.

6) Set and W= Ẇ, Go to step 3.

7) Select and Finalize Se the tail state of SL.

8) If Goals remain unsatisfied fail.

To finalize a State S:

1) Check Constraints in CL that overlap S. If any Constraints are violated fail.

2) Satisfy Goals that overlap S. If all goals are satisfied then pass.

There have been several changes to the JPDL semantics and advancement algorithm

since publication. During the process of implementing the JPDL semantics in c#, creating

planning semantics that utilize these modeling semantics, and solving several domains several

changes occurred to the JPDL semantics I originally published.

 42

The terminology has evolved in many ways. State Lists are not just consistent with

Constraints, but rather when a Constraint is checked it might be violated by a World Model. The

World Model semantic did not originally exist, so Effects had to take a State List, pending Effect

List, and Constraint List. This led to the awkward exclusion of a Constraint List being accessible

to a Constraint even as I talked about how Constraints could modify the Constraint List. Goals

were originally just a special type of Constraint that had a start and end time of the eventual time.

While a domain author could still choose to do this to only check Goals at the eventual time, the

current approach is more flexible.

 43

CHAPTER 4 – JPDL TRANSLATOR

TRANSLATION

JPDL was created in an experimental attempt to improve the usability of PDDL. The basic notion

was that Java had superior tooling and support and would be more familiar to average developers

than PDDL from a syntax perspective. Because the same basic notions of expressions and

change exist in both languages, it was thought that if a description could be provided using a

subset of Java based on tightly regulated reserved identifiers which provide a semantic meaning

in PDDL, a translation could be created from JPDL to PDDL. From an academic standpoint, any

syntactic elements that posed fundamental problems in translation were interesting.

Supported Syntax

Below is a table of what portions of Java syntax were considered, and a summary of the

supportability of each element. Even these elements require a restricted version of the JPDL

language independent semantics.

Syntax Element Java Example JPDL
Supported

PDDL
Supported

Identifier A Yes Yes

Class Inheritance Class ClassName Some No

Type casting (ParentClass) subclassIdentifier No No

Scope keywords public, protected, private Yes No

Object member
access

Object.fieldName Yes Some

Logical expression A && B Yes Yes

If Statements if(a) { statementBlock } Yes Some

Assignment
statement

A = B Yes Yes

Statement blocks A=1; B=1; Yes Yes

Variable definition Int a; Yes Yes

Function calls functionName() Some No

Loops for(int x=0; x<5; x++) Some No

Function calls functionName() Some No

New statements new Object() Init Only Fact Only

Table 3: Java Syntax Support Summary

Identifier

In the most basic sense identifiers are a symbol->reference mapping. The JPDL

translator supports local and static identifiers and field access on object identifiers in scope. Due

 44

to assignment statements the meaning of an identifier is not constant over the course of a

statement block but rather must be maintained in a symbol table.

The type of the identifier is crucial in translation. Any identifier that refers to a state

variable of a state must at some point map to a predicate list in PDDL.

Class Inheritance

Classes in JPDL are just collections of fields and methods. The most straightforward

mapping of classes to predicate lists yields a list for each class-field pairing with either a boolean,

numeric, or object return type. Certain classes, such as Effect, have reserved semantic meaning

for planning and result in translation time errors if used. Namespaces are ignored during

translation as implemented but could be added meaningfully later. Inheritance is understood by

first gathering all the identifiers for each class and then combining sets of valid symbols using the

scoping keywords. Method overriding is not supported but could be in principle. Consider the

following classes with basic inheritance:

class ParentClass

{

public int parentClassField;

}

class SubClass : ParentClass

{

 public bool boolField;

public int subClassField;

public SubClass objectField;

}

This produces the following predicates in PDDL.

(:predicates (ParentClass-parentClassField ?o1 - ParentClass)

 (SubClass-parentClassField ?o1 – SubClass)

(SubClass-boolField ?o1 - SubClass)

 (SubClass-subClassField ?o1- SubClass ?o2 - SubClass)

 (SubClass-objectField ?o1 ?o2 - SubClass))

Note that function calls are always either tables to a predicate list or compiled into the

methods that call them similar to macros.

Type Casting

PDDL types do not support inheritance. This forces the JPDL library to make an

uncomfortable choice between supporting casting between types, and supported PDDL types at

 45

all. This stems from the fact that each PDDL object is exactly one type, rather than a set of types

based on inheritance. When allowing PDDL types, if a domain author attempts to upcast a sub-

class into a parent class, problems occur when attempting to reference that parent class’s field as

the sub-class object will not exist in the parent-class predicate list.

We could address this issue by removing typing entirely from the PDDL translation, but

this would hurt PDDL runtime irrecoverably for some domains.

Scope Keywords

When translating the defined classes into their predicate identifiers, scope information is

used to decide which of a parent classes fields to include in the subclass. This limits method

declarations and references from a class in the same way. For each type a list is created of valid

symbols it can refer to. This list is checked each time an object field or method is referenced. All

of this information is used to generate translation time errors to PDDL, but is not present in the

resulting PDDL translation.

Object Member Access

Object member access occurs as part of larger expressions and cannot exist as a

statement by itself. This includes method calls on classes.

When encountering an object field access, it can be replaced with a reference of the

appropriate predicate in the target PDDL expression.

subClassObject.boolField => (SubClass-boolField ?subClassObject)

In this case subClassObject is an instance of type Subclass. When referred to in a

Statement block, in an Effect for instance, the identifier used in code will map to the predicate list

in the translation.

Logical Expressions

Both Java and PPDL use left sided expression evaluation. This makes expressions

straightforward to evaluate for the most part.

A + B + C=> (+ (+ A B) C)

A || B => (or A B)

 46

Strict type checking is done for the operation in question. Implicit and explicit type casting

are not supported, as mentioned above.

If Statements

The basic BNF is

ifExpression =>

if(BooleanExpression)

{

 StatementBlock

}

else IfExpression

Single if expressions are straightforward enough.

if(A) S1 => (when (A) (S1))

If-else blocks turn out to be a little trickier because PDDL does not support the notion of

else. Still, it can be unfurled as if someone wanted to run each portion in parallel (which many

planners likely do).

if(A) S1

else if(B) S2

=>

(and

(when (A) (S1))

(when ((and not(A) (B)) (S2))

)

Nested if-else statements similarly cause nesting.

if(A)

{

S1

if(B) S2

}

=>

(and

 (when ((and (A) (not B))

(S1))

 (when ((and (A) (B))

 (and (S1) (S2))

)

This can cause significant repetition of Boolean expression evaluation and a

corresponding performance hit in PDDL domains depending on the planner.

 47

Assignment Statements

The basic BNF is

Identifier = Expression;

All assignments statements in PDDL change a predicate list. There are no other

mechanisms for persisting data across actions. A direct translation for numerics of an assignment

statement creates an assign expression in PDDL.

A=1 => (assign A 1)

A += 1 => (increase A 1)

A -= 1 => (decrease A 1)

For references (A=B) the direct translation is a little less intuitive. A reference is a non-

value type in both Java and PDDL. Prior to PDDL 3.1 when this was written, predicate lists could

not return non-value types so a pointer in PDDL was basically an association of two objects in a

list whose meaning is that object A points to object B. A very brief recap of PDDL predicate lists

may be helpful. Consider the following predicates definition in PDDL.

:predicates (PredicateListName ?o1))
Each predicate list is an association of a fact about an object. A translation to English is

“PredicateListName is true about o1”. If the name of the predicate list was HasRock, we would

expect it was used in a way that every object is an owner of a rock. When authoring PDDL

without types, it is common to have a predicate list for each type. (ObjectType o1) defines object

o1 as being of type ObjectType. In the spirit of this, the following predicate list is saying that o1

points to o2.

(PointsTo ?o1 ?o2)

To change this fact in a way consistent with Java is to negate the first row and assert a

new association. Simply adding a new association is insufficient.

A=B => :effect (PointsTo ?A ?B)

This uncomfortably leads to:

PointsTo Predicate List

A WhateverAPointedToBefore

A B

 48

To negate the existing row we actually need a variable first in order to express the

intended delete. There are two options, both of which are computationally bad. We can either use

a for-all statement to delete all entries of the predicate list associated with A (there should only be

one) or we can find and delete the previous row by introducing a new object to the action.

Option 1:

:effect (and

(PointsTo ?A ?B)

(forall (?APrev) (not (PointsTo ?A ?APrev))))

Option 2:

(:action ActionName (:parameters ?A ?B ?APrev)

 :precondition (PointsTo ?A ?APrev)

 :effect (and (PointsTo ?A ?B)

 (not (PointsTo ?A ?APrev))

)

The latter approach is considered faster, is more common, and is supported by more

planners so it is the approach I chose for the JPDL translator. But think for a moment about the

consequences of this translation compared to the original. It is trivial to see that the translation of

the assignment statement is not localized. It has changed the code at places outside of the

statement such as by adding a parameter to the action description. Also, the translation is

computationally slower than the original. Both because the list must be changed in two ways

where previously a single pointer needed to be changed and because a reference to APrev

needed to be found for the translation which is at best a HashTable lookup time while the original

didn’t even need to dereference the field. Furthermore, the number of possible actions just grew

exponentially prior to considering preconditions. A good planner will build possible actions from

the preconditions rather than by enumerating the parameters but considering all of the above,

what was gained?

In JPDL, the base syntax is Java, so the statement block exists within a method of a

class. JPDL has many reserved identifiers to help make sense of Java syntax. Consider the JPDL

definition below, all bold words are keywords in translation.

public class EffectSubclass : Effect

{

 StateVariableSubclass effectField1;

 49

 StateVariableSubclass effectField2;

public void apply(StateSubclass currentState)

{

 effectField1.fieldName=effectField2;

}

}

StateSubclass must be a defined subclass of State. The identifier of the parameter is used to kick

off the identifier symbol table. The fields of the Effect are mapped to create a symbol table prior to

translating the apply method.

So, before we begin translating the apply method, we already know we can start a translation

such as this:

(:action EffectSubclass (:parameters ?effectField1 – StateVariableSubclass

 ?effectField2 – StateVariable Subclass

…)

 :effects(…))

We also can start a symbol translation table. Each field of the Effect has an entry. It’s

worth noting that there’s no way to translate numeric fields of Effects, Constraints, or Goals as

there is simply nothing to bind them to in PDDL. For example, if you consider creating a predicate

list that looks like (EffectSubclass-MyFieldNextValue ?e) what is e? It essentially is used to model a

local variable. Even if we define an invocation object to represent e and treat these fields similar

to local variables described later what would initialize these values? This is the value genesis

problem manifesting again. So while the JPDL language independent semantics allow it the

translator will not have a symbol for them when referenced and an error will occur. Here is a

simplified symbol translation table.

JavaSymbol Java Type PDDL translation

effectField1 StateVariableSubclass ?effectField1

effectField2 StateVariableSubclass ?effectField2

Now we can begin to translate the apply method. The translator sees the basic

assignment statement and needs a LHS and RHS identifier from the symbol table to output a

translation. The LHS has a field accessor which is used to build a translation of the relevant

predicate list from the type of the instance (StateVariableSubclass-fieldName ?effectField1

?effectField1Target). Based on this we can determine the statement is a reference assignment

 50

rather than a value assignment. The RHS is validated as being the same type of the LHS and

existing in the symbol table. At this point the translation would look as follows.

(:action EffectSubClass

:parameters (?effectField1 – StateVariableSubclass

?effectField2 – StateVariableSubclass

?effectField1Target - StateVariableSubclass)

 :precondition (StateVariableSubclass-fieldName ?effectField1 ?effectField1Target)

 :effect (…)

)

Now that the LHS and RHS have been bound we can create our effect list as pertains to

this statement and discussed above.

:effect (and (not (StateVariableSubclass-fieldName ?effectField1 ?effectField1Target))

 (StateVariableSubclass-fieldName ?effectField1 ?effectField2))

Voila, we have translated one trivial assignment in PDDL 3.0.

PDDL 3.1 has introduced object-fluents which allow a predicate list to return an object type rather

than a Boolean or Numeric. This is an extremely useful addition which addresses the inefficiency

of the above approach. Using this, the ?effectField1Target variable could be removed from the

parameters, and precondition line leaving a much simpler result. However, the JPDL translator

predates this extension.

:effect((assign (StateVariableSubclass-fieldName ?effectField1) ?effectField2)

Statement Block

Statement blocks are complicated to translate because in PDDL all effects of an action

are atomic. There is no sequencing within an action. Procedural code must either be broken up

into multiple actions or translated to a set of formulas based on the parameters. A reasonable

translation will require both approaches. The former approach will be discussed later, as it is

eventually necessary when dealing with loops. The latter approach is valid within a single

statement block. To accomplish this, a symbol table is built and stored that holds the formula of

every symbol in the method as it is parsed. Assignment statements update this symbol table as

discussed above. Each time symbols are encountered in an expression, substitution is done in

translation with the formula. The output of a statement block translation is the set of changes to

 51

the predicate lists and the logic that govern the preconditions of those changes. Consider the

following statement block:

 {

 A=B;

 B=C;

 C=A;

 }

If identifiers A, B, and C are references that can each be mapped to some predicate list

this statement block will produce six clauses in the effect clause of the translation. If A has no

mapping to a predicate list, it still has an effect on translation, but the final value of the symbol is

irrelevant and not translated. In addition to the symbol translation table mentioned previously

which maps JPDL input parameters to PDDL expressions there is a symbol formula table for

identifiers in the statement block that contains an expression tree for each of the current

identifiers in terms of the original parameters. For the above statement block this table would start

out looking very simple.

Original Identifier Current Identifier

A A

B B

C C

A few lines later, all of these identifiers have been remapped.

Original Identifier Current Identifier

A B

B C

C A

A different statement block might gradually build a formula rather than remapping everything.

 {

 A=1;

 A++;

 A=A+A;

}

=>

:effect (assign (ListName ?A) (+ (+ 1 1) (+ 1 1)))

At the end of this statement block the symbol formula table would look like this.

Original Identifier Current Identifier

A (1+1)+(1+1)

 52

This provides a reasonable translation of JPDL to PDDL. However there are a few

eccentricities of PDDL which are hard to capture. The first relates to temporal action

complications which haven’t been discussed yet. The second relates to duplicate parameters.

Both cases are easier to demonstrate by using an eccentric fact of PDDL effects. A

PDDL effect can simultaneously assert and delete a row from a predicate list. This is a difficult

thing to capture using JPDL because no parallel distinction exists. All changes of a JPDL effect

are atomic with no distinction between add and delete. For instance:

 {

 A=false;

 A=true;

 }

=>

:effect (ListName ?A)

The JPDL translation views the method as atomic and therefore ignores intermediate

values in translation. This appears to produce the correct result regardless of the input value of A.

At a glance that is very promising but complications arise under just slightly different

circumstances.

First, consider the case where effect interactions occur. If there is a PDDL effect like this:

 (:effect (and (ListName ?A) (not (ListName ?A)))

The delete may not appear to do anything meaningful. Regardless of the starting state of

the predicate list, (ListName ?A) will exist after the effect. However, the official definition of PDDL

effects is that all deletes happen before all adds. This becomes important when there are existing

constraints prohibiting the delete of this predicate such as this.

(:durative-action MyTemporalAction

 :parameters (?A ?B)

:duration (= ?duration 1)

 :condition (over all (ListName?A))

 :effect (OtherList ?A ?B)

)

When this durative action is part of a plan it prohibits another action from containing the

previous effect in the duration of the durative action. It’s not possible to capture this behavior

using JPDL semantics without using multiple actions. At first, that may seem easy to ignore; it’s a

potential loss of expression in JPDL translation in that there are PDDL actions that have no JPDL

 53

equivalent. However, if multiple parameters map to the same object this phenomenon rears its

ugly head once again.

 {

 A=false;

 B=true;

}

=>

:effect (and (not (ObjectType-Field ?A) (ObjectType-Field ?B))

During translation these appear to be different objects. During plan generation, ?A and ?B

may actually refer to the same object. Because adds occur after deletes, the translation produces

the correct behavior for the above case. If we reorder the operations, the problem becomes more

evident.

 {

 B=true;

 A=false;

}

=>

:effect (and (ObjectType-Field ?B) (not (ObjectType-Field ?A))

The translation is equivalent and correct when A and B are different objects. The

translation is irreducible. However, the PDDL meaning of the translation is entirely wrong if ?A

and ?B refer to the same object. When that happens, regardless of the input value this effect will

result in an add not a delete in the final predicate list. The only way to avoid this pitfall is to break

the statement block into multiple actions or add logic to the action governing what occurs. Here

are two valid translations for the latter approach.

(:action MyAction

 :parameters (?A ?B)

 :precondition (not (= ?A ?B))

 :effect (and (ObjectType-Field ?B) (not (ObjectType-Field ?A))

)

(:action MyAction

 :parameters (?A ?B)

 :effect (and

(when (not (= ?A ?B)) (and (ObjectType-Field ?B) (not (ObjectType-Field

?A)))

 (when (= ?A ?B) (not (ObjectType-Field ?A)))

)

Both of these translation approaches require a combinatorial number (NC2) of object

comparisons to accurately translate the PDDL notion of deletes preceding adds. This is

 54

problematic for scalable domains. For example, the data center domain has an object for each

server in the update inlet temperatures action, if there are 20 servers, then a translation can

require 20C2 (190) different logical clauses. Furthermore, the simpler approach listed first is

actually inaccurate in that it prohibits valid executions. The only alternative is to break the

statement block into multiple actions. This is discussed in the loops section where it is

unavoidable. As an approach it can certainly produce better results but comes with its own costs

as well.

Variable Definition

Local variables are a curious case because they are only meaningful in procedural code

while PDDL is orderless. The basic idea is to create an alias that is referred to in later statements.

This can be facilitated using the symbol formula table introduced while covering statement blocks.

Consider the following Swap Effect.

public class Swap : Effect

{

 SVSubclass var1;

 SVSubclass var2;

public void apply(StateSubclass currentState)

{

 int localVariable = var1.fieldName;

 var1.fieldName=var2.fieldName;

 var2.fieldName=localVariable;

 localVariable=var2;

}

}

=>

(:action Swap

 :parameters (?var1 ?var2 – SVSubclass)

 :effect (and (assign (SVSubclass-fieldName ?var1) (SVSubclass-fieldName ?var2))

 (assign (SVSubclass-fieldName ?var2) (SVSubclass-fieldName ?var1)))

)

Note that swapping the Effect fields themselves is meaningless because until a field is

accessed there is no binding to a predicate list. To accomplish anything we must change the

value of the fields of a State Variable rather than the Effect. As with all swap methods, a local

variable is required to do the swap in Java. The final value of that local variable at the end of the

method is irrelevant to the translation because it has no binding to a predicate list and hence

does not appear in the translation. Equally important, this is a great demonstration of orderless

 55

operations in PDDL. The order of the assign statements is irrelevant because the formula for

each assign statement is in terms of the input parameters and the change occurs simultaneously.

This paradigm works within a single statement block. When multiple statement blocks are

linked together though, the value of local variables suddenly needs to be persisted. The only

mechanism to persist information across actions is predicate lists. The necessary mechanisms for

this linkage are covered in loops where using multiple actions is unavoidable.

Loops

Loops are difficult to translate because the control flow of the effect are a function of the

parameters, and this function is dynamic in a way that cannot be formulaically contained in a

static way. If the sum of a predicate list is needed then the formula to express the calculation of

this sum is dependent on the number of rows in the predicate list. If the size of the predicate list

were static we could hard code the formula for any particular number of rows into the action.

However, the size of a predicate list can be dynamic within even a single plan. This makes it

provably impossible to capture within a single action. Consider the for loop example below:

for(int i=1; i<5; i++)

{

 object.field+=i;

}

=>

(:effect (assign (objectType –field ?object) (+ 0 1 2 3 4)))

A translation is possible because the control flow of this loop is static.

for(int i=1; i<5; i+=object.field)

{

 object.field+=i;

}

 56

The control flow is now dynamic; a translation is not possible within a single action. Here

is the template for a standard for loop abstracted to a control flow view and its translation.

Figure 9: PDDL Translation Method of For Loops.

The BNF for this type of loop is shown informally below.

Statement Block1;

for(initialization; condition; update)

{

 Statement Block2;

}

Statement Block3;

Supporting dynamic control flow in PDDL requires translating a single Effect into multiple

PDDL actions. Multi-part actions require some new machinery including a new predicate list and

object concept. Logic needs to be inserted to ensure that all parts of an action are completed

once a multi-part action has begun before other actions are considered.

An object needs to be defined to represent the invocation.

(:objects Invocation0)

A predicate list is created for all but the last part of the multi-part action.

(ActionName-Part1 ?Invocation)

 57

(ActionName-Part2 ?Invocation)

An action is created for each part with logic that controls these predicates.

(action ActionName-Part1

 :parameters (…)

 :precondition (and (not (ActionName-Part1 Invocation0)))

(not (ActionName-Part2 Invocation0)))

…)

 :effect (and (ActionName-Part1 Invocation0)

 (<Initialization Translation>)

(when (not (<Condition Translation>)) (ActionName-Part2 Invocation0))

 <StatementBlock1 Translation>)

)

(action ActionName-Part2

 :parameters (…)

 :precondition (and (ActionName-Part1 Invocation0)

(not (ActionName-Part2 Invocation0)))

 :effect (and (when (not (<Condition Translation>)) (ActionName-Part2 Invocation0))

 <StatementBlock2 Translation>

 <Update Translation>)

)

(action ActionName-Part3

 :parameters (…)

 :precondition (and (ActionName-Part2 Invocation0)

…)

 :effect (and (not (ActionName-Part1 Invocation0))

 (not (ActionName-Part2 Invocation0))

 <StatementBlock3 Translation>)

)

The above actions force there to only be 1 invocation in process at any given time. This

implementation does not support recursion or function calling but it demonstrates the control logic

concepts needed for multi-part actions. All other actions in the domain must now contain a

precondition of (not (ActionName-Part1 Invocation 0)) in addition to their existing preconditions. This

prevents other actions from beginning while parts of a multi-part action remain incomplete.

Similarly, the goal statement of the domain needs to be appended so that no valid plans exist that

leave an invocation incomplete.

Local variables that need to be available to more than 1 part of a multi-part action need to

have their own predicate list to persist that information. Each part that makes a modification to the

local variable makes an update to that predicate list. Other parts refer to this list in their symbol

table during translation.

 58

(ActionName-VariableName ?Invocation)

This causes an awkward amount of overhead to the action itself, which is bad enough,

but it also has a global effect on the performance of every other action in the domain because of

the precondition. Each time a part of a multi-part action completes the planner must prove to itself

that the next part is the only available action and advance to the next part. From a planner

perspective the difficulty of a proof scales with the number of predicates in the preconditions and

effects of the actions of a plan as well as the depth of a plan. Multi-part actions contain an

unavoidable overheard on all of these factors when translated to PDDL.

Once you establish the basic methodology for multi-part actions you can actually divide

up many of the previous concepts using this idea. For instance an alternative approach to the

symbol table translation method described in statement blocks would be to divide each sequential

set that depends on a previous statement into a different part of a multi-part action. Function calls

can similarly be implemented using multi-part actions. There are 2 philosophical approaches and

an optimum that lies somewhere in between.

At one logical extreme each statement in JPDL can be used to create a different action in

PDDL. The Part identifiers essentially become line numbers and the predicate lists containing

Invocation0 essentially become a program counter. If the approach is modified to support multiple

invocation variables and recursion then the predicate lists are being used to model stack memory.

Used in this way PDDL could be used as a strange form of parallelizable assembly code. The

control flow predicates in the effect clause are basically a jump operation. This approach has the

benefit of being systemic and simple. A planner could in theory be optimized to work on domains

designed in this way to overcome many of these difficulties. Something like a modified landmark

planner could theoretically avoid most of the overhead costs by an intelligent treatment of

different predicate types.

The downfall of this approach is that planners are not made to use PDDL in this way.

This implementation becomes so far removed from the intent behind action design that heuristics

are very likely to fail entirely or at least scale poorly. Each multi-part action in the domain adds

overheard even if just to prove that it is unnecessary for a solution. Plans can become orders of

 59

magnitudes deeper depending on the statements per Effect and the number of predicates to

account for in a formal proof can double or more depending on the number of local variables.

The other logical extreme is to avoid multi-part actions almost exclusively. In general I

favor this approach but it also has overhead. Consider the combinatorial cost described in the

Statement Block section which arises as a result of attempting to model PDDL deletes preceding

adds while avoiding multi-part actions. Or consider again how if-statements are translated using

conditional effects.

if(A) S1;

else if (B) S2;

else if (C) S3;

else S4;

=>

(and (when (A) (S1))

 (when (and (not (A)) (B)) (S2))

 (when (and (not (A)) (not (B)) (C)) (S3))

 (when (and (not (A)) (not (B)) (not (C)) (S4))

)

Refusing to break this into multiple actions forces whatever Boolean expression is in A,

B, and C to be repeated in the PDDL description. If a planner does not take the initiative to

recognize repetitive expressions in an action it will end up reevaluating expression A up to 4

times when applying this effect. Without sequential operations the formulaic parallelizable version

of an action will often find itself reevaluating expressions.

This cost also applies when translating for loops. The approach shown contains an expression for

the initialization statement in its effect that Part 2 needs to function. That same expression may

be needed to evaluate the condition to decide whether to enter the loop when Part 1 completes.

Because the initialization effect won’t have taken hold when the loop condition expression is

evaluated the initialization expression will need to be repeated there. An alternative approach

would create more parts which would more closely mirror the JPDL control flow. Which approach

is better depends on the overhead of the planner, the complexity of the initialization statement,

and whether the planner is reevaluating the expression or has detected and handled the

repetition intelligently.

 60

Function Call

There are two basic ways one could attempt to translate function calls to PDDL. The first

is similar to macro translation in C. Each invocation of a function begins to process a new

statement block using a subset of the symbol table of the parent. This works as long as the

control flow is static over an entire problem. The alternative involves using a mechanism built on

the multi-part action translation detailed in loops.

In multi-part actions we are using predicate lists for control flow, basically as a jump

statement, by forcing the planner to conclude that only one action is applicable. Therefore the

various parts of the multi-part action will all be executed in order by the planner. However, while

all Effects return to the planner to decide on the next Effect, function calls can return to any Effect

that invoked them. This necessitates some extra machinery. Embracing this jump ideology for a

moment prior to adding functions any middle statement block of a multi-part action can be

translated like this:

(action ActionName-PartId

 :parameters (?InvocationId …)

 :precondition (and (JumpTarget JumpLabelObject ?InvocationId)) //This part is next

 :effect (and (not (JumpTarget JumpLabelObject ?InvocationId)) //This part is done

 <StatementBlock Translation>

 (JumpTarget NextJumpLabelObject ?InvocationId) //Do this next

)

)

This is akin to having labels for each statement block after the entry point to an Effect,

requiring each statement block to end with a jump statement, and using invocation objects to

keep track of the local variables per invocation as a substitute for stack memory.

Invoking a function needs additional mechanics because a function can return to multiple

points. Rather than having a complicated switch case in the function to decide where to jump to

the statement block that does the invocation can tell the function where to jump to on return.

 61

(action ActionName-PartId

 :parameters (?InvocationId ?FunctionInvocationId …)

 :precondition (and (JumpTarget JumpLabelObject ?InvocationId)) //This part is next

 :effect (and (not (JumpTarget JumpLabelObject ?InvocationId)) //This part is done

 <StatementBlock Translation>

 (JumpTarget FunctionLabelObject ?FunctionInvocationId) //Do this next

 (FunctionNameReturn

?FunctionInvocationId

NextJumpLabelObject

?InvocationId

) //Return to there

)

)

The function just needs to bind the appropriate objects to assert in the JumpTarget

predicate list using the FunctionNameReturn predicate list with the matching invocation id.

(action FunctionName

 :parameters (?FunctionInvocationId ?NextJumpLabelObject ?ReturnInvocationId …)

 :precondition (and (JumpTarget FunctionLabelObject ?FunctionInvocationId)

 (FunctionNameReturn

?FunctionInvocationId

?NextJumpLabelObject

?ReturnInvocationId

)

)

 :effect (and (not (JumpTarget FunctionLabelObject ?ReturnInvocationId))

 <StatementBlockTranslation>

 (JumpTarget ?NextJumpLabelObject ?ReturnInvocationId)

)

)

Using one Invocation object per level of recursion allows recursion to a limited depth.

Reverse Translation

It wouldn’t be fair to point to all of the things which are difficult to translate from JPDL to

PDDL without also looking for things which are elegantly expressed in PDDL and difficult to

translate to JPDL.

The most obvious are times where the multiple-key multiple-value dictionary aspect of

predicate lists is exactly what you need for a domain. There is no Java library equivalent

structure. Dictionaries are multiple-key single-value. There are open source libraries that provide

this functionality but translating to JPDL using an open source library and then back would be

infeasible if not impossible.

 62

Additionally there are universal quantifiers which can be expressed using a single action

in PDDL but become awkward multi-part actions when translated from JPDL loops. It is

theoretically possible to detect these specific cases using foreach loops without break statements

or perhaps using some special comment tags to serve as translation hints for these cases but in

principle a forall statement builds a set of objects that meet a condition amongst all objects

defined in the domain. In JPDL accessing all domain objects to accomplish this equivalently

would require a special construct on the WorldModel that returns a list of all objects. The keyword

identifier for this list could be reserved for the translator like the keywords Effect or State and

used with foreach statements to produce a forall. Otherwise the translation to JPDL and then

back would be extremely awkward.

Extensions to PDDL for various things would require an equivalent extension of JPDL

semantics before a reverse translation would be possible. This applies to PPDDL semantics for

probabilistic actions, PDDL+ calculus semantics, etc.

Remaining Concerns

In my JPDL publication I explain a case where ultimate result of Effects depends on their order of

application. The solution in the publication is basically a buyer beware approach. The domain

author needs to author effects in such a way that they are commutative. I have never been

comfortable with this answer, but several years later I still have no better solution to this problem.

An issue which came up more recently is when to actually end the process. In particular,

when all Goals are satisfied is it truly necessary to advance the World Model to the eventual

time? The advancement algorithm in the original publication did so but I have changed my

approach since then. The most compelling reason for this change is it provides greater flexibility

with less confusion. If ensuring that the eventual time is reached before returning a plan is

essential the domain author can add a Goal that is only satisfied when the next Effect set is

empty. The other approach requires the Effect which will meet the Goals criteria to change the

eventual time of the current State to force early termination. I feel the former is trivial while the

latter is difficult and confusing so I changed the JPDL semantics.

 63

Scheduling jobs to complete before deadlines is the planning Goal in the thermal data

center domain. What would a reasonable eventual time be for this domain? Without knowing the

plan, the only sensible answer I can think of is the last deadline amongst the jobs to schedule

with the possible addition of some overhead time to ensure that the system is not left in a state

where overheating is inevitable. But if the deadline is in 40 seconds and the jobs are all

completed in 10 what benefit is there in advancing the timeline so far?

 64

CHAPTER 4 – JPDL TRANSLATOR

CONCLUSIONS

Because of PDDL’s simplicity, it is relatively easy to understand how a planner would utilize the

action description and extract a sense of purpose from it. The only time a variable can be

modified is in the effects clause. Every variable in the effect is potentially modified and the

change is dependent on every variable in the :precondition clause.

Consider the action below:

(MyAction

:precondition (A)

:effect (B)

)

This action would be considered for use when B needs to be changed. The usefulness of

this action from the planner’s perspective is to change B. If A is not satisfied, the planner can add

that to a want list of some kind and solve using a variety of heuristics.

At the ICAPS 2011 conference where JPDL was published I was told by several people

that while they could easily understand how a plan could be verified by the approach I described,

they found it difficult to believe that planning itself could be done on that representation. This

section is my attempt at a proof that a JPDL solution is sufficient to be directly planned from in

principle. In short, if any PDDL description of a problem is sufficient for planning and a JPDL

description can be translated to an equivalent of the PDDL description, then that JPDL

description is sufficient for planning in principle.

Within every planner that uses PDDL, the PDDL description is parsed into data structures

that are integrated with the planning heuristic which that planner offers. The planning heuristic

understands that data structure. This section has covered many Java syntactic elements and

their equivalent PDDL translation. If a translation can exist from JPDL to PDDL, and PDDL is

sufficient to build data structures for planning, then surely the information required to build these

same data structures must exist in JPDL as well. If these data structures were described in terms

of their PDDL semantic meaning and a PDDL semantic to JPDL semantic translation existed an

automated means is theoretically possible to provide these native data structures to each planner

 65

directly as long as their library exposed them. Much of the overhead introduced by translation

could be avoided entirely if an appropriate data structure was constructed specifically for planning

from JPDL. I would be curious to see how compatible JPDL derived data structures could be with

the ideas behind existing heuristics.

When striving for arbitrary expressiveness that exceeds JPDL however, certain code

constructs are not only problematic to translate, but also problematic to plan directly with. Take

for example for statements where the loop iterator is modified in its statement block. It is

extremely difficult to assess the usefulness of an Effect if the planner cannot even predict the

control flow of that Effect. According to the famous halting problem the control flow of code

becomes impossible to predict for a sufficiently complex function. Furthermore, arbitrarily complex

code will inevitably need an import statement. This is when all premise of interpreting/translating

planning approaches end.

For a given arbitrary function such as Math.sqrt(double x), it is impossible to code a

general understanding of arbitrary calls into a planner. One could certainly hard code

understanding of this function into a planner, just as one could extend PDDL to add a new

operator for powers. A certain subset of planners may then adopt that operator. However, this is a

manual addition. The ability to use one function bears little resemblance on the ability to use the

next. An arbitrary function can change numeric predicates to any value; even in the optimistic

case where the function has no side effects on the parameters being passed in, the function

could return practically anything. The closed world assumption many planners rely on is

impossible to guarantee. Planner completeness is irrecoverably lost if an action can also have

numeric parameters which are passed to the function.

Consider the following:

Public class MyAction extends Effect

{

 Double b;

 public void apply(State currentState)

 {

 …

 currentState.a = myFunction(b);

 …

 }

 66

}

If the planner wants to change currentState.a, the planner knows this action can do so. The

difficult question is, to what and under what conditions. For what desired currentState.a value

should it consider this action for? What is the range of b that it should consider if it decides this

action might be helpful? It can assign no bounds without first fully understanding the underlying

function. When the function is imported, the only way to understand the function is having the

context from the documentation. To the planner, the branching factor has just become infinite. If

we wish to support arbitrarily complex domain specifications, unknown functions and numeric

parameters are absolutely necessary. So what can be done? The only solution that preserves

completeness is to add something to the domain specification to fill in the necessary information

for planning.

Demonstrating this requires introducing the concept of value genesis. This can be

summarized as assigning values to the parameters of actions that are not present on the State to

which the Effect is going to be applied. Borrowing an example from our Blocksworld domain:

public class PutOn extends Effect

{

 Block x,y,z;

 …

}

It seems intuitive that we don’t intend for the planner to instantiate a new block for either

x, y, or z but it’s not hard to imagine actions where it does seem intuitive. One interpretation of the

travel problem demonstrates this:

public class Travel extends Effect

{

 Vehicle p;

 Double x, y;

 …

}

This action is simply responsible for moving a vehicle from its current location to a target

location. It’s intuitively clear that we should not generate vehicles for the Effect, but it’s less clear

where x and y should come from. Do we have a list of locations in the domain that contain x and

y? Is there a list associated with each field that should be considered? Infinitely worse is if the

 67

vehicle may need to travel to infinite locations. For example, if this action needs to refer to a

location halfway between two existing locations. You can infinitely recurse to arrive at infinite

locations. When the solution requires calling code for which usefulness cannot be ascertained or

when there are literally infinite actions that could be generated we sacrifice completeness unless

something else guarantees that the possibilities not considered can’t provide a solution.

Adding this “something else” fundamentally reconsiders the responsibilities of a domain

author and planner author. It shifts much of the responsibility to the domain author but in doing so

it enables otherwise prohibitively complex domains to be solved. If a domain author is willing and

able to provide the knowledge a planner needs but can’t extract from the representational

language then the representational language becomes almost irrelevant. The research question

posed by this work is what additional information should a domain author need to provide to do

effective planning? How can this information be minimized? What is the tradeoff between time

investment by the domain author and the planning result? What data structures can be used for

effective planning that were previously built from action descriptions and can a domain author

provide them by an alternative means?

 68

CHAPTER 5

MODELING LIBRARY SPECIFICATION

The original implementation of the data center thermal model was basically some line

interpretation logic for the c curves and a series of arrays. This simulator just loaded values from

configuration files and iterated time until the eventual time was reached. I suspect that most

modeling software is similarly barebones, especially in academics. The problem with this

approach is that the software lacks an integration point for anything other than modeling. When

the model becomes promising enough to use, it can be unclear how to write a planner to use it.

JPDL addresses this problem by defining modeling semantics that structure domain

modeling logic using meaningful planning semantics while still retaining the look and feel of a

familiar programming language. However, JPDL is still focused on extracting familiar PDDL

planning concepts; it just tries to make authoring domains easier. One limitation of this approach

is that the planning-related structures built from a PDDL or JPDL domain are limited to the

concepts PDDL can support. For example, predicate lists are the only data structure and all

states are discreet. Planners rely on this fact and do proofs by reachability analysis on the

predicate lists. They have no need to support variables continuously changing in a complex way.

The language constructs don’t even exist to express these complexities. Even PDDL+ which

extends PDDL to provide continuous effects only allows specifying a rate of change for each

predicate which remains constant until set by another action. If the complexity of your domain

exceeds the expressive limits of PDDL, any planning-related structures you can find in existing

planners will be limiting.

A more solution-oriented approach should be able to express any Turing complete

model. A familiar way of achieving this is to express models in existing languages as code

libraries. Any other approach that cannot at least invoke foreign code will add considerable

overhead to domain authors. Defining a code library rather than a language offers several

additional advantages:

1) Usability is improved because language documentation is extensive and already exists.

2) Just as with JPDL, existing IDE’s can be used to create solutions.

 69

3) The overhead cost of disk reading and parsing is removed from the planner. For many

real-time planning domains, the planning problem can be directly built from what is

already in memory rather than parsed.

4) If a reasonable API is provided, the solution process can be integrated with surrounding

code. This enables using a debugger and persisting and utilizing data structures both into

and out of the planning process.

A planning library solution should define reasonably general interfaces and structures

that can be implemented by domain authors. These structures implement the JPDL planning and

modeling semantics. The domain author implementation defines the planning heuristic and the

data structure it acts on. In an object oriented language these translate to abstract classes and

interfaces. Many independent solutions have been created amongst all PDDL planners, but

because they are not public they vary wildly. There is no official or unofficial standard for either.

One of the goals of this line of research is to offer a standard set of semantics which could be

implemented in different languages and by different planners which would help to draw

meaningful comparisons between different planning approaches. This would enable discourse

such as comparing the overhead of modeling a domain for different heuristics rather than looking

only at black-box criteria such as the runtime and memory characteristics of planners solving a

problem.

 70

CHAPTER 5 – MODELING LIBRARY SPECIFICATION

LANGUAGE INDEPENDENT SEMANTICS

Modeling semantics need to be defined for a planner to use regardless of language, API choices,

or even the library versus language decision. The library has the responsibility of defining an API

that maps to these modeling semantics. This section reviews the design decisions made in

mapping JPDL modeling semantics to an object oriented paradigm and discusses alternative

options and the tradeoffs considered. Here are the shorthand symbols from the JPDL language

independent semantics that were covered in Section 4.

Symbol Meaning

W World Model

SL State list

EL pending Effect list

CL Constraint list

GL Goal list

S State

V State Variable set

Pv Paired Identity and Primitive Set

E Effect

t time

Table 4: Modeling Library Symbols

A State Variable v consists of a string identity i, a paired Identity and Primitive Set Pv

of value types, and a State Variable set V which allow for recursive hierarchies.

In an object oriented paradigm it makes sense to make a State Variable an Object. The

paired identity and primitive set Pv could be a dictionary with a reserved identifier or if the set of

identities is constant the identities could map to fields. To represent State Variables over time,

either the State Variable Object must have multiple sets of field/value bindings with a way to find

the appropriate set for the time bounds of a State or multiple instances of a State Variable must

exist with an identity field for i to find a State Variable on a State with time bounds.

Representationally, I have found the latter to be more intuitive to address when writing domains.

However, using class properties correctly it is possible to have a back-end representation that is

different from the addressing look and feel. Using the latter approach, when a State Variable is

accessed from a State it already has field bindings appropriate for that time. Comparing values of

a State Variable over time requires accessing that State Variable from multiple States and

 71

comparing their fields. This approach limits the flexibility of Pv on States and Effects but works

well in general and the domain author can override the implementation of what State Variables

are synchronized from a State to restore this generality as required or they can fetch the State

Variables they need from the World Model.

While the language independent semantics define Pv as being a value type because I

was avoiding the concept of reference types entirely, I see no reason to disallow reference types

in an object oriented translation. This enables a field of Pv to refer to an array, object, etc. The

only thing on the State Variable that is not part of Pv is the identity field, and any State Variable

fields because those belong to V, not PV.

A State S consists of a paired Identity and Primitive set Pv, a State Variable set V, and

time bounds ti and te for which these mappings hold.

If the State Variable to State decision from above is implemented, the most

straightforward approach is to simply map Pv to fields of the State that are not State Variables

and V to fields that are State Variables. The time bounds could be separate numeric values or a

single time bound object. The opened/closed status of the initial and end time bounds are

constrained by JPDL semantics which eliminates the need to represent this on the State.

A State List SL is a time ordered set of states with continuous time bounds ranging from

a beginning time ti to an eventual time t∞. This provides a timeline of how values change over

time. The current State of the State List is the state with te = t∞ and ti = current time.

Any number of structures could be used for State Lists. Because time bounds are defined

on the State an order could be established even if the encoding data structure is not inherently

ordered. The only real consideration given to a data structure is to find one with an acceptable

balance between expanding the size of the State List as the current time is advanced and

accessing States for their State Variables as Effects are applied.

An Effect E is a function f(t, Pv, V, W) that uses a paired Identity and Primitive set Pv, a

set of State Variables V, and a World Model W with a State List with current time t, to produce a

new World Model W` with modified State Variables on the current State, pending Effects,

 72

constraints, and goals. A pending Effect is an Effect of a World Model where the time t of the

Effect is greater than the current time of the State List of the World Model.

An Effect could be entirely contained within a function definition with some type of

delegate with parameters for t, Pv, V, and W. However, if that were all an Effect is, whatever

process builds Pending Effects would need to store sets of parameters so they could be invoked

later as current time is advanced. This Pending Effect data structure would need to consist of

some dictionary type structure of time, delegate, and parameters. The result is complicated and

clunky. What is simpler and more consistent with the rest of the library is to encapsulate this

method definition in an Effect Object so that the Object’s fields can be used to store Pv and V

rather than relying on the method signature. If the Effect object also stores a time value, then

there is no need for a Pending Effect definition at all.

A Constraint C is a function f(ti, te, Pv, V, W), that uses a paired Identity and Primitive set

Pv, a set of State Variables V, and a World Model W, to evaluate a whether a pattern contained

within f is matched by W within the range [ti, te]. If the pattern contained within f is not matched the

WorldModel is inconsistent and the constraint has violated.

The only real difference between a Constraint and an Effect from an object oriented

perspective is the time range in place of a single time. While this is a simple change it poses

several questions in use. For example, a Constraint will need to be checked multiple times. The

alternative would be to only check the Constraint when the timeline is finalized past its end time

bound, which could lead to a massive amount of pointless work advancing the time bound if at

least one part of the State List has been finalized which would violate the Constraint. While both

Effects and Constraints receive a World Model as they are applied and checked respectively, the

time bounds of a Constraint make it less obvious which State to synchronize V to. The logical

alternatives are the start time of the Constraint, the State which has just been finalized, the

current State, or not synchronizing at all. The most consistent option would be the current State,

but Constraints shouldn’t actually be validating information on the current State as it’s subject to

further change. The most convenient option for the domain author would be the finalized State

but this definitely requires synchronizing which is costly. The least costly option is to no-op

 73

synchronization. I have chosen the most convenient option for the domain author, but this is a

suspect decision, and I could understand the value of having some type of information the

constraint itself to delineate the type of synchronization to do. For example, subtypes of

Constraint could all be synchronized in different ways, a flag of some type could determine the

synchronization strategy, or an overloadable solution could conceivably be implemented.

A Goal G is a function f(ti, te,, Pv, V, W), that uses a paired Identity and Primitive set Pv,

and a World Model W, to evaluate a whether a pattern contained within f is matched by W within

the range [ti, te]. When the pattern contained within f is first matched by a State of W the goal is

considered to be satisfied.

Where Constraints must not fail any time a State is finalized in its range, a Goal must

succeed at least once when a State is finalized in its range. This doesn’t affect anything from an

object oriented perspective; it just requires that the planner controller is able to distinguish

between them which can be done by having a separate class, by having distinct lists, or both.

They should almost certainly either co-inherit a base class or one should inherit the other if there

are functional additions for the planner controller. My implementation has Goal inherit from

Constraint and stores Goals and Constraints on different lists on the World Model. This seems

natural from a domain author perspective and is faster as it avoids needing to use reflection to

distinguish between them.

A World Model W consists of a paired Identity and Primitive set Pv, a State list, a

pending Effect list, a Constraint list, and a Goal list. It contains all information required to apply

pending Effects until the current time of the State list matches the eventual time or all goals have

been satisfied and no constraints have been violated.

Pv is somewhat special here in that it is intended to hold intransient information. If these

values are changed by Effects it becomes impossible to audit Effects. To reflect this, it would

make sense to finalize these fields for this object. However, since the domain author identifies the

Pv fields, this is difficult to enforce. It’s possible to finalize the entire WorldModel or to define a Pv

dictionary to hold a collection of identities and their values but this is restrictive and inconsistent

 74

with the rest of the library. Rather I chose a buyer beware approach where domain authors can

only hurt themselves if they change Pv or static variables in their methods.

 75

CHAPTER 5 – MODELING LIBRARY SPECIFICATION

MODELING DATA STRUCTURES

Below is a UML diagram of an object oriented set of classes which implement the domain

independent semantics introduced at the start of this chapter.

Figure 10: Modeling Library UML Overview

Several of the methods that may seem unfamiliar are actually the implementation for the

World Model advancement algorithm from Chapter 4. Detailed msdn style documentation is

available from the XML code comments for the entire planning library. Below is a brief description

of some of the less immediately obvious methods.

StateVariableContainer contains several methods used for synchronization which can be

overridden by domain authors. The default implementation of GetStateVariables is invoked on the

State being synchronized to to retrieve a list of State Variables on fields, arrays, and enumerable

collections which are considered for assignment to whatever is being synchronized to.

 76

GetStateVariableFields is invoked on the Container being synchronized to get the public fields

which hold the State Variables on the container. It ignores properties and any fields which are not

a subclass of StateVariable or are private. TrySynchronize uses the fields returned by the latter

and compares each object from the former against the list. When an id match is found, the field of

the latter is assigned to the former. As a result the apply or check method invoked later doesn’t

have to sift through the World Model to find the appropriate object to check. However, this comes

with the usual costs associated with using reflection. If these costs are a concern the method can

be overridden to manually synchronize and ignore all of the reflection code.

StateListExtensions is a static class that contains extension methods for lists of State.

Split is formally covered in the World Model advancement algorithm. The main point of interest is

that split deep clones the current state.

All deep cloning in this library is accomplished by the DeepCloneExtension library in a

different dll. This library provides the necessary flexibility to deep clone very simply with a

DeepClone extension method with no prior overhead. Each object encountered is cloned

depending on whether it implements the ICloneable interface or has an override behavior

specified in the deep clone call. Cloning is a very complex topic which varies by programming

language with a wide variety of approaches. I have invested significant effort adding flexibility and

speed to the cloning process as this is one of the most expensive overheads of using the

planning library. In particular, the fields to clone of a type are only gathered by reflection once and

this behavior can be overloaded by type, the ICloneable interface can be implemented for the

highest possible speed trading off programmer cost, a dictionary of replacement objects can be

used to selectively deep clone only parts of an object web, and replacements objects can be

specified for instantiation if the parameter-less constructor would cause problems or slowdown.

The process even deep clones private fields all the way up the object hierarchy, it supports

generics, arrays, every base type. And while I am rather proud of the result, it is possible though

not convenient to change the deep clone process to use another library if the result is inadequate

for some reason.

 77

EffectListExtensions is another static class that helps with World Model advancement.

When advancing the World Model, all Effects at the lowest time step are applied in a single

algorithmic step. These Effects are called the next Effect set and the extension method creates

this set from the pending Effect list.

Finally, World Model contains numerous helper methods to facilitate advancement.

CheckFinalizedState calls CheckConstraints and SatisfyGoals after a new State is finalized in the

World Model advancement algorithm. AdvanceStateListTime splits the StateList if the time

provided from the next Effect set is ahead of the start time of the current State and returns the

finalized State for CheckFinalizedState. Validate basically finalizes the State List up to the current

State during problem loading. Several more methods exist to help the PlanningController covered

in Section 6.

Example snippets of the BlocksWorld domain are available in the appendix. The full

domain example of the data center and BlocksWorld are available alongside the planning library.

Remaining Concerns

In response to my frustration with using PDDL this library was designed with an emphasis on

usability. Examples of this are prevalent in its design.

1) The concept of synchronization prevents the Effect method from needing to dig through

the State to find State Variables that need changing.

2) The identity naming convention implementation of State Variables makes it easy to look

at and verify plans without having to specifically name each object.

3) Every class in the library exists deliberately and has a meaningful semantic importance to

planning. Clever uses of .Net libraries and the implementation of extension methods have

reduced the number of data structures unique to the library.

I am uneasy whenever tradeoffs were made for usability that significantly impact performance

or memory because ultimately the reason PDDL failed for the domains I encountered were

unsurmountable performance and memory limitations. The usability difficulties I experienced were

 78

a secondary concern even though in practice they were more frustrating and time consuming.

The chief performance concerns that remains are

1) How the library behaves when Effect descriptions are Markovian and

2) How State Variables are bound to States and used by Effects.

Addressing the first point, producing a timeline necessarily requires storing information about

the WorldModel at previous times. If all Effects only address the current State then the timeline

aspect adds nothing for the domain author but it still consumes significant memory and adds

complexity to the cloning process. Different subclasses of WorldModel could be made which hold

State Lists versus the current State. This would require substantial refactoring of the planning

library and perhaps defining an entirely new branch of language independent semantics but it

would help optimize Markovian domains significantly.

Addressing the second point, State Variables are bound to States the way they are so that a

synchronized Effect can directly change a State Variable and the change will be local to the

current State. This allows Effect apply methods to be extremely brief.

StateVariableSubclass myStateVariable;

double v;

public void Apply(WorldModel worldModel)

{

 myStateVariable.i1=v;

}

No programmer effort is required to ensure that myStateVariable points to the State

Variable instance whose values hold at the time of the desired change. No effort is required to

ensure that changes made to the field will be persisted and visible to other Effects, Constraints, or

Goals. Furthermore, the JPDL semantics ensure that changing myStateVariable directly causes

no inadvertent changes to its value at previous times. The apply method has the luxury of

assuming its fields and the State look like this:

 79

These assumptions are luxurious compared to having to find the State Variable on the

World Model, modify its time bounds, and potentially deep clone it if its start time happens to be

before the Effect apply-time to prevent changing past values unintentionally. These repetitive

tasks are implied by the planning semantics and conveniently handled for the domain author.

These luxuries are enabled by synchronization and splitting respectively. Both of these luxuries

are computationally expensive. Synchronization is a library concept, not a JPDL semantic

concept, which relies on .Net reflection. The library includes an overloadable implementation for

synchronization to preserve flexibility while providing usability. The overloadable nature of

synchronization makes me confident that if the default implementation and the assumptions it

makes are poorly suited to a new domain, that domain can create a better solution for itself. More

problematic and less flexible is how splitting works.

Consider the case where the State Variable of an Effect resides on a State that does not

begin at the apply-time of the Effect. If the Effect changes the State Variable instance it is

semantically changing the value of the State Variable before the current time which violates the

finalization semantics. There are two classes of solutions to this which are discussed below.

The first class of solutions defensively clones the data prior to allowing changes. The

problem vanishes as a matter of convention. However, unless what will be changed can be

predicted at the time of cloning, everything will need to be cloned. Without such prediction the

Effect

ApplyTime=t

V={SV
1
}

State

[t te)

V={SV
1
}

SV
1

Pv={i
1
, v}

Figure 11: Shared Pointer Structure between State and Effects

 80

solution is memory wasteful. Each State will have an independent copy of all State Variables, the

majority of which may be identical.

There are several possible ways of implementing a prediction function. I offer several

alternatives for thought. First, using .Net reflection it is possible to add Attributes to fields,

methods, and classes with additional metadata. The most common example of this is in .Net unit

testing. A basic test class looks something like this:

[TestClass]

public class TestClass

{

 [TestMethod]

 public void TestMethod()

 {

 …

}

}

The [TestClass] and [TestMethod] attributes are visible to the .Net unit test framework

which is run on the resulting test dll. Similarly, the fields of the Effect could have Attributes added

if the Effect plans to change that StateVariable.

Effect

ApplyTime=t

V={SV
1
}

State

[0 t)

V={SV
1
,SV

2
}

SV
1

Pv={i
1
, v}

SV
2

Pv={i
1
, v}

State

[t te)

V={SV
1
,SV

2
}

SV
1

Pv={i
1
, v}

SV
2

Pv={i
1
, v}

Figure 12: Memory Waste Caused by Defensive Cloning

 81

[DeepCloneAttribute]

StateVariableSubclass myStateVariable;

double v;

public void Apply(WorldModel worldModel)

{

 myStateVariable.i1=v;

}

While there is some ambiguity, lists and arrays of StateVariables could similarly be

attributed. Either the set itself would be deep cloned if it contained matching State Variables, or

all State Variables in the set would be deep cloned.

A more direct approach is to add a method to Effects which would be executed prior to

their application which builds the set of StateVariables on the current State which will need to be

deep cloned. This would have a consistent look and feel with synchronization. This addresses the

problem of interpreting how sets need to be cloned and even how nested State Variables need to

be cloned but it requires more consistent effort from the user. In principle, just like with

synchronization a default implementation could be provided by the library which domain authors

could override. For example, an Attribute metadata approach could be the default implementation

which domain authors could override to handle more nuanced cases like sets.

All approaches of this type become complicated if multiple Effects share the same apply

time. If the State is cloned as part of splitting and this memory saving mechanism is included as

part of the cloning process then the decision of what to clone needs to account not only for all

Effects independently but also their potential interactions with one another. So, for example, if an

Effect is intended to change every State Variable in a set and a State Variable added to the set

by another Effect there would be no way of capturing this intent accurately at split time. Worse

still is if complex Effects exist which will create new pending Effects at the same apply time. Such

an Effect does violate the principle that Effects should be order-less within an apply time but I still

think it is worthy of further consideration.

The inverse of this approach is possible as well, building a list of State Variables which

would not be modified. The inverse approach simplifies cloning a bit but seems awkward from an

Effect authoring perspective.

 82

Regardless of the approach, the result of a change prediction function would be for V on

each State to contain pointers which are potentially shared across State, reducing memory waste

and the performance hit of deep cloning.

The second class of solutions reactively clones the data as changes are attempted.

However, accomplishing this in a library solution is not trivial. The library would need to somehow

limit the structures that the domain author can implement to ensure that the reactive clone occurs.

For instance, States and State Variables could be made final. This would prevent changing

references and value types on them and therefore any references past States hold could never

violate the finalization semantics. The only way to make a change during an Effect would be to

instantiate a new State to replace the old State with an updated set of State Variables.

A less disruptive method is to somehow disallow the default assignment operator on Pv

and V of a State Variable and migrate the time bounds from the State to the State Variable

definition. If all changes to a State Variable were gated by a library method then it could ensure

the defensive clone is made. The function could have a signature like:

void SetValue(string identity, Object value)

Effect

ApplyTime=t

V={SV
1
}

State

[0 t)

V={SV
1
,SV

2
}

SV
1

Pv={i
1
, v}

SV
2

Pv={i
1
, v}

State

[t te)

V={SV
1
,SV

2
}

SV
1

Pv={i
1
, v}

Figure 13: Alternative Partial Cloning Method

 83

I am skeptical of this approach for two reasons. First, I think domain authors may grow

weary of always having to invoke a method rather than using the standard assignment operation.

Second, it’s unclear to me how to block it exactly. This is particularly true because the types

actually being assigned to aren’t necessarily State Variables, but are often just value types of

fields of State Variables. How do you systemically prevent a domain author from assigning a

double to a field of a class he himself authors? Even if you could, does that seem like an optimal

solution?

In summary, the abstract design goal is to provide a programmer-friendly method for

changing facts about the current world while ensuring that value changes are persisted, visible to

other Effects, and don’t break the finalized nature of the timeline. Organizing things in a way that

values are persisted and visible is accomplished by sharing pointers and having a global store.

Ensuring that only facts about the current world are changed is harder and often conflicts with the

desire to be programmer-friendly.

 84

CHAPTER 5 – MODELING LIBRARY SPECIFICATION

CONCLUSIONS

The simplicity of the JPDL semantics was not easy to achieve. Many alternative semantics were

considered and eventually discarded for the simplicity and efficacy of this approach. For example,

data was not originally structured onto States and State Variables but instead predicate lists were

used with a PDDL-esq Markovian solution. I was advised that timeline style solutions had been

tried and failed performance and memory benchmarks and it took serious analysis before I

concluded it should be feasible. Once creating a timeline style solution, variable State time

bounds were considered to generalize better than PDDL’s awkward change mechanisms.

Continuous, probabilistic, and hierarchical actions were considered and eventually discarded

when I showed all of these could be solved with just the basic Effect definition. State Variables of

various types were considered which would flag heuristics on how to use them before I gave up

on trying writing just a planner and generalized to a planning library. In summary, it has taken

several years to reduce the library to where it resides now. These semantics can be implemented

in just about any language and can be used to model all domains from the international planning

competition I have investigated as well as several cyber-physical domains I encountered which

PDDL has been shown to fail at modeling.

 85

CHAPTER 6

PLANNING LIBRARY SPECIFICATION

The previous section focused on the modeling portion of the planning library. Using the modeling

classes outlined, domain modeling logic can be structured using meaningful planning semantics.

Those semantics are meaningful to the planning controller portion of the planning library. The

planning controller facilitates control flow of the planning process. The planning library provides

the following to domain authors:

1) A structure for the solution space created by the planning process that can be reviewed

or integrated into surrounding code.

2) A mechanism for deciding conditions of when additional planning is required.

3) An organization for managing and deciding between planning alternatives.

4) A mechanism for backtracking.

What this library does not offer to domain authors are the planning heuristics themselves.

Due to the open-ended representational possibilities and the ability to invoke foreign code,

general planning heuristics are impossible without the domain author specifying additional

information. PDDL specifies “physics not advice”. By contrast, a planning library that cannot do

code interpretation will need to be told both “physics and advice”. Because an Effect can be

instantiated in infinite ways, additional information is required to specify which ways to consider.

Because an Effect can potentially modify anything in the entire domain, additional information is

required to specify the usefulness of an Effect. Because the heuristic data structure must be

integrated with the heuristic process that uses it, the domain author must provide both, either

custom to a specific domain or a means of extracting one in a general way for use with the other.

I have considered offering a default heuristic as part of this library but deemed it too immature for

publication at the time of this publication. Instead, the library includes an example domain and a

heuristic which solves it. However, I have done diligence in considering that this library would be

well suited to solving many of the domains from the international planning competition, the cyber-

 86

physical systems from my background, and non-traditional planning domains such as constraint

satisfaction problems.

 87

CHAPTER 6 – PLANNING LIBRARY SPECIFICATION

LANGUAGE INDEPENDENT SEMANTICS

Planning semantics need to be defined independently of the library that implements them. The

library has the responsibility of defining an API that maps to these semantics. This section

reviews the design decisions made in mapping JPDL planning semantics to an object oriented

paradigm and discusses alternative options and the tradeoffs considered.

Symbol Meaning

P Decision Epoch Pattern

C Checkpoint

L Checkpoint Link

T Link Tree

B Planning Branch

H Planning Heuristic
Table 5: Planning Library Symbols

A Decision Epoch Pattern P is a function f(Pv, V, W), that uses a paired Identity and

Primitive set Pv, a set of State Variables V, and a World Model W, to evaluate a whether a pattern

contained within f is matched by W. When this pattern is matched a decision epoch occurs as

described in the Planning Branch algorithm below.

The basic structure is consistent with Constraints and Goals from the JPDL modeling

semantics except that Decision Epoch Patterns have no time bounds. Because of this it is not

immediately obvious when they should expire. Similarly it was not immediately obvious where

they should reside. My final decision was for them to exist independently of the World Model on

the Planning Branch and to expire when the next decision epoch occurs. This localized the

checking process to a single Planning Branch rather than requiring the algorithm to navigate the

Link Tree’s parents. Alternative approaches include persisting the set of patterns from epoch to

epoch or persisting each pattern until it’s matched. Ultimately, any choice would serve because

the parent Checkpoint Links are accessible during the decision epoch. Any of the above

approaches are possible to implement by unioning whatever set of Decision Epoch Patterns the

domain author wishes into the new planning branch he is building.

Another design decision was when to check the pattern. Goals, and Constraints are only

checked after a State is finalized. Doing likewise here lead to a lot of stalling where there would

 88

be no pending Effects remaining but the Goals were not yet Satisfied. This problem was

encountered frequently enough that I decided to synchronize the patterns to the current State and

check them after each Effect Set is applied.

At first it wasn’t clear where the responsibility would lie to create the Decision Epoch

Pattern. Previous research on temporal domains has concluded that deciding when to plan prior

to deciding what to plan often led to a loss of planning completeness [65].

Because it proved troubling to separate the responsibilities and because it often made

sense to consider when to next plan in terms of the heuristic model I integrated both decisions

into a single data structure, the Checkpoint Link.

A Checkpoint C consists of a World Model W, a Decision Epoch Pattern P which

triggered it, and domain specific heuristic information relating to the decision epoch. During the

first decision epoch of the planning algorithm P is a reserved type of Decision Epoch Pattern.

Otherwise, Checkpoints are created when P is matched on W.

The translation of the tuple to an object oriented approach is straightforward. However,

the structure of the heuristic information varies from domain to domain and can’t exist on the

default implementation without somehow limiting the flexibility of that structure. As there is

nothing to gain by limiting it, it’s left open to the domain author. I expect a common addition to be

some notion of prioritized reasons that the Goals are not satisfied. Storing the heuristic

information separately from the World Model eliminates the need to clone it and is consistent with

having a separate layer for planning versus modeling.

A* search can be implemented by storing a set of additional Planning Branches to try per

Checkpoint alongside the perceived value of each Planning Branch. If this information was not

available on the Checkpoint it would need to be stored on the Planning Heuristic itself or

reprocessed each decision epoch.

Facilitating this custom heuristic structure required adding a factory because Checkpoints

are constructed by the Planning Branch algorithm and not instantiated by the domain author. A

domain author provided factory allows the planning controller to provide a Checkpoint to the

heuristic that is immediately compatible with storing that heuristics information.

 89

A Checkpoint Link L consists of a set of Effects EL which represent planned actions and

a set of Decision Epoch Patterns PL which are used to start the next decision epoch. EL enables

advancing W by unioning EL with the pending Effect List from W. Checkpoint Links are created by

Planning Heuristics during decision epochs.

Checkpoint Links are the basis for describing what would traditionally be called a plan.

Plans traditionally consist only of an ordered series of actions. However, actions alone are

insufficient for the planning process without decision epoch triggers. This leads to several

alternatives. The first alternative has the Checkpoint Link contain both the actions and these

triggers. This approach is unintuitive because traditionally planning triggers are not part of the

plan itself. The second alterative has the triggers exist on the planning branch rather than the

Checkpoint Link. This would eliminate the Checkpoint Link concept entirely and make the Link

Tree look like LinkTree<List<Effect>, Checkpoint>. The downside is that unless Planning

Branches are stored as well the Decision Epoch Patterns would be impossible to audit. Lastly, the

World Model could be restructured to include a list of pending Decision Epoch Patterns and

simply have the Effects add Patterns as well. This would almost certainly coincide with other

changes to Decision Epoch patterns. However it seemed odd to have Effects whose sole purpose

was to aid the Planning process and would be meaningless to execute during plan validation, yet

would still be part of the returned plan. Because a point of value for the library is the auditability of

the solution space, I chose the first approach. This allows the heuristic to inspect the Decision

Epoch Patterns of previous planning branches if that would be useful.

Originally Checkpoints and Checkpoint Links both contained a parent. This hierarchical

information was eventually moved to the Link Tree structure which improved class cohesion and

made the information more accessible to the planning controller which uses it.

A planning Link Tree T consists of a tree of Link Tree nodes each consisting of a

Checkpoint value C, a set of children Link Tree nodes associated to a Checkpoint Link {L, TC},

and a parent Checkpoint Link and Link Tree node which enables the construction of an ancestral

ordered List of planning decisions that can construct a plan when all Goals are satisfied or allow

 90

the planning heuristic to advance from other nodes in the tree. The Link Tree encodes the

solution space both for the planning heuristic and for any surrounding code to analyze.

Link Trees are the most complicated structure of the implementation. They need to be

able to navigate both upwards and downwards, and not only find their parent but efficiently find

how the parent was linked to the child. Originally, I tried to associate the Link with the child as a

field but sorting through the links required accessing each child and then its parent link field which

was awkward. The implementing class inherits from Dictionary so an extra field is not needed for

addressing the children. A Value field exists to address the Checkpoint. Multi-inheritance isn’t

allowed in C#, so the alternatives are to drop the inheritance and have a children field instead or

to inherit from Checkpoint instead of Dictionary and remove the value field. All of the options

above are about the same with some tradeoff of memory efficiency and generality for simplicity.

A Planning Branch B consists of the Link Tree node T to branch from and the

Checkpoint Link L to branch with. This is encapsulates the entire result of a decision epoch.

Originally, the heuristic returned a Checkpoint Link. Since the Checkpoint Link at the time

held a pointer to a parent Checkpoint, the planning controller could advance the World Model of

that Checkpoint. However, once the next decision epoch occurred, there was no easy way to

update the Link Tree prior to invoking the heuristic. It required searching the tree for the node

whose value matched the Checkpoint in question. Having the Checkpoint Link or Checkpoint

contain a pointer back to the Link Tree is convoluted. A more elegant solution is to pass the

heuristic the most relevant node to the last advancement and have it return the relevant node for

the next advancement. Once that change was made there was no more need for the Checkpoint

Link to contain a parent pointer.

A Planning Heuristic H is a set of functions fC(T) and fB(B, W, C) that return a Planning

Branch to explore. fC(T) is a Checkpoint function that takes a Link Tree whose value is the

Checkpoint created in response to a Decision Epoch Pattern being matched during World Model

Advancement or initialization. fB(B, W, C) is a Backtrack function that takes the Planning Branch

B which was explored, a World Model W which was advanced using B, and a Constraint C which

was violated by W during World Model Advancement.

 91

The heuristic itself is just an interface. The planning controller integrates the planning

decisions from the heuristic into a general planning algorithm and maintains a complex control

flow to advance the World Model safely, trigger decision epochs, maintain the Link Tree structure,

and return a plan from the solution space when one is found.

All of the above capture the needs of a general planning process.

The planning controller orchestrates the generation of plans. A successful plan is a series

of Effects to add from an Initial WorldModel to create a StateList which satisfies the Goal

Constraints before an eventual time without violating any Constraints. The planning library acts as

a controller that facilitates managing the search tree, constructing checkpoints, heuristic calls,

applying Effects, and checking Constraints.

This approach is the most general solution I have conceived of so far. There is not a

planning paradigm I am familiar with that could not be implemented into this framework. It allows

for arbitrary definitions of decision epoch selection, planning heuristics, search heuristics, and

goal criteria. The domain and the heuristics employed to solve it can be arbitrarily complex and

can literally be used to solve any Turing complete predictive model.

 92

CHAPTER 6 – PLANNING LIBRARY SPECIFICATION

PLANNING BRANCH ALGORITHM

This section defines how a planner can use these semantics to produce a plan. This algorithm

uses symbols defined Chapter 5 and the previous section.

1) A World Model W is initialized by a problem P and used to create a Checkpoint C. Use C

to seed an initial Link Tree T.

2) An initial decision epoch occurs. Set Planning Branch B=H.fC(T).

3) Initialize W to explore B. If B is null, fail.

a. Set T=B.T.

b. Set W= a Deep clone of T.C.W.

c. Set W.EL= the union of B.L.EL and W’.EL.

d. Select a next Effect set En with time t.

4) Explore B.

a. Advance W to t.

b. Apply En to W.

c. Check L.PL against W. If a pattern P is matched add a child Link Tree T’ to T

using a new Checkpoint built with W and P. Set T=T’. Set B=fC(T). Go to 3.

d. Select a next Effect set En with time t. If En != {} Go to a.

e. Finalize current State.

5) Stalling has occurred. Set B=H.fB(T, W, C) where C is an implicit stall Constraint and go

to Step 3.

When a State is Finalized:

1) Check Constraints in CL that overlap S. If a Constraint is violated, set B=H.fB(B, W, C)

and go to Step 3.

2) Satisfy Goals that overlap S. If all Goals in SL are satisfied return a plan of Checkpoint

Links built using T and L.

 93

CHAPTER 6 – PLANNING LIBRARY SPECIFICATION

PLANNING DATA STRUCTURES

Figure 14 shows a UML diagram of an object oriented set of classes which implement the domain

independent semantics introduced at the start of this chapter.

Figure 14: Planning Library UML Overview

This diagram is fairly complicated and even this large picture is incomplete so this will be

explained one piece at a time in the same order as the semantics were defined.

Figure 15: DecisionEpochPattern UML Diagram

DecisionEpochPatterns are constructed by the domain author as part of the

PlanningBranch in the PlanningHeuristic. Each pattern is synchronized to the current State and

checked each time a next Effect set is applied by the CheckAll extension method during step 4.c

 94

of the PlanningBranch algorithm. DecisionEpochPattern inherits from StateVariableContainer to

facilitate this synchronization and the functionality can be overridden by domain authors in the

same way as Effects. If a match is found the Checkpoint function of the heuristic is called and the

first matching pattern is passed as a parameter. The reserved type

InitializeDecisionEpochPattern is passed during the first Decision Epoch.

Figure 16: Checkpoint UML Diagram

Checkpoints are constructed by the PlanningController each time a

DecisionEpochPattern is matched during step 2 and step 4.c of the PlanningBranch algorithm.

The controller invokes the domain author provided factory and calls Initialize on the Checkpoint it

creates. BacktrackWorldModel is used to prepare the WorldModel to advance each time a new

PlanningBranch is being explored in step 3.b of the PlanningBranch algorithm.

Figure 17: CheckpointLink UML Diagram

 95

CheckpointLinks are created by the domain author as part of the PlanningBranch in the

PlanningHeuristic during step 2 and 4.c of the PlanningBranch algorithm and step 1 of state

finalization. The Effects of EffectList are appended to the PendingEffectList of the WorldModel to

advance during step 3.c of the PlanningBranch algorithm. The DecisionEpochPatternList is

checked each time a next Effect set is applied in step 4.c.

The ToString method is primarily intended to help with auditing. It returns a tab formatted

string of the plan up to and including the CheckpointLink.

Figure 18: LinkTree UML Diagram

LinkTrees are created by the PlanningController prior to invoking the Checkpoint heuristic

function during step 4.c of the PlanningBranch algorithm. The structure itself requires a bit of

elaboration. Their purpose is to structure the solution space while providing strong class

cohesion. Having a separate structure for the hierarchical information simplifies the data

structures the heuristic builds and allows the planning library to handle the responsibility of

managing the hierarchy for the domain author.

 96

Without a LinkTree structure the hierarchical information would conceptually look like this:

This structure is similar to what would be used for A* search except that instead of each

node being a State and the graph being a series of State transitions each node corresponds to a

WorldModel finalized up to a particular time that progresses as you go down the tree and the

difference from node to node can constitute many State transitions. Also, the association from

one node to the next includes the planning decisions as Checkpoint Links which structures and

publishes the solution space.

There are several things missing from this structure which motivate a LinkTree. First,

there is no easy way of constructing and returning the plan once the Goals are satisfied. Either

the entire plan up to each Checkpoint needs to be included in each Checkpoint directly or as an

ancestral chain, or a pointer to the parent is required which can recursively construct the plan.

Second, there are several possible implementations of this, most of which unnecessarily burden

the domain author in some way. Does the Checkpoint point to the CheckpointLink or hold key

value pairs of Checkpoint Links and Checkpoints? If the pointer to the parent is added, do you

include a pointer to the parent CheckpointLink, the parent Checkpoint, or both? If you only include

the Checkpoint Link, then the Checkpoint Link needs a pointer to the parent Checkpoint and

Checkpoint
1

Checkpoint
2

Checkpoint
3

Link 1-2

Link 1-3

Figure 19: LinkTree Conceptual Diagram

 97

navigating up the tree requires a rather awkward .ParentLink.ParentCheckpoint-esq call. If you

only point to the parent Checkpoint the child has to sort through the set of child CheckpointLinks

of the parent to find a Checkpoint Link that points to or associated with itself in order to construct

the plan. Including a parent pointer on the Checkpoint Link burdens the domain author since he is

constructing the Checkpoint Link in the heuristic function. Having the Checkpoint Link point to the

Checkpoint is poor practice because when constructing the Checkpoint Link the Checkpoint it

should point to does not exist yet. Furthermore, a more cohesive solution places the hierarchical

functionality in its own class for the same reasons we use generic Lists and Dictionaries. The

LinkTree structure addresses all of these problems. It removes all of the hierarchy burden from

the planning data structures and the burden of maintaining the hierarchy from the domain author.

It’s easy to see how this structure would be compatible with other modeling work such as

interactive model steering while also being an implementation of the planning semantics covered

above [21]. While interactive model steering essentially replaces a planner with a human

knowledgeable about a domain, integrating LinkTree solution space with a model steering

approach would enable a planner to be part of the equation as well. A plausible application of this

would be to use software such as WorldLines to debug and visualize a plan as it was being built

in order to aid in the creation of a domain dependent planner.

 C2

 C3

C1

Link 1-2

Link 1-3

Dictionary

Children

Value

Link Tree<CheckpointLink, Checkpoint>

Figure 20: LinkTree Structural Diagram

 98

Figure 21: World Lines Visualization [21].

A reasonable parallel to the WorldLines model would include LinkTree at every place

where branches occur and CheckpointLinks to connect tracks. The active track progresses as the

WorldModel of the PlanningBranch is advanced. With a few modifications WorldModel

advancement could be paused and tracks could be switched using interactive model steering.

Potential branches could be viewed and selected between using the UI. It’s even plausible to

have a learning agent create a heuristic using this manual intervention over time.

Figure 22: Planning Branch UML Diagram

 99

PlanningBranches are created by the domain author in the PlanningHeuristic functions in

step 2 and step 4.c of the PlanningBranch algorithm. They contain information about what

WorldModel to advance from and what actions planning resulted in. The NodeToAdvance

contains a Checkpoint with the WorldModel to clone prior to advancing. The LinkToAdvance

contains the set of Effects to add to the WorldModel and the set of DecisionEpochPatterns to

check while advancing. The WorldModelToAdvance property creates a backtrack-safe

WorldModel from the NodeToAdvance with the Effects from LinkToAdvance appended to the

pending Effect List. Once the next Checkpoint is reached, the resulting Checkpoint is added to

the children of Node to advance prior to calling the PlanningHeuristic Checkpoint function.

Figure 23: PlanningHeuristic UML Diagram

The PlanningHeuristic is a service object provided to the planning controller during setup. It

consists of two functions used to handle four cases.

1) Initialization occurs in step 2 of the PlanningBranch algorithm. This calls Checkpoint with

a reserved type of DecisionEpochPattern called InitializeDecisionEpochPattern, a root

node LinkTree, and the WorldModel initialized from the problem provided to the

PlanningController.

2) Standard checkpoints occur in step 4.c of the PlanningBranch algorithm. The function is

passed the newly created LinkTree node whose value is the Checkpoint containing a

 100

WorldModel on which the DecisionEpochPattern parameter matched. The WorldModel

and DecisionEpochPattern parameters to Checkpoint are redundant programmer

conveniences because they can be fetched from the LinkTree parameter.

3) Standard backtracking occurs when a Constraint is violated in step 1 of State finalization.

The function is passed the PlanningBranch being expanded at the time which gives it

access to the original WorldModel, the WorldModel at the time the Constraint was

violated so that it can compare the difference, and the Constraint that was violated.

4) Stalling occurs in step 5 of the PlanningBranch algorithm when there are no more Effects

to apply before the State List eventual time but at least one Goal remains unsatisfied.

This calls the backtrack function with the usual parameters except for a reserved type of

Constraint called PlanningStalledConstraint.

These functions could have been implemented by 4 methods instead of 2 to remove the need

for the reserved types of DecisionEpochPattern and Constraint but in practice there seemed to be

enough overlap between the code implementing the two functions to merge them as I have done.

Figure 24: PlanningController UML Diagram

Finally, there is the PlanningController. This is not part of the language independent

semantics but the part of the library that implements the PlanningBranch algorithm. The

 101

constructor requires a heuristic and an optional checkpoint factory if the default checkpoint isn’t

used. The problem is passed to the GeneratePlan call on the controller instance and returns a

List of CheckpointLinks which can be used to view the Effects added by the heuristic. The design

allows domain authors to use the library with a minimum of fuss.

PDDLProblem problem = new PDDLProblem("PDDLProblems\\" + problemFile);

BlocksWorldCheckpointFactory factory = new BlocksWorldCheckpointFactory();

PlanningController<BlocksWorldCheckpoint, WorldModel> controller = new

PlanningController<BlocksWorldCheckpoint, WorldModel>(factory, heuristic);

List<CheckpointLink> plan = controller.GeneratePlan(problem);

Remaining Concerns

There are several features that would be useful to domain authors and several remaining

inefficiencies that could still be addressed.

When all Goals are satisfied there is no further heuristic call prior to returning. If the first

plan found is not optimal there is no chance for the heuristic to keep searching. This works well if

the heuristic is admissible but can be problematic otherwise. This can be worked around by

detecting that Goals would be satisfied by the Effect set prior to State finalization but this violates

intuitions about the function of Effects.

Also related to Goals, the only time Goals are checked is after a State is finalized or

advancement stalls. In the former case this means that an unnecessary split (including the deep

clone) already occurred. In the latter case this can mean either that a decision epoch

unnecessarily occurs where all Goals could be satisfied on the current State or that the pending

Effect List was emptied, even if doing so was artificial. From a modeling semantic perspective it

does make sense to only satisfy Goals on finalized States to prevent the Goal from being

immediately unsatisfied but in principle some mechanism could be added between applying the

next Effect set and checking DecisionEpochPatterns to force the current State to finalize without

stalling or advancing.

When backtracking occurs there is no LinkTree node that tracks the advancement of that

PlanningBranch. To an auditing mechanism there is no sign that the backtrack ever occurred.

The heuristic has to keep track of the useful CheckpointLinks from the parent node and eliminate

 102

the CheckpointLink that led to the Constraint. If it wants to make backtrack calls visible it needs to

store that information on the Checkpoint itself somehow as well. This in and of itself is just some

extra bookkeeping; more wasteful is that there can be any number of States and applied Effects

between the last Checkpoint and when the Constraint was violated. Any portion of the advanced

WorldModel that was not responsible for the eventual Constraint violation will need to be

regenerated from the last Checkpoint by redundantly advancing. There is no mechanism to

resume advancement from any point other than the last Checkpoint.

While significant effort has been put into making the defensive cloning process efficient

there is an irreducible cost that scales with the size of the domain. Each time a State is split a

deep clone of that State occurs. Each time a PlanningBranch is explored from a Checkpoint, the

WorldModel is cloned again. Fortunately, the planning semantics ensure that only the current

State needs to be deep cloned, but the WorldModel clone still needs to deep clone the current

State, shallow clone the State List, deep clone the Effect List, Constraint List, Goal List and any

variables that exist on the WorldModel object itself each time a Decision Epoch occurs. These

costs could be reduced if the library had a programmer guarantee that an Effect, Constraint, or

Goal would not be modified in the same way as finalized States. Another technically possible

optimization would be for the WorldModel’s StateList to fetch previous States from up the

LinkTree rather than shallow cloning the StateList. The interface for interacting with the StateList

would need to be revisited and parts of the PlanningLibrary would require significant rework to

pull this off.

The modeling semantics make no guarantee about the order of Effect application. The

library takes a “buyer-beware” approach similar to finalized States; don’t write Effects that will be

applied at the same time if their order of application produces different State Lists. Doing so

means that a different implementation of the WorldModel advancement algorithm would

determine a plan to fail.

Decision Epochs add an ordering to Effects which doesn’t exist during plan validation.

This makes it possible for successful plans to be generated which will fail validation.

 103

In many planners, the problem of choosing decision epochs is solved independently of

solving for actions. William Cushing convincingly proves the inevitable problem with these

approaches; the context of the actions is necessary to ensure planning completeness [65].

It is the domain author’s responsibility to account for the context of all domain Effects

when specifying the decision epoch patterns. Failing to do so can result in a loss of planning

completeness. A decision epoch pattern is specified as a Boolean method on a

DecisionEpochPattern interface. The planning heuristic method which generates Checkpoint

Links specifies a set of patterns which are used until the next decision epoch. A few common

patterns are included in the planning heuristic library such as triggering when the StateList has

been finalized up to a predetermined time or when a constraint associated only with the

DecisionEpochTrigger is violated by the WorldModel.

 104

CHAPTER 6 – PLANNING LIBRARY SPECIFICATION

CONCLUSIONS

Refining the planning semantics to their current level of simplicity was no easy feat. My first

attempt at the planning solution included no tree for the solution space. The planning heuristic

returned a time for the next heuristic call and the Effects to append. Either the attempted solution

would succeed adequately and progress or violate a Constraint and fail. This was obviously

insufficiently general.

My second attempt at the planning semantics included a tree for the solution space

consisting of Checkpoints and what became Checkpoint Links. DecisionEpochPatterns

generalized the notion of when to plan from a time to a pattern. The domain author now also had

to provide a Checkpoint selector mechanism. Each Checkpoint was also associated with an

enumerable set of Checkpoint Links which was created at the time when the Checkpoint was

constructed. The Checkpoint selector reduced the solution space to a single node and that node

output the Checkpoint Link to expand with. This had the significant drawback that all Checkpoint

Links had to be inferable at the time when the Checkpoint was constructed. It was difficult to learn

from a Constraint violation and update your Checkpoint Links. Also, the ranking mechanism for

Checkpoint Links was unclear. Presumably the Checkpoint Link enumerator would be able to use

the WorldModel to rank its own Checkpoint Links but the Checkpoint selector would have to do

this ranking again amongst the Links from each enumerator. I could imagine solutions where the

Checkpoint Link, Checkpoint pair was reduced to some A* value and then the optimal value was

chosen but the whole process felt repetitive and clunky.

This led to a model where the decision of where to expand from and what to do were

packaged into a single concept called a PlanningBranch. This prevented the domain author from

needing to analyze each Checkpoint for an optimal CheckpointLink and opened up simpler

approaches such as breadth first search or depth first search which can select a Checkpoint not

based on a Checkpoint Link but it’s position in the solution space. It also removed the seemingly

repetitive definition of ranking Checkpoint Links within and amongst Checkpoints.

 105

At this point the library has reached a balance that doesn’t constrain the form of the

solution any more than is necessary to provide a structure for the solution space and implement a

general planning algorithm on behalf of domain authors.

One of the more substantial complaints I received to my original JPDL publication was

that while the reviewer could understand how to validate a plan using my the WorldModel

advancement algorithm, he could not understand how to make a plan from the domain definition.

My answer at the time was to prove that JPDL was translatable to PDDL, and therefore could be

used to build the same planning structures that heuristics currently use. I have kept this feedback

in mind when changing to a planning library that can support arbitrarily expressive

implementations that are beyond the reach of code interpretation techniques. Are the definitions

provided sufficient to author a domain independent heuristic?

The answer is certainly no, but by how much? Because it cannot be built directly from the

code, whatever structure a general heuristic acts on needs to be built using metadata or by

functions the domain author provides. These heuristic structures invariably act on limited models,

though the limits of each heuristic may vary. However, there is nothing in the semantics provided

that prevents the construction of a heuristic structure. For example, a subclass of Goal could be

authored which specifies a conjunctive normal form of small Boolean patterns each of which is

mapped to one or more State Variables. The types of these patterns could be understood by a

heuristic which knows how subclasses of Effects can be used to satisfy them. Metadata on each

Pv and V element of a State or Effect could be used to extract reachability information for these

variable. A reverse function associated with each apply method could be used to do backward-

chaining. Each of these pieces would substitute something that general heuristics already extract

from a PDDL description until the entire heuristic structure has been equivalently replaced.

The forms that these heuristic structure replacements could take are very interesting to

me and I think would be of great interest to the planning community. The underlying semantics

that the planning library provides would also provide a lexicon for discourse. Analyzing why

domains exceed these descriptions will be much easier and more productive when that domain is

implemented using a well understood semantic base. This could in turn motivate the expansion of

 106

PDDL to support more complex domains. I don’t think that this approach is necessarily superior to

the research approach, but rather it is necessary to solve some domains, and largely unexplored

to date.

PDDL is ill-suited to represent entire categories of domains, many of which are quite

common and for which better solutions are urgently needed. Spatial-temporal domains are one

such class which commonly applies to both Cyber-Physical Systems and Video Games [66].

 107

CHAPTER 7

BLOCKS WORLD EXAMPLE DOMAIN

In order to illustrate how a domain author interacts with the planning library detailed in Sections 5

and 6 and in order to evaluate the performance of the library objectively I have implemented a

solution for the Blocks World domain from the planning literature and the planning competition.

The general form of this solution is applicable to many domains. The underlying pattern

of the heuristic is to identify a list of candidate problems that are preventing the Goals from being

satisfied, select a problem from either the most recent Checkpoint or an unexplored problem from

a previous Checkpoint to solve, and build an Effect List that the heuristic anticipates will correct

the issue. This methodology is simple, intuitive, and serves as a good example of how other

domain authors can utilize the planning library.

This solution is evaluated by comparing the resulting plan and solution times against the

results of the planning competition. The plans produced by the library satisficing solution are of

similar length and solution time to the competition results. This makes a strong case for the

feasibility of this approach.

The Blocks World domain is one of the oldest and most quintessential planning domains.

Because it is clear and simple, it has been by far the most frequently used example in the AI

planning literature since the 1960s and is still used by introductory AI courses [67]. It has since

been adapted to the planning competition and used as recently as 2011 in the IPCC 2011

Learning track.

The domain consists of Blocks which can be moved to form stacks. The initial problem and goal

both describe a stack configuration and the problem consists of finding a series of moves to

convert the initial configuration into the goal configuration. A solution provably exists in less than

4n moves and can be found in n time. However, finding an optimal solution has been shown to be

NP hard [68].

 108

CHAPTER 7 – BLOCKS WORLD EXAMPLE DOMAIN

PLANNING LIBRARY MODEL

States and Effects

Figure 25 shows the UML diagram capturing the State Variables for this domain.

Figure 25: BlocksWorld StateVariable UML Diagram

A significant aspect of this domain is the notion of block stacks. In the PDDL domain, the

stack of blocks can be inferred by iteratively processing the ‘on’ predicate list. However, there is

no structure to represent the stack itself. When considering the set of actions which meet the

PDDL preconditions the only blocks which can be targeted by the actions are blocks in the

gripper and blocks on top of stacks. When considering the Goal function, a stack structure

 109

prevents excessively searching the ‘on’ predicate list for comparison and reduces that to

comparing IDs. Lastly, when modeling the Block itself, it is pointless to have an OnTable and

Clear field for all Blocks except for the bottom Block and top Block. Having a stack structure

eliminates the need for these fields or other workarounds that attempt to preserve memory such

as having a separate type for the bottom and top Blocks. It also demonstrates differences in

effective modeling using predicate lists and object webs.

In addition to purely structural information, the BlockStack class contains several

programming convenience properties and methods used by Effects. Lists of BlockStacks have

search oriented extension methods to brute force search the position of a Block (used by the

Goal) and the position of a BlockStack amongst its siblings topped with a Block (used by Effects).

The Block and Gripper objects are simple enough to be self-explanatory.

The BlocksWorldState implementation contains StateVariables for the Gripper and a List

of BlockStacks which is fairly straightforward.

Figure 26: BlocksWorld State UML Diagram

The AddStack method is used by the PutDown Effect to create a new BlockStack with the

provided Block as a base. FindBlock invokes the equivalent extension method from

BlockStackListExtensions for programmer convenience. Less obvious is the GetStateVariables

 110

method which is used for synchronization. The default implementation from

StateVariableContainer returns StateVariables which are fields or part of an enumerable

collection. In this case that consists of the Gripper and the BlockStacks. However, the Effects

need to synchronize to the Blocks themselves to be PDDL equivalent, and the default

implementation does not recursively iterate nested State Variables. The override implementation

ensures that the List of Blocks contained in the BlockStacks and the Block held by the Gripper

are included in the StateVariables considered for synchronization. An alternate solution would be

to include a List of Blocks on the State itself. The override implementation is quite small as shown

below.

public override List<StateVariable> GetStateVariables()

{

 List<StateVariable> returnSV = new List<StateVariable>();

 returnSV.AddRange(BlockStacks);

 returnSV.Add(Gripper);

 if (Gripper.HeldBlock != null)

 {

 returnSV.Add(Gripper.HeldBlock);

 }

 returnSV.AddRange(this.BlockStacks.SelectMany(s => s.BlockList));

 return returnSV;

}

The domain requires four Effects which are equivalent to the PDDL domain. The UML for

these four methods is shown below. This equivalence enables plan comparison and a small

conversion method enables the plans returned to be checked by VAL [69].

 111

Figure 27: BlocksWorld Effect UML Diagram.

Each Effect implements the PDDL preconditions using an if-statement which throws an

Exception if not met. The intent is for only valid Effects to even be instantiated. Any invocation of

apply that would be meaningless to run is a bug. The Apply method for PutDown is shown below.

public override void Apply(WorldModel worldModel)

{

 BlocksWorldState currentState = (BlocksWorldState)worldModel.CurrentState;

 List<BlockStack> blockStacks = currentState.BlockStacks;

 Gripper gripper = currentState.Gripper;

 if (gripper.HeldBlock == Block)

 {

 gripper.HeldBlock = null;

 currentState.AddStack(Block);

 }

 else

 {

 throw new InvalidOperationException();

 }

}

A more natural Effect definition would probably refer to the BlockStack directly rather than

name the Blocks being stacked. This would be slightly more efficient because the apply method

would not need to search the stacks for the block in question to modify the appropriate stack.

However, I wanted the actions to have a certain amount of equivalence so they could be easily

compared with PDDL results.

 112

Goals and Mismatches

As PlanningBranches are explored the Goals are checked as part of WorldModel

advancement. The PDDL BlocksWorld domain used in the competition has a Goal consisting of a

single conjunctive normal form expression of predicates. For example:

(:goal (AND (ON D C) (ON C B) (ON B A)))

This describes a single stack of four Blocks ordered alphabetically bottom to top, A to D.

D

B

A

Goal State

C

Figure 28: Example BlocksWorld Goal.

 113

I have implemented an equivalent Goal called StackedBlocksGoal shown in Figure 29.

Figure 29: BlocksWorld Goal UML Diagram.

This Goal is intended to meet or exceed the descriptive power of the PDDL equivalent

domain. The Check function compares each BlockStack on the Goal to the corresponding

BlockStack on the current State. The corresponding stack of a BlockStack on the Goal is the

BlockStack on the current State which contains the bottom Block of the BlockStack on the Goal.

A BlockStack on the current State may correspond to multiple Goal BlockStacks.

A BlockStack on the Goal matches its corresponding Stack on the current State iff it meets these

criteria:

1) Each Block in the Goal BlockStack exists on the current State.

2) Each Block in the Goal BlockStack that is not the BottomBlock is above the same Block

on the current State.

3) If the Goal BlockStack is OnTable then the BottomBlock of the Goal is also the

BottomBlock of the corresponding Stack.

4) If the Goal BlockStack is Clear then the TopBlock of the Goal is also the TopBlock of the

corresponding Stack.

 114

If a BlockStack is not matched it is because the State is inconsistent one or more of these

criteria. Each inconsistency produces a distinct Mismatch in the GetMismatches method of the

StackedBlocksGoal. These Mismatches are smaller unsolved pieces of the Goal which heuristics

can attempt to solve. The alternative would have been to create many different Goals from the

PDDL description and have the heuristic select from the unsatisfied ones for solving. Many

domains contain “implied goals” which are necessary to solve but are inferred rather than explicit.

This type of representation is suitable for such goals because it draws a clear distinction between

explicit goals of the model and inferred subtasks useful to the heuristic. The Mismatches used for

my heuristics are shown below:

 115

Figure 30: BlocksWorld Mismatch UML Diagram

The OnTableMismatch and ClearMismatch are fairly obvious and correspond to criteria 3

and 4 respectively. The LowerBlockOrderMismatch, UpperBlockOrderMismatch, and

OverstackMismatch are all optimizations that capture criteria 2 and merit more explanation.

 116

Consider the problem below.

There are two PDDL style predicates which are mismatching the current state.

1) (ON B C)

2) (ON A B)

When an ON predicate does not match this can consist of two subtasks:

1) The lower Block to be stacked on is not clear.

2) The upper Block to stack is not clear or is not on the lower Block.

These subtasks are the LowerBlockOrderMismatch and UpperBlockOrderMismatch

respectively. There are two useful domain-specific pieces of information which are useful in

explaining Overstack Mismatches.

1) It is only worthwhile to consider solving the lowest Mismatch in a Goal stack. Solving any

higher mismatches will only lead to undoing that work later to resolve a lower Mismatch in

the stack.

2) Similarly, it is useless to stack on or with any Block which is needed later by the Goal.

Block A is the simplest possible example of this. Despite the fact that we could solve (ON

B C) immediately, it is suboptimal to do so because it will need to be unstacked later to

access Block A.

B

A

Goal State Current State

B A C

C

Figure 31: BlocksWorld Overstack Problem

 117

We could account for this information using a large number of Lower and Upper

BlockOrderMismatches however it is semantically confusing to use a BlockOrderMismatch to

track if two Blocks are correctly ordered but still need to be moved later. For this reason we have

a separate type of Mismatch called an Overstack mismatch which tracks this fact. Each Block

above the lowest BlockOrderMismatch in the Goal BlockStack is overstacked if that Block is not

clear. Together these observations and structures are sufficient to capture all the ordering criteria

of the Goal.

The set of Mismatches can be filtered before a heuristic selects a Mismatch to pursue

using the following criteria:

1) Filter any Mismatch that is not the bottom Mismatch of its Goal BlockStack.

2) Filter any Mismatch that is not the top Mismatch of its State BlockStack.

3) Filter any Overstack Mismatches because they eventually become an UpperBlockOrder

Mismatches before they are solved.

4) Filter any BlockOrder Mismatches in a Goal BlockStack with an OnTable Mismatch.

5) Filter any Clear Mismatches above that State BlockStacks clear height.

By filtering on these criteria the branching factor of search is greatly reduced. The filtered

mismatches cannot be entirely ignored however. Any Blocks involved in a mismatch provably

need to be moved at some later point and should not be stacked on according to observation 2)

above. To move them, their stacks need to be cleared to at least the height of the Block related to

the mismatch. This height is called the clear height and is essentially captures the constraints of

all filtered Mismatches. The clear height of a State BlockStack is the minimum clear height of all

Mismatches which pertain to that BlockStack. This value is calculated at the beginning of each

Decision Epoch. Counting from 0, a clear height of 1 indicates that the corresponding Stack must

be reduced to 2 Blocks before the problem will be solvable.

This description is sufficient to capture positive conditions, such as example Goal above.

This description is complete because the PDDL domain never specifies negated condition such

as ‘(not (onTable A))’ or any type of general qualifier (exists ?x (onTable ?X)).

 118

In the example problem above GetMismatches will yield a LowerBlockOrderMismatch for

Block C, an UpperBlockOrderMismatch for Block B, and an OverstackMismatch for Block A. The

clear height of both BlockStacks is the table level (0). Next the Checkpoint filters the lowest

Mismatch of each Goal BlockStack and the highest Mismatch of each State BlockStack. This

yields a Dictionary of State BlockStack to Mismatch which the heuristic needs to select amongst

for solving. For the example problem above filtering reduces the Mismatch set to only the

LowerBlockOrderMismatch of Block C. This indicates that C needs to move because it is above

the clear height of its BlockStack. The eventual plan will be (Unstack C A) (PutDown C) (Pickup

B) (Stack B C) (Pickup A) (Stack A B).

 119

CHAPTER 7 – BLOCKS WORLD EXAMPLE DOMAIN

BLIND HEURISTIC

To demonstrate LinkTree usage and as a means of verifying correctness for solutions produced

by my satisficing heuristic I created a brute force breadth-first search baseline heuristic. This

solution is admissible; if a solution exists at depth n, this heuristic is guaranteed to find it because

it is attempting all potentially useful actions. The heuristic uses all of the Mismatch identification,

filtering logic, and clear height logic described in the Goals and Mismatches section when building

the Checkpoint but it is otherwise naïve and wasteful, particularly when a State is encountered

multiple times from different paths.

The UML for the Blind Heuristic is shown below.

Figure 32: BlindHeuristic UML Diagram

The Backtrack function is a no-op planning failure because the domain has no

Constraints and if stalling occurs it is a bug. The Checkpoint function consists of a few simple

tasks:

1) Select a LinkTree node to expand using breadth first search.

2) Select a top mismatch which is as yet unexplored from that node.

3) Build an Effect List to migrate one Block to a better position.

 120

4) Return a Planning Branch that executes this Effect List and triggers the next Decision

Epoch.

The BreadthFirstNodeSelector function addresses point 1. The other three static

functions address point 3. By way of example, consider the problem below:

At the start the Goal will produce three UpperBlockOrderMismatches, one for each

unstacked pair. At each Checkpoint the heuristic will choose one unsolved mismatch, build a pair

of Effects that relocates one Block, and return a PlanningBranch which advances the WorldModel

by this move.

Because there is only one sensible location to move a Block to all optimal solutions are

considered by the heuristic. However, this heuristic does produce an extremely wasteful number

of States.

D B

A

Goal State Current State

B A C D C E

F

E F

Figure 33: BlocksWorld BFS Problem

 121

The full search tree for this problem using the blind heuristic is shown below.

Each State above is numbered according to the order of the Checkpoint that was created

for it. The node selection function uses level order queue based tree traversal with the

modification that the selection of a node is repeated until it has no more children to explore. This

modification allows node 0 to be selected for expansion three times prior to expanding node 1.

Each time a new Checkpoint is created that checkpoint is queued into the LinkTreeQueue

property of the heuristic. Once the exploration of a node is exhausted it is dequeued and the next

node is selected.

In the search tree above you can see that States 4 5 and 6 are each repeated. This is a

significant source of waste in the blind heuristic as the same State can be reached from different

paths, and there is no built-in mechanism to detect this repetition and cull further search down

that path. In the example above, this leads to three unnecessary Checkpoints. However, the total

number of states in just the final layer of a problem of this shape is (n/2)! If this problem was

expanded to include 2 more blocks, the depth of the tree would increase by 1, and the state count

would increase to 42 from 10. The sheer number of states produced by this solution makes it

0

1

2

3

4

5

6

7

8

9

10

Figure 34: BFS Problem Search Tree

 122

entirely impractical for large problems. A typical 15 Block problem such as those used in the

planning competition produces multiple thousand Checkpoints and can run for several minutes.

The sheer number of states makes this approach infeasible for large problems. A more realistic

approach is provided in the satisficing heuristic.

 123

CHAPTER 7 – BLOCKS WORLD EXAMPLE DOMAIN

SATISFICING HEURISTIC

In contrast to the blind heuristic the satisficing heuristic only considers a single path and provides

no guarantee of an optimal solution. It essentially explores a planning probe [76]. Despite

providing no guarantee we will show that in many complex cases this heuristic produces an

optimal solution or at least solutions comparable to results of the international planning

competition in the years where this domain was used. Our comparison serves as a proof of the

feasibility of this approach.

Due to the age of and quantity of literature involving this domain, many satisficing

heuristics already exist. Slaney et. al. provide a review of several linear time near-optimal

algorithms which solve the domain and provide their own constant time algorithm for selecting

each move [77]. The purpose of this work is to prove feasibility of the library not to make the

fastest possible domain specific planner for BlocksWorld to date.

The section above has already defined the various mismatches. This section will outline

the heuristic algorithm and provide several problems to illustrate the algorithm using the

Mismatch definitions and clear height concepts previously defined.

Heuristics of this library have a few elemental tasks to accomplish.

1) Identify subtasks that could be solved on the most recent Checkpoint.

2) Choose from the LinkTree a single subtask to solve this iteration.

3) Construct a Planning Branch which progresses towards a solution

The subtask identification here consists of the Mismatch definitions already covered and

is done in the Checkpoint factory. As already mentioned this heuristic explores a planning probe

and therefore it never considers any Checkpoints except the current one. This reduces task 2) to

choosing 1 subtask from the current Checkpoint to expand.

The satisficing heuristic selects a Mismatch based on the number of misplaced Blocks

above the Block related to the Mismatch. These Blocks consist of “incidental” displacement,

moves not directly related to solving the Mismatch, which can lead to suboptimal solutions.

 124

Suboptimal solutions can only occur when a Block that is needed in a Goal BlockStack later is

placed somewhere other than its final resting place. Each Block displaced in this way increases

the chance of a suboptimal move occurring. At the very least, the problems with posted optimal

solutions from the planning competition were all solved optimally using this technique.

Once a Mismatch is selected an Effect List needs to be created to address it. In the blind

heuristic this Effect List was a single Block migration. In the satisficing heuristic this is a multi-step

process which eliminates the Mismatch entirely. Any Blocks above the Mismatch Block are

migrated to the table or their Goal position. From there, the Mismatch Block is moved if it is also

above the stack’s clear height or is the Block of an UpperBlockOrder Mismatch. A Decision

Epoch is triggered every time the Effect List is emptied.

 125

CHAPTER 7 – BLOCKS WORLD EXAMPLE DOMAIN

EVALUATION

A primary reason for using an existing well documented domain for evaluation is for comparison

against other existing approaches. This section demonstrate the feasibility of this approach

compared to existing domain-independent and domain-configurable planners which competed in

this domain in previous planning competitions. There were three forms of evaluation:

1) Unit test elemental problems.

2) PDDL problems consisting of <15 Blocks solved in the optimal track of the IPC.

3) PDDL problems consisting of 100-500 Blocks solved in the satisficing track of the IPC.

A few of the unit test problems and their solutions are illustrated here. For the optimal and

satisficing test problems we compare numeric data in runtime and plan length.

Sample Problems

The first sample problem considered here is the Overstack example problem from the

Mismatch introduction.

This case is interesting because the most immediate thing to solve, (ON B C), shouldn’t

be solved without first moving Block C to table. To prove this a heuristic needs to look beyond the

immediate task in some way and account for future problems.

The Mismatch and filter system which uses clear heights accomplishes this beautifully.

Block A is above Block B and therefore is required later in the problem. Calculating the clear

B

A

Goal Initial State

B A C

C

Figure 35: Overstack Problem Revisited.

 126

height of each stack is sufficient to prove that solving LowerBlockOrder C requires first moving

Block C to the table. From there the solution is fairly straight forward.

Checkpoint Visual State Mismatch List Effect List

0

LowerBlockOrder C Unstack C A
PutDown C

1 UpperBlockOrder B

Pickup B
Stack B C

2

UpperBlockOrder A

Pickup A
Stack A B

3

Table 6: Overstack Problem Solution

Each time the current Mismatch is solved the Effect List should be empty which triggers a

new Decision Epoch. In this case, the filtering process always ensures that there is only one

Mismatch to consider from because Mismatches are filtered based on the lowest Mismatch of a

Goal BlockStack and the highest Mismatch of a State BlockStack. Once the LowerBlockOrder

Mismatch is solved the UpperBlockOrder Mismatch for Block B is no longer filtered because it is

now the bottom Mismatch of its corresponding Goal BlockStack. Once that is solved, the

UpperBlockOrder Mismatch for Block A is no longer filtered. This process would continue

proceeding up the Goal BlockStack regardless of how many Blocks it contained.

The next example shows a case with multiple Goal and State BlockStacks so that

multiple Mismatches will exist after filtering that the heuristic has to choose between.

 127

In the initial Checkpoint Block 1 and Block A need to be clear before they can be stacked

on. This creates a LowerBlockOrder Mismatch for Block 1 and Block A. Next the Block above the

LowerBlockOrder Mismatch on the Goal BlockStack needs an UpperBlockOrder Mismatch as a

subtask to clear those Blocks and move them on to their corresponding lower Block. Next, every

Block above these in their Goal BlockStacks are Overstacked if they are not clear. This creates

an Overstack Mismatch for Block 3. Table 7 shows a list of all identified Mismatches and their

clear heights. Table 8 compiles clear height by State BlockStack.

Mismatch Type Mismatch
Block

Corresponding Stack
(Bottom Block)

Clear Height

LowerBlockOrder 1 1 0

UpperBlockOrder 2 A 2

Overstack 3 A 1

LowerBlockOrder A A 0

UpperBlockOrder B 1 1

Table 7: Swapstack Initial Problem Mismatches

Corresponding Stack
(Bottom Block)

Clear Height

A 0

1 0

Table 8: Swapstack Initial Problem Clear Height Dictionary

In the initial Checkpoint the only necessary filter is to take the lowest Mismatch of each

GoalStack. This yields two mismatches shown in the table below. At this point the heuristic needs

to select which to solve in the first Decision Epoch. The satisficing (non-optimal) criteria for this

preference is to select the mismatch with the minimum displacement. LowerBlockOrder 1

requires displacing 1 Block, whereas solving LowerBlockOrder A requires displacing 2 Blocks.

B

A

Goal Initial State

1

2

3

B

A 1

2

3

Figure 36: BlocksWorld Swapstack Problem

 128

Therefore LowerBlockOrder 1 is selected by the satisficing heuristic. In this example either choice

produces an optimal result. After the initial Checkpoint there is only 1 Mismatch each Decision

Epoch and so search becomes trivial.

Checkpoint Visual State Mismatch List Effect List

0

LowerBlockOrder 1
LowerBlockOrder C

Unstack B 1
PutDown B

1

UpperBlockOrder 2

Unstack 2 3
Stack 2 1

2

UpperBlockOrder 3 Unstack 3 A
Stack 3 2

3

UpperBlockOrder B Pickup B
Stack B A

4

Table 9: Swapstack Problem Solution

IPC Optimal Track Problems

The performance of the blind heuristic and satisficing heuristic is compared using test

problems with a known optimal length from the optimal planning track of the AIPS 2000 planning

competition. In all of these cases the Satisficing Heuristic returned an optimal plan. The results

are shown in Table 10:

 129

Problem Name Blind Heuristic
Runtime

Satisficing Heuristic
Runtime

Plan
Length

blocks-4-0 <1ms <1ms 6

blocks-4-1 <1ms <1ms 10

blocks-4-2 <1ms <1ms 6

blocks-5-0 <1ms <1ms 12

blocks-5-1 <1ms <1ms 10

blocks-5-2 <1ms <1ms 16

blocks-6-0 <1ms <1ms 12

blocks-6-1 1ms <1ms 10

blocks-6-2 1ms <1ms 20

blocks-7-0 1ms <1ms 20

blocks-7-1 2ms <1ms 22

blocks-7-2 1ms 1ms 20

blocks-8-0 1ms <1ms 18

blocks-8-1 2ms 1ms 20

blocks-8-2 1ms <1ms 16

blocks-9-0 2ms <1ms 30

blocks-9-1 2ms 1ms 28

blocks-9-2 2ms 1ms 26

blocks-10-0 3ms 1ms 34

blocks-10-1 3ms 1ms 32

blocks-10-2 3ms 1ms 34

blocks-11-0 2ms 1ms 32

blocks-11-1 3ms 1ms 30

blocks-11-2 3ms 2ms 34

blocks-12-0 3ms 1ms 34

blocks-12-1 3ms 1ms 34

All of Above 51ms 37ms n/a

Table 10: Heuristic Comparison on IPC Optimal Track Problems

IPC Satisficing Track Problems

The table below compares the runtime and plan length of planners which competed in the

satisficing track of the international planning competition against the satisficing heuristic. The

claim of this work is not that this library produces the best solution for a BlocksWorld domain but

rather that it produces feasible solutions on a comparable domain and can enable solutions for

arbitrarily complex domains.

 130

Table 11 shows IPC track 1 results compared with the satisficing heuristic. Track 1

contains only domain-independent planners.

Problem
Name

Best IPC Plan
Length

Satisficing
Heuristic Plan
Length

Best IPC
Time

Satisficing
Heuristic
Runtime

blocks-28-0 102 92 47.83s 60ms

blocks-36-1 138 134 23.21s 48ms

blocks-39-0 144 136 34.35s 49ms

blocks-50-1 188 176 893.17s 79ms

Table 11: Satisficing Heuristic vs. Track 1 IPC Results.

Table 12 shows IPC track 2 Results compared with the satisficing heuristic. Track 2

contains domain-configurable planners such as TALPlanner and includes problems of much

greater scale.

Problem Name Best IPC Plan
Length

Satisficing
Heuristic Plan
Length

Best IPC
Time

Satisficing
Heuristic
Runtime

probblocks-100-1 370 372 309ms 147ms

probblocks-200-1 744 740 479ms 492ms

probblocks-300-1 1158 1136 699ms 1s

probblocks-400-1 1556 1562 999ms 2s

probblocks-500-1 1954 1948 1.409s 3s

Table 12: Satisficing Heuristic vs. Track 2 IPC Results.

Previous domain specific planners for this domain have solved over 10,000 Block

problems in under a second as far back as 1995 [67]. More problems can be generated using the

generator described in Blocks World revisited and available on their website [70].

Ultimately, the domain is proven to be NP Hard. Therefore, no heuristic can exist which is

both optimal and scalable. Optimal heuristics exist which solve problems up to ~150 Blocks in

reasonable time. Satisficing heuristics exist which solve 10,000 Block problems in under a

second.

 131

REFERENCES

[1] Laird, J. (2012). The Soar cognitive architecture. MIT Press.

[2] Anderson, J. R. (2013). The architecture of cognition. Psychology Press.

[3] Langley, P. (2006). Cognitive architectures and general intelligent systems.AI magazine, 27(2), 33.

[4] Kambhampati, S. (1997). Refinement planning as a unifying framework for plan synthesis. AI

magazine, 18(2), 67.

[5] Nau, D. S. (2007). Current trends in automated planning. AI magazine, 28(4), 43.

[6] Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model Checking The MIT Press. Cambridge,

Massachusetts, London, UK.

[7] Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., & Gupta, A. (2013). Probabilistic temporal

logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing Systems

(TECS), 12(2s), 95.

[8] Edelkamp, S., & Greulich, C. (2014, August). Solving physical traveling salesman problems with

policy adaptation. In Computational Intelligence and Games (CIG), 2014 IEEE Conference on (pp. 1-

8). IEEE.

[9] Yannakakis, G. N. (2012, May). Game AI revisited. In Proceedings of the 9th conference on

Computing Frontiers (pp. 285-292). ACM.

[10] Cui, X., & Shi, H. (2011). A*-based pathfinding in modern computer games.International Journal of

Computer Science and Network Security, 11(1), 125-130.

[11] Edelkamp, S., & Plaku, E. (2014, August). Multi-goal motion planning with physics-based game

engines. In Computational Intelligence and Games (CIG), 2014 IEEE Conference on (pp. 1-8). IEEE.

[12] Ventures, M. D. (2006). Stanley: The robot that won the DARPA Grand Challenge. Journal of field

Robotics, 23(9), 661-692.

[13] Kovacs, D. L. (2011). BNF definition of PDDL 3.1. Unpublished manuscript from the IPC-2011

website.

[14] Sanner, S. (2010). Relational dynamic influence diagram language (rddl): Language

description. Unpublished ms. Australian National University.

[15] Smith, D. E., Frank, J., & Cushing, W. (2008, September). The anml language. In The ICAPS-08

Workshop on Knowledge Engineering for Planning and Scheduling (KEPS).

[16] Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning.Computational

Intelligence, 11(4), 625-655.

[17] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., ... & Wilkins, D. (1998).

PDDL-the planning domain definition language.

[18] Shah, M., Chrpa, L., Jimoh, F., Kitchin, D., McCluskey, T., Parkinson, S., & Vallati, M. (2013).

Knowledge engineering tools in planning: State-of-the-art and future challenges. Knowledge

Engineering for Planning and Scheduling, 53.

 132

[19] Jilani, R., Crampton, A., Kitchin, D. E., & Vallati, M. (2014). Automated Knowledge Engineering

Tools in Planning: State-of-the-art and Future Challenges.

[20] Wickler, G. Using Static Graphs in Planning Domains to Understand Domain Dynamics. Knowledge

Engineering for Planning and Scheduling, 69.

[21] Waser, J., Fuchs, R., Ribičić, H., Schindler, B., Blöschl, G., & Gröller, M. E. (2010). World

lines. Visualization and Computer Graphics, IEEE Transactions on, 16(6), 1458-1467.

[22] Fox, M., & Long, D. (2003). PDDL2. 1: An Extension to PDDL for Expressing Temporal Planning

Domains. J. Artif. Intell. Res.(JAIR), 20, 61-124.

[23] Younes, H. L., & Littman, M. L. (2004). PPDDL1. 0: The language for the probabilistic part of IPC-4.

In Proc. International Planning Competition.

[24] Keller, T., & Eyerich, P. (2012, May). PROST: Probabilistic Planning Based on UCT. In ICAPS.

[25] Fox, M., & Long, D. (2002). PDDL+: Modelling continuous time-dependent effects. In Proc. 3rd

International NASA Workshop on Planning and Scheduling for Space.

[26] Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2012). COLIN: Planning with continuous linear

numeric change. Journal of Artificial Intelligence Research, 1-96.

[27] Long, P. G. D., & Beck, M. F. J. C. Planning Modulo Theories: Extending the Planning

Paradigm. PlanSIG2011, 39.

[28] Fox, M. (2014, January). A Modular Architecture for Hybrid Planning with Theories. In Principles and

Practice of Constraint Programming (pp. 1-2). Springer International Publishing

[29] Albore, A., Peyrard, N., Sabbadin, R., & Teichteil-Königsbuch, F. (2015, April). An Online

Replanning Approach for Crop Fields Mapping with Autonomous UAVs. In ICAPS (pp. 259-267).

[30] Maillard, A., Pralet, C., Jaubert, J., Sebbag, I., Fontanari, F., & L'Hermitte, J. (2015, April). Ground

and Onboard Decision-Making on Satellite Data Downloads. In ICAPS (pp. 273-281).

[31] Mersheeva, V., & Friedrich, G. (2015, April). Multi-UAV monitoring with priorities and limited

energy resources. In Twenty-Fifth International Conference on Automated Planning and Scheduling.

[32] Riabov, A. V., Sohrabi, S., Sow, D., Turaga, D., Udrea, O., & Vu, L. (2015, April). Planning-Based

Reasoning for Automated Large-Scale Data Analysis. In Twenty-Fifth International Conference on

Automated Planning and Scheduling.

[33] Surovik, D. A., & Scheeres, D. J. (2015, May). Heuristic search and receding-horizon planning in

complex spacecraft orbit domains. In Eighth Annual Symposium on Combinatorial Search.

[34] Čáp, M., Vokřínek, J., & Kleiner, A. (2015, April). Complete Decentralized Method for On-Line

Multi-Robot Trajectory Planning in Well-Formed Infrastructures. In Twenty-Fifth International

Conference on Automated Planning and Scheduling.

[35] Pralet, C., Verfaillie, G., Maillard, A., Hébrard, E., Jozefowiez, N., Huguet, M. J., ... & Jaubert, J.

(2014, May). Satellite Data Download Management with Uncertainty about the Generated Volumes.

In ICAPS.

[36] Cirillo, M., Pecora, F., Andreasson, H., Uras, T., & Koenig, S. (2014, June). Integrated Motion

Planning and Coordination for Industrial Vehicles. InICAPS.

 133

[37] Kumar, T. S., Jung, S. J., & Koenig, S. (2014, May). A Tree-Based Algorithm for Construction

Robots. In ICAPS.

[38] Levine, S. J., & Williams, B. C. (2014, May). Concurrent Plan Recognition and Execution for Human-

Robot Teams. In ICAPS.

[39] Lipovetzky, N., Burt, C. N., Pearce, A. R., & Stuckey, P. J. (2014, May). Planning for Mining

Operations with Time and Resource Constraints. InICAPS.

[40] Bernardini, S., Fox, M., & Long, D. (2014, May). Planning the Behaviour of Low-Cost Quadcopters

for Surveillance Missions. In ICAPS.

[41] Awaad, I., Kraetzschmar, G. K., & Hertzberg, J. (2014, November). Finding Ways to Get the Job

Done: An Affordance-Based Approach. In ICAPS.

[42] Wang, H., Kurniawati, H., Singh, S. P., & Srinivasan, M. (2015, April). In-silico Behavior Discovery

System: An Application of Planning in Ethology. InICAPS (pp. 296-305).

[43] Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., ... & Carreras, M. (2015,

April). ROSPlan: Planning in the robot operating system. In Twenty-Fifth International Conference on

Automated Planning and Scheduling.

[44] Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., & Schattenberg, B. (2014,

May). Plan, Repair, Execute, Explain-How Planning Helps to Assemble your Home Theater.

In ICAPS.

[45] Kumar, A., Singh, S. S., Gupta, P., & Parija, G. R. (2014, May). Near-Optimal Nonmyopic Contact

Center Planning Using Dual Decomposition. InICAPS.

[46] Parkinson, S., Gregory, P., Longstaff, A. P., & Crampton, A. (2014, May). Automated Planning for

Multi-Objective Machine Tool Calibration: Optimising Makespan and Measurement Uncertainty.

In ICAPS.

[47] Boselli, R., Cesarini, M., Mercorio, F., & Mezzanzanica, M. (2014, May). Planning meets data

cleansing. In Twenty-Fourth International Conference on Automated Planning and Scheduling.

[48] Chanel, C. P. C., Lesire, C., & Teichteil-Königsbuch, F. (2014, May). A robotic execution framework

for online probabilistic (re) planning. In Twenty-Fourth International Conference on Automated

Planning and Scheduling.

[49] Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., & Stone, P. (2014, June). Planning in Action

Language BC while Learning Action Costs for Mobile Robots. In ICAPS.

[50] Ruiken, D., Lanighan, M. W., & Grupen, R. A. (2014, May). Path Planning for Dexterous Mobility.

In ICAPS.

[51] Hernández, C., Baier, J. A., & Asín, R. (2014, May). Making A* Run Faster than D*-Lite for Path-

Planning in Partially Known Terrain. In ICAPS.

[52] Ondruska, P., & Posner, I. (2014, May). The route not taken: Driver-centric estimation of electric

vehicle range. In Twenty-Fourth International Conference on Automated Planning and Scheduling.

[53] Bevacqua, G., Cacace, J., Finzi, A., & Lippiello, V. (2015, April). Mixed-Initiative Planning and

Execution for Multiple Drones in Search and Rescue Missions. In ICAPS (pp. 315-323).

 134

[54] Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for

planning. Artificial Intelligence, 116(1), 123-191.

[55] Kvarnström, J., & Doherty, P. (2000). TALplanner: A temporal logic based forward chaining

planner. Annals of Mathematics and Artificial Intelligence,30(1-4), 119-169.

[56] Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:

An HTN planning system. J. Artif. Intell. Res.(JAIR), 20, 379-404.

[57] Kautz, H. (1998). The Role of Domain-Specific Knowledge in the Planning as Satisfiability

Framework.

[58] Zhou, N. F., Bartak, R., & Dovier, A. (2015). Planning as tabled logic programming. Theory and

Practice of Logic Programming, 15(4-5), 543-558.

[59] Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., & Wanko, P. (2013, July). Domain-

Specific Heuristics in Answer Set Programming. InAAAI.

[60] Jonas, M., Gilbert, R. R., Ferguson, J., Varsamopoulos, G., & Gupta, S. K. (2012, June). A transient

model for data center thermal prediction. In Green Computing Conference (IGCC), 2012

International (pp. 1-10). IEEE.

[61] Jonas, M. (2011). JPDL: A fresh approach to planning domain modeling. KEPS 2011, 63.

[62] Hoffmann, J. (2001). FF: The fast-forward planning system. AI magazine,22(3), 57.

[63] Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime planning with

landmarks. Journal of Artificial Intelligence Research,39(1), 127-177.

[64] Chen, Y., Hsu, C. W., & Wah, B. W. (2004). SGPlan: Subgoal partitioning and resolution in

planning. Edelkamp et al.(Edelkamp, Hoffmann, Littman, & Younes, 2004).

[65] Cushing, W., Kambhampati, S., & Weld, D. S. (2007, January). When is temporal planning really

temporal?. In Proceedings of the 20th international joint conference on Artifical intelligence (pp. 1852-

1859). Morgan Kaufmann Publishers Inc..

[66] Bartheye, O., & Jacopin, E. (2010). Real-Time Planning for Video-Games: A Purpose for PDDL.

In ICAPS 2010 Planning in Games Workshop. Προσπέλαση απó: http://skatgame.

net/mburo/icaps2010-pg/ICAPSPG.

[67] Slaney, J., & Thiébaux, S. (1995). Blocks World Tamed--Ten thousand blocks in under a second.

[68] Chenowet, S. V. (1991). On the NP-hardness of blocks world.

[69] Howey, R., Long, D., & Fox, M. (2004, November). VAL: Automatic plan validation, continuous

effects and mixed initiative planning using PDDL. InTools with Artificial Intelligence, 2004. ICTAI

2004. 16th IEEE International Conference on (pp. 294-301). IEEE.

[70] Slaney, J., & Thiébaux, S. Web Resource http://users.cecs.anu.edu.au/~jks/cgi-bin/bwstates/bwcgi

[71] Löhr, J., Wehrle, M., Fox, M., & Nebel, B. (2014, June). Symbolic Domain Predictive Control.

In Proceedings of the 28th National Conference on Artificial Intelligence (AAAI 2014).

http://users.cecs.anu.edu.au/~jks/cgi-bin/bwstates/bwcgi

 135

[72] Thiébaux, S., Gretton, C., Slaney, J. K., Price, D., & Kabanza, F. (2006). Decision-Theoretic Planning

with non-Markovian Rewards. J. Artif. Intell. Res.(JAIR), 25, 17-74

[73] Gabaldon, A. (2002, July). Non-markovian control in the situation calculus. InAAAI/IAAI (pp. 519-

525).

[74] Gonzalez, G., Baral, C., & Gelfond, M. (2003, August). Alan: An action language for non-markovian

domains. In NonMon. Reasoning, Action and Change Workshop.

[75] Moore, J. D., Chase, J. S., Ranganathan, P., & Sharma, R. K. (2005, April). Making Scheduling"

Cool": Temperature-Aware Workload Placement in Data Centers. In USENIX annual technical

conference, General Track (pp. 61-75).

[76] Lipovetzky, N., & Geffner, H. (2011, March). Searching for Plans with Carefully Designed Probes.

In ICAPS (pp. 154-161).

[77] Slaney, J., & Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence, 125(1), 119-153.

 136

APPENDIX A

TABLE OF ICAPS SURVEY

 137

Title Year Category

An Online Replanning Approach for Crop Fields Mapping with
Autonomous UAVs. [29]

2015 Dependent

Ground and Onboard Decision-Making on Satellite Data
Downloads. [30]

2015 Dependent

Multi-UAV Monitoring with Priorities and Limited Energy Resources. [31] 2015 Dependent

Planning-Based Reasoning for Automated Large-Scale Data Analysis.
[32]

2015 Dependent

Heuristic Search and Receding-Horizon Planning in Complex
Spacecraft Orbit Domains. [33]

2015 Dependent

Complete Decentralized Method for On-Line Multi-Robot Trajectory
Planning in Well-formed Infrastructures. [34]

2015 Dependent

Satellite Data Download Management with Uncertainty about the
Generated Volumes. [35]

2014 Dependent

Integrated Motion Planning and Coordination for Industrial Vehicles.
[36]

2014 Dependent

A Tree-Based Algorithm for Construction Robots. [37] 2014 Dependent

Concurrent Plan Recognition and Execution for Human-Robot Teams.
[38]

2014 Dependent

Planning for Mining Operations with Time and Resource Constraints.
[39]

2014 Hybrid

Planning the Behaviour of Low-Cost Quadcopters for Surveillance
Missions. [40]

2014 Hybrid

Finding Ways to Get the Job Done: An Affordance-Based Approach.
[41]

2014 Hybrid

In-silico Behavior Discovery System: An Application of Planning in
Ethology. [42]

2015 Independent

ROSPlan: Planning in the Robot Operating System. [43] 2015 Independent

Plan, Repair, Execute, Explain - How Planning Helps to Assemble your
Home Theater. [44]

2014 Independent

Near-Optimal Nonmyopic Contact Center Planning Using Dual
Decomposition. [45]

2014 Independent

Automated Planning for Multi-Objective Machine Tool Calibration:
Optimising Makespan and Measurement Uncertainty. [46]

2014 Independent

Planning meets Data Cleansing. [47] 2014 Independent

A Robotic Execution Framework for Online Probabilistic (Re)Planning.
[48]

2014 Independent

Planning in Action Language BC while Learning Action Costs for Mobile
Robots. [49]

2014 Independent

Path Planning for Dexterous Mobility. [50] 2014 Irrelevant

Making A* Run Faster than D*-Lite for Path-Planning in Partially Known
Terrain. [51]

2014 Irrelevant

The Route Not Taken: Driver-Centric Estimation of Electric Vehicle
Range. [52]

2014 Irrelevant

Mixed-Initiative Planning and Execution for Multiple Drones in Search
and Rescue Missions. [53]

2015 Unknown

 138

APPENDIX B

DATA CENTER PDDL DOMAIN FILE

 139

This example PDDL domain file was generated using our T4 template. It is parameterized using 5

servers that equally contribute to each other with a temporal contribution curve of a square wave

with the domain [-1 0]. It has 5 jobs, though job deadlines aren’t built in and the heat per job isn’t

a function of the server.

(define (domain transient-thermal-model)

 (:requirements :typing :equality :universal-preconditions :fluents :constraints)

 (:types server job time)

 (:predicates

 (updatedInletTemperatures ?t - time)

 (updatedOutletTemperatures ?t - time)

 (jobCompleted ?j - job)

)

 (:functions

 (currentTime)

 (time ?t -time)

 (w ?s1 ?s2 - server)

 (cCurveDt0 ?s1 ?s2 - server)

 (cCurveDt1 ?s1 ?s2 - server)

 (temperatureIn ?s - server ?t - time)

 (temperatureOut ?s - server ?t - time)

 (temperatureIncrease ?s - server)

 (jobHeat ?j - job)

 (jobDuration ?j - job)

 (jobStartTime ?j - job)

)

 (:action updateInletTemperatures

 :parameters (?server0 ?server1 ?server2 ?server3 ?server4 - server ?dt0 ?dt1 - time)

 :precondition

 (and

 (updatedOutletTemperatures ?dt1)

 (not (updatedInletTemperatures ?dt0))

 (= (time ?dt0) (currentTime))

 (= (time ?dt0) (+ (time ?dt1) 1))

)

 :effect

 (and

 (assign (temperatureIn ?server0 ?dt0)

 (+

 (* (w ?server0 ?server0)

 (+

 (* (cCurveDt1 ?server0 ?server0)

(temperatureOut ?server0 ?dt1))

 (* (cCurveDt0 ?server0 ?server0)

(temperatureOut ?server0 ?dt0))

)

 140

)

 (* (w ?server1 ?server0)

 (+

 (* (cCurveDt1 ?server1 ?server0)

(temperatureOut ?server1 ?dt1))

 (* (cCurveDt0 ?server1 ?server0)

(temperatureOut ?server1 ?dt0))

)

)

 (* (w ?server2 ?server0)

 (+

 (* (cCurveDt1 ?server2 ?server0)

(temperatureOut ?server2 ?dt1))

 (* (cCurveDt0 ?server2 ?server0)

(temperatureOut ?server2 ?dt0))

)

)

 (* (w ?server3 ?server0)

 (+

 (* (cCurveDt1 ?server3 ?server0)

(temperatureOut ?server3 ?dt1))

 (* (cCurveDt0 ?server3 ?server0)

(temperatureOut ?server3 ?dt0))

)

)

 (* (w ?server4 ?server0)

 (+

 (* (cCurveDt1 ?server4 ?server0)

(temperatureOut ?server4 ?dt1))

 (* (cCurveDt0 ?server4 ?server0)

(temperatureOut ?server4 ?dt0))

)

)

)

)

 (assign (temperatureIn ?server1 ?dt0)

 (+

 (* (w ?server0 ?server1)

 (+

 (* (cCurveDt1 ?server0 ?server1)

(temperatureOut ?server0 ?dt1))

 (* (cCurveDt0 ?server0 ?server1)

(temperatureOut ?server0 ?dt0))

)

)

 (* (w ?server1 ?server1)

 (+

 (* (cCurveDt1 ?server1 ?server1)

(temperatureOut ?server1 ?dt1))

 (* (cCurveDt0 ?server1 ?server1)

(temperatureOut ?server1 ?dt0))

)

)

 (* (w ?server2 ?server1)

 (+

 141

 (* (cCurveDt1 ?server2 ?server1)

(temperatureOut ?server2 ?dt1))

 (* (cCurveDt0 ?server2 ?server1)

(temperatureOut ?server2 ?dt0))

)

)

 (* (w ?server3 ?server1)

 (+

 (* (cCurveDt1 ?server3 ?server1)

(temperatureOut ?server3 ?dt1))

 (* (cCurveDt0 ?server3 ?server1)

(temperatureOut ?server3 ?dt0))

)

)

 (* (w ?server4 ?server1)

 (+

 (* (cCurveDt1 ?server4 ?server1)

(temperatureOut ?server4 ?dt1))

 (* (cCurveDt0 ?server4 ?server1)

(temperatureOut ?server4 ?dt0))

)

)

)

)

 (assign (temperatureIn ?server2 ?dt0)

 (+

 (* (w ?server0 ?server2)

 (+

 (* (cCurveDt1 ?server0 ?server2)

(temperatureOut ?server0 ?dt1))

 (* (cCurveDt0 ?server0 ?server2)

(temperatureOut ?server0 ?dt0))

)

)

 (* (w ?server1 ?server2)

 (+

 (* (cCurveDt1 ?server1 ?server2)

(temperatureOut ?server1 ?dt1))

 (* (cCurveDt0 ?server1 ?server2)

(temperatureOut ?server1 ?dt0))

)

)

 (* (w ?server2 ?server2)

 (+

 (* (cCurveDt1 ?server2 ?server2)

(temperatureOut ?server2 ?dt1))

 (* (cCurveDt0 ?server2 ?server2)

(temperatureOut ?server2 ?dt0))

)

)

 (* (w ?server3 ?server2)

 (+

 (* (cCurveDt1 ?server3 ?server2)

(temperatureOut ?server3 ?dt1))

 142

 (* (cCurveDt0 ?server3 ?server2)

(temperatureOut ?server3 ?dt0))

)

)

 (* (w ?server4 ?server2)

 (+

 (* (cCurveDt1 ?server4 ?server2)

(temperatureOut ?server4 ?dt1))

 (* (cCurveDt0 ?server4 ?server2)

(temperatureOut ?server4 ?dt0))

)

)

)

)

 (assign (temperatureIn ?server3 ?dt0)

 (+

 (* (w ?server0 ?server3)

 (+

 (* (cCurveDt1 ?server0 ?server3)

(temperatureOut ?server0 ?dt1))

 (* (cCurveDt0 ?server0 ?server3)

(temperatureOut ?server0 ?dt0))

)

)

 (* (w ?server1 ?server3)

 (+

 (* (cCurveDt1 ?server1 ?server3)

(temperatureOut ?server1 ?dt1))

 (* (cCurveDt0 ?server1 ?server3)

(temperatureOut ?server1 ?dt0))

)

)

 (* (w ?server2 ?server3)

 (+

 (* (cCurveDt1 ?server2 ?server3)

(temperatureOut ?server2 ?dt1))

 (* (cCurveDt0 ?server2 ?server3)

(temperatureOut ?server2 ?dt0))

)

)

 (* (w ?server3 ?server3)

 (+

 (* (cCurveDt1 ?server3 ?server3)

(temperatureOut ?server3 ?dt1))

 (* (cCurveDt0 ?server3 ?server3)

(temperatureOut ?server3 ?dt0))

)

)

 (* (w ?server4 ?server3)

 (+

 (* (cCurveDt1 ?server4 ?server3)

(temperatureOut ?server4 ?dt1))

 (* (cCurveDt0 ?server4 ?server3)

(temperatureOut ?server4 ?dt0))

)

 143

)

)

)

 (assign (temperatureIn ?server4 ?dt0)

 (+

 (* (w ?server0 ?server4)

 (+

 (* (cCurveDt1 ?server0 ?server4)

(temperatureOut ?server0 ?dt1))

 (* (cCurveDt0 ?server0 ?server4)

(temperatureOut ?server0 ?dt0))

)

)

 (* (w ?server1 ?server4)

 (+

 (* (cCurveDt1 ?server1 ?server4)

(temperatureOut ?server1 ?dt1))

 (* (cCurveDt0 ?server1 ?server4)

(temperatureOut ?server1 ?dt0))

)

)

 (* (w ?server2 ?server4)

 (+

 (* (cCurveDt1 ?server2 ?server4)

(temperatureOut ?server2 ?dt1))

 (* (cCurveDt0 ?server2 ?server4)

(temperatureOut ?server2 ?dt0))

)

)

 (* (w ?server3 ?server4)

 (+

 (* (cCurveDt1 ?server3 ?server4)

(temperatureOut ?server3 ?dt1))

 (* (cCurveDt0 ?server3 ?server4)

(temperatureOut ?server3 ?dt0))

)

)

 (* (w ?server4 ?server4)

 (+

 (* (cCurveDt1 ?server4 ?server4)

(temperatureOut ?server4 ?dt1))

 (* (cCurveDt0 ?server4 ?server4)

(temperatureOut ?server4 ?dt0))

)

)

)

)

 (updatedInletTemperature ?currentTime)

)

)

 (action updateOutletTemperatures

 :parameters (?t - time)

 :precondition

 (and

 144

 (updatedInletTemperatures ?t)

 (not (updatedOutletTemperatures ?t))

 (= (time ?t) (currentTime))

)

 :effect

 (and

 (assign (temperatureOut ?server0 ?t) (+ (temperatureIn ?server0 ?t)

(temperatureIncrease ?server0)))

 (assign (temperatureOut ?server1 ?t) (+ (temperatureIn ?server1 ?t)

(temperatureIncrease ?server1)))

 (assign (temperatureOut ?server2 ?t) (+ (temperatureIn ?server2 ?t)

(temperatureIncrease ?server2)))

 (assign (temperatureOut ?server3 ?t) (+ (temperatureIn ?server3 ?t)

(temperatureIncrease ?server3)))

 (assign (temperatureOut ?server4 ?t) (+ (temperatureIn ?server4 ?t)

(temperatureIncrease ?server4)))

 (updatedOutletTemperatures ?t)

 (increase (currentTime) 1)

)

)

 (action startJob

 :parameters (?t - time ?j - job ?s - server)

 :precondition

 (and

 (not (jobStartTime ?j))

 (= (time ?t) (currentTime))

 (not (updatedOutletTemperatures ?t))

)

 :effect

 (and

 (assign (jobStartTime ?j) (currentTime))

 (increase (temperatureIncrease ?s) (jobHeat ?j))

)

)

 (action endJob

 :parameters (?t - time ?j - job ?s - server)

 :precondition

 (and

 (= (currentTime) (+ (jobStartTime ?j) (jobDuration ?j)))

 (= (time ?t) (currentTime))

 (updatedOutletTemperatures ?t)

)

 :effect

 (and

 (jobCompleted ?j)

 (decrease (temperatureIncrease ?s) (jobHeat ?j))

)

)

)

 145

APPENDIX C

DATA CENTER PDDL FACT FILE

 146

(define (problem datacenter1)

 (domain transient-thermal-model)

 (:requirements :typing :equality :universal-preconditions :fluents :constraints)

 (:objects t1n t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 - time

 s0 s1 s2 s3 s4 - server

 j0 j1 j2 j3 j4 - job

 (:init

 (= (currentTime) 0)

 (= (time t1n) -1)

 (= (time t0) 0)

 (= (time t1) 1)

 (= (time t2) 2)

 (= (time t3) 3)

 (= (time t4) 4)

 (= (time t5) 5)

 (= (time t6) 6)

 (= (time t7) 7)

 (= (time t8) 8)

 (= (time t9) 9)

 (= (time t10) 10)

 (= (time t11) 11)

 (= (time t12) 12)

 (= (time t13) 13)

 (= (time t14) 14)

 (= (time t15) 15)

 (= (time t16) 16)

 (= (time t17) 17)

 (= (time t18) 18)

 (= (time t19) 19)

 (= (time t20) 20)

 (= (time t21) 21)

 (= (time t22) 22)

 (= (time t23) 23)

 (= (time t24) 24)

 (= (time t25) 25)

 (= (time t26) 26)

 (= (time t27) 27)

 (= (time t28) 28)

 (= (time t29) 29)

 (= (time t30) 30)

 (= (time t31) 31)

 (= (time t32) 32)

 (= (time t33) 33)

 (= (time t34) 34)

 (= (time t35) 35)

 (= (time t36) 36)

 (= (time t37) 37)

 (= (time t38) 38)

 (= (time t39) 39)

 (= (time t40) 40)

 (= (time t41) 41)

 (= (time t42) 42)

 (= (time t43) 43)

 147

 (= (time t44) 44)

 (= (time t45) 45)

 (= (time t46) 46)

 (= (time t47) 47)

 (= (time t48) 48)

 (= (time t49) 49)

 (= (time t50) 50)

 (= (w s0 s0) 0.2)

 (= (w s0 s1) 0.2)

 (= (w s0 s2) 0.2)

 (= (w s0 s3) 0.2)

 (= (w s0 s4) 0.2)

 (= (w s1 s0) 0.2)

 (= (w s1 s1) 0.2)

 (= (w s1 s2) 0.2)

 (= (w s1 s3) 0.2)

 (= (w s1 s4) 0.2)

 (= (w s2 s0) 0.2)

 (= (w s2 s1) 0.2)

 (= (w s2 s2) 0.2)

 (= (w s2 s3) 0.2)

 (= (w s2 s4) 0.2)

 (= (w s3 s0) 0.2)

 (= (w s3 s1) 0.2)

 (= (w s3 s2) 0.2)

 (= (w s3 s3) 0.2)

 (= (w s3 s4) 0.2)

 (= (w s4 s0) 0.2)

 (= (w s4 s1) 0.2)

 (= (w s4 s2) 0.2)

 (= (w s4 s3) 0.2)

 (= (w s4 s4) 0.2)

 (= (cCurveDt1 s0 s0) 1)

 (= (cCurveDt1 s0 s1) 1)

 (= (cCurveDt1 s0 s2) 1)

 (= (cCurveDt1 s0 s3) 1)

 (= (cCurveDt1 s0 s4) 1)

 (= (cCurveDt1 s1 s0) 1)

 (= (cCurveDt1 s1 s1) 1)

 (= (cCurveDt1 s1 s2) 1)

 (= (cCurveDt1 s1 s3) 1)

 (= (cCurveDt1 s1 s4) 1)

 (= (cCurveDt1 s2 s0) 1)

 (= (cCurveDt1 s2 s1) 1)

 (= (cCurveDt1 s2 s2) 1)

 (= (cCurveDt1 s2 s3) 1)

 (= (cCurveDt1 s2 s4) 1)

 (= (cCurveDt1 s3 s0) 1)

 (= (cCurveDt1 s3 s1) 1)

 (= (cCurveDt1 s3 s2) 1)

 (= (cCurveDt1 s3 s3) 1)

 (= (cCurveDt1 s3 s4) 1)

 (= (cCurveDt1 s4 s0) 1)

 148

 (= (cCurveDt1 s4 s1) 1)

 (= (cCurveDt1 s4 s2) 1)

 (= (cCurveDt1 s4 s3) 1)

 (= (cCurveDt1 s4 s4) 1)

 (= (cCurveDt0 s0 s0) 1)

 (= (cCurveDt0 s0 s1) 1)

 (= (cCurveDt0 s0 s2) 1)

 (= (cCurveDt0 s0 s3) 1)

 (= (cCurveDt0 s0 s4) 1)

 (= (cCurveDt0 s1 s0) 1)

 (= (cCurveDt0 s1 s1) 1)

 (= (cCurveDt0 s1 s2) 1)

 (= (cCurveDt0 s1 s3) 1)

 (= (cCurveDt0 s1 s4) 1)

 (= (cCurveDt0 s2 s0) 1)

 (= (cCurveDt0 s2 s1) 1)

 (= (cCurveDt0 s2 s2) 1)

 (= (cCurveDt0 s2 s3) 1)

 (= (cCurveDt0 s2 s4) 1)

 (= (cCurveDt0 s3 s0) 1)

 (= (cCurveDt0 s3 s1) 1)

 (= (cCurveDt0 s3 s2) 1)

 (= (cCurveDt0 s3 s3) 1)

 (= (cCurveDt0 s3 s4) 1)

 (= (cCurveDt0 s4 s0) 1)

 (= (cCurveDt0 s4 s1) 1)

 (= (cCurveDt0 s4 s2) 1)

 (= (cCurveDt0 s4 s3) 1)

 (= (cCurveDt0 s4 s4) 1)

 (= (temperatureIn s0 t1n) 0)

 (= (temperatureIn s1 t1n) 0)

 (= (temperatureIn s2 t1n) 0)

 (= (temperatureIn s3 t1n) 0)

 (= (temperatureIn s4 t1n) 0)

 (= (temperatureOut s0 t1n) 0)

 (= (temperatureOut s1 t1n) 0)

 (= (temperatureOut s2 t1n) 0)

 (= (temperatureOut s3 t1n) 0)

 (= (temperatureOut s4 t1n) 0)

 (= (temperatureIncrease s0) 0)

 (= (temperatureIncrease s1) 0)

 (= (temperatureIncrease s2) 0)

 (= (temperatureIncrease s3) 0)

 (= (temperatureIncrease s4) 0)

 (= (maxTemperature s0) 1)

 (= (maxTemperature s1) 1)

 (= (maxTemperature s2) 1)

 (= (maxTemperature s3) 1)

 (= (maxTemperature s4) 1)

 (= (jobHeat j0) 1)

 149

 (= (jobHeat j1) 1)

 (= (jobHeat j2) 1)

 (= (jobHeat j3) 1)

 (= (jobHeat j4) 1)

 (= (jobDuration j0) 10)

 (= (jobDuration j1) 10)

 (= (jobDuration j2) 10)

 (= (jobDuration j3) 10)

 (= (jobDuration j4) 10)

 (updatedOutletTemperatures t1n)

)

 (:constraints

 (forall (?s - server ?t - time)

 (< (temperatureIn ?s ?t) (maxTemperature ?s))

)

)

 (:goal

 (and

 (forall (?j - job)

 (jobCompleted ?j)

)

 (= (currentTime) 50)

)

)

)

 150

APPENDIX D

BLOCKS WORLD PDDL DOMAIN FILE

 151

The PDDL domain for BlocksWorld used in the planning competitions is shown below.

(define (domain BLOCKS)

 (:requirements :strips)

 (:predicates (on ?x ?y)

 (ontable ?x)

 (clear ?x)

 (handempty)

 (holding ?x)

)

 (:action pick-up

 :parameters (?x)

 :precondition (and (clear ?x) (ontable ?x) (handempty))

 :effect

 (and (not (ontable ?x))

 (not (clear ?x))

 (not (handempty))

 (holding ?x)))

 (:action put-down

 :parameters (?x)

 :precondition (holding ?x)

 :effect

 (and (not (holding ?x))

 (clear ?x)

 (handempty)

 (ontable ?x)))

 (:action stack

 :parameters (?x ?y)

 :precondition (and (holding ?x) (clear ?y))

 :effect

 (and (not (holding ?x))

 (not (clear ?y))

 (clear ?x)

 (handempty)

 (on ?x ?y)))

 (:action unstack

 :parameters (?x ?y)

 :precondition (and (on ?x ?y) (clear ?x) (handempty))

 :effect

 (and (holding ?x)

 (clear ?y)

 (not (clear ?x))

 (not (handempty))

 (not (on ?x ?y)))))

